nBS Technical note 740

 PUBLICATION
SETAB:

 An Edit/Insert Program for Automatic Typesetting of Spectroscopic and Other Computerized TablesQC
U.S. EPARTMENT OF COMMERCE

National
Bureau of
Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ${ }^{2}$ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics - Electricity - Mechanics - Heat - Optical Physics - Nuclear Sciences ${ }^{2}$ - Applied Radiation ${ }^{2}$ - Quantum Electronics ${ }^{3}$ - Electromagnetics ${ }^{3}$ - Time and Frequency ${ }^{3}$ - Laboratory Astrophysics ${ }^{3}$ - Cryogenics ${ }^{3}$.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:
Analytical Chemistry - Polymers - Metallurgy - Inorganic Materials - Reactor Radiation - Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards - Weights and Measures - Invention and Innovation - Product Evaluation Technology - Electronic Technology - Technical Analysis - Measurement Engineering - Structures, Materials, and Life Safety ${ }^{4}$ - Building Environment ${ }^{4}$ - Technical Evaluation and Application ${ }^{4}$ - Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consists of the following divisions:

Computer Services - Systems and Software - Computer Systems Engineering - Information Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data - Office of Information Activities - Office of Technical Publications - Library - Office of International Relations.

[^0]
SETAB: An Edit/Insert Program for Automatic Typesetting of Spectroscopic and Other Computerized Tables

Robert C. Thompson and Joseph Hilsenrath

Office of Standard Reference Data
National Bureau of Standards
Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

National Bureau of Standards Technical Note 740

Nat. Bur. Stand. (U.S.), Tech. Note 740, 30 pages (Dec. 1973)
CODEN: NBTNAE

U. S. GOVERNMENT PRINTING OFFICE
 WASHINGTON: 1973

[^1]
Contents

1. Introduction 1
2. Characteristics of SETAB 2
3. Discussion of the Parameter Cards 4
Sample Parameter Cards 5
4. Description of the Program. 6
Block Diagram of SETAB 8
5. Applications of SETAB 9
6. Summary and Conclusions 15
References 15
Appendix I (Program listing) 17
Appendix II (Modification listing) 23

SETAB

An Edit/Insert Program for Automatic Typesetting
of Spectroscopic and other Computerized Tables
by
Robert C. Thompson and Joseph Hilsenrath

SETAB is a FORTRAN program which accepts a card deck or Fortran records on magnetic tape and inserts the appropriate flags and shift symbols required by many programs associated with phototypesetting devices. The program is specialized to the particular application, the phototypesetter and typography programs, and to the desired typefaces by means of parameter cards supplied at run time. Examples are shown of spectroscopic tables typeset on the Linofilm phototypesetter at the Government Printing Office using the Autoset Typography Program. The program has also been used for tables of other types of data. The program can handle any records which can be read by a FORTRAN "READ" statement under "A" format control. The original record can be divided into as many as 40 fields and these fields can be combined in any order with any of 26 strings in front of or between the pieces. The program will, on a signal, replace a field by another field or by a combination of fields and strings. The output lines are blocked and paged via the insertion of the required strings between blocks and pages.

Keywords: Automatic typesetting; computer-assisted typesetting; edit insertion program; FORTRAN program; phototypesetting of spectroscopic tables; typesetting of tables.

1. Introduction

For years spectroscopists have been sending handwritten manuscripts to the printer to have their spectroscopic tables typeset in graphic arts quality. This was quite natural as long as all data logging and data manipulation were performed manually. With the advent of automatic data logging and the use of the computer for data reduction, the spectroscopists began to keep their data on punched cards. The appearance of phototypesetters provided a mechanism for the typesetting of machine readable data without the necessity of rekeyboarding the data.

A technique for automatic typesetting of spectroscopic tables direct from magnetic tapes was developed by W. R. Bozman in 1962. [1]. Since that time several books of data have been produced by this method. The production of each of these books entailed the preparation of special programs by a programmer experienced in machine language programming and having detailed knowledge of the operation of the Linofilm phototypesetting machine.

The design of the SETAB program was motivated by the conviction that the economic viability of computer-assisted typesetting rested on the use of general-purpose rather than special-purpose programs. That this is indeed the case, has been born out by experience with a number of applications that are discussed in this paper.

In an earlier report, [2] McClenon and Hilsenrath have shown that the FORTRAN program REFORM can be used to insert the flags required by the typography programs. However, REFORM lacks a number of features desirable in a generalized edit/insertion program for phototypesetting of tables. Therefore, the program SETAB, described in this report, was written incorporating many of the features of REFORM and containing a number of additional features desired for an edit/insert program.

While the magnetic tapes produced by Bozman had the codes required to drive the photounit directly, SETAB produces tapes which need to be processed by a typography program before the material can be set. It is, therefore not restricted to a particular typography program or to a particular typesetting machine. The specific flags are supplied at run time.

Except for two READ statements $(500,510)$, the program is written in a subset of ANSI FORTRAN. No logical statements are used, since the format of these deviates from the standard on some computers. Particular care was taken to make it machine independent with respect to internal bit configuration and as system independent as possible. The logical unit numbers designating the system card reader, printer, card punch and tape drives differ not only from machine to machine, but also from installation to installation. Therefore some changes will probably be necessary if this program is to be used at any other installation. In order to minimize the modifications required in implementation, the input and output devices are designated by variables which are defined at the beginning of the program.

2. Characteristics of SETAB

The program discussed here operates on a fixed field file consisting of cards, card images or Fortran records on a magnetic tape, and produces a magnetic tape suitable for input to typography programs such as those used by the Government Printing Office. The program, suitably instructed via parameter cards, divides the original record into as many as 40 fields and then combines these fields in the specified order with up to 26 strings. These strings can be typesetting flags such as locators to be put at the beginnings of lines or columns, or a grid change flag to set a particular column in boldface or italics.

Since a field can be defined as a single, character, it is possible to make a character, a subscript or a superscript by bracketing it with the required typesetting flags. It is also possible to add information that is not in the input data stream if the information is to appear in the same place in every typeset line. Also, card decks often have blank cards between blocks of data, and computer listings often have blank lines between blocks. When that information is typeset the blank line between blocks is usually of a different spacing than the spaces between normal data lines. To accomodate this the program deletes all blank cards or lines and inserts specified typesetting flags after each block of a specified number of lines and after each page of a specified length. There are times when a character in the input is not the character that is desired in the typeset copy. To cope with this, the program can be instructed to replace one character by another in a specified portion of the record.

The over-all format of an output line is controlled by a parameter card that designates the order of the fields and the strings, if any, to be inserted. The latter control the typography and may even insert information which was not contained in the original record. However, there are times when the way the information in a given field is to be printed depends not only on its position but also on its content. An example of the need for handling information in a designated field differently depending on the content of a portion of that field is shown in figure 1 . Here the information in the classification column is handled quite differently from line to line depending upon whether the character in position 44 is numeric or alphabetic.

Table 3. Observed and classified lines of W_{1}

Figure 1. A portion of a spectroscopic table phototypeset from information supplied on ordinary punched cards. Note how differently the lines containing pure numerics are treated from those that contain mixtures of letters and numbers.

A partial listing of the parameter cards for one run is shown in figure 2. A number of the cards were removed to permit one of each type of parameter card to be shown in a single figure. The first card contains the alphabet, beginning with A in column 1 and the digits starting with zero in column 27. Column 47 must be blank and column 80 contains the character used as a string delimiter.

The second card contains the following parameters in $I 3$ format.

1. The number of fields in the input record
2. The length of the input record
3. The number of lines in an output block
4. The number of lines on an output page (This must be an integral number of blocks)
5. The input unit number
6. The output tape unit number
7. The output print switch; $=0$ for a printer copy of the output, $=1$ for only writing an output tape
8. The EOF switch; $=0$ for an end of file to be written at end of output file, $=1$ if no EOF is to be written
9. The input tape rewind switch; $=0$ for tape to be rewound before reading, $=1$ if input tape is not to be rewound
10. The output tape rewind switch. $=0$ for tape to be rewound before writing $=1$ if not

The last three fields are normally left blank or set equal to zero. These switches were provided to permit the processing of several input files into one output file.

The third parameter card contains the character stream required to achieve the spacing desired between blocks. The fourth card contains the character stream which is desired to be placed at the end of each page. The fifth card contains the line to be printed at the end of the table.

The sixth card, in $26 I 3$ format, gives the beginnings and lengths of the input fields in pairs. Columns 1-3 contain the character or column number that begins the first field. Columns 4-6 contain the number of characters in the first field. Columns 7-9 contain the character or column number that begins the second field, and so forth. If more than 13 fields are desired, they are put on another card. A maximum of 40 fields can be specified. The input record cannot exceed 132 characters.

The seventh card, in 26 (I2,Al) format, specifies the makeup of the output. If the output is to begin with a string, columns 1 and 2 can be left blank or made zero. However, if any other pair of columns that would specify a field number is blank or if the field number is zero, this is taken as the end of the output record specification and no more fields or strings are put into the output record.

The eighth and succeeding cards contain the strings to be inserted between fields of the input. Each string is terminated by the character in column 80 of the first parameter card. The last card is to have the character in column l. This terminates the reading of strings. Only 26 strings are permitted. The strings are automatically assigned names, which are the letters of the alphabet in order.

The next set of cards contains the fields and characters for the single character substitution. The cards are in 4I3 format. The first field (columns l-3) contains the column number where the substitition is to start.

Figure 2. Sample Parameter Cards - A sampling of the parameter cards required for a run, showing at least one of each type used. The numbers on the second line of some of the cards are put there to show the position for fixed field input.

The second field (columns 4-6) contains the column number of the last column for this substitution. The third field (columns 7-9) is the character code (the card column from the first parameter card) of the character to be replaced. The fourth field is the character code of the character that is to replace the original character. The last card of the set must have the number 199 in the first field. This signals the end of this set of cards. Only 25 cards are allowed in this set unless the dimensions of IBST, IBEN, LCAR, and LREP are changed.

The next cards contain, in pairs of cards, the changes in output desired in up to 30 different fields. The first card of the pair, in 3I3 format, contains: in columns 1-3, the field to be replaced; in columns 4-6, the input card column in which the flag character is to be found; in columns 7-9, the column of the first parameter card that contains the character that is to act as a flag signaling the change in format. The second card of the pair contains the strings and fields to replace the given field. This card has the same format as the seventh parameter card which specified the normal output. A maximum of 30 fields may be substituted for. The last card of this set must have the number 199 in columns l-3. If the column number given for the flag character is 80 or less, it designates the character in that card column of the first parameter card. If the number is 81 it designates that the flag character is one of the characters in columns 1-26 of the first parameter card, i.e., any alphabetic character. The number 82 designates that the flag character is numeric (column 27-36 of the first parameter card). 83 designates any graphic character (not a character in columns l-36 of the first parameter card). 84 designates any nonalphabetic character (not in columns 1-26 of first parameter card). 85 designates any non-numeric character (not in columns 27-36 of first parameter card). 86 designates any non-graphic character (any character in columns 1-36 of the first parameter card). The same character on input can be used to signal changes in output for more than one field. The last card of this set shall have the number 199 in the first field signaling the end of the set of cards.

The last card, in $4 I 3$ format, specifies the condition that signals when the counter containing the number of lines processed is to be reset. When the card contains the number 199 in columns one to three, the program will insert the characters required to start a new page on the basis of the line count in accord with the instructions given on card two. When it is desirable to start a new page on the basis of the content of a line, it is done by matching characters in the input to one of the ad hoc strings. Columns l-3 specify the beginning character number, columns 4-6 specify the final character to be matched, columns 7-9 specify the number of the string to be matched, and columns 10-12 contain the number to which the counter is to be reset.

4. Description of the Program

The program consists of a main program with no subroutines. There are a number of comment cards at the beginning that explain how the parameter cards are to be prepared. In order to minimize changes when adapting this program to other installations, the input and output instructions reference the variables: ITAPE, IOTAPE, IRTAPE, and IPTAPE. The latter two are defined via parameter cards input at the beginning of the program. In the listing of the program accompanying this report, ITAPE is equated to logical unit 5 which is the card reader, IOTAPE is equated to. 6 which is the printer, IRTAPE may have a default value of 5 , and IPTAPE may have a default value of 3 specifying the card punch. The last two are normally specified on the second parameter card, and only if the units specified are obviously incorrect are the default values used. In installations where these peripherals have different numbers, the nine statements (cards 790-870)
which check whether they have been correctly specified would have to be changed. The first executable statements define ITAPE as the card reader and IOTAPE as the printer.

A block diagram of the program is shown in figure 3. The first parameter card serves to define the punch configuration for the characters on the data and parameter cards. The presence of the characters on the first card obviates the need to define them explicity in the program. This simple device makes the program independent of a variety of incompatabilities which are often such a source of trouble in adapting programs to different computers. The program logic uses the disposition of the characters on the first parameter card in such a way as to avoid entirely the need to know how a particular machine recognizes a character on a card, what the internal bit representation of that character is, and where that character is placed in a machine word. In this way the program is independent of whether the particular machine stores away 3 characters per machine word, or 6 or even 7. Nor is it dependent on whether a single character is stored left-adjusted, right-adjusted or in any other way. The second card specifies the input and output parameters. The program checks the values supplied for the input and output units to see if they are reasonable and, if not, assigns default values. The strings to be inserted between blocks and pages and at the end of the file are read into buffers. The beginning and length of the fragments on the input record are defined. Then the normal output format card is read, and the fields are checked to see that they were specified. The strings are then read into a buffer, and the lengths of the strings are determined and stored. After reading the cards specifying the single character substitutions, the field replacements and the new page signal, the program is ready to process the input.

First a record is read into buffer IB in 132 Al format. If the record is a blank line a new record is read in. The record is checked to see if it has a flag signaling a change in paging. If the flag is found the line counter is reset to the value specified. The single character substitution is performed next.

The program is now ready to start building a new record in buffer IBUFR, from pieces of the input record and the strings. The first number on the output format card is checked, and the specified piece of the input buffer IB is moved into IBUFR. If the first number is zero the program skips down to the next step. Then the program checks the alphabetic character to determine which string is to be transferred, and the specified string is moved to IBUFR. If the alphabetic character is a blank no string is moved. The program then checks to see if the next field number is zero or blank, if it is, this signals that the record is complete. If the next field number is one that is sometimes replaced by a different field or combination of fields and strings, the program checks the flag character. If the field is to be replaced, the program moves the appropriate fields and strings into IBUFR, otherwise it moves the specified field in. Then the program places the next string into IBUFR and checks to see if the next field number is zero or blank signaling that the record is complete.

If the record is complete, it is written out on tape, and if the print switch (ITEST) is nonzero the record is also written on the printer. The line counter is advanced by one. The counter is then checked to see if the record was the last of a block. If it was, the counter is checked to see if the line was the last line on the page. If the line was the end of a page or a block the appropriate string is written on the output tape. Then the program reads in a new record.

Figure 3. Block diagram of SETAB.
5. Applications of SETAB

An example of a simple table in a NSRDS publication [3] typeset by using this program is shown in figure 4. The parameter cards and the data cards for this portion of the table are shown in figure 5. The output of the program is shown in figure 6. The program, following the instructions on the format card, has put =Fl at the beginning of each line of data. This was used as the format flag for the Autoset Typography Program at the Government Printing Office. It serves to select the desired typeface, point size and leading (space between lines). The $=40$ causes 40 units of space to be set between columns. The slash at the end of each line is the end of record character. Between each block of five lines the character string $=F 2=P 1 . /$ is defined to put the desired quad line between blocks. There is nothing in the output to instruct the phototypesetting machine how to set the column headings. This program does not have provision for table headings, column headings, or rules. We prefer to have these set only one time and then put on the table as an overlay.

Table 2. Thermodynamic Functions for Copper
Gram atomic wt. $=63.5400, T^{\circ} \mathrm{K}=273.15+t^{\circ} \mathrm{C}, 1 \mathrm{cal}=4.1840 \mathrm{~J}$

T	C_{ρ}°	$H_{T}^{\circ}-H_{\circ}^{\circ}$	$\left(H_{\Gamma}^{\circ}-H_{\circ}\right) / T$	S_{T}°	$-\left(G_{\Gamma}^{\circ}-H_{\circ}^{\circ}\right)$	$-\left(G_{\Gamma}^{\circ}-H_{\circ}^{\circ}\right) / T$
${ }^{\circ} K$	$J /$ deg-mol	$J / m o l$	$J /$ deg-mol	$J /$ deg-mol	$J / m o l$	$J /$ deg-mol
1.00	0.000743	0.000359	0.000359	0.000711	0.000351	0.000351
2.00	0.00177	0.00158	0.000790	0.00152	0.00145	0.000727
3.00	0.00337	0.00409	0.00136	0.00251	0.00345	0.00115
4.00	0.00582	0.00860	0.00215	0.00379	0.00657	0.00164
5.00	0.00943	0.0161	0.00322	0.00546	0.0112	0.00223
6.00	0.0145	0.0279	0.00466	0.00760	0.0176	0.00294
7.00	0.0213	0.0456	0.00652	0.0103	0.0265	0.00379
8.00	0.0301	0.0712	0.00889	0.0137	0.0385	0.00481
9.00	0.0414	0.107	0.0119	0.0179	0.0542	0.00602
10.00	0.0555	0.155	0.0155	0.0229	0.0746	0.00746
11.00	0.0727	0.219	0.0199	0.0290	0.100	0.00913
12.00	0.0936	0.302	0.0251	0.0362	0.133	0.0111
13.00	0.119	0.407	0.0313	0.0447	0.173	0.0133
14.00	0.149	0.541	0.0386	0.0545	0.223	0.0159
15.00	0.184	0.706	0.0471	0.0660	0.283	0.0189
16.00	0.225	0.910	0.0569	0.0791	0.355	0.0222
17.00	0.273	1.158	0.0681	0.0941	0.442	0.0260
18.00	0.328	1.458	0.0810	0.111	0.544	0.0302
19.00	0.390	1.816	0.0956	0.131	0.665	0.0350
20.00	0.462	2.242	0.112	0.152	0.806	0.0403
25.00	0.963	5.703	0.228	0.305	1.917	0.0767
30.00	1.693	12.25	0.408	0.541	3.995	0.133
35.00	2.638	22.99	0.657	0.871	7.487	0.214
40.00	3.740	38.89	0.972	1.294	12.86	0.322
45.00	4.928	60.54	1.345	1.802	20.57	0.457
50.00	6.154	88.23	1.765	2.385	31.01	0.620
55.00	7.385	122.1	2.220	3.029	44.52	0.809
60.00	8.595	162.0	2.701	3.724	61.38	1.023
65.00	9.759	208.0	3.199	4.458	81.82	1.259
70.00	10.86	259.5	3.708	5.222	106.0	1.514

Figure 4. A portion of Table 2 of NSRDS-NBS-18 which was set on the Linofilm phototypesetter from punched cards using SETAB to insert the flags required by the Autoset Typography Program at the Government Printing Office. The rules and headings were supplied with overlays.
$=\mathrm{F} 2=\mathrm{P} /$
$=\mathrm{F} 3=\mathrm{P}$,
$=\mathrm{F} 4=\mathrm{P} / \mathrm{F}$
$\begin{array}{llllllll}\mathrm{A} & 1 \mathrm{~B} & 2 \mathrm{~B} & 3 \mathrm{~B} & 4 \mathrm{~B} & 5 \mathrm{~B} & 6 \mathrm{~B} & 7 \mathrm{C}\end{array}$
=F1 \$
$=40 \$$
\$ $/ \$$
$\$ 199$
199
199

1.00	0.000743	0.000359	0.000359	0.000711	0.000351	0.000351 CU JOULE	
2.00	0.00177	0.00158	0.000790	0.00152	0.00145	0.000727 CU JOULE	
3.00	0.00337	0.00409	0.00136	0.00251	0.00345	0.00115 CU JOULE	
4.00	0.00582	0.00860	0.00215	0.00379	0.00657	0.00164 CU JOULE	
5.00	0.00943	0.0161	0.00322	0.00546	0.0112	0.00223 CU JOULE	
6.00	0.0145	0.0279	0.00466	0.00760	0.0176	0.00294	CU JOULE
7.00	0.0213	0.0456	0.00652	0.0103	0.0265	0.00379	CU JOULE
8.00	0.0301	0.0712	0.00889	0.0137	0.0385	0.00481 CU JOULE	
9.00	0.0414	0.107	0.0119	0.0179	0.0542	0.00602 CU JOULE	
10.00	0.0555	0.155	0.0155	0.0229	0.0746	0.00746 CU JOULE	
11.00	0.0727	0.219	0.0199	0.0290	0.100	0.00913 CU JOULE	
12.00	0.0936	0.302	0.0251	0.0362	0.133	0.0111	CU JOULE

Figure 5. The parameter cards and a portion of the data cards input to SETAB to produce the table shown in Figure 4. Note that the text in columns 73-80 of the original file is ignored by defining the input record to extend only to 72 characters. Had these comments appeared between the desired data, they could have been ignored in the same manner that the blanks are ignored in the field definition card.

$0.000359=40 \quad 0.000359=40 \quad 0.000711=40$
$0.00158=40 \quad 0.000790=40 \quad 0.00152=40$
$0.00409=40 \quad 0.00136=40 \quad 0.00251=40$
$0.00860=40 \quad 0.00215=40 \quad 0.00379=40$
$0.0161=40 \quad 0.00322=40 \quad 0.00546=40$
$0.0279=40 \quad 0.00466=40 \quad 0.00760=40$
$\begin{array}{lllll}=40 & 0.00466 & =40 & 0.00760 & =40 \\ =40 & 0.00652=40 & 0.0103 & =40\end{array}$
0.0456

$\begin{array}{lll}0.107 & =40 & 0.0119 \\ 0.155 & =40 & 0.0179=40\end{array}$
$0.155=40 \quad 0.0155=40 \quad 0.0229=40$
$\begin{array}{lll}0.000351=40 & 0.000351 \\ 0.00145 & =40 & 0.000727 \\ 0.00345 & =40 & 0.00115 \\ 0.00657 & =40 & 0.00164 \\ 0.0112 & =40 & 0.00223\end{array} \quad /$

Figure 6. The output of SETAB resulting from the input shown in Figure 5. This was processed by the Autoset Typography Program at the Government Printing Office and run on the Linofilm Phototypesetter to produce the results shown in Figure 4. The character inserted by SETAB serve the following functions $=F l$ is a format flag which serves to select the type face, the point size and loading the sequence ${ }^{\prime}=F 2=P /$ provides for an appropriate space between the data blocks. $=40$ introduces 40 units of space between the columns. The slash acts as an end of record symbol.

A more interesting example of the use of SETAB for spectroscopic tables is shown in figure 1 taken from a paper by Corliss [5]. A portion of the original card deck used to produce the results shown in that figure are reproduced in figure 7. Figure 8 shows the character strings inserted in the original records by SETAB from the instructions shown in figure 9 to achieve the results shown in figure 1. The requirement that a digit in a particular position be typeset as a superscript character when it was part of a term designation and as a normal character when part of a number was met by using the field replacement capability. Field 6 begins at position 40 and contains five characters. The normal format assumed the field contained all digits or blanks and digits. The bracketed pair of field replacement cards in figure 8 changes the format for term designations. The first card of the pair can be read as: Replace Field 6 if the character in position 44 is an alphabetic character (designated by 81), by the strings and fields specified on the next card. The second card of the pair says the replacement format is string P (!25!G2), field 14 (position 43), string L (!Gl(), field 15 (position 44), string M ()). String P (!25!G2) puts in 25 units of space so columns line up and pulls in the superscript grid. Field 14 is the character to be set as a superscript. String L brings back the normal grid and shifts to upper case. Field 15 is the alphabetic character and String M shifts to lower case. The next pair of cards accomplishes the same effect for the second level.
 11111111111111111:1111111111111111111111111111111111111 274E.734 $40 \quad 36396.11+0.02 \quad 159-51840$
2747.00E $50 \quad 3692.50+0.1063 P 1-49620$
$2747.155 \quad 15$
2747.8E6 40 36391.54

Figure 7. A part of the original card deck used to produce the table shown in figure 1.

Figure 8 . The records from figure 7 showing the character strings inserted by SETAB via the instructions shown in figure 9.

```
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'/(*)=,$.+ - S
    22 72 5 50 5 8
!F2 !P / BLOCK SEPARATOR
!F3 !F3 !F3 !P / PAGE SEPARATOR
!F3 !P / END OF TABLE
    l llllllllllllllllllllllllllllllllll
```



```
    A 1B 2C 3D 4E 5F 6G 8H 7I 9GllHlOJl2K
!Fl' STRHGGA%% LOCAMOR ROREGNNLNE
!51'
!45'
!52'
!58'
!56'
!G2'
!G3'
!Gl'
!60!G4
/'
!Gl'
!
)
!25!G2'
!25!G2'
!16'
!78'
!72'
!63'
!69'
15 1744750
22 244750
36 36 47 50
45 46 47 50
53 54 47 50
34 344760
199
    l 647
    R
    647
            647 REPLACE FIELD 3%`ת%% IF COL 6 IS BLANK
        WIDTH OF COLUMN 1
        STRING S/% WIDTH OF COLUMN 2
        STRING T WIDTH OF COLUMN 3
        STRING U WIDTH OF COLUMN 4
        END OF STRINESI
    IN COLS 15 THRU 18 REPLACE A BLANK (47) BY A $ (50)
IN COL 36 REPTACE A BLANK (47) BY A / (38)
END OF CHARACTER REPLACEMENT CARDS
REPLACE FIELD 1. TF COL 6 IS BLAMK
                                    BY STRING R
                                    REPLACE FIELD 2 IF COL }6\mathrm{ IS BLANK
                                    BY STRTNGS
        647
    U
*
Pl4L15M
92 }8
16Q20G17L18M
    12 57 18
    N19M22
199
199
```

Figure 9. The parameter cards used with SETAB to produce the output shown in figure 8. The bracketed pair of field replacement cards are the ones that permit the typographic variation between lines in the classification column in figure l. The grey area contains comments which the program ignores.

An example of a different spectroscopic table from a paper by Sugar [6] is shown in figure 10. The parameter cards input to SETAB are shown in figure ll. Note that J values in the classification column are given as integers in columns 33 and 42 with an added $1 / 2$ being implied. It was possible to change the integers to fractions by making use of the field replacement feature of the program. The J value is defined as a separate field. The string ! G3 inserted before the J value calls up the subscript grid. Then pairs of field replacement cards are used to replace the integers by the required fractions. Field 7 is a single character in position 33. The bracketed pair of field replacement cards replace a 2 by $5 / 2$. The first card of the pair can be read as: Replace Field 7, if the character in position 33 is a 2 (designated as character 29), by the strings and fields specified on the next card. The second card of the pair specifies the replacement format as string M, which is $5 / 2$. Ten sets of cards are required to handle the ten possible digits which define the J values in one field. Since this is done for two fields, a total of forty cards are required for this purpose.

Figure 10. A portion of a table phototypeset using SETAB as the Edit/Insertion program to transform the records shown as an insert. Note that the character before the dash is an integer. Each of the integers in this position is replaced by a fraction as follows: 2 becomes $5 / 2,3$ becomes $7 / 2$ etc. This table was set in 8 point type in galley form and pasted up into 2 columns. The rules and column headings were stripped in manually.
$\begin{array}{llllll}11 & 72 & 5 & 55 & 7 & 8\end{array}$
！F1 ！P \％
！F1 ！F1 ！F1 ！F1 ！P \％
！F1 ！F1 ！F1 ！F1＞E＜ND OF JOB \％

BLOCK SEPARATOR

PAGE SEPARATOR
END OF TABLE

| 2 | 8 | 11 | 4 | 15 | 2 | 18 | 9 | 27 | 5 | 32 | 1 | 33 | 1 | 34 | 7 | 41 | 1 | 42 | 1 | 16 |
| :--- | 1 A 1B $2 \quad 3 \mathrm{C} \quad 4 \mathrm{~V}$ 5D 6E 7F 80 9E10G

！F1，
！ 45 ．
！ 45 ．
！G2＞${ }^{\prime}$
！G3く＇
！ $61<{ }^{\prime}$
＊
！681
！ 36
！77．
1＞／＜25
3＞／＜25．
5＞／＜25．
7＞／＜25．
$9>/<2 \$^{\prime}$
$11>1<2^{\prime}$
13）<2＇
15＞1＜2＇
17＞1＜2＇
19＞／＜2＇
！G4＞－＜！G1．
！54．
$1516475 n$
$\begin{array}{lllll}31 & 31 & 47 & 65\end{array}$
$\begin{array}{llll}32 & 32 & 15 & 43\end{array}$
$3232 \quad 2743$
32324750
41411543
41412743
41414750
199
1140
140
1540
U11
140
3327
K
3328
3329

STRING A LOCATOR TO BEGIN LINE
STRING 8 SPACE BETWEEN COLS． 1 AND 2
STRING C SPACE BETWEEN COLS． 2 AND 3
STRING D SUPERSCRIPT GRIO FLAG
STRING E SUBSCRIPT GRID FLAG
STRING F NORMAL GRID FLAG
STRING G END OF LINE SYMBOL
STRING H WIDTH OF COLUMN 1
STRING 1 WIDTH OF COLUMN 2
STRING J WIDTH OF COLUMN 3
STRING K REPLACES O
STRING L REPLACES 1
STRING M REPLACES 2
STRING N REPLACES 3
STRING O REPLACES 4
STRING P REPLACES 5
STRING Q REPLACES 6
STRING R REPLACES 7
STRING S REPLACES 8
STRING T REPLACES 9
string u
STRING V
ENO OF STRINGS
IN COLS $15-16$ REPLACE A BLANK（47）BY A $\$(50)$
IN COL 31 REPLACE A BLANK（47）BY A \＃（65）
IN COL 32 REPLACE A O（15）BY A $\cdot(43)$
IN COL 32 REPLACE A $0(27)$ BY A ，（43）

END OF CHARACTER REPLACEMENT CARDS
REPLACE FIELD 1 IF COL 1 IS A＊（40）
BY STRING H（WIDTH OF COL 1 ）

REPLACE FIELO 3 IF COL 15 IS A＊(40)
BY STRING U．FIELD 11

REPLACE FIELD 7 IF COL 33 IS A $0(27)$ BY STRING K（1／2）

REPLACE FIELD 7 IF COL 33 IS A 2（29） BY STRINE M（5／2）

ETE．
199 END OF FIELD REPLACEMENT CAROS
199
LAST PARAMETER CARD

[^2]SETAB is a general-purpose program written in ANSI FORTRAN that inserts into a character stream, symbol sequences required by typography programs at the U.S. Government Printing Offige. This program permits any computer user to prepare a magnetic tape for phototypesetting of spectroscopic and other tables from fixed field records. The generality of the program arises from the fact that all of the typographic instructions are supplied in the form of parameter cards which are external to the program. The use of this program makes it economical to produce tables with complex spectroscopic notation for tables as short as 10 pages or less. The program is listed in Appendix I. The examples used in this report are from jobs run through an old 1401 Autoset program. Since then the G. P. O. has changed the computer as well as the typesetting programs, and the typesetting flags they recognize. In spite of these substantive changes in the typesetting programs, the SETAB program described here did not need to be rewritten, because the typographic instructions are carried on the control cards. For example, the present method uses the string !IOl instead of !Fl. Similarly the string ! P is no longer used at the end of the strings used to denote block separaters, page separators, etc.

The program listed in Appendix I produces an output tape containing a separate record for each line to be printed. Now that the Typography programs at the Government Printing Office have large input buffers they request blocked records. The modification used at NBS is listed in Appendix II. It was not written in ANSI FORTRAN because the NBS computer can not write FORTRAN records longer than 132 characters.

References

[l] William R. Bozman, "Phototypesetting of Computer Output", Nat. Bur. Stand. (U.S.), Tech. Note 170 (June 1962). Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, i.C. 20402
[2] Robert C. McClenon and Joseph Hilsenrath, "Reform: A General Purpose Program for Manipulating Formatted Data Files", Nat. Bur. Stand. (U.S.), Tech. Note 444 (Aug. 1968). Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
[3] George T. Furukawa, William Saba, and Martin L. Reilly, "Critical Analysis of Heat-Capacity Data of the Literature and Evaluation of Termodynamic Properties of Copper, Silver and Gold from 0 to $300^{\circ} \mathrm{K}$ ", Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. (U.S.), 18 (Apr. 1968). Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
[4] Donald D. Laun and C. H. Corliss, "The First Spectrum of Tungsten (WI)", J. Res. Nat. Bur. Stand. (U.S.), 72A, (Phys. and Chem.) No. 6 (Nov. Dec. 1968)
[5] Jack Sugar, "The Third Spectrum of Praseodymium (Pr III) in the Vacuum Ultraviolet", J. Res. Nat. Bur. Stand. (U.S.), 73A (Phys. and Chem.) No. 3 (May - June 1969)

APPENDIX I

The program as listed here was written to permit easy implementation on various computers and compilers of different vintage. If it is desired to block the output, modifications must be made. The markings to the right of the listings indicate which lines of the program were replaced by correspondingly marked lines in APPENDIX II to provide blocked output from the NBS computer. The < means insert and the dot and brace denote lines to be replaced by corresponding sections in APPENDIX II.

10 STB THIS PROGRAM WAS WRITTEN BY R.C.THOMPSON NBS NSRDS IN AUGUST 1968, STB IT IS A EXPANSION OF CTGPO WRITTFN BY R.C.THOMPSON IN DECEMBER OF 67 STA IT CAN BE USED TO REFORMAT TABLES IN GALLY FORMAT INTO GPO FORMAT. STB THE PROGRAM DIVIDES THE CARD OR LINE INTO A MAXIMUM OF 40 FIELDS. THESTB NEW LINE IS COMPOSED OF THESE FIELDS REARRAINGED IN ANY ORDER WITH STR AD HOC STRINGS ADDED BETWEEN THE FIELDS. SINGLE CHARACTER SUBSTITUTIOSTB MAY BE PERFORMED ON ANY RUN OF COLUMNS. USING A COL AS A FLAG A FIELDSTB 90 MAY BE REPLACED BY A LIST OF STRINGS AND FIELDS.

STR 100
THE FIRST CONTROL CARD CONTAINS THE LIST OF CHARACTERS WITH THE STB 110 LETTER A IN COL 1. B IN COL 2, ET SEQ. THE NUMBERS FOLLOW WITH ZERO STB 120 IN COL 27 ET SEQ. COL 47 IS BLANK AND COL 80 HAS THE CHARACTER USED STB 130 TO END THE STRINGS.

STB 140
THE SECOND CARD IS IN $26 I 3$ FORMAT. ALL NUMRERS TO RE RIGHT ADJUSTEDSTB 150 COLS 1-3 IS THE NUMBER OF FIELDS TO DIVIDE THE INPUT RECORD INTO, STB 160 4-6 LENGTH OF INPUT RECORD, 7-9 IS NUMBER OF LINES IN A BLOCK, 13-12 STB 170 IS THE NUMRER OF LINES ON A PAGE, $13-15$ IS THE INPUT TAPE UNIT, IF STB 180 THIS FIELD IS 0 OR BLANK A DEFAULT NUMBER OF 5 DESIGNATING THE CARD STR 190 READER IS USED. $16-18$ IS THE OUTPUT TAPE NUMSER, A DEFAULT NUMBER OF STB 200 3 DESIGNATES THE CARD PUNCH. 19-21 IS 1 IF A COPY OF THE OUTPUT ON STB 210 THE PRINTER IS NOT DESIRED, 22-24 IS 1 IF A END OF FILE IS NOT DESIRESTB 220 ON THE OUTPUT TAPE, 25-27 IS 1 IF THE INPUT TAPE IS NOT TO BE REWOUNDSTR 230 28-30 IS 1 IF THE OUTPUT TAPE IS NOT TO RE REWOUND.

STB 240
THE THIRD CARD CONTAINS THE LINE TO BE PRINTED BETWEEN BLOCKS. STB 250 THE FOURTH CARD CONTAINS THE LINE TO BE PUT AT THE END OF A PAGE. STB 260 THE FIFTH CARD CONTAINS THE LINE TO BE PUT AT THE END OF THE TABLE STR 270 THE SIXTH CARD IN $26 I 3$ FORMAT GIVES THE START AND WIDTHS OF THE INPUTSTB 280 FIELDS, IF MORE THAN 13 FIELDS ARE REQUIRED THEY ARE PUT ON ANOTHER STB 290 CARD. THE NEXT CARD IN $26(I 2, A 1)$ FORMAT SPECIFIES THE MAKEUP OF THE STR 300 OUTPUT CARD OR LINE. THE INPUT AND OUTPUT CAN NOT EXCFED 132 CHARS. STR 310

THE FOLLOWING SET OF CARDS CONTAIN THE STRINGS TO BE INSERTED. EACHSTR 320 STRING MUST RE TERMINATED BY THE CHARACTER IN COL 80 OF THE FIRST STB 330 CONTROL CARD. A CARD WITH THAT CHAR IN COL 1 TERMINATES THE READING OF STRINGS. ONLY 26 STRINGS ARE PERMITTED.

THE NEXT SET OF CARDS CONTAINS THE FIELDS AND CHARACTERS FOR THE STB 360 SINGLE CHAR SUBSTITUTION. IN $4 I 3$ FORMAT. THE FIRST FIELD CONTAINS STR 370 THE COL WHERE SURS STARTS. THE SECOND FIELD WHERE SUBS ENDS THE THI STR 380 RD FIELD IS THE CARD COL OF THE FIRST CONTROL CARD OF THE CHAR TO BE STB 390 REPLACED. THE FOURTH FIELD IS CARD COL OF CHAR TO BE INSERTED IN PLACSTB 400 OF THE ORIGINAL CHAR. THE LAST CARD OF THIS SET IS TO HAVE 909 IN THESTB 410 FIRST FIELD. THIS TERMINATES THE READING OF THIS SET. ONLY 25 CARDS STB 420 $\triangle R E$ ALLOWED IN THIS SET.

THE NEXT CARDS CONTAIN IN SETS OF TWO CARDS THE CHANGES IN OUTPUT
STR 430 QEQUIRED IN UP TO 30 DIFFERENT FIELDS. THE FIRST CARD IN 3I3 FORMAT STR 450 CONTAINS 1 THE FIELD TO RE REPLACED, 2 THE COL THE FLAG IS TO BE IN. STR 460 3 THE CHAR THAT IS TO ACT AS A FLAG SIGNALING REPLACEMENT. THE STB 470 SECOND CARD CONTAINS THE STRINGS AND FIELDS TO BE INSERTED IN TH SAMESTR 480 FORMAT AS IN THE CARD SPECIFYING THE OUTPUT. IF THE NUMBER OF FIELD STB 490 ? IS 80 OR LESS IT DESIGNATES THE CHARACTER IN THAT CARD COL OF THE STB 500 FIRST CONTROL CARD. IF IT IS 81 IT DESIGNATES ANY ALPHABETIC CHARACTRSTR 510 82 IS ANY NUMERIC CHAR, 83 IS ANY GRAPHIC CHAR, 84 IS ANY NONALPHABETSTB 520 CHAR, 85 IS ANY NONNUMERIC CHAR, 86 IS ANY NONGRAPHIC CHARACTER. STB 530

THE LAST CARD IN $4 I 3$ FORMAT SPECIFIES THE CONDITION THAT IS TO STR 540 CTART A NEW PAGE. COL 1-3 CONTAINS THE STARTING COL. 4-6 CONTAINS THE LAST COL. 7-9 CONTAINS THE NUMRER OF THE STRING TO BE MATCHED. 10-12 CONTAINS THE NEW NUMBER THE LINE COUNTER IS TO BE SET TO. to Start a new page with the line matched. the number of Lines per DAGE IS PUT IN COL 10-12.

IF THE NUMBER INPUT AS THE STARTING COL. IS GREATER THAN 150 THE PROGRAM SKIPS THE CHECK FOR A NEW PAGE.

DIMENSION ISTRT(40), IWIDTH(40), IA(100), ISTRNG(25080), IR(132)
STB 550
STB 560
STB 570
STR 580
STR 590
STB 600
STB 610
STB 620
STB 630 DIMENSION IBUFR(135), IRTX(100), IPTX(100), IETX(100), IFNBR(30) STR 640 DIMENSION ISNRR(30), LNGTH(29), IBST(?5), IBEN(25), LCAR(25), LREPSTR 650 1(25) STB 660 DIMENSION JFNRR(30), JCAR(30), JCOL(30), $\operatorname{KFNBR}(30,30), \operatorname{KSNRR}(30,30 S T R 670$ 1)

WRITE (IOTAPE,1150) (IETX(J),J=1,80)
STR 970
INPUT FIELD SPECIFICATION CARDS, 40 FIELDS MAXIMUM.
STB 980
READ (ITAPE,1160) ((ISTRT(J), IWIDTH(J)),J=I•NFLDS)
STR 990
DO $110 \mathrm{~J}=1$.NFLDS
K=J
STB1000
STR1010
KLS=J
IF (ISTRT(J)) $100 \cdot 120.100$
IF (IWIDTH(J)) $110.120 \cdot 110$
CONTINUE
GO TO 130
WRITE (IOTAPE,1200) NFLDS,K
WRITE (IOTAPE,1170) ((ISTRT(J), IWIDTH(J)),J=1,NFLDS)
INPUT THE OUTPUT FORMAT CARD. CHECK IF FIELD IS DEFINED.
READ (ITAPE,1180) ((IFNBR(J), ISNBR(J)), J=1,26)
WRITE (IOTAPE,1190) ((IFNBR(J),ISNRR(J)), J=1,26)
DO $140 \mathrm{~J}=1.26$
$K K=I F N B R(J)$
IF $(K K-K) 140,140,150$
160 WRITE (IOTAPE, 1220)
JJ=1
C INPUT AD HOC STRINGS.
170 READ (ITAPE,1140) (ISTRNG(JJ.J), J=1.80)
IF (ISTRNG(JJ.1)-IA(80)) $180.280 \cdot 180$
$K=1$
$K=K+1$
IF (ISTRNG(JJ.K) - IA (80)) 200.270 .200
IF $(K-80) 190,210.210$
210 DO $220 \mathrm{~L}=1,80$
LE=81-L
IF (ISTRNG(JJ.LE)-IA(47)) 230.220 .230
CONT INUE
LNGTH (JJ) =LE
$K=L E+1$
IF (ISTRNG(JJ,LE)-IA (47)) 270.240 .270
WRITE (IOTAPE,1230) J
」JこJJ+1
IF (JJ-27) 17ח.170.260
WRITE (IOTAPE,1240) IA(80)
STOP
LNGTH $(J)=K-1$
$M=K-1$
WRITE (IOTAPE,1150) (ISTRNG(JJ,J),J=1,80)
JJニJJ+1
GO TO 250
NSTRNGニJJー1
WRITE (IOTAPE,1250) NSTRNG
$K=1$
KIJTR=0
LINES=0
WRITE (IOTAPE,1260) IRLNG
IF (IRLNG) 300.300 .290
290
IF (IRLNG-132) $310,310,300$
300
WRITE (IOTAPE, 1270)

310	STOP	STB1540
	$\mathrm{J}=1$	STR1550
	WRITE (IOTAPE, 1280)	STR1560
	IREP $=0$	STB1570
C	INPUT SINGLE CHARACTER SUBSTITUTION CARDS.	STR1580
320	READ (ITAPE,1160) IBST (J), IBEN (J),LCAR (J),LREP (J)	ST81590
	IF (IBST (J)-199) 330,340,340	STR1600
330	IREP=J	STR1610
	WRITE (IOTAPE, 1170) IRST(J), IREN(J),LCAR(J),LREP(J)	STR1620
	$J=J+1$	STR1630
	GO TO 320	STR1640
340	JこJ-1	STR1650
	WRITE (IOTAPE,1290) J	STB1660
	L=1	STR1670
	$K=K L S$	STR1680
C	INPUT FIELD REPLACEMENT SPECIFICATION CARDS.	STB1690
350	READ (ITAPE, 1160) JFNRR(L), JCOL (L), JCAR(L)	STB1700
	WRITE (IOTAPE, 1170) JFNBR(L), JCOL(L), JCAR(L)	STR1710
	IF (JFNRR (L)-40) 360,360,390	STR1720
360	READ (ITAPE,1180) ($(\mathrm{KFNBR}(L, K), K$ SNBR (L,K)), K=1,26)	STB1730
	WRITE (IOTAPE,1190) ($(\operatorname{KFNBR}(L, K), \operatorname{KSNBR}(L, K)), \mathrm{K}=1,26)$	STB1740
	DO 37n J=1.26	STR1750
	$K K=K F N B R(L, K)$	STB1760
	IF (KK-K) 370,370,150	STR1770
370	CONTINUE	STR1780
	L=L+1	STR1790
	IF (L-30) 350,350,380	STR1800
380	WRITE (IOTAPE,1130)	STB1810
C	INPUT NEW PAGE SPECIFICATION CARD.	STR1820
c	* NEXT STATEMENT NOT ASA FORTRAN *****	STR1830
390	READ (ITAPE, 1160,END=395) MCST,MCEN,MSTRNG.MLINE	STR1840
	GO TO 400	STR1854
395	MCST $=199$	STR1858
	WRITE (IOTAPE,1170) MCST,MCEN,MSTRNG,MLINE	STR1850
C	START PROCESSING RECORDS.	STR1860
C	INPUT A RECORD.	STR1870
C	* NEXT Statement not asa fortran *****	***** STR1880
400	READ (IRTAPE, 1140, END=1070) (IR (J), J=1,IRLNG)	STR1890
	L=1	STB1900
C	CHECK FOR END RY PARAMETER CARD	STR1910
	DO $410 \mathrm{~J}=1.26$	STB1920
	IF (IB(J)-IA (J)) $420 \cdot 410,420$	STR1930
410	CONTINUE	STB1940
	GO TO 1070	STR1950
420	$\mathrm{I}=1$	STR1960
	IF (IBLK) $450,450,430$	STR1970
C	CHECK FOR BLANK LINE, IF BLANK READ NEW LINE	STR1980
430	DO $440 \mathrm{~J}=1$, IRLNG	STR1990
	IF (IB(J)-IA(47)) $450,440.450$	STR2000
440	CONTINUE	STR2010
	GO TO 400	STR2020
450	IF (MCST-150) $460 \cdot 480,480$	STR2030
460	$\mathrm{K}=0$	STR2040
	DO 470 J=MCST,MCEN	STR2050
	$\mathrm{K}=\mathrm{K}+1$	STR2060
	IF (IR(J)-ISTRNG(MSTRNG:K)) 480,470 (480	STR2070
470		
	LINES=MLINE	STR2090
480	IF (IREP) 520,520,490	STR2100
C490	START CHARACTER SUBSTITUTION RY FIELDS	STR2110
	DO $510 \mathrm{~J}=1$,IREP	STR2120
	LC=LCAR (J)	STR2130
	LR=LREP (J)	STR2140
	LS=IBST (J)	STR2150
	$\operatorname{LE}=\operatorname{IREN}(J)$	STB2160
	DO $510 \mathrm{~K}=\mathrm{LS}$, LE	STR2170
	IF (IA (LC)-IB (K)) 510,500.510	STR2180
5051C	IR (K) = IA (LR)	STR2190
	CONTINUE	STR2200
	BUILD A NEW RECORD FROM OLD RECORD AND AD HOC STRINGS.	STR2210
52	$N=I F N R R(I) \quad$.	STR2220
	IF (N) 530.550 .530	STR2230
530	NN=ISTRT (N)	STR2240
	DO $540 \mathrm{~J}=\mathrm{NN}, \mathrm{NX}$	STR2260
	KNTR $=$ KNTR +1	STR2270
	IF (KNTR-132) 540.540.1120	STR2280 *
540	$\operatorname{IBUFR}(\mathrm{KNTR})=\operatorname{IB}(J)$	STR2290

550	IF (ISNBR(I)-IA(47)) 560.610 .560	STB2300
560	N=ISNBR (1)	STB2310
	DO $580 \mathrm{~J}=1,26$	STB2320
	IF (N-IA(J)) 580,570,580	STB2330
570	$M=J$	STB2340
	GO TO 590	STB2350
580	CONTINUE	STR2360
	GO TO 610	STR2370
590	N=LNGTH(M)	STB2380
	DO $600 \mathrm{~J}=1, \mathrm{~N}$	STR2390
	KNTR $=$ KNTR +1	STB2400
	IF (KNTR-132) $600,600,1120$	STB2410 - F
600	IBUFR (KNTR $)=$ ISTRNG (M, J)	STB2420
610	$\mathrm{I}=\mathrm{I}+1$	STR2430
	IF (IFNBR (I)) 620,940,620	STB2440
620	IF (IFNBR (I)-JFNBR(L)) $520,640,630$	STR2450
630	IF (L-30) 930,520,520	STB2460
C	CHECK TO SEE IF FIELD REPLACEMENT IS REQUIRED.	STB2470
640	LCO=JCOL (L)	STR2480
	IF (JCAR (L)-81) 650,660,680	STR2490
650	LCA=JCAR(L)	STB2500
	IF (IA $(L C A)-I B(L C O)) 810.820 .810$	STR2510
660	DO $670 \mathrm{~J}=1.26$	STR2520
670	$\begin{aligned} & \text { IF (IB(LCO)-IA(J)) } 670.820,670 \\ & \text { CONTINUE } \end{aligned}$	$\begin{aligned} & \text { STR2530 } \\ & \text { STB2540 } \end{aligned}$
	GO TO 810	STR2550
680	IF (JCAR (L)-83) 690,710.740	STR2560
690	$00700 \mathrm{~J}=27.36$	STB2570
	IF (IB(LCO)-IA ${ }^{\text {(J) })} 700.820 .700$	STR2580
700	CONTINUE	STR2590
	GO TO 810	STB2600
710	IF (IR(LCO)-IA(47)) 720.810 .720	STR2610
720	DO $730 \mathrm{~J}=1.36$	STA2620
	IF (IB(LCO)-IA (J)) 730.810 .730	STR2630
730	CONTINUE	STR2640
	GO TO 820	STR2650
740	IF (JCAR (L)-85) 750,770.790	STR2660
750	DO $760 \mathrm{~J}=1.26$	STR2670
	IF (IB(LCO)-IA(J)) $760,810,760$	STB2680
760	CONTINUE	STR2690
	GO TO 820	STR2700
770	Do 780 J=27.36	STR2710
	IF (IB(LCO)-IA ${ }^{\text {(J) }}$) 780.810 .780	STR2720
780	CONTINUE	STR2730
	GO TO 820	STR2740
790	DO $800 \mathrm{~J}=1,36$	STR2750
	IF (IB(LCO)-IA(J)) $800.810,800$	STB2760
800	CONTINUE	STR2770
	GO TO 820	STR2780
810	L=L+1	STR2790
	GO TO 620	STB2800
C	REPLACE FIELD BY NEW FORMAT.	STR2810
820	K=1	STB2820
830	$N=K F N B R(L, K)$	STR2830
	IF (N) 840.860 .840	STR2840
840	NN=ISTRT (N)	STR2850
	$N X=N N+\operatorname{IWIDTH}(N)-1$	STR2860
	DO 850 J=NN, NX	STR2870
	KNTR $=$ KNTR +1	STR2880
	IF (KNTR-132) 850.850.1120	STR2890 - G
850	$\operatorname{IRUFR}(\mathrm{KNTR})=\mathrm{IB}(\mathrm{J})$	STR2900
860	IF (KSNRR(L.K)-IA(47)) 870.910.870	STR2910
870	N=KSNBR (L, K)	STR2920
	DO $880 \mathrm{~J}=1.26$	STR2930
	IF (N-IA (J)) $880.890,880$	STR2940
880	CONT INUE	STR2950
	GO TO 910	STR2960
890	$\mathrm{M}=\mathrm{J}$	STR2970
	$\mathrm{N}=\mathrm{LNGTH}$ (M)	STR2980
	DO $900 \mathrm{~J}=1, \mathrm{~N}$	STR2990
	KNTR $=$ KNTR +1	STR3000
	IF (KNTR-132) 900.900.1120	STR3010 - H
900	IBUFR (KNTR) $=$ ISTRNG ($M \cdot J$)	STR3020
910	$\mathrm{K}=\mathrm{K}+1$	STR3030
	IF (KFNBR (L,K)) 830,920.830	STR3040
920	$\mathrm{L}=\mathrm{L}+1$	STR3050

APPENDIX II

This Appendix shows how the program in Appendix I was modified to provide blocked output from the NBS computer. The subroutine used to take advantage of the buffered tape write is also listed. These changes should also serve as a guide for modifying the program for other systems.

C TO END THE STRINGS. COL 78 IS USED TO FILL THE LAST RECORD OUTPUT.
COMMON /A/ ITAPE,IOTAPE,IW,ITEST,ICHK,NSTAB,TABNO, IEND
COMMON /B/ IAT(100).IE(750)
COMMON /G/ IBLEN.IBFR(3000)
COMMON /H/ IPTAPE,IOUT
EQUIVALENCE (IBFR(1),IBUFR(1)),(IAT(1),IA(1))
IOUT $=1998$
IBLEN = 2995
ICHK $=1$
CALL TNPACK (1)
READ (ITAPE, 1140 , END $=1100$) (IA(J):J=1,80)
Do $15 n 0 \mathrm{~J}=1.80$
$K=81-J$
IF (IRTX(K) - IA (47)) 1510,1500.1510

1500
1510
JBTX = K
DO $15.30 \mathrm{~J}=1.80$
$K=81-J$
IF (IPTX(K) - IA(47)) 1540.1530 .1540
1530
JPTX = K
DO $1560 \mathrm{~J}=1.80$
$K=81-J$
IF (IETX(K) - IA(47)) 1570.1560.1570
1560

IF (KNTR-2900) $540.540,1120$
IF (KNTR-2900) 600,600,1120
IF (KNTR-2900) 850.850.1120
IF (KNTR-2900) 900.900.1120
$I W=k N T R$
CALL REPACK (IWRT, IKOWT)
945
IEND $=0$
IF (ICHK) $960,960.950$
1010 IW = JBTX
DO $1020 \mathrm{~J}=1 . \mathrm{JBTX}$
$1020 \operatorname{IRUFR}(J)=\operatorname{IBTX}(J)$
CALL REPACK (IWRT.IKOWT)
1030 GO TO 400
1040 IW = .JPTX
DO 1050 J = 1,JPTX
$\operatorname{IBUFR}(J)=I P T X(J)$
CALL REPACK (IWRT,IKOWT)

1070 IW = JETX
DO 10 R0 J=1.JETX
$1080 \operatorname{IRUFR}(J)=\operatorname{IETX}(J)$
CALL REPACK (IWRT, IKOWT)
IF (IKOWT - IOUT) 1094,1094.1097
1094 JOT = IOUT - IKOWT + 2
DO $1005 \mathrm{~J}=1 . \mathrm{JOT}$
IBUFR(J) $=$ IA(78)
$I W=. J$
IF (J-2000) 1095,1095:1096
1095 CONTINUE
1096 CALL REPACK (IWRT, IKOWT)
IF (IKOWT - IOUT) 1094.1097.1097
1097 IF (IWRT) 1098.1098.1090
1098 IF (IWRT + 2) $1099,1099,1097$
1099 WRITE (IOTAPE,1600) IWRT
1600 FORMAT (44 H NTRAN WRITE ERROR ON LAST RECORD. STATUS = . I5)
1090 IF (IEND) 1110.1100 .1110

STB 140 • A
$\left.\begin{array}{lll}\text { STB } & 681 \\ \text { STB } & 682 \\ \text { STB } & 683 \\ \text { STB } & 684 \\ \text { STB } & 685 \\ \text { STB } & 686 \\ \text { STR } & 687 \\ \text { STB } & 688 \\ \text { STB } & 689\end{array}\right]$ B

STA3200
STR3210
STB3215
STB3220
STB3230
STR3235
STR3240
STB3250
STR3260
STR3270
STR3280
STB3282
STB3284
STB3286
STR3288
STB3290
STB3294
STB3298
STR3300
STR3302
STB3304
STR3306
STB3308
STB3310
STB3312
STB3314
STB3316
STB3318
STB3320

U.S. DEPT. OF COMM.

1. PUBLICATION OR REPORT NO.

BIBLIOGRAPHIC DATA
SHEET
NBS TN-740
2. Gov'r Accession No.
3. Recipient's Accession No.
5. Publication Date

December 1973
6. Performing Organization Code
8. Performing Organization
10. Project/Task/Work Unit No.

$$
1510109
$$

11. Contract/Grant No.

DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234
12. Sponsoring Organization Name and Address

Same as No. 9.
13. Type of Report \& Period Covered
Final
14. Sponsoring Agency Code
15. SUPPLEMENTARY NOTES
16. ABSTRACT (A 200-word or less factual summaty of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

SETAB is a FORTRAN program which accepts a card deck or Fortran records on magnetic tape and inserts the appronriate flags and shift symbols required by many programs associated with phototypesetting devices. The program is specialized to the particular application, the phototypesetter and typography programs, and to the desired typefaces by means of parameter cards supplied at run time. Examples are shown of spectroscopic tables typeset on the Linofilm phototyoesetter at the Govermment Printing Office using the Autoset Tyoography Program. The program has also been used for tables of other types of data. The program can handle any records which can be read by a FORTRAN "READ" statement under "A" format control. The original record can be divided into as many as 40 fields and these fields can be combined in any order with any of 26 strings in front of or between the pieces. The program will, on a signal, replace a field by another field or by a combination of fields and strings. The output lines are blocked and paged via the insertion of the required strings between blocks and pages.
17. KEY worns (Alphabetical rider, separated by semicplons) typesetting; edit insertion program; FORTRAN program; phototypesetting of spectroscopic tables; typesetting of tables.
18. AV AILABILITY STATEMENT
[X UNLIMITED.
\square FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS.

19. SECURITY CLASS (THIS REPORT)	21. NO. OF PAGES UNCL ASSIFIED
20. SECURITY CLASS (THIS PAGE) UNCLASSIFIED	22. Price $\$ 0.55$

NBS TECHNICAL PUBLICATIONS

PERIODICALS
JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts. Includes listings of other NBS papers as issued.

Published in two sections, available separately:

- Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $\$ 17.00$; Foreign, $\$ 21.25$.

- Mathematical Sciences (Section B)

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $\$ 9.00$; Foreign, \$11.25.

DIMENSIONS, NBS

The best single source of information concerning the Bureau's measurement, research, developmental, cooperative, and publication activities, this monthly publication is designed for the layman and also for the industry-oriented individual whose daily work involves intimate contact with science and technology -for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, $\$ 6.50$; Foreign, $\$ 8.25$.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.
Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.
Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.
Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.
Product Standards. Provide requirements for sizes, types, quality, and methods for testing various industrial products. . These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.
Technical Notes. This series consists of communications and reports (covering both other-agency and NBS-sponsored work) of limited or transitory interest.
Federal Information Processing Standards
Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.
Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service (Publications and Reports of Interest in Cryogenics). A literature survey issued weekly. Annual subscription: Domestic, $\$ 20.00$; foreign, $\$ 25.00$.

Liquefied Natural Gas. A literature survey issued quarterly. Annual subscription: $\$ 20.00$.
Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: $\$ 20.00$. Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department of Commerce, National Technical Information Service, Springfield, Va. 22151.
Electromagnetic Metrology Current Awareness Service (Abstracts of Selected Articles on Measurement Techniques and Standards of Electromagnetic Quantities from D-C to Millimeter-Wave Frequencies). Issued monthly. Annual subscription: $\$ 100.00$ (Special rates for multi-subscriptions). Send subscription order and remittance to the Electromagnetic Metrology Information Center, Electromagnetics Division, National Bureau of Standards, Boulder, Colo. 80302.

Order NBS publications (except Bibliographic Subscription Services) from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.
g

[^0]: ${ }^{2}$ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
 ${ }^{2}$ Part of the Center for Radiation Research.
 ${ }^{3}$ Located at Boulder, Colorado 80302.
 4 Part of the Center for Building Technology.

[^1]: For sate hy the Superimtendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. ($13.46: 740$). Price $\$ 0.55$

[^2]: Figure 11．The parameter cards used with SETAB to produce the output shown In figure 10．The bracketed pair of field replacement cards are the ones that permit phototypeseting a 5／2 for the 2 before the dash on the first line．

