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SURVEY OF TH£ PROPERTIES OF THE HYDROGEN ISOTOPES

BELOW THEIR CRITICAL TEMPERATURES

by

H. M. Roder, G. E. Childs, R. D. McCarty, and P. E. Angerhofer

The survey covers PVT, thermodynamic, thermal, transport,

electrical radiative and mechanical properties. All isotopic as well as

ortho-para modifications of hydrogen have been included. Temperatures

are limited to those below the respective critical points, in general

below 40 K. The pressure range is not restricted, that is solid, liquid,

and gas phases are covered. However, with the exception of hydrogen,

very little data exists at pressures other than saturation. The

literature surveyed includes all references available to the Cryogenic

Data Center up to June of 1972, and for several subjects, through

March of 1973. The total number of documents considered was nearly

1500 of which about 10 percent contain pertinent information and are

referenced in this report. The various properties are presented in the

form of tables or graphs; if extensive tables have been published

elsewhere, the reader is referred to the original sources.

Key words: Compilation; density; deuterium; electrical properties;

enthalpy; entropy; fixed points; hydrogen; mechanical properties;

optical properties; specific heat; thermophysical properties; transport

properties; tritium; vapor pressure.



1. Introduction

Hydrogen in solid, slush, and liquid states has long been used in the space industry as

a fuel and a refrigerant, and in nuclear physics as targets for high energy beams and in

bubble chambers. A number of new applications are now being discussed in the context of a

"hydrogen economy" in light of the National energy crisis. These potential applications

include the use of hydrogen as a fuel in automobiles, trains, and core- city refrigeration, the

generation of hydrogen in sea water power plants, its transportation as slush, and power

generation in thermonuclear fusion. A survey of properties of the solid and liquid hydrogens

is therefore very timely.

Coverage

The survey covers a wide range of properties including PVT, thermodynamic, thermal,

transport, electrical, radiative and mechanical. All isotopic as well as ortho-para modifi-

cations of hydrogen have been included. Temperatures are limited to those below the

respective critical points, i. e. , in general below 40 K. The pressure range is not restricted,

that is solid, liquid, and gas phases are covered by the survey. However, with the exception

of hydrogen itself, very little data exist at pressures other than saturation. Whenever the

data tables in the literature are extensive, for example if the single phase gas region or the

compressed liquid states are covered, then we have presented the saturation tables as an

example of the kind of information that is available. The user is referred to the original

sources for additional values. The literature surveyed includes all references available to

the Cryogenic Data Center up to June of 1972. For several subjects, whenever one of the

authors was aware of more recent pertinent papers, the survey extends through March of

1973. The total number of documents considered in this survey was nearly 1500 of which

about 10 percent contain pertinent information and are referenced in this report. Referencing

is done by the accession numbers of the Cryogenic Data Center because it was convenient

for the authors and because we wish to remain compatible with the bibliographies furnished

to the sponsor at the beginning of the contract.

Selection Criteria

In selecting sources of data, a critical evaluation was not made. However, we used

the following guide.

a) If several sets of data exist, which, in our judgement, are the "best data"?

b) Are these values consistent with other properties presented in the report?

c) Are tables or graphs available? Are they in a convenient form?

d) Can we find any values at all - even if estimated?

Quite often we assemble information on all of the hydrogens into a single table to allow rapid

comparison, as for example in the tables of fixed points. In general, if an author presented

both experimental data and a functional representation for the data, then we present the

calculated values because they will be easier to interpolate.



Inconsistencies in the Data

Many inconsistencies or discontinuities exist in the data presented because the values

originate from many diverse sources. Considerable effort would be required to reconcile

the discrepancies between different sources. It is best that the user be forewarned; therefore,

we list a few of the discrepancies which we have found most vexing.

First, of course, is the matter of temperature scales. The NBS-39 scale, the NBS-55

scale, and more recently the IPTS-68 scale have been in common use, and their inter-relation

is fairly well understood. For example, table 2-2 is on the NBS-55 scale, and table 2-3 on

the NBS-39 scale. The triple point temperatures are 13.803 K and 13.813 K; they differ by

0.01 K. Next is the matter of the triple point. Vapor pressure equations for solid and liquid

as well as the melting curve should intersect mathematically at the triple point, yet they

rarely do. Finally, different authors choose different reference states for entropy and

enthalpy. For example, in table 2-2 and 3-2 the reference enthalpy, H -E , is zero for the

ideal gas at 1 atm and K, in table 2-3 the reference enthalpy is zero for the ideal crystal at

K. The enthalpies of the solid at the triple point compare as follows: table 3-2 -740.2

J/mol, table 2-3 21.32 J/mol.

Major References

We would be remiss if we did not point out those references that have been of partic-

ular value to us in this survey. The list is a practical bibliography for those engaged in

research on the hydrogens.

1. The survey paper by Woolley, et al. , 1948 [6368].

2. The thermodynamic calculations by Mullins, et al. , 1961 [12596].

3. The monograph on parahydrogen by Roder, et al. , 1965 [29210] and its equivalent

in engineering units by McCarty and Weber, 1972 [80777],

4. The papers on solid hydrogen by Dwyer, Cook, et al. , ca 1965 [25302, 28604,

29550, 29881, 30327, 34352, 38751].

5. The thermodynamic properties of deuterium by Prydz, 1967 [43781].

6. The Russian survey on hydrogen, Esel'son, et al. , 1969 [Esel 1 son, et al. , 1971].

7. The survey on deuterium by Ludtke and Roder, 1971 [78262].

1.1 Recommendations

We have assembled only such data as is available in the literature; the lack of data for

specific properties will be evident. We suggest that additional analysis, estimation and

measurements should be undertaken to fill some of the gaps uncovered in this survey. In

particular, the removal of inconsistencies in the data, touched upon above, would be highly

desirable. Specific recommendations, separated into short term and longer term items, are

given below:



Short Term Items

1. Maintain a literature file by monitoring the most appropriate journals for new information.

For example, the January 1973 issue of Cryogenics contains an article on the mechanical

properties of solid H2 .

2. Additional analysis to resolve inconsistencies.

a. Re- evaluate the density of saturated solid H3 and D2 by including the most recent

values obtained in the deter mination of the lattice constants. The older volumetric measure-

ments could be off by 1.5%. Estimate solid densities for the other isotopes.

b. Calculate the ideal gas thermodynamic properties for HD, HT and DT for temperatures

below 50 K.

c. Re-analyze the liquid viscosity data especially for D2 since the estimated values for

HT, DT and T 3 depend critically upon the values of D2 .

d. Re-analyze the surface tension data to include the most recent values at temperatures

near critical.

e. Analyze the difference in Debye 9's as obtained from specific heats vs. those obtained

from mechanical properties.

f. Try to establish which mixing rule is the most appropriate, since there is some

evidence that the properties of HT cannot be taken to be equal to those of D2 .

3. Additional estimation to fill critical gaps in the data.

a. Estimate property values, not presently available, at the fixed points.

b. Estimate densities for saturated liquid HT and DT.

c. Estimate thermal diffusivities for all isotopes. Note that the values should vary by

about 4 orders of magnitude.

d. Estimate heats of sublimation for HT, DT, and T3 and try to insure consistency at

the triple point.

e. Estimate C for liquid Ts .

f. Estimate densities of the liquid along the melting lines.

g. Summarize the information above in temperature- entropy diagrams.

Longer Term Items

1. A more detailed survey of ortho-para conversion, of electromagnetic radiation interaction

with the hydrogens, and of the mixture properties is in order. These topics were slighted in

this survey through limitations in time and funding.

2. The PVT surface of parahydrogen should be improved by considering a) additional

melting~pr es.sures close to the triple point, b) index of refraction measurements which yield

a better critical point, c) the IPTS-68 scale, and d) recent accurate experimental

measurements of the latent heat of vaporization.

3. The PVT surface of normal hydrogen should be correlated.



4. Remeasure the vapor pressures of the hydrogens. Almost all of the older experiments

used the vapor pressure as the basic thermometer, and if any of the older information is

to be made consistent and useful the temperature scale problem including the triple point

discrepancies must be resolved.

5. Measure the thermal conductivity of solid and liquid D2 , the present uncertainty is at

least 20%.

6. Measure the viscosity of liquid D2 . Values are basic to the estimation of the viscosities

of HT, DT and T 2 but have an uncertainty of at least 10%.

7. Measure the heats of fusion for all isotopes except H2 and D2 .

8. Examine the possibility of an additional phase transition in solid hydrogen.

2. PVT PROPERTIES

2. 1 Crystal Structure

Lattice Parameter

Hydrogen is an extremely interesting solid because for certain isotopic compositions

it may undergo a transition at low temperatures. This transition has been studied by x-ray

diffraction, electron diffraction, neutron diffraction, nmr [29574], and infrared absorption

[30699]. In general all hydrogen isotopes solidify in the hexagonal close packed (hep) structure,

particularly if cooled from the liquid state. Parahydrogen and orthodeuterium appear to be

stable in hep down to the lowest temperatures investigated. In contrast, H3 rich in the ortho

component (> 60%) and deuterium rich in para undergo a transition to the face centered cubic

(fee) structure in the temperature range 1.2 to 4.2 K. In addition, there is considerable

evidence that unconverted hydrogen or deuterium if condensed from the vapor in thin films

is in fee [35812]. Other experiments show that the substrate can affect the lattice spacing

introducing the fee structure, and that plastic deformation initiates the fee structure [38726],

The transition temperature is a function of ortho-para concentration [47572] as well

as density or pressure [47821]. The volume change of the transition is small, 1.3%, but has

been measured [43353]. The transition corresponds to the X anomaly in the specific heat but

exhibits considerable hysteresis. It is obvious that the difference in energy of the two close

packed structures of hydrogen is exceptionally small. It is also well known that solid phases

frequently undercool and remain in a metastable form; thus hysteresis is often encountered in

such a martensitic transformation [38726]. A different explanation is that the changes in

thermodynamic properties are due mainly to the order-disorder transition of the rotational

motions, and not to the crystalline phase change per se [65524].

The ranges of the lattice parameters have been assembled from various sources into

table 2-1. It should be emphasized, though, that the references given above and in table 2-1

are not exhaustive, only representative.

4
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Thermal Expansion (solid)

Explicit values for any of the hydrogens were not found in the literature. We can,

however, estimate the thermal expansion from the volume change. In the absence of pre-

ferred orientation the linear expansion is to a very good approximation one-third of the

volume expansion. As an example consider deuterium between 1.175 K and its triple point,

18.723 K. The linear thermal expansion over this range is

length

aAT
:

length
1.175 _ 1 t 20.48 - 19.75 \

3 V 20.48 ) ~
° -length

T.P.
012

where the molar volumes of deuterium at the appropriate temperatures were taken from

table 2-8. Solid deuterium in this temperature range contracts by about 1% in contrast to a

typical metal which contracts very little if at all for the same temperature change. The

calculated values for parahydrogen shown below were taken from Ahlers [21136].

Temperature Thermal expansion

K coefficient a x 10 4
, 1 /K

Temperature Thermal expansion

K coefficient a x 10 4 , 1 /K

0.022

0.22

1.0

3.0

6.5

11.3

16.5

9

10

11

12

13

13.80

21.7

26. 7

30.4

34.6

39.4

44. 7

49.4

Metallic Hydrogen (solid)

Solid hydrogen under extreme compression - about 2.8 megabars - undergoes a

phase transition to the metallic state [82898], and may be superconducting. While this

subject is outside the scope of our report, we include a short bibliography. The bibliography

is intended to provide a starting point for those interested in pursuing this fascinating

subject. A survey of the various equations of state of the solid which have been extrapolated

to extreme pressures is given in [41169]. A basic reference is E. Wigner and H. B.

Huntington, J. Chem. Phys. 3_> ?64 (1935). Others are:

[16708] [55479] [74178] [80692]

[31008] [62125] [76172]

[40176] [65872] [78271]

[47933] [69744] [80394]



2.2 PVT Data

A large number of papers deal with PVT data for the hydrogens. In order to organize

the material it is helpful to recall the density- temperature phase diagram shown

schematically below.

TEMPERATURE
The presentation of data for each isotope is done according to the six regions on the

schematic phase diagram. Ordinarily PVT data are not measured in the coexisting regions

liquid-gas, liquid- solid, or solid-gas, rather they are established from the phase boundaries

in terms of a variable called quality. The phase boundaries are included in the description

of the adjacent single phase region. The chart below is intended to serve as a rapid index

showing what is available for a given isotope.

Note: Within the limits of this survey it has not been possible to remove discrepancies

between the sources shown. For example, the triple point of Hs is 13.803 and 13.813

depending on the temperature scales used and in addition the enthalpy and entropy bases are

different.

Phase

modification

Hs

Ts

HD

HT

DT

Region I Region II Region III Region IV Region V Region VI
two-phase compressed two-phase two-phase compressed

Gas Vapor/ Liquid Liquid/ Vapor/ Solid

i

Liquid

\

i

Solid

•

Solid

V •



Hydrogen

The primary sources are Roder, et al. [29210], McCarty and Weber [80777],

Malyshenko [81975], Mullins, et al. [12596], Cook, et al. [29881], Dwyer, et al. [29550],

Stewart [11238], Megaw[487], and Woolley, et al. [6368].

For parahydrogen Roder, et al. [29210] present extensive tables. The basic mea-

surements cover the entire liquid and gas region up to 350 atm of pressure. The uncertainty

is 0. 1% in volume except near the critical point where it may be as much as 6%. The

temperatures are on the NBS-1955 scale. Values for the saturation boundary table 2-2 are

taken from this source to illustrate the type of data presented.

Table 2-2. Saturation Properties, Parahydrogen, Liquid-Vapor
(dWdph OP'3T)p

TEMPERATURE PRESSURE VOLUME ISOTHERM ISOCHORE INTERNAL ENTHALPY ENTROPY C, HEA-T Cp . HEAT VELOCITY

3
DERIVATIVE DERIVATIVE ENERGY CAPACITY CAPACITY OF SOUNO

OEG. KELVIN ATM CM/GN0LP CM3ATM/GM0LE ATM/K J/GM0LE J/GM0LE J/GM0LE-K J/GM0LE-K J/GM0LE-K METER/SEC

13.80 3 0.069,
0.069

5

26.17 23328. 9.403 -622.9 -622.7 10.00 9.50 13.13 1273
13.803 16056.81 1098. 0.005 169.8 262.6 75.63 12.52 21.20 305

1*. 0.077-a 26.23 22664. 9.370 -620.3 -620.1 10.19 9.56 13.31 1264
14. 0.077g 14519.41 1110. 0.006 172.0 266.5 74.96 12.52 21.24 307

15. 0.133 26.53 21360. 9.132 -606.5 -606.2 11.14 9.90 14.08 1235
15. 0.133 9049.48 1170. 0.009 182.9 304.6 71.86 12.58 21.51 317

16. 0.213 26.84 19950. 6.919 -592.0 -591.4 12.08 10.26 14.92 1207
16. 0.213 5955.49 1223. 0.014 193.2 321.7 69.15 12.65 21.87 325

17. 0.325 27.18 16327. 8.746 -576.6 -575.7 13.01 10.61 15.92 1175
17. 0.325 4096.06 1267. 0.020 202.9 337.6 66.75 12.74 22.31 333

18. 0.476 27.54 16910. 8.589 -560.2 -558.9 13.95 10.94 16.98 1148
18. 0.476 2920.83 1302. 0.029 211.9 352.7 64.60 12.84 22.86 341

19. 0.673 27.93 15663. 8.423 -542.9 -541.0 14.86 11.24 18.05 1124
19. 0.673 2145.87 1326. 0.04C 220.0 366.2 62.64 12.96 23.51 347

20. 0.923 28.36 14525. 8.252 -524.6 -521.9 15.83 11.51 19.15 1102
20. 0.923 1616.07 1340. 0.053 227.2 378.3 60.85 13.08 24.26 353

20.268 1.000 28.48 14091. 8.204 -519.5 -516.6 16. ce 11.57 19.53 1093
20.268 1.000 1506.86 1343. C.057 229.0 381.7 60.41 13.11 24.50 355

21. 1.233 28.82 13123. 8.057 -505.1 -501.5 16.78 11.74 20.49 1072
21. 1.233 1245.28 1344. 0.07C 233.5 389.1 59.21 13.20 25.18 358

22. 1.613 29.34 11914. 7.842 -484.5 -479.7 17.74 11.94 21.84 1046
22. 1.613 973.39 1333. 0.09C 238.5 397.6 57.64 13.33 26.27 363

23. 2.069 29.90 10507. 7.583 -462.6 -456.3 18.72 12.11 23.51 1012
23. 2.069 771.82 1310. 0.115 242.3 404.2 56.15 13.46 27.59 367

24. 2.611 30.54 9273. 7.291 -439.3 -431.2 19.72 12.25 25.25 980
24. 2.611 619.37 1272. 0.146 244.7 406.5 54.73 13.59 29.22 370

25. 3.245 31.26 8021. 6.965 -414.5 -404.2 20.74 12.37 27.35 943
25. 3.245 501.85 1219. C.183 245.4 410.4 53.34 13.74 31.28 373

26. 3.982 32.08 6810. 6.591 -387.9 -374.9 21.79 12.49 29.79 903
26. 3.982 409.62 1149. 0.228 244.1 409.4 51.98 13.90 33.96 375

27. 4.829 33.04 5613. 6.182 -359.3 -343.1 22.89 12.61 32.94 856
27. 4.829 336.00 1061. 0.284 240.5 404.9 50.61 14.09 37.62 377

28. 5.794 34.19 4425. 5.736 -328.3 -308.2 24.04 12.74 37.39 807
28. 5.794 276.24 954. 0.354 234.0 396.1 49.21 14.34 42.82 378

29. 6.887 35.59 3339. 5.253 -294.2 -269.3 25.27 12.89 43.64 753
29. 6.887 226.85 623. 0.443 223.7 382.0 47.74 14.67 50.79 378

30. 8.118 37.38 2300. 4.720 -255.9 -225.1 26.61 13.07 54.20 692
30. 8.118 165.17 665. 0.561 206.1 360.4 46.14 15.12 64.50 377

31. 9.501 39.8 5 1376. 4.118 -211.3 -172.9 28.15 13.33 74.81 623
31. 9.501 146.88 471. 0.727 164.4 327.7 44.30 15.77 93.87 375

32. 11.051 43.83 593. 3.393 -154.4 -105.3 30.08 13.79 134.66 539
32. 11.051 115.21 256. 0.977 145.3 274.3 41.95 16.47 176.84 371

32.976 12.759 64.14 1.674 -5.3 77.6 35.42 19.88 349
32.976 12.759 64.14 1.874 -6.2 76.7 35.40 19.66 351

• THE FIRST ENTRY FOR EACH TEMPERATURE PERTAINS TO THE SATURATED LIQUIO



The data of Roder, et al. [29610] were used by McCarty and Weber [80777] to produce

similar set of PVT data in engineering units, and to extrapolate the liquid surface to

essures of .10,000 psia (~ 680 atm). An alternative extrapolation is found in a paper by

ily&nenko [81975]. This paper is mentioned because the extrapolation goes to 1000 atmo-

heres and is the only source of PVT for liquid hydrogen at pressures to 1000 atmospheres.

The calculations of Mullins, et al. [12596] presents PVT data for parahydrogen below

e triple point temperature down to 1 K. These data are based on available experimental

lues and a thermodynamically consistent calculation.

A composite table of values from this source is presented in table 2-3.

The PVT surface of solid hydrogen is best summarized in figure 2-1 taken from Cook,

al. [28604]. The authors include their own measurements on the compressed solid (table

4), values on the saturated solid by Dwyer, et al. [29550, table 2-5] as well as the changes

volume measured by Stewart [11238, shown separately in figure 2-2 and in table 2-6] which

e in agreement with the earlier measurements by Megaw [487]. Figure 2-1 shows rather

lusual behavior near the melting line indicating perhaps an as yet undisclosed phase

ansition [see also Roder, 1973].
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Table 2-4. Parahydrogen, Molar

Volume of the Solid

Table 2,-5. Parahydrogen, Molar Volumes

of the Solid Along the Melting Line

Temperature (°K)

Temp.
(°K)

Pressure
(atm)

Molar volume
(cmVmole)

Difference

(atrrO 11.49° 13.98° 16.89° 18.20° 19.97°

Exptl. Calc.
23.08

22.83

-Calc.

25 22.63
50 22.22 22.58 13.803 0.0695 23.31 23.272 +0.038
75 21.85 22.24 13.97 ... 23.16* 23.225 -0.065

13.99 23.22* 23.219 +0.001
100 21.53 21.93
150 21.26 22.00 14.00 5.887 23.26 23.216 +0.044
200 21.55 21.52 15.00 36.88 22.97 22.933 +0.037
250 21.10 21.07 21.45 16.00 70.19 22.67 22.650 +0.020

300
350

20.70 21.30 16.89 22.42* 22.398 +0.022
21.15 17.00

18.00
105.68
143.22

22.36
22.06

22.367
22.084

-0.007
-0.024

a All values of the molar volume are in cubic centimeters per mole.

18.20 — 22.00* 22.027 -0.027
19.00 182.72 21.76 21.801 -0.041

with permission from G. A. Cook, et al. , J. 19.97 ... 21.52 21.526 -0.006
Chem. Phys. 43 , 1313 (Aug. 1965).

20.00 224.10 21.48 21.518 -0.038
21.00 267 . 29 21.20 21.235 -0.035
22.00 312.23 20.94 20.952 -0.012

23.00 358.88 20.69 20.669 +0.021
23.82 — 21.51* 20.437 +0.073
24.00 407.20 20.45 20.386 +0.064

Mean 0.032

a Values marked with an asterisk were measured directly in the piezometer.

All other molar volumes were computed from our smoothed values [or heat of

fusion. All pressures were calculated from the equation derived by Goodwin
(Ref. 7). Calculated values of the molar volume were obtained by use of Eq. (3).

with permission from R. F. Dwyer, et al. „ J.

Chem. Phys. 43, 801 (Aug. 1965).

Table 2-6. Compressions at 4 K

Helium Hydrogen Deuterium Neon
Pres-

sure 105 105 10 5 10=

kg/ AV V M.V. ft AV V M.V. ft AV V M.V. ft AV V M.V. ft

cm2

vv v» cm3 cm2
/

kg
V '

~V~o
cm3 cm2

/

kg
V ' Vo cm3 cm2

/

kg
Vo' v cm3 cm 2

/

kg

P or0 1-000 17-1 115 . . 1-000 22-65 49 —

.

1-000 19-56 30 1-000 14-0 10

200 — •924 15-8 77 — •928 21-0 31 — •948 18-5 22 — •982 13-7 —
400 — •846 14-5 41 — •883 20-0 23 — 911 17-8 18 — •966 13-5 —
600 — •792 13-5 29 — •847 19-2 19 — •882 17-2 15 •952 13-3 —
1000 — •722 12-4 19 — •794 18-0 14 — •840 16-4 12 •927 13-0 5-3

2043 •625 10-7 9-8 •711 16-1 8-1 •764 14-9 7-3 o •882 12-3 . 3-8

3000 •079 •579 9-9 7-0 •065 •667 15-1 6-1 •061 •715 14-0 5-5 •032 •858 12-0 —
4000 •134 •544 9-3 5-5 •110 •632 14-3 4-8 •103 •680 13-3 4-5 055 •832 11-6 2-6

6000 •205 •497 8-5 3-8 •181 •583 13-2 3-5 •173 •632 12-4 3-3 •100 •797 11.1 2-0

8000 •256 •466 8-0 2-9 •227 •549 12-4 2-7 •215 •597 11-7 2-6 •130 •770 10-8 1-7

10,000 •295 •440 7-5 2-4 •266 •523 11-8 2-3 •253 •571 11-2 2-2 156 •747 10-4 1-41

12,000 •325 •421 7-2 2-0 •297 •500 11-3 1-9 •281 •549 10-7 1-9 •178 • 728 10-2 1-23

16,000 •370 •392 6-7 1-5 •343 •467 10-6 1-4 •325 •514 10-0 1-4 •213 •696 9-7 •98

20,000 •403 •373 6-4 1-3 •376 •445 10-1 1-2 •358 •485 9-5 1-2 •240 •669 9-4 •81

with per mission from J. W. Stewart, Phys. Chem. Solids 1_, 146 (1956)
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with permission from J. W. Stewart, Phys. Chem. Solids 1, 146 (1956).

The difference in PVT between the ortho-para modifications is very slight and for

most practical purposes may be neglected. There is, however, a difference and if a distinc-

tion is necessary, the work of Woolley, et al. [6368] is recommended (see also the section

on ortho-para conversion). The vapor pressure of normal hydrogen is slightly different

than parahydrogen and therefore the saturated densities will be slightly different. Once off

of the saturated boundary, however , the differences are probably less. The differences are

illustrated for the saturation boundary in table 2-2a which is taken from [23790].

Deuterium

The recommended source of PVT for liquid and gaseous normal deuterium is the

correlation by Prydz [43781] accomplished with a modified BWR equation of state. The

correlation covers the temperature range from the triple point to the critical point for

pressures to 400 atm. Extensive thermodynamic tables of values are presented in metric

units. This source is recommended because it is the only source which covers both the

gaseous and liquid phases in a consistent manner. The accuracy of the PVT data in the

gaseous phase is probably not too good. Very little experimental data were available and the

correlated values deviated from the experimental data by ± 0.3% in density at 20.4 K to + 4%

in pressure at 41 K. The maximum pressure of the liquid data was slightly over 100 atmo-

spheres. The deviations between Prydz' s correlation and experimental values for compressed

liquid states range up to ± 0.5% in density. Table 2-7 gives saturation data for normal

deuterium.
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Table 2-2a. Saturation Properties, Normal Hydrogen, Liquid- Vapor

Temp. Pressure

atm
Vapor Pressure

Slope, dP/dT

Density, g mole/cm s

°K
[31] (atm/°K)

Sat. Liquid [12] Sat. Vapor

13.947 0.071, 0.041, 0.03830 0.000063,
14 0.073, 0.042, 0.03828 0.000064,
15 0.125, 0.063, 0.03786 0.000104,
16 0.202, 0.091, 0.03742 0.000159,
17 0.310s 0.125, 0.03695 0.000232,

18 0.456, 0.167, 0.03647 0.000327,
19 0.648, 0.216 0.03595 0.000447,
20 0.891, 0.273 0.03540 0.000595,
20.380 1.000 0.296 0.03519 0.000660,
21 1.196 0.337 0.03483 0.000776,

22 1.569 0.409 0.03421 0.000995,
23 2.018 0.490 0.03355 0.001257
24 2.551 0.579 0.03285 0.001569
25 3.178 0.676 0.03209 0.001938
26 3.906 0.783 0.03127 0.002377

27 4.746 0.898 0.03036 0.002900
28 5.705 1.023 0.02935 0.003527
29 6.794 1.157 0.02821 0.004290
30 8.023 1.302 0.02689 0.005241
31 9.401 1.457 0.02528 0.006482

32 10.94 1.622 0.02312
33 12.65 1.800 0.01903
33.18 12.98 1.833 0.01494 0.01494

Table 2-7. Saturation Data for Normal Deuterium

TEMP. PRESSURE DENSITY ENTHALPY ENTROPY
K ATM MOL/LITER J/MOL J/MOL -K

VAPOR LIQUID VAPOR LIQUID VAPOR LIQUID

18,710 0.16872 0.111221 43.1598 638.7 -648.9 87.09 18.27
19.000 0.19181 0.124876 43*0160 640.8 -644.7 86.52 18.86
20.000 0.29057 0.181841 42.5081 660.4 -615.6 83.81 20.02
21.000 0.42*05 0.256456 41.9781 675.1 -587.7 81,48 21.35
22.000 0.59925 0.352051 41.4228 687.2 -558.9 79.30 22.66
23.000 0.82353 0.472322 40.8403 696.7 -529.2 77.25 23.95
24.000 1.10456 0.621418 40.2287 703.3 -498.8 75.31 25.22
25.000 1.45018 0.804045 39.5858 707.0 -467.7 73.44 26.46
26.000 1.86843 1.02561 38.9085 707.7 -436.0 71,65 27.66
27.000 2.36751 1.29242 38.1926 705.4 -403.6 69,91 28.84
29.000 2.95576 1.61194 37.4326 700.1 -370.5 68.22 29.98
29.000 3.64163 1.99316 36.6212 691.5 -336.6 66.56 31.10
30.000 4.43377 2.44712 35.7488 679.6 -301.9 64.93 32.21
31.000 5.34100 2.98769 34.8025 664.5 -265.6 63.31 33.31
32.000 6*37235 3.63281 33.7643 645.8 -227.6 61.71 34.42
33.000 7.53713 4.40669 32.6085 623.2 -187.1 60.11 35.56
34.000 8.84496 5.34403 31.2963 596.2 -142.9 58.49 36.75
35.000 10.30579 6.49920 29.7650 563.9 -93.3 56.83 38.05
36.000 11.93005 7.97036 27.9000 524.2 -34.7 55.07 39.54
37.000 .13.7?861 9.98197 25.4469 471.7 40.4 53.06 41.41
38.000 15.71290 13.4367 21.4462 382.7 160.0 50.23 44.37
38.3*0 16.43200 17.3280 17.3280 278.6 278.6 47.38 47.38
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Woolley, et al. [6368] present molar volumes for the solid at the triple point and at

elevated pressures along the melting line. The latter values are based on volumetric mea-

surements in compressed liquid states by Bartholome [5118] extrapolated to the appropriate

phase boundary and combined with the calculated volume changes on fusion published by

Clusius and Bartholome [5595]. The volume changes on fusion were established from

measured heats of fusion, the slope of the melting curve, and the Clausius- Clapeyron

equation.

The densities of saturated solid deuterium were approximated by Ludtke and

Roder [78262] with the power series

2 2 3
p = p - AT = 0.20459- 0.000026337T with p ing/cm and T in kelvins.

The polynomial is based on the data by Schuch and Mills [37741], Megaw [487], Mucker,

et al. [32807] and Woolley, et al. [6368]. The comparison of calculated and experimental

values is shown in table 2-8.

Table 2-8. Densities of Saturated Solid Deuterium

T V V-CALC p p-CALC DIFF AUTHOR MODIFI-
3 3 3 3

(K) (cm /mol) (cm /mol) g/cm g/cm (%) CATION

1.175 19.75 19.69 0.2040 0.2045 -0.3 Schuch and Mills various

1.450 19.79 19.70 0.2036 0.2045 -0.5 Schuch and Mills para

4.200 19.56 19.74 0.2059 0.2041 0.9 Megaw normal

13.000 20.10 20.13 0.2004 0.2001 0.1 Muckers, et al. normal =

ortho

17.000 20.65 20.45 0.1951 0.1970 -1.0 Schuch and Mills normal

18.723 20.48 20.62 0.1967 0.1954 0.7 Woolley, et al. normal

For the compressed solid states of deuterium there are two sources of data,

Megaw [487] and Stewart [11238]. The two sources agree very closely, and Stewart's values

are shown in figure 2-2 and table 2-6.

The differences in PVT between ortho- para modifications of deuterium are small and

for most practical purposes may be neglected. We note that for hydrogen the para and

normal modifications differ by up to 0.26% in liquid density, see for example Woolley,

et al. [6368] or Goodwin, etal. [11625]. We can apply a simple ratio of 0. 333/0. 75 to get a

change of 0. 115% for the difference between normal and ortho deuterium. This change is

smaller than the precision inherent in the data treated by Prydz.

14



Tritium

The only experimental PVT data for T B revealed in the literature search are

densities for the saturated liquid and gas for temperatures from 20.61 to 29. 13 K by

Grilly [445]. The values are given in table 2-9 below. The densities of the liquid should be

in error by no more than 0. 23%. Additional values for the density of the liquid given in

table 2-10 were obtained by Rogers and Brickwedde [28408] from corresponding states.

Table 2-9. Molar Densities of Liquid Table 2-10. Density of Liquid Tritium

Tritium
T, K p, g/cm3

pli'l
— Pgas.

Pliq'

Dev, from
curveT. "K. mole/liter pgaj

20.61 45.17 0.13 45.39 0.04 30 234

22.50 43.97 .16 44.21 -.01
31 228

22.99 43.51 .29 43.88 -.04

23.59 43.11 .35 43.55 .00 32 222
24.41 42.49 .44

24.72 42.24 .48

43.01

42.81

-.01
—

. 02 33 216

25.66 41.53 .62 42.25 .03 34 209
26.36 40.91 .73 41.74 .0(1

27.09 40.17 .87 41.14 -.05 35 202

28.32 39.06 1.14 40.31 .07
36 193

29.13 38.02 1.37 39.49 -.06

< With 2.0% HT present. 6 Corrected to 0.0% HT. 37

38

183

with permission from E.R. Grilly, J. Am. 171

Chem. Soc. 73, 5307 (1951) 38

39

39

5

5

0.

0.

164

155

144

40 •!J
2

2

Cri

P
tical

Dint
109

+
0.003

with permission from J. D. Rogers, et al. , J.

Chem. Phys. 42, 2822 (Apr. 1965).

The only reference to the density of solid tritium is that of Kogan, et al. [29055].

3
They report a density of 0. 324 g/cm at 4. 2 K.

Hydrogen Deuteride - HP

A paper by Varekamp and Beenakker [12725] gives second virial coefficients for

HD, see page 20. These values may be used with the virial equation to calculate pressures

for densities below saturation.

The only PVT data for liquid HD revealed by the literature search are densities for

the saturated liquid published by Rudenko and Slyusor [59955]. Table 2-11 is taken from this

reference. Densities given in the earlier paper by Woolley, et al. [6368] are about 0.4%

higher than those of Rudenko and Slyusor and should be ignored.
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Table 2-11. Densities of Liquid HD

T, K p, g/cm T, K p, g/cm3

16.60

17.00

18.00

19.00

20.00

20.39

21.00

22.00

23.00

24.00

25.00

26.00

27.00

1228

1223

1209

1195

1180

1173

1164

1147

1130

1111

1091

1070

1048

28.00

29.00

30. 00

31.00

32.00

32. 50

33.00

33.50

34.00

34.50

35. 00

35.50

0. 1023

0.0997

0.0968

0.0936

0.0900

0.0880

0.0858

0.0834

0.0805

0.0772

0.0730

0.0671

Woolley, et al. [6368] report the volume of solid HD at the triple point to be 21.84

cm 3 /molat p = . 1 26 kg/cms and T= 16.60 K.

Note that HD does not exhibit ortho-para modifications.

Hydrogen Tritide - HT

No references were found for the PVT of HT, however, the assumption is usually

made that the PVT for HT is approximately equal to that of D .

s

Deuterium Tritide - DT

No references for the PVT of DT were found for the temperature range of this survey,

however, Oppenheim and Friedman [23817] give some theoretically calculated values of PVT

for DT at temperatures slightly above the critical temperature.

Discussion

The existing PVT data for parahydrpgen are adequate, but additional experimental

data for all the other isotopes would be deslirable.
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2. 3 Equations of State

The meaning of the phrase "equation of state" is taken here to be a mathematical

model of the PVT surface. Usually the model consists of a single equation which is explicit

in pressure. This is most convenient because the various derivatives, which are required to

calculate thermodynamic functions, can be obtained in closed form. At times the models are

not explicit in any variable, and occasionally a single equation does not exist at all, instead a

computer program is substituted for the equation of state. In this last case the PVT surface

is often broken into regions with a different formulation in each region.

Hydrogen

The PVT surface presented by Roder, et al. L29210] covers both gaseous and liquid

regions from the triple point to the critical point. The surface is described by a collection of

equations each representing an isotherm or an isochore with interpolation for intermediate

points. The formulation is not easy to use but is recommended as the best surface available.

A virial representation of the gaseous PVT surface of hydrogen by Mullins, et al. 1 12596]

extends the equation of state to lower temperatures. Mullins, et al. L 1 2 5 9 6 J are reasonably

consistent with Roder, et al. [29210] in the region of overlap. Discontinuities do, however,

occur and have been mentioned in section 2.2.

Two other equations of state are mentioned here because they may be preferred for

particular applications. One is Goodwin's equation of state L63091] which gives qualitatively

correct behavior in the critical region, i.e., "scaling-law" behavior. The other is an early

adaptation of the Benedict-Webb-Rubin equation of state to hydrogen by Roder and

Goodwin [12540] using 17 coefficients. Analytical equations of state such as the BWR cannot

have "correct" behavior in the critical region. They are, however, much easier to use.

Roder and Goodwin [l2540] present two sets of coefficients, one to be used for the gas, and

one for the liquid. They estimate a maximum error in density of 0. 35% except in the critical

region. Both of these equations are valid for the PVT surface between the triple point

temperature and the critical point temperature.

An extension of the liquid parahydrogen data to higher pressures was performed by

McCarty and Weber [80777]. The authors do not give an explicit equation, however, the PVT

surface is represented through a computer program in various regions. The extrapolation to

higher pressures by Malyshenko [81975] is based on the Tait equation for which the author

gives values of the coefficients.

A review of the properties of solid hydrogen, including the so-called "metallic

hydrogen" is given by Douglas and Beckett [41169]. Numerous equations of state are

presented, most of which are based on the intermolecular potential. Another good review of

the properties of solid hydrogen is given by Stewart [31446], while Ahlers [21136] calculates
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some of the derived properties such as compressibility from the Griineisen equation. The

equation proposed by- Burshtein and Rabinovich [79779] while "anchored" with experimental

densities along the solid melting line is not satisfactory because it does not yield the proper

densities of the solid under its own vapor pressure. Therefore, a unique equation of state

frxim which one could calculate the PVT properties at an arbitrary point in the solid does not

exist.

Deuterium

The recommended source for PVT data of normal deuterium is the paper by

Prydz [4378l]. The PVT surface is represented by Prydz with a BWR type equation of state,

in this instance using 28 coefficients. As with most BWR equations, a program is available

and is fairly easy to use. The PVT surface presented by Prydz covers both the gaseous and

liquid regions from the triple point to the critical point with pressures to about 100 atmo-

spheres in the liquid region. Deviation plots show a maximum deviation of ± 0.4% in density

between calculated and experimental values.

Other Isotopes

No practical equations of state for the other isotopes were found in the literature.

Some second virial coefficients have been published, and some theoretical work has been

done. The theoretical results are of a qualitative nature, see for example Oppenheim and

Friedman [23817] and Henderson [l3537].

Discussion

From the lack of references for the equation of state of isotopes other than Hg and

D3 , it is evident that a lot of work needs yet to be done. However, until experimental PVT

data become available, empirical equations of state such as we have recommended for Hg

and D3 will not be possible. Theoretical predictive methods are limited in scope.

Application of the theory of corresponding states to the existing equations of state for

hydrogen, while possible, have not been satisfactory for the combination

hydrogen-deuterium.

2.4 Ideal Gas Properties

The thermodynamic functions for the ideal gas are the starting point in the calculation

of the thermodynamic properties of the hydrogens. The most complete tabulations are given

by Haar, et al. [ll27l]. Note, however, that these tables do not include nuclear spin. In

other words numerical differences exist in the values of entropy and free energy between

these tables and earlier sources such as Woolley, et al. [6368] who include nuclear spin. Use

of these tables implies that the reference state is the ideal gas at K, with the energy Eo

taken to be zero, while the entropies are tabulated for an assumed pressure of 1 atm. To
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give a feel for the differences between isotopes, the dimensionless ideal gas enthalpies

(Ho -E °)/RT are compared in table 2-12 at 10 and 30 K.

Table 2-12. Comparison of Dimensionless Ideal Gas

Enthalpies, (H -E °)/RT

Temperature, K
Species 10 30

n-Hs 15.28 6.76

e-H2 2.500 2.669

p-rL, 2.500 2.500

n-D2 5.365 3.460

e-D2 2.502 2.732

o-D2 2.500 2.508

n-T3 6.819 3.963

e-T2 2.658 3.624

p-T2 2.500 2.589

HD

HT not tabulated below 50 K

DT

An older source for the ideal gas thermodynamic functions of T 2 and HT needs to be

mentioned here because it contains values below 50 K, and includes graphs on ortho-para

distribution as well as graphs of the rotational heat capacity at constant volume. Be it noted,

however, that the calculations of Jones [18037] deviate by about 3% in C ° at 50 K for T2

from those of Haar, et al. [11271], and by about 1% in C° at 50 K for HT.
P

2.5 Compressibility

Tables of compressibility have been published only for hydrogen. These include the

measurements by Udovidchenko and Manzhelii [68779] on solid parahydrogen which are repro-

duced in table 2-13. The measurements on normal hydrogen by Stewart [11238] and

Megaw [487] have already been mentioned with values given in table 2-6. For liquid or

gaseous parahydrogen the isothermal compressibility can be formed from the proper com-

bination of isotherm derivative and volume, see for example table 2-2. The isothermal bulk

modulus is given directly for parahydrogen in the tables prepared by McCarty and

Weber [80777].
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Table 2-13. Isothermal Compressibility of Solid

Parahydrogen x~ X 10B , cm /kg

P. kg errr^
14.5 13.5 12.0 10.0; 8.0; 6.0

59.8" 57.1° 53.7"

20 54.4 ± 1.4 52.3 + 1.3 49.4 + 1,6

40 53.

!

49.9 48.2 45.8

60 4S.S 46.2 44.7 42.8

SO 45.0 42.9 41.8 40.2

100 41.8 40.2 39.3 38.0

120 39.

1

37.9 37.2 36.2

140 36.7 36.0 35.4 34.8

ISO 33.0 ± 0.7 32.9 + 0.7 32.5 ± 0.8 32.3 + 1.2

200 31.2"

"Obtained b\ extrapolation.

with permission from B. G. Udovidche-u...- , et al. . J. Low j.emp. Phys. _3, 429 (Oct. 1970).

2.6 Virial Coefficients

The virial coefficients at low temperatures have been measured by Varekamp and

Beenakker [12725] for normal hydrogen, HD and normal deuterium. The authors experi-

mental results are reproduced in figure 2-3. At temperatures higher than 20 K the virial

coefficients for parahydrogen, normal hydrogen, and normal deuterium are collected from

various sources in table 2-14.

3. Derived Thermodynamic Properties

3.1 Enthalpy, Entropy, and Internal Energy

Extended tables of derived thermodynamic properties for the hydrogens are rare and

appear to be limited to liquid or gaseous states. Consistent tables for at least a part of the-

phase diagram exist only for parahydrogen, normal hydrogen, and normal deuterium. A

number of theoretical papers touch upon entropy, internal energy, or free energy. However,

actual values are seldom presented, and if presented only a limited set of conditions is

considered. Henderson [13537], for example, calculates several values of entropy for liquid

states of HD and ortho deuterium which are the only values for these isomers found during

this survey.

Parahydrogen

The coverage of parahydrogen is the most complete of all isomers. It is the only

isomer for which values in the solid state can be obtained primarily because the specific

heats were measured by Ahlers [21136]. Enthalpy estimates for the solid are presented in

tables 3-1, 3-2, and 3-3. The tables were assembled from the reports of Dwyer and
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Figure 2-3. Experimental Virial Coefficients for the Pure Isotopes

Cook [28604, 34352, 25302]. Molar volumes and specific heats are included to round out the

tables. Values for enthalpy and entropy of the solid in equilibrium with the vapor have

already been introduced in table 2-3. Note, however, that the enthalpy bases differ. Tables

for liquid and gas are even more complete, they include enthalpy, entropy, internal energy,

and several PVT derivatives as shown in sample table 2-2. The equivalent tables (except

for units) by McCarty and Weber [80777] include several additional derived properties such

as specific heat input, the energy derivative, the isothermal bulk modulus, and volume

expansivity.
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Table 3-1. Parahydrogen Properties - Saturated Solid

Temperature Pressure Volume '

C
s

est. C
P

mJ/mol-K

Enthalpy

K mm Hg cm3 /mol mJ/mol-K J/mol

0.00 22.645 0.0 0.00 -758.0

1.00 8.3 X 10" 39 22.645 1.03 1.03 -758.0

2.00 4.0 X 10" is 22.645 8.57 8.57 -758.0

3.00 4.8 X 10" n 22.646 30.7 30.7 -758.0

4.00 2. 1 X 10" 7 22.650 78.7 78.7 -757.9

5.00 3.6 X 10" 5 22.660 168.5 168.5 -758.8

6.00 1.2 X 10" 3 22.678 318.8 318.8 -757.6

7.00 1.6 X 10" 2 22.711 551 551 -757.2

8.00 1. 1 X 10" 1 22. 754 882 882 -756.4

9.00 5.3 X 10" 1 22.809 1333 1333 -755.3

10.00 1.97 22.873 1917 1917 -753.

7

11.00 5.68 22. 947 2651 2652 -751.5

12.00 14.0 23.031 3548 3550 -748.4

13.00 30.4 23. 125 4618 4622 -744.3

13.803 52.8 23.211 5640 5646 -740.2

This column from Ahlers [21136].

This column changed by -0. 9 J/mol to bring it into agreement with Roder, et al. [29210].

Normal Hydrogen

The very convenient tables prepared by Dean [6560] include enthalpy, entropy, and

internal energy. The tables are based on the correlation of Woolley, et al. [6368] and are

limited to conditions of the vapor below saturation pressures.

Normal Deuterium

The tables presented by Prydz [43781] include enthalpy, entropy, and internal energy

for both liquid and vapor. The tables are based on an equation of state, the coefficients of

which are derived by considering all available PVT data as input, see table 2-7.

3.2 Thermodynamic Diagrams

Thermodynamic diagrams or Mollier charts are used by the engineer in many

applications because these charts summarize in one place the phase diagram, the PVT

surface, and some of the derived thermodynamic properties. A temperature- entropy chart,

for example, contains the phase boundaries, lines of constant pressure, volume, enthalpy,

and quality. Table 3-4 shows the charts available, most of them for parahydrogen, while the

most appropriate one of the triple point region is reproduced in figure 3-1.
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Table 3-4. Sources of Thermodynamic Diagrams

Authors Citation Modification Type

Woolley, et al. [ 6368] normal hydrogen T-S

Roder and Goodwin [12540] parahydrogen T-S, and H-S

Roder, et al. [29210] parahydrogen T-S, and H-S

McCarty and Roder [4961 9][40029] parahydrogen T-S, large, for saturated liquid

Mullins, et al. [12596] parahydrogen T-S, low temperatures

Sindt and Mann [38237] parahydrogen T-S, triple point region

Prydz [43781] normal deuterium T-S, PV/RT vs P

3.3 Joule-Thomson Data

Experiments on the Joule-Thomson effect are seldom conducted at low temperatures

in spite of the tremendous importance in refrigeration processes. Since we limit the tem-

perature to values below critical, only a small portion of the Joule- Thomson inversion curve

is of interest here. This is the part of the curve lying entirely in the liquid state and

intersecting the vapor pressure curve a few degrees below critical on the vapor side. Tables

or graphs of calculated values are given by Woolley, et al. [6368] for normal hydrogen, by

Roder, et al. [29210] for parahydrogen, and by Prydz [43781] for normal deuterium.

3.4 Velocity of Sound

Solid

The velocity of sound has been measured by a number of authors for both hydrogen

and deuterium. Bezuglyi and Minyafaev measured the longitudinal and transverse velocity of

sound in polycry stalline normal hydrogen [47659] and in polycry stalline normal

deuterium [51024]. Bezuglyi, et al. [78548] made similar measurements on parahydrogen.

Their results are reproduced in table 3-5. The transverse velocities agree very well with

later measurements on single crystal hydrogen and deuterium made by Wanner and

Meyer [81564]. The longitudinal velocities, however, differ by about 10%.

Liquid

The most comprehensive measurements on liquid hydrogen have been made by

Younglove [32387], Figure 3-2 is taken from this reference to illustrate the slight difference

in velocity of sound between saturated liquid normal and parahydrogen. The agreement

between velocities of sound calculated from the PVT surface by Roder, et al. [29210] or

McCarty and Weber [80777] and illustrated in table 2-2 is about 2% along the saturation

boundaries and approximately 0.3% in the single phase liquid or vapor regions.
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Table 3-5. Sound Velocity in Solid Hydrogen and n-Deuterium

T, K V

cm3 /mol m/s

6 X 1010 'adiabatic' 10 1

t "s
" T

m/s cm3 /dyn Poisson's ratio cm2 /dyn

isothermal

Poisson's ratio

n-hydrog en

4.2 22.64 2190 1160 3.8

11.49 23.08 2110 1080 3.9

13.96 23.24 2060 1030 4.1

0.30

0.32

0.33

4.4

4.6

5. 1

1

2

3

4

5

6

7

8

9

10

11

12

p-hydrogen

/cm3

0. 0892 2110* 1140

0. 0892 2110* 1140

0. 0892 2110 1140

0. 0891 2105 1140

0. 0890 2100 1140

0. 0889 2095 1140

0. 0888 2090 1135

0887 2085 1130

0885 2075 1125

0. 0883 2065 1120

0880 2050 1115

0877 2035 1105

0874 2010 1095

4. 12

4. 12

4. 12

4. 15

4. 19

4.22

4. 24

4.26

4.31

4.36

4.46

4. 53

4.64

0.29

0.29

0.29

0.29

0.29

0.29

0.29

0. 29

0.29

0.29

0.29

0.29

0.29

4. 1 0.29

4.6 0.29

4.7 0.29

4.8 0.26

4.9 0.26

5.2 0.25

5.3 0.25

5.3 0.25

5.4 0.25

5.4 0.25

5.4 0.25

5.4 0. 25

5.6 0.25

n- deuterium

/mol

4.2 19.56 1920 1005 2. 1 0.31

6 19.64 1920 1005 2. 1 0.31

8 19.72 1920 1005 2.1 0.31

10 19.83 1920 1000 2. 1 0.31

12 19.98 1910 990 2. 1 0.31

14 20. 12 1890 960 2.2 0.32

16 20.26 1860 930 2.2 0.33

2.1 0.31

2. 1 0.31

2. 1 0.31

2.2 0.30

2.3 0.30

2.5 0.30

2.8 0.30

extrapolated
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Gas

Measurements on liquid and gaseous deuterium have been made by Bezuglyi

Minyafaev [51024], by Giisewell, et al. [64932], by van Itterbeek and van Paemal [1

by van Itterbeek and Vandoninck [5709]. The results are collected together in table

Table 3-6. Velocity of Sound of Normal Deuterium, Liquid and Gas

and

860], and

3-6.

liquid at saturation gas [5709]

T, K velocity m/s T, K P, atm velocity m/s

19 1070 [51024]

20 1060

25 934.4 [64932] 18.90 255.3

26 907.2 - 19.55 259.6

27 877.4 20.36 0.295 262.35 |

28 846.0 20.36 0. 125 263.52
J

[1860]

29 813.2 20.38 265.2

30 777.9 20. 98 268.9

31 740. 1 29.80 261.4
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4. Specific Heat

Some fairly extensive experimental work has been done on the heat capacity of

hydrogen and deuterium. For the other hydrogens the information available is more limited.

For the isotopes having ortho-para isomers a large dependence of specific heat on com-

position is found for the solid, but not for the liquid. We distinguish between heat capacity at

saturation (C ), heat capacity at constant pressure (C ) and heat capacity at constant
s p

volume (C ).
v

The general features of the property for hydrogen are as follows: Below = 14 K the

heat capacity (C ) of the solid shows a broad anomaly for compositions between para and
s

normal; with increasing ortho concentration in this temperature range the heat capacity

increases; for ortho concentrations larger than 60%, a X transition exists at low temper-

atures ~ 1.3 to 4. 2 K. The values of C are commonly taken to be the same as C ; the
s p

values of C are lower than C at all temperatures but the difference is negligible below
v s

5 K; a significant difference exists between C of the solid and the liquid; similarly a large

difference exists between the C and the C of the liquid.
s v

4. 1 Hydrogen

Solid

A composite picture for the heat capacity of the solid (C ) is shown in figure 4-1.

Values for parahydrogen are given in table 3- 1 ; they were taken from Ahlers [21 136] . Values

for other ortho-para compositions are from the paper by Hill and Ricketson [6354]. Not

shown in any detail is the X- transition near 2 K, the best description of which is given by

Ahlers and Orttung [21806], Ahlers [21136] also measured the specific heat C for three

molar volumes of parahydrogen in compressed solid states. The values have been shown in

table 3-3; they were converted to estimated values of C by Dwyer and Cook [28604], and
P

are presented in figure 4-2. More recent measurements by Roberts and Daunt [75211] are in

very good agreement with those of Ahlers [21136].

Liquid

Values for the C , C , and C of liquid parahydrogen are shown in figure 4-3.

Values for the graph have been taken from the thermodynamic tables of Roder, et al. [29210,

see table 2-2] which in turn are based on the measurements of C and C by Younslove
v s

and Diller [14129, 13696]. Equivalent tables of values for saturated liquid and compressed

liquid states are given by McCarty and Weber [80777] in a different set of units. Additional

experimental measurements at pressures greater than 340 atm have been published by

Orlova, et al. [50155], As mentioned above, the differences in specific heats for different

ortho-para compositions in the liquid state are very small.
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Gas

Calculated values for the heat capacities of the gas follow from essentially the same

sources as for the liquid above. Differences in specific heats between parahydrogen and

other ortho-para compositions exist for the gas states. They are, however, not noticeable,

that is less than 1%, for temperatures below 40 K. Specific heat differences if required are

best obtained from the tabulations of the ideal gas thermodynamic functions [11271].

4. 2 Deuterium

Solid

A composite picture for the heat capacity of solid deuterium (C ) is given in figure

4-4. The sources of data are Clusius and Bartholome [5595], Kerr, et al. [645], Gonzalez,

et al. [8370], Hill and Lounasmaa [6416], and Grenier and White [22677]. Details of the

\-transition are given by Grenier and White [22677]. Calculated values of C of the solid

and liquid are given in figure 4-5, while values of C for liquid deuterium are given in

figure 4-6. A good source of data for C of the liquid is the paper by Brouwer,
s

et al. [69648], while values of C for the liquid are gleaned from the paper of Bartholome

and Eucken [5119].

4.3 Other Isotopes

Tritium

For liquid tritium one can estimate values of C from the theoretical cell model
v

calculation of Henderson [21016]. For example, the value of C at 29.6 K and 38

mol/1, i.e., at saturation conditions, is 15.4 J/mol-K. Values for the ideal gas states

have already been introduced. The source of tables and graphs is Jones [18037]. As noted

previously there is a 3% difference in C between this source and the more recent
P

calculations by Haar, et al. [11271].

HP

Values for solid HD have been measured by Grenier and White [22899]. They are

reproduced in table 4-1. White and Gaines [29861] measured values for mixtures of hydrogen

and deuterium and found that the results could be represented by a linear combination of the

pure components, thus the solid solutions are nearly ideal. The heat capacity of the liquid

varied linearly from 4.48 cal/mol-K (18. 7 J/mol-K) at the triple point (16.60 4 K) to 6.29

cal/mol-K (26.3 J/mol-K) at 22 K [Brickwedde and Scott, 27091]. Additional values of C
s

or C could be established from the cell model calculation of Henderson [13537 or 21016],
v

who obtains 6.255 cal/mol-K at 22 K. Heat capacities for the ideal gas are given by Haar,

et al. [11271] for temperatures above 50 K.
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Table 4-1. Heat Capacity of Solid HD

Heat capacity of solid H I). 0.06751 moles in calorimeter.
98.58 mo!e% HI); 1.15% H8 ; 0.27% D..

c C.

T ar (cal mole ' T ar
x
(cal mole '

(°K) (deg) cleg"') (°K) ((leg) deg"')

2.524 0.0380 0.0184 6.469 0.6463 0.117

2.601 0.0918 0.0128 7.014 1.1292 0.156

2.897 0.0732 0.0183 7.714 0.9080 0.216

3.186 0.3192 0.0252 8.274 1.0461 0.282

3.317 0.1414 0.0269 8.904 1.0014 0.367

3.585 0.8249 0.0240 9.857 1.0367 0.510

3.812 0.6505 0.0335 10.815 1.1748 0.672

1.050 0.6325 0.0183 11.888 1.2102 0.889

1.009 0.6525 0.0543 12.935 1.2611 1.093

5.562 0.3815 0.0762 14.132 1.4337 1.369

6.038 0.5347 0.0937 15.381 1.4682 1.679

with permission from G. Gren ier, D. White, J. Chem. Phys. 40, 3451 (Jun. 1964).

HT

The only values found in this search are those for the ideal gas calculated by

Jones [18037]. The diff .ence between this source and the calculations of Haar, et al. [11271]

is 1% in C at 50 K. Since the mass of HT is approximately the same as that of Ds ,
the

P
properties of HT are often taken to be the same as those of D2 . Henderson tabulates cell

model calculations for HT [21016], thus one could calculate estimates of C for the liquid

states provided that one could obtain reasonable estimates for the appropriate values of

liquid density.

DT

Henderson [21016] tabulates cell model calculations for C of DT. Thus in principle

one could calculate estimates for C in the liquid states provided that one could obtain

reasonable estimates for appropriate values of the liquid density. Ideal gas thermodynamic

values are tabulated for DT only at temperatures above 50 K [Haar, et al. , 11271].

5. Transport Properties

5. 1 Surface Tension

Surface tension data for hydrogen [43099, 25058, 23183, 27064] prior to 1965 are

limited to temperatures below the normal boiling point; the sets disagree by about 10%.

Corruccini [30250] has shown that the different sources can be made to agree by applying the

capillary corrections in a consistent manner to the older data [43099, 25058], For temper-

atures higher than about 21 K only the measurements by Blagoi and Pashkov [33765] on normal

hydrogen are available. Comparison of these measurements with the equations proposed by

Corruccini shows that extrapolation of the equations to temperatures above about 22 K leads to

sizeable differences at the higher temperatures. Blagoi and Pashkov suggest that no single

simple empirical equation can represent the temperature dependence of the surface tension
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from triple point to critical point. Apparently neither a linear equation, nor a van der Waals

equation with n = 11/9, nor inclusion of the quantum parameter (see for example [44771])

yields an acceptable representation of the data.

Values of the surface tension in table 5-1 for normal and parahydrogen up to the

normal boiling point were taken from Corruccini. Values for n-Hs at temperatures above

21 K were taken from Blagoi and Pashkov [33765]. Values for HD are taken from

Grigor'ev [22219], values for D2 from Grigor'ev and Rudenko [23183]. In addition to the

values presented here, values for H2 -D3 mixtures are found in the paper by Grigor'ev and

Rudenko while a better choice of quantum mechanical mixing parameter for this paper is

discussed by Bellemans and Fuks [34228].

Contact Angle

The liquid vapor contact angle is less than 1' 30" according to Blagoi and

Pashkov [33765].

5.2 Thermal Conductivity

Solid

The thermal conductivity of the solid hydrogens, similar to the heat capacity, is

highly dependent on ortho-para composition. It also depends on crystal quality, and should

depend on density for the compressed solid states. However, most of the measurements

made were done at or near saturation pressure. Experimental measurements on hydrogen

and deuterium have been conducted by Hill and Schneidmesser [8384, 9988], Dwyer,

et al. [38751], Bohn and Mate [68582], and Daney [73126]. The experimental results for the

solids are plotted in figure 5-1.

Thermal conductivity of solids is usually analyzed in terms of the thermal resistance

W = 1/k. The intrinsic resistance, W., that is phonon-phonon scattering, follows a T

dependence for nonmetals where n ranges from 1 to 3 . For parahydrogen, the value of n

is between 3 and 4 if estimated from the results of Hill and Schneidmesser for temperatures

between 4 and 11 K. The results of Dwyer, et al. [38751] are in apparent disagreement with

this temperature dependence; they are too low in W (too high in k). The disagreement

probably occurs because the measurements were taken along the melting curve at elevated

pressures, i. e. , the densities are higher than those prevailing at the triple point. We recall

that for solid helium, thermal conductivity is highly dependent on density [Webb and

Wilks, 580].

For deuterium, we note the comment of Hill and Schneidmesser that the conductivity

curve for normal deuterium (33% para) was very similar to the corresponding curve of

hydrogen (33% ortho). We add an estimated curve for normal deuterium "anchored" by the

point published by Hill and Schneidmesser [8384] and by Daney' s [73126] values near the triple
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Figure 5-1. Thermal Conductivity of the Solid Hydrogens
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point. We have also added a second estimated curve for orthodeuter ium, i. e. , 20.4 K

equilibrium deuterium with about 2% para, by assuming that this curve will be similar to a

hypothetical 2% ortho curve for hydrogen. We note that the hydrogen results of Hill and

Schneidmesser (1% ortho) and those of Bohn and Mate (1. 1% ortho) differ by almost an order

of magnitude. This uncertainty should decrease to about 3% as the temperature approaches

the triple point.

Liquid

The thermal conductivity of the liquid depends on temperature and is particularly

sensitive to density. Its behavior is related to that of C and C . For temperatures up to
' v p

the various critical points the thermal conductivity shows very little dependence on

ortho- para composition. Experimental values have been measured for hydrogen and

deuterium by Powers, et al. [5528, 756], Dwyer, et al. [38751] and Roder and Diller [65729]

.

A corresponding states estimate was made by Kerrisk, et al. [17393]. We reject the results

of Dwyer, et al. because they differ from the others by a factor of nearly 3. If we compare

the Powers, et al. [5528] results on hydrogen with those of Roder and Diller [65729], the

temperature dependence is similar; the values, however, differ by about 20%. We attribute

the difference to convection. Calculation of the Rayleigh numbers for conditions prevailing

in the earlier experiment discloses a definite contribution from convection. Experimental

conditions in the recent measurements were controlled to limit the contribution from con-

vection to less than 1%. Since the absolute values of thermal conductivity of saturated liquid

hydrogen and saturated liquid deuterium from the same laboratory [5528, 756] differ by only

6%, we postulate that a correction for convection is also required for the deuterium results.

The correlation of Kerrisk, et al. [17393] is based in part on the results of Powers,

et al. We take the estimates of Kerrisk, et al. for the saturated liquid boundaries of D2

and T 2 and subtract 0.266 mW/cm-K from all values, about 20%. In addition, we scale the

temperature range 0. 93 T - T to reflect the rise in thermal conductivity shown by hydrogen
c c

near the critical point. The estimates for the boundaries, so adjusted, are plotted along with

the one for H 2 [Roder and Diller, 65729] in figure 5-2. The pressure dependence for liquid

parahydrogen is illustrated in table 5-2 prepared by Angerhofer and Hanley [74127] from the

paper by Roder and Diller [65729]. Additional tables of values for parahydrogen in a different

set of units are given by McCarty and Weber [80777].

Values for the thermal conductivity of liquid hydrogen are uncertain by about 3%, the

saturation boundary for deuterium could be in error by as much as 25%, while the saturation

boundary for tritium simply represents an estimate.
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Gas

The thermal conductivity of the gas depends primarily on temperature and on density

or pressure. For temperatures below critical the dependence on ortho-para composition is

very slight ~ 0. 5%. At very low pressures, in the range of "free molecular conduction", the

effective thermal conductivity does not depend on the gas at all but is apparatus dependent

instead. Figure 5-3 shows the drastic change between ordinary and free molecular

conduction for hydrogen [Ubbink, 693].

Major sources of experimental measurements on hydrogen and deuterium are

Ubbink [693, 5825], and Roder and Diller [65729]. Results for the saturated vapor of

hydrogen are plotted in figure 5-2 along with the 1 atm isobar to illustrate changes in thermal

conductivity with density or pressure. The deuterium results plotted in figure 5-2 for

Ubbink [5825] are very nearly at saturation conditions. Additional values for parahydrogen

are given in the tables of McCarty and Weber [80777].

xio
J
caL cra

J
sec"' deg

J

20 40 GO 80CTT1 HI]

Figure 5-3. Thermal Conductivity of Hydrogen at Low Pressures with

permission from J. B. Ubbink, Physical^, 659 (Dec. 1947).

Differences in ortho-para composition have been measured by Miiller, et al. [68346]

for hydrogen, and by Uebelhack, et al. [77494] for deuterium. The results are given below.

For ortho-para mixtures of hydrogen at 21 K with y = percent ortho hydrogen and

ratio = - (\/\ - 1) x 103 ,

P

y 0.15 0.22 0.27 0.31 0.50 0.50 0.50 0.50 0.75 0.75 0.75 0.75 0.92 0.92 0.96 1.00

ratio 0.59 1.12 1.42 1.83 3.22 3.32 2.93 3.26 5.92 5.94 5.95 6.10 8.15 8.05 8.41 9.31
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For deuterium the results of the measurements over the whole concentration range from pure

o-D2 to pure p-D2 are represented by

\/\(y = 0) = 1 - klY - Ky* .

P c r

with k, = 2.17, 2.43, 2.97.10-3 and kj = 2.37, 2.27, 2.24-10-3 for T = 18.4, 19.6,

21.0 K respectively, where y is the molar fraction of p-Ds .

Values of the thermal conductivity of gaseous hydrogen are uncertain by about 3%.

The uncertainty for deuterium is estimated to be about the same, because the two sources

for hydrogen agree to within 2%.

5.3 Thermal Diffusion

Diffusion is a mixture phenomenon and as such enters into problems of isotope

separation in a very practical way. It is perhaps best to first define several of the terms

commonly used. The diffusion coefficient is defined as the coefficient relating the flux of a

given species in a mixture to the concentration gradient of that species under isothermal

conditions. For a two-component mixture of species i and j:

J. = D. . grad c.

where J is the matter flux of i, grad c the gradient of concentration, and D the
*i s

i
e

ij

diffusion coefficient. Note that the diffusion coefficient is often referred to as the mass

diffusivity. In addition to the diffusion coefficient an artificial quantity, the self-diffusion

coefficient is often discussed. Self-diffusion refers to the diffusion of one isotopic form into

another. If the system under consideration is subjected to a temperature gradient, then for

a binary system the equation above has to be extended to the following

T
J. = - D.. grad c. - D.. grad T

T
where D . is the thermal diffusion coefficient,

ij

Experimentally thermal diffusion measurements are most often made on gases using

a two bulb technique. Each bulb is held at a different temperature. Thermal diffusion

coefficients are then presented for mean values of temperature. These mean temperatures

are almost always higher than critical temperature, and therefore outside of the scope of

this report. We restrict ourselves to a brief description of a few of the most pertinent

papers.

A summary of experimental results completed by 1966 is given by Grew and

Humphreys [40966] who note that discrepancies between different laboratories are large.

Calculations of thermal diffusion coefficients from intermolecular potentials have been

published by Diller and Mason [35559] and by Monchick, et al. [54131].

45



5.4 Thermal Diffusivity

Thermal diffusivity is a parameter frequently used in engineering applications.

Thermal diffusivity is defined as

a = k/p C
P

In this equation, a is the thermal diffusivity, k the thermal conductivity, p the density,

and C the heat capacity at constant pressure. The thermal diffusivity can be obtained
P

directly, for example, from a light- scatter ing experiment. Usually, however, values are

calculated from the other properties. Sources of data are Daney [73126] and Ludtke and

Roder [78262] for deuterium. For parahydrogen McCarty and Weber [80777] present

extensive tables for both liquid and gaseous states.

Applicable property values and calculated thermal diffusivities are shown for solid

and liquid ortho and normal deuterium in table 5-3 which is taken from Ludtke and Roder.

The thermal conductivity of solid deuterium is "anchored" with Daney 1 s values. Therefore,

the agreement between his values of thermal diffusivity and those presented in table 5-3 is

excellent. The uncertainty in a near the triple point is about 3% as obtained from the errors

in the other variables. Since the solid thermal conductivity is very sensitive to para content,

the value of thermal diffusivity of ortho deuterium near 4 K has to be considered uncertain

by one order of magnitude. Note that values of thermal diffusivity differ by several orders

of magnitude for the lower temperatures of the solid.

5. 5 Viscosity

Sources of data for various hydrogens are discussed in more detail below. A com-

posite of all saturated liquid curves is given in figure 5-4. In this figure p-Hs , HD, and Ds

are based on experimental measurements. HT and Ts are based on a corresponding states

calculation which as its base used experimental values for Ds which we now believe to be in

error. The corresponding states calculation ought to be redone because better input data are

now available. In addition, the correlation should be done in terms of density rather than

temperature.

Hydrogen

As source of data we select Diller [27674], who measured viscosity of p-H3 at tem-

peratures from 14 to 100 K and at pressures to 345 atm. Extensive tables are presented in

the reference; we present only the tables of saturated liquid p-H2 and saturated liquid n-H3 .

It can be seen that the viscosity of saturated liquid n-Hg is up to 5% higher than that of p-Ha

at the same temperature. However, there is virtually no difference in viscosity, if the

comparison is made at the same densities.
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Table 5-4. Viscosity of Saturated

Liquid Parahydrogen
Table 5-5. Viscosity of Saturated

Liquid Normal Hydrogen

T
(°K) (g/cm3

)

-jX10«
(g/cm-scc)

T
(°K) (g/cm 1

)

>;X10»
(g/cm -sec)

14.000 0.076S5 250.7

14.SO0 0.07643 234 1

15.000 0.07599 221.3
IS. 500 0.07555 207.3
16.000 0.07510 197.5
16.500 0.07464 185.6
17.000 0.07417 177.7

17.500 0.07368 168.5
18.000 0.07319 160.5
18.500 0.07268 153.8
19.000 0.07216 147.0
19.500 0.07163 141.3
20.000 0.07108 135.4
20.500 0.07052 130.6
21.000 0.06994 125.3
21.500 0.06934 120.6
22.000 0.06872 116.1
23.000 0.06741 108.1
24.000 0.06601 100.8
25.000 0.06449 93.5
26.000 0.06283 87.2
26.500 0.06194 84.1
27.000 0.06100 81.0
27.500 0.06001 78.1
28.000 0.05896 75.2
28.500 0.05784 72.4
29.000 0.0S664 69.6
29.500 0.05534 67.0
30.000 0.05393 64.9
30.500 0.05236 61.2
31.000 0.05058 58.1
31.500 0.04852 55.7
32.000 0.04599 51.9
32.500 0.04248 47.5
32.700 0.04041 43.9

14.000 0.07717 254.3
15.000 0.07631 230.2
16.000 0.07542 203.9
17.000 0.07449 182.9
18.000 0.07350 165.6
19.000 0.07246 151.5
20.000 0.07136 139.2
21.000 0.07020 128.4
22.000 0.06896 118.7
23.000 0.06763 110.5
24.000 0.06621 102.6
25.000 0.06468 95.7
26.000 0.06302 89.0

with permission from D. E. Diller, J. Chem.
Phys. 42, 2089 (Mar. 1965).

with per mission from D. E. Diller, J. Chem.
Phys. 42, 2089 (Mar. 1965).

Values for the dilute gas viscosities can be obtained from Diller [27674]; extensive

tables calculated from the equations by Diller are presented by McCarty and Weber [80777]

in engineering units. Differences in viscosity for various ortho-para compositions may

approach 1% for the dilute gas; an extensive set of measurements is given by Camani [76374].

Deuterium

Several investigators have measured the viscosity of saturated liquid deuterium. We

believe that the earliest of these measurements, those by van Itterbeek and van Paemel [6274],

are in error. The more recent data of Rudenko and Konareva in 1963 [22496] and Konareva

and Rudenko in 1967 [47292], covering the range from 18.8 to 36 K, have been selected. The

selection is based on the higher precision of these measurements, and on the excellent

agreement between data taken by these authors on liquid normal hydrogen with the data of

Diller in the range from 22 - 32 K. No ortho-para composition of the deuterium is given.

The selected experimental values for deuterium are given in table 5-6. We note that the

difference In viscosity at the triple point for the two sources is large, 434 micropoises for

the Russian sources vs about 530 for van Itterbeek and Paemel.
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Becker, Misenta, and Stehl [5137] measured the difference In viscosity between

normal and various concentrations of ortho deuterium. They present two isotherms of 16.6

and 20.3 K indicating the relative difference in viscosity as a function of ortho concentrations

from 66.67 to 98 percent. Their viscosity data is presented in terms of relative viscosity

difference, A 11/11 X 10 3
, defined as

r (11) x%oDP - (T|) 66.67%oDs -i 3

L (11) 66.67%oDa J
'

The results are listed below:

Temperature Ortho Composition
(K) 78.1% 84.9% 88.4% 98.0%

20.3 0.23 0.41 0.56

16.6 0.41 0.62

For a given temperature, the measurements show that ortho D2 has a slightly higher

viscosity than n-D2 . Here we remark again that for hydrogen the saturated liquid

viscosities are nearly independent of ortho-para composition if compared at the same density.

HP

The first reported measurements of HD viscosity (gas) were by Becker and

Misenta [5132] who measured viscosities of H2 , HD, and D2 from just above their triple

points to 90 K. They estimate their errors to range from 0. 68% at 14. 12 K, increasing

linearly to 4. 12% at 90 K. Rietfield and van Itterbeek [3948] measured 1) for mixtures of

gaseous HD and D2 , ranging in concentration from to 100% HD. Above 20 K, their

reported values of T| /TL. were consistently between 1.21 and 1.22 independent of temper-
HD H 2

ature. Coremans, et al. [8330] measured 11 for 95 ± 2% pure HD gas. Konareva and

Rudenko [47292] measured 11 for HD at 10 temperatures along the saturated liquid boundary

augmenting the earlier results of Rudenko and Konareva [42002]. Selected values for liquid

and gaseous HD are given in table 5-6.

Ta , HD, and DT

As mentioned in the introduction, estimates for the saturated liquid of these hydrogens

were taken from the quantum mechanical corresponding states calculation of Rogers and

Brickwedde [38388]. This correlation relies heavily on the viscosity data of van Itterbeek

and van Paemel [6274] for deuterium, data which we now believe to be in error. As a con-

sequence the values presented here are also thought to be in error, i. e. , a new correlation

would be desirable.
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Rogers and Brickwedde reestimated the force constants, g/k and a, and the

quantum correction parameter A for T2 to be 34.5 K, Z. 949 land 1.029 respectively, and

recalculated viscosities for liquid tritium. Values are given in table 5-6. We note that the

entry of 510 micropoises for 24 K must be a printing error, according to the graph a value

of about 470 is much more consistent with the other values. Comparison with an earlier

calculation, i. e. , Kerrisk, et al. [17393] shows a large difference for 7] at the triple point,

739 micropoises vs 819 for Rogers and Brickwedde.

Values for the liquid viscosity of HT are also taken from the paper of Rogers and

Brickwedde [38388]. They are based on a A eff of 1.374 and are presented in table 5-6.

Values of viscosity of DT may also be obtained from the graphs published by Rogers

and Brickwedde. We note that the A eff for DT (1.046) is very close to that of Ts

(A
' = 1.029). At T = 0.8,T] is about 2% lower than 7] . It is therefore suggested

DT T3

that the table entries for liquid T 2 be adjusted (lower ed)by 2% to obtain values for DT.

6. Electrical Properties

6.1 Breakdown Voltage

Measurements have been made by Mathes [19687] on liquid and gaseous hydrogen

using 60 cycle a-c voltages applied across steel electrodes to obtain values for use in

practical applications rather than intrinsic values. His results are shown in figure 6-1.

Note that electrode material and its degree of oxidation have a pronounced effect on

such measurements. Also, helium is affected by presence of finely divided solid impurities

such as air. Dissipation factors as discussed by Jeffries and Mathes [68981] are normally

very low.

6.2 Dielectric Constant

The dielectric constant is used to indicate liquid level, to measure density in gas,

liquid, or solid states, and to detect holes or voids in the solid phase. In general, experi-

mental measurements made before 1960 are lacking in both precision and accuracy and will

not be considered here. The significant experimental papers are:

1. Stewart [22412] who measured the dielectric constant for parahydrogen over a large

range of pressure and temperature in both liquid and gas phases;

2. Younglove [52135] who measured the dielectric constant for highly compressed liquid and

solid parahydrogen;

3. Hermans, et al. [32363] who measured for the dilute gas the differences in

polarizability between H2 , HD and D3 , and also between normal and para H2 ;

4. Kogan and Milenko [66761] who measured the difference in dielectric constant for

various concentrations of o-p Hs in the liquid state.
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Figure 6-1. Breakdown Voltage of Cryogenic Liquids from K.N.
Mathes, Electro-Technol. 72, 72 (Sept. 1963).

In addition we will use one of the older papers to indicate a difference in polarizability

between Hs and D2 in the liquid state:

5. van Itterbeek and Spaepen [684].

It is important for the user to realize that correlation or analysis of the dielectric

constant is almost always handled through the Clausius-Mossotti relation M(e- l)/(e+2)p = P,

or solved for e = (1 + 2Pp)/(l - Pp), where e is the dielectric constant, M the molecular

weight, p the density, and P the molar polarizability. Polarizability is most often

expressed in cm3
/g; a nominal value for parahydrogen is 1.004 cm3

/g, a nominal value for

Ds is 0.4 Q4 cm3
/g. However, to compare polar izabilities of the various hydrogen isotopes

it is best if P is expressed in molar units, thus the nominal value for parahydrogen

becomes 2. 02 cm3 /mol and the one for D, is 1 . 99 cm3 /mol.

Parahydrogen

The most extensive measurements have been made on parahydrogen. A composite

plot of the results, figure 6-2, shows that the polarizability is a very slowly varying function
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of density. Stewart [22412] is able to correlate his entire set of measurements with a single

equation

1/P = 0. 99575 - 0.09069p + 1. 1227p 3

where P is in cm3
/g and p in g/cm3

. Younglove's [52135] measurements extend to

higher liquid densities and include values for the solid. He represents his solid measure-

ments by the equation P = 1.011 - 0.049091p with units as above. As shown in figure 6-2

Younglove reports a difference of about 0.5% in P between liquid and solid. This value has

recently been called to question by Udovidchenko and Manzhelii [68779] and by Wallace and

Meyer [Wallace and Meyer, 1972] who report a change of no more than 0.2%.

Since the dielectric constant is proportional to density, a plot of e vs. T is very

similar to a density- temperature phase diagram. For parahydrogen, liquid and solid

boundaries are shown in figure 6-3 while the vapor-liquid boundary is shown in figure 6-4.

Other Modifications

The other experimental sources cited present dielectric constants for several

hydrogen modifications, or differences in polar izability. We have used these data, recal-

culating as necessary, to prepare the table shown below, where all other modifications are

referred to the polar izability of parahydrogen [Stewart, 22412]. For those modifications

which have not been measured experimentally we have estimated polar izability differences

as shown.

Table 6-1. Polar izabilities of the Hydrogens

molar polar izabilitie s , cm3 /mole difference conditions

n-H2 2. 0273 P-H2 2,.0243 0. 0030 dilute gas Hermans et al.

n-H2 2. 0372 p-H2 2. 0279 0. 0093 sat. liquid Kogan et al.

HD 2. 0130 P-H2 2,.0243 -0. 0113 dilute gas Hermans et al.

D2 1. 9988 P-H3 2,.0243 -0. 0255 dilute gas Hermans et al.

D3 1..9910 p-H2 2,,0231 -0. 0321 sat. liquid van Itterbeek et al.

HT 1.995 p-H2 2.0243 -0.029 estimated plot of experimental

DT 1.978 p-H3 2.0243 -0.046 estimated polar izability dif-

T 2 1.961 P-H2 2.0243 -0.063 estimated ferences above vs.

molecular weight

The significant conclusions drawn from this table are that

1. The differences in polarizability are nearly constant in going from gas to liquid states;

2. We can estimate values of the dielectric constant for other hydrogen modifications by

using the polarizability differences and the known polarizability of parahydrogen in the
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following sequence of steps:

a. find density or state at point desired (moles/cm3
)

b. calculate polar izability of p-H3 at an equivalent density (moles/cm3
)

c. adjust polar izability by appropriate difference

d. calculate desired dielectric constant.

6.3 Electrical Conductivity

A significant experimental paper is that of Willis [40311]. His conclusions are: "It

does not appear to be correct to speak of the electrical conductivity of cryogenic fluids in the

sense of Ohm's law. Although a current can be passed through a cryogen, only a weak

dependence on the applied gradient exists. In other words, the conductivity is not a constant

as in an ohmic material, but a function of the applied potential. The cryogen acts as a

constant current source in this respect. This is believed to be so because no intrinsic

mechanism of charge carrier formation exists within the cryogen itself. All charge carriers

present are generated by the ionizing radiation present as natural background. " Note that

the conductivity of Da is affected by a small amount of Ts . The Ta contamination

provides a large amount of ionization through the emission of beta particles. Values for

hydrogen and deuterium are given in table 6-2.

Table 6-2. Electrical Resistivity of Hydrogen and Deuterium

Vapor
pressure Electrostatic Electrometer
(mm Hg Temperature voltmeter amplifier

Cryogen absolute) (°R) measurement (flcm) measurement (ficm)

Deuterium 167 35 2. 12 X 10 1S 7.4 x 10 1S

Hydrogen 585 34.8 3.73, 10.4 x 10 18 4.6 x 10 19

7. Optical Properties

7. 1 Index of Refraction

The refractive index of liquid hydrogen and deuterium is often required for the

analysis of data obtained from high-energy physics experiments which use bubble chambers

as detectors. The refractive index of hydrogen is also used in densitometry.

Index of refraction measurements are almost always analyzed in terms of the

Lorentz-Lorenz function:

L-L = r, = —= — —
\ n= + 2 p

where r is the specific refraction at wavelength \, n is the refractive index, and p is
\ X
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the density. The Lorentz theory predicts that the Lorentz-Lorenz function should be nearly

independent of temperature and density for a non-polar fluid. For many fluids including

hydrogen the function is in fact weakly dependent upon temperature and density.

The specific refraction is related to the specific polarization p of the Clausius-

Mossotti function (see section 6.2) as follows: e = n2 , which is equivalent to p = r .

These relations imply that the temperature and density dependences of the Lorentz-Lorenz

function and the Clausius-Mossotti function are similar, and that data of one type may be used

to develop values for the other variable provided that the appropriate values of density are

available.

Hydrogen

Diller [54546] obtained very precise values on gaseous and liquid para- and normal

hydrogen at temperatures between 15 and 298. 15 K and at pressures up to 230 atm. The

data were analyzed in terms of the density and temperature dependence of the L-L function;

the precision and reproducibility of L-L is better than 0.05% in most cases. Diller'

s

results for parahydrogen are summarized in figure 7-1. The large deviations for saturated

liquid and vapor near the critical density are attributable to errors in the density, not in the

index of refraction. These results in fact indicate that a reexamination of the PVT surface

of parahydrogen is in order, and that the value of the critical temperature should be close to

32.95 rather than 32.976. Diller also measured values for normal hydrogen. In general the

normal-para differences in the L-L function are about 0. 1%, very close to theoretical

predictions. The differences for the saturated liquids vary a bit more than 0. 1%. Values are

shown in figure 7-2. In addition, this figure is perhaps the best graphical illustration of the

differences in liquid density between normal and parahydrogen.

Deuterium

Values for liquid deuterium have been calculated by Childs and Diller [57921]. These

authors used information on the dielectric constant following the method indicated by

Corruccini [30251]. The required dispersion relationship was obtained from the room tem-

perature measurements of the refractive index of deuterium by Larsen [Larsen, 1936]. The

values obtained by Childs and Diller are based on the liquid densities of Prydz [43781]. They

are tabulated as a function of wave length and density in table 7-1.

HP

Since the differences in dielectric constant between n and pHa , HD and Ds are available

(Hermans, et al. [32363]), and since Diller's difference in the Lorentz-Lorenz function

between normal and parahydrogen is consistent with the polar izability difference of Hermans,

et al., one could in principle obtain index of refraction values for HD. This has not yet been

done.
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Table 7-1. The Refractive Index of Liquid Deuterium

p. g/cm 3

/. = 3200A ;.= 5461 A ,= 6328 A

T, °K rk , cm 3
/g "a 'a< cm

3

;g n x rx , cm 3
g "a

18.7 0.1739 0.5358 1.1437 0.5089 1.1363 0.5056 1.1354

19.0 0.1733 0.5358 1.1432 0.5089 1.1358 0.5056 1 . 1 349

20.0 0.1712 0.5358 1.1415 0.5090 1 . 1 342 0.5057 1.1333

21.0 0.1691 0.5358 1.1397 0.5090 1.1324 0.5057 1.1316

22.0 0.1669 0.5359 1.1378 0.5091 1 . 1 307 0.5057 1 . 1 298

23.0 0.1645 0.5359 1.1358 0.5091 1.1288 0.5058 1.1279

24.0 0.1620 0.5360 1.1337 0.5091 1.1268 0.5058 1.1259

25.0 0.1595 0.5360 1.1315 0.5092 1.1247 0.5059 1.1239

26.0 0.1567 0.5360 1.1292 0.5092 1.1225 0.5059 1.1217

27.0 0.1538 0.5361 1.1267 0.5092 1.1202 0.5059 1.1194

28.0 0.1508 0.5361 1.1242 0.5093 1.1178 0.5060 1 . 1 1 70

29.0 0.1475 0.5361 1.1214 0.5093 1.1152 0.5060 1.1144

30.0 0.1440 0.5362 1.1184 0.5094 1.1124 0.5061 1.1116

with permission from G. E. Childs, et al. , Cryogenic Engineering Conference 15th,

Los Angeles, Calif. (Jun. 1969), paper D-2.

7.2 Infrared Absorption

It is difficult to summarize this subject because so many transitions are possible in

hydrogen, i.e., rotational, vibrational, Raman, ultraviolet, infrared, far- infrared spectra

all have been investigated. The survey uncovered about 150 references of potential interest.

From a practical point of view it is of interest to describe the absorption of radiation in

solid, liquid, or dense vapor. Unfortunately this becomes involved with system parameters

related to the source of radiation. The spectral absorption coefficient for most gases is a

strong function of frequency, being zero over large ranges and sharply peaked in certain

bands. In the case of oxygen these bands have been identified and a correlation of total band

absorptance given [section A- 31 and A-42 in 80838]. A similar correlation for hydrogen has

not been accomplished. Measurements on liquid hydrogen by Jones [63093, 65842] indicate

that the infrared spectrum of liquid hydrogen consists of two distinct parts, each of which is

strongly dependent on ortho-para composition. Comparison of these results to those of

others show differences of 30 to 40% for the peak absorption. These discrepancies remain

unexplained. Jones gives an example calculation for liquid normal and parahydrogen. He

notes that the fundamental band of hydrogen is of negligible importance if we consider

radiative heat transfer from a room temperature source. Simple definitions are given in

[65842] and in [80838]. An extensive survey of induced transitions in liquid and solid hydrogen

up to about 1965 is given by Colpa [36823].
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8. Mechanical Properties

In earlier sections we have presented values for several mechanical properties such

as the velocity of sound of the solid (section 3.4), bulk moduli for liquid (section 2.5), and

thermal expansion of the solid (section 2. 1). In this section we present the bulk of the

mechanical properties of the solid phase.

Experimental measurements of uniaxial loading have been conducted by Bol'shutkin,

Stetsenko and their co-workers on polycrystalline parahydrogen [49657], polycrystalline

normal hydrogen [78545], and polycrystalline deuterium [68001]. In these papers the authors

present values of Young's modulus, of the shear modulus, of tensile strength, of nominal

yield stress, and of relative elongation. Values for normal and parahydrogen are summa-

rized in figure 8-1 taken from [78545], and values for deuterium are presented in table 8-1

which is taken from [68001].

CM UO
c
E

20

CJ>

«-u

-U.

12 r«
Figure 8-1. Temperature Dependences of the Mechanical Properties of

Normal and Parahydrogen

1 - is Young's modulus, 2 - the shear modulus, 3 - tensile strength, 4 - nominal yield stress,

e relative elongation.
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Table 8-1. Temperature Dependence of Strength, Relative

Elongation, Coefficient of Hardening , Young's

Modulus, and Shear Modulus of Deuterium on Temperature

V °0.1 E G

T, °K g/mm2
e, % kg/mm2

1.4 43.0 0.6 51.0 52.0 20.0

3.0 50.0 0.8 34.0 49.6 19.4

4.2 54.0 1.0 29.0 48.2 18. 1

5.4 52.0 2.0 27.5 46.5 17.8

8.0 45.0 3.0 26.0 44.0 16.8

11.6 43.3 6.2 22.2 42.0 16.2

15.6 29.1 13.0 14.4 41. 1 15.8

16.4 21.4 22.3

Experimental measurements of the velocity of sound in solid hydrogen and

deuterium [78548, 81564] have yielded values of Poisson's ratio as well as values of

"adiabatic" and isothermal compressibilities. The values have already been presented in

table 3-5. In addition, these papers report values of the Debye 8, of the elastic constants,

and of the adiabatic bulk modulus, all of which together with a few calorimetric 9's are

given in table 8-2 below.

Table 8-2. Debye 8, Adiabatic Bulk Modulus and Elastic Constants for H2 and Ds

Debye 9 adiabatic bulk modulus [81564]

111, single crystal normal [81564] 1740 bar

113, polycrystal para [78548]
normal H2 124, para calorimetric

122, para calorimetric

[21136]

[75211]

assuming V = 22.87 cm3 /mol

105, single crystal normal [81564] 3370 bar

normal Ds 113.8, ortho calorimetric [75211] assuming V = 20. 19 cm3 /mol

Elastic constants [81564] p = density

C
ll/p

C
12/p

C
13/p

C
33/ P

C
44/p

normal Ha 4.10 1.35 0.45 4.99 0. 94

normal D3 3.34 1.17 0.61 3.91 0.80
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Note that the calorimetr ic Debye 8's are consistent, and the mechanical Debye 6's are

consistent, but that the two methods differ considerably as pointed out in [78548]. The

explanation that "This discrepancy is due to incorrect elimination of the anomalies in the

temperature dependence of C ..." needs further study, particularly as the recent results

of Roberts and Daunt [75211] are in excellent agreement with those of Ahlers [21136]. In

addition Ahlers 1 measurements are at constant volume; technically the correct way to

determine a Debye 9 is from C . Finally Ahlers' 9's vary from 128 to 106 for his lowest
v

isochore, that is for temperatures from to 15 K, and they vary considerably more for

changes in density.

Finally there are measurements of shear strength as a function of applied pressure.

Initial values of extrusion pressures were reported by Stewart [5719], 240 kg/cm2 for Ha

and 290 kg/cm2 for DE . The measurements have since been refined by Towle [32738] who

reports the following values for Ha at 4 K:

shear strength kg/cm2
29 41.6 61.4 64. 6

mean applied pressure kg/cm3 1050 2010 3190 3710

9. Modification, Phase Change

9.1 Ortho-Para Conversion

A separate search on ortho-para conversion turned up 241 papers of potential interest.

Time and funding for this survey precluded any work beyond that done for the earlier survey

[Ludtke and Roder, 78262]. Since many of the references on the earlier report on deuterium

also are applicable to hydrogen, we rely heavily on the material of that report.

Hydrogen, deuterium and tritium exist in two modifications. In one the molecule has

a rotational energy level J = 0, the lowest energy level, with an associated spin quantum

number I = or 2. In the other state the molecule has a rotational energy level J = 1 and a

spin quantum number 1=1. For hydrogen and tritium the lowest energy level is called para,

for deuterium it is called ortho.

We suggest that the heat effects of the ortho-para change can be ignored in most

practical applications if the absence of a catalyst can be assured. If not, then we recommend

deliberate conversion to the lower energy level as the step to minimize all undesirable side

effects. If estimates of ortho-para effects are desired, we suggest that the rate equations of

Motizuki and Nagamiya [5439, 5440] be used.

Ortho-Para Composition

The ortho-para composition of hydrogen, deuterium and tritium at equilibrium is tem-

perature dependent, especially below 50 K, as shown in table 9-1, which is taken from

Woolley, et al. [6368] and Jones [18037].
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Table 9-1. Ortho-Para Composition at Equilibrium

Percentage Percentage Percentage
Temperature in para form in para form in para form

(K) for H3 for D2 for Ts

10 99.9999 0.0277 97.177

20 99.821 1.998 66.186

20.39 99.789

23.57 --- 3.761

30 97.021 7.864 43.306

40 88.727 14.784 33.197

50 77.054 20.718 28.728

Heat of Conversion

The heat of conversion arises from the transition between the different rotational

levels of the molecule. When for example para deuterium converts to ortho deuterium, there

is a decrease in the energy of the molecule and this energy is dissipated as heat. The

amount of heat given off in a conversion process depends on the temperature and on the

amount of material requiring conversion. Values of the heat of conversion at a given tem-

perature level should be obtained from the tables of ideal gas thermodynamic functions,

Haar, et al. [11271] for hydrogen and deuterium, and Jones [18037] for tritium.

Rate of Self- Conversion

The rate of self- conversion is of particular interest in practical problems where the

normal gas, i.e. , the gas in equilibrium at room temperature, is liquefied or solidified and

self- conversion towards the equilibrium concentration sets in. The earliest vapor pressure

papers contain reference to the problem.

For liquid deuterium two order of magnitude estimates for the rate of self- conversion

have been published by Brickwedde, et al. [11250] and by Woolley, et al. [6368]. Both are

based on the rate of conversion given for normal hydrogen by Woolley, et al. [6368], The

rate of self-conversion of deuterium is plotted in figure 9-1. The rate equations are

assumed to be second order differential equations of the form

d [para deuterium] „ r , -,->—" *- = - K [para deuteriumj
,

where K is the velocity constant, and [para deuterium] indicates the mole fraction of para

deuterium.

For solid deuterium, Motizuki [Motizuki, 1957, 1962] calculated the rate of para-ortho self-

conversion. He assumes that the para-ortho conversion arises from magnetic dipole-dipole
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interactions of molecular pairs and the coupling of the nuclear quadrupole of one molecule

with the total quadrupole moment of the other. His rate equation is

drP
d

"

t

Dg1
= -K[P -D3 ]

S
- K'[p-Da ] (l-[p-D3 ]) ,

where K' = 1 . 78 x 10~ 3 h" 1 and K = 1.27 x 10" 3 h" 1
. Motizuki 1 s rate of self- conversion of

solid deuterium is plotted in figure 9-1 for comparison with the liquid estimates. Half-

conversion times for the various expressions are also indicated in figure 9-1. A half-

conversion time is defined as the time required for 50% of the original para composition

(33.33% for this plot) to convert to ortho. As the plot indicates, the half- conversion times

for self-conversion of deuterium are extremely long (> 5400 hours).

Grenier and White [22677] measured self- conversion rates of deuterium from the

drift curves of their heat capacity measurements. The data are for solid deuterium and

cover a wide range of para compositions (33 - 83%). The experimental rates, d[p-D 2 ]/dt,

and Motizuki' s theoretical rate are compared in figure 9-2. Grenier explains that the large

scatter in the data may be due to traces of oxygen that increase the rate of conversion in

some of the samples.

For solid hydrogen Ahlers [22667] made measurements of the ortho- para conversion

as a function of the molar volume of the solid. These measurements are in excellent agree-

ment with the experimental values obtained at very low pressure by Cremer [Cremer, 1938].

Rate of Conversion of Liquid Using Catalysts

Any of the hydrogens may be readily converted to the equilibrium composition with a

catalyst, if conversion is desired. Some very effective catalysts exist. The catalyzed

conversion rate for deuterium is comparable to that of hydrogen. It is extremely fast when

compared to the self- conversion rate. No special effort was made to gather all references

on the conversion using catalysts; the papers mentioned below are included only to indicate

the type of information that is available.

An historical work in the field is Farkas' book [2040]. He measured the rate of

conversion for deuterium gas at 20.4 K, using activated charcoal and solid oxygen as catalysts.

Using solid oxygen, he obtained half- conversion times of 19 minutes, and with activated

charcoal, the rate of conversion was too rapid to be measured.

Eberhart [25360] conducted conversion experiments with several catalysts. The

catalysts were of the chromia impregnated Y- a lurn ina type. The half- conversion times for

deuterium at 20.4 K ranged from 11 to 84 minutes. For hydrogen, the results ranged from

6.7 to 123 minutes.
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Albers, Harteck, and Reeves [23788] measured the half- conversion times of tritium,

deuterium, and hydrogen gas on cocoanut charcoal. Thsy found the half- conversion times to

be 1 minute for tritium, 19 minutes for deuterium, and 27 minutes for hydrogen.

9.2 Melting Curves

The experimental papers up to 1948 have been summarized by Woolley et al. [6368].

An important paper is that of Mills and Grilly [5449] who measured melting pressures for

n-HE , n-D
2 , and n-T^. For p-H2 Goodwin [14130] has presented experimental results and an

empirical equation. We have taken the values in composite table 9-2 from Goodwin's calcu-

lation because he constrained the Simon equation to pass through a selected triple point,

thus, negative values in the range of validity of the curve are avoided. The values for HD

are taken from Woolley et al. [6368].

Goodwin's equation reads as follows:

(P - P
t
)/(T - T

t
) = A exp (- a /T) + BT + C

where A = 30.3312 atm/K, a = 5. 693 K, B = 2/3 atm/K3
, and values of the triple point

parameters and the constant C are as follows:

p-H? n_Ha n~D3 n_ T 3

C (atm/K) 3 85 6.4

T
t
(K) 13.803 13. 947 18 72 20.61

P (atm) 0.0695 0.071 169 0.213

For parahydrogen, the values in table 9-2 repeat those already given in table 3-2

where the values for the density of the freezing liquid were presented. Additional values

for the melting pressures of parahydrogen have been published by Younglove [52135"}; these

values have not yet been incorporated into a melting pressure analysis.

9. 3 Latent Heat of Fusion

The latent heats of fusion are summarized in table 9-3. Most of the experimental

work was conducted,at essentially triple point temperatures; however some measurements

have been made at elevated pressures, and others as a function of ortho-para composition.

Grenier and White for example concluded that the heat of fusion of deuterium with para

content in the range 78% to 81% is 47. 18 ± 0. 10 cal/mol. They also indicate that the heats of

fusion are independent of ortho-para composition within exper imental error. If the authors

indicated the triple point temperature in the paper, then the value of that temperature is

given in brackets in the temperature column. For the measurements at elevated pressures,

both the temperature and the pressure at which the measurements were made are shown. In

the heat of fusion column the values which are underlined are the ones which are given in

section 1 1 in the fixed point tables.
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9.4 Latent Heat of Sublimation

The latent heat of sublimation like the heat of vaporization is temperature dependent.

As far as we are aware.actual experimental measurements of the latent heat of sublimation

have not been conducted. Instead the property is usually calculated from the Clausius-

Clapeyron equation requiring values of the solid volumes, the vapor volumes, and the

derivative of the vapor pressure curve. The difficulty is usually to select a proper equation

of state for the vapor, because the vapor volumes predominate in the calculation. For the

temperatures involved the extrapolation of the virial B is quite extended, therefore the ideal

gas equation is often used for the vapor volumes. At the triple point the latent heat of

sublimation should equal the sum of the latent heat of vaporization and the latent heat of fusion.

The equality offers a severe test of thermodynamic consistency, in particular, of the various

vapor pressure derivatives used in the calculations.

The heat of sublimation at K is of particular interest theoretically, and a number of

papers are concerned with this extrapolation. Clusius, for example, in a survey

article [16376] offers calculated or extrapolated values of 183.4 cal/mol for Hs , 228 cal/mol

for HD, and 274 cal/mol for Da at K. More recently Eyring, et al. [19187] have calculated

the following values from the hole theory of liquids:

181. 56 cal/mol for p-H2

182.92 n-Hs

234.57 H-D

276.32 o-Dg

277.90 n-D2

The only modern ther modynamically consistent calculation, which by the way included

data on the heat capacity of the solid, is that by Mullins, et al. [12596] on parahydrogen.

Values of the heat of sublimation for parahydrogen have already been presented in the

composite table 2-3.

9.5 Latent Heat of Vaporization

The heat of vaporization is a function of temperature. If sufficiently precise values

of the saturated liquid and vapor densities and the derivative of the vapor pressure are

available, then one can calculate the heat of vaporization from the Clausius-Clapeyron

equation. For parahydrogen and normal deuterium, the heat of vaporization can be estab-

lished directly from the enthalpies of saturated liquid and vapor given in tables 2-2 and 2-7.

For the other hydrogens, values near the normal boiling point are collected in table 9-4 as

available. A comparison between normal hydrogen and parahydrogen has been calculated

from the values given by Stewart and Roder [23790] and is presented in table 9-5. A

71



O
a,

>

a
fl .2
CD jj
BO at

X 2

D, LO vO LO a a
-Q

sO CJ vD
-Q rQ

a^ o CT-

El •-H CM l—

<

d d

c fa

o

o
.c! nEl

*H tn

nt I—* td

cq CQ

T) CD Tl
C Ej

n! a
ni

CO CO

2 *-*
pi

en ci CO

3 X! 3

u i-n u

^ s

w a

Q Q

72



method for estimating desired values of the heat of fusion, both as a function of temperature

and by species, has been indicated by White, et al. [9624], and the pertinent graph is

reproduced in figure 9-3. This method, reciprocal of the square root of the mass, has been

criticized and other mixing rules are preferable [see for example, 32140], but it is the only

one that has been worked out at present.

Table 9-5. Latent Heats for n- and p-Hp

T, K Latent Heat of Vaporization, cal/mol

Normal Para Difference

14 219.9 217.1 2.8

15 220.7 218.3 2.4

16 221.1 218.5 2.6

17 221.1 218.4 2.7

18 220.6 217.9 2.7

19 219.6 216.8 2.8

20 218.0 215.2 2.8

21 215.7 212.5 3.2

22 212.7 209.5 3.2

23 208.9 205.6 3.3

24 204.2 200.8 3.4

25 198.5 195.0 3.5

26 191.5 187.8 3.7

27 183.1 179.2 3.9

28 173.0 168.7 4.3

29 160.6 155.8 4.8

30 145.2 140.1 5.1

31 125.4 119.8 5.6

32 90.8

9.6 Solid Transitions

Solid transitions are known to occur for H3
and D3 . The transition is dependent on

ortho-para composition and involves a change in structure from hep to bcc. Typical

transition temperatures range from 1.2 to 4 K. The subject is covered in more detail in

section 2.1.
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10. Vapor Pressure

Vapor pressure measurements on liquid and solid hydrogen, its isotopes, and its

isotopic mixtures have been made since 1900. However, for the purposes of this report,

all measurements or correlations prior to 1948 are not discussed. We note that differences

in vapor pressure measurements by different observers are nearly always attributable to

differences in the temperature scales used.

10. 1 Hydrogen

Solid p-Ha

For practical purposes 20.4 e-Hs , which is 99.79% para, is the same as para-

hydrogen. We recommend the calculation by Mullins, et al. [12596], the values of which

have already been presented in table 2-3.

Solid n-H-,

Direct experimental vapor pressure measurements on solid n-Hs between 3.4 and

4. 5 K were made by Borovik, Grishin, and Grishina [6759]. Hydrogen gas was condensed on

a cooled surface in a high vacuum. After establishment of equilibrium, the pressure was

measured at which the rate of condensation and the rate of evaporation were equal. Errors

in the measurement of temperature did not exceed ± 0.02 K, and pressure measurement

error did not exceed 10% as reported by the authors. Results are given in table 10-1.

Harrison, Fite, and Guthrie [13770] experimentally determined the vapor pressure of

solid n-H2 from 4. 7 K to 1 1 . 1 K. For the two experimental temperature ranges, 4.7- 5. 2 K

and 6. 5- 11. IK, the pressure readings were taken at room temperature using a gauge con-

nected by a tube to the low temperature region containing the solid hydrogen, and corrections

were made in the calculations when necessary. The data are given in table 10-1. The

authors represent the data by the equation

log P = - ^^1 + | log T + 2.047

which is valid for the temperature range 4. 7 to 13. 95 K.

Liquid p-Ha

For maximum consistency with the thermal data such as entropy, enthalpy, etc. , we

recommend the vapor pressures given by Roder, et al. [29210] already presented in

table 2-2. The values are identical to those given by Weber, et al. [13704] and are in very

good agreement with those of Hoge and Arnold [454] and those of Woolley, et al. [6368].
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The measurements by Hoge and Arnold [454] on liquid equilibrium hydrogen

(0. 979 p-Hs , 0. 021 o-Ha at 20. 4 K) were made from near the triple point to the critical

point. They noted that while the e-H2 was in ortho-para equilibrium only at 20.4 K, the

composition did not change as the temperature was raised or lowered during the experiment.

Their smoothed experimental data have an accuracy of 0.3 mm Hg up to 1 atm, and the

uncertainty above 1 atm pressure gradually increases, reaching ± 8 mm Hg near the critical

point. The uncertainty in the temperature scale is perhaps ± 20 mK.

Weber, et al. [13704] presented experimental data on 20.4 K equilibrium H2 (called

parahydrogen) from the boiling point to the critical point. The measurements were done in

a P-V-T cryostat, and the overall uncertainty of the pressure measuring system was

± 0.003 atm. The authors present the data with the following equation valid between the

boiling point and 29 K,

log P (atm) = 2.000620 -
r7
!°'? 9

!°^, + 0.01748495T .
° a T + 1. 0044

Above 29 K an adjustment function must be used:

P = P + 0.001317 (T-29) 3
- 0.00005926 (T-29)s + 0.000003913 (T-29)7

a

The function

log P (atm) = 1.772454- '— + 0.02055468T

was developed by Weber, et al. to represent the values of Hoge and Arnold within experi-

mental deviations from the triple point to about 21 K. The equations join smoothly at

20.268 K.

Liquid n-Ha

Van Itterbeek, et al. [23435] have made the most recent and most extensive measure-

ments of the vapor pressure of n-Hs and the difference in vapor pressure between normal-

and equilibrium (para) hydrogen in the temperature range from 20 K up to 32 K. The data

for n-H2 are shown in table 10-1. The difference of normal- and para-H3 were smoothed

by the function

log P (kg/cm3 ) = A + B/T + C log T
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where the constants for the n-H
3
are: A = -1.55447, B = -31.875, C = 2.39188; and the

constants for the differential pressure are: A = -3. 945, B = -14. 520, and C = 2. 470. The

normal boiling point data for n- and e-H2
were determined from the equation and are in

agreement with accepted values within the limit of experimental error. Most of the experi-

mental data in table 10-1 agree with smoothed data calculated from the equations; however

above 30 K the equation for the vapor pressure differences is not reliable.

For values between the triple point and the normal boiling point we recommend the

values given in the compilation of Woolley, et al. [6368].

Liquid o-H g

For liquid o-H& the only data available are the estimates of Woolley, et al. [6368]

who measured values for liquid e-H2 and liquid n-Ha . The values for o-Hs are based on an

extrapolation with respect to composition; they are given in table 10-1.

10. 2 Deuterium

Solid Da

In accordance with the earlier survey of Ludtke and Roder [78262] we recommend the

equations by Woolley, et al. [6368] for the vapor pressure of solid D2 . The equations are:

, „ 68.0782
for solid n-Da log10 P = 5.1626 - + 0.03 HOT ,

for solid o-D3 log10 P = 5.1625 -
7 ' 9119

+ 0.03102T .

Calculated values for n-D3 are given in table 10-1.

Liquid D P

For liquid normal deuterium we must recommend the vapor pressures by

Prydz [43781] in order to be consistent with all of the other thermal quantities presented.

Values for the vapor pressure of liquid normal deuterium have already been given in

table 2-7.

For liquid ortho deuterium, the most extensive measurements are those of Hoge and

Arnold [454] whose values are given in table 10-1. The authors indicate that the vapor

pressure measurements on deuterium below one atmosphere are accurate to 0.3 mm Hg and

that the uncertainty in temperature is ± 20 millidegrees K. The authors also determined the

triple point temperature and pressure of ortho deuterium as well as the normal boiling

point. The values agree with those of Woolley, et al. [6368] for triple point temperature

and pressure, but disagree for the normal boiling temperature. A significant difference
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between this work and others is the use of a platinum resistance thermometer to determine

temperatures.

Meckstroth and White [71082] measured the vapor pressure differences between ortho

deuterium (2. 15% para) and varying compositions of para deuterium (up to 80%), over the

temperature range from 17.2 to 22 K. They explain that relatively few reliable vapor

pressure measurements were obtained for the solid due to plugging of the small capillary

tubes whenever the apparatus was maintained below 17 K for any appreciable length of time.

Their results are shown in figure 10-1 along with those of Brickwedde, et al. [11250]. The

older studies were limited to para compositions in the range 2. 1 to 33.3 percent. For the

newer results the major impurity of the deuterium samples never exceeded 0. 1 mole

percent, the change in ortho- para composition during any run was less than 0.4 percent.
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Figure 10-1. Vapor Pressure Differences vs. the Vapor Pressure of

Ortho Deuterium
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10.3 Tritium

Experimental determination on the vapor pressure of solid and liquid tritium between

14 and 29 K was made by Grilly [444], who also measured hydrogen and deuterium. The

author felt that the purity was sufficient to yield fair accuracy in the temperature range. The

data are reproduced in table 10-1. The author represented the data by the following two

equations:

solid: log P = 6.4773 - 88.002/T

liquid: log P = 6.0334 - 78.925/T + 0. 0002 (T-25)2

Maximum deviation for the solid data is 3.8%, whereas for the liquid it is 0.34%.

10.4 Hydrogen Deuteride

Woolley, et al. [6368] measured the vapor pressure of HD from 10.4 to 20.4 K. For

solid HD they used the following equation,

56.7154
log P = 4.70260 - + 0.04101T

Calculated values are given in table 10-1.

Hoge and Arnold [454] made extensive measurements of the vapor pressure of liquid

HD. Their smoothed data are given in table 10-1.

10.5 Hydrogen Tritide and Deuterium Tritide

No experimental measurements on solid HT or DT were found in this survey,

therefore no recommendations can be made for the solid vapor pressures. For liquid HT

and DT only the single values at 20.4 K obtained by Libby and Barter [14954] from the

evaporation of very dilute solutions are available. The values are HT: 254 + 16 mm Hg and

DT: 123 ± 6 mm Hg. This experiment indicates that the vapor pressure of HT is approxi-

mately the same as that of D3 . A subsequent experiment by Bigeleisen and Kerr [417]

showed that the vapor pressure of HT is greater than that of Ds at 20 K. One interpretation

of the latter experiment is to lend credence to the rule of the geometric mean for vapor

pressures. It is the geometric mean that is used by Mittelhauser and Thodos [32140, see

also summary] to calculate estimates of vapor pressure for these species.
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10.6 Summary

Except for parahydrogen the most important experimental vapor pressures are

reproduced in table 10-1. A composite picture of the vapor pressure curves, of the hydrogens

based on the sources selected above is given in figure 10-2. The selection of triple point

pressure and temperature, of the normal boiling temperature, and of the critical parameters,

which are presented in section 11, is also based on the vapor pressures selected here.

As an alternate, particularly if highly precise values are not required, we include a

table of values calculated by Mittelhauser and Thodos [32140], The table, 10-2, is highly

compact and convenient. It is based on an evaluation of very nearly the same vapor pressure

data selected above. However, the user should keep in mind the following:

1. The vapor pressure equation, the Frost-Kalkwarf equation, is singularly awkward to

use, it is transcendental in nature.

2. Vapor pressure accuracy is on the order of ± 1% in pressure. The departures are

analyzed in terms of pressure, not in terms of temperature, while the major discrepancies,

as noted in the introduction, are ordinarily caused by use of different temperature scales.

3. The critical constants used for para and normal hydrogen are much too high. As the

method is essentially a corresponding states analysis, the critical points of the other

hydrogens are suspected to be too high.
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Table 10-2. Calculated Vapor Pressures of the Hydrogens

T( K) e-H 2 n-H 2 HD HT e-D 2 n-D 2 DT n-T2

r
riple point ( K) 13-81 13-96 16-60 17-62 18-69 18-73 91-71 20-62

/'(ram) 52-8 54-0 92-8 109-5 128-5 128-6 145-7 162

14-0 57-2 55-5

14-5 75-8 73-5

15-0 98-7 95-7

15-5 126-4 122-6

16-0 159-5 154-7

16-5 198-7 192-7

170 244-7 237-3 1120
17-5 298 1 288-9 141-3

180 359-5 348-5 176-1 125-2

18-5 429-6 416-4 217-0 156-9

190 509-1 493-4 264-7 194-3 146-8 145-5

19-5 598-8 580-

1

319-6 238 181-6 1801
20 699-2 677-4 382-7 288-8 222-5 220-6 164-9

20-5 811-1 785-7 454-4 347-2 269-9 267-6 202-8 153-7

21 935-3 905-7 535-5 413-9 324-6 321-8 246-9 189-5

21-5 1072-4 1038-3 626-7 489-8 387-2 383-6 298 231-4

22-.0 1223-3 1184-0 728-7 575-3 458-3 454-2 356-6 280
22-5 1388-5 1343-7 842-3 671-2 538-7 533-8 423-5 336-0

23 1568-9 1517-9 968 778-2 628-9 623-3 499-3 400
23-5 1765-2 1707-3 1106-8 897-2 729-9 723-2 584-8 472-7

24 1978-3 1912-8 1259-2 1028-7 842-3 834-5 680-6 554-8

24-5 2208-8 2135-1 1426-1 1173-6 966-7 957-7 787-5 647-

1

25-0 2457-6 2374-9 1608-3 1332-6 11040 1093-5 906-2 750-3

25-5 2725-5 2632-9 1806-5 1506-4 1255 1242-9 1037-4 865-2

260 3013-4 29100 2012-4 1695-8 1420-3 1406-4 1181-9 992-3

26-5 3322-1 3207-0 2254 1901-6 1600 7 1584-9 1340-7 1132-7

27-0 3652-7 3524-6 2504-9 2124-5 1797-1 1779-1 1514-2 1286-9

27-5 4005-9 3863-8 2775-1 2365-4 2010-3 1989-8 1703-5 1455-9

28-0 4382-6 4225-3 3065-5 2625-1 2241-1 2217-9 1909-2 1640-3

28-5 4783-9 4610-2 3376-7 2901-1 2490-2 2464 2132-2 18411
29-0 5211-2 5019-2 37100 3203-9 2758-6 2729-1 2373-3 2058-9

29-5 5665-2 5453-5 4065-9 3524-6 3047-2 3013-9 2633-5 2294-6

30-0 6147-2 5914-2 4445-9 3867-7 3356-9 3319-5 2913-4 2549-3

30-5 6658-5 6402-3 4850-6 4233-7 3688-5 3646-7 3214-2 2823-4
31-0 7200-7 6919-2 5281-0 4623-6 4043-1 3996-3 3536-5 31180
31-5 7774-9 7465-8 5738-5 5038-7 4421-5 4369-3 3881-5 3434-

1

320 8382-9 8043-7 6224-1 5479-5 4825-2 4766-7 4250-1 3772-3
32-5 9026-4 8654-4 6739-3 5947-3 5254-8 5189-8 4643-2 4113-9
33-0 9299-0 7285-

I

6443-2 5711-6 5639-2 5061 9 4519-5
33-5 7863-1 6968-1 6169-6 6116-4 5507-2 4930-3
34-0 8475-0 7523-4 6711-4 6622-1 5980-5 53671
34-5 9122-1 8110-7 7257-3 7158-1 6482-7 5831-1

35-0 9806-5 8730-8 7835-7 7725-7 70151 6323-5
35-5 10529-0 9385-5 8448 8325-6 7579-

1

6845-3

36 10076 9095-7 8960-2 8176-3 7397-7
36-5 10805 9781-2 9630-7 8808-0 7981-7
37-0 115730 10505 10339-0 9475-8 8599-2
37-5 11272-0 110870 10181-0 9251-1

38 12083 11877-0 10927 9938-8
38-5 117180 106640
39-0 12547-0 11429-0
39-5 12236-0

400 130860

Critical point

( K) 32-99 33-24 35-91 3713 38-26 38-35 39-42 40-44

P(mm) 9705-2 9735-6 11134-0 11780-0 12373-0 12487 133000 138780

with permission from H. M. Mittlehauser , et al. , Cryogenics 4, 368 (1964).
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11. Fixed Points

In table 11-1 we present temperatures and pressures for the triple point, the normal

boiling point, and the critical point of the various hydrogens. For normal hydrogen, the values

of Woolley, et al. [6368] are adopted. In addition we present a mos; extensive table of

values for the many different properties at the fixed points of normal hydrogen, table 11-2

[Cryogenics Division, NBS, unpublished]. Values are taken from the many sources given

in the auxiliary Notes and Reference sheet.

For parahydrogen we select the values given by Roder et al.
, [29210] in order to

be consistent with the values of entropy, enthalpy, etc. , which have been presented. A

second extensive table of property values at the fixed points of parahydrogen is given in

table 11-3 which is quite similar to the one for normal hydrogen.

For the other hydrogens we first list in table 11-1 the values adopted by "Woolley

et al.
, [6368] who summarized the literature up to 1948. In addition, all papers are listed

which present results of direct experimental measurements. The listing is rounded out by a

limited nuimber of values which have been calculated from theory or estimated in various

ways. By presenting values from different sources in table 11-1, we give the reader an

opportunity to see how much variation is possible in any given value. The preferred values

of this survey are underlined.

The temperatures and pressures given in table 11-1 are those of the original

articles. The user should be aware that much of the variation in values is due to the use

of different temperature scales. Scales such as the NBS-39, the NBS-55, and the

IPTS-68 have been in common use. These scales differ by about 0. 015K for temperatures

up to 40K. Scales in use at some laboratories which are based on thermocouple thermom-

etry occasionally display larger differences. Reconciliation of differences in property

values by adjustment of temperatures is beyond the scope of this survey and has not been

accomplished here.
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12. Mixture Properties

The essential data elements for mixture problems are: 1. properties of the pure

components, 2. equilibrium properties of mixtures, and 3. transport properties of

mixtures. The properties of the pure components have been described in the present report.

The equilibrium properties of mixtures include excess volumes, excess Gibbs free energies,

and excess enthalpies. In a bibliography on equilibrium properties which is nearly com-

pleted, Hiza, Kidnay and Miller [Hiza, et al.
]
provide the designer with a complete

reference to available experimental data on mixtures of cryogenic interest. The data are

categorized according to the various phase equilibria, gas or liquid mixture densities, and

mixture enthalpies; solubilities are thus covered in this volume. For the transport properties

it would be desirable to conduct a similar survey, however, such a survey is not planned at

present.

A few references that may be of particular value are the following: Hoge and

Arnold [454] who report dew and bubble points of Hs HD and D3 mixtures; Technical Note 621

by Hiza [77791] on the He4 -nDg , the He3 -nDs , the He4 -nH3 , and the He3 -nH2 systems.

Sherman [Sherman, 1972] is presently investigating the He 4 and He3 systems with nH2 , nD2 ,

and nTj . A number of hydrogen mixtures with other gases have been surveyed by Esel'son,

et al. [Esel'son, et al. , 1971]. Several references for diffusion coefficients in binary liquid

systems will be available when the compilation of Bailey, et al. [Bailey, et al.] is published.
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