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UPPER BOUND ERRORS IN FAR-FIELD ANTENNA PARAMETERS
DETERMINED FROM PLANAR NEAR-FIELD MEASUREMENTS
PART 2: ANALYSIS AND COMPUTER SIMULATION

Abstract

In recent years, planar near-field antenna measurements have
been developed and used in a number of applications. One of the
primary concerns with this, or any, measurement approach is the
accuracy of the results; that is, how do errors in measured near-
field quantities affect the accuracies of far-field parameters
such as gain, sidelobe levels, monopulse difference level, beam
width, etc. Some efforts have been made in the past to estimate
these errors, but the results have been limited in generality and
primarily of a qualitative nature.

A two-fold approach is used in this study to obtain equations
giving reasonable upper-bound errors resulting from systematic
errors in the near-field measurements. The strategy has been to
derive error expressions from the equations relating near and far-
field quantities and also to computer simulate errors using actual
measured near-field data. The simulation has both given some
direction to, and confirmed the results of the analysis. The
errors which have been investigated are: x, y, and z-position
errors of the probe, amplitude and phase uncertainties of the mea-
sured data, and multiple reflections between the probe and test
antenna. The results not only give the effects of errors in a
given quantity, but also specify the form of the error (i.e.,
linear, quadratic, periodic, etc.) which will produce the largest
effect in the far-field parameters. This information is very
valuable in designing the measuring equipment so that these
types of errors can be avoided, or minimized.

1.0 Introduction

During the last few years, a large amount of work has gone into the
development of a Planar Near-Field (PNF) antenna measurement technique.
A detailed and rigorous theory was formulated by Kerns and Dayhoff [1]
and further developed by Kerns [2-4] which has served as the basis for
all of this work. There have been advances in electronic measuring
equipment and digital computers which have made the measurements possible
and practicable. Experimental work has developed the measurement tech-
niques to successfully apply this approach to a number of antennas over
a broad frequency range. There have been indications in most of this
experimental work that high accuracy results were possible, but we have
lacked a thorough error analysis to confidently estimate the magnitude
of errors in the results of PNF measurements. Efforts have been made to

demonstrate the accuracy of these measurements by comparing them with



conventional far-tfield measurements, but tnis approach could nct determine
the size or the source of errors in the results of near-field measurements.
At best, it demonstrated that the results were compatible with conventional
measurements and thereby increased confidence in the newer measurement, but
the errors inherent in far-field range measurements prevent it from being
used as an accuracy standard.

The best approach to prove measurement accuracy is to thoroughly
analyze the sources of error in the measurements and determine how they
affect the calculated far-field quantities, and that is the purpose of this
study.

This study is one of three error analyses which have appeared recently
and together they provide a rather complete treatment. Rodrique et al. [5]
used computer simulation on a hypothetical near-field distribution to derive
tables and curves to show the effects of certain near-field errors. Their
work identified certain error sources as primary or major contributors, and
found that others had little effect on their model. Due to the specific
model and error types studied, however, it was difficult to generalize the
results to other antenna types or know if the error curves were upper bounds
or not. Recently Yaghjian [6] has done an extensive analysis using the
geometrical theory of diffraction and asymptotic evaluation of integral
equations to arrive at upper bound error equations. He treated the effects
of using a finite scan area which is not considered in either this or the
earlier work by Rodrique, as well as treating position and instrumentation
errors.

The unique results in this report are due to a different analytical
approach coupled with an error simulation on actual measured near-field
data. By using a Fourier transform analysis three main new results were

obtained.

1. The error analysis was extended to steerable beam antennas for all sources
of error.

2. The functional forms of the worst case error functions were determined.

This will be especially valuable in designing future measurement
systems.
3. The results of the analysis were confirmed and guided by the companion

computer simulation.

Section 2, which follows, contains some background material necessary
for the analysis and includes a brief outline of the theoretical formulation
and notation, and some results from previous measurement studies. 1In section
3, general equations are derived to give the errors in far-field parameters
resulting from errors in the measured near-field data. These equations are
then applied to a sample antenna in section 4. The final section contains
a summary of the conclusions resulting from this study and some suggestions for
areas where additional work needs to be done.
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2.0 Background Material on Planar Near-Field Antenna Measurements

2.1 Notation and Theory

The rigorous theoretical foundation of the PNF measurements is one of
the key reasons for the success and general applicability of this technique.
The theory is very general and rigorous, does not have built in approximations
which might 1limit its accuracy or applicability, and the major numerical
calculations can be accomplished with highly efficient computer algorithms.
Specifically, neither the antenna under test nor the probe antenna need
possess special polarization, symmetry, or field separability properties,
and the transformation from near to far-field domains does not involve small
angle approximations. The theory includes the directive effects of the mea-
suring probe and therefore provides a means of correcting the final results
for the probe receiving pattern. Neither is it necessary to assume that the
probe measures a single component of the electric field at a point. Because
of the above factors the results are more accurate than previous attempts
at near-field measurements.

The scope of this report does not allow a complete discussion or develop-
ment of the theory. Such treatments are available elsewhere [1-8] and may
be referred to for more detailed study. We will 1list here the definition
of important quantities and the key equations which are taken from the above
references. Further discussion of some relationships will occur elsewhere
in the report.

k = Propagation vector for plane waves.

k_,k,,k = Rectangular components of k.

K=ke + kygy = Transverse part of k.

vy = vk?-X?%, = + k

e Wt = assumed time gependence.
A = wavelength of operating frequency.
f = operating frequency.
glo(g) = Complete vector transmitting characteristic for the test antenna.

501(5) = Complete vector receiving characteristic for the test antenna.
Ilo(g) and 301(5) = Similar transmitting and receiving characteristics for
the probe antenna.
P = xe + yey = transverse position vector for the probe.
a, = Incident wave amplitude at the input terminal of the test antenna.
bo = Emergent wave amplitude at the input terminal of the test antenna.
bé(g) = Qutput wave amplitude at the output terminal of the probe antenna.
= Electric field.
§_,8 = Data point spacings in x and y-direction.

y
L ,Ly = Antenna dimensions in x and y-directions.



Sx’Sy = Scan lengths in x and y directions.

Fg,FQ,FS,Fr = Complex reflection coefficients for generator terminal (input
to test antenna) load terminal, test antenna and probe antenna
respectively.

Y, = Characteristic admittance of free space = /€;7ﬁ;.
= Characteristic admittance of the waveguide port connected to the

0
antennas.

G(X) = Power gain function.

o(K) = Receiving cross section function.
pl(g) = Complex ratio of linear polarization.

R(K) = Right circular component of the transmitting spectrum.
L(K) = Left circular component of the transmitting spectrum.
A(K) = Axial ratio in the direction specified by K.

7(K) = Tilt angle in the direction specified by K.

It should be noted that the complete vector quantities s,,(K) and s, (K)
will be used in this report, and most of the previous formulation has been
given in terms of the transverse vectors §1O(§) and §01(§). Either form may
be chosen to fit the application if the correct relations are applied. In
the present case it appeared more efficient to use the complete vectors.

Assume now that we have an antenna whose characteristics are to be
determined. Let us define a coordinate system fixed to the antenna such that
x-y plane is approximately normal to the electrical boresight direction of
the antenna, and the origin is at the center of the antenna. These coordi-
nates could be defined by fiducial marks placed on the antenna structure, and
the results of the measurements will be defined with respect to this system.
The antenna with its coordinate system is shown schematically in figure 1 where
the rectangular and spherical unit vectors are also defined. Let the probe
antenna be placed in a receiving position on a mechanical planar scanning
structure and the test antenna aligned so that its x-y plane is parallel to
the scan plane of the mechanical scanner.

The probe is aligned so that its own coordinate system is rotated 180°
about the y-axis of the test antenna. The relative orientation of the antennas
and their coordinate systems is shown schematically in figure 2, along with

other important terminal planes and defined quantities.



Figure 1.

Antenna Coordinate System.
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Figure 2. Test Antennavand Probe Schematic.

Let the probe be moved in the plane z=d by a transverse displacement
P = xe * ygy and denote the complex probe output amplitude by bé(g). If
we now assume that multiple reflections between the antennas are small
enough to neglect, the transmission equation is given by
%o iyd) iKeP
b'(P) = —2— [ |1 (K)os, o (K) et V¢et2'E
o= -01 =" =10*—
(l—TQFr)

dx (1)

where dK = dkX dky, and where integration is over all significant values of
the integral. The prime on the probe receiving characteristic represents
the change in description of 101(5) when the probe is placed in the receiving
position. 301(5) is the description of the probe from its coordinate system,
while Ebl(g) describes the probe response from the test antenna coordinate
system.

It should be noted that bé(g) is the actual observed quantity, essentially
the complex voltage observed at the output terminals of the probe. To solve
for the transmitting chqracteristics of the test antenna in terms of this ob-

served data, we note that eq. (1) is a Fourier integral transform, and therefore

RACTET .
D'(K) = - ( Ak f ooy e X Bap (2)

47
4

where

D'(K) = 1K) * 5;0(K). (3)



Equation (3) gives one equation for the two spherical components of 310(5) in
terms of the Fourier transform of the measured data, D'(K), and the probe
receiving pattern zbl(g). To obtain the required second equation, the mea-
surement is repeated with a second '"independent'" probe. If the probe is

not circularly polarized, the second probe can be obtained in effect by
rotating the probe about its z-axis by 90°. The second equation in any

case 1s

D'(K) = 15, (K) * sq,(K), (4)
where

e idir 1) i
D'(K) = ————=T= [ by(®) e

i
4 a,

KL ap (5)

and bg(g} and Egl(g) are respectively the received signal and probe receiving
characteristic for the second orientation.

To obtain the components of glo(g), the simultaneous equations implied
in eqs. (3) and (4) are solved. For instance, if we desire the spherical
(Azimuthal = A, Elevation = E) components of glo(g) as defined in figure 1,
and therefore have previously measured the spherical components for the
p robe, eqs. (3) and (4) give

S10a® = (D' O T (0 - D" (KT (K)1/0 (6
s10p(®) = [D"(K) T, () - D' (KT, (K)1/8 (7)

where
b= 1Al o) - rgy () T (). (8

Once the components of 510(5) are obtained, other quantities are easily
derived. For instance if the antenna is reciprocal, then its receiving

characteristic is given by

Y
0

- Y a

In the direction specified by the unit vector T%T, and at a large distance d

891 (K)

from the antenna, the electric field is given by
ikd
0

E(d) = , (10)
d

'iY _5_10(5) a €

k
where d = d

The gain function G(K) and the receiving cross section functions o{K)
are given in terms of glo(g) and gOI(EJ by
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G(K) = ————— [5,,(®)[*, and (11)
(1-ir | *)ng
42 N
o(K) = ————— [5,{(K)|2. (12)
(1-lrg1»y,

The linear polarization ratio is the ratio of the two components of s,,(K)

S10aK)
10A =
o (k) = SOA (13)
Sq o (K
10E~—
while the two circular components are given by
S10aK) - i sy p(K)
R(K) = 10A 10E> L4 (14)
V2
S1oa(E) + i sy 0p(K)
L(K) = 10A= 10E ) (15)
vZ
From these complex polarization quantities the axial ratio and tilt
angle are obtained from the relations
IR(O) | + [L(K) |
AK) = (16)
IRCK) | - [L(K) ]
R(K)
T(K) = 1/2 arg . (17)
L(K)

Therefore the usual far-field antenna parameters are all easily obtained once
S10(K) has been determined from the near-field measurements. Although the
discussion here has been in terms of a measurement arrangement where the test
antenna is used in the transmitting mode, the opposite configuration may also
be used. The test antenna can be used in the receive mode, §01(§) determined,
and receiving cross section and receiving polarization determined. If the
antenna is reciprocal, eq. (9) may be used to obtain the transmitting param-
eters.

In summary then the steps in the planar near-field measurement technique

are:

1. Define the coordinate axes of the reference measurement system, the test
antenna, and the probe.

2. Measure or calculate from theory the probe receiving characteristic for

all values of K for which the test antenna characteristics are to be

determined.



3. Place the test antenna and probe in the measurement system in the pre-
scribed orientation and verify that multiple reflections are small
enough to neglect.

4. Measure bé(g) and bg(g) over a sufficient area and at adequate spacing
in x and vy.

5. Evaluate the integrals in eqs. (2) and (5) and solve eqs. (6) and (7)
for the two spherical components of §10(§) or §01(§).

6. Compute power gain, transverse components, polarization ratios or other
desired quantities, or use ilO(E) to obtain the field in any other
transverse plane to evaluate antenna performance.

2.2 Examples of Previous Results Using PNF Techniques

The experience gained from previous measurements and from NBS studies
were used extensively in this investigation. They cover a broad range of
frequencies and antenna types and have been indispensible in arriving at
meaningful conclusions. Table 1 summarizes some of the antennas which have
been measured at the National Bureau of Standards using PNF techniques which
relate to the present study.

In most of these past measurements it has been possible to compare the
results from near-field measurements with conventional far-field measurements,

and therefore to demonstrate the general feasibility of this approach.

Table 1. Antenna Measurements Considered in Study.

Major Dimension

Antenna Type Frequency (GHz) in Wavelengths Gain (dB)
Horn Lens 48.0 90 47 .0
Conical Horn (JPL) 8.4 6 22.08
Cassegrain Reflector 60.0 91 46.5
Lens Array 9.2 23 30.0
(Constrained Lens)
Corporate Fed Array 8.4 17 21.5
(Volphase)
Dipole Array 1.4 5 20.3



In the case of the JPL conical horn, both pattern and gain comparisons

were made. The far-field measurements were performed by JPL [10] and NBS
performed both near-field and extrapoclation [9] measurements. The ohmic

loss in the antenna was also determined from the near-field data by integrating
the computed pattern to obtain transmitted power, and the loss was obtained
from the ratio of transmitted to input powers. This result was compared with

a loss calculation performed by JPL. The results of these comparisons along
with a similar comparison for the mm-wave antenna are summarized in Table 2.
They illustrate that for both medium and high gain antennas, PNF techniques

are capable of high accuracy. More will be said about this in a later

section.
Table 2. Summary of Comparisons
Measurement Technique
Antenna Far-Field Extrapolation Near-Field
JPL Horn (Gain) 22.03 dB 22.08 4B 22.05 dB
JPL Horn (loss) 0.021 dB 0.039 dB
Cassegrain Reflector 46.30 dB 46.42 dB

Pattern Comparisons

Far-Field Measurements vs.
Computed From Near-Field Data

1 -- JPL Horn

2 -- Cassegrain Reflector

3 -- Lens Array (Constrained Lens)
4 -- Corporate Fed Array (Volphase)

Far field pattern comparisons have yielded similar results. Figures 3-7
are samples of some of these comparisons for three different antennas. Over
most of the patterns the agreement is very good and most differences are well
within the errors to be expected in either measurement. The largest dif-
ferences, as in figure 3 for off axis angles greater than 45°, and in figure
7 for angles greater than +35° are due to insufficient scan area in the
near-field data. In both of these measurements a small portable scanner was
being used which limited the size of the scan area and therefore reduced the
reliable angular region. This effect will be discussed further in succeeding
sections.

The sum total of all our work in PNF measurements confirms that high
accuracy results are obtainable. Since the theory is rigorous,
the basic formulation does not set a limit on the attainable accuracy. The
errors which do result in computed far-field parameters are primarily due

10
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to the errors in the measured near-field data. The effects of some errors
have been studied in the past and guideliines have been established to specify
the parameters of the measurement system in order to achieve a given level

of accuracy. These guidelines will be reviewed in the following section.

A more complete analysis of the effects of measurement errors was developed

for this study and appears in section 3.1.

2.3 Measurement Guidelines

One of the first questions to be answered relates to the scan parameters,
That is, what is the size of the scan area, what data point spacings are re-
quired, and what separation distance between test antenna and probe is
optimum?

Previous work has shown [11] that for a directive antenna, the size of
the scan area and the separation distance between the probe and test antenna
determine the maximum off-axis angle to which accurate far-field patterns can
be calculated. If the dimension of the antenna in the x-direction is Lx’ the
scan length in the x-direction Sx’ and the separation distance d, then the
reliable pattern region will be bounded by

-1 9% Ix

lex| <1 {—73——) (18)

where 94 is the off axis angle in the kx direction. A similar relation will
define the reliable region in the k_ direction.

The data point spacings are determined by a two-dimensional form of the
sampling theorem. This theorem states that if bé(g) is the Fourier transform

of a band limited function of K with band limits

Ikl = 5= Ik, ] = 5 (19)
X y

then the minimum required spacings are SX and 6, Furthermore, the integrals

1=

in eqs. (2) and (5) can be replaced by summations. without approximation for such band
limited data. The function which must be band limited is the quantity within

the brackets of eq. (1) and the band limiting can be due to the directivity

of the test antenna and/or probe (from the product 361(5)-510(§)) or arise

from the factor ele. The latter *erm produces very sharp attenuation in
the evanescent mode region where K? > k? and y is therefore imaginary. 1In

this region the band limits are

_ 27 _ 2w
klik—j\——, kzik—}'\—
which result in data point spacings of
6, <Mz, 6y < M2,

ped
i



Qur experience has shown that for directive antennas, even when steered away
from the z-direction, 6X and &§_need be only a few percent smaller than A/2,
and for directive antennas whose main beam is in the z-direction, the data
point spacings can be larger than A/2. In the latter case, spacings of

0.8A to X are not uncommon.

It is assumed in the theoretica®! development that multiple reflections
between the two antennas or due to other sources of reflection are small
enough to neglect. Absorbing material is used behind and on metal surfaces
of the scanner as shown in figure 9 to reduce extraneous reflections.
Scattering from the probe is minimized by using a small probe (one whose
area is about 1/100 of the test antenna) and tapering its edges at the probe
aperture. The magnitude of the multiple reflections can be reduced by increas-
ing the separation distance, but this improvement must be weighed against the
resulting increase in required scan area.

The actual level of multipath and its effect on computed results must be
checked for each measurement. Fast and simple tests have been developed [11]
for accomplishing this, and consist of measuring partial data on planes
separated by A/8. Gain and pattern variations resulting from data in the
different planes are an approximate measure of errors due to multipath. In
all of our measurements on directive antennas where the probe was much smaller
than the antenna, multiple reflections have not been a major source of error.

In addition to its scattering characteristics, the gain, pattern, and
polarization of the probe should be considered in choosing one for a particu-
lar measurement. The probe should be large enough so that its gain is not
more than 30 dB below that of the test antenna. This will improve the gain
measurement by reducing the insertion loss between probe and test antenna.
(This will be discussed further in section 3.1.5 on gain accuracy.) Where
pattern information is only required over a limited angular region, a
larger probe can be used to filter out the wide angle information. This
allows wider data point spacing and results in improved accuracy over the
smaller angular region. When wide angle information is needed, the probe
must have a broad beam to avoid attenuation of needed information. In any
case, the probe pattern should not have nulls or minima below about -25 to
-30 dB within the angular region of interest.

If the test antenna is nominally linearly polarized, then the logical
choice for probe polarization is also linear. The data (bé(g)) obtained
with the probe polarization is essentially matched to the test antenna will
contain the primary information for the principal polarization pattern of
the test antenna. If the probe polarization is sufficiently linear over

the angular region of interest, this single set of data may be sufficient

17
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to determine principal polarization patterns. That is, if rélE(E) = 0 for
all values of K within the region of interest, then eq. (6) reduces to
D' (K)

S 0a(K) = ———— .
A, ®

(20)

Furthermore, when the probe is almost linearly polarized, the "independent
antenna' can be obtained by rotating the probe about its axis by 90°. Two
different probes are therefore not required, and both zél(g) and rgl(g) can
be derived from the same pattern, gain, and polarization measurements,

The linear probe may also be used in the same way when the test antenna
is circularly polarized. But in this case both sets of data must be measured,
and bé(g) and bg(g) will be of approximately equal magnitudes. The principal
polarization component will essentially be determined from the sum of these
two sets of data while the cross component will be obtained from their dif-
ference. This can produce a larger uncertainty in the cross component than
when the probe is polarization matched to the test antenna. The other alter-
native in this case is to use two separate probes with nominal right and
left hand circular polarizations. They should have good polarization purity
over the angular region of interest, and this may be difficult to achieve.
Measurements on circularly polarized antennas are one area where little work
has been done and more needs to be done to optimize the measurement techniques.

The measurement hardware required to implement PNF measurement is illus-
trated in the block diagram of figure 8, and the photographs of the NBS system
in figures 9 and 10. There are three basic subsystems which are shown in
these figures: the RF source and receiver, the data recording system, and
the x-y scanner with its associated automatic position controls. The
accuracy requirements for each of these systems is examined in the following

section.

3.0 Error Analysis

3.1 Introduction

In analyzing the effects of PNF measurement errors on calculated an-
tenna parameters, we have attempted to make the following results as general
and useful as possible. Ideally one would like to obtain a concise relation-
ship giving a realistic upper bound or probable value for the effects of a
given type of error. The relationship should apply to a large class of
antennas without major modification. It is also very desirable that the
error relations be given in terms of easily obtainable antenna parameters
such as diameter, approximate gain, first sidelobe level, etc., rather than
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requiring a detailed knowledge of the near-field pattern, and that the error
analysis should define the form of near-field errors (i.e., linear, periodic,
etc.) which have the largest effects.

Each of these objectives has been considered in the following analysis,
and in most cases they have been achieved. The general approach will be to
derive a general equation for the error in D'(K) due to one type of error in
the near-field data. The general equation will then be applied to specific
cases such as a narrow beam antenna operating in the sum mode with the beam
along the z-axis. Other cases will be considered to cover all modes of
interest to this study. For each case we will determine an upper bound for
the far-field error and the form of the near-field error which would produce
this upper bound. In some cases the form of the resulting near-field error
is .not physically possible or reasonable, and so a smaller upper bound is
determined consistent with a more realistic near-field error.

To illustrate the various errors, and as a guide in some of the
analysis, some of the errors were simulated on a computer using actual meas-
ured near-field data. This simulation has proven very valuable in giving
a graphic display of the effects of various errors, and to verify whether
or not the upper bounds obtained in the analysis are realistic.

In all of the following analysis, we will determine the error in D'(K)
due to errors in the measured near-field data. While D'(K) is generally
not the desired end result in the calculations, it is usually simply related
to the final results and is more closely related to the measured data. For
example, if both the probe and test antenna are nearly linearly polarized
in the vertical direction then D' (X) will be primarily due to the coupling
of principal (elevation) components. From eq. (7) and (10), the elevation
component pattern of the far electric field along the E and H-planes are then
respectively

Eg(0,k,)  D'(0,k)) cos(E)

EE(O,O] D'(0,0) rélE(O’ky)

(21a)

Ey(k,,0)  D'(k,0) cos(A)
i x . x . (21b)
£4(0,0)  D'(0,0) rfyp(k,0)

For the waveguide type probes, and for narrow beam test antennas over the
region of interest
cos (E) =~ cos(A) =
1 1
To1e(0sky) ok, 0)

1. (22)

The pattern of D'(K) is very nearly equal to the pattern of the far electric
field, and errors in the two quantities will be essentially the same.
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In the following analysis the prime or primes on D(K) and b(P) which
were used to denote the two sets of data will be deleted, since the results

will apply to either case. We will also use the normalized near-field data,

b!(P)
B(P), rather than bé(g). The quantity o in eq. (2) is actually obtained
0
in a two step process. First relative near field data, B(P), are measured

which are normalized to bé(g) at one arbitrary point in the measurement

lattice, P = Eo’ which is usually at or near the maximum amplitude.

by (P)
B(P) = 2—— (23a)
bl (P,)
When the relative measurements are completed, the probe is placed at Eo
and an insertion loss measurement is used to determine the normalization
factors

a, a,
Aﬁ = ETE;—;, AH = EZEE_; . (23b)
0 =0 0 =0
The magnitude of the An's is essentially the ratio of the amplitude at the
input to the test antenna to that at the output of the probe. With these
modifications eq. (2) becomes
-ivyd

e iKeP
D(K) = = -

- 4m2FA
n

[ B(P)e ar, (24)

where F is the mismatch factor 1/(1-F2Fr). This form will be used in the
following analysis.

3.1.1 Probe x-y Position Errors

We will first consider the effects of x-y position errors and much
of the analysis here will also be useful in other sections. The position
errors are one of the most important to consider in this study because the
mechanical scanner and its feasibility are key considerations. The basis
for this analysis is the two Fourier transform relations which relate D(K)
and B(P).

"Pak = raF I n(xyetrd

. -iyd
[ B KB gp - BFA FIB(P)] (25b)

ivd
FAL[ D(K)e™ ¢ et
e Y
472 FA
n

B(P)

7N
[S8]
(93]
o
et

D(K)

where the script F denctes the Fourier transform and its inverse F . Let

us assume that due to an x-y position error, the data are measured at P'
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rather than at P where

PT =P+ A(R) = P+ Mx(R)e, + 4y (Be,,. (26)
The effect of two special position errors can be formulated exactly using
well known Fourier transform relations, and will be discussed first. If the
position error is comstant over the entire scan area, A(P) = constant = 91’

then the spectrum computed from this data is
D (K) = e K Eipgy. (27)

In eq. (27) and the following analysis, D(K) will denote the true spectrum
which would be obtained if there were no errors in the measured data, and
De(gj will denote the calculated results which include the effects of the
error under consideration and will be referred to as the error-contaminated
spectrum.

We note from eq. (27) that the only effect of a constant position error
is to uniformly alter the phase of the spectrum. In many cases the far-field
phase is not of interest, and so a constant shift of the position of all the
data points is acceptable. Two cases where it could cause a problem are
where the two sets of near-field data are required to compute circular
components or linear spherical compcrerts in directions far off the z-axis.

In these cases the relative phase of the two spectral components is important,
and if the constant shift was different for the two measurements, the relative
phase would not be correct.

The second special position error may be referred to as a scale error,
and would result from incorrect calibration of position encoders or linear
expansion of position encoder drives. In these cases the apparent position

vector is proportional but not equal to the actual position vector.

x' = ax, y' = By. (28)
The effects on the computed spectrum are a change of beam widths and gain
given by
k k
D(7% o)
De(g) = —— (29)
aB

In general, the position error will be more complicated than these
special cases, and it is the more general ones which require additional
analysis. Since the data are measured at intervals of approximately A/2,
and the position errors will be a small fraction of that interval, we can
express the change in the data as the first term in a Taylor series
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expansion.

B(P') = B(P) + VB(P) + A(P)
3B (P) 3B (P) N
= B(B) + —— 8x(B) + —— 4y(P) (0
90X ay

Since the integrand of eq. (25a) is an analytic function, the derivatives
in eq. (30) can be obtained by differentiating under the integral sign of

eq. (25a) to give
iK-P

VB(P) = iFA_ [ gp(g)ein e dK

iFA_ F kD (x) YY) (31)

It is instructive to give a physical interpretation to eq. (31) as this kind
of relation will appear frequently. Consider a narrow beam antenna whose
main beam 1s along the z-axis. !D(E)I, which is essentially the far-field
pattern of the antenna will be large for |K| = 0 near the z-axis and small
for large K which corresponds to angles far off the main beam. In the
integration of eq. (31), large values of D(K) will be multiplied by small
values of K and vice versa which will result in a relatively small value for
vB(P). If the main beam is steered sufficiently far off the z-axis so that
the large values of D(K) coincide with large values of K, then the integral
will be large, and the rate of change of B(P) will be significant. Also if
the antenna has a fairly broad beam VB(P) will be significant. Equation (31)
simply expresses the fact that the more relative energy there is at wide
angles (large K values) the more variation there will tend to be in the
near field as a function of x and y-position. We can therefore expect the
effects of x-y position errors to be the largest for broad beam and steered
beam antennas and smallest for narrow beam antennas directed along the z-axis.
If the spectrum is computed from the data taken at P' we obtain from
eqs. (25b) and (30)

e—iyd
D (K) = FiB(2")]
FA,
e—iyd
- JFIB(P) + VB(P) + A(P)]
-iyd -iK*P
= D(K) + =— [ vB(®) - ape KB ap (32)
- 4W2FAH B N B

where D(K) and De(ﬁ) are respectively the true spectrum and the erroneous.
spectrum resulting from the position errors. If we now use eq. (31) for
VB(P) in eq. {(32) we can obtain an expression for the error in D(K) in terms
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of spectral rather than near-field quantities.

—ivd .
AD(K) = D (K) - D(K) = eF:Y ?[iFAné(g) - Fliknxyetvd) (33)
n

Making use of the convolution theorem [12] that the transform of a product is
equal to the convolution of the transforms of the terms in the product we
obtain

AD(K) = i(KD(K))» E(K) (34)

where

E(K) =F[A(®)]. (35)
and the dot and asterisk denote convolution of the dot product of E(K) and

D(K)K. Rewriting eq. (32) in a slightly different form we obtain

e 1vd -
AD(K) = &——— [ (VB(P)e
4T2FA

KBy .oae) ar. (36)

We now have two general equations for the effect of x-y position errors

which will serve as the basis for examining certain special cases. Both
forms are useful at various stages in the analysis. Equation (36) is used to
determine the functional form of the worst-case type position error, while
eq. (34) is more useful for deriving the magnitude of the error in D(K).

The generality of eqs. (34) and (36) should be emphasized since they will be
used in a number of cases. Since we have not assumed any special antenna
characteristics at this point, they apply to both narrow and broad beam an-
tennas, sum and difference patterns, beams near and far from the z-axis,

and errors close to the main beam and at the remote sidelobes.

The first task is to determine the functional form of A(P) which will
produce the largest realizable error in a given part of the pattern in the
direction specified by Ka' Ea could define the direction of the main beam,
the monopulse null, or a given sidelobe, and we would like to know what
type of x-y position error will have the maximum effect in that direction,
and the magnitude of the error in D(K). Let us assume that the maximum
position errors in each direction are Aox and Amy’ and that the RMS position
error over the measurement area is Oxy'

62 = A [ ([ax(P)]% + [Ay(P)]%} dP (37)

xy

LxLy
In order that all possible error functions are evaluated on a common basis,
the RMS position error for each one must be the same. This guarantees that

the difference in the effect of the various types of errors will be due to
their functional form and not to varying amounts of total error '"energy."
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The Schwartz inequality [13] is used in the following analysis to
determine the form of the worst case errors. This approach leads to the
requirement that the error functions are complex quantities while in fact
they must be real. In an attempt to satisfy both the analysis and reality,
we chose either the real or imaginarv part of the complex error function
prescribed by the Schwartz inequality as the functional form for the
realizable worst-case error. The validity of this approach is confirmed
by the computer simulation and by a recent more rigorous approach used by
D.M. Kerns of NBS. 1In his approach, the constraint of a real error function
is applied initially, and an inequality incorporating that constraint is
used in place of the Schwartz version. The results of this approach for
antennas whose near-fields have either even or odd symmetry are the same
as those reported here, and since the antenna types being studied do have
these symmetry properties, the conclusions of this report are correct.
Because of the added analysis required in the newer approach, it will not
be described in detail here.

If we now use the Schwarz inequality on eq. (36), an upper bound

for the error in D(K) is

i 2 1 BB(B) _iga,g 2
}AD(K) < e dP [ |ax(P)|? dp
' —a T 4m%FA 8x - N -
' n (38)
(3B(P)  -iK,+P|? ]
+ e dp [ lay(®)|* dp|
i 8}7 H J
The maximum value will be realized only when
5x(P) (chg) -iK, *P)*
c e | and (39a)
L §x )
ay(P)  [&B(P) -iK, +P)*
c = | e | - (39b)
L &y J

That 1is, the position error must be proportional to the complex conjugate
(denoted by the *) of the derivative of the near field data multiplied by
the kernel to produce the maximum error in D(ga). The c¢'s are in general
complex constants which are chosen to satisfy the required RMS value of the
error function.

The particular form of Ax(P) or Ay(P) will depend upon the character of
the near-field data, and the direction of interest. To illustrate this,
consider a one dimensional problem and denote the near-field amplitude and
phase by



where both a(x) and ¢(x) are real functions. The worst-case position error

is given by

i(o(x) -k, x)
Axéx) - {[3g£x) . ia(x)agﬁx! . ax }*

a' (x)cos [9(x) -k, X] - a(x) 9’ (x)sin[o(x) -k, x]
- i[a'(x)sin[¢(x)-kaxx] - a(x)¢'(x)cos[¢(x)—kaxx] (40)

where the primes in eq. (40) denote the derivatives with respect to x. Since
Ax(x) must be a real function, the worst-case conditions cannot in general

Ax(x) is equal

be realized. The largest realizable error will occur when
to either the real or imaginary part of eq. (40), and in the remaining discus-
sions, the term "worst-case'! will imply the realizable worst-case condition.
The important character of eq. (40) can be illustrated by some typical examples.
For a narrow beam sum pattern centered on the z-axis, the near-field data will
be similar to figure 11. Over the significant part of the near-field
¢S(x) = const and as(x) = smoothly varying function.

Without a loss of generality we can take ¢S(x) = 0, and eq. (40) becomes

Axs = C aé(x) cos(kaxx). (41)

The amplitude in this case will be apvroximately of the form

I~ 2| TX
a (x) ¥ cos [f;] (42)
giving
as(x) = - %; sin[%iz]. (43)

where LX is the antenna aperture dimension. We can interpret the role of the
factors in eq. (41) in a way which will give further insight into the character
of a worst-case type error, and help to determine whether or not this type
of error is reasonable or not. The factor aé(x) will maximize the error in
AD(K) since A(P) will be proportional to (VB(P))* in eq. (36). The factor
cos(kaxx) will determine where the maximum error occurs. Since the spectrum
of cos(kaxx) is composed of two equal amplitude sidebands at = kax’ the
maximum errors will also occur in these two directions.

The type of error described above is one that could occur, and yet
with the knowledge provided by the error analysis, the scanner can be de-
signed and aligned to minimize the error in the important region of interest.
The factor a;(x) for the sum pattern being considered is a low frequency
sine function with a period equal to the scan length similar to figure 12.
This figure is an example of an x-position error which was simulated on actual

measured near-field data. The simulated error was proportional to the
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derivative >f the near-fielc¢ amplitude shown in figure 11, It is apparent
why this errnr produces the maximum change in the far-field when we note
the change it produces in the near-field as shown in figure 13. There is
very little phase change, and though the amplitude change is small, it has
the same sign over the complete scan length and therefore produces the maximum.
change in the on-axis far field. '
The factor cos(kaxx] will have a period of

Ta = A/sin eax (44)

and the low frequency variations produce errors close to the main beam while
higher frequency position errors effect the sidelobes.
For a difference pattern centered on the z-axis the near-field can be

approximated by

sinz[%li} X <0 (45a)
X
ag(x) =
d 2mx
-Sinz{L———} x>0 (45b)
X
6(x) = 0,

and again the only significant term in eq. (40) is aé(x) cos(kaxx). The

derivatives are given by

( %1 51n[%15} x <0
! X X
aji(x) = (46)
d 3
—%1 sin[%ﬁij x>0
X tx

and the worst-case position error function is twice the frequency of the-

one for the sum beam pattern, but is still of relatively long wavelength.
As a third example let us look at a narrow beam sum pattern with the

beam shifted away from the z-axis. If the main beam is at kx = kb then

the near field and its derivatives are

- (mx!
ap (x) = cos2lEX ] (47)
x
x' = x + d tan 8 (48)
o(x) = Kkyx (49)
ar { 7 '
al (x) = -1 sin[zzx } (50)
X x
o' (x) = kb = %Ersin eb. (51)
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Substituting there values in eq. (40) we obtain

Ab(x) = cla'(x) cos[(ka-kb)x] + a(x)kb sin((ka-kb)x) (52a)

if we take the real part of eq. (40), or

B (x) = cla' (x) sin[(k,-%)x] + a(x)k, cos((k,-k)x) (52b)

if we take the imaginary part of eq. (40). The realizable worst-case error
function will be the one which produces the largest error. For errors at
the peak of the beam kax = kH and the two possible functions are ag(x) and
ab(x)kb. For steering angles greater than

. -1( A
8y, 2 sin {zf;] (53)

the second term is predominant and will therefore produce the larger error.
For errors in regions off the main beam, the second term is also larger, but
in this case 1is multiplied by the cosine term. The worst-case position

error for the beam-steered case is then

Ab(x) = ¢ a(x) kb cos((kb-ka)x). (54)

The three examples we have looked at are typical of most real situations
for narrow beam antennas and point out three main features:

1. Except for the restriction that the position error must be real,
the worst case errors are reasonable functions and can be
realized in an actual situation.

2. The position errors which produce a maximum error in one given
direction are periodic functions with a low frequency modulation.

3. Because of the role of periodic error functions, a knowledge of the
spectrum of the position error on an actual system would be more
useful that just the maximum value of the error.

Now that we have determined the form of the worst case error and found
that it is one that could reasonably occur, we need to find the magnitude of
the error for the various types of patterns and beam positions. Using eq. (34)

and writing the convolution and dot product out in complete form we obtain

5D (K)

i/ (bMWL) » E(X-1) dL (55a)
i [ [D(L)&,F (K-L) + D(g)zyFy(g-g)] dzxdzy (55b)

where L, QX and 2 are used as the dummy variables in the integration to
replace K, kx and ky’ and ;

E(K-L) = F (K-Lye, + F (K-Le, . NS

If we now use the Schwarz inequality on eq. (55b) and note that the integral
of |F(K-L)|? is the same as the integral of [F(L)|? then eq. (55b) becomes
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[aD() [* < f ID(LI&,[* aL [ P, (L) |* dL + [ [D(L)&, 1% dL [ [E (L) |* 4L (57)

and since FX(L) and Fy(g) are the Fourier transforms of the position error
functions, (see. eq. (35)), we can use Rayleigh's theorem [14] to obtain

L L o?
fIE)[2 dL = = [ Jax()|? ap = 2LX (58a)
4T 47 .
L L o2
[ 1F,(L)]2 dL = 2 [ Jaye)|2 ap = X LY (58b)
Y 472 472

In general, the integration in eq. (55) is over all values of Zx and ly’ but
for narrow beam antennas and the periodic error functions being considered,
both D(X) and F(K) will be narrow band functions having significant maxima
at one or at most two values of L. The significant part of the integral
will be due to the integration over the main beam of D(K) and the maximum
value will occur when maxima.of the two functions are coincident. For the
problem under consideration, we may therefore limit the integration in eq.
(55) to the main beam of the antenna.

To further evaluate eq. (55) we must assume some form for D(K) or B(P)
and know the direction of the main beam. Since a number of combinations of
beam types, steering directions and regions of interest will be investigated,
a compact notation is required to distinguish between them. In the general
analysis, and when referring .to sum patterns, or when the results apply
to both sum and difference types, the regular capital "D" will denote the
spectrum. The script 'D" will be used in other cases to specify a difference
pattern. The boresight direction will be specified by Eb and the direction
in which the error is a maximum will be denoted by K . For example, when
discussing the error in the side lobe region for a differe%c%thpe pattern

=a

steered off the z-axis, the pertinent quantities would be _%TK—T , where
-b

the "e'" subscript denotes the error-contaminated spectrum. First consider
a sum-beam pattern with the main beam at K = 0 whose main beam can be
approximated by the function

D(K) = D(0) sin y sin & (59)
1 g
where
Y = akx and g = Bky . (60)

The constants o and 8 are chosen such that the approximate function equals the
actual pattern at the -3 dB points. The integrals in eq. (57) over the main
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beam, to the first zeroes of eq. (59) are

[ ID(K)k, |2 dK = ———ID(O)IZ il (61a)
— X - 3 2
LXLyn
) ID(0)|? 4m?
[ 1Dk, [* 1K = ——m— (61b)
LXLyn

where LX and Ly are the dimensions of the antenna in the x and y-directions,
and n is the antenna aperture efficiency. Combining eq. (61) with eqs. (57)
and (58) we have for the error in D(K)

ID(0)] [0 o2/
|aD(0)| <« —— | X+ L . (62)
n (L2 L2
X y
Am
If we assume that LX = Ly’ and that o, = Gy = ;%, where Am is the maximum pos-
ition error then the error in percent of the on-axis value 1is
A
lADgO) < 100 [_g} (63a)
D(O) |% 7 n L
and the error in dB
ID_(0) A
e <87 mp (63b)
D(O) dB \L

If the position error is of the form given by eq. (41) with %ﬂ<= 0 then

the equality will hold in eq. (63) and the maximum error will be realized
at the peak of the main beam. This is illustrated in figures 14-17 which
show the near- and far-field data for a narrow beam antenna. The far-field
pattern was computed from the actual measured data, and for the data with

a simulated position error similar to eq. (41}. The original data and the
resulting pattern are shown by the continuous curves in figures 14-16 while
the data with position error and its resulting pattern are plotted as the
discrete points in the same graphs. Figure 17 is a plot of [AD(K)/D(0)]
in percent and shows the maximum occurring at 6 = 0 which corresponds to

kx = 0. For this simulation Am = 0.02X, Lx = 25X, and n = 0.5. Since the
simulation is for one-dimensional data, eq. (63) is modified slightly for
this case, and predicts a maximum error of 0.20%. This and similar simu-
lations for other antennas have shown that the approximations used to de-
rive eq. (63) are quite good and that it does in fact give an upper bound
for the error in D(K).
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If kaxf 0 in eq. (41), the maximum error in D(K) will occur at
kX = * kaxrather than at kX = 0 with one half the amplitude given by eq. (63).
The factor of one half results from the requirement that the position error
be a real function, and the cos(kaxx)factor produces two sidebands at £ kaX
with one half the amplitude of the zero frequency component. In this case

the error in a sidelobe is given by

AD(K,) ) D(0) ‘ 50 [ﬁn_} (64a)
D(K,) |y~ IDCK,) L
Pelka) |, 5 2O l [é_] (645)
D(K )| 14p DK AL

For a monopulse difference pattern with the null at K = 0, the analysis
leads to essentially the same result. While the shape of the pattern is
different, the integral of |D(K)K|? over the main beam is very nearly the
same. The major change in the result is that the D(0) in eqs. (63) and (64)
refers to the peak of the sum pattern rather than the difference pattern
minimum.

If we now look at the case where the beam is steered away from the z-
axis, expressions similar to eqs. (63) and (64) are easily obtained. Assume
that the peak of a sum pattern is steered to K = Eb # 0. In this case K is
essentially constant over the main beam integration and can therefore be
taken outside the integral. With this approximation, eqs. (31) and (36)

become
VB_(P) ¥ iK B (P) (65)
. ivd
-1e K .
aD(K) = ——2f (5 _(®)e KBy . acp) ap. (66)
4ﬂ2FAn .

For errors on the peak of the main beam, BS(E) can be approximated by

N 1K, P
B,(P) 7 a_(P)e (67)
and eq. (66) becomes
iein Eb
AD(Kp) = ——— - [ a_(P)A(P) dP. (68)
2 st T
474 FA
n
We have previously shown (see eq. 54) that the position error function
which will produce the maximum error in D(Ea) when K = Ky is
A(R) = c a (D) K. (69)



We have also shown that a constant position error will not produce any error
in the amplitude of D(K) and so we may add a constant U to eq. (69) without
changing its effect. Substituting this modified error function into eq. (68)
we obtain
ieiyd Ea
AD (K,) = T c ] [ag(P)]%dP + U [ a (P) ng. (70)
n
For the sum pattern, as(B) is positive for all values of P and both integrals
will be positive. The constant U may therefore be chosen to make
IADS(Ka)l = 0, which indicates that for this case the first term in the
Taylor series expansion is not sufficient to represent the error, and the
second term must be included. When the second term is used we obtain

_eivd 1K, |2
AD(K) = —————2— [ a_(P) |A(P)|? 4P (71)
ZNZFAn

and now since both factors in the integrand are positive, the integral will
not be zero. To evaluate the error, we use a form similar to eq. (34)
which results from the second term in the expansion.

- 2 2
ADUSb) Il_<_b| [D(K) * lE.(K_)' ] (72)
Using the Schwarz inequality and Rayleigh's theorem again as before, we
obtain

N

X, |
47

|aD(K) |? < [Ip®)|* dK [ [a(B)|* dp. (73)

Using the earlier approximations (see eq. (59)) for the main beam this

becomes
2 2
AD(K,) 1001k 1* 18,4 ]
h — s (74a)
D(Ky) 1y /n
and for the error in dB
D, (K, ) 870Ky 1% |4, |2
e‘—b < ~b — max , (74b)
D(Xp) Tap /n

where IAmaXIZ is the largest value of [A(P)]Z.

For a monopulse difference pattern steered to Ka’ the near-field ampli-
tude is an odd function and therefore the second integral in eq. (70) is
nearly zero. The error in D(Kb) cannot be made zero by the proper choice of
the constant U, and therefore the first term in the expansion is the signifi-
cant one. For the monopulse type pattern, the position error which is
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proportional to ad(g) affects the far-field pattern in two ways. First there
is an effective linear term in ad(E) which shifts the entire pattern by a
small amount, and there is also a change in the shape of the pattern. The
analysis for this case is very similar to the one for the effects of z-
errors on a difference pattern centered on the z-axis which will be discussed
in the following section. The results are essentially the same, and so we
will defer a discussion of the analysis to the next section. The results
show that for the present case of a monopulse difference pattern steered to
K = Eb # 0, the error in the depth of the minimum at Kb + g is

D, (Ky+e) D(Ky)
De(K D(Kb)

X

Kpl &

max

(75)

b) lds 2
where Eb + ¢ is the position of the minimum for the error corrupted spectrum,
and Q is equal to the difference in dB of the far-field maxima for the
difference pattern.

For either a sum or difference pattern the maximum error in direction
off the main beam is given by the same equation. For the beam steering
conditions the error function which produced the maximum error in the side-

lobe region is given by eq. (54) which for the two dimensional case is

A (B) = b a(x) sin[(k, -k )x]e + Amya(y) sin[(ky‘,,l-lg,b)y]_<°:_y (76)

sin k
The spectrum of éb(g) is composed of ——E__£ type functions whose maxima occur
x

at *(k

t{k, .-k ,).
ya "yb
mately 1/4 the width of the antenna pattern, and so in the convolution of

xa_kxb) and similar functions in the k_ direction with maxima at

The width of the "main beam" of these functions will be approxi-

eq. (55) the net effect is the same as if they were delta functions with

A
amplitudes of —%ﬁ-and —%X. The four maxima in the error AD(K) will occur at

(kxa ’ kya )
(k k- (ko oko))
K- xa yb ““ya “yb (77)
(kxb“(kxa Kb s kya )
(kxb_(kxa ki) kyb (kya_kyb))

The amplitude of the error in each of these directions in percent and dB

is obtained from the convolution of D(K) with the delta functions.
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Under the conditions that Am

these become

AD(K_) D(K,)
| Y b bl * kybAmy) (78)
D(K )1, D(K,)
ID_ (K ) D(0)
e -a
e A+ k A ) (79)
D(Ka) a5 D(Ea) xb"mx yb my
x 2 Amy’ and approximating k . + kya = 15a|
8D(K,)
—a <aslkl s, (80)
D(0) |,
D_(K_ ) D(0)
_e —a’ < 2.21K | A (81)
DK, lgp ~ DK

The key equations of this section can be put in terms of the angles of

the antenna coordinate system by use of the relationships

=
]

~
]

2T

k 51n(% = 5— sin ea

_ 2 2
kv (1-cos A cos Ea)

(82)

(83)

where 6 is the polar angle between the propagation vector Ka and the z-axis.

The main results
1.

2.

Main

Main

beam on the z-axis,

Main beam error
Sum pattern

Main beam error
Difference pattern

Sidelobe error

beam steered to K,

Main beam error
Sum pattern

Main beam error
Difference pattern

Sidelobe error

PO 57
P 5.7
Pella) | )
D(Ka) dB
Ab, Eb, Gb
Do)} 344 |
D(Ky) 14 7 L
D (K. +¢)
e'‘=b — < 3Q
D(Xy) lap
D_ (K]
e —a < 13.5
D (Ea) dB
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are summarized below for the various cases.

Am}
— (84)
L
D(O) | (b,

— 85
D(0) ’ L (83)
D(0) b

= 86
(k)| L e
A 2
XEJ sin® 8, (87)
D(Ky)|{a )

——J sin 8, (88)
D(Ky) | {2
D(K,) A

b {—m}sin 8, (89)

D(K,) A




To illustrate the important features of the results for the various cases,
let us consider an antenna with a square aperture LX = Ly = 50X, and a 50%
aperture efficiency. Table 3 below then gives the maximum error due to

X-v position errors for the various cases.
Table 3. Examples of Errors

Direction of
Main Beam

Region Where

Maximum Error Occurs A

Type Pattern Azimuth Elevation Pattern Character Relative Amp(dB) = E;rgﬁ
Sum 0 0 Peak 0 0.02 0.007
Difference 0 0 Difference Null -20 0.02 0.07
Difference 0 0 Difference Null -30 0.02 0.22
Difference 0 0 Difference Null -40 0.02 0.79
Sum or Difference 0 0 Sidelobe -20.0 0.02 10.02
Sum or Difference 0 0 Sidelobe -30.0 0.02 0.05
Sum or Difference 0 0 Sidelobe -40.0 0.02 0.17
Sum 30° 30° Peak 0 0.02 0.12
Sum 60° 40° Peak 0 0.02 0.23
Difference 60° 40° Difference Null -20 0.02 0.54
Difference 60° 40° Difference Null -30 0.02 1.62
Difference 60° 40° Difference Null -40 0.02 5.40
Sum or Difference 60° 40° Sidelobe -20 0.02 2.5

Sum or Difference 60° 40° Sidelobe -30 0.02 7.5

Sum or Difference 60° 40° Sidelobe -40 0.02 24.9

The predicted errors in table 3 are very close to the results of the

error simulation with one-dimensional data in all cases.

The sidelobe errors for off-axis steering are definitely the most

serious and are the ones to consider in designing a measurement system.

It must be remembered that these are worst case type errors and result when

there is a very special position error which concentrates all of its effect

in one or a few directions.

It is evident in figure 18 that the error is

very large in two directions, but quite small in all other directions.

Also it is unlikely that the error function would be a single frequency

sinusoid but more likely that the error would be composed of a number of

frequency components with much smaller amplitudes than Am.

In actual prac-

tice then, through careful design and measurement, the sidelobe errors as

well as those for other parameters due to x-y position error will be much

less than the upper bounds illustrated in table 3.
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3.1.2 Probe z-Position Errors

The analysis of z-position errors follows very similar lines to the
last section for x-y errors and many of the results of the last section can
be used with only slight modification. 1In this case we assume that the
probe is at the correct x-y position, but there is a small error in its

c-position given by
z' = d + Az (P), (90)
and the change in the measured data is

3B(P,z)
B(B’Z') = B(E’d) S — Az(g)- (91)
9z

Since we are looking at z-position errors, we have made the dependence of
B upon z explicit. The partial derivative can be determined from eq. (25a)
in the same way that VB(P) was obtained to give

SB(_P_’Z) s 3K
—=" " = 5FA [ y(DK) e Yd 1KR gy, (92)

9z

For the narrow beam antennas under study, v(K) will be essentially constant
over the significant part of the integral in eq. (92) and can be taken out-
side the integral. The z-derivative of B(P,z) in terms of general ampli-
tude and phase functions and from eq. (92) is then

IB(P,z)

~

= a'(®,2)e BB igr(p,z) B(R2) ¥ iv(Ky) B(R,2).  (93)

3z

This expresses the facts which are observed in the near-field measurements

a'(P,z) =0, (94a)

' (Ry2) = y(K,) = 2T cos 8. (94b)

That is, that the amplitude change is very small for z-motion of the probe,
while the phase change is large. Using eqs. (91), {(92), and (25a), and the
convolution theorem, we obtain the two forms of the error equation for z-errors

which correspond to eqs. (34) and (36)

AD(K) = i[vy(K) D(K)] * H(K) (95)
ivd 3B(P,z) ...
AD(K) = e’ { = e 1K Bl Az (P) dP, (96)
4ﬂ2PAn 3z - -

where H(K) is the spectrum of the error function
HO = == [ az@e KR ap - F a2 (. (97)
dn*
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Before proceeding to evaluate eqs. (95) or (96) for the various cases,
two special z-position errors should be considered. The first is one where
Az (P) = constant = Ad. Since d does not appear in the integrand of eq. (25b),
a position error of this type will not produce any error in the gain or

relative pattern. The only effect it will have is to uniformly change the
ivad

phase of the far-field by the amount e Therefore, |AD(K)| = 0 when
Az (P) = constant, and
AD} (K) = AD,(K) (98)
when
AZZ(P) = Azl(gj + constant, (99)

where ADl(E) and ADZ(E) are the errors resulting from Azl(g) and Azz(g)
respectively. This means that we can add a small arbitrary constant to a
given z-position error function without changing its effect on the far-field
pattern or gain. This fact will be useful in some of the following analyses.
The second special error is one which is linear in P and given by the
relationship
Az (P) = ax + By. (100)

This error would result from a rotational misalignment of the test antenna
with respect to the measurement plane and results in a shift of the entire
pattern by the angles

AA = arctan o, AE = arctan R. (101)

The relative shape of the pattern is not changed and the only error is in our
knowledge of the direction angles to a specific part of the pattern, such as
at the peak or null of the main beam. Therefore when analyzing the effect of
a given error function, both the constant and linear terms should be removed
before determining its effect on the gain or relative pattern.

The functional form of Az (P) which will produce the maximum error at
K = Ka is, as before, proportional to the complex conjugate of the quantity
in the brackets of eq. (96). Since Az(P) must be a real function, the
maximum realizable condition occurs where Az(P) is proportional to either
the real or imaginary parts of the bracketed expression.

From eqs. (93) and (96), the worst case error function is then

4z(P) = 6 a(P,z) sin [¢(P,z)-K *P] (162)

if we use the real part, and

Az(P) = 6 a(P,z) cos [6(P,z)-K,*P] (103)

if we use the imaginary part. In both cases, 6m is the maximum error in the
z-position, and the proportionality constant has been taken as Sm/y so that
the maximum value of the error will be attained when a{P,z) = 1.0.
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For the case where the main beam or difference null is centered on the

z-axis, the error at Eb = Ea 0 is given by

ieink
AD(0) = =——— [ B(P) 4z(P) dP. (104)
4Tr2FAn

An arbitrary change in the reference plane by a constant amount will not
cause any error in the far-field pattern since we can chose any reference
plane on which to make the measurements. If we change the reference plane
by a constant amount to obtain a new error function.

Azz(g) = Azl(g) + C (105)

then the resultant error at Ka = 0 is given by

. ivyd v
ap(0) = XX |1 gp,2)az(p) ap + ¢ [ B(,2) dEJ~ (106)
4m2FA
n
For a sum pattern the second integral in eq. (106) will be positive, and we
can therefore choose C to make AD(0) = 0. This result is similar to the case
for the effect of x-y errors on a steered main beam, and indicates that the
first order term is not sufficient and higher order terms must be used. When

we use the second order term the on-axis error becomes

i‘Yd 2
AD(0) = -& 8°B(Pyz) [az(P)]% dP (107)
2m2FA 9z2
n
eink2
- K r B [az(p)]* dp. (108)
21*FA_

For a sum pattern, both factors in the integrand will be positive for all
values of P, and the error cannot be reduced to zero by an arbitrary shift
in the measurement plane. The error resulting from the second order term

may now be evaluated by using a form similar to eqs. (95) and (72)
AD(0) = -k*[D(K) * |H(K)|?] (109)

Using the Schwarz inequality and Rayleigh's theorem on the above expression

with the earlier approximation for the main beam, we obtain

6 2
< 493 {_3% (110)
n A

AD(0)
D(0)

)
°

(111)
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In he Yollowing discussion concerning mc 10opulse type patteras, it will
be helpful to refer to the resul:s of the errc s simulation to :1llustrate the
steps in the analysis. The pattern under discussion is similar to the¢ ore
shown in fignre 19, and we s=nt t - letermine he effects of u-position errors
on the position and depth »f the sminimum in the boresight direction. Let us
assume that the pattern shown in figure 19 is for the principle plane, ky =0,
and that the near-field amplitude and phase along the 1line y = 0 are similar
to thoseshown in figure 20. In the error simulation program, the measured
data shown in figure 20 is stored in the computer and the far-field pattern
is computed using these data and eq. (25b). These input data and the resulting
far-field are considered to be the '"true'" values with no z-position errors
present. We next modify the input data by changing the amplitude and/or
phase in a way which represents the effects of the worst case z-position
error. The far-field is again computed using the modified data and compared
to the original results to determine the effects of the simulated errors.
This is repeated using different values of 6m and near-field data from other

antennas.
In the present case for Ea = Eb = 0, eq. (103) gives the worst-case
error function as
8z(P) = & a(P) cos (¢(P,2)) (112)

and from eqs. {91) and (94) the modified data are
a,(P)

4o (P,2)

]

a(P) (113a)

¢(P,z) + ké a(P) cos (¢(P,z)) (113b)

where ag and ¢e are the modified amplitude and phase functions. When this
change is made in the input data, the simulated phase error resulting from
the z-position error is shown in figure 21. This phase error has two effects
on the far-field pattern as shown in figure 22. The entire pattern has been
shifted and there is also some change in the shape of the pattern. The shift
complicates both the mathematical analysis and the simulation when trying to
determine the change in the depth of the minimum. For in the analysis we must
compare D(0) with De(0+g) since the minimum of the error pattern is at K = ¢
and since the pattern is so sharp in this region, we must know quite closely
how much shift is introduced by a given error Sm' In the simulation, a prob-
lem arises because we do not have continuous data, since the digital trans-
formation provides far-field values at discrete, equally-spaced points as
shown by the error pattern in figure 22, (In the "true" pattern the points
have been connected by straight-line interpolation to distinguish between

the curves.) A data point may not occur exactly at K = ¢, and due to the
sharpness of the curve, comparison of a point which is not at g with the

original minimum may be misleading.
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To overcome this difficulty in the simulation, a linear phase correction
is applied to the near-field data along with the simulated z-position error
to shift the minimum back to K = 0. The modified phase is then given by

¢, (P,2z) = ¢0(B,z) + 6 k a(P) cos (¢(B,z)) -ox. (114)

The value of o is chosen to make the minimum of the error pattern occur
at K = 0, and this sometimes requires multiple runs to find the correct
value. The result of this modification to the phase error on the error
spectrum is shown in figure 23, and it is apparent that now we can compare
the two curves point by point to find the change in the minimum depth or
sidelobe level.
We have previously shown that the linear phase correction used here
will not change the shape of the pattern, and so this does not alter the
results. In effect, we have removed whatever linear term there is in the
position error by the above technique and can now analyze the effect of the
remainder of the error function. This approach has the added benefit that
we obtain an approximate empirical relationship between the maximum position
error and shift in the boresight direction which will be of value in the
analysis.
Table 4 below summarizes the results of the z-position error simulation
on two monopulse antennas. Two sets of data were used for both antennas.
The first was the actual measured data and in the second, the amplitude for
X > 0 was modified to make it more nearly equal to the amplitude for x < 0.
This amplitude modification resulted in a lower minimum in the boresight
direction and demonstrated the dependence of the error on the magnitude of
the minimum. The modified near-field data and the resulting far-field pattern
for one antenna are shown in figures 24 and 25 (compare with figures 20 and 22).
It is apparent from Table 4 that the error in the depth of the mono-
pulse difference minimum is linearly proportional to the maximum position
error ém, and inversely proportional to the magnitude of the minimum. Fur-

thermore, the shift in the boresight direction is also linear in 6m.

PO C 20O (115)
2(0) ooyl ™
DA = C, 8

It is also evident that C
simulation does not give much indication why they are different or what

1 is not the same for the two antennas, and the

antenna characteristic determines the magnitude of Cl’ To determine these

factors, the mathematical analysis must be used.
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Table 4. Summary of Results from z-Error Simulation

Change

True Maximum in Shift in

Minimum z-Position Minimum Minimum
Antenna f (dB) Error (dB) (deg)
Constrained lens 9.2 -30.7 0.02x -0.3 -0.16
0.04x -0.5 -0.31
0.06x -0.7 -0.47
Constrained lens 9.2 -49.6 0.02A -2.7 -0.16
(Modified Amplitude) 0.04) -6.3 -0.31
0.06x -10.2 -0.47
Volphase 8.4 -23.8 0.02x -0.4 -0.15
0.04X -0.7 -0.31
0.06X -1.0 -0.46
Volphase 8.4 -35.4 0.02x -1.4 -0.15
(Modified Amplitude) 0.041 -2.8 -0.31
0.06X -4,00 -0.46

Let us approximate the essential features for the azimuthal difference
mode near-field by

B(P,z) = £(x) g(») (116)

where
- sin? 2%5} Xx <0
x
£(x) = ‘ (117)
a sinz[z%5J etd x>0
X
g(y) = cosz[%X] (118)
y-

The constants o and g will determine the departure from a perfect difference
pattern, with o being nearly unity and q being close to zero. It can be
shown that o will determine the depth of the minimum, and q will determine
the symmetry of the far-field pattern. Let us further assume that in mea-
suring the above near-field, there is a worst-case z-position error as given
by eq. (103), and that due to this error, the apparent position of the

difference minimum is at kX = g, ky = 0. The value of De(e,O) is then

-ivyd i[ks a(x)-ex]
D (,0) = [ ey [ £(x) e dx (119)
47r2FAn
= I, £ [1+i(ks a(x)-ex)] dx (120)
72T
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where IV is the integral involving g{v), and (x) is the amplitude function
for f(x). The second order terms in the appr.ximition of the complex expo-
nential have been drcrp21 rcince they are even functions, f(x) is very nearly
odd, and ‘he jn*egral of .heir product is sme 1 compared to *] 2 'etiiied

terms which appear in eq. (120}, lhe remaining terms jrodu:e thi ee iategrals,
the first of which when multiplied hy Iy yields the true far-field minimum
D(0). The error in D is then

i

AD(0) = De(e,O) - D(0) = oI (le-IXZ) Iy (121)
where
I.q = k& ] f(x) a(x) dx (122)
I, =c¢ J x f(x) dx (123)
Using the assumed form for f(x), le’ IxZ’ and Iy can be evaluated to
give
SLXkém )
L = T (rof+ia?a), (124a)
L;E _
IXZ = —R- (1+Q,+10Lq). (124b)
L -ivyd
- e
I, = I% PR (124¢)

Combining these terms, the error is then

AD(0) = zifiﬁif [uq[%ma] + i((l+u2) - % (l+a)]} (125)

where we have used the relation

_2mw dz _ 2w
€= S Ix "~ % B — - (126)

Under certain special conditions, either the real or imaginary terms may be
zero, but since an upper bound is desired, these cases will not be considered.
The results of the error simulation indicate that generally the two terms

will be of about the same magnitude, but the real term has the major effect

on the change in the null depth. This is because D(0) is real for the assumed
near-field distribution, and therefore, in phase with the real part of eq.
{125). For a more general distribution, the real part of eq. (125) will still
be in phase with D(0) and therefore produces more of a change in the null
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depth than the imaginary term. The change in the boresight minimum is then

D, (g) ] a]

D(0)
The dependence upon q in eq. (127) is consistent with the results of the

D(0)

D(0)

20.2 §_ aq
< m [
A

[#4e )

. (127)

dB

simulation, but the simulation does not show the dependence upon o. Since
8 ~ 2.5 to 3.2 and o = 0.94 to 1.2, it appears that a more realistic expres-
sion is obtained by setting the factor a(B/3 - o) equal to 0.5 to give

Pe (&) [fﬂ]. (128)
D(0) A

D(0)

D(0)

< 10.1q
dB

Also from the simulation it is apparent that q determines the symmetry of the
difference pattern, and we can estimate q from the ratio in the maxima on each
side of the boresight minima. If we denote the ratio of these maxima in dB

by Q, then q in radians is approximately

q = % ,
and the error equation in terms of far-field parameters is
D_(g) DCO)| (8
e < 3.4Q—=| |B. (129)
0(0) aB 0(0) A

For errors in regions off the main beam, the results are essentially
the same for sum and difference patterns and are similar to the case for
x-y position errors when the beam is steered off axis. The worst-case
z-position error is given by eq. (102) or (103) with Ka # 0 and is therefore
equal to the amplitude modulated by a periodic function. The error in a side-
lobe at K, is obtained from eq. (95) where H(K) is approximated by delta func-
tions at the combinations of £ kxa and * kya given in eq. (77). The magnitude
of these delta functions is Sm/4, due to one factor of 1/2 which arises from
the fact that the error function produces two sidebands, and another factor
of approximately 1/2 because the variations in z should be measured from the

average value and not the minimum value. The resulting error expression is

§
(.E%, (130)
A

De (Ea)

D(K,)

D(0)

D(K,)

< 13.5
dB

When the beam is steered away from the z-axis, the only change in the
analysis is that gamma is not equal to k but is now

Y(Ky) = kv1 - (Kb/k)2 = k cos 6. (131)
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Equations (111), (129), and (130) may then be generalized to any steering
direction by using eq. (131) in place of k and Kb in place of 0 to give for
a sum pattern,

D _(K.) §_12
L b 8 (_m} cos?oy, (132)
D(Kp) lgn 1 1)
for the difference minimum,
D (K *e) DK | (6
e b = <349 —220| | B cos 8y (133)
PKy) lap DT A
and for a sidelobe on either type pattern,
D (K) D(K.) | (8
222t <135 —=2| | cos 8. (134)
D(K,) |4 g |

3.1.3 Instrumentation Errors in Measured Amplitude and Phase

In the last two sections it has been shown that position errors result
in incorrect values for the amplitude and/or phase and therefore produce
errors in the computed far-field parameters. In this section the electronic
equipment used to measure and record the probe output will be treated to
determine the types and magnitudes of errors which they produce.

The main subject for study is the RF receiver which detects the probe
output at the operating frequency and converts the measured signal to a
lower frequency where ﬁhe amplitude and phase are measured. Ideally the
conversion and the measurement are linear, and the receiver output is directly
proportional to the probe output B(P). In fact there are nonlinearities
present due to such things as mixer non-linearity, interference and noise
signals within the receiver, sensitivity and linearity of detectors and reso-
lution of digitizers. Their combined effects may be represented by the

relation
B () = v(a,s) B(P) (135)

where B(P) is the true probe output, Be(B) is the receiver output, and

v(a,9) represents the receiver response which is in general a function of the
amplitude a and the phase ¢. Certain special cases of v(a,¢) have already
been treated in the position error section, because the worst-case position
errors were usually function of a and ¢ also, and produced errors in B(P).

For instance, the worst-case z-error resulted in a phase error given by

Ad(a,¢) = k § a(P) cos (¢(P)) (136)
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and produced errors in the far-field given by eq. (132), (133), and (134),
and the worst case x-y error for the main beam on-axis resulted in an
amplitude error given by eq. (30) and (40)

ba(a,¢) = Va(P) - Va(P) (1373

which led to the results in eqs. (84), (85), and (8%6). These results are of
value, but may not represent the upper bound type errors which are the object
of this amnalysis.

To obtain expressions for the errors in D(K) we substitute eq. (135) into
(25b) and employ the Schwarz inequality to show that the change in D(K) will
be a maximum at K = K_ if

—a

-iK_+Py*
4 "‘] (138)

v(a,$) « [B(Ij)e
This implies an unrealistically large error in both the near and far-fields,
for it would mean that

a,(®) = [a(®)]? (139)

and for instance where a(P) = -20 dB, the measured value would be -40 dB. A
20 dB error at this level is completely unreasonable. Equation (139) does
suggest a form for the amplitude error which is consistent with observations
however and given by

a (P) = [1 + (a(P) - Lu] a(B). (140)

This is similar to eq. (139) because the error is zero when a(x) = 1, in-
creases as a(x) decreases, and is identical to eq. (139) if u = 1. When u
is small, the error has the same form as the worst case type, but is still
realistic.

When the above type of error is applied to the measured data in the error
simulation program, it resembles quite closely the scale error described at
the beginning of section 3.1.1 and formulated in eqs. (28) and (29). As seen
in figure 26, the effect is to decrease the apparent size of the aperture,
which will reduce the far-field gain and increase the beam width. Since
eq. (29) gives an exact formulation for the effect of the scale error, the
effect of the above amplitude error will also be known if we can obtain a
relation between u and a. Such a relation was derived from the results of
the simulation, and showed that for a variety of antenna types,

a £ 1 + 0.35u. (141)
When the amplitude function in the y-direction and its error are included,
the error at K. = K, is then
—a =b

D (K
De (Kp) < 6.0u (142)

dB

b)
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This result is valid for either a sum or difference type pattern and includes
the case when the beam is along or steered off the z-axis. If u is not a
constant, but is a periodic function of the amplitude and therefore a function
of x and y, the maximum error will occur in directions other than bore-

sight with the magnitude
D(K,)
D(K,)

D, (K,)

D(K,)

W, (143)

These two types of errors are illustrated in figures 26-29 which show samples
of the results of the error simulation for amplitude errors. As in the case
of position errors, the periodic amplitude error causes the largest effect

on the far-field pattern, since most of its effect is concentrated in direc-
tions where the far-field amplitude is low.

Figures 30 and 31 show the amplitude error as a function of amplitude in
dB and percent for various values of u. These graphs are helpful in evaluating
the error which will result from a given receiver non-linearity. It is
evident from eqs. (142) and (143) that the linearity of the receiver must be
checked with a calibrated attenuator to verify its accuracy or to derive a
correction curve which can be applied to the measured data.

The analysis for instrumentation phase errors has essentially been done
in the section on z-position errors. It was found there that for small
z-motion of the probe, only the phase of the measured signal changed, and so
the errors were in fact phase errors. The results of section 3.1.2 therefore
can be used here if the substitution

A
Sp = 77 O¢

is used, where A¢m is the maximum phase error. They are summarized here in
terms of A¢m for reference. For a sum pattern,

D, (K,) Ao ]2
_e —b- < 43 [__E] ; (144)
D(Ky)lgg vn (27
for the difference minimum,
D, (K +e) D(K,)| [4¢
€D = <o | =R (145)
P&y lgy 20| L 2m
and for a sidelobe on either type,
D (K) D(K, )| [a¢
Al < 13.5|—2 ) | (146)
D(Ka) 4B D(Ea) L 27
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3.1.4 Multiple Reflection Errors

It was mentioned in the background material of section 2.0 that multiple
reflections between the test antenna and probe are assumed to be negligible.
In any actual measurement situation there is a detectable level of reflections,
which result in some error in the calculated far-field parameters. The level
and effect of multiple reflections are estimated experimentally by taking
centerline scans of near-field data on planes which are separated by A/8.
These scans are transformed to obtain approximate far-field patterns, and the
differences in individual scans provide an estimate of the effect which the
reflections will have on the complete two-dimensional data. This procedure
is described in other references [11] and examples are given.

In the following analysis, equations will be derived which can be used
with information obtained from the measurements to further estimate the effect
of multiple reflections.

Assume that in the measured probe output, bo(g) is the true signal which
results from the direct signal, and mo(g) is the signal due to the multiple
reflections. The total relative output is then

m, (P)

®,)

B, (B) = B(R) + = B(R) + M(P) (147)

)
and the resulting far-field spectrum is
D, (K) = D(K) +F[M(P)]
D(X) + J(K) (148)

The form of J(K) will of course depend upon the character of M(P), and the
approximate amplitude and phase functions for M(P) can be estimated from a
series of measurements. To estimate the amplitude functions am(g), the probe
is first placed at P = go and the probe output is recorded as the z-separation
distance is varied over a distance of a number of wavelengths. Figure 32 is
an example of such a measurement and the cyclic variations with a period of
approximately A/2 are due to the interference between the true and the
multiply reflected signals. If we denote the peak to peak variations in dB

by w, then the ratio of the two signals denoted by Rm(go) is

Rp(B) = [S;i], o = log Y (w/20).

In general, the amplitude a, and the phase ¢m of the interference signal will
vary as a function of P, and this procedure is repeated at a few other points
to determine whether Rm is relatively constant, or whether it changes sig-
nificantly over the scan area. For antennas such as lenses or arrays which
do not have diffracting objects such as feeds, subreflectors or struts in

the aperture area, the amplitude is generally constant, and an upper bound
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can be estimated by taking the largest measured value for Rm(gj. To estimate
the phase character of M(P), two near-field scans are taken along the center

lines y = 0 at z = d and z = d + A/4. The ratio of the data along these two

lines is then given by

m(P) + b, (P)
m(B) - b, (P)
(o () -0@)

~

™

|+

~—
It

R _(P)e

m(—

106, (P-4 (D))
Rm(g)e -1

ing
-(1 + 2R_(P)e (149)

e

There are two cases which can be easily recognized from graphs of Rm(g). The
first is when Rm(g) is essentially constant along both x and y centerlines
which indicates that

M(B) = R (P)) B(P) (150)
and therefore
J(K) = R (P)) D(K) (151)
and the error in any given direction is
D, (K)
= w/2. (152)
DX 143

The second case, which is more typical, is illustrated in figure 33 which is
a graph of Rm(x,O) and shows a periodic variation which indicates that the
phase of the multiple reflection signal is changing fairly rapidly as a
function of x. This will shift the peak of the spectrum of M(P) away from

K = 0, reduce the on-axis error, but increase the error in the sidelobe
regions. If the period of the ratio plot in figure 33 is denoted by T then
the maximum error will occur where

- R (153)

From similar measurements and calculations along the y-axis, the value of

kym may be determined and the maximum of the interference spectra will occur

at K=K = (k

K k). The far-field error in any direction is then given by

xm’ Tym
D,(K) = D(K) + R (P) D(K-K) (154)
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which will be a maximum at K = Em where

D (K) |D(0)
D(K ) ~ [D(K,)

A more general case is when there are a number of frequency components

w/2. (155)

present in Rm(E), and there will then be more than one maxima for the error,
but each one will be smaller than given by eq. (155). Equations (152) and
(155) therefore respectively represent the two cases where the error is a
maximum in the boresight direction and is at a sidelobe.

3.1.5 Errors in Gain, Beamwidth and Boresight Direction

In this section, the results of the previous analysis which applies to
gain, beamwidth and boresight direction will be summarized. In addition some
other sources of error will be included so that the total error in these
three quantities may be obtained.

In the previous sections, the study has concentrated upon errors in the
measured relative near-field data, B(P), and expressions have been obtained
giving the errors in the relative far-field pattern which they produced.

Two other factors are required to calculate the partial gain for one compo-

nent or the total power gain. These are the gain and polarization of the

b (P.)
probe and the magnitude of the normalization constant An = —95—9— . To illus-

o}

trate the role of each of these quantities in the gain calculation, let us
assume that the peak of the sum beam is along the z-axis, and G(0) is therefore
desired. From eq. (11) this is given in terms of the spherical components of
$10(0) by

47 k2 Y
G (0) = e (‘sloA(O)lz + |5105(0)|2) (156)

- 2
(1-1Tg1%)ng

Let us further assume that the probe is reciprocal and nearly linearly
polarized with |r01E(0)| >> IrOlA(O)| and eq. (12) may therefore be expressed
in terms of the probe gain Gr(O) by

4ﬂk2n0
GT = — ('r()lA(O)IZ * |r01E(0)12)' (157)

R 2
a-1r 15y,
and in terms of the polarization ratio and |r01E(0)|2 by
2 2
Amk noirolE(O)l

THINET2

6, (0) = (1 + o (0)]%). (158)
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The usual approach to obtaining GS(O) for the test antenna is to first meas-
ure the gain and polarization ratio of the probe in a separate experiment.
These known quantities are then used with eq. (158) to obtain the magnitude
of rOlE(O) given by
- 2
(1 |Fr[ )Yo 1/2

13,2 (0)] = G_.(0) (159)
O1E 4Tk (1= ], (0)[#)n, T

The phase of r01E(0) may be chosen arbitrarily as zero, and the magnitude and
phase of the cross component are obtained from eq. (13) as

rOlE(O) = pg‘r(o) rOlE(O)' (160)

The next step is to measure the relative near-field data B'(P) and B"(P) and
then measure the two normalization factors

a a

A= O, An = 2 (161)
b, (0) by (0)

The usual approach to obtaining these factors is to place the probe at P = 0,
set both the amplitude and phase of the receiver output to zero or some con-
venient level, and then connect the '"generator" and ''load" ports, which have
been connected to the antennas, directly together. AA or Ag, depending upon
the orientation of the probe, is then obtained from the change in the ampli-
tude and phase. If the observed amplitude changes associated with Aé and’A;
respectively are denoted by aﬁ and a;, and the observed phase changes are
similarly denoted by ¢ﬁ and ¢; then

a (1"r T ) t 1(1)'
Al = 0 - g % ae " (162a)
bo(0)  (1-TTy)
a (1'1-' r ) ] i(b”
Al = e - g e m (162b)

b, (0) (1-Fgrs) n

where Fg and Fl are the reflection coefficients for the generator and load
respectively., With these data, D'(0) and D'"(0) are calculated from
eqs. (2) and (5).

The next step in the calculations is to use eqs. (6), (7) and (8) to
obtain the spherical components of §10(0). In the present case where K = 0
these can be simplified by using the fact that

rglA(O) = rélE(O), rglE(O) = -rélA(O). (163)
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With these substitutions, the probe correction equations become

D"(0)  D'(0)py,
. (0) = T915(0) To15(0) (1648)
104 1+ (0,,(0))?

D'(0)  D"(0)p,,

. (o) = To1g(0)  Tp1(0) (164b)
) .
OE 1+ (0,,(0))2

The final step is to substitute these values of s
eq. (156) to obtain the gain.

A(0) and s E(0) into

10 10

A good deal of simplification arises when the probe is linear enough
(|02r(0)]€03) that for practical purposes |olr(0)|may be taken as zero. Further
conciseness results when the test antenna is also nearly linearly polarized
or the partial gain for one component is desired. In that case the various
equations can be combined to give an equation which clearly illustrates the
role of each of the measured and calculated quantities.

If we therefore assume that Iplr(O)F[pls(0ﬂ=0, then eqs. (164), (159),
and (156) reduce to

! (0)]? PO (165)
] = —_—_—
[ (1-“‘ lz)Y
0|2 = —X ~ 26 (0 166
lto1£ (0] sricen (0 (166)
4m)? f1-T7,T_|2|1-T_T |2 |/ B'(P) dP|?
o [ it (e,
)L ergrrra-in s a-rgs) | lagl? 6,00

The four significant factors are then the mismatch term, the normalization
amplitude, the gain of the probe, and the magnitude of the integration of the
relative near-field data.

For a typical measurement, the gain of the probe is approximately 6 dB
with an uncertainty of about 0.1 dB. The magnitude of aﬁ is approximately
equal to the ratio of gains of the probe and test antenna, and is usually
on the order of 20-40 dB with an uncertainty of about 0.05 to 0.10 dB. These
uncertainties in Gr(O) and Iaﬁl are the major errors in G(0), as will be more

apparent when a specific example is considered in the next section.
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The errers in beam width can be obtained directly from the analysis of
errors in D() since the directivity is proportional to |D(0)|?, aid also to
the product of the beam wicths in two orthogon: ! plines,

Ighy = ID(CY ]2 (168)
where eE ali OR dre the 3 d3 beam widths ir th aziwthal and e evition planes
respectively. If we assume that bp = GA = eb then the beam width error is
given by

AD(0)
Ag, = 0, . (169)

b D(0) b

Expressions for Aeb due to the various sources of error are easily obtained
. . AD(0
from the corresponding equations for D .

A boresight error means that the apparent position of the peak of the
sum pattern or minimum of the difference pattern is shifted slightly from
its true position due to errors in the measured near-field data. In terms
of the previously used notation,

D, (K*e) = D(K), (170)

where £ is the boresight error. Substituting De(5+g) into eq. (25a) the near
field data which will produce this kind of error is given by

B,(P) = B(P)e £°E, (171)
This shows that a linear phase error given by

Ap(P) = € X + ey y (172)

will produce the boresight shift. An error in the instrumentation which is
linear with position is one possible source of this problem. If the maximum
phase error due to instrumentation is denoted by A¢m then this could produce
a shift in the boresight given by

= m o
Ees = = = Ak, | (173)
X
A¢m
Eys = —L—;’- = Aky. (174)

Equations (173) and (174) are valid for a sum pattern but should be
modified slightly for a difference pattern. In section 3.1.2 on z-position
errors, it was found that for a difference pattern the effective linear
term in the worst-case z-position error produced a shift in the position
of the boresight null given by

2m

cq S F 8 =80 (175)
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From the simulation, 8 was found to be approximately equal to 3.0, and so

the boresight error for a difference pattern can be about three times as large
as for a sum pattern for the same maximum position or instrumentation errors.
Since the upper bound errors are desired, we will use the case of a difference
pattern and the boresight error will be given by

ST
€ed = T = 0k, (176)
x
3A¢m
eyd = Ly = Aky. (177)

By expressing kx and k_ in terms of the angles A and E, the above expressions

can be given in terms of angle changes.

2m

kX = sin A cos E (178)

k. = 2T sin E (179

y A )

A = 1 + Eﬁ tan A tan E 380, A (180)

¢ cos A cos E L cos E 27 L
y X

( 300 A

bE, = 1 n (181)
\cos E 2n L

y
where A and E are the direction angles to the boresight direction. A linear

z-position error would also produce this type of change in the far field. If
the maximum z-error is ém, then for the beam at A, E as above, the phase
errors and resultant angle errors are given by,

A¢mz = 9%(cos A cos E)Gm (182)
L 36m
BA, = (1 + = sin A sin E) —|— (183)
Yy X
36m
AE, = (cos A) 5 (184)
y

Also linear x-y position errors can have this effect with the resulting

errors given by

_ _ 6T, .
A¢mx = kX AmX = —X(51n A cos E)Amx (185)

it

6
Ad k. A —%(tan E)A,y (186)

my y my

78



[I‘ SA
AA - [(1 + X sin .\ tar E) tan A] —2X (187)
e L L
Y X
3Am
AE = (Vzp i ..__,,_.X.. (188)
Y Ty

These three types of near field errors are the only ones which can produce
a significant change in the boresight direction of the far-field pattern.

4.0 Application of Error Analysis Results to a Sample Antenna

In the previous sections, general relations have been developed to pre-
dict the errors in far-field parameters which are derived from PNF measure-
ments. In this section we will apply the error equations to a phased array
antenna, using typical values for the errors in near-field data. We will
combine each source of error to arrive at an estimate of the total error
which might occur in such a measurement.

The parameters of the sample antenna will be used in the derived
expressions, along with typical and reasonable estimates of near-field
errors to estimate the accuracy that can be expected. The pertinent antenna
parameters are approximately;

Width = L= 3.65 m
Height = L _ = 3.84 m
Highest operating frequency = f = 4.0 GHz
Wavelength at f = 7.5 cm
Antenna transmit gain = 40.0 dB
Antenna receive gain = 40.0 dB
Beam width = 2.0°
Maximum steering angle, A = + 50°
Maximum steering angle, E = +75°, -50°
Aperture efficiency = n = 50%
Difference pattern minimum = JD(Eb)’ = -30 dB
bK,J

The measurement parameters which are required to make PNF measurements
on this antenna are assumed to be as follows:
Separation distance between probe and array = d = 25 cm

Scan length in x-direction = LX = 6.0m
Scan length in y-direction = Ly = 6.0m
Data point spacings = 6X = 6y = 0.40X = 3 cm

Total number of data points = 201 x 201 = 40,401
Scan speed = 10 cm/sec

Time for one scan = 1 minute

Time for complete two dimensional scan = 4 hours

Position accuracy, Amx = Amy = Gm = A/100 = .08 cm
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Probe gain = Gr(O) = 6.0 dB
Magnitude of normalization

GS(O) - Gr(O) = An = 34 dB
Instrumentation Errors
Phase error = A¢m = 5,0 deg
Amplitude linearity = u = 0.02
Multipath reflection level
20 log Rm(O) £ -40.0 dB
w = 0.20 dB
Using these antenna and scan parameters and the appropriate equations, the
following tables summarize the upper bound errors which could arise in the
near-field measurements. Calculations and results are listed for the condi-
tions where the beam is normal to the array and where it is steered to a
representative direction far from the z-axis, A = 50°, E = 75°, These two
conditions will be referred to in the tables as '"normal' and '"steered.'" The
errors are combined by a direct summation and by a root sum square method to
arrive at two estimates of total error. Since the errors are uncorrelated
and each component is an upper bound, the RSS value is equivalent to at least
a 30 confidence level.

Table 5. Summary of estimated errors in gain.

Error in gain (dB)

Source of Error Equation Used Normal Steered
Receiver nonlinearity = u 142 +0.12 +0.12
Probe gain = Gr(O) 167 £0.10 £0.10
Multiple reflections 152 £0.10 £0.10
Normalization amplitude = Aﬁ 142 £0.12 £0.12
Mismatch factors 167 +0.02 £0.02
x-y Position 84 § 87 +0.003 +0,06
z-Position 132 +0.008 +0,0002
Phase error 144 +0.02 +0.02

RSS Sum +*0.19 +0.20
Sum +0.42 +0.45

Table 6. Summary of estimated errors in monopulse difference minimum.

Error in Difference

Minimum
Source of Error Equation Used Normal Steered
Phase error 144 +1.46 +1.46
z-Position 133 +1.30 +0.21
X-y position 85 § 88 +0.09 +1.20
Receiver nonlinearity 142 £0.12 £0.12
Multiple reflections 152 +0.10 +0.10

RSS Sum *1.96 +1.90
Sum +3,07 +3.09
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Table 7. Summary of estimated errors in a -30 dB sidelobe.

Error in -30 dB

Sidelobe
Source of Error Equation Used Normal Steered
z-Position 134 4,18 £0.69
x-y Position 86 § 89 +0.04 +8.25
Phase error 146 +5.81 +5.81
Receiver nonlinearity 143 +1.86 +1.86
Multiple reflections 155 +3.00 +3.00

RSS Sum +8.0 +10.7
Sum *14.9 +19.71

In the above case of a sidelobe, combining of the four large sources
of error leads to an estimate which is much larger than would ever be realized
in an actual measurement. This is because each of these errors must be a
periodic function of x and/or y with only one frequency component to produce
an error of this magnitude in the sidelobe region, and all four errors must
be of the same frequency to cause the combined error shown in Table 7.
Since each of these errors is uncorrelated to any of the others, it is very
unlikely that they all would be of the same frequency. The magnitude and
periodic character of each of these errors can be easily determined before
measurements are performed to determine where they will produce errors and
how large the errors will be. The system can be adjusted, in the case of
position errors, or corrections applied to the measured data, in the case
of amplitude and phase errors, to guarantee that they will not achieve the
worst-case values shown in Table 7 or combine at one given sidelobe to make
the error even larger. With these factors in mind, it is not unreasonable
to expect that each of the worst-case error components could be reduced by
at least a factor of 3, and that in combining the errors, only one worst-
case component should be added with the others reduced further by a factor
of 10. This assumes that each error is a maximum in a different direction.

With these modifications the sidelobe errors become as shown below in Table 8.

Table 8. Probable error estimates for -30 dB sidelobe.
Error in -30 4B

Sidelobe
Source of Error Equation Used Normal Steered
Phase error 146 *1.,94 £0.20
z-Position 134 £0.58 +0.10
x-y Position 86 & 89 £0.004 +2.75
Receiver nonlinearity 143 +0.19 +0.19
Multiple reflections 152 £0.30 +0.30

RSS Sum +2.06 +2.76
Sum +3.01 +3.54
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Table 9. Estimates of error in beam width.

Beam width error

Source of Error Equation Used Normal(degieered
Amplitude nonlinearity 142 +0.02 +0.02
Phase error 144 £0.001 +0.001
x-y Position 63a & 74 +0.0004 +0.009
z-Position 132 £0.0007 x0.00002

RSS Sum + ,02 +0.02
Sum + ,022 +0.03

Table 10. Estimates of error in boresight direction.

Boresight Error

Source of Error Equation Used Normal Steered
Linear phase 177 or 178 £0.02 £0.07
Linear x-y position 184 or 185 0.00 £0.001
Linear z-position 180 or 181 +0.0004 0.00

RSS Sum +0.02 +0.07
Sum +0.02 £0.071

5.0 Summary and Conclusions

The results of the error analysis developed in this report should have
wide application to a broad class of planar near-field antenna measurements.
They are valuable in estimating the errors which result from such measurements
and have additional use in improving the design of future measurement systems.

The validity of these results has been demonstrated with the computer
simulation, and has also been verified in some respects by two other studies
on PNF errors. An earlier study [5] used computer simulation on a hypo-
thetical near-field distribution to determine significant sources of error.
Because of the specialized nature of the assumed distribution and error func-
tions, the results were primarily of a qualitative nature and of limited
generality, but where they are applicable, they do support the results
obtained here.

Another analysis [6] has recently been done by Yaghjian which used a
different analytical approach to study some of the same sources of error and
antenna types. It is interesting to note that in all cases where Yaghjian
considered the same antenna type and error source, as studied in this report,
the functional form of the error equations was the same as obtained here.

In most cases the cofficients differed, but this is not surprising for upper
bound estimates.
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It should be kept in mind that the error estimates presented here are
upper bounds and that in actual measurements the probable values would be
significantly less. Even with the upper bound estimates, we can conclude
that the measurements performed using PNF techniques are as good, and in some
cases better, than can be achieved on a typical far-field range. The near-
field techniques have a number of otier advantages which also are a strong
consideration in their favor. The antenna can be measured in the production
facility and does not have to be taken to a remote far-field range. This
means that weather is not a factor in performing the tests and the antenna
is not subject to possible damage during installation and measurement on a
high rotator. If problems are discovered in the antenna, adjustments can be
made much easier in the production facility than on a far-field range. It
is also much easier to locate the specific cause of the problem from the
near-field data than from far-field pattern measurements. The amount of
information about the antenna is increased significantly with the near-field
measurements and in addition to the parameters discussed in this report, such
things as effective radiated power, ohmic loss in the antenna, and polariza-
tion parameters are easily obtained. 1In summary, especially in the case of a
large steerable array which requires very special positioning equipment for
far-field measurements, the Planar Near-Field Techniques are easier to imple-
ment and can produce higher accuracy and more complete results.
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