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UPPER BOUND ERRORS IN FAR-FIELD ANTENNA PARAMETERS 
DETERMINED FROM PLANAR NEAR-FIELD MEASUREMENTS 

PART 2: ANALYSIS AND COMPUTER SIMULATION 

Abstract 

In recent years, planar near-field antenna measurements have 
been developed and used in a number of applications. One of the 
primary concerns with this, or any, measurement approach is the 
accuracy of the results; that is, how do errors in measured near
field quantities affect the accuracies of far-field parameters 
such as gain, sidelobe levels, monopulse difference level, beam 
width, etc. Some efforts have been made in the past to estimate 
these errors, but the results have been limited in generality and 
primarily of a qualitative nature. 

A two-fold approach is used in this study to obtain equations 
giving reasonable upper-bound errors resulting from systematic 
errors in the near-field measurements. The strategy has been to 
derive error expressions from the equations relating near and far
field quantities and also to computer simulate errors using actual 
measured near-field data. The simulation has both given some 
direction to, and confirmed the results of the analysis. The 
errors which have been investigated are: x, y, and z-position 
errors of the probe, amplitude and phase uncertainties of the mea
sured data, and multiple reflections between the probe and test 
antenna. The results not only give the effects of errors in a 
given quantity, but also specify the form of the error (i.e., 
linear, quadratic, periodic, etc.) which will produce the largest 
effect in the far-field parameters. This information is very 
valuable in designing the measuring equipment so that these 
types of errors can be avoided, or minimized. 

1.0 Introduction 

During the last few years, a large amount of work has gone into the 

development of a Planar Near-Field (PNF) antenna measurement technique. 

A detailed and rigorous theory was formulated by Kerns and Dayhoff [1] 

and further developed by Kerns [2-4) which has served as the basis for 

all of this work. There have been advances in electronic measuring 

equipment and digital computers which have made the measurements possible 

and practicable. Experimental work has developed the measurement tech

niques to successfully apply this approach to a number of antennas over 

a broad frequency range. There have been indications in most of this 

experimental work that high accuracy results were possible, but we have 

lacked a thorough error analysis to confidently estimate the magnitude 
of errors in the results of PNF measurements. Efforts have been made to 

demonstrate the accuracy of these measurements by comparing them with 



conventional far-iield ~easurdments, but tnis approach co~lJ not determine 
the size or the source of errors in the results of near-field measurements. 

At best, it demonstrated that the results were compatible with conventional 

measurements and thereby increased confidence in the newer measurement, but 

the errors inherent in far-field range measurements prevent it from being 

used as an accuracy standard. 

The best approach to prove measurement accuracy is to thoroughly 

analyze the sources of error in the measurements and determine how they 

affect the calculated far-field quantities, and that is the purpose of this 

study. 

This study is one of three error analyses which have appeared recently 
and together they provide a rather complete treatment. Rodrique et al. [5] 

used computer simulation on a hypothetical near-field distribution to derive 

tables and curves to show the effects of certain near-field errors. Their 

work identified certain error sources as primary or major contributors, and 
found that others had little effect on their model. Due to the specific 

model and error types studied, however, it was difficult to generalize the 

results to other antenna types or know if the error curves were upper bounds 

or not. Recently Yaghjian [6] has done an extensive analysis using the 
geometrical theory of diffraction and asymptotic evaluation of integral 

equations to arrive at upper bound error equations. He treated the effects 

of using a finite scan area which is not considered in either this or the 

earlier work by Rodrique, as well as treating position and instrumentation 

errors. 

The unique results in this report are due to a different analytical 

approach coupled with an error simulation on actual measured near-field 
data. By using a Fourier transform analysis three main new results were 

obtained. 

1. The error analysis was extended to steerable beam antennas for all sources 

of error. 

2. The functional forms of the worst case error functions were determined. 

This will be especially valuable in designing future measurement 

systems. 

3. The results of the analysis were confirmed and guided by the companion 

computer simulation. 

Section 2, which follows, contains some background material necessary 

for the analysis and includes a brief outline of the theoretical formulation 

and notation, and some results from previous measurement studies. In section 

3, general equations are derived to give the errors in far-field parameters 
resulting from errors in the measured near-field data. These equations are 

then applied to a sample antenna in section 4. The final section contains 
a summary of the conclusions resulting from this study and some suggestions for 

areas where additional work needs to be done. 
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2.0 Background Material on Planar Near-Field Antenna Measurements 

2.1 Notation and Theory 

The rigorous theoretical foundation of the PNF measurements is one of 

the key reasons for the success and general applicability of this technique. 

The theory is very general and rigorous, does not have built in approximations 

which might limit its accuracy or applicability, and the major numerical 

calculations can be accomplished with highly efficient computer algorithms. 

Specifically, neither the antenna under test nor the probe antenna need 

possess special polarization, symmetry, or field separability properties, 

and the transformation from near to far-field domains does not involve small 

angle approximations. The theory includes the directive effects of the mea

suring probe and therefore provides a means of correcting the final results 

for the probe receiving pattern. Neither is it necessary to assume that the 

probe measures a single component of the electric field at a point. Because 

of the above factors the results are more accurate than previous attempts 

at near-field measurements. 

The scope of this report does not allow a complete discussion or develop

ment of the theory. Such treatments are available elsewhere [1-8] and may 

be referred to for more detailed study. We will list here the definition 

of important quantities and the key equations which are taken from the above 

references. Further discussion of some relationships will occur elsewhere 

in the report. 

k = Propagation vector for plane waves. 

kx,ky,kz= Rectangular components of k. 

K = k e + k e = Transverse part of k. x-x y-y 

y 
-iwt 

e 

A 

f 

~10 (_!5) 

~01 (!) 

!.10 (!) 

= ✓k2-K2, = ± kz. 

= assumed time dependence. 

wavelength of operating frequency. 

operating frequency. 

Complete vector transmitting characteristic for the test antenna. 

Complete vector receiving characteristic for the test antenna. 

and !.oiC!) = Similar transmitting and receiving characteristics for 

the probe antenna. 

P = xe + ye = transverse position vector for the probe. -x y 
= Incident wave amplitude at the input terminal of the test antenna. 

Emergent wave amplitude at the input terminal of the test antenna. 

Output wave amplitude at the output terminal of the probe antenna. 

Electric field. 

ox,oy =Datapoint spacings in x and y-direction. 

L ,L = Antenna dimensions in x and y-directions. 
X y 
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Sx,Sy = Scan lengths in x and y directions. 
r ,r 0 ,r ,r = Complex reflection coefficients for generator terminal (input g ,, s r 

to test antenna) load terminal, test antenna and probe antenna 

respectively. 

Y
0 

= Characteristic admittance of free space= ✓s 0/µ0 . 

~o Characteristic admittance of the waveguide port connected to the 

antennas. 

G (K) 

cr (!S_) = 

p 9, (!S_) 

R (!S_) 

L (!S) = 

A (!S_) = 

T (!S_) 

Power gain function. 

Receiving cross section function. 

Complex ratio of linear polarization. 

Right circular component of the transmitting spectrum. 

Left circular component of the transmitting spectrum. 

Axial ratio in the direction specified by!· 

Tilt angle in the direction specified by !S_. 

It should be noted that the complete vector quantities !ioC!) and ~ 1 (!) 
will be used in this report, and most of the previous formulation has been 

given in terms of the transverse vectors ~10 (!) and ~ 01 (!). Either form may 

be chosen to fit the application if the correct relations are applied. In 

the present case it appeared more efficient to use the complete vectors. 

Assume now that we have an antenna whose characteristics are to be 

( 

determined. Let us define a coordinate system fixed to the antenna such that ( 

x-y plane is approximately normal to the electri~al boresight direction of 

the antenna, and the origin is at the center of the antenna. These coordi-

nates could be defined by fiducial marks placed on the antenna structure, and 

the results of the measurements will be defined with respect to this system. 

The antenna with its coordinate system is shown schematically in figure 1 where 

the rectangular and spherical unit vectors are also defined. Let the probe 

antenna be placed in a receiving position on a mechanical planar scanning 

structure and the test antenna aligned so that its x-y plane is parallel to 

the scan plane of the mechanical scanner. 

The probe is aligned so that its own coordinate system is rotated 180° 

about the y-axis of the test antenna. The relative orientation of the antennas 

and their coordinate systems is shown schematically in figure 2, along with 

other important terminal planes and defined quantities. 

4 
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Figure 2. Test Antenna and Probe Schematic. 

Let the probe be moved in the plane z=d by a transverse displacement 

P = xe + ye and denote the complex probe output amplitude by b'(P). If 
~ ~ o-

we now assume that multiple reflections between the antennas are small 

enough to neglect, the transmission equation is given by 

b I (P) 
0 -

(1) 

where dK = dk dk , and where integration is over all significant values of 
X y 

the integral. The prime on the probe receiving characteristic represents 

the change in description of £oiC!) when the probe is placed in the receiving 

position. !oiC!) is the description of the probe from its coordinate system, 

while £oiC!) describes the probe response from the test antenna coordinate 
system. 

It should be noted that b'(P) is the actual observed quantity, essentially 
0 -

the complex voltage observed at the output terminals of the probe. To solve 

for the transmitting characteristics of the test antenna in terms of this ob

served data, we note that eq. (1) is a Fourier integral transform, and therefore 

DI(!) 
e-iyd(l-r r) 
____ 1_r_ f b'(P) e-iK•P dP 

2 0 -4rr a
0 

(2) 

where 

D' (!) (3) 
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Equation (3) gives one equation for the two spherical components of ~10 (~) in 

terms of the Fourier transform of the measured data, D'(~), and the probe 

receiving pattern :!:.()iCK). To obtain the required second equation, the mea

surement is repeated with a second "independent" probe. If the probe is 

not circularly polarized, the second probe can be obtained in effect by 

rotating the probe about its z-axis hy 90°. The second equation in any 

case is 

where 

D" (!_) = 

D" CK) 

b"(P) e-iK•P dP 
0 -

(4) 

( 5) 

and b"(P) and r" 1 (K) are respectively the received signal and probe receiving 
0 - -0 -

characteristic for the second orientation. 

To obtain the components of ~10 (!_), the simultaneous equations implied 

in eqs. (3) and ( 4) are solved. For instance, if we desire the spherical 

(Azimuthal= A, Elevation= E) components of ~10 (!_) as defined in figure 1, 

and therefore have previously measured the spherical components for the 

probe, eqs. (3) and ( 4) give 

where 

slOA(_K) = [D' (K)r" (K) - OlE -

s 10E(_K) [D"(K)r' (K) - 0lA -

D"(K)r' (K))/L'i - 0lE -

D' (K) r" (K)] / Li - 0lA -

(6) 

(7) 

(8) 

Once the components of ~10 (!_) are obtained, other quantities are easily 

derived. For instance if the antenna is reciprocal, then its receiving 

characteristic is given by 

(9) 

In the direction specified by the unit vector if-r, and at a large distanced 

from the antenna, the electric field is given by 

k 
where d = d TfT' 

( 10) 

The gain function G(K) and the receiving cross section functions 0(K) 
are given in terms of ~10 (K) and ~01 (f) by 

7 
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and (11) 

(12) 

The linear polarization ratio is the ratio of the two components of ~10 (~) 

slOA CK) 
P,q,(~_) = 

slOE(f) 

while the two circular components are given by 

slOA(~) - i slOE (~) 
R(!) and 

-12 

slOA (!) + i slOE(f) 
L(!) = 

✓! 

From these complex polarization quantities the axial ratio and tilt 

angle are obtained from the relations 

IRCDI + JL(K)I 

I R(!S_) I 

,(_!5_) = 1/2 arg[R(!)l · 
L(!) 

(13) 

(14) 

(15) 

(16) 

(17) 

Therefore the usual far-field antenna parameters are all easily obtained once 

~10 (!S_) has been determined from the near-field measurements. Although the 
discussion here has been in terms of a measurement arrangement where the test 

antenna is used in the transmitting mode, the opposite configuration may also 

be used. The test antenna can be used in the receive mode, ~01 (!) determined, 

and receiving cross section and receiving polarization determined. If the 
antenna is reciprocal, eq. (9) may be used to obtain the transmitting param

eters. 

In summary then the steps in the planar near-field measurement technique 
are: 

1. Define the coordinate axes of the reference measurement system, the test 

antenna, and the probe. 
2. Measure or calculate from theory the probe receiving characteristic for 

all values of K for which the test antenna characteristics are to be 

determined. 
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3. Place the test antenna and probe in the measurement system in the pre

scribed orientation and verify that multiple reflections are small 

enough to neglect. 

4. Measure b'(P) and b"(P) over a sufficient area and at adequate spacing 
0 - 0 -

in x and y. 

5. Evaluate the integrals in eqs. (2) and (5) and solve eqs. (6) and (7) 

for the two spherical components of ~10 (~) or ~01 (!). 
6. Compute power gain, transverse components, polarization ratios or other 

desired quantities, or use ~10 (~) to obtain the field in any other 
transverse plane to evaluate antenna performance. 

2.2 Examples of Previous Results Using PNF Techniques 

The experience gained from previous measurements and from NBS studies 

were used extensively in this investigation. They cover a broad range of 

frequencies and antenna types and have been indispensible in arriving at 

meaningful conclusions. Table 1 summarizes some of the antennas which have 

been measured at the National Bureau of Standards using PNF techniques which 
relate to the present study. 

In most of these past measurements it has been possible to compare the 

results from near-field measurements with conventional far-field measurements, 

and therefore to demonstrate the general feasibility of this approach. 

Table 1. Antenna Measurements Considered in Study. 

Major Dimension 
Antenna Type Frequency (GHz) in Wavelengths Gain (dB) 

Horn Lens 48.0 90 47.0 

Conical Horn (JPL) 8.4 6 22.08 

Cassegrain Reflector 60.0 91 46.5 

Lens Array 9.2 23 30.0 
(Constrained Lens) 

Corporate Fed Array 8.4 17 21. 5 
(Volphase) 

Dipole Array 1.4 5 20.3 

9 



In the case of the JPL conical horn, both pattern and gain comparisons 

were made. The far-field measurements were performed by JPL [10] and NBS 

performed both near-field and extrapolation [9] measurements. The ohmic 

loss in the antenna was also determined from the near-field data by integrating 

the computed pattern to obtain transmitted power, and the loss was obtained 

from the ratio of transmitted to input powers. This result was compared with 

a loss calculation performed by JPL. The results of these comparisons along 

with a similar comparison for the mm-wave antenna are summarized in Table 2. 

They illustrate that for both medium and high gain antennas, PNF techniques 

are capable of high accuracy. More will be said about this in a later 

section. 

Table 2. Summary of Comparisons 

Antenna 

JPL Horn (Gain) 

JPL Horn (loss) 

Cassegrain Reflector 

1 JPL Horn 

Far-Field 

22.03 dB 

0.021 dB 

Measurement Technique 

Extrapolation 

22.08 dB 

46.30 dB 

Pattern Comparisons 

Far-Field Measurements vs. 
Computed From Near-Field Data 

2 Cassegrain Reflector 
3 Lens Array (Constrained Lens) 
4 Corporate Fed Array (Volphase) 

Near-Field 

22.05 dB 

0.039 dB 

46.42 dB 

Far field pattern comparisons have yielded similar results. Figures 3-7 

are samples of some of these comparisons for three different antennas. Over 

most of the patterns the agreement is very good and most differences are well 

within the errors to be expected in either measurement. The largest dif

ferences, as in figure 3 for off axis angles greater than 45°, and in figure 

7 for angles greateT than +35° are due to insufficient scan area in the 

near-field data. In both of these measurements a small portable scanner was 

being used which limited the size of the scan area and therefore reduced the 

reliable angular region. This effect will be discussed further in succeeding 

sections. 

The sum total of all our work in PNF measurements confirms that high 

accuracy results are obtainable. Since the theory is rigorous, 

the basic formulation do~s not set a limit on the attainable accuracy. The 

errors which do result in computed far-field parameters are primarily due 

10 
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to the errors in the measured near-field data. The effects of some errors 
have been studied in the past and guidelines have been established to specify 

the parameters of the measurement system in order to achieve a given level 

of accuracy. These guidelines will be reviewed in the following section. 

A more complete analysis of the effects of measurement errors was developed 
for this study and appears in section 3.1. 

2.3 Measurement Guidelines 

One of the first questions to be answered relates to the scan parameters. 

That is, what is the size of the scan area, what data point spacings are re
quired, and what separation distance between test antenna and probe is 
optimum? 

Previous work has shown [11] that for a directive antenna, the size of 

the scan area and the separation distance between the probe and test antenna 
determine the maximum off-axis angle to which accurate far-field patterns can 

be calculated. If the dimension of the antenna in the x-direction is Lx, the 

scan length in the x-direction S , and the separation distanced, then the 
X 

reliable pattern region will be bounded by 

le I < 1. 
X [

S - L ] -1 X X 
2d (18) 

where 8 is the off axis angle in the k direction. A similar relation will 
X X 

define the reliable region in the ky direction. 

The data point spacings are determined by a two-dimensional form of the 

sampling theorem. This theorem states that if b'(P) is the Fourier transform 
0 -

of a band limited function of K with band limits 

TI 

oy 
(19) 

then the minimum required spacings are o and o Furthermore, the integrals 
X V 

in eqs. (2) and (5) can be replaced by summations w~thout approximation for such band 
limited data. The function which must be band limited is the quantity within 

the brackets of eq. (1) and the band limiting can be due to the directivity 

of the test anten~adand/or probe (from the product ~ 01 (~)•~10 (~)) or arise 
from the factor e 1 Y . The latter term produces very sharp attenuation in 

the e\·anescent mode region where K2 > k 2 and y is therefore imaginary. In 
this region the band limits are 

which result in data point spacings of 

o < >../2, 
X 

oy<-;..;2. 
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Our experience has shown that for directive antennas, even when steered away 

from the z-direction, o and o need be only a few percent smaller than A/2, 
X y 

and for directive antennas whose main beam is in the z-direction, the data 

point spacings can be larger than A/2. In the latter case, spacings of 

0.8A to A are not uncommon. 

It is assumed in the theoretica~ development that multiple reflections 

between the two antennas or due to other sources of reflection are small 

enough to neglect. Absorbing material is used behind and on metal surfaces 

of the scanner as shown in figure 9 to reduce extraneous reflections. 

Scattering from the probe is minimized by using a small probe (one whose 

area is about 1/100 of the test antenna) and tapering its edges at the probe 

aperture. The magnitude of the multiple reflections can be reduced by increas

ing the separation distance, but this improvement must be weighed against the 

resulting increase in required scan area. 

The actual level of multipath and its effect on computed results must be 

checked for each measurement. Fast and simple tests have been developed [11] 

for accomplishing this, and consist of measuring partial data on planes 

separated by A/8. Gain and pattern variations resulting from data in the 

different planes are an approximate measure of errors due to multipath. In 

all of our measurements on directive antennas where the probe was much smaller 

than the antenna, multiple reflections have not been a major source of error. 

In addition to its scattering characteristics, the gain, pattern, and 

polarization of the probe should be considered in choosing one for a particu

lar measurement. The probe should be large enough so that its gain is not 

more than 30 dB below that of the test antenna. This will improve the gain 

measurement by reducing the insertion loss between probe and test antenna. 

(This will be discussed further in section 3.1.5 on gain accuracy.) Where 

pattern information is only required over a limited angular region, a 

larger probe can be used to filter out the wide angle information. This 

allows wider data point spacing and results in improved accuracy over the 

smaller angular region. When wide angle information is needed, the probe 

must have a broad beam to avoid attenuation of needed information. In any 

case, the probe pattern should not have nulls or minima below about -25 to 

-30 dB within the angular region of interest. 

If the test antenna is nominally linearly polarized, then the logical 

choice for probe polarization is also linear. The data (b' (P)) obtained 
0 -

with the probe polarization is essentially matched to the test antenna will 
contain the primary information for the principal polarization pattern of 

the test antenna. If the probe polarization is sufficiently linear over 

the angular region of interest, this single set of data may be sufficient 
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to determine principal polarization patterns. That is, if r 01 E(!) ~ 0 for 
all values of K within the region of interest, then eq. (6) reduces to 

(20) 

Furthermore, when the probe is almost linearly polarized, the "independent 

antenna" can be obtained by rotating the probe about its axis by 90°. Two 

different probes are therefore not required, and both ~01 (!) and r 01 (f) can 
be derived from the same pattern, gain, and polarization measurements. 

The linear probe may also be used in the same way when the test antenna 

is circularly polarized. But in this case both sets of data must be measured, 

and b~(f) and b~(~) will be of approximately equal magnitudes. The principal 
polarization component will essentially be determined from the sum of these 

two sets of data while the cross component will be obtained from their dif

ference. This can produce a larger uncertainty in the cross component than 

when the probe is polarization matched to the test antenna. The other alter

native in this case is to use two separate probes with nominal right and 

left hand circular polarizations. They should have good polarization purity 

over the angular region of interest, and this may be difficult to achieve. 

Measurements on circularly polarized antennas are one area where little work 

has been done and more needs to be done to optimize the measurement techniques. 

The measurement hardware required to implement PNF measurement is illus

trated in the block diagram of figure 8, and the photographs of the NBS system 

in figures 9 and 10. There are three basic subsystems which are shown in 

these figures: the RF source and receiver, the data recording system, and 

the x-y scanner with its associated automatic position controls. The 

accuracy requirements for each of these systems is examined in the following 

section. 

3.0 Error Analysis 

3.1 Introduction 

In analyzing the effects of PNF measurement errors on calculated an

tenna parameters, we have attempted to make the following results as general 

and useful as possible. Ideally one would like to obtain a concise relation
ship giving a realistic upper bound or probable value for the effects of a 

given type of error. The relationship should apply to a large class of 

antennas without major modification. It is also very desirable that the 

error relations be given in terms of easily obtainable antenna parameters 
such as diameter, approximate gain, first sidelobe level, etc., rather than 
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Figure 9. Planar near-field scanner at NBS. 
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Figure 10. Electronic equipment associated with planar scanner. 
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requiring a detailed knowledge of the near-field pattern, and that the error 
analysis should define the form of near-field errors (i.e., linear, periodic, ( 

etc.) which have the largest effects. 
Each of these objectives has been considered in the following analysis, 

and in most cases they have been achieved. The general approach will be to 

derive a general equation for the error in D' (~) due to one type of error in 

the near-field data. The general equation will then be applied to specific 

cases such as a narrow beam antenna operating in the sum mode with the beam 

along the z-axis. Other cases will be considered to cover all modes of 

interest to this study. For each case we will determine an upper bound for 

the far-field error and the form of the near-field error which would produce 

this upper bound. In some cases the form of the resulting near-field error 

is not physically possible or reasonable, and so a smaller upper bound is 

determined consistent with a more realistic near-field error. 

To illustrate the various errors, and as a guide in some of the 

analysis, some of the errors were simulated on a computer using actual meas

ured near-field data. This simulation has proven very valuable in giving 

a graphic display of the effects of various errors, and to verify whether 

or not the upper bounds obtained in the analysis are realistic. 

In all of the following analysis, we will determine the error in D' (~) 
due to errors in the measured near-field data. While D'(~) is generally 

not the desired end result in the calculations, it is usually simply related 

to the final results and is more closely related to the measured data. For 

example, if both the probe and test antenna are nearly linearly polarized 

in the vertical direction then D' (~) will be primarily due to the coupling 

of principal (elevation) components. From eq. (7) and (10), the elevation 

component pattern of the far electric field along the E and H-planes are then 

respectively 

EE ( 0, ky) 

EE(0,0) 

E8 (kx,0) 

E8 (0,0) 

D' (0,k) cos(E) 

D ' ( o , O ) r O 1E ( 0 , ky) 

D' (kx,0) cos(A) 

( 21a) 

(21b) 

For the waveguide type probes, and for narrow beam test antennas over the 

region of interest 

cos (E) cos(A) - 1. (22) 

The pattern of D' (~) is very nearly equal to the pattern of the far electric 
field, and errors in the two quantities will be essentially the same. 
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In the following analysis the prime or primes on D(!_) and b(!'.) which 

were used to denote the two sets of data will be deleted, since the results 

will apply to either case. We will also use the normalized near-field data, 
b' (P) 

B(P), rather than b' (P). The quantity~ in eq. (2) is actually obtained _ o - a
0 

in a two step process. First relati,e near field data, B(!'._), are measured 

which are normalized to b' (P) at one arbitrary point in the measurement 
0 -

lattice, P = P, which is usually at or near the maximum amplitude. 
- --0 

b' (P) 
0 -

b' (P ) 
0 --0 

When the relative measurements are completed, the probe is placed at P 
--0 

and an insertion loss measurement is used to determine the normalization 

factors 

A' n b' (P ) 
0 --0 

A" n b" (P ) 
0 --0 

(23a) 

(2 3b) 

The magnitude of the A's is essentially the ratio of the amplitude at the n 
input to the test antenna to that at the output of the probe. With these 

modifications eq. (2) becomes 

( 2 4) 

where Fis the mismatch factor l/(l-r£rr). This form will be used in the 

following analysis. 

3.1.1 Probe x-y Position Errors 

We will first consider the effects of x-y position errors and much 

of the analysis here will also be useful in other sections. The position 

errors are one of the most important to consider in this study because the 

mechanical scanner and irs feasibility are key considerations. The basis 

for this analysis is the two Fourier transform relations which relate D(!S_) 

and B (f_) . 

FAnf D(.!S_)eiyd eif•!:_ df = FA:F- 1 [D(!S_)eiyd] ( 2 Sa) 

-iyd -iyd 
~- f B(!'._)e-i.!S_•!:_ d!:_ _e __ tr[B(P)] 
4TI 2 FA FA -

D(!S.) ( 2 Sb) 

n 

where the script -:.F"denotes the Fourier transform and its inverse ✓- 1 . Let 

us assume that due to an x-y position error, the data are measured at P' 
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rather than at P where 

P' = P + 6(P) = P + 6x(P)e + 6y(P)e . - - - - - -x - -y (26) 

The effect of two special position errors can be formulated exactly using 

well known Fourier transform relations, and will be discussed first. If the 

position error is constant over the entire scan area, A(~) =constant= f1 , 

then the spectrum computed from this data is 

(2 7) 

In eq. (27) and the following analysis, D(f) will denote the true spectrum 

which would be obtained if there were no errors in the measured data, and 

D (K) will denote the calculated results which include the effects of the 
e -

error under consideration and will be referred to as the error-contaminated 

spectrum. 

We note from eq. (27) that the only effect of a constant position error 

is to uniformly alter the phase of the spectrum. In many cases the far-field 

phase is not of interest, and so a constant shift of the position of all the 

data points is acceptable. Two cases where it could cause a problem are 

where the two sets of near-field data are required to compute circular 

components or linear spherical compc~~nts in directions far off the z-axis. 

In these cases the relative phase of the two spectral components is important, ( 

and if the constant shift was different for the two measurements, the relative 

phase would not be correct. 

The second special position error may be referred to as a scale error, 

and would result from incorrect calibration of position encoders or linear 

expansion of position encoder drives. In these cases the apparent position 

vector is proportional but not equal to the actual position vector. 

x' = ax, y' = Sy. (28) 

The effects on the computed spectrum are a change of beam widths and gain 

given by 

D (K) = e -

k k 
D(~ _x_) 

a ' S 

aS 
(29) 

In general, the position error will be more complicated than these 

special cases, and it is the more general ones which require additional 

analysis. Since the data are measured at intervals of approximately A/2, 

and the position errors will be a small fraction of that interval, we can 

express the change in the data as the first term in a Taylor series 



expansion. 

BCE_') B C ~) + \I B ( !:_) • ~ ( !:_) 

3B(!:_) 3B(!:_) 
B(!:_) + -- tx(!:_) + -- ty(!:_) (30) 

3x 3y 

Since the integrand of eq. (25a) is an analytic function, the derivatives 

in eq. (30) can be obtained by differentiating under the integral sign of 

eq. (25a) to give 

VB(!:_) iFAn J fD(f)eiyd ei!•E dK 

iFA .7-l[KD(K)eiyd] 
n - - (31) 

It is instructive to give a physical interpretation to eq. (31) as this kind 

of relation will appear frequently. Consider a narrow beam antenna whose 

main beam is along the z-axis. !DC!) I, which is essentially the far-field 

pattern of the antenna will be large for 1!1 ~ 0 near the z-axis and small 

for large! which corresponds to angles far off the main beam. In the 

integration of eq. (31), large values of D(f) will be multiplied by small 

values of! and vice versa which will result in a relatively small value for 

vB(!:_). If the main beam is steered sufficiently far off the z-axis so that 

the large values of D(_IS_) coincide with large values of!, then the integral 

will be large, and the rate of change of B(!:_) will be significant. Also if 

the antenna has a fairly broad beam 7B(!:_) will be significant. Equation (31) 

simply expresses the fact that the more relative energy there is at wide 

angles (large _IS_ values) the more variation there will tend to be in the 

near field as a function of x and y-position. We can therefore expect the 

effects of x-y position errors to be the largest for broad beam and steered 

beam antennas and smallest for narrow beam antennas directed along the z-axis. 

If the spectrum is computed from the data taken at P' we obtain from 

eqs. (25b) and (30) 

D (K) 
e -

-iyd 
e 5°[B (P')] 

FAn -

-iyd 
e er[ B (P) + VB(!:_) • ~ (!:_)) 

FA -
n 

-iyd f -iK•P 
D(!) + e VB(f) • ~(!:_)e - - dP 

4n 2 FA 
(32) 

n 

where D(K) and D (K) are respectively the true spectrum and the erroneous - e -
spectrum resulting from the position errors. If we now use eq. (31) for 

vB(!:_) in eq. (32) we can obtain an expression for the error in D(K) in terms 
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of spectral rather than near-field quantities. 

(33) 

Making use of the convolution theorem [12] that the transform of a product is 

equal to the convolution of the transforms of the terms in the product we 

obtain 

(34) 

where 

(35) 

and the dot and asterisk denote convolution of the dot product of f(r) and 

D(r)r. Rewriting eq. (32) in a slightly different form we obtain 

-iyd 
e 

We now have two general equations for the effect of x-y position errors 

(36) 

which will serve as the basis for examining certain special cases. Both 

forms are useful at various stages in the analysis. Equation (36) is used to 

determine the functional form of the worst-case type position error, while ( 

eq. (34) is more useful for deriving the magnitude of the error in D(r). 
The generality of eqs. (34) and (36) should be emphasized since they will be 

used in a number of cases. Since we have not assumed any special antenna 
characteristics at this point, they apply to both narrow and broad beam an

tennas, sum and difference patterns, beams near and far from the z-axis, 

and errors close to the main beam and at the remote sidelobes. 

The first task is to determine the functional form of _Q(!'._) which will 

produce the largest realizable error in a given part of the pattern in the 

direction specified by K. K could define the direction of the main beam, -a -a 
the monopulse null, or a given sidelobe, and we would like to know what 

type of x-y position error will have the maximum effect in that direction, 

and the magnitude of the error in D(~). Let us assume that the maximum 

position errors in each direction are 6mx and 
error over the measurement area is cr xy 

6 , and that the RMS position my 

02 = 
xy f {[6x(!'._)] 2 + [6y(!'._)] 2

} dP (37) 

In order that all possible error functions are evaluated on a common basis, 
the RMS position error for each one must be the same. This guarantees that 

the difference in the effect of the various types of errors will be due to 
their functional form and not to varying amounts of total error "energy." 
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The Schwartz inequality (13] is used in the following analysis to 

determine the form of the worst case errors. This approach leads to the 

requirement that the error functions are complex quantities while in fact 

they must be real. In an attempt to satisfy both the analysis and reality, 

we chose either the real or imaginarv part of the complex error function 

prescribed by the Schwartz inequality JS the functional form for the 

realizable worst-case error. The validity of this approach is confirmed 

by the computer simulation and by a recent more rigorous approach used by 

D.M. Kerns of NBS. In his approach, the constraint of a real error function 

is applied initially, and an inequality incorporating that constraint is 

used in place of the Schwartz version. The results of this approach for 

antennas v;hose near-fields have either even or odd symmetry are the same 

as those reported here, and since the antenna types being studied do have 

these symmetry properties, the conclusions of this report are correct. 

Because of the added analysis required in the newer approach, it will not 

be described in detail here. 

If we now use the Schwarz inequality on eq. (36), an upper bound 

for the error in D(f) is 

I 12 [1 I a::!=..) e - i !a. !=.. 12 I LD (fa) < 
1 dP f I LxC!=..) t 2 dP 

4TT 2FAn 

j a: C!=..) -iK •P1
2 

dP l + f e -a - dP f I Ly C!=..J I 2 -, 
I oy ) 

The maximum value will be realized only when 

t-.x C!=J f aB (!=..) -iK •P1* 

C 
e -a -I and 

l ox ) 

Liy(!:J (oB(P) -iK •P1* 
1--- -a ---- e I C I oy 
' 

) 

(38) 

( 39a) 

(39b) 

That is, the position error must be proportional to the complex conjugate 

(denoted by the*) of the derivative 0£ the near field data multiplied by 

the kernel to produce the maximum error in D(K). The e's are in general -a 
complex constants v;hich are chosen to satisfy the required RMS value of the 

error function. 

The particular form of L'lx(!=_) or Liy(!=_} will depend upon the character of 

the near-field data, and the direction of interest. To illustrate this, 

consider a one dimensional problem and denote the near-field amplitude and 
phase by 

B(x) a(x) ei¢(x) · 
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where both a(x) and ¢(x) are real functions. The worst-case position error 

is given by 

b.x(x) 
C 

a'(x)cos[¢(x)-kaxx] - a(x)¢' (x)sin[¢(x)-kaxx] 

- i(a'(x)sin[¢(x)-kaxx] - a(x)¢'(x)cos[¢(x)-kaxx]) (40) 

where the primes in eq. (40) denote the derivatives with respect to x. Since 

t-.x(x) must be a real function, the worst-case conditions cannot in general 
be realized. The largest realizable error will occur when b.x2x) is equal 

to either the real or imaginary part of eq. (40), and in the remaining discus

sions, the term "worst-case" will imply the realizable worst-case condition. 

The important character of eq. (40) can be illustrated by some typical examples. 
For a narrow beam sum pattern centered on the z-axis, the near-field data will 

be similar to figure 11. Over the significant part of the near-field 

¢ (x) = const and a (x) = smoothly varying function. 
S S 

Without a loss of generality we can take ¢s(x) = 0, and eq. (40) becomes 

The amplitude in this case will be &i :·roximately of the form 

as (x) = cos 2 (~x) 
X 

giving 

'If • (2nx) - - Lx sin Lx . 

(41) 

( 42) 

( 43) 

where L is the antenna aperture dimension. We can interpret the role of the 
X 

factors in eq. (41) in a way which will give further insight into the character 

of a worst-case type error, and help to determine whether or not this type 

of error is reasonable or not. The factor a~(x) will maximize the error in 

b.D(~) since~(~) will be proportional to (VB(~))* in eq. (36). The factor 
cos(k x) will determine where the maximum error occurs. Since the spectrum ax 
of cos(kaxx) is composed of two equal amplitude sidebands at± kax' the 
maximum errors will also occur in these two directions. 

The type of error described above is one that could occur, and yet 

with the knowledge provided by the error analysis, the scanner can be de

signed and aligned to minimize the error in the important region of interest. 
The factor a' (x) for the sum pattern being considered is a low frequency 

s 
sine function with a period equal to the scan length similar to figure 12. 

This figure is an example of an x-position error which was simulated on actual 
measured near-field data. The simulated error was proportional to the 
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' 
derivativP 1£ the near-fielc amplitude shown Ln figure 11. It is apparent 

why this err·ir prn,luces the maximum change in the far-field when we note 

the change it produces in the near-field as shown in figure 13. There is 

very little phase change, and though the amplitude change is small, it has 

the same sign over the complete scan length and therefore produces the maximum 

change in the on-axis far field. 

The factor cos(k x) will have a period of ax 
=A/sine ax (44) 

and the low frequency variations produce errors close to the main beam while 

higher frequency position errors effect the sidelobes. 

For a difference pattern centered on the z-axis the near-field can be 

approximated by 

j . '['';x] X < 0 sin y:--
X 

ad(x) -
• 2 ( 2 TTX] -sin -- X > Q l LX 

<P(x) ;;; 0' 

and again the only significant term in eq. (40) is aJ(x) cos(kaxx). The 
derivatives are given by 

. (l4rrxJ sin -1-
x 

X < 0 

. f4rrxj) sin --
lL 

X 

X > 0. 

(4 Sa) 

( 4 Sb) 

( 4 6) 

and the worst-case position error function is twice the frequency of the· 

one for the sum beam pattern, but is still of relatively long wavelength. 

As a third example let us look at a narrow beam sum pattern with the 

beam shifted away from the z-axis. If the main beam is at kx = kb then 
the near field and its derivatives are 

ab (x) ( TTX 
I J - cos

2 lr- ( 4 7) 
X 

x' X + d tan eb (48) 

cp(x) kbx (49) 

ab (x) 
1T . (2rrx'J (SO) -y:- sin - 1-

X X 

¢' (x) kb 
21T sin eb. (51) x-
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Substituting there values in eq. (40) we obtain 

(52a) 

if we take the real part of eq. ( 40), or 

(52b) 

if we take the imaginary part of eq. (40). The realizable worst-case error 

function will be the one which produces the largest error. For errors at 

the peak of the beam kax = k~ and the two possible functions are ab(x) and 

ab(x)kb. For steering angles greater than 

(53) 

the second term is predominant and will therefore produce the larger error. 

For errors in regions off the main beam, the second term is also larger, but 

in this case is multiplied by the cosine term. The worst-case position 

error for the beam-steered case is then 

(54) 

The three examples we have looked at are typical of most real situations 

for narrow beam antennas and point out three main features: 

1. Except for the restriction that the position error must be real, 

the worst case errors are reasonable functions and can be 

realized in an actual situation. 

2. The position errors which produce a maximum error in one given 

direction are periodic functions with a low frequency modulation. 

3. Because of the role of periodic error functions, a knowledge of the 

spectrum of the position error on an actual system would be more 

useful that just the maximum value of the error. 

Now that we have determined the form of the worst case error and found 

that it is one that could reasonably occur, we need to find the magnitude of 

the error for the various types of patterns and beam positions. Using eq. (34) 

and writing the convolution and dot product out in complete form we obtain 

i / (D(h)h) • ~(!-h) dL 

i / [D(h)£xFx(K-L) + D(h)£yFy(!-h)] d£xd£y 

where L, £ and£ are used as the dummy variables in the integration to 
- X y 

replace K, k and k , and 
- X y 

( 5 Sa) 

( 5 Sb) 

If we now use the Schwarz inequality on eq. (SSb) and note that the integral 

of I F(.!S_-h) I 2 is the same as the integral of IF(h) I 2 then eq. (SSb) becomes 
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and since F (L) and F (L) are the Fourier transforms of the position error 
X - y -

functions, (see. eq. (35)), we can use Rayleigh 1 s theorem [14] to obtain 

1 LL cr 2 

f IF (L)l 2 dL = f !tix(P)l 2 dP X y X 
(58a) X 4TT 2 4TT 2 

f !Fy(L) ! 2 dL = 
1 f I tiy CD I 2 dE_ = 

LxLycr; 
(58b) 

4TT 2 4TT 2 

In general, the integration in eq. (55) is over all values of ix and iy' but 

for narrow beam antennas and the periodic error functions being considered, 

both D(~) and F(~) will be narrow band functions having significant maxima 
at one or at most two values of L. The significant part of the integral 

will be due to the integration over the main beam of D(~) and the maximum 
value will occur when maxima,of the two functions are coincident. For the 

problem under consideration, we may therefore limit the integration in eq. 

(55) to the main beam of the antenna. 

To further evaluate eq. (55) we must assume some form for D(!) or B(~) 
and know the direction of the main beam. Since a number of combinations of 

beam types, steering directions and regions of interest will be investigated, 

a compact notation is required to distinguish between them. In the general 

analysis, and when referring ,to sum patterns, or when the results apply 

to both sum and difference types, the regular capital "D" will denote the 

spectrum. The script "V" will be used in other cases to specify a difference 

pattern. The boresight direction will be specified by !band the direction 

in which the error is a maximum will be denoted by K. For example, when -a 
discussing the error in the side lobe region for a difference type pattern 

Ve (!a) 
steered off the z-axis, the pertinent quantities would be D(K) , where 

-b 
the "e" subscript denotes the error-contaminated spectrum. First consider 

a sum-beam pattern with the main beam at K = 0 whose main beam can be 

approximated by the function 

D(!) D ( 0) sin l/! sin E; 

l/! E; 

where 

l/! = ak and E; = Sky X 

( 5 9) 

( 60) 

The constants a and Sare chosen such that the approximate function equals the 
actual pattern at the -3 dB points. The integrals in eq. (57) over the main 

/ 

( 



\ 

beam, to the first zeroes of eq. (59) are 

ID(0) 12 4-rr2 

131 n2 
X y 

(61a) 

ID(0) 1
2 4TT 2 

J ID(K)k I" '1K = - y - (61b) 

where 1x and LY are the dimensions of the antenna in the x and y-directions, 

and n is the antenna aperture efficiency. Combining eq. (61) with eqs. (57) 

and (58) we have for the error in D(K) 

JD (0) I 
lllD(0)I < (62) 

l\ 
If we assume that 1 = 1 

X y' and that CJ 
m where l\ is the maximum pos-CJ ' X y 12 m 

ition error then the error in percent of the on-axis value is 

ll\D(O)I < 100 r 'm] (63a) 
D(0) % 

and the error in dB 

1 D (0) 

I 
e < 

D ( 0) dB 

n 

8.7 
n 

lL 

If the position error is of the form given by eq. (41) with k = 0 then ax 

( 6 3b) 

the equality will hold in eq. (63) and the maximum error will be realized 

at the peak of the main beam. This is illustrated in figures 14-17 which 

show the near- and far-field data for a narrow beam antenna. The far-field 

pattern was computed from the actual measured data, and for the data with 

a simulated position error similar to eq. ( 41). The original data and the 

resulting pattern are shown by the continuous curves in figures 14-16 while 

the data with position error and its resulting pattern are plotted as the 

discrete points in the same graphs. Figure 17 is a plot of lllD(~)/D(0) I 

in percent and shows the maximum occurring ate= 0 which corresponds to 

k = 0. For this simulation l\ 0.02A, L = 25A, and n = 0.5. Since the 
X m X 

simulation is for one-dimensional data, eq. (63) is modified slightly for 

this case, and predicts a maximum error of 0.20%. This and similar simu

lations for other antennas have shown that the approximations used to de

rive eq. (63) are quite good and that it does in fact give an upper bound 

for the error in D(~). 
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If k f O in eq. (41), the maximum error in D(~) will occur at ax 
k ± k rather than at k = 0 with one half the amplitude given by eq. (63). ( 

X U X 
The factor of one half results from the requirement that the position error 

be a real function, and the cos(kaxx) factor produces two sidebands at± kax 
with one half the amplitude of the zero frequency component. In this case 

the error in a sidelobe is given by 

so 

D(O) 

D(!a) 

(64a) 

(64b) 

For a monopulse difference pattern with the null at~= O, the analysis 

leads to essentially the same result. While the shape of the pattern is 

different, the integral of ID(K)Kl 2 over the main beam is very nearly the 

same. The major change in the result is that the D(O) in eqs. (63) and (64) 
refers to the peak of the sum pattern rather than the difference pattern 

minimum. 

If we now look at the case where the beam is steered away from the z

axis, expressions similar to eqs. (63) and (64) are easily obtained. Assume 

that the peak of a sum pattern is steered to!= !bf 0. In this case K is 

essentially constant over the main beam integration and can therefore be 

taken outside the integral. With this approximation, eqs. (31) and (36) 
become 

4,r 2 FA n 

For errors on the peak of the main beam, Bs(D can be approximated by 

iK • P 
B (P) - a (P)e -b -

s - s -

and eq. (66) becomes 

. iyd K 
1e -b 

4TT 2 FA n 

We have previously shown (see eq. 54) that the position error function 

which will produce the maximum error in D(K) when K = Kk is -a -a --u 

4C 

(65) 

(66) 

(67) 

(68) 

(69) 

( 



We have also shown that a constant position error will not produce any error 

in the amplitude of D(!_) and so we may add a constant U to eq. (69) without 

changing its effect. Substituting this modified error function into eq. (68) 
we obtain 

liD (K ) s -a 

ieiyd K 
-a 

(70) 

For the sum pattern, a (P) is positive for all values of P and both integrals 
s -

will be positive. The constant U may therefore be chosen to make 
ILiD (K) I = 0, which indicates that for this case the first term in the s a 
Taylor series expansion is not sufficient to represent the error, and the 

second term must be included. When the second term is used we obtain 

(71) 

and now since both factors in the integrand are positive, the integral will 

not be zero. To evaluate the error, we use a form similar to eq. (34) 

which results from the second term in the expansion. 

Using the Schwarz inequality and Rayleigh's theorem again as before, we 
obtain 

Using the earlier approximations (see eq. (59)) for the main beam this 
becomes 

I 

LiD(~)1 

D (Kb) % 

1 0 0 I ~ I 2 
1 limax I 

2 
< 

and for the error in dB 

I

De(!.b)I 8.71~12 llimaxl2 

D(!_b) dB< ✓n 

where lli 12 is the largest value of !Li(P) 12
, max - -

( 7 2) 

(73) 

(74a) 

(74b) 

For a monopulse difference pattern steered to K, the near-field ampli-
-a 

tude is an odd function and therefore the second integral in eq. (70) is 

nearly zero. The error in V(!b) cannot be made zero by the proper choice of 

the constant U, and therefore the first term in the expansion is the signifi
cant one. For the monopulse type pattern, the position error which is 
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proportional to ad(f) affects the far-field pattern in two ways. First there 

is an effective linear term in ad(~) which shifts the entire pattern by a 
small amount, and there is also a change in the shape of the pattern. The 

analysis for this case is very similar to the one for the effects of z

errors on a difference pattern centered on the z-axis which will be discussed 

in the following section. The results are essentially the same, and so we 
will defer a discussion of the analysis to the next section. The results 

show that for the present case of a monopulse difference pattern steered to 

! = ~ f O, the error in the depth of the minimum at~+£ is 

I
Ve(Kb+E) I ~ l~I ~max ID(~)1Q 

Ve(Kb) dB 2 V(Kb) 
(75) 

where~+£ is the position of the minimum for the error corrupted spectrum, 
and Q is equal to the difference in dB of the far-field maxima for the 

difference pattern. 

For either a sum or difference pattern the maximum error in direction 

off the main beam is given by the same equation. For the beam steering 

conditions the error function which produced the maximum error in the side

lobe region is given by eq. (54) which for the two dimensional case is 

6.b(P) = 6. a(x) sin[(k -k b)x]e + 6. a(y) sin[(k -k b)y]e (76) - - mx x a x -x my ya y -y 

sin k 
The spectrum of ~Cf) is composed of 

kx 
X type functions whose maxima occur 

at ±(k -kb) and similar functions in the ky direction with maxima at xa x 
± (kya -kyb). The width of the "main beam" of these functions will be approxi-
mately 1/4 the width of the antenna pattern, and so in the convolution of 

eq. (55) the net effect is the same as if they were delta functions with 
6. 6. 

amplitudes of ~x and ~Y. The four maxima in the error 6.D(!) will occur at 

(kxa ' kya ) 

K 
(kxa ' kyb-(kya-kyb)) 

(k -(k -k ) xb xa xb ' kya ) 

(k - (k -k ) xb xa xb ' k - (k -k ) ) yb ya yb 

The amplitude of the error in each of these directions in percent and dB 

is obtained from the convolution of D(f) with the delta functions. 
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Under the conditions that 6mx - 6my' and approximating kxa + kya - l~al 

these become 

(78) 

(79) 

(80) 

(81) 

The key equations of this section can be put in terms of the angles of 

the antenna coordinate system by use of the relationships 

( 8 2) 

( 8 3) 

where 8 is the polar angle between the propagation vector k and the z-axis. -a 
The main results are summarized below for the various cases. 

1. Main beam on the z-axis, 

a. Main beam error 
Sum pattern [:m] ( 8 4) 

b. Main beam error 
Difference pattern I

~ I [6ml 
V(O) L 

(85) 

c. Sidelobe error (86) 

2. Main beam steered to !b' Ab' Eb' Bb 

a. Main beam error 
Sum pattern I

D C!t) I 
D~!t) d/ 

344 16m]
2 

• 2 

lX- sin Bb 
In 

(87) 

b. Main beam error 
Difference pattern 

C • Sidelobe error 
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To illustrate the important features of the results for the various cases, 

let us consider an antenna with a square aperture L = L 
X y 5 0 >.., and a 5 0 % 

aperture efficiency. Table 3 below then gives the maximum error due to 

x-y position errors for the various cases. 

Table 3. Examples of Errors 

Direction of Region Where 
Main Beam Maximum Error Occurs I'!. Error 

Type Pattern Azimuth Elevation Pattern Character Relative Amp(dB) m in dB x---
Sum 0 0 Peak 0 0.02 0.007 
Difference 0 0 Difference Null -20 0.02 0.07 
Difference 0 0 Difference Null -30 0.02 0.22 
Difference 0 0 Difference Null -40 0.02 0.79 
Sum or Difference 0 0 Sidelobe -20.0 0.02 0.02 
Sum or Difference 0 0 Sidelobe -30.0 0.02 0.05 

Sum or Difference 0 0 Sidelobe -40. 0 0.02 0.17 

Sum 30° 30° Peak 0 0.02 0.12 

Sum 60° 40° Peak 0 0.02 0.23 
Difference 60° 40° Difference Null -20 0.02 0.54 

Difference 60° 40° Difference Null -30 0.02 1. 62 
Difference 60° 40° Difference Null -40 0.02 5.40 

Sum or Difference 60° 40° Sidelobe -20 0.02 2. 5 
Sum or Difference 60 ° 40° Sidelobe -30 0.02 7.5 

Sum or Difference 60° 40° Sidelobe -40 0.02 24.9 

The predicted errors in table 3 are very close to the results of the 

error s.imulation with one-dimensional data in all cases. 

The sidelobe errors for off-axis steering are definitely the most 

serious and are the ones to consider in designing a measurement system. 

It must be remembered that these are worst case type errors and result when 

there is a very special position error which concentrates all of its effect 

in one or a few directions. It is evident in figure 18 that the error is 

very large in two directions, but quite small in all other directions. 

Also it is unlikely that the error function would be a single frequency 

sinusoid but more likely that the error would be composed of a number of 

frequency components with much smaller amplitudes than !'J.m. In actual prac

tice then, through careful design and measurement, the sidelobe errors as 

well as those for other parameters due to x-y position error will be much 

less than the upper bounds illustrated in table 3. 
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3.1.2 Probe z-Position Errors 

The analysis of z-position errors follows very similar lines to the 
last section for x-y errors and many of the results of the last section can 

b~ used with only slight modification. In this case we assume that the 

piabe is at the correct x-y position, but there is a small error in its 

usition given by 

z ' = d + t:.z (~) , 

and the change in the measured data is 

B(!:'._,z') 
a B (!:'._, z) 

= B(!:'._,d) + --- Liz(!:'._). 
a z 

( 9 0) 

(91) 

Since we are looking at z-position errors, we have made the dependence of 

B upon z explicit. The partial derivative can be determined from eq. (25a) 

in the same way that VB(~) was obtained to give 

clB(!:'._,z) 
(92) 

a z 

For the narrow beam antennas under study, y(~) will be essentially constant 

over the significant part of the integral in eq. (92) and can be taken out

side the integral. The z-derivative of B(!:'._,z) in terms of general ampli
tuae and phase functions and from eq. (92) is then 

clB(P,z) .. (P ) 
- = a'(P,z)el~ _,z + i~' (!:'._,z) B(!:'._,z) ~ iy(~b) B(!:'._,z). (93) 

az -
This expresses the facts which are observed in the near-field measurements 

that 

a' (!:'._, z) - 0, (94a) 

21T 
= -x- cos e. (94b) 

That is, that the amplitude change is very small for z-motion of the probe, 

i,r,ile the phase change is large. Using eqs. (91), (92), and (25a), and the 

convolution theorem, we obtain the two forms of the error equation for z-errors 
which correspond to eqs. (34) and (36) 

LID(~) i [y (~) D (~)] * H (~) ( 9 5) 

iyd [aB(!'._,,) ~iK•P] LID(~) 
e f LI z (!:'..) d!:'._, e - -
4TT 2 FA a z n 

(96) 

hhere H(~) is the spectrum of the error function 

1 -iK•P f Liz(!:'._) e - - d!:'._ = .'.F[Llz (!:'..)]. (97) 
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Before proceeding to evaluate eqs. (95) or (96) for the various cases, 

two special z-position errors should be considered. The first is one where 

6z(f) =constant= 6d. Since d does not appear in the integrand of eq. (25b), 
a position error of this type will not produce any error in the gain or 

relative pattern. The only effect it will have is to uniformly change the 
i M phase of the far-field by the amom.t e Y . Therefore, 16D(!_) I = 0 when 

6z(f) = constant, and 

(98) 

when 

(99) 

where 6D1 (!) and 6D 2 (!) are the errors resulting from 6z1 (f) and 6z 2 (f) 
respectively. This means that we can add a small arbitrary constant to a 

given z-position error function without changing its effect on the far-field 

pattern or gain. This fact will be useful in some of the following analyses. 

The second special error is one which is linear in P and given by the 
relationship 

6z(f) =ax+ Sy. (100) 

This error would result from a rotational misalignment of the test antenna 

with respect to the measurement plane and results in a shift of the entire 

pattern by the angles 

~A= arctan a, 6E = arctan s. (101) 

The relative shape of the pattern is not changed and the only error is in our 

knowledge of the direction angles to a specific part of the pattern, such as 

at the peak or null of the main beam. Therefore when analyzing the effect of 

a given error function, both the constant and linear terms should be removed 

before determining its effect on the gain or relative pattern. 

The functional form of 6z(f) which will produce the maximum error at 

K = K is, as before, proportional to the complex conjugate of the quantity - -a 
in the brackets of eq. (96). Since 6z (~) must be a real function, the 

maximum realizable condition occurs where 6z(f) is proportional to either 

the real or imaginary parts of the bracketed expression. 

From eqs. (93) and (96), the worst case error function is then 

(102) 

if we use the real part, and 

(103) 

if we use the imaginary part. In both cases, om is the maximum error in the 
z-position, and the proportionality constant has been taken as om/y so that 

the maximum value of the error will be attained when a(~,z) = 1.0. 
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For the case where the main beam or difference null is centered on the 

z-axis, the error at~= K -a 

6D ( 0) 

O is given by 

ieiydk 
= -- J B(~) lz(~) dP. 

41r 2 FAn 
(104) 

An arbitrary change in the reference plane by a constant amount will not 

cause any error in the far-field pattern since we can chose any reference 

plane on which to make the measurements. If we change the reference plane 

by a constant amount to obtain a new error function. 

(1 OS) 

then the resultant error at Ka = 0 is given by 

6D(O) 
ieiydk 

[I B(~, z) lz (~) dP +CJ B(P,z) d~J. 
41r 2 FAn 

- - (106) 

For a sum pattern the second integral in eq. (106) will be positive, and we 

can therefore choose C to make 6D(O) = O. This result is similar to the case 

for the effect of x-y errors on a steered main beam, and indicates that the 

first order term is not sufficient and higher order terms must be used. When 

we use the second order term the on-axis error becomes 

iyd 2 
6D(O) = e J a B(P,z) [6z(E_)]2 dP 

Z1r 2 FAn az 2 

eiydk 2 
J B(~) [6z(P)] 2 dP. 

21r 2 FA n 

(107) 

(108) 

For a sum pattern, both factors in the integrand will be positive for all 

values of~, and the error cannot be reduced to zero by an arbitrary shift 

in the measurement plane. The error resulting from the second order term 

may now be evaluated by using a form similar to eqs. (95) and (72) 

(109) 

Using the Schwarz inequality and Rayleigh's theorem on the above expression 

with the earlier approximation for the main beam, we obtain 

1

6D(O) I .S. ~ [0
ml 

2 

D(O) o v'n " '6 

I
De(O) l 43 

D(O) dB.S. /n 
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In lie ,·ollowLng disc .:,;si:m concerning me 1opulse type patterns, it will 

be helpful to refer to thE· !·1isuL; of tht ern _. simulation to '.llustrate the 

steps i11 the analysis. The pattern under discussion is similar to tht or.e 
shown ill Jig11n, 19, and WE Fnt ! leterminP l1e effect•; of ;:-j!osition errori 

on the position and d•~)th >f the 1,1:i.nimum in the boresight direction. Let us 

assume that the pattern shown in fibure 19 is for the principle plane, ky = O, 
and that the near-field amplitude and phase along the line y = 0 are similar 

to thoseshown in figure 20. In the error simulation program, the measured 

data shown in figure 20 is stored in the computer and the far-field pattern 

is computed using thesedata and eq. (25b). These input data and the resulting 

far-field are considered to be the "true" values with no z-position errors 
present. We next modify the input data by changing the amplitude and/or 

phase in a way which represents the effects of the worst case z-position 

error. The far-field is again computed using the modified data and compared 

to the original results to determine the effects of the simulated errors. 

This is repeated using different values of om and near-field data from other 

antennas. 

In the present case for~=~ 

error function as 

O, eq. (103) gives the worst-case 

t,z(~) = om a(~) cos (<P(~,z)) 

and from eqs. (91) and (94) the modified data are 

ae (~) = a(~) 

¢e(~,z) = ¢(~,z) + koma(~) cos (¢(P,z)) 

(ll2) 

(ll 3a) 

( ll 3b) 

where ae and ¢e are the modified amplitude and phase function~. When this 
change is made in the input data, the simulated phase error resulting from 

the z-position error is shown in figure 21. This phase error has two effects 

on the far-field pattern as shown in figure 22. The entire pattern has been 
shifted and there is also some change in the shape of the pattern. The shift 

complicates both the mathematical analysis and the simulation when trying to 

determine the change in the depth of the minimum. For in the analysis we must 

compare V(O) with V (0+s) since the minimum of the error pattern is at K = s 
e - - -

and since the pattern is so sharp in this region, we must know quite closely 

how much shift is introduced by a given error om, In the simulation, a prob

lem arises because we do not have continuous data, since the digital trans

formation provides far-field values at discrete, equally-spaced points as 
shown by the error pattern in figure 22. (In the "true" pattern the points 

have been connected by straight-line interpolation to distinguish between 
the curves,) A data point may not occur exactly at K = £, and due to the 

sharpness of the curve, comparison of a point which is not at£ with the 

original minimum may be misleading. 
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To overcome this difficulty in the simulation, a linear phase correction 

is applied to the near-field data along with the simulated z-position error 

to shift the minimum back to K = 0. The modified phase is then given by 

(114) 

The value of a is chosen to make the minimum of the error pattern occur 

at K = 0, and this sometimes requires multiple runs to find the correct 

value. The result of this modification to the phase error on the error 

spectrum is shown in figure 23, and it is apparent that now we can compare 
the two curves point by point to find the change in the minimum depth or 

sidelobe level. 

We have previously shown that the linear phase correction used here 
will not change the shape of the pattern, and so this does not alter the 

results. In effect, we have removed whatever linear term there is in the 

position error by the above technique and can now analyze the effect of the 

remainder of the error function. This approach has the added benefit that 

we obtain an approximate empirical relationship between the maximum position 

error and shift in the boresight direction which will be of value in the 

analysis. 

Table 4 below summarizes the results of the z-position error simulation 

on two monopulse antennas. Two sets of data were used for both antennas. 

The first was the actual measured data and in the second, the amplitude for 

x > 0 was modified to make it more nearly equal to the amplitude for x < 0. 

This amplitude modification resulted in a lower minimum in the boresight 

direction and demonstrated the dependence of the error on the magnitude of 

the minimum. The modified near-field data and the resulting far-field pattern 

for one antenna are shown in figures 24 and 25 (compare with figures 20 and 22). 
It is apparent from Table 4 that the error in the depth of the mono

pulse difference minimum is linearly proportional to the maximum position 

error om' and inversely proportional to the magnitude of the minimum. Fur

thermore, the shift in the boresight direction is also linear in om. 

Ve(O)I 

V (O) 
(115) 

It is also evident that c1 is not the same for the two antennas, and the 

simulation does not give much indication why they are different or what 

antenna characteristic determines the magnitude of c1 . To determine these 

factors, the mathematical analysis must be used. 
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Table 4. Summary of Results from z-Error Simulation 

Antenna f 

Constrained lens 9.2 

Constrained lens 9.2 
(Modified Amplitude) 

Volphase 8 .4 

Volphase 8.4 
(Modified Amplitude) 

True 
Minimum 

(dB) 

-30. 7 

-49.6 

-23.8 

-35.4 

Maximum 
z-Position 

Error 

a.on 
0.04.A 

0.06;1. 

0.02A 

0.00 

0. 06;1. 

a.on 
0.04.A 
0. 06;1. 

a.on 
0.00 

0.06;1. 

Change 
in 

Minimum 
(dB) 

-0.3 

-0.5 

-0.7 

-2.7 

-6.3 

-10.2 

-0.4 

-0.7 

-1.0 

-1.4 

-2.8 

-4.00 

Shift in 
Minimum 

(deg) 

-0.16 

-0.31 

-0.47 

-0.16 

-0.31 

-0.47 

-0.15 

-0.31 

-0.46 

-0.15 

-0.31 

-0.46 

Let us approximate the essential features for the azimuthal difference 

mode near-field by 

B (~, z) f(x) g(y) (116) 

where 

· 2[21TX] - sin Lx X < 0 

f (x) (117) 

g(y) = cos2 (Fl 
y-

(118) 

The constants a and q will determine the departure from a perfect difference 

pattern, with a being nearly unity and q being close to zero. It can be 

shown that a will determine the depth of the minimum, and q will determine 

the symmetry of the far-field pattern. Let us further assume that in mea

suring the above near-field, there is a worst-case z-position error as 

by eq. (103), and that due to this error, the apparent position of the 

difference minimum is at k E, k = 0. The value of V (E,0) is then 
X y e 

e-iyd J g(y)dy J f(x) ei[koma(x)-Ex] dx 

4;r 2 FAn 

Iv_ 1 J f(x) [l+i(koma(x)-Ex)] dx 
2 TT 
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where Iv;~ the integral involving g(1), and (x) is the amplitude function 

for f(x), The ;econd order terms in the aprr xi1u ti m of the complex expo

n,mtial have been clrqp = i ,ince they are even functions, f(x) is very nearly 

odd, and '.lif1 in•i:p·al of heir p1·0dur+ is smf 1 comprrred to•: e · etLi1ed 

terms which appear in eq. (12U;. lhe rema1rd ng tt·rm; J rodu :t· th: ee i:itegrals, 

the first of which when multiplied ,y I yields the true far-field minimum y 
V(O). The error in Vis then 

where 

Ixl = kom J f(x) a(x) dx 

Ix2 = E J x f(x) dx 

(121) 

(12 2) 

(123) 

Using the assumed form for f(x), Ixl' Ix2 , and Iy can be evaluated to 

give 

L2
E --r5 (l+a+ia.q). 

e 
-iyd 

FAn 

Combining these terms, the error is then 

where we have used the relation 

E = 
2TT dz 
-rrx 

(124a) 

(124b) 

(124c) 

(12 5) 

(126) 

Under certain special conditions, either the real or imaginary terms may be 

zero, but since an upper bound is desired, these cases will not be considered. 

The results of the error simulation indicate that generally the two terms 

will be of about the same magnitude, but the real term has the major effect 

on the change in the null depth. This is because V(O) is real for the assumed 

near-field distribution, and therefore, in phase with the real part of eq. 

(125). For a more general distribution, the real part of eq. (125) will still 

be in phase with V(O) and therefore produces more of a change in the null 
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depth than the imaginary term. The change in the boresight minimum is then 

VeC..O 

V(0) dB 

20.2 om aq 
< 

>.. 
(127) 

The dependence upon q in eq. (127) is consistent with the results of the 
simulation, but the simulation does not show the dependence upon a. Since 

S ~ 2.5 to 3.2 and a~ 0.94 to 1.2, it appears that a more realistic expres

sion is obtained by setting the factor a(S/3 - a) equal to 0.5 to give 

e - m v (s) nco) I [o l -- < 10.lq -- -- . 
V(0) dB- V(0) >.. 

Also from the simulation it is apparent that q determines the symmetry of the 

difference pattern, and we can estimate q from the ratio in the maxima on each 

side of the boresight minima. If we denote the ratio of these maxima in dB 

by Q, then q in radians is approximately 

q ;;; g_ 
3 ' 

and the error equation in terms of far-field parameters is 

e -V (E) I D(O) 
-- < 3.4Q --

V(0) dB- V(0) 
(129) 

For errors in regions off the main beam, the results are essentially 

the same for sum and difference patterns and are similar to the case for 
x-y position errors when the beam is steered off axis. The worst-case 

z-position error is given by eq. (102) or (103) with !.a f 0 and is therefore 

equal to the amplitude modulated by a periodic function. The error in a side

lobe at K is obtained from eq. (95) where H(K) is approximated by delta func--a -
tions at the combinations of± k and± k given in eq. (77). The magnitude xa ya 
of these delta functions is o /4, due to one factor of 1/2 which arises from 

m 
the fact that the error function produces two sidebands, and another factor 

of approximately 1/2 because the variations in z should be measured from the 

average value and not the minimum value. The resulting error expression is 

(130) 

When the beam is steered away from the z-axis, the only change in the 

analysis is that gamma is not equal to k but is now 

(131) 
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Equations (111), (129), and (130) may then be generalized to any steering 

direction by using eq. (131) in place of k and !bin place of Oto give for 

a sum pattern, 

1

De(!5.b)I 

D (!5.b) ci.T/· 

for the difference minimum, 

I

V e (!5.b +~) I :3:.. 

V(!b) dB I
D(~) I 3.4Q --
V(~) 

and for a sidelobe on either type pattern, 

3.1.3 Instrumentation Errors in Measured Amplitude and Phase 

(132) 

(133) 

(134) 

In the last two sections it has been shown that position errors result 

in incorrect values for the amplitude and/or phase and therefore produce 

errors in the computed far-field parameters. In this section the electronic 

equipment used to measure and record the probe output will be treated to 

determine the types and magnitudes of errors which they produce. 

The main subject for study is the RF receiver which detects the probe 

output at the operating frequency and converts the measured signal to a 
lower frequency where the amplitude and phase are measured. Ideally the 

conversion and the measurement are linear, and the receiver output is directly 

proportional to the probe output B(~). In fact there are nonlinearities 

present due to such things as mixer non-linearity, interference and noise 

signals within the receiver, sensitivity and linearity of detectors and reso
lution of digitizers. Their combined effects may ~e represented by the 

relation 

(135) 

where B(f) is the true probe output, Be(~) is the receiver output, and 
v(a,¢) represents the receiver response which is in general a function of the 

amplitude a and the phase¢. Certain special cases of v(a,¢) have already 

been treated in the position error section, because the worst-case position 
errors were usually function of a and¢ also, and produced errors in B(~). 

For instance, the worst-case z-error resulted in a phase error given by 

ti¢(a,¢) = k om a(~) cos(¢(~)) (136) 
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and produced errors in tne far-·field given by eq. (132), (133), and (134), 
and the worst case x-y error for the main beam on-axis resulted in an 

amplitude error given by eq. (30) and ( 40) 

ti a ( a , <P) a: Va ( ~_) • 'i7 a (!:) (137) 

which led to tr.e results in eqs. (84), (85), and (86). These results are of 

value, but may not represent the upper bound type errors which are the object 

of this analysis. 

To obtain expressions for the errors in D(~) we 

(25b) and employ the Schwarz inequality to show that 
be a maximum at K = K if -a 

( 
-iK •P)* 

v(a,<P) a: B(~)e -a -

substitute eq. (135) into 

the change in D(~) will 

(138) 

This implies an unrealistically large error in both the near and far-fields, 

for it would mean that 

a (P) = [a(!:)] 2 
e - (139) 

and for instance where a(!:) = -20 dB, the measured value would be -40 dB. A 

20 dB error at this level is completely unreasonable. Equation (139) does 

suggest a form for the amplitude error which is consistent with observations 

however and given by 

(140) 

This is similar to eq. (139) because the error is zero when a(x) = 1, in

creases as a(x) decreases, and is identical to eq. (139) ifµ= 1. Whenµ 
is small, the error has the same form as the worst case type, but is still 
realistic. 

When the above type of error is applied to the measured data in the error 

simulation program, it resembl~s quite closely the scale error described at 

the beginning of section 3.1.1 and formulated in eqs. (28) and (29). As seen 

in figure 26, the effect is to decrease the apparent size of the aperture, 
which will reduce the far-field gain and increase the beam width. Since 

eq. (29) gives an exact formulation for the effect of the scale error, the 

effect of the above amplitude error will also be known if we can obtain a 

relation betweenµ and a. Such a relation was derived from the results of 

the simulation, and showed that for a variety of antenna types, 

a= 1 + 0.35µ. (141) 

When the amplitude function in they-direction and its error are included, 
the error at K = Kk is then -a -u 

(14 2) 
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This result is valid for either a sum or difference type pattern and includes 
the case when the beam is along or steered off the z-axis. Ifµ is not a 

constant, but is a periodic function of the amplitude and therefore a function 

of x and y, the maximum error will occur in directions other than bore-

sight with the magnitude 

D (K) e -a 
D(K) -a 

= 3.01D(~)1 µ. 
D(!S.a) 

(143) 

These two types of errors are illustrated in figures 26-29 which show samples 

of the results of the error simulation for amplitude errors. As in the case 

of position errors, the periodic amplitude error causes the largest effect 

on the far-field pattern, since most of its effect is concentrated in direc
tions where the far-field amplitude is low. 

Figures 30 and 31 show the amplitude error as a function of amplitude in 

dB and percent for various values ofµ. These graphs are helpful in evaluating 

the error which will result from a given receiver non-linearity. It is 

evident from eqs. (142) and (143) that the linearity of the receiver must be 
checked with a calibrated attenuator to verify its accuracy or to derive a 

correction curve which can be applied to the measured data. 

The analysis for instrumentation phase errors has essentially been done 

in the section on z-position errors. It was found there that for small ( 

z-motion of the probe, only the phase of the measured signal changed, and so 
the errors were in fact phase errors. The results of section 3.1.2 therefore 

can be used here if the substitution 

1' = A A A, 

um 2'rr u"'m 

is used, where 11¢ is the maximum phase error. They are summarized here in m 
terms of 11¢m for reference. For a sum pattern, 

for the difference minimum, 

1

Ve(!5_b+~) 

V(~) dB 
and for a sidelobe on either type, 

±l [Mm] 
2 

/n Zn 

I
D(~) 

< 3.4Q --
V(~) 

64 

(144) 

(14 5) 

(146) 



5. :: 

,.:~ 

3. CC 

... 
= .... UC 
M 
0 
M 
M 
~ . ""' ••• w 
"Cl .... 
I) ..... 
"" ' " !-, •• 1111 

oj 

"' 
- : . C0 

-2. :c 

·5.CO 

·!0.00 

~ -:5.00 

= .... 
ll) 

"g ·20.00 .. ..... .... 
p. 
~ ·25.00 

"Cl .... 
ll) 

~ .. 30_ 00 

·35. 00 

j \ 
- - - - vv - ~v -

Tru Patten 

..... ... Err r Pattl)rn 

II 

It, 

I ~ ~- ~ ~ 
\ I 

' ~ \ 
~ 

. 
l. 

0. 00 ll. 00 U. 00 54. 00 72. 00 to. 00 
Angle in Degrees 

Figure 27. Error in Far-Field Due to Amplitude Non-Linearity. 

65 



:uo 

8.00 

;.. 
0 

6.CO 
;.. 
;.. 

<1.l 

"' '· 00 'tl 
;;. .., 
•rl 
,-; 
p.. 

2. 0 0 s 
< True Amplit ude - -

0. 00 

.... . Erro Am 1. tude 
f\ f\ ,., I\ K ,.. A ,_ 

A \. I\ I\ I\ f\ j I\ .I\ " \ V V IVV V V' - - ... vv vv V V \o 

·2. 00 

uo 

·5.00 

·l 0. 00 

J I\ 
i \ 

1 

• 15. 00 
.i 

"' 'tl ·20.00 
~ 

~ , 
•r< 

"' "g ·25. 00 .., 
•rl .... 
p.. 

= < ·30. 00 
'tl .... 
"' •rl 

"" ·35.00 ' ;.. 
co 

I \ 
I l 

"' :z: 

·AO.O0 

·A5.00 

I 

J ~ ~ 
1 ~ 

-~~-N. 00 ·100.00 ·75. 00 ·50. 00 ·25. 00 0. 00 25. IO 90. ot 79. ti IOI. to IIS. IO 
Probe Position in cm 

Figure 28. Periodic Non-Linear Amplitude Error. 

66 

( 



OQ 
'"O 

i::: ..... 
,... 
0 ,... ,... 

"-1 

'"O 
H 
<l.) ..... 
"' ' ,... 
"' "' 

OQ 
'"O 

i::: ..... 
<l.) 

'"O 
;:l .., 

,,..; 

H 
0. 
~ 
< 
'"O 
H 
<l.) ..... 
"' ' ,... 

"' "' 

:uo 

8.00 

6.00 

,.oo 

2.00 -

0. 00 
~ A 4 '\ A • l " 

~ - ' -r ..., ~ 1 r .. ·, ~ 
·2.00 

.,. 0 0 

:.co 
Tru o Patt, rn 

.... . . Err br Pat1 ern 
·5. 00 

• I 0. 00 

· 15. 00 

·20. 0 0 

·25. 0 0 

·30.00 
ii 
I 

·35. 00 

·40.00 

-,s. 00 

I~ : 

' ~ 
~ . 

~v " 

j . 
A ,/ Ii ... 

• 5, 00 
'·'90. 00 ·72. 00 ·5'. 00 ·5'. 00 ·II. 00 0. H II. tt Sc.tt 5'. ff 71.tt N. It 

Angle in Degrees 

Figure 29. Error in Far-Field Due to Periodic Non-Linear Amplitude Error. 

67 



CD 
"O 

C 

Q.I 
"O 
::, 

l.O a. 
0 E 
0 ~ 
II 

Q.I 
> -0 ( (I) 

a: 

i-----;------+--+-------+--+----1----l:;;,: 
I 

..__ __ __.. ______ ....1.... __ L... ______ __J_.J...... ___ _jl_ __ _J ~ 

= I 

8P u1 J0JJ3 apniqdwtf 

Figure 30. Effect of Receiver Non-Linearity on Measured Data in dB. 

68 



' 

+-
C 
a., 

= u <O ... 
a., 

a.. 

C 

a., 
"C 
::::, 

a. 
E 

c:r 

= a., - > 
+-
0 
a:; 
a: 

Figure 31. Effect of Receiver Non-Linearity on Measured Amplitude in Percent. 

69 



3.1.4 Multiple Reflection Errors 

It was mentioned in the background material of section 2.0 that multiple 

reflections between the test antenna and probe are assumed to be negligible. 

In any actual measurement situation there is a detectable level of reflections, 

which result in some error in the calculated far-field parameters. The level 

and effect of multiple reflections are estimated experimentally by taking 

centerline scans of near-field data on planes which are separated by A/8. 

These scans are transformed to obtain approximate far-field patterns, and the 

differences in individual scans provide an estimate of the effect which the 

reflections will have on the complete two-dimensional data. This procedure 

is described in other references [11] and examples are given. 
In the following analysis, equations will be derived which can be used 

with information obtained from the measurements to further estimate the effect 

of multiple reflections. 

Assume that in the measured probe output, b (P) is the true signal which 
0 -

results from the direct signal, and m (P) is the signal due to the multiple 
0 -

reflections. The total relative output is then 

and the resulting far-field spectrum is 

D (K) 
e -

D (!_) +3""[M(~)] 

= D (!_) + J (!_) 

(14 7) 

(148) 

The form of J(!_) will of course depend upon the character of M(~), and the 

approximate amplitude and phase functions for M(~) can be estimated from a 

series of measurements. To estimate the amplitude functions am(~), the probe 

is first placed at P = P and the probe output is recorded as the z-separation 
- -0 

distance is varied over a distance of a number of wavelengths. Figure 32 is 

an example of such a measurement and the cyclic variations with a period of 

approximately A/2 are due to the interference between the true and the 

multiply reflected signals. If we denote the peak to peak variations in dB 

by w, then the ratio of the two signals denoted by Rm(~) is 

-1 
p = log (w/20). 

In general, the amplitude am and the phase ¢m of the interference signal will 

vary as a function off, and this procedure is repeated at a few other points 
to determine whether R is relatively constant, or whether it changes sig-

m 
nificantly over the scan area. For antennas such as lenses or arrays which 
do not have diffracting objects such as feeds, subreflectors or struts in 
the aperture area, the amplitude is generally constant, and an upper bound 
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can be estimated by taking the largest measured value for R (P). To estimate m -
the phase character of M(E), two near-field scans are taken along the center 

lines y = 0 at z = d and z = d + A/4. The ratio of the data along these two 

lines is then given by 

R (P) 
m -

m(E) - bo (f) 

i(cp (P)-HP)) 
R (P)e m - - +l 
m-

i (cpm Cf) -cp CE)) 
Rm(E)e -1 

il:icp 
- -(1 + 2Rm(f)e m (149) 

There are two cases which can be easily recognized from graphs of Rm(E), The 
first is when R (P) is essentially constant along both x and y centerlines 

m -
which indicates that 

(150) 

and therefore 

J(~) = Rm(P
0

) D(~) (151) 

and the error in any given direction is 

D (K) I 
~(~) dB= w/2. 

(152) 

The second case, which is more typical, is illustrated in figure 33 which is 
a graph of R (x,O) and shows a periodic variation which indicates that the 

m 
phase of the multiple reflection signal is changing fairly rapidly as a 

function of x. This will shift the peak of the spectrum of M(E) away from 

~ = O, reduce the on-axis error, but increase the error in the sidelobe 

regions. If the period of the ratio plot in figure 33 is denoted by Tm' then 
the maximum error will occur where 

k xm 

dcp 
m 

dx 

2TT sine ( 15 3) 

From similar measurements and calculations along the y-axis, the value of 

kym may be determined and the maximum of the interference spectra will occur 
at K = K = (k , k ). The far-field error in any direction is then given by - -m xm ym 

De(~) (154) 
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which will be a maximum at K = !in where 

De(Km) D(O) 
< w/2. (155) 

D(Km) D(~) 

A more general case is when there are a number of frequency components 

present in R (P), and there will then be more than one maxima for the error, 
m -

but each one will be smaller than given by eq. (155). Equations (152) and 

(155) therefore respectively represent the two cases where the error is a 
maximum in the boresight direction and is at a sidelobe. 

3.1.5 Errors in Gain, Beamwidth and Boresight Direction 

In this section, the results of the previous analysis which applies to 

gain, beamwidth and boresight direction will be summarized. In addition some 

other sources of error will be included so that the total error in these 

three quantities may be obtained. 
In the previous sections, the study has concentrated upon errors in the 

measured relative near-field data, B(~), and expressions have been obtained 

giving the errors in the relative far-field pattern which they produced. 

Two other factors are required to calculate the partial gain for one compo

nent or the total power gain. These are the gain and polarization of the 

probe and the magnitude of the normalization constant A = n a
0 

bo(Po) 
To illus -

trate the role of each of these quantities in the gain calculation, let us 

assume that the peak of the sum beam is along the z-axis, and G(O) is therefore 

desired. From eq. (11) this is given in terms of the spherical components of 

(156) 

Let us further assume that the probe is reciprocal and nearly linearly 

polarized with lr 01 E(O) I >> lr 01A(O) I and eq. (12) may therefore be expressed 
in terms of the probe gain G (0) by r 

41rk 2n 
0 

and in terms of the polarization ratio and lr 01 E(O) 1
2 by 

41rk2no I rolE(O) 12 
(1 + IPi(D)l 2

). 

(l-Jrrl2)Yo 
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The usual approach to obtaining Gs(0) for the test antenna is to first meas
ure the gain and polarization ratio of the probe in a separate experiment. 

These known quantities are then used with eq. (158) to obtain the magnitude 

of r 01 E(0) given by 

(159) 

The phase of r 01 E(0) may be chosen arbitrarily as zero, and the magnitude and 

phase of the cross component are obtained from eq. (13) as 

(160) 

The next step is to measure the relative near-field data B'(~) and B"(~) and 

then measure the two normalization factors 

A' = n A" n (161) 

The usual approach to obtaining these factors is to place the probe at~= 0, 

set both the amplitude and phase of the receiver output to zero or some con

venient level, and then connect the "generator" and "load" ports, which have 

been connected to the antennas, directly together. A~ or A~, depending upon 

the orientation of the probe, is then obtained from the change in the ampli

tude and phase. If the observed amplitude changes associated with A~ and A~ 

respectively are denoted by a~ and a~, and the observed phase changes are 
similarly denoted by¢;' and¢>" then 

n n 

ao c1-rlt) I i<P~ 
A' = -,-- = a Ile n b

0 
(0) c1-r r ) g s 

(162a) 

ao (1-rgrt) II i ¢>~ 
A" = ane n b

0 
(0) (1- r r ) g s 

(162b) 

where rg and rt are the reflection coefficients for the generator and load 
respectively. With these data, D' (0) and D"(0) are calculated from 

eqs. (2) and (5). 

The next step in the calculations is to use eqs. (6), (7) and (8) to 

obtain the spherical components of ~10 (0). In the present case where K 0 

these can be simplified by using the fact that 

" ' 1f ' 
rOlA(0) = rOlE(0)' rOlE(0) = -rOlA(0)' ( 163) 
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With these substitutions, the probe correction equations become 

D"(0) D' (0)p,Q,r 
+ 

rOlE(0) rOlE(O) 

1 + (p tr(0)) 2 

D" (0) p tr 

The final step is to substitute these values of s10A(0) and s 10E(0) into 
eq. (156) to obtain the gain. 

(164a) 

(164b) 

A good deal of simplification arises when the probe is linear enough 

( I p,Q,r (O)I <, 03) that for practical purposes I P,Q,r (0)I may be taken as zero. Further 
conciseness results when the test antenna is also nearly linearly polarized 

or the partial gain for one component is desired. In that case the various 

equations can be combined to give an equation which clearly illustrates the 
role of each of the measured and calculated quantities. 

If we therefore assume that IP,Q,r(0)f!P,Q,s(0)l=0, then eqs. (164), (159), 
and (156) reduce to 

lslOE(0)l2 
ID'(0)l 2 

= I 

lro1EC0)l2 
(165) 

\r~lE(0)\2 
(l-lrr\2)Yo 

Gr (0) 
4Tik 2n

0 

(166) 

(167) 

The four significant factors are then the mismatch term, the normalization 

amplitude, the gain of the probe, and the magnitude of the integration of the 

relative near-field data. 

For a typical measurement, the gain of the probe is approximately 6 dB 

with an uncertainty of about 0.1 dB. The magnitude of a~ is approximately 

equal to the ratio of gains of the probe and test antenna, and is usually 
on the order of 20-40 dB with an uncertainty of about 0.05 to 0.10 dB. These 

uncertainties in G (0) and \a'\ are the major errors in G(0), as will be more r n 
apparent when a specific example is considered in the next section. 
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The P~r~rs in beam width can be obtained directly from the analysis of 

errors in 0(11) since the di1ectivity is proportional to ID(O) I 2 , aid also to 

the product of the beam wit t Ju in two orthogon: L p I mes, 

(168) 

where EJE ..,_1,, O. nre the 3 ell l,eam v:dthc; in th azi mthal. and e ev1tion planes 
}\ 

respectively. If we assume that bE = eA = eb then the beam width error is 
given by 

(169) 

Expressions for 6.Sb due to the various sources of error are easily obtained 

f th d . . f @ill rom e correspon ing equations or nm· 
A boresight error means that the apparent position of the peak of the 

sum pattern or minimum of the difference pattern is shifted slightly from 

its true position due to errors in the measured near-field data. In terms 
of the previously used notation, 

D (K+E) = D(K), 
e - - - (170) 

where£ is the boresight error. Substituting De(~+£) into eq. (25a) the near 
field data which will produce this kind of error is given by 

B (P) 
e -

(171) 

This shows that a linear phase error given by 

(172) 

will produce the boresight shift. An error in the instrumentation which is 

linear with position is one possible source of this problem. If the maximum 

phase error due to instrumentation is denoted by 6.¢m then this could produce 
a shift in the boresight given by 

Mm 
= 6.k Exs -i:-- X 

X 
(17 3) 

6.¢m 
= 6.k Eys Ly y (17 4) 

Equations (173) and (174) are va1id for a sum pattern but should be 

modified slightly for a difference pattern. In section 3.1.2 on z-position 

errors, it was found that for a difference pattern the effective linear 

term in the worst-case z-position error produced a shift in the position 

of the boresight null given by 

(17 S) 
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From the simulation, S was found to be approximately equal to 3,0, and so 

the boresight error for a difference pattern can be about three times as large 

as for a sum pattern for the same maximum position or instrumentation errors. 

Since the upper bound errors are desired, we will use the case of a difference 

pattern and the boresight error will be given by 

= 
3ll<pm 

= t.k E: xd -r;- X 
(176) 

= 
3t. 4>m 

= t.k e:yd ~ y 
(177) 

By expressing k and k in terms of the angles A and E, the above expressions 
X y 

can be given in terms of angle changes. 

t.Aq> 

t.E = q> 

kx 
27T 
-x-

ky 
27T 
-x-

[cos 1 + 
A cos E 

[ 
1 l 3Liq>m " 

cos E 2TI Ly 

sin 

sin 

L 
X 

L y 

A cos E (178) 

E (179) 

tan A tan El 
3t.(j> A m 

(180) 
cos E 2TI L 

X 

(181) 

where A and E are the direction angles to the boresight direction. A linear 

z-position error would also produce this type of change in the far field. If 
the maximum z-error is 6 , then for the beam at A, E as above, the phase 

m 
errors and resultant angle errors are given by, 

t.A 
z 

t.E 
z 

67T 
= 7:(cos A cos E)om 

LX 36 
= (1 + - sin A sin E) m 

Ly -r; 
3cm 

(cos A) -
Ly 

Also linear x-y position errors can have this effect with the resultfng 
errors given by 

= 6~(sin A cos E)/1 
I\ mx 
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(183) 

(184) 

(18 5) 

(186) 



J 

M 
r. 3t. 

[ (1 + x sin .. 1. tar E) tan A] mx 
Ly -r; (18 7) 

31:i 
··--1!1[ (188) 

·•'y 

These three types of near field errors are the only ones which can produce 

a significant change in the boresigh·L direction of the far-field pattern. 

4.0 Application of Error Analysis Results to a Sample Antenna 

In the previous sections, general relations have been developed to pre

dict the errors in far-field parameters which are derived from PNF measure

ments. In this section we will apply the error equations to a phased array 

antenna, using typical values for the errors in near-field data. We will 

combine each source of error to arrive at an estimate of the total error 

which might occur in such a measurement. 

The parameters of the sample antenna will be used in the derived 

expressions, along with typical and reasonable estimates of near-field 

errors to estimate the accuracy that can be expected. The pertinent antenna 
parameters are approximately; 

Width= L 
X 

Height= L y 
Highest operating frequency f 

Wavelength at f = 

Antenna transmit gain= 

Antenna receive gain= 

Beam width= 

Maximum steering angle, A 

Maximum steering angle, E 

Aperture efficiency= n = 

Difference pattern minimum = l0 (~) I 
~ 

3.65 m 

3.84 m 

4.0 GHz 

7.5 cm 

40.0 dB 

40.0 dB 

2.0° 
± 50° 

+75°, -50° 

50% 

-30 dB 

The measurement parameters which are required to make PNF measurements 

on this antenna are assumed to be as follows: 

Separation distance between probe and array= d 

Scan length in x-direction Lx 6.0 m 

Scan length in y-direction =Ly= 6.0 m 

Data point spacings= ox= oy 0.40A 3 cm 

Total number of data points 201 x 201 = 40,401 

Scan speed= 10 cm/sec 

Time for one scan= 1 minute 

Time for complete two dimensional scan= 4 hours 

Position accuracy, t. mx 0 
m 
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Probe gain= Gr(O) = 6.0 dB 

Magnitude of normalization= Gs(O) - Gr(O) 
Instrumentation Errors 

Phase error= 6¢ = m 
Amplitude linearity 

5.0 deg 

JJ = 0.02 

Multipath reflection level 

20 log Rm(O) i -40.0 dB 
w = 0.20 dB 

34 dB 

Using these antenna and scan parameters and the appropriate equations, the 

following tables summarize the upper bound errors which could arise in the 
near-field measurements. Calculations and results are listed for the condi

tions where the beam is normal to the array and where it is steered to a 

representative direction far from the z-axis, A= 50°, E = 75°. These two 
conditions will be referred to in the tables as "normal" and "steered." The 

errors are combined by a direct summation and by a root sum square method to 

arrive at two estimates of total error. Since the errors are uncorrelated 

and each component is an upper bound, the RSS value is equivalent to at least 
a 3a confidence level. 

Table 5. Summary of estimated errors in gain. 

Source of Error 

Receiver nonlinearity= JJ 

Probe gain= Gr(O) 
Multiple reflections 

Normalization amplitude= 

Mismatch factors 
x-y Position 

z-Position 

Phase error 

A' n 

Eguation Used 

142 

167 

152 

142 

167 
84 & 87 

132 

144 
RSS Sum 

Sum 

Error in gain (dB) 
Normal Steered 

±0.12 ±0.12 

±0.10 ±0.10 

±0.10 ±0.10 

±0.12 ±0.12 

±0.02 ±0.02 

±0.003 ±0.06 

±0.008 ±0.0002 

±0.02 ±0.02 

±0.19 ±0.20 
±0.42 ±0.45 

Table 6. Summary of estimated errors in monopulse difference minimum. 

Source of Error 

Phase error 
z-Position 

x-y position 

Receiver nonlinearity 

Multiple reflections 

Eguation Used 

144 

80 

133 
85 & 88 

142 

152 

RSS Sum 

Sum 

Error in Difference 
Minimum 

Normal Steered 

±1.46 ±1.46 
±1.30 ±0.21 

±0.09 ±1. 20 

±0.12 ±0.12 

±0.10 ±0.10 

±1. 96 ±1. 90 

±3.07 ±3.09 

( 
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Table 7. Summary of estimated errors in a -30 dB sidelobe. 

Source of Error 

z-Position 

x-y Position 

Phase error 

Receiver nonlinearity 
Multiple reflections 

Equation Used 

134 

86 & 89 

146 
143 

155 
RSS Sum 

Sum 

Error in -30 dB 
Sidelobe 

Normal Steered 

±4.18 ±0.69 

±0.04 ±8.25 

±5.81 ±5.81 
±1. 86 ±1.86 

±3.00 ±3.00 

±8.0 ±10.7 

±14.9 ±19.71 

In the above case of a sidelobe, combining of the four large sources 

of error leads to an estimate which is much larger than would ever be realized 
in an actual measurement. This is because each of these errors must be a 

periodic function of x and/or y with only one frequency component to produce 

an error of this magnitude in the sidelobe region, and all four errors must 

be of the same frequency to cause the combined error shown in Table 7. 

Since each of these errors is uncorrelated to any of the others, it is very 

unlikely that they all would be of the same frequency. The magnitude and 
periodic character of each of these errors can be easily determined before 

measurements are performed to determine where they will produce errors and 

how large the errors will be. The system can be adjusted, in the case of 

positi~n errors, or corrections applied to the measured data, in the case 
of amplitude and phase errors, to guarantee that they will not achieve the 

worst-case values shown in Table 7 or combine at one given sidelobe to make 

the error even larger. With these factors in mind, it is not unreasonable 

to expect that each of the worst-case error components could be reduced by 

at least a factor of 3, and that in combining the errors, only one worst-

case component should be added with the others reduced further by a factor 

of 10. This assumes that each error is a maximum in a different direction. 

With these modifications the sidelobe errors become as shown below in Table 8. 

Table 8. Probable error estimates for -30 dB sidelobe. 

Source of Error 

Phase error 

z-Position 

x-y Position 

Receiver nonlinearity 

Multiple reflections 

Equation Used 

81 

146 

134 

86 & 89 
143 

152 

RSS Sum 
Sum 

Error in -30 dB 
Sidelobe 

Normal Steered 

±1.94 ±0.20 

±0.58 ±0.10 

±0.004 ±2.75 

±0.19 ±0.19 

±0.30 ±0.30 

±2.06 ±2.76 

±3.01 ±3.54 



Table 9. Estimates of error in beam width. 

Beam width error 
(deg) 

Source of Error Eguation Used Normal Steered 

Amplitude nonlinearity 142 ±0.02 ±0.02 

Phase error 144 ±0.001 ±0.001 

x-y Position 63a & 74 ±0.0004 ±0.009 

z-Position 132 ±0.0007 ±0.00002 

RSS Sum ± . 02 ±0.02 

Sum ± .022 ±0.03 

Table 10. Estimates of error in boresight direction. 

Boresight Error 
Source of Error Eguation Used Normal Steered 

Linear phase 177 or 178 ±0.02 ±0.07 

Linear x-y position 184 or 185 0.00 ±0.001 

Linear z-position 180 or 181 ±0.0004 0.00 
RSS Sum ±0.02 ±0.07 

Sum ±0.02 ±0.071 

5.0 Summary and Conclusions 

The results of the error analysis developed in this report should have 

wide application to a broad class of planar near-field antenna measurements. 

They are valuable in estimating the errors which result from such measurements 

and have additional use in improving the design of future measurement systems. 

The validity of these results has been demonstrated with the computer 

simulation, and has also been verified in som'e respects by two other studies 

on PNF errors. An earlier study [5] used computer simulation on a hypo

thetical near-field distribution to determine significant sources of error. 

Because of the specialized nature of the assumed distribution and error func

tions, the results were primarily of a qualitative nature and of limited 

generality, but where they are applicable, they do support the results 

obtained here. 

Another analysis [6] has recently been done by Yaghjian which used a 

different analytical approach to study some of the same sources of error and 

antenna types. It is interesting to note that in all cases where Yaghjian 
considered the same antenna type and error source, as studied in this report, 

the functional form of the error equations was the same as obtained here. 

In most cases the cofficients differed, but this is not surprising for upper 

bound estimates. 
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It should be kept in mind that the error estimates presented here are 

upper bounds and that in actual measurements the probable values would be 

significantly less. Even with the upper bound estimates, we can conclude 

that the measurements performed using PNF techniques are as good, and in some 

cases better, than can be achieved on a typical far-field range. The near
field techniques have a number of ot1.er advantages which also are a strong 

consideration in their favor. The antenna can be measured in the production 

facility and does not have to be taken to a remote far-field range. This 

means that weather is not a factor in performing the tests and the antenna 

is not subject to possible damage during installation and measurement on a 

high rotator. If problems are discovered in the antenna, adjustments can be 

made much easier in the production facility than on a far-field range. It 

is also much easier to locate the specific cause of the problem from the 

near-field data than from far-field pattern measurements. The amount of 

information about the antenna is increased significantly with the near-field 
measurements and in addition to the parameters discussed in this report, such 

things as effective radiated power, ohmic loss in the antenna, and polariza

tion parameters are easily obtained. In summary, especially in the case of a 

large steerable array which requires very special positioning equipment for 
far-field measurements, the Planar Near-Field Techniques are easier to imple

ment and can produce higher accuracy and more complete results. 
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