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SCATTERING -MATRIX DESCRIPTION AND NEAR-FIELD MEASUREMENTS

OF ELECTROACOUSTIC TRANSDUCERS

David M. Kerns

ABSTRACT

Recently developed and successfully applied
analytical techniques for the measurement of micro-
wave antennas at reduced distances are "translated"
into corresponding techniques for the measurement
of electroacoustic transducers in fluids. The basic
theory is formulated in scattering-matrix form and
emphasizes the use of plane-wave spectra for the
representation of sound fields. This theory, in
contrast to those based on asymptotic description
of transducer characteristics, is suitable for the
formulation and solution of problems involving inter
actions at arbitrary distances. Two new techniques
(in particular) are described: One, utilizing de-
convolution of planar scanning data, taken with a
known transducer at distances d which may be much

2
less than the Rayleigh distance dD (= D /2A), pro-

vides a means of obtaining complete effective
directivity functions, corrected for the effects
of the measuring transducer . Applicability of a
Xtwo- dimensional, spatial) sampling theorem and the
"fast Fourier transform" algorithm, which greatly
facilitate the necessary computations, is shown.
The second technique provides a means of extra-
polating received signal as a function of distance
(observed with d ^ d D ) to obtain on-axis values of

K
effective directivity. Other possible applications
are indicated. These techniques rigorously utilize
observed output of non-ideal (but linear) measuring
transducers

.

Key words : Electroacoustic transducer measurement
techniques ; near-field measurement techniques;
scattering matrix description of electroacoustic
transducers

.



1. INTRODUCTION

Recently, a considerable amount of experimental,

computational, and theoretical work in the development of

new techniques for measurement of microwave antennas at re-

duced distances has been successfully completed [1-6]* at

the National Bureau of Standards (and the work is continuing)

It seems more than likely that analogous techniques may be

found useful in the measurement of electroacoust ic trans-

ducers. The main purpose of this paper is to "translate"

some of the new electromagnetic techniques into the cor-

responding acoustic techniques. This entails reformulation

of some of the scattering-matrix formulation that has been

used in the electromagnetic problems, and it is suggested

that this formulation may be found useful and fruitful in

acoustics --as it has been in electromagnetics. In this new

formulation, "antenna" is replaced by "transducer" and free

"space" is replaced by homogeneous, nonviscous, stationary

"fluid." All devices, both in the original theory and in

this application, must exhibit linear behavior (at least

from an external point of view), and small -amplitude

(linearized) equations of sound propagation are assumed.

The resulting theoretical structure is otherwise essentially

free of restrictive assumptions and built-in approximations.

(A similar statement applies in the electromagnetic case,

with the helpful feature there that Maxwell's equations are

not inherently non-linear.)

For fluids, the governing differential equations

(eqs 2-2) are appreciably simpler than Maxwell's equations

and consequently the scattering matrix formulation in the

acoustics case is appreciably simpler than in the electro-

magnetics case. On the other hand, the derivation of

^Figures in brackets indicate the literature references at
the end of this paper.



supporting theorems of appreciable generality, such as those

for reciprocity and adjoint reciprocity [13] , is of course

more complicated in the electroacoustics case than in the

purely electromagnetic case. However, the reciprocity rela-

tions can easily be stated and applied in the plane-wave

scattering-matrix formalism, and those needed are stated

and applied in this paper.

The new techniques seem likely to be of most interest

for transducers of moderate to high directivity. In dis-

cussing transducer separation distances required for meas-

urement purposes, we assume (1) kD >> 1, where k = 2tt/A is

the magnitude of the pertinent propagation vector and D is

a representative transverse dimension of the transducer

aperture, and (2) applicability of the concept of the
2

Rayleigh distance, d
R , defined as D /(2A). This type of

case appears to present the most severe distance requirements

We next give an introductory discussion of the two

measurement techniques mentioned in the abstract, both of

which enable accurate measurements to be made at reduced

distances

.

The first of these, the planar scan-deconvolution

technique (including application of a spatial sampling

theorem) was formulated for antennas by Kerns [1] . Experi-

mental results have been given by Baird e_t a_l. [3] and by

Joy and Paris [7]

.

Thus, in figure 1, we suppose that the radiating

characteristic (i.e., the spectrum S,
n
(K)*) of the trans-

ducer on the left is to be determined with a known measuring

*Later in this paper, it is shown how the radiating and re-
ceiving characteristics of transducers may respectively be
described in terms of plane-wave spectral functions such as
S
10

(K) and Sq,(K), where K is a variable specifying the

direction associated with each spectral component.



z=0 z=z z = z' z=d

Figure 1. Transmission system -- schematic.

transducer (i.e. one with S
ni

(K) known) on the right, which

is used to scan the field of the transmitter in a trans-

verse plane (z = const.) a short distance (d << d
R ) away

from the transmitter. If, as is required in this technique,

multiple reflections between the transducers are negligible,

the radiated spectrum is given by the Fourier transform of

the acoustic pressure in the measurement plane. What we may

call an ideal probe would measure this pressure directly,

even in the near field; an actual probe, however, yields a

response given by a convolution integral involving both the

structure of the pressure distribution and the characteristics

of the probe itself. In § 4 we give a rigorous analytical

technique for obtaining the true spectrum, S,~(K), of the

unknown transducer, corrected for the effects of an arbitrary,

but known receiving transducer.

A knowledge of S,
n
(K) enables one to find the pressure

field that would be produced by the transmitting transducer

in the absence of the receiving transducer. The pressure



distribution in a transverse plane z = z~, say, at any

distance beyond (and within limits, inside) the measurement

plane is given by a Fourier integral depending on S,
n
(K)

and on z
?

(eq 2-9b); in the limit of large distance, the

far-field (hence far-field pattern) is given almost directly

in terms of S,
n
(K) (eq 2-12).

The second analytical technique to be described here is

identifiable as an extrapolation technique. This technique

was introduced for antennas by Wacker and Bowman, has been

described very briefly by Newell and Kerns [4], and, more

fully, in an experimentally oriented paper, by Newell

et al . [5] . The theory and numerical techniques were developed

by Wacker [6]. In the extrapolation technique, one observes

the received signal as a function of separation distance d

(fig. 1), and it is not necessary to assume that multiple

reflections are negligible. For a given axial alignment of

the transducers involved, the technique yields only on-axis

data and requires only on-axis characterization of the re-

ceiving transducer. It should permit measurements to be

made with d ^ d„ with accuracy equal to that attainable by

conventional means only with d >> d D .

In the above discussion of the near-field scanning and

the extrapolation techniques, we have assumed for definiteness

that an unknown transmitting transducer was to be measured

with a known receiving one. However (as is necessarily the

case) , what is basically measured is the product of two

factors, one (S-,
n ) characteristic of the transmitting

transducer and one (S
ni ) characteristic of the receiving

transducer. This means that data (obtained at reduced

distances) can be used in additional ways (which are

familiar in transducer or antenna measurements, or both):



The receiving characteristic may be determined if the trans-

mitting characteristic is known; on-axis (K = 0) charac-

teristics of two identical unknown transducers (subject to

a reciprocity or equivalent relation) can be determined;

three dissimilar unknown transducers can be calibrated,

provided at least one satisfies a reciprocity relation.

The transverse scanning technique offers still another

measurement possibility, which may well be new: Charac-

teristics of two identical transducers obeying reciprocity

and possessing symmetry with respect to an axial plane

(e.g., y = 0) may be determined for all K (corresponding

to real directions with z > 0) from one complete transverse

scan. This last possibility is to some extent peculiar to

the acoustics case; the corresponding achievement using two

identical antennas requires higher symmetry. Equations for

the application of the planar scan-deconvolution technique

to the two- identical transducer measurement problem are

readily derivable with the aid of the formulation given in

this paper. The corresponding antenna measurement problem

is discussed in [2].

The problem of determining far-field characteristics

from near-field data, particularly for large underwater

sound transducers, has received a good deal of attention

in the literature. Apparently two main approaches have

evolved: (1) Far-field simulation by large phased arrays,

which produce (or respond to) a locally approximate plane-

wave in their near-field regions [8, 9] -- Measurements

on devices placed in the substantially uniform portion of

such near fields are essentially direct. (2) Application

of Kirchhoff diffraction theory, using the free-space

Green's function [10, 11] -- This requires both pressure and



normal velocity data over the chosen measurement surface.

Although accuracies of ± 1 dB have been reported, higher

accuracy may be limited by the difficulty of obtaining or

approximating normal velocity data, as well as by inaccuracy

in pressure data yielded by non- ideal measuring transducers

in the near-field.

It should be observed that the use of a Green's function

satisfying homogeneous Dirichlet boundary conditions on the

chosen measurement surface (and vanishing properly at infinity)

would eliminate the need for normal velocity data and thus

solve this particular part of the measurement problem. For

sufficiently simple surfaces (e.g., cylindrical and spherical)

such Green's functions may be found in the form of modal ex-

pansions; in the particular case of a plane surface, a

suitable Green's function may be constructed (in closed form)

as an antisymmetric combination of free-space Green's

functions

.

Apparently the plane -wave scattering-matrix approach

has not previously been formulated for acoustics applica-

tions.* The power of this approach is perhaps most evident

in the ease of formulation and the potential advantages of

the planar scanning-deconvolution technique (above and § 4)

.

This particular technique seems likely to be most applicable

when relatively complete pattern information is needed for

transducers of moderate to high directivity. The potential

advantages include: (1) The ability to make measurements

with separation distances much less than the Rayleigh distance

(or at any convenient distance). (2) The ability to use, and

correct for the effects of, a single non-ideal (but well

characterized) measuring transducer. (3) The applicability

of a (two-dimensional, spatial) sampling theorem and the

*This paper reproduces the substance of an unpublished NBS
report [24]. A talk on the subject was given by the author
at the 84th meeting of the Acoustical Society of America,
Miami Beach, Florida, 28 November - 1 December, 1972.



highly efficient "fast Fourier transform" algorithm in the

required computations.

2. SCATTERING -MATRIX DESCRIPTION OF TRANSDUCERS

Let us consider first the system shown schematically on

the left in figure 1. The transducer we wish to consider

relates phenomena occurring on the reference surfaces S
n

and

z = z, . Connection to a (shielded) source or load by means

of electrical waveguide (such as coaxial transmission line)

is perhaps suggested by the figure, but other means of con-

nection (e.g., by wire) are not excluded. The connection

might indeed be acoustic waveguide, but this case will not

be considered explicitly. Whatever the terminal variables

are, we wish to consider them expressed at least formally in

terms of traveling-wave components. In the electrical case,

phasor wave amplitudes a
n

and b
n

for incident and emergent

waves at S
n

may be defined in terms of voltage V"
n

and current

I
fl

by the equations V"
n

= a
n

+ b~ and I
n

= (a~ - b
n
)ri

n , where

n n
is characteristic admittance. (We remark that V

n
and I

n

could be used directly, but the variables chosen are better

suited to the application of the scattering matrix concept.)

Assuming peak-value normalization, the net time-average

power input to the transducer at S
n

is given by

p 7 VKI 2
- l

b ol
2
)> v-v

where the vertical bars denote absolute values.

Propagation in the fluid medium surrounding the transducer

is governed by the equations

p Q
c V«u - loop,

Vp = ioop
o
u, (2-2)



where p is the mean fluid density, c is the characteristic

speed of propagation, u is the acoustic particle velocity, p

is the acoustic pressure, and exp(-icjt) time dependence has

been assumed.

We employ a coordinate system Oxyz with unit vectors

e , e , and e , and let k denote the propagation vector for—x ' —y ' —Z ' — r r 6

plane waves in the fluid surrounding the transducer, k will

be regarded as a function of its transverse components k ,

k (throughout this discussion "transverse" means perpendi-

cular to the z-direction) ; the z-component of k is then

k = ± y,
z '

'

2 2 2 2 2 2 2
where y = (k -k - k ) and k = go /c . The transverse

' v x y
J '

part of k is denoted by K, so that K = k e + k e , andr — ' _

»

— x—x y—y

'

Y = (k 2
- K 2 ) 2̂

,

2 2
where y is taken positive for K < k and positive imaginary

2 2
for K > k . We note that a plane wave solution expfik^r)

of eqs (2-2) for p may be written in the form

(2-3)
iYZ iK'R

e ' e — —

,

where r_ = R + ze , and we also note that both propagated

(homogeneous) and evanescent (inhomogeneous) plane waves

are represented.

For the pressure p and for the z-component of the

particle velocity u , we introduce the plane -wave (Fourier

integral) representations

r \ 1 r T\^rv\ ^YZ r -,r-\ "iYZ n iK'R JTAp(r) = — / [b(K)e r + a(K)e T

] e dK, (2-4a)
2tt

u
z (l) = — / n(K) [b(K)e lYZ - a(K)e" 1YZ

] e
1^'^ dK, ( 2 -4b)

2tt



where n (K) = y/( w P ) is the z -component of wave admittance

for plane waves in the medium. Here and in subsequent

expressions of this type, dK is an abbreviation for dk dk

and integration over the infinite k , k plane is to be

understood. The spectral density functions a(K) and b(K)

for incoming and outgoing waves, respectively, are defined

by eq (4); these are the modal terminal variables, analogous

to a
n

and b
n

, for incoming and outgoing plane waves, referred

to the plane S-. (z = 0) as a phase reference or "terminal"

surface. Explicit expressions for b(K) and a(K) may be

obtained by inversion of the preceding equations:

b(K) = - / (p + n
_1
u ) e"

1-'- dR (2-5a)
4tt

Z

a(K) = - / (p - n
_1
u ) e"

1-'- dR (2-5b)
4tt

z

Integrations of this type are to be taken over all values of

x and y in any suitable fixed plane z = const, (here z > z
n

) .

-I
l

(n , which is independent of the space coordinates, is

written inside the integral sign merely for convenience.)

The spectral functions b(K) and a(K) are independent of z

(although this may not be immediately apparent in eq (5)),

and their phases are automatically referred to the plane

z = 0.

In the absence of incident waves [a(K) = 0] , b(K) may

be related to p or to u ; in terms of p on z = z
1

,

b(K) = / p(R,z
1

) e - - dR. (2-6)
2tt

l

10



Again in the absence of incident waves, time -average power

radiated into z > is given by

P
rad

= 2" ^ / pu
z

dR = ^- / n(K)|b(K)| 2 dK, (2-7)

where the superposed bar indicates the complex conjugate and,

as indicated by the notation below the integral sign,

evanescent waves are excluded from the K-integrat ion

.

The transducer scattering matrix is the detailed

expression of the linear behavior of the device under all

possible excitations by incident waves. That is, a set of

outgoing wave-amplitudes [b
n

and b(K)] will be determined

linearly by a set of incident wave -amplitudes [a~ and a(K)],

and we write this in the form

b = S
00

a + f S
01 CK)a(KJ

dK, (2-8a)

b(K) = S
1Q

(K)a + / S
11

(K,K , )a(K') dK' , (2-8b)

thereby defining the scattering matrix for the transducer

considered. [It is convenient and seems appropriate to use

the term "matrix" here even though one must think of rows

and columns labeled both by discrete indices (0, 1) and by

indices (k , k ) having continuous ranges.] Evidently, the

functions S
ni

and S-.
n

respectively embody the receiving prop-

erties and the radiating properties of the transducer; S
nr)

is

essentially an ordinary reflection coefficient expressing

mismatch at the transducer input, and S-. , is the kernel of

the transformation expressing the scattering (into z > 0)

of waves incident on the transducer from the right.*

^Equation (8) provides only a "one-side" description of a
transducer. A complete plane -wave scattering-matrix descrip-
tion may be obtained by "enclosing" the transducer between
two reference planes and considering incident and emergent
spectra on both planes. However, in all the problems con-
sidered or mentioned in this paper, a one-side (right- or
left-side) description is all that is needed for any one
transducer.

11



Let us examine the definitions of S^, and S,
n

(the

quantities that will receive the most attention) and restate

them somewhat more physically.

We note that, according to eq (5), an incident plane

wave with p = A exp (ik • r) /2tt corresponds to the delta- function

spectrum a(K') = A 6(k' - k )6(k' - k ); putting this spectrum

in eq (8a), we see that S
n
,(K) represents the received signal

b
n

as a function of direction of incident plane waves,

normalized to A = 1

.

According to eq (8b), S, „ (K) represents the spectrum

tgoing waves u:

Hence , from eq (6)

,

of outgoing waves under the conditions a(K) = , a„ = 1

.

10©
iyzi -iK-R

2-rra,

/ p(R,z
1

) e - - dR, (2-9a)

that is, S-,
n
(K) may be defined in terms of the Fourier trans

form of the pressure field obtaining on the plane z = z, in

the absence of incident waves, normalized to a» = 1. (Here

z, , and in the next paragraph z^ , represent any planes "in

front of" the considered transducer.)

If we multiply eq (2-9a) by exp(iyz-.), take the inverse

Fourier transform, and evaluate for z = z~ , we obtain

p(R,z
2

) = -° / [S
1Q

(K)e
2tt

iyz 2l iK»R Av
'

] e — — dK . (2-9b)

This exhibits p(R,z
?

) as a functional of S,
n
(K) . (To evaluate

p(R,z
7

) by numerical calculation one would naturally use the

fast Fourier transform.)

It is an important convenience to have a more compact

formulation of eq (8) . We can secure this by introducing

function vectors and by making more use of matrix-algebraic

concepts. We first define the column matrices

V V
y

,b j

12



in which a and b may themselves be regarded as column

matrices corresponding to the functions a(K) and b(K).

That is to say, the elements of these column matrices are

labeled or indexed according to the values of K and have the

values a^K) and b (K) , respectively. The transformation from

the set of incident waves to the set of emergent waves is

now written

fb i

b
I J

fs s 1^00 ^01 a
o

•\ /v /s

s
10

s
11

a

Here S
nf)

, S
ni , S,

n , and S
1

. may be thought of as point, row

column, and square submatrices , respectively, in a

partioning of a grand matrix S representing the whole

transformation. On performing the implied matrix multipli-

cation, we obtain

b S
00

a + S
01

a »

b " S
10

a + S
ll

a ' (2-10)

The various kinds of products, such as S
ni

a and S^a,
appearing here are defined by comparison with eq (8)

.

Transducers may be classified as reciprocal, anti

reciprocal,* or non-reciprocal, in accordance with the

following definitions: In the reciprocal and the anti

reciprocal cases, the receiving characteristic and the

transmitting characteristic are subject to

n s
Q1

(K) = ± n(K)S10 (-K) (2-lla)

*We use the term "antireciprocal" in extension of its use for
2-ports by McMillan [23]. An antireciprocal 2-port is es-
sentially what is identified by the more recent term "gyrator."

13



with the upper and the lower sign, respectively.* In both

these cases the scattering function S, , will be subject to

Y K
Sn (K,L) = y L

Sn (-L,-K), (2-llb)

where y v denotes y as a function of K. If these conditions

do not apply, we may call the transducer non-reciprocal.

[Eqs 11 (with the plus sign in eq 11a) are closely analogous

to the reciprocity relations in the plane-wave scattering

matrix description of antennas [12].]

Yaghjian [13] provides derivations of eqs (H) and a

basic discussion of their relationship to the form of

reciprocity relations given in the classical papers of

Foldy and Primakoff [14, 15]. We mention here the following

implications of eqs (11): (1) Eq (11a) implies the electro-

acoustic reciprocity theorem discussed by Foldy and Primakoff

[14, eq 51] and others. (2) Eq (11a) implies eq (15) (below).

(3) Eqs (11) holding for each of two transducers in a trans-

mission system imply the relation n n
M = ± n

n
M, ~ for the

elements of the scattering matrix of the system 2-port

(eq 3-10). Except for the possible occurrence of the

minus sign, this is the normal expression of reciprocity for

2-ports with lead characteristic impedances not necessarily

equal [16 ]

.

We note that p(r) is given asymptotically at large

distances r by

p(r) ^ - ik|cos 9 |S
10

(Rk/r)a e
lkr

/r ; C2-12)

*The occurrence of the argument -K in one side of eq (Ha)
means that the equation relates radiating and receiving charac
teristics in the line of a given propagation vector k (if an
outgoing spectral component has propagation vector k, the
corresponding incoming plane wave has propagation vector -k) .
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the angle 6 introduced here is the polar angle of r rela-

tive to the z-axis. We have written Rk/r for the argument

of S-.
n ; if we introduce spherical coordinates for r such

that x = r sin 6 cos
<J> , y = r sin 9 sin <j> , z = r cos 9,

we see that S
1 n

is expressed as a function of the angular

coordinates of r.

Another useful asymptotic quantity, here called the

"effective directivity function" and denoted by D , is

defined as

n = power radiated per steradian as a function of direction
e

(net power input to transducer) / (4tt)

(The adjective "effective" is used because in this definition

D is referred to input power, so that D is not merely

relative, but includes effects of internal power losses.)

With the aid of eqs (2) and (12) , D is found to be given

in terms of S
nr)

and S, « by

4^Y k 2 cos 2
9 |S 1n (Rk/r)| 2

D
e (e,<fO = — —

, (2-13)
n (i - Is 00 l

2
)

where Y n is the specific acoustic admittance ( = k/wp = 1/cp )o o

We emphasize that both internal power loss and back radiation

(that into z < 0) may occur. Such losses show up in

diminished magnitude of S,
n ; eq (13) remains valid and

applicable. Further, it can be shown that D is invariant

to the insertion or adjustment of a lossless ("2-port")

component at the transducer input.

The counterpart of D for a transducer functioning in

a receiving mode is the effective area a , defined as P./S,

where P. is the available power at the transducer terminals

and S is the power density per unit area in a plane wave

15



incident on the transducer from a given direction. In the

present framework one finds

a _(6,<D) =
U—^

; • (2-14)
y n - s 2

i* U I

&
oo '

J

Here 6 and
<J)

are the direction angles of the direction from

which the incident wave comes. The quantity a has the same

invariance property as does D . In the event that the trans-

ducer is reciprocal or antireciprocal , in the sense of

eq (11a), then the relation

D
e (6,<fr) = 4^a

e
(9,(J))/X

2
(2-15)

holds. The analogous relation is well known in antenna

theory.

Thus far we have been concerned with the description

of a single transducer. In a sense, a single transducer

by itself can be of no interest. It is obviously important

to consider the interaction of two transducers coupled

through the acoustic medium, forming a "transmission system."

This is done in the next section, with emphasis upon inter-

action at arbitrary distances.

3. SCATTERING-MATRIX ANALYSIS OF

COUPLED TRANSDUCERS

We consider a transmission system consisting of a

radiating system and a receiving system operating in a

given free fluid.

For the description of the active terminal, we apply

eq (2-10) directly:

•\ /s

b
o

s
oo

a
o

+ s
oi

a '

•s. /\

b = S
10

a
Q

+ S-^a. (3-1)

16



These equations are set up with reference to terminal sur-

faces S
n

and S, , the latter being at z = in the coordinate

system Oxyz (fig. 1)

.

Using primes to distinguish quantities associated with

the passive terminal, we write

b = S
00

a + S
01

a
'

b = S
1Q

a + S
1;L

a . (3-2)

For these equations, the terminal surfaces are S~ and S-, , the

latter being z = d in the coordinate system Oxyz. Note that

these equations describe receiving, transmitting, and

scattering characteristics for directions in the z <

hemisphere, with the transducer in its desired orientation.

A minor extension of the definitions used in eq (1) is

implicit.

The third element of the transmission system under

consideration is the section of "waveguide" between the

terminal surfaces S, and S, . We need the matrix description

of this element, too; fortunately, under the simple condi-

tions postulated for the transmission path, we can actually

write this matrix explicitly. We can arrive at the needed

relations by momentarily considering an axial translation

of the terminal surface S, from z = to z = d, , say. From

eq (2-4), the new spectral density functions for the outgoing

and incoming waves would be simply b(K)exp(iyd, ) and

a(K)exp(-iyd, ) , respectively. By taking d, = d and applying

the evident joining equations, we obtain

b(K)e
iyd

= a'(K), (3-3)

a(K)e"
lyd

= b'(K). (3-4)

17



These equations are intuitively evident once the underlying

conventions are clearly established. Now, with respect to

the transmission path as an element of the system, the set

of incident waves is represented by b and b' and the set of

emergent waves is represented by a and a'. Thus, from

eqs (3) and (4) , the matrix description of this element is

a
I (o T' (b

'

As

[t lb 'J

where the elements of T are

T(K;L) = 6(k - I) fi(k I ) e^® d
x x' v y y-

This is equivalent to the two separate transformations

a = Tb '

,

a' = Tb. (3-5)

We are now in a position to obtain a complete formal

solution for the behavior of the transmission system under

consideration. That is, we can obtain expressions for both
t

b
n

and b
n , valid at arbitrary distances and including the

effects of multiple reflections. (We can also formally

determine the field in the transmission path.) The procedure

involves only straightforward combination of eqs (1) , (2)

,

and (5), using rules of matrix algebra. An inspection of

the following intermediate results will make the final

results more intelligible. We assume that the receiving

transducer is terminated with a passive, reflectionless

load. Then we find first

/\. /\ f /\

a = Tb' = TS 11'
= TSnTb. (3-6)

18



The operator TS-..T appearing here is the description of the

receiving system, as a passive scattering object, referred

to the reference plane S, of the transmitting transducer.

Since this operator recurs frequently, we denote it briefly

by R' . Substituting eq (6) in eq (1), we obtain

/\ S\ /N.

b = S
10

a
Q

+ S
11

R'b, (3-7)

which (at least when written out more fully) is seen to be
/N.

an integral equation determining b. (It may be identified

as an inhomogeneous integral equation of the second kind.)

The solution may be indicated formally by writing

b = (1 - S^n^S^ag. (3-8)

This gives us the spectrum of outgoing waves in the trans-

mission path; it includes both the simple plane waves and

the evanescent waves. (a is now determined by eq 6, and

p(r) and u (j_) are determined by eq 2-4.) Of several
""

Li

available constructive procedures for the solution of the

basic integral equation, the Liouville -Neumann method of

successive substitutions seems most appropriate in the present

physical context. This leads to a representation of the

inverse operator in eq (8) in a series [analogous to the

geometric series for the algebraic expression 1/(1 - x) ]

;

the result is

b = [1 + Sn R' + (S
11

R») 2 + ---]S
10

a
Q

. (3-9)

The successive terms in this series correspond to successive

round-trip multiple reflections between the transmitting

and the receiving transducers. Convergence must be

expected on physical grounds. The rapidity of convergence

19



depends upon the "smallness" of the product S.. ..R
1

, and it

worth noting that this product depends upon both S
n n

and

S, (as well as upon the distance between the transducers)

.

We complete this analysis by calculating the scattering

matrix of the "system 2-port," which has its terminals at
»

S
n

and S
n

and is defined by the equations

b
Q

= Mn a + M
12

aQ,

i

(3-10)

b = M
21

a + M
22

a 0'

(The properties of a transmission system are often conven-

iently embodied in this form) . Inasmuch as we have put

a~ = , solving for b
n
/a

n
and for b

n
/a

n
yields directly

M
ll

= S 00
+ V' C1 " ^iiR'O'^io, (3-11)

M
21

= S^Td - S
11

R')"
1
S
1Q

. (3-12)

A similar alternative solution with a
n

= and a^. f yields

M22
= S 00

+ ^oxRCl " S^R)' 1^, (3-13)

M12
= hl^ 1 " S^R)" 1^, (3-14)

where R = TS,,T. (Formally identical equations hold in the

purely electromagnetic (antenna) context [17].)

Although the kernel in the basic integral equation

(and iterated in eq 9) may indeed be complicated, we empha-

size that the above analysis is not completely formal. It

provides a basis for further useful analysis, some of which

is described in § 5 and in an appendix to this paper; com-

plete analytical solutions can be obtained in interesting

special cases

.
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In the measurement technique to described in § 4 , we

assume that the effects of reflections between transducers

have been minimized and may be neglected. (This would not

seem to be an unusual requirement. What may be unusual is

that the measurement technique to be described in § 5 pro-

vides a means of coping with proximity effects and with

multiple reflections between transducers.) When such reflec

tions are omitted, eqs (12) and (13) become 1VL, = S
ni

TS,
n

and M22
= S

on , respectively. If the (passive) termination

on the receiving transducer has reflection coefficient I\ ,

we obtain from eq (10)

b = F,S
01

TS
10

a0»

• -i
where F f = (1 - r

T
S
nfJ is a circuit "reflection factor."

More explicitly, we have

t

b
iyd

= a F' / S
01

(K)S
10
(K)e^ dK. (3-15a)

The integral appearing in this equation is here named the

(acoustic) "transmission integral" and is given a special

symbol

:

V(d) = / SQ
1
(K)S

10
(K)e

lyd
dK. (3-15b)

The product S
fil

S, „ in the integrand we call the "spectral

coupling product." Equation (15b) is the acoustic analog

of the transmission integral employed, e.g., in [1] . (The

only formal difference is that in the electromagnetic case,

the coupling product is the scalar product of two 2-

component vectors, which contain polarization information.)

In order to exhibit some of the content of eqs (15a)

and (15b) (but not for the present applications) we note

that a well-known type of transmission formula, analogous
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to the Friis transmission formula in antenna theory, can

be derived from the asymptotic form of eq (15a) . The

asymptotic form in question is

1 ' i Vd
b
Q

* -2TrikF l S
01

(0)S
10

(0)a e
1KQ

/d. (3-16)

If we now calculate the ratio of the available power at the

receiving transducer terminals to the net input power at

the transmitting transducer terminals, we obtain

P
A

D
e C0)a' CO)

_L = _e e
^

(3-17)
P
Q

4TTd 2

where D (0) pertains to the transmitting transducer, cr'(0)

pertains to the receiving transducer, and we have used

eqs (2-13) and (2-14) .

We mention one more important result, contained in

eq (3-11) (and, similarly, in eq 3-13) : The first iterated

integral in the Liouville -Neumann series for M, , is

iy„d , iy
T
d

$(d) = / S
Q1

(K)e
K

dK / S
11

(K,L)S
10

(L)e
L

dL, (3-18)
K L

where yK denotes y as a function of K. This is called the

(acoustic) reflection integral. It is the simplest integral

involving a reflection or scattering process. It can be inter-

preted as a basic monostatic sonar equation, which, apart

from multiple reflections between target and transceiver, is

valid at arbitrary distances. Examples of the use of the

purely electromagnetic analog of eq (18) may be found in [12].
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4. TRANSVERSE SCANNING AND DECONVOLUTIQN

We can now quite easily give the promised analytical
t

basis for determining the coupling product S
n1

S in from

near-field transverse scanning data. The significance of

determining this product was indicated in § 1

.

Let the required relative transverse displacement

between the transmitting and the receiving transducer be

denoted by a transverse displacement P = xe + ye of theJ r — —x ' —

y

receiving transducer (fig. 1) . This requires modification

of eq (3-15a):by considering the phase k*r of the waves in

the spectrum incident upon the receiving transducer, one

readily finds that a phase factor exp(iK»R) must be supplied

in the integrand. Equation (3-15a) thus becomes

I)q(P) = a
Q
F' / e

1^^SQ
1
(K)S

10
(K)e

lyd
dK. (4-1)

Note that the quantity b (P) is what is observed in the

measurement process; it may or may not be simply related to

the pressure p(r) at the point r = (P,d). The value of the

product S
01

S.
n

in the integrand is what is sought. Inasmuch

as eq (1) represents a Fourier integral transformation,

its inversion is immediate:

e ' , n
' , n -* -iK>P

soiWs 10
(K) = f hoW e d^- C 4

" 2 )

47T
2 F'a,

The inversion of eq (1) is appropriately and usefully termed

"deconvolution .

" This is appropriate because both factors,

S
n

-. and S,
n

, can be interpreted as Fourier transforms of

certain physical fields. It is useful because it helps to

emphasize the distinction between eq (2) and the simpler

equation representing the definition of S,
n

(eq 2-9a).
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We note that eq (2) contains the factor b
Q
(P)/a

n
; the

occurrence of this factor is a characteristic of the measure-

ment methods being described. The full exploitation of
t

eq (2) requires that b (P)/a
n

be measured correctly in

magnitude and relative phase.

Clearly the utility of this result depends upon one's

ability to evaluate the transform of the empirically

observed b~(P). In the electromagnetics work, both a two-

dimensional form of sampling theorem [1] and least -squares

fitting have been successfully used [3] to evaluate the required

transform of b~(P) from data taken at the points of a rec-

tangular lattice in the measurement plane. The application

of the sampling theorem has become the method of choice,

mainly because of the greater ease of computation, and will

be described very briefly here.

The essential requirement of the sampling theorem is

that the function to be sampled be representable as the

Fourier transform of a band-limited function. That b
n
(P)

virtually fulfills this condition may be seen from eq (1)

:

a band-limit K
R

somewhat greater than k, and a distance d,

may be chosen so that evanescent waves for all K > K„ are
D

assuredly virtually zero in the measurement plane (e.g.,

with Kg = 1.05k and d = 15X, attenuation at the band limit

is approximately 260 dB) . Band- limit ing within a smaller

spectral region may result from the behavior of the product

^01^—^10^—^ *n ^dividual cases. If we assign band limits

k, 2tt/ X, and k~ = 2tt/A~ for k and k , respectively,

a straightforward generalization of the usual one -dimens ional

theory [18] enables us to replace the integral in eq (2) by

a sum:

siiCeS10 (|) =
e 1Y

,

l
VP^e-iii-Prs. (4-3)

4k,k
?
F'a

n
r,s
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The vectors P = j T
^i-X

+
J s

^2-v C^ith r,s, = ...-1,0,
1,2,. . .) define the measurement lattice, the quantities

»

b
n
(P ) are the (complex) values of probe output directly

observed at the points of the lattice, and the summation goes

over the points of the lattice. According to the sampling

theorem, eq (3) is mathematically exact; that is, if the

data [the t>
n
(P )] were complete and exact, the result would

be exact. The theorem requires an infinite sum, but in the

electromagnetic application we have found that not even all

values measurable above noise are needed. An important

feature of eq (3) is that the highly efficient algorithm

known as the "fast Fourier transform" is rigorously

applicable to evaluate the sum [19].

Our antenna measurement experience using this technique

indicates that using k., = k» = k is satisfactory as a rule-

of-thumb when essentially complete pattern information is

desired. These band limits correspond to a A/2 spacing of

measurement -lattice points and mean that typically a relatively

large number of data are required. Nevertheless, for a

measurement lattice comprising a "moderate" number of points,

the fast-Fourier-transform computation time is nominal.

For example, to obtain complex pattern data in 64 x 64 direc-

tions from a 64 x 64 input data array, the "in-core" computation

time is approximately 1.5 seconds on a CDC 3800 computer.

Figure 2 gives a qualitative idea of results obtained

in a particular case.

5. RECEIVED SIGNAL AS A FUNCTION OF DISTANCE

AND THE EXTRAPOLATION TECHNIQUE

The extrapolation technique was described qualitatively

in § 1 . This technique requires observation of b
n
/a

n
as a

function of transducer separation distance d, which is pre-
t

cisely defined by the choice of reference surfaces S-, and S,
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Figure 2. Far elect ric- field amplitude determined from near-
field data for JPL microwave horn antenna.

Values in 64 x 64 directions specified by the angles
0, (J>

are plotted above the points k = k sin 9 cos
<J>

,

.A.

k = k sin 9 sin cf> and connected by straight- line segments

associated with the respective transducers (fig. 1) . From

the scattering equations for the system two-port, we obtain

the expression

b
Q

= a M
21

/(l - M
22

r
L ),

which is a precise and complete version of eq (3-15a)

Expressions for the elements M-, and M
22 are given in

(5-1)
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eqs (3-12) and (3-13). From these expressions, by a rather

lengthy process, one finds for eq (1) a series representa-

tion of the form

oo oo

b ;
- a

Q
F< I

exp[i(2P + l)kd]
j

-

q>
U U

p =
d
2p + 1 q=0 Pq

where F T is as defined in connection with eq (3-15a) . We

observe that the subseries of terms with a given p represents

the contribution of energy which has experienced 2p reflec-

tions (or made 2p + 1 transits) between transducers. In

particular, the series with p = involves no reflections

and is the expansion of the transmission integral (eq 3-15b)

:

y(d) = 2 1 (A
0Q

+ A
01

d
_1

+ A
Q2

d"
2

+ ...). (5-3)
d

(Since this expansion is in powers of 1/d, it is of asymptotic

type; but since it is convergent under mild restrictions, it

is not merely asymptotic. The derivation and convergence of

this expansion are considered in an appendix). Further,

as shown in the appendix (or by comparison with eq 3-16)

,

we see that

A
0Q

= - 27rikS
(

!

)1
(0)S

10 (0). (5-4)

Hence determination of the leading coefficient in eq (2)

is tantamount to the determination of the (on-axis) value

of the spectral coupling product. The basic idea of what

we may call the conventional measurement method is simply

to have d large enough to make other terms negligible

compared to the leading term of the series. The basic idea
t

of the extrapolation technique is to observe b
n

as a

function of d and to fit this function with as many terms

of eq (2) as may be significant, and so to determine a good

value for A ~ in particular.
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A very brief discussion of the application of this

basic idea in antenna measurements may be of interest and

ina> be indicativt for acoustic applications.
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1 igure 3. Character of data and extrapolation

The extrapolation technique has permitted determination

of Ann
(at a given and high level of precision) from measure

ments made at greatly reduced distances: d ^ d
R

rather
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than d >> dD . The general character of data and of the

extrapolation is indicated in figure 3. The inset enlarge-

ment shows a sample of the small oscillations of the received

signal. These oscillations are of approximate period A/2

and may be interpreted as due to multiple reflections. In

eq (2) , this is represented by interference between terms

with p = and smaller terms of higher order. In the fitting

process, the values of |b
n
(d)d/a

n |

2 were averaged locally,

and the averaged curve was fitted with a 3 or 4 term polynomial

in 1/d. This procedure determines |A
nf) |

(which ordinarily

would be sufficient in acoustic applications) ; the phase of

A „ was determined separately.
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APPENDIX: EXPANSION OF b
Q
(d)/a

The main result in this appendix is the series expan-

sion (in powers of 1/d) of the transmission integral, which

is the most important part of eq (5-2). The origin of the

complete expression of eq (5-2) will be considered very

briefly.

This work was stimulated by the work of Wacker [6] on

the corresponding purely electromagnetic problem, but the

procedure used here is substantially different from that

of Wacker.

For our purposes the mechanical equations of motion

for small vibrations in an electroacoustic transducer may

be presented briefly in the form

-iwp u = V* [c : s] + f nKm— L= — —

1

(A-l)

Here p is quiescent mass density, u is particle velocity,

c_ is the Hooke's tensor, £ is the strain tensor, and f, is

the total body force other than that due directly to £.

All these quantities are functions of position within the

region V of the transducer. The body force £- in general

includes piezoelectric, piezomagnetic, and Lorentz forces.

The first term on the right in eq (1) is more specifically

I
i, j,k,£

-i 7~ (
c
ijk£

sk^ »

dx J

3

(A-2)

where s. is expressed in terms of u by

'k£

i

2w

fa^ 3u^

3x, dx,

(Our notation is coordinated with that of Yagh j ian [13] and

that of Primakoff and Foldy [15]. For details of the

equations of motion see especially Yaghjian.)
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Our first task is to reduce the problem represented by

eq (1) formally to that of prescribed sources operating

in a homogeneous fluid and to obtain expressions for the

plane-wave spectra in the reduced problem. To this end we

add and subtract terms in eq (1) to bring it into the form

-iu)P
o
u - V-fc^s] = F, (A-3)

where p and c are respectively the density and the Hooke's

"tensor" for the ambient medium, and F is a total equivalent

body force given by

F = V«[(c - c ):s] + i(jo(p - p )u + f-, .— L ^= =?cr =J Vl m o^ — —1

The essential features of this rearrangement are that the

constants in the left-hand side are those of the ambient

medium and that F, though unknown in the region V, does

vanish outside V. Now the Hooke's tensor for the ambient

medium is equivalent to the scalar p c 2
, the reciprocal

of the compressibility of the fluid. Taking the divergence

of both sides of eq (3) and simplifying the elastic force

term on the left-hand side we obtain the scalar equation

V
2 V«up c 2

-itop
o
V'U + - = Q, (A-4)

iw

where Q = V»F is the equivalent scalar source distribution.

Equation (4) represents essentially the desired formal reduc-

tion to a problem of prescribed sources in a homogeneous medium,

If we set p(r) = p c 2 V*u/ioo, eq (4) takes the simpler form

V
2
p + k 2

p = Q, (A-5)

where k 2 = oo
2 /c 2

. Furthermore, for points outside V, the

function p(r) is by eq (2-2) identical to the acoustic pres-

sure p(r). We make essential use of this fact in a moment.
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The solution of eq (5) is well known [20] to be

p(r) = L_ / QCl <) - =^— dr\. (A-6)
4tt V

|
r - r '

|

Next, we need the plane -wave representation of the spherical

wave [21 ] in eq (6)

,

e
lk| -~-

! = i_
f y

-l
e i}L- (L-L'l dK, (A-7)

|
r_ - r_'

|

2 tt

where k = +y or -y according as z > z ' or z < z
'

, and the

notation for the integral is that established in § 2 . Con-

sidering a finite region of integration V, taking z greater

than the maximum of z', substituting eq (7) in (6), and

interchanging the order of integrations, we obtain for p(r)

the representation

p(r) = — / y^e 1-*- dK / QCr'je"
1-*-' dr « ,

(A-8)
8tt

2 K V

wherein k = +y. By comparison with eq (2-4a), we see that

this expression contains the spectrum of p(r) for points to

the right of V.

Let us apply eq (8) to the transmitting transducer,

shown on the left in figure 1 and (even more schematically)

in figure 4. If the field is produced by excitation of the

transducer at its electrical terminals by an incident wave

of amplitude a
n

and if we consider points with z > z, , then

the normalized spectrum is just what we have denoted by S,
n

:

S
10

(K) = -i / Q(r)e _i^I dr. (A-9)
4Tra

n Y V

Here the integration goes over the finite region V, and

the variable of integration, r, is measured from 0.
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TRANS. SYSTEM

Figure 4. (a) Domains of Q and Q
,a

; (b) composition of the
vector p.

In order to set up the transmission integral, we need

also a representation for the receiving characteristic of

the receiving transducer. We may obtain this readily and

with great generality from the transmitting characteristic

of the (hypothetical) transducer adjoint to the given re-

ceiving transducer, using the generalized or adjoint

reciprocity relation for electroacoustic transducers, given

by Yaghjian [13]. The relation in question reads

(A-10)
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where the primes refer to the transducer on the right and

SJq refe

given by

S' refers to the adjoint of that transducer. Now, S,' is

s10® = —^~ / Q'V'je" 1^ '^ dr«, (A-ll)
4iTa y V 1

o

where the integration goes over the finite volume V 1 and the

variable of integration, r
'

, is measured from 0' (the point

(0,0,d)). Equation (11) is similar to eq (9) ; k = K_ - ye_

appears since here we are interested in the spectrum to the

left of the sources. Combining the last two equations, we

obtain

Sq
X
(K) = ^ / Q'

a
(r')e

+ i^' dr'. (A-12)
4 ^ a

o
no

wp
o

We can now turn to the evaluation of the transmission

integral, eq (3-15b). We substitute the expressions from

eqs (9) and (12) into the transmission integral and arrange

the integrations as follows.

¥(d) = C, / / dr dr' (HrJQ'^r') / y^e 1-'^ dK. (A-13)
V V K

z
Here C-. absorbs all constant multipliers and £ = r 1

- r + de_

We further let p = /d 2
- 2d Ar cos a + (Ar) 2

, where

Ar = |r' - r| and a is defined in figure 4. By applying

eq (7), we find that the K-integral in eq (13) is pro-

portional to

g(d) = e
ikp

/p. (A-14)

The analytical properties of this expression as a function

of (complex) d are decisive for the behavior of ¥(d) itself.

g(d) has an essential singularity at °°, which we remove by

multiplication by exp(-ikd); it follows from the behavior of
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p as a function of d that the product exp[ik(p - d)]/p is

analytic in the extended plane for |d| > Ar. This means

that the product is representable by a Laurent series con-

taining only negative powers of d,

oo

exp[ik(p - d)]/p = I fnd"
n

, (A-15)
n = l

convergent for d > Ar. The f are functions of r and r'; the& n — — '

first of these functions, which is of special interest, is

easily found to be

f
±

= exp[ik(z' - z)]

.

(A-16)

To obtain the desired evaluation of the transmission integral,

we substitute eq (15) into (13) and integrate term-by- term.

The result is the expansion shown in eq (5-3). Provided that

d > (Ar)
,

(A-17)

where (Ar) denotes the maximum value attainable by Ar asv ; max '

r 1 and r range independently over their respective domains,

it can be shown that series in eq (15) will converge uniform-

ly with respect to r and r' for all r in V and r' in V

.

Hence if |Q|
2 and |Q'

|

2 are integrable in their respective

finite domains -- as is physically reasonable -- the term-

by-term integration can be justified. One may incidentally

verify that the contribution of f, to the series is indeed

the result shown in eq (5-4).

The discussion in this appendix thus far pertains

directly only to the transmission integral, the simplest

but most important term in the Liouville -Neumann series for

M
?

, . The procedure used may be extended to obtain expan-

sions of the iterated integrals. The principal task is to

secure a suitable representation for the scattering functions.

( Cf the purely electromagnetic case [22, § 5].) Convergence

criteria are of the same form as eq (17).
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The main features involved in obtaining eq [5-2) are

the following. We obtain the Liouville -Neumann series for

ML, and ML~ by expanding the inverse operator in the respec-

tive eqs [3-12) and [3-13) . We observe that the terms of ML,

each involve an odd number of transits of energy, the terms

of M
?? involve an even number, and find that the expansion of

an integral involving m transits of energy is of the form

imkd _-. _
?

[C n + C .d"
1

+ C n d~
l

+ ...)• [A-18)
,m v mO ml m2 J v J

Putting this information into eq [5-1), assuming M
7
~r

T
"small"

[ordinarily |M~„r
T

|
will be much less than unity), expanding,

and rearranging ruthlessly, one finds that all resulting terms

represent odd numbers of transits of energy, as written in

eq [5-2) .

36



REFERENCES

[1] D. M. Kerns, "Correction of near-field antenna measure-
ments made with an arbitrary but known measuring
antenna," Electronics Letters, 6_, pp. 346-347 (1970).

[2] D. M. Kerns, "New method of gain measurement using
two identical antennas," Electronics Letters, 6_,

pp. 348-349 (1970).

[3] R. C. Baird, A. C. Newell, P. F. Wacker, and
D. M. Kerns, "Recent experimental results in near-
field antenna measurements," Electronics Letters, 6_,

pp. 349-351 (1970).

[4] A. C. Newell and D. M. Kerns, "Determination of both
polarisation and power gain of antennas by a
generalised 3-antenna measurement method," Electronics
Letters, 7, pp. 68-70 (1971).

[5] A.C. Newell, R.C. Baird, and P.F. Wacker, "Accurate
measurement of antenna gain and polarization at reduced
distances by an extrapolation technique," IEEE Trans.
on Antennas and Propagation, AP - 2

1

, No. 4, pp. 418-431
(July, 1973).

[6] P.F. Wacker, "Theory and numerical techniques for
accurate extrapolation of near-zone antenna and scatter-
ing measurements," unpublished NBS Report (April 1972).

[7] E.B. Joy and D.T. Paris, "Spatial sampling and filtering
in near-field measurements," IEEE Trans, on Antennas
and Propagation, AP - 2 , No. 3, pp. 253-261 (1972).

[8] W.J. Trott, "Underwater-sound transducer calibration
from near-field data," Journal of the Acoustical Society
of America, 36_, pp. 1557-1568 (1964).

[9] G. Pida, "Large nearf ield calibration array" (L)

,

Journal of the Acoustical Society of America, 49 ,

pp. 1683-1686, (1971).

[10] C.W. Horton and G.S. Innis, "Computation of far-field
radiation pattern from measurements made near the
source," Journal of the Acoustical Society of America,
33, pp. 877-880 (1961)

.

37



[11] D.D. Baker, "Determination of far-field characteristics
of large underwater sound transducers from near-field
measurements," Journal of the Acoustical Society of
America, 34, pp. 1737-1744 (1962).

[12] D.M. Kerns and E.S. Dayhoff, "Theory of diffraction in
microwave interferometry ," J. Res. NBS., 64B , No. 1,
pp. 1-13 (Jan. 1960). .

[13] A.D. Yaghjian, "Theory of adjoint reciprocity for
electroacoustic transducers," NBSIR 73-329 (Feb. 1974).

[14] L.L. Foldy and H. Primakoff, "A general theory of
passive linear electroacoustic transducers and the
electroacoustic reciprocity theorem. I," Journal of
the Acoustical Society of America, 1_7, pp. 109-120
(1945)

.

[15] H. Primakoff and L.L. Foldy, "A general theory of
passive linear electroacoustic transducers and the
electroacoustic reciprocity theorem. II," Journal of
the Acoustical Society of America, 19_, pp. 50-58 (1947).

[16] D.M. Kerns and R.W. Beatty, Basic Theory of Wave -

guide Junctions and Introductory Microwave Network
Analysis , pT 4~~6 (Pergamon , 1967) .

~

[17] D.M. Kerns, contribution in "High frequency and microwave
field strength precision measurement seminar," unpublished
NBS Report (March 1966).

[18] D.P. Petersen and D. Middleton, "Sampling and
reconstruction of wave -number- limited functions in
N-dimensional Euclidean spaces," Information and Con-
trol, 5, pp. 279-323 (1962).

[19] N.M. Brenner, "Three FORTRAN programs that perform
the Cooley-Tukey Fourier transform," Tech. Note 1967-2,
Lincoln Lab., M.I.T., Lexington, Mass. (July 1967).

[20] H. Lamb, Hydrodynamics
, p. 501 (Dover, 1945).

[21] L.M. Brekhovskikh, Waves in Layered Media (Trans, from
Russian by David Lieberman)

, p. 239, eqn. 17 (Academic
Press, 1960).

38



[22] D.M. Kerns, "Plane-wave spectra and spectral coupling
products for arbitrary radiating and scattering
systems," unpublished NBS Report (March 1972).

[23] E. M. McMillan, "Violation of the reciprocity theorem
in linear passive electromechanical systems," Journal
of the Acoustical Society of America, 1_8, pp. 344-347
(1946).

[24] D.M. Kerns, "Scattering-matrix description and near-
field measurements of electroacoustic transducers,"
unpublished NBS Report (July 1972).

39



NBS-114A (REV. 7-73)

4. TITLE AND SUBTITLE

Scattering-Matrix Description and Near-Field Measurements
of Electroacoustic Transducers

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS TN-651
2. Gov't Accession

No.
3. Recipient's Accession No.

5. Publication Date

March 1974

6. Performing Organization Code!

7. AUTHOR(S)
David M. Kerns

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS, Boulder Labs
DEPARTMENT OF COMMERCE
Boulder, CO 80302

10. Project/Task/Work Unit No.

2725111
11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Same as Item 9

13. Type of Report & Period
Covered

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

Recently developed and successfully applied analytical techniques for the

measurement of microwave antennas at reduced distances are "translated" into correspond

ing techniques for the measurement of electroacoustic transducers in fluids. The basic

theory is formulated in scattering-matrix form and emphasizes the use of plane-wave
spectra for the representation of sound fields. This theory, in contrast to those base

on asymptotic description of transducer characteristics, is suitable for the formulatic
and solution of problems involving interactions at arbitrary distances. Two new
techniques (in particular) are described: One, utilizing deconvolution of planar scann

ing data, taken with a known transducer at distances d which may be much less than the

2
Rayleigh distance d (= D /2X) , provides a means of obtaining complete effective

R
directivity functions, corrected for the effects of the measuring transducer .

Applicability of a (two-dimensional, spatial) sampling theorem and the "fast Fourier

transform" algorithm, which greatly facilitate the necessary computations, is shown. Thi

second technique provides a means of extrapolating received signal as a function of

distance (observed with d 'v- d ) to obtain on-axis values of effective directivity. Othe
R

possible applications are indicated. These techniques rigorously utilize observed outp

of non-ideal (but linear) measuring transducers.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons

)

Electroacoustic transducer measurement techniques; near-field measurement techniques;

scattering matrix description of electroacoustic transducers.

18. AVAILABILITY [xT Unlimited

_ For Official Distribution. Do Not Release to NTIS

~2 Order From Sup. of Doc, U.S. Government Printing. Office
Washington, D.C. 20402, SD Cat. No. CI 3 4o:b51

~J Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGE

40

22. Price

$ . 50

USCOMM-DC 29042-F

ft U.S. GOVERNMENT PRINTING OFFICE: 1974 _ 78 4-57 5 / 1258 REGION NO. 8



NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in trade,

and (4) technical services to promote public safety. The Bureau consists of the Institute for

Basic Standards, the Institute for Materials Research, the Institute for Applied Technology,

the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United

States of a complete and consistent system of physical measurement; coordinates that system

with measurement systems of other nations; and furnishes essential services leading to accurate

and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas-

urement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear

Sciences
2 — Applied Radiation 2 — Quantum Electronics

3 — Electromagnetics 3 — Time

and Frequency " — Laboratory Astrophysics " — Cryogenics *.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to

improved methods of measurement, standards, and data on the properties of well-characterized

materials needed by industry, commerce, educational institutions, and Government; provides

advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard

Reference Materials and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor

Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote

the use of available technology and to facilitate technological innovation in industry and

Government; cooperates with public and private organizations leading to the development of

technological standards (including mandatory safety standards), codes and methods of test;

and provides technical advice and services to Government agencies upon request. The Institute

consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards — Weights and Measures — Invention and Innova-

tion — Product Evaluation Technology — Electronic Technology — Technical Analysis

— Measurement Engineering — Structures, Materials, and Life Safety * — Building

Environment * — Technical Evaluation and Application 4 — Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research

and provides technical services designed to aid Government agencies in improving cost effec-

tiveness in the conduct of their programs through the selection, acquisition, and effective

utilization of automatic data processing equipment; and serves as the principal focus within

the executive branch for the development of Federal standards for automatic data processing

equipment, techniques, and computer languages. The Institute consists of the following

divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Informa-

tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and
accessibility of scientific information generated within NBS and other agencies of the Federal

Government; promotes the development of the National Standard Reference Data System and

a system of information analysis centers dealing with the broader aspects of the National

Measurement System; provides appropriate services to ensure that the NBS staff has optimum
accessibility to the scientific information of the world. The Office consists of the following

organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical

Publications — Library — Office of International Relations.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address
Washington, D.C. 20234.

a Part of the Center for Radiation Research.
3 Located at Boulder, Colorado 80302.
* Part of the Center for Building Technology.



U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. DC. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215


