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A simulation of the fluctuations of International Atomic Time

James A. Barnes

In the Annual Report for 1975 the International Time Bureau (BIH)

published estimates of noise levels which model the fluctuations in

the International Atomic Time Scale (TAI). Based on these noise levels

for each type of noise, an Auto Regressive, Integrated, Moving Average

(ARIMA) model is constructed. A resulting ARIMA model, which can simu-

late time fluctuations in TAI, is given by the relation
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where xt represents the time fluctuations in nanoseconds (ns) of TAI

measured at successive intervals of ten days; B is the index-lowering

operator defined by B
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TAI Simulation

In the Annual Report for 1975 [2], the International Time Bureau (BIH) has pub-

lished the levels of noises thought to perturb the International Atomic Time Scale (TAI).

The levels of these noises which were adopted are as follows:

White phase noise a (t = 60d) = 0.3 x 10" 13

-13
Flicker frequency noise a w ( T )

= 0-5 x 10
-13

Random walk frequency noise a (x = 60d) = 0.15 x 10

where a (t) is the square root of the two-sample (or Allan) variance [3].

For this paper it is specifically assumed that each of these noises is statisti-

cally independent of the others, and each is Gaussian in nature. One knows [3] that

o"
v
(t) ~ x

y for each of these noises, where u = -2 for white phase noise; u = for

flicker frequency noise; and u = +1 for random walk frequency noise. Thus, one can

calculate the overall expected, two-sample variance, c? (x), for a large range of x-values

by adding the squares of the appropriate functions deduced from the BIH model. Figure 1

provides a graphical representation of this addition.

From the three noise types and the levels given in the BIH Annual Report, one can

also determine the estimated power spectral density, S (f), of the time fluctuations,

x(t), of TAI by using the tables in Appendix II of Ref. [3]. That is



White phase noise S
x
(f) = 16,124 (ns)

2
/(cycle/10d)

Flicker frequency noise S
x
(f) = ^f- ^ ns) /( cycle / 10d )

Random walk frequency noise S v
(f) = -t— (ns) /(cycle/10d)

,

where, for this paper, f is taken to be measured in cycles per 10 days (-1.16 x 10 Hz).

Thus, the overall spectrum of xU) for the BIH model is

S (f) = 16,124 + ^- + 9-4^- (ns)
2
/(cycle/10d) 0)

For the purpose of graphical display, Figure 2 is a plot of f S (f) rather than

just S (f). From Figure 2, one obtains the two "break frequencies" of 0.128 and

0.0032 cycles/lOd. These two frequencies will be needed for the development of

an ARIMA model [1] according to the methods given in Appendix B of Ref. [4]. (For

convenience of the reader, Appendix B of Ref. [4] is reproduced at the end of

this paper.)

Figure 3, then, is a Bode plot of the spectrum which is intended to be

modeled (dashed line) with a cascade of ARIMA filters. Superimposed is the

Bode plot of the filter cascade (solid line). Following Ref. [4], the filter

cascade is just
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where B is the index lowering operator defined by Bx

t
= x+i » and A i s the

second-difference operator equivalent to (1 - B) . The coefficients of the

B-operators are calculated from the empirical formula [4]

1 - irf

* or =
1 + uf

C
, (3)

c

where f is a "break frequency" in the Bode plot. An autoregressive (AR)

operator (<J>) is used when the Bode plot turns downward in Fig. 3, and a

Moving-Average (MA) operator is used when the plot turns upward.

Eliminating the intermediate functions w., u. v. , r. , s. , and q, one

obtains
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where
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= 1.79,
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2
If the variance of a. , a , takes on the value

t a

a
2

= (147 ns)
2

, (5)

the spectrum of xj» S'(f), deduced from Equation 3.4.5 of Ref. [2], is a close

fit to the intended spectrum of Equation (1), (see. fig. 4).

One can simulate TAI fluctuations by selecting the initial conditions

xj.
= a

t
= for t < 0,

and by letting a. for t M be random, normal deviates with zero mean and a variance

of (147 ns)
2

(see fig. 5). Of course, such simulations are merely representative of

the kinds of fluctuations present in TAI and are in no way estimates of actual TAI

errors; that is, they have similar power spectral densities and nothing more. A com-

puter algorithm was written to generate 1,000 x( values (1,000 x 10 days - 27.4 years)

simulating TAI. The square root of the two-sample variance, a (t) was computed for

various r-values and is plotted on figure 6 along with the BIH model (solid line). The

uncertainties were obtained from Refs. [5, 6, and 7].

Equation (4) can also be used as the optimum predictor for future fluctuations

in TAI if one has past values. One simply uses as input to the "filter" represen-

ted by (4) the optimum predictions of a. for future values. Since the a. are

just random, uncorrelated numbers, the optimum prediction for future a. is just

the average value of a
f
which has been assumed to be zero. The RMS errors of

such a prediction algorithm can be calculated [4], and are plotted on figure 7.

For computational purposes, Equation (4) can be written in a more useful form.

In particular, x+ can be written explicitly as a function of the earlier x+ and the

a. . That is,

Xt
= 3.379xt _-,

- 5.375xt _ 2
+ 3.38Xt _ 3

- 0.795Xt _ 4
+ a

t
- 2.93a

t _ 1 (6)

+ 3.12a
t_ 2

- 1.419a
3

+ 0.233 a
t _4
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The following is an exact reproduction of Appendix B of

[4], "Models for the interpretation of frequency stability

measurements," NBS Technical Note 682 (August 1976)
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Appendix B. Building an ARIMA Model to Fit a Given Spectrum

In general, ARIMA models can approximate a wide range of spectral shapes. This

appendix, however, will consider only a rather restricted set of these models. Also,

the objective of this appendix is to provide a means of building an ARIMA model to fit

a prescribed spectrum. Other techniques [12] emphasize the building of ARIMA models to

fit a particular data set regardless of its spectrum.

One method of simulating a flicker noise with ARIMA models has already been published

[21]. The treatment here will be a graphical approach using Bode plots.

Consider a random, uncorrected, Gaussianly distributed, discrete time series, a f ,

2
with mean zero and variance a . Also consider a time series au deduced from the a

t
by

the equation

to. - 0-, to. n -4>oW, „ - . .
. -* to, „ - a, - 6-, a. -,

t 1 t-1 r
2 t-2 Y

p t-p t 1 t-1

}

2
a
t-2 " ••• "

q
a
t-q'

(B-l)

where the cJj^'s and -
' s are constants. We can define the index-lowering operator, B,

by the relation

BXt^Xt-T (B-2)

This allows (B-l) to be rewritten in the form

(1 - ^B - <j>

2
B - ... - * B p ) a)

t
= (1 - 0.B -

(D
2
B
2

- . . . -
<j> B

q
)a. (B-3)

The expression in parentheses on the left side of (B-3) is called the Auto Regressive (AR)

operator of order p. That on the right is called the Moving Average (MA) operator of

order q.

We can further define another time series, Z
t

by the relation

Ad Z
t

= oj
t , (B-4)

where AZ
t

= (l-B)Z
t

= Z. - Z
t

_-| . That is, Z
t

is the d-fold (finite) integral of to
t

. Thus,

Z. is an Auto Regressive, Integrated, Moving Average process defined by the cj> - 's,6 n
- 's , o\,

and the d differences of (B-4). In particular it is an ARIMA (p,d,q) process.

In order for to
t

to be stationary and invertible, there are restrictions on the cD's

and e's [12]. However, for the present discussions it will suffice to consider only the

following two processes

to
t

= (1 - 6B)a
t

(B-5)

(1 - *B)x
t

= y
t

(B-6)

For this case it is sufficient that -1 < 6 < 1 and -1 <
<d

< 1

.
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In these equations one sees that if one sets
<J>

= 8 and y^ = co^., then one obtains

Xf = a
t

. That is, if one considers (B-5) and (B-6) to define two digital filters,

then (B-5) and (B-6) are inverse filters for each other when cj> = 9. Thus, it is a simple

matter to extend any understanding one gains about one filter to the other.

It is of value to consider the effect of a single MA filter of the form (B-5) when

9 is further restricted to the interval <_ 9 < 1. Figure (B-l) shows the general behavior

of the transfer function (magnitude squared) of such a filter and the straight-line approxi-

mations to this transfer function. The "knee" in the approximation occurs at a frequency

f
c
which is related to 9 by the empirical relationship

1—rrf

9 * tt^t • < B " 7 >

c

which will not be derived here.

Similarly, Fig. (B-2) is the transfer function of the AR filter with cj> = 9 = 0.728 as

in Fig. (B-l). Hence, also,

1-TTf

1+fff
c

We can now construct an approximation to a process which is a mixture of flicker noise

and white noise. Figure (B-3) shows the Bode plot of the desired filter transfer function.

The frequency axis of Fig. (B-3) is in terms of cycles per data spacing. Thus, the Nyquist

frequency is just 1/2. For the sake of the example, we will assume that it is sufficient

to approximate the spectrum to a lower frequency of .002 (cycles per data spacing).

Figure (B-4) superimposes the Bode plot of the filter which will be used onto the

spectrum of Fig. (B-3). From each of the "knees" in the approximation one can determine

the appropriate <(> or 9 for a filter to be cascaded in series.

Thus, from "knees" at the frequencies of .0233 and .0033, one obtains <j>'s for the

AR filters (eq. B-6) of .8636 and .9795, respectively. These numbers have been calculated

from eq. (B-8). Similarly, from the "knees" at the frequencies of .062 and .0087, one

obtains 9 values of .6740 and .9468, respectively, for the MA filters. One decides to

use an AR filter if the function turns downward in response with increasing frequency as

in Fig. (B-2). Correspondingly, one chooses a MA filter when the function turns upward as

in Fig. (B-l).

The final filter can be obtained by cascading the output of one filter to the input

of the next in the form

Ut
= (1 - .6740B)a

t

(1 - .8636B) x
t

= "
t (B _ g)

yt
= (1 - -9468B)x

t

(1 - .9795B) z
t

= y t

14
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where a
t

is the input to the cascade and z
t

is the output. One can eliminate u
t , Xt

and yt and write an equivalent expression in the form

(1 - ^B - 4>
2
B
2
)z

t
= (1 - e.,B - 6

2
B
2
)a

t
, (B-10)

where

c|>, = 1.8431, 9, = 1.6208
1 ' (B-ll)

<J>

2
= -.8459,

2
= -.6381 .

Making use of equation (4.2) one can obtain the spectrum corresponding to (B-10).

Figure (B-5) is a plot of the spectrum superimposed on the Bode plot of Figure (B-3).

The parameter a 2 = 0.319 was selected to make the spectrum fit the Bode plot in ampli-

tude.

In this example, one could let Zj- model the frequency of an oscillator, and it is

clearly stationary [12]. To model the phase, one could define a parameter v^ by the

relation
(1 - 4>'B)v

t
= z

t
(B-12)

where -. -
,

is large compared to any data sample to be tested.

In the current example f^ was taken as .002. Thus, one could select <|>
'

~ .99999

to be quite adequate. Note that v
t

is also stationary.

By selecting <j>' = .99999 one obtains a stationary model for v
t

if one so desires.

Of course, for actually generating a data set one could use <J>'
= 1, since no observa-

tional difference in the simulated data would result--that is why <j>' was chosen as

close to unity as it was. Thus, the entire difference between a stationary and a

nonstationary model (vt ) for the phase is centered in whether one chooses .99999 or

unityfor tj>'. Further, this choice is totally unobservable for short data sets

(N ~ l/f
a

= 500).

Clearly, these techniques could be used to develop an ARIMA model to simulate

data over a much broader range of frequencies than done here. In any event, equations

(B-10) and (B-12) allow one to simulate a stationary noise with the desired spectrum.

19
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• Mathematical Sciences (Section B)
Studies and compilations designed mainly for the math-
ematician and theoretical physicist. Topics in mathemat-
ical statistics, theory of experiment design, numerical
analysis, theoretical physics and chemistry, logical de-

sign and programming of computers and computer sys-

tems. Short numerical tables. Issued quarterly. Annual
subscription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bulle-

tin)—This monthly magazine is published to inform
scientists, engineers, businessmen, industry, teachers,

students, and consumers of the latest advances in

science and technology, with primary emphasis on the

work at NBS. The magazine highlights and reviews
such issues as energy research, fire protection, building

technology, metric conversion, pollution abatement,
health and safety, and consumer product performance.
In addition, it reports the results of Bureau programs
in measurement standards and techniques, properties of

matter and materials, engineering standards and serv-

ices, instrumentation, and automatic data processing.

Annual subscription: Domestic, $9.45; Foreign, $11.85.

NONPERIODICALS

Monographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and
industrial practice (including safety codes) developed

in cooperation with interested industries, professional

organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences

sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such

as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, man-
uals, and studies of special interest to physicists, engi-

neers, chemists, biologists, mathematicians, com-
puter programmers, and others engaged in scientific

and technical work.

National Standard Reference Data Series—Provides
quantitative data on the physical and chemical proper-

ties of materials, compiled from the world's literature

and critically evaluated. Developed under a world-wide
program coordinated by NBS. Program under authority

of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for

these data is the Journal of Physical and Chemical
Reference Data (JPCRD) published quarterly for NBS
by the American Chemical Society (ACS) and the Amer-
ican Institute of Physics (AIP). Subscriptions, reprints,

and supplements available from ACS, 1155 Sixteenth

St. N.W., Wash. D. C. 20056.

Building Science Series—Disseminates technical infor-

mation developed at the Bureau on building materials,

components, systems, and whole structures. The series

presents research results, test methods, and perform-
ance criteria related to the structural and environmental
functions and the durability and safety characteristics

of building elements and systems.

Technical Notes—Studies or reports which are complete
in themselves but restrictive in their treatment of a
subject. Analogous to monographs but not so compre-
hensive in scope or definitive in treatment of the sub-

ject area. Often serve as a vehicle for final reports of

work performed at NBS under the sponsorship of other
government agencies.

Voluntary Product Standards—Developed under proce-

dures published by the Department of Commerce in Part
10, Title 15, of the Code of Federal Regulations. The
purpose of the standards is to establish nationally rec-

ognized requirements for products, and to provide all

concerned interests with a basis for common under-
standing of the characteristics of the products. NBS
administers this program as a supplement to the activi-

ties of the private sector standardizing organizations.

Consumer Information Series—Practical information,
based on NBS research and experience, covering areas
of interest to the consumer. Easily understandable lang-

uage and illustrations provide useful background knowl-
edge for shopping in today's technological marketplace.

Order above NBS publications from: Superintendent

of Documents, Government Printing Office, Washington,
B.C. 20^02.

Order following NBS publications—NBSIR's and FIPS
from the National Technical Information Services,

Spyingfield, Va. 22161.

Federal Information Processing Standards Publications

(FIPS PUBS)—Publications in this series collectively

constitute the Federal Information Processing Stand-
ards Register. Register serves as the official source of

information in the Federal Government regarding stand-

ards issued by NBS pursuant to the Federal Property
and Administrative Services Act of 1949 as amended,
Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal
Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-govern-
ment). In general, initial distribution is handled by the

sponsor; public distribution is by the National Techni-

cal Information Services (Springfield, Va. 22161) in

paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey

bibliographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service. A

literature survey issued biweekly. Annual subscrip-

tion: Domestic, $20.00; Foreign, $25.00.

Liquified Natural Gas. A literature survey issued quar-

terly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature

survey issued quarterly. Annual subscription: $20.00.

Send subscription orders and remittances for the pre-

ceding bibliographic services to National Bureau of

Standards, Cryogenic Data Center (275.02) Boulder,

Colorado 80302.
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