Frequency Stability Specification and Measurement: High Frequency and Microwave Signals
The National Bureau of Standards1 was established by an act of Congress March 3, 1901. The Bureau’s overall goal is to strengthen and advance the Nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation’s physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

- Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation
- Nuclear Radiation
- Applied Radiation
- Quantum Electronics
- Electromagnetics—Time and Frequency
- Laboratory Astrophysics
- Cryogenics

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute also monitors NBS engineering standards activities and provides liaison between NBS and national and international engineering standards bodies. The Institute consists of a Center for Building Technology and the following divisions and offices:

- Federal Building Technology
- Building Standards and Codes Services
- Building Environment
- Structures, Materials and Life Safety—Technical Evaluation and Application

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

- Information Processing Standards—Computer Information—Computer Services—Systems Development—Information Processing Technology

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world, and directs the public information activities of the Bureau. The Office consists of the following organizational units:

- Office of Standard Reference Data—Office of Technical Information and Publications—Library—Office of International Relations

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
2 Part of the Center for Radiation Research.
3 Located at Boulder, Colorado 80302.
4 Part of the Center for Building Technology.
Frequency Stability Specification and Measurement: High Frequency and Microwave Signals

J.H. Shoaf
D. Halford
A.S. Risley

Time and Frequency Division
Institute for Basic Standards
National Bureau of Standards
Boulder, Colorado 80302

NBS Technical notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

U.S. DEPARTMENT OF COMMERCE, Peter G. Peterson, Secretary
NATIONAL BUREAU OF STANDARDS, Lawrence M. Kushner, Acting Director
Issued January 1973
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Typical Frequency Domain Measurement of Frequency Stability (Phase Sensitive Mode)</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Stepped Gain Operational Amplifier</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Low Noise Amplifier</td>
<td>8</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Adjustable RC Filter</td>
<td>9</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Battery Bias Box</td>
<td>9</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Plot of Script \mathcal{L} versus Frequency f</td>
<td>11</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Typical Time Domain Measurement of Frequency Stability (Frequency Sensitive Mode)</td>
<td>12</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Plot of Sigma versus Tau</td>
<td>14</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Frequency Stability Measurement Utilizing a Computing Counter</td>
<td>15</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Differential Phase Noise Measurement</td>
<td>16</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Adjustable Phase Shifter (5-MHz Delay Line)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Photograph of Single Oscillator Frequency Stability Measurement System</td>
<td>20</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Single Oscillator Frequency Stability Measurement System</td>
<td>21</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Frequency Domain Plot of X-Band Gunn Diode Oscillator Signal Source (Single Oscillator Method).</td>
<td>27</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Frequency Stability Measurement System (Phase-Lock Servo Loop)</td>
<td>29</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Frequency Stability Measurement System (Offset-Frequency Phase-Lock Servo Loop)</td>
<td>30</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Frequency Stability Measurement System (Large Frequency-Offset Phase-Lock Servo Loop)</td>
<td>31</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Time Domain Plot of X-Band Gunn Diode Oscillator Signal Source</td>
<td>32</td>
</tr>
</tbody>
</table>
FREQUENCY STABILITY SPECIFICATION AND MEASUREMENT:
HIGH FREQUENCY AND MICROWAVE SIGNALS*

John H. Shoaf, Donald Halford, and A. S. Risley

Atomic Frequency and Time Standards Program Areas
National Bureau of Standards
Boulder, Colorado 80302 USA

This report gives concise definitions for specifying frequency stability for measurements in the frequency domain and time domain. Standards of terminology and of measurement techniques are recommended. Measurement systems in the high frequency and microwave regions are described in adequate detail so that the systems may be duplicated.

Key Words: Allan variance; Frequency stability measurements; Measurement system description; Phase noise; Spectral density; Stability definitions; Terminology standards.

1. INTRODUCTION AND BACKGROUND

At the beginning of FY-71 the Department of Defense Joint Services Calibration Coordinating Group (DoD/CCG), J. L. Hayes (Chairman), Metrology Engineering Center, Pomona, California, contracted with the National Bureau of Standards (NBS) to write a paper pertaining to the specification and measurement of frequency stability. The project was under the jurisdiction of the DoD/CCG Time and Frequency Working Group. The current members of this group are Peter Strucker (Chairman), Metrology Engineering Center, Pomona, California; J. M. Rivamonte, U. S. Army Metrology and Calibration Center, Redstone Arsenal, Alabama; and E. L. Kirkpatrick, Aerospace Guidance and Metrology Center, Newark Air Force Station, Newark, Ohio.

*Contribution of the National Bureau of Standards, not subject to copyright.
The first year's work (FY-71) culminated as NBS Report 9794 [1].
The second year's work (FY-72) extended the frequency range to include
a working measurement system at X-band. The results of work done in
both FY-71 and FY-72 are documented in this paper.

The purpose of the project is to establish recommended standards
of terminology and measurement techniques for frequency stability.
Emphasis is placed on details of useful working systems (apparatus)
that could be duplicated by others in the field of frequency stability
measurements. Uniformity of data presentation is stressed in order to
facilitate interpretation of stability specifications and to enable one to
communicate and compare experimental results more readily. An
authoritative paper [2] by the Institute of Electrical and Electronics
Engineers (IEEE) Subcommittee on Frequency Stability is used exten-
sively as the prime reference in the preparation of this report. This
report presents the description and performance of frequency stability
measurement systems capable of precise measurements on state-of-the-
art sources. Sufficient theory of the measurement systems is given to
enable a person to readily understand the principle of operation.

2. TERMINOLOGY FOR SPECIFICATION
OF FREQUENCY STABILITY

The term frequency stability encompasses the concepts of random
noise, intended and incidental modulation, and any other fluctuations of
the output frequency of a device. In this report we are mainly (but not
totally) concerned with random fluctuations corresponding to Fourier
frequencies in the 10^0 to 10^6 hertz range. The measurement of fre-
quency stability can be accomplished in both the frequency domain (e.g.,
spectrum analysis) and the time domain (e.g., gated frequency counter).
In the aforementioned manuscripts [1], [2] the authors chose to use two independent definitions, each related to different useful methods of measurement. (See Appendix A for a Glossary of Symbols.)

The frequency domain definition of frequency stability is the one-sided spectral density of the fractional frequency fluctuations, \(S_y(f) \), where \(y = \frac{\delta f}{f_0} \). The fractional frequency fluctuation spectral density \(S_y(f) \) is not to be confused with the radio frequency power spectral density \(S_{\sqrt{\text{RFP}}}(\nu) \), nor with \(S_{\delta \nu}(\nu) \), which are not good primary measures of frequency stability [2]. (There is some discussion of this in Appendix D.) Phase noise spectral density plots [i.e., \(S_{\delta \phi}(f) \) versus \(f \)] are a common alternative method of data presentation. The spectral density of phase fluctuations is related to \(S_y(f) \) by

\[
S_{\delta \phi}(f) = \left(\frac{\nu_o^2}{f^2} \right) S_y(f).
\]

The time domain definition of frequency stability uses the type of sample variance called the Allan variance [3] of \(y \):

\[
\langle \sigma_y^2(N, T, \tau, f_h) \rangle \equiv \left\langle \frac{1}{N - 1} \sum_{n=1}^{N} \left(\bar{y}_n - \frac{1}{N} \sum_{k=1}^{N} \bar{y}_k \right)^2 \right\rangle.
\]

The particular Allan variance with \(N = 2 \) and \(T = \tau \) is found to be especially useful in practice. It is denoted by:

\[
\sigma_y^2(\tau) \equiv \langle \sigma_y^2(N = 2, T = \tau, f_h) \rangle = \left\langle \frac{\left(\bar{y}_{k+1} - \bar{y}_k \right)^2}{2} \right\rangle.
\]

The bar over the \(y \) indicates that \(y \) has been averaged over a specified time interval \(\tau \). The angular brackets indicate an average of the quantity over time. (See example in Appendix F.)
In the time domain we are concerned with the measurement of Allan variances at different time intervals. Plots of $[\sigma_y^2(\tau)]^{1/2}$ versus τ ('sigma versus tau') on a log-log scale are commonly used for data presentation. A convenient chart which enables one to translate from frequency domain measures to time domain measures (and often conversely) is found in Appendix B. An example of this translation is given in Appendix C.

Script $\mathcal{L}(f)$ is a frequency domain measure of phase fluctuations (noise, instability, modulation) used at NBS. Script $\mathcal{L}(f)$ is defined as the ratio of the power in one phase noise sideband, referred to the input carrier frequency, on a per hertz of bandwidth spectral density basis, to the total signal power, at Fourier frequency f from the carrier, per one device. (See Appendix D.)

$$
\mathcal{L}(f) \equiv \frac{\text{Power density (one phase modulation sideband)}}{\text{Power (total signal)}}.
$$

For small $\delta\phi$,

$$
S_{\delta\phi}(f) = 2 \mathcal{L}(f).
$$

A practical system for the measurement of Script $\mathcal{L}(f)$ or $S_{\delta\phi}(f)$ will be described in detail later.

It seems appropriate here to discuss briefly the types of noise that affect the output frequency of all known signal sources. The noises can be characterized by their frequency dependence.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>$S_{\delta\phi}(f)$</th>
<th>$S_{\delta\nu}(f) = f^2 S_{\delta\phi}(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Phase Noise</td>
<td>f^0</td>
<td>f^2</td>
</tr>
<tr>
<td>Flicker Phase Noise</td>
<td>f^{-1}</td>
<td>f^1</td>
</tr>
<tr>
<td>White Frequency Noise</td>
<td>f^{-2}</td>
<td>f^0</td>
</tr>
<tr>
<td>(Random walk of phase)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flicker Frequency Noise</td>
<td>f^{-3}</td>
<td>f^{-1}</td>
</tr>
</tbody>
</table>
3. OPERATIONAL SYSTEMS FOR MEASUREMENT OF FREQUENCY STABILITY AT NBS (HIGH FREQUENCY REGION)

John H. Shoaf and Donald Halford

Most conventional systems for measurement of frequency stability until recently have utilized time domain techniques primarily. As indicated previously, in order to have a comprehensive and sufficient measure of frequency stability, it is preferred that the measurements involve both frequency and time domain techniques.

Fortunately, frequency domain and time domain methods for measuring frequency stability require similar apparatus except that: to make measurements in the frequency domain you must have a frequency window (spectrum analyzer) following the detector; for the time domain you must have a time window (gated counter) following the detector.

It was the introduction of good double-balanced mixers that permitted measurement of frequency stability by improved techniques [4]-[7], [11]. The double-balanced mixer, considered as a phase sensitive detector, makes possible meaningful frequency stability measurements of high-quality signal sources in both the frequency domain and the time domain. The results are quantitative and may be obtained from a measurement system which is reasonable in cost.

The frequency stability measurement systems described below have been used at NBS since 1967. The functional block diagrams in figures 1, 7, 9, and 10 are referred to in the detailed descriptions of the particular systems. The carrier frequency range 10^3 Hz to 10^9 Hz is easily covered with these techniques.
3.1. Frequency Domain Measurements

(Figures 1, 7, and 10 show circuit values appropriate for measuring high quality 5-MHz quartz crystal oscillators.)

Figure 1 illustrates the measurement system typically used at NBS for frequency domain measurements. It should be noted that time domain data can also be obtained simultaneously, although usually this system is used only for frequency domain measurements. (For time domain measurements it is often more convenient to use a slightly
modified measurement setup to be described later.) In this frequency domain setup the oscillator under test is fed into one side of a low-noise double-balanced mixer which utilizes Schottky barrier diodes. The reference oscillator is fed into the other side of the mixer through an attenuator, typically 10 dB. The mixer acts as a phase sensitive detector so that when the two signals are identical in frequency and are in phase quadrature the output is approximately zero volts dc. When this output is sent back to the reference oscillator via the varactor tuning, phase lock is achieved. As with any feedback system, care must be observed to avoid instabilities, e.g., servo loop oscillations. The phase-lock loop contains proper termination at the output of the mixer followed by operational amplifiers with adjustable gain. The time constant of the loop may be adjusted as needed by varying the amplifier gain within the loop and by use of the RC filter (fig. 4) indicated in the diagram. Finally, a battery bias box is included at the varactor input in order to operate in a suitably linear portion of the varactor's frequency versus voltage curve.

A very loose phase-lock loop is indicated inasmuch as the voltage varies as phase (in short term), and in this frequency domain measurement we are observing the small phase variations directly. By the phrase very loose phase-lock loop, we mean that the bandwidth of the servo response is small compared to the lowest frequency f at which we wish to measure (i.e., the response time is very slow). Operational amplifiers are arranged in a circuit as shown in figure 2 for convenience of adjusting the gain and for self-contained battery supply voltage. Special NBS low-noise dc amplifiers used in certain precision measurements are shown in figure 3. At NBS we have arranged in a small chassis the adjustable RC or CR filters utilizing low-noise components, with rotary switches for various combinations of R and C (see fig. 4).
FIGURE 2: STEPPED GAIN OPERATIONAL AMPLIFIER

FIGURE 3: LOW NOISE AMPLIFIER
FIGURE 4: ADJUSTABLE RC FILTER
S1: FILTER MODE SWITCH (ROTARY, 3 WAFER)
S2: RESISTOR SWITCH (ROTARY, SHORTING TYPE)
S3: CAPACITOR SWITCH (ROTARY, PROGRESSIVE SHORTING)

FIGURE 5: BATTERY BIAS BOX
THE UNITS ARE BUILT ON SEPARATE CHASSIS AND CONNECTED IN SERIES TO FACILITATE FINE ADJUSTMENT BETWEEN STEP VOLTAGES
The battery bias box is arranged with vernier as shown in figure 5, facilitating fine frequency adjustments via the varactor frequency adjustment in one oscillator. A wave analyzer is used to obtain the noise plot information relevant to stability (frequency domain). The phase noise sideband levels are read out in rms volts on the analyzer set to certain chosen values of frequency, \(f \). For typical high quality signal sources this corresponds to measuring only those phase noise sidebands which are separated from the carrier by the various \(f \) intervals chosen.

Script \(\mathcal{L}(f) \) may be calculated with the assumption that both sources contribute equally; however, if one source were the major contributor, then the noise of that source would be no worse than 3 dB greater than the value of Script \(\mathcal{L}(f) \) so calculated. A typical plot is shown in figure 6. A sample calculation may be found in Appendix E.
Figure 6: \(\mathcal{L}(f) \) versus frequency \(f \)

Script \(\mathcal{L}(f) \) is a frequency domain measure of phase fluctuations (noise, instability, modulation). Script \(\mathcal{L}(f) \) is defined as the ratio of the power in one phase noise sideband, referred to the input carrier frequency, on a per hertz of bandwidth spectral density basis, to the total signal power, at Fourier frequency \(f \) from the carrier, per one device.

\[
S_{\delta \phi}^2(f) = 2 \mathcal{L}(f) \quad \text{for small} \quad \delta \phi
\]
3.2. Time Domain Measurements

In figure 7 a measurement system typically used at NBS for stability measurements in the time domain is shown. It will be noted that the principle of operation is similar to that used in the frequency domain measurement wherein the reference oscillator is locked to the test oscillator. However, for the time domain measurement we use a

![Diagram of Time Domain Measurement System]

FIGURE 7: TYPICAL TIME DOMAIN MEASUREMENT OF FREQUENCY STABILITY (FREQUENCY SENSITIVE MODE)

ITEMS (1) THROUGH (8) SAME AS FIGURE 1
(9) OPERATIONAL AMPLIFIER
(10) STRIP CHART RECORDER FOR QUALITATIVE OBSERVATION
(11) VOLTAGE-TO-FREQUENCY CONVERTER
(12) FREQUENCY COUNTER WITH LOW DEAD TIME
(13) DIGITAL RECORDER WITH FAST RECORDING SPEED
(INHIBIT TIME COMPATIBLE WITH COUNTER DEAD TIME)
(14) COMPUTER (OPTIONAL METHOD OF DATA ANALYSIS)
very tight phase-lock loop and the correction voltage at the oscillator varies as frequency. By the phrase very tight phase-lock loop, we mean that the bandwidth of the servo response is relatively large (i.e., the response time is much smaller than the smallest time interval τ at which we wish to measure). Caution--there are problems which are potentially present in tight phase-lock loop systems. This is a very convenient setup for observing frequency fluctuations in longer term. However, with the time constant appropriately adjusted and the means for taking sufficiently fast samples the system is readily used for short term measurements, as well as for the longer term measurements, in the time domain. For qualitative observations any suitable oscilloscope or strip chart recorder may be used. For quantitative measurements the system at NBS utilizes a voltage-to-frequency converter, a frequency counter, and a printer capable of recording rapid samples of data with very short dead time. The data are analyzed typically by computer via a program designed to compute the appropriate Allan variance [2], [3]. In our computer program $\log \sigma$ versus $\log \tau$ along with the associated confidence in the σ are automatically plotted on microfilm. For small batches of data a desk calculator could be used and the computer analysis would not be necessary. An example of a specific Allan variance computation is shown in Appendix F. A typical plot of $\log \sigma$ versus $\log \tau$ is shown in figure 8. The dashed lines indicate the slopes which are characteristic of the types of noise indicated.
\[\frac{\theta}{\sigma^2} \equiv \frac{1}{2} \ln \frac{T}{\sigma^2} \]

where \(\theta \) is a parameter related to the signal-to-noise ratio, \(\sigma^2 \) is the variance of the noise, and \(T \) is the sample time interval.

Figure 8: SIGMA VERSUS TAU
The convenience of obtaining time domain data has been greatly enhanced by utilizing recently developed counters [8] which are programable to automatically compute σ versus τ. A block diagram (fig. 9) shows the measurement setup using a computing counter programed for $\sigma_y(\tau)$. The program which was used is given in Appendix G.

Certain limitations of deadtime are inherent in the use of this time domain method. However, in general (except for very short τ), frequency stability in the time domain may be measured quickly and accurately using a computing counter.

![Block diagram of frequency stability measurement utilizing a computer counter](image)

Figure 9: Frequency stability measurement utilizing a computer counter
3.3. Differential Phase Noise Measurements

An additional useful system illustrated in figure 10 is used for differential phase noise measurements of various discrete components which are frequently used in stability measurement systems. In this system only one frequency source is used. Its output is split so that part of the signal passes through the component to be tested.

![Figure 10: Differential Phase Noise Measurement](image)

FIGURE 10: DIFFERENTIAL PHASE NOISE MEASUREMENT

ITEMS (1) THROUGH (14) SAME AS FIGURES 1 AND 7
(15) ANY DEVICE OR COMPONENT UPON WHICH NOISE MEASUREMENTS ARE DESIRED (AMPLIFIERS, FILTERS, CAPACITORS, CABLES, PADS, ETC.)
(16) NBS ADJUSTABLE PHASE SHIFTER, 5MHz (SEE FIGURE 11)

The signal is adjusted via a phase shifter (fig. 11) so that it is in phase quadrature with the other part of the original signal and is down-converted in the Schottky barrier diode mixer as described in the other

![Figure 11: Adjustable Phase Shifter (5MHz Delay Line)](image)

FIGURE 11: ADJUSTABLE PHASE SHIFTER (5MHz DELAY LINE)

RG174/U CABLE WAS USED FOR EACH SEGMENT OF PHASE SHIFT CALCULATED AT ~10 cm PER DEGREE AT 5 MHz.
systems. The switchable 50Ω load in figure 11 is not essential but is included for convenience. A low-pass filter is included before the signal is amplified in special low-noise, low-level dc amplifiers and observed on the spectrum analyzer. Script $\mathcal{Z}(f)$ values are calculated at various frequency values, f, and plotted. A sample calculation is shown in Appendix E.

The measurement system noise level (e.g., see fig. 6) is easily evaluated. Using the differential phase noise measurement system shown in figure 10, let the "device under test" be a short length of coaxial cable (which is itself not a source of noise). The small amount of noise observed on the spectrum analyzer represents the system noise, mainly due to the mixer (4) or the first amplifier (5). The calculation of the system noise is then the procedure given in Appendix E.
4. OPERATIONAL SYSTEMS FOR MEASUREMENT OF FREQUENCY STABILITY AT NBS (MICROWAVE REGION)

John H. Shoaf and A. S. Risley

Thorough investigation of stability measurement techniques in the X-band region revealed that a method different from that described above for HF measurements was desirable in most cases. The recommended measurement system is described here in detail. Other techniques of stability measurements in X-band will be discussed in less detail later. The recommended system* is a single-oscillator system as shown in the photograph (fig. 12) and in the block diagram (fig. 13). Prime references are papers by Ashley et al. [9] and Ondria [10].

4.1. Discussion of the Measurement System

The single-oscillator frequency stability measurement system is basically a frequency modulation (FM) demodulator. That is, it can retrieve from the modulated carrier the signal with which the carrier was originally frequency modulated.

An important consideration when making measurements is that of maintaining the quadrature condition—a 90° average phase difference between the signals in the reference channel and the signal channel as seen at the mixer. Unfortunately, there is a fairly high probability that during the course of a measurement the average phase difference will fluctuate a few degrees about the desired 90° setting. Therefore, it is recommended that an occasional check of the quadrature condition be

* The recommended system is discussed here as a frequency domain measurement. However, time domain measurements can also be made.
made. (In a two-oscillator system of measurement discussed later the quadrature condition--in long term--is established and maintained by phase-locking one source to the other. A similar procedure could be used here, but we consider it to be unnecessary in practice.)

In practice, there is a low frequency limit to the usefulness of this method for the measurement of FM noise. We have seen limiting values of \(f \) ranging from as high as 500 Hz to as low as 2.5 Hz.

The single-oscillator system and the two-oscillator system each has an upper frequency limit; i.e., a value of \(f \) above which frequency stability measurements cannot meaningfully be made. For the single-oscillator system this upper limit is \(f \approx W_c \), where \(W_c \) is the 3-dB resonance linewidth of the loaded discriminator cavity. In the NBS single-oscillator system, measurements were made at values of \(f \) as high as 100 kHz.
FIGURE 12. SINGLE OSCILLATOR FREQUENCY STABILITY MEASUREMENT SYSTEM
FIGURE 13: SINGLE OSCILLATOR FREQUENCY STABILITY MEASUREMENT SYSTEM
4.2. Description of the Measurement System

A description of the single-oscillator measuring system may readily be followed by referring to the block diagram (fig. 13). The X-band source under test is connected at the left-hand side of the system. The signal passes through an isolator [1] and variable attenuator [2] before it is split via a 3-dB directional coupler [3]. (It should be noted that isolators [1], [4], [7], [11], and [14] are used at several points throughout the system as a means of preventing any serious reflections which might otherwise exist.) Part of the signal enters the reference channel (upper arm), passing through a phase shifter [6] via a variable attenuator [5] and eventually through a 90° twist into the balanced mixer [8]. The other part of the signal enters the signal channel (lower arm), passing through a three-port circulator [9] connected to a discriminator cavity [10] at one port. A variable attenuator [12] is also in the signal channel before the signal reaches the balanced mixer. The output of the mixer goes to either of two spectrum analyzers [17]. A 10-dB directional coupler [13] is utilized in the signal channel to facilitate detection of resonance tuning of the cavity. This is observed via a detector [15] with a dc voltmeter readout [16].

The only component in the system which is not readily available commercially as a stock item is the discriminator cavity [10]. It is a TE_{011} right circular one-port cavity. The coarse tuning is accomplished by means of a movable end wall. The fine tuner is a small diameter rod which can be moved coaxially in the cavity. The diameter of the rod should be such that the cavity frequency changes no more than 1.5 MHz for 0.05 inch (~1 millimeter) change in depth of insertion. At any desired frequency the coupling of the cavity should be such that the absorption is very nearly complete. For further discussion of coupling see reference [4]. The cavity Q needs to be high enough for good sensitivity but adequately low for sufficient bandwidth. The cavity used
in the frequency stability measurement system described here has an unloaded Q of approximately 20,000. Additional details are available upon request from the authors.

4.3. Calibration Procedure

Initial calibration of the measurement system is necessary in order to assign an absolute scale to the stability measurements. To facilitate calibration, a sinusoidally-modulated X-band source is used to drive the system. The frequency-modulated signal is observed on an RF power spectral density analyzer and the modulation level is adjusted to a value sufficient to completely suppress the X-band carrier. For sinusoidal modulation, the first carrier null corresponds to a modulation index of 2.4. Modulation at 5 kHz was found to be convenient to use because of the particular dispersion and bandwidth settings which were available on the particular spectrum analyzer used to display the carrier suppression. The detailed procedure for obtaining the calibration factor follows.

(a) With the discriminator cavity [10] far off resonance, set the level of the X-band signal (as determined with a dc voltmeter [16] at the detector [15]) to a convenient value and record the value. The first variable attenuator [2] should be used for this adjustment. Any convenient level may be chosen provided an equal amount of power also will be available from the signal source which is to be evaluated.

(b) Adjust the cavity to resonance. The dc voltmeter at the detector is used to determine resonance. Place the dc voltmeter at the output of the mixer [8] and adjust the phase shifter [6] in the reference channel until the dc output at the mixer is zero (phase quadrature). Remove the dc voltmeter and connect the output of the mixer to a spectrum analyzer [17] tuned to the modulation frequency, 5 kHz. Record the rms voltage reading \(V_{\text{rms}} \) of the spectrum analyzer.
(c) It is now possible to calculate the calibration factor K.

$$K = \frac{(\Delta \nu)_{\text{rms}}}{V_{\text{rms}}}$$ \hspace{1cm} (6)

where $(\Delta \nu)_{\text{rms}}$ is the rms frequency deviation of the carrier due to intentional frequency modulation. This deviation is calculated using the equation

$$(\Delta \nu)_{\text{rms}} = 0.707 \ (\Delta \nu)_{\text{peak}}$$ \hspace{1cm} (7)

where $(\Delta \nu)_{\text{peak}}$ is the product of the modulation index with the frequency of sinusoidal modulation, i.e., $2.4 \times 5 \text{ kHz} = 12.025 \text{ kHz}$. Therefore the calibration factor in our case is

$$K = \frac{0.707(12.025 \text{ kHz})}{V_{\text{rms}}} = \frac{8.51 \text{ kHz}}{V_{\text{rms}}}$$ \hspace{1cm} (8)

4.4 Measurement Procedure

The procedure for obtaining data for the spectral density plot is quite similar to the calibration procedure except that the X-band carrier is not subjected to intentional modulation.

(a) With the cavity far off resonance, set the level at the detector to the same value obtained during calibration. Use the variable attenuator {2} for this adjustment. The other variable attenuators {5}, {12} are set to zero.

(b) Adjust the cavity to the resonant frequency of the X-band source. Adjust the phase shifter so that the dc output at the mixer is zero. Attach the spectrum analyzer to the output of the mixer and record rms voltage readings (V_{rms}') for various frequency settings of the spectrum analyzer. A low noise amplifier may be necessary to obtain useful readings at large Fourier frequencies. A second reading
\((v''_{\text{rms}}) \) should be taken at each value of \(f \) with the signal strongly attenuated in the signal channel. This is to record the residual additive background noise not attributable to actual phase noise on the carrier. This attenuation is accomplished by inserting all \((> 20 \text{ dB}) \) of the attenuation in the variable attenuator \{12\}.

(c) In order to calculate values of \(S_{\delta \phi}(f) \) for plotting at various Fourier frequencies it is convenient to make a tabulation of results. An example of some typical results is given below in Table 1. The following relations are used:

\[
\begin{align*}
\nu_{\text{rms}} &= \sqrt{(v'_{\text{rms}})^2 - (v''_{\text{rms}})^2} \quad (9) \\
\delta \nu_{\text{rms}} &= \nu_{\text{rms}} \times K \quad (10) \\
S_{\delta \nu}(f) &= \frac{(\delta \nu_{\text{rms}})^2}{B} \quad (11)
\end{align*}
\]

where \(B \) is the bandwidth at which the readings were made on the spectrum analyzer, and

\[
S_{\delta \phi}(f) = \frac{S_{\delta \nu}(f)}{f^2}. \quad (12)
\]

Values of \(S_{\delta \phi}(f) \) which were calculated this way (Table 1) are plotted in figure 14.
Worksheet for Calculation of $S_{\phi}(f)$

Calibration factor $K = \frac{8.51 \times 10^3 \text{ Hz}}{0.88 \text{ V}} = 9.67 \times 10^3 \text{ Hz/V}$

<table>
<thead>
<tr>
<th>f (Hz)</th>
<th>f^2 (Hz2)</th>
<th>B (Hz)</th>
<th>ν_{rms} (μV)</th>
<th>$\delta\nu_{\text{rms}}$ (Hz)</th>
<th>$(\delta\nu_{\text{rms}})^2$ (Hz2)</th>
<th>$S_{\delta\nu}(f)$ (Hz)</th>
<th>$S_{\delta\phi}(f)$ (dB)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5×10^3</td>
<td>2.5×10^7 (74 dB)1</td>
<td>100</td>
<td>660</td>
<td>6.38</td>
<td>40.7</td>
<td>0.41 (-3.9 dB)2</td>
<td>-77.9</td>
</tr>
<tr>
<td>2.5×10^3</td>
<td>6.2×10^6 (68 dB)</td>
<td>100</td>
<td>780</td>
<td>7.54</td>
<td>56.9</td>
<td>0.57 (-2.4 dB)</td>
<td>-70.4</td>
</tr>
<tr>
<td>1×10^3</td>
<td>1.0×10^6 (60 dB)</td>
<td>100</td>
<td>1000</td>
<td>9.67</td>
<td>93.5</td>
<td>0.94 (-0.3 dB)</td>
<td>-60.3</td>
</tr>
<tr>
<td>640</td>
<td>4.1×10^5 (56 dB)</td>
<td>10</td>
<td>1200</td>
<td>11.6</td>
<td>135.0</td>
<td>1.4 (1.5 dB)</td>
<td>-54.5</td>
</tr>
<tr>
<td>320</td>
<td>1.0×10^5 (50 dB)</td>
<td>10</td>
<td>460</td>
<td>4.45</td>
<td>19.8</td>
<td>2.0 (3.0 dB)</td>
<td>-47.0</td>
</tr>
<tr>
<td>210</td>
<td>4.4×10^4 (46 dB)</td>
<td>10</td>
<td>580</td>
<td>5.61</td>
<td>31.5</td>
<td>3.2 (5.1 dB)</td>
<td>-40.9</td>
</tr>
<tr>
<td>150</td>
<td>2.2×10^4 (44 dB)</td>
<td>10</td>
<td>680</td>
<td>6.58</td>
<td>43.3</td>
<td>4.3 (6.3 dB)</td>
<td>-37.7</td>
</tr>
<tr>
<td>90</td>
<td>8.1×10^3 (39 dB)</td>
<td>1</td>
<td>230</td>
<td>2.22</td>
<td>4.93</td>
<td>4.9 (6.9 dB)</td>
<td>-32.1</td>
</tr>
<tr>
<td>40</td>
<td>1.6×10^3 (32 dB)</td>
<td>1</td>
<td>300</td>
<td>2.90</td>
<td>8.41</td>
<td>8.4 (9.3 dB)</td>
<td>-22.7</td>
</tr>
<tr>
<td>20</td>
<td>400 (26 dB)</td>
<td>1</td>
<td>450</td>
<td>4.35</td>
<td>18.9</td>
<td>19.0 (12.8 dB)</td>
<td>-13.2</td>
</tr>
<tr>
<td>10</td>
<td>100 (20 dB)</td>
<td>1</td>
<td>700</td>
<td>6.77</td>
<td>45.8</td>
<td>46.0 (16.6 dB)</td>
<td>-3.4</td>
</tr>
</tbody>
</table>

* $S_{\delta\phi}(f)$ is tabulated in decibels relative to 1 radian2 Hz$^{-1}$
| dB relative to 1 Hz2 |
| dB relative to 1 Hz2 Hz$^{-1}$ |
FIGURE 14. FREQUENCY DOMAIN PLOT OF X-BAND GUNN DIODE OSCILLATOR SIGNAL SOURCE (SINGLE OSCILLATOR METHOD)

\[
S(f) = 10 \log_{10}\left(\frac{\phi^2}{\text{rad}^2/\text{Hz}}\right)
\]
4.5. Additional Techniques for Frequency Stability Measurements at X-Band

It has been found convenient and desirable, under certain circumstances, to use other techniques for measuring frequency stability at X-band. Where two X-band sources are available, phase- or frequency-locking techniques similar to those used at HF can be used. (See figs. 15, 16, and 17.) Good wide-band double-balanced mixers with coaxial connectors are available [11] which permit many of the measurements to be performed without use of waveguide components.

The measurement setup as shown in the block diagram of figure 9 can also be used at microwave frequencies utilizing a computing counter for time domain measurements. Extensive measurements of frequency stability have been made on stabilized X-band sources [12]. Time domain data obtained via the computing counter have been compared with frequency domain data obtained via several methods.

An example shown in Appendix C translates the frequency domain data of figure 14 into estimated time domain performance shown in figure 18. In the same figure we have plotted time domain data taken directly via a computing counter (see fig. 9).

5. SUMMARY

Terminology and concise definitions for the specification of frequency stability have been given. Recommended techniques and measurement systems were described in detail for both high frequency and X-band signals. Experimental results are compared using various systems. Examples of computations are also included.

A. E. Wainwright, Howard E. Bell, and David W. Allan have assisted in the development of the measurement systems reported here. Their contributions are gratefully acknowledged. The authors appreciate the assistance of Mrs. E. Helfrich in the preparation of the manuscript.
Figure 15: Frequency Stability Measurement System (Phase-Lock Servo Loop)
Figure 16: Frequency Stability Measurement System (Offset-Frequency Phase-Lock Servo Loop)

- **Spectrum Analyzer**
- **Correction Voltage**
- **X-Band Source 9.500 GHz**
- **X-Band Source 9.485 GHz**
- **X-Band Mixer**
- **Mixer**
- **Ampl. (BW<500 kHz)**
- **Baseband**
- **Frequency Synthesizer**

Diagram Notes:
- Arrows indicate flow of signals.
- Circles represent input/output points.
- Boxes represent functional blocks.

Diagram Details:
- Connections between blocks show signal paths.
- Labels indicate frequencies and signal paths.

Legend:
- Arrows indicate the direction of signal flow.
- Blocks indicate components of the system.

Technical Description:
- The system uses a spectrum analyzer to input correction voltage.
- The voltage is fed into a correction circuit.
- The signal is then passed through X-band sources, mixers, and an amplifier.
- The amplified signal is sent to a frequency synthesizer.
- The output from the synthesizer is connected back to the system.
FIGURE 17: FREQUENCY STABILITY MEASUREMENT SYSTEM
(LARGE FREQUENCY-OFFSET PHASE-LOCK SERVO LOOP)
FIGURE 18. TIME DOMAIN PLOT OF X-BAND GUNN DIODE OSCILLATOR SIGNAL SOURCE
6. REFERENCES

APPENDIX A

Glossary of Symbols

\(A_{\text{ptp}} \) Peak-to-peak voltage of a beat frequency at output of mixer

\(B \) High frequency cutoff \(f_h \) (bandwidth)

\(B_a \) Analysis bandwidth (frequency window) of the spectrum analyzer

\(f \) Fourier frequency of fluctuations

\(f_h \) Defined as \(B \), high frequency cutoff (bandwidth)

\(h_\alpha \) Coefficient of \(f^\alpha \) in spectral density representation

\(K \) Calibration factor used in the single oscillator stability measurement system for microwave frequencies,
\[K = \frac{(\Delta \nu)_{\text{rms}}}{V_{\text{rms}}} \]

\(k, n \) Integers (used as index of summation)

\(\mathcal{L}(f) \) Frequency domain measure of phase fluctuations;
Script \(\mathcal{L}(f) \) is defined as the ratio of
\[\text{Power density (one phase modulation sideband)} : \text{Power (total signal)} \]
For small \(\delta \phi \), \(S_{\delta \phi}(f) \approx 2 \mathcal{L}(f) \)

\(M \) Total number of data values available (usually \(M \gg N \))

\(N \) Number of data values used in obtaining a sample variance

\(P_{\text{total}} \) Total power of signal

\(r \) Parameter related to dead time; \(r \equiv T/\tau \)

\(S_{\delta \nu}(f) \) Spectral density of frequency fluctuations

\(S_{\delta V}(f) \) Spectral density of voltage fluctuations

\(S_{\delta \phi}(f) \) Spectral density of phase fluctuations;
\[S_{\delta \phi}(f) = \frac{S_{\delta \nu}(f)}{f^2} = S_y(f) \frac{\nu^2}{f^2} \]
APPENDIX A cont.

$S_{\sqrt{\text{RFP}}}(\nu)$ Spectral density of the (square root of the) radio frequency power

$S_{\nu}(f)$ Spectral density of ν (Spectral density of fractional frequency fluctuations)

T Time interval between the beginnings of two successive measurements

t Time variable

ν Root-mean-square (noise) voltage at output of mixer as measured by a spectrum analyzer

V_{rms} Root-mean-square voltage of the output of an FM demodulator due to intentional modulation

W_{c} The 3-dB resonance linewidth of the loaded discriminator cavity

x Time interval fluctuations; $\frac{dx}{dt} \equiv y$, hence $x = \delta \tau$

y Fractional frequency fluctuations, $y \equiv \frac{\delta \nu}{\nu_0}$

\bar{y} Average of y over a specified time interval τ

$\langle \rangle$ Time average operator (usually over a large but finite time interval τ)

Δ Difference operator

δ Fluctuation operator

$\delta \nu$ Frequency fluctuations

$\delta \phi$ Phase fluctuations

$\delta V, \nu$ Voltage fluctuations

ν Signal frequency (carrier frequency) variable

ν_0 Average frequency of source (nominal frequency)
APPENDIX A cont.

\[\sigma \] Square root of a variance

\[\sigma_y^2(\tau) \] Specific Allan variance where \(N = 2, \ T = \tau \)

\[\sigma_y^2(N, T, \tau, f_h) \] Sample variance of \(N \) averages of \(y(t) \), each of duration \(\tau \) and repeated every \(T \) units of time (Allan variance) measured in a post-detection noise bandwidth of \(f_h \)

\[\tau \] Sampling time interval

\[\tau_a \] Post-detection averaging time of the spectrum analyzer

\[\Omega \] Signal angular frequency (carrier angular frequency), \(\Omega \equiv 2\pi\nu \)

\[\omega \] Fourier angular frequency of fluctuations, \(\omega \equiv 2\pi f \)
Stability Measure Conversion Chart

(Frequency Domain - Time Domain)

\(S_y(f) = \text{one-sided spectral density of } y \) (dimensions are \(y^2/f \), \(0 \leq f \leq f_h \), \(f_h = B \), \(2\pi f_h = \tau > 1 \); \(S_y(f > f_h) = 0 \))

General Definition:

\[
\sigma_y^2(N, T, \tau, f_h) = \left(\frac{1}{N-1} \sum_{n=1}^{N} \left(\frac{1}{N} \sum_{k=1}^{N} \tilde{y}_n \right)^2 \right) \frac{dx}{dt} \approx y = \frac{\Delta y}{\Delta t}, \quad \tau = \frac{T}{\tau}
\]

Special Case:

\[
\sigma_y^2(T) = \left(\sigma_y^2(N=2, T = \tau, f_h) \right) = \left(\frac{\tilde{y}_{k+1}^2}{2} \right)
\]

<table>
<thead>
<tr>
<th>Time Domain</th>
<th>Frequency Domain (Allan variances...)</th>
<th>(\sigma_y^2(\tau))</th>
<th>(\langle \sigma_y^2(N, T, \tau, f_h) \rangle)</th>
<th>(\langle \sigma_y^2(N, T, \tau, f_h) \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITE x</td>
<td>(S_y(f) = h_2 f^2 \left(S_x(f) = \frac{h_2^2}{2N} \right)) (2\pi f \tau \gg 1)</td>
<td>(h_2 \cdot \frac{3f_h}{(2\pi)^2 \tau^2})</td>
<td>(h_2 \cdot \frac{N + 1}{N(2\pi)^2} \cdot \frac{2f_h}{\tau^2})</td>
<td>(h_2 \cdot \frac{N + \delta_k(r - 1)}{N(2\pi)^2} \cdot \frac{2f_h}{\tau^2})</td>
</tr>
<tr>
<td>FLICKER x</td>
<td>(S_y(f) = h_1 f \left(S_x(f) = \frac{h_1}{(2\pi)^2 f} \right)) (2\pi f \tau \gg 1), (2\pi f \tau_f \gg 1)</td>
<td>(h_1 \cdot \frac{1}{\tau} \left(\frac{9}{2} + 3 \ln(2\pi f h) - \ln 2 \right))</td>
<td>(h_1 \cdot \frac{2(N + 1)}{N\tau^2(2\pi)^2} \cdot \frac{3 + \ln(2\pi f h) - \ln N}{2} - N \cdot 1)</td>
<td>(h_1 \cdot \frac{2}{(2\pi)^2} \cdot \frac{3}{2} + \ln(2\pi f h) \tau) + (\frac{1}{N} \sum_{n=1}^{N-1} \left[\frac{\tau^2}{\ln \left(\frac{2N}{2\tau} \right)} \right]), for (\tau \gg 1)</td>
</tr>
<tr>
<td>WHITE y (Random Walk x)</td>
<td>(S_y(f) = h_0 \left(S_x(f) = \frac{h_0^2}{2\pi^2 f^2} \right))</td>
<td>(h_0 \cdot \frac{1}{2} \tau^{-1})</td>
<td>(h_0 \cdot \frac{1}{2} \tau^{-1})</td>
<td>(h_0 \cdot \frac{1}{2} \tau^{-1}), for (\tau > 1)</td>
</tr>
<tr>
<td>FLICKER y</td>
<td>(S_y(f) = \frac{h_1}{f} \left(S_x(f) = \frac{h_1}{(2\pi)^2 f} \right))</td>
<td>(h_1 \cdot 2 \ln 2)</td>
<td>(h_1 \cdot \frac{N \ln N}{N - 1})</td>
<td>(h_1 \cdot \frac{1}{N(N - 1)} \sum_{n=1}^{N-1} \left[\frac{-2(n \tau)^2 \ln(n \tau)}{n \tau - 1} \right] + (n \tau + 1)^2 \ln(n \tau + 1) + (n \tau + 1)^2 \ln[n \tau + 1])</td>
</tr>
<tr>
<td>RANDOM WALK y</td>
<td>(S_y(f) = \frac{h_2}{f^2} \left(S_x(f) = \frac{h_2}{(2\pi)^2 f^2} \right))</td>
<td>(h_2 \cdot \frac{(2\pi)^2 \tau}{6})</td>
<td>(h_2 \cdot \frac{(2\pi)^2 \tau}{12} \cdot N)</td>
<td>(h_2 \cdot \frac{(2\pi)^2 \tau}{12} \cdot r(N + 1) - 1)), for (\tau > 1)</td>
</tr>
</tbody>
</table>

Adapted from J. A. Barnes et al., "Characterization of Frequency Stability," NBS Technical Note 394 (October 1970); also published in IEEE Trans. on Instrumentation and Measurement IM-20, No. 2, pp. 105-120 (May 1971).
APPENDIX C

Translation of Data from Frequency Domain
Into Time Domain Performance Using the Conversion Chart

Referring to the frequency domain plot in figure 14 it is
determined that \(S_{\delta\phi}(f) \) indicates approximate \(f^{-3} \) behavior over the
total range plotted. Therefore \(S_{\delta\nu}(f) \) is nearly proportional to \(f^{-1} \)
(i.e., flicker frequency noise). At \(f = 1000 \) Hz, \(S_{\delta\nu}(f) \) is equal to
-0.3 dB relative to 1 Hz (see Table 1). The carrier frequency, \(\nu_o \), is
9.5 GHz.

\[
S_y(f) = \frac{S_{\delta\nu}(f)}{\nu_o^2} = \frac{(10^{-0.03 \text{ Hz}})}{(9.5 \times 10^9 \text{ Hz})^2} = 1.04 \times 10^{-20} \text{ Hz}^{-1}, \quad (C1)
\]

for \(f = 1000 \) Hz.

\[
S_y(f) = \frac{h}{f} \quad \text{(see conversion chart)} \quad (C2)
\]

\[
h_{-1} = S_y(f) \times f = (1.04 \times 10^{-20} \text{ Hz}^{-1}) \times (10^3 \text{ Hz}) = 10.4 \times 10^{-18} \quad (C3)
\]

\[
\sigma_y^2(\tau) = h_{-1} \cdot 2 \ln 2 = 10.4 \times 10^{-18} \times 1.39 = 14.5 \times 10^{-18} \quad (C4)
\]

\[
\sigma_y(\tau) = 3.8 \times 10^{-9}. \quad (C5)
\]

For a flicker frequency noise there is no \(\tau \) dependence. A dashed line
at this calculated value is plotted on the same graph as data taken directly
in the time domain (fig. 18).
Spectral Densities: Frequency Domain Measures of Stability

Donald Halford

Stabilities in the frequency domain are commonly specified as spectral densities. We have used the concept of spectral density extensively in the preparation of this report. The spectral density concept is simple and very useful, but care must be exercised in its use. There are at least four different, but related, types of spectral densities which are used in this paper. In this Appendix, we state and explain some of the simple, often-needed relations among these four often-used types of spectral densities.

The four types which we have used, and which are most relevant to frequency and phase fluctuations, are

\(S_y(f) \) Spectral density of fractional frequency fluctuations (noise, instability, modulation). The dimensionality is \(Hz^{-1} \). The range of \(f \) is from zero to infinity.

\(S_{\delta\nu}(f) \) Spectral density of frequency fluctuations (noise, instability, modulation). The dimensionality is \(Hz^2 \) per Hz. The range of \(f \) is from zero to infinity.

\(S_{\delta\phi}(f) \) Spectral density of phase fluctuations (noise, instability, modulation). The dimensionality is \(rad^2 \) per Hz. The range of \(f \) is from zero to infinity.

\(\mathcal{L}(f) \) Script \(\mathcal{L}(f) \) is a frequency domain measure of phase fluctuations (noise, instability, modulation). Script \(\mathcal{L}(f) \) is defined as the ratio of the power in one phase noise sideband, referred to the input carrier frequency, on a per hertz of bandwidth spectral density basis, to the total signal power, at Fourier frequency \(f \) from the signal's average frequency \(v_o \), per one
APPENDIX D cont.

device. The dimensionality is Hz$^{-1}$. The range of f is from minus ν_o to plus infinity.

Each of these spectral densities is one-sided and is on a per hertz of bandwidth density basis. This means that the total mean-square fluctuation (the total variance) of frequency, for example, is given mathematically by

$$\int_0^{\infty} S_{\delta\nu}(f) \, df,$$

and, as another example, since Script $\mathcal{L}(f)$ is a normalized density, that

$$\int_{-\nu_o}^{+\infty} \mathcal{L}(f) \, df$$

is equal to unity.

Two-sided spectral densities are defined such that the range of integration is from minus infinity to plus infinity. For specification of noise as treated in this paper, our one-sided spectral density is twice as large as the corresponding two-sided spectral density. That is,

$$\int_{-\infty}^{+\infty} [S^{\text{Two-Sided}}] \, df = 2 \int_0^{+\infty} [S^{\text{Two-Sided}}] \, df = \int_0^{+\infty} [S^{\text{One-Sided}}] \, df.$$

(D1)

Two-sided spectral densities are useful mainly in pure mathematical analysis. We recommend and use one-sided spectral densities for experimental work. References [1] and [2] also use one-sided spectral densities.
APPENDIX D cont.

We use the definition

\[y = \frac{\delta \nu}{\nu_o}, \]

and it follows that

\[S_y(f) = S_{\frac{\delta \nu}{\nu_o}}(f) = \left(\frac{1}{\nu_o} \right)^2 S_{\delta \nu}(f). \]

To relate frequency, angular frequency, and phase we use

\[2\pi[\nu(t)] = \Omega(t) = \frac{d \phi(t)}{dt}. \]

This may be regarded as a definition of instantaneous frequency \(\nu(t) \).

From equation (D4), a direct result of transform theory is

\[S_{\delta \phi}(f) = \left(\frac{1}{\omega} \right)^2 S_{\delta \Omega}(f) = \left(\frac{1}{f} \right)^2 S_{\delta \nu}(f). \]

Script \(\mathcal{L}(f) \) can be related in a simple way to \(S_{\delta \phi}(f) \), but only for the condition that the phase fluctuations occurring at rates \(f \) and faster are small compared to one radian. Otherwise Bessel function algebra must be used to relate Script \(\mathcal{L}(f) \) to \(S_{\delta \phi}(f) \). Fortunately, the "small angle condition" is often met in random noise problems. Specifically we use

\[\mathcal{L}(f) \approx \left(\frac{1}{2 \text{ rad}^2} \right) S_{\delta \phi}(f), \]

42
APPENDIX D cont.

provided that

\[\int_{f}^{+\infty} S_{\delta\phi}(f') df' \ll 1 \text{ rad}^2 \tag{D7} \]

For the types of signals under discussion and for \(|f| < \nu_o\), we use as a good approximation

\[\mathcal{L}(-f) \approx \mathcal{L}(f) \tag{D8} \]

Script \(\mathcal{L}(f)\) is the normalized version of \(S_{\sqrt{RFP}}(\nu)\), with its frequency parameter \(f\) referenced to the signal's average frequency \(\nu_o\) as the origin such that \(f\) equals \(\nu - \nu_o\).

Some Mathematics of Phase Sideband Power as Related to Phase Fluctuations: A simple derivation of equation (D6) is possible. We combine the derivation with an example which illustrates the operation of a double-balanced mixer as a phase detector. Consider two sinusoidal 5-MHz signals (having negligible amplitude modulation) feeding the two input ports of a double-balanced mixer. When the two signals are slightly out of zero beat, a slow sinusoidal beat with a period of several seconds at the output of the mixer is measured to have a peak-to-peak swing of \(A_{\text{ptp}}\).
APPENDIX D cont.

Without changing their amplitudes, the two signals are retuned to be at zero beat and in phase quadrature (that is, $\pi/2$ out of phase with each other), and the output of the mixer is a small fluctuating voltage centered on zero volts. Provided this fluctuating voltage is small compared to $A_{ptp}/2$, the phase quadrature condition is being closely maintained, and the "small angle condition" is being met.

Phase fluctuations $\delta \phi$ between the two signals of phases ϕ_2 and ϕ_1, respectively, where

$$\delta \phi = \delta(\phi_2 - \phi_1),$$

will give rise to voltage fluctuations δV at the output of the mixer

$$\delta V \approx \frac{A_{ptp}}{2} \delta \phi,$$

where we have used radian measure for phase angles, and we have used

$$\sin \delta \phi \approx \delta \phi$$

for small $\delta \phi$ ($\delta \phi \ll 1$ rad). We solve equation (D10) for $\delta \phi$, square both sides and take a time average

$$\langle (\delta \phi)^2 \rangle \approx 4 \frac{\langle (\delta V)^2 \rangle}{(A_{ptp})^2}.$$

If we interpret the mean-square fluctuations of $\delta \phi$ and of δV, respectively, in equation (D12) in a spectral density fashion, we may write
APPENDIX D cont.

\[S_{\delta \phi(f)} \approx \frac{S_{\delta V(f)}}{2(A_{rms})^2}, \]

(D13)

where we have used

\[(A_{ptp})^2 = 8(A_{rms})^2, \]

(D14)

which is valid for the sinusoidal beat signal.

For the types of signals under consideration, by definition the two phase noise sidebands (lower sideband and upper sideband, at \(-f\) and \(+f\) from \(\nu_0\), respectively) of a signal are coherent with each other. As already expressed in equation (D8), they are of equal intensity also. The operation of the mixer when it is driven at quadrature is such that the amplitudes of the two phase sidebands add linearly in the output of the mixer, resulting in four times as much power in the output as would be present if only one of the phase sidebands were allowed to contribute to the output of the mixer. Hence for \(|f| < \nu_0\) we obtain

\[\frac{S_{\delta V(|f|)}}{(A_{rms})^2} \approx 4 \frac{S_{\sqrt{RFP}}(\nu_0 + f)}{P_{total}}, \]

(D15)

and, using the definition of Script \(\mathcal{L}(f)\),

\[\mathcal{L}(f) = \frac{S_{\sqrt{RFP}}(\nu_0 + f)}{P_{total}} \approx \frac{1}{2} S_{\delta \phi(|f|)}, \]

(D16)

provided the phase quadrature condition is approximately valid.
The phase quadrature condition will be met for a time interval at least \(\tau \) long, provided

\[
\int_{(2\pi\tau)^{-1}}^{\infty} S_{\delta\phi}(f') df' << 1 \text{ rad}^2,
\]

and hence equation (D16) is useful for values of \(f \) at least as low as \((2\pi\tau)^{-1}\). Equations (D16) and (D17) correspond to equations (D6) and (D7) respectively.
APPENDIX E

A Sample Calculation of Script \mathcal{L}

Script $\mathcal{L}(f)$ is easily measured using a double-balanced mixer as a phase sensitive detector, together with a spectrum analyzer which can measure at the frequency f. Equation (E1) is valid for the case where the reference signal has negligible phase noise compared to the test signal.

$$\mathcal{L}(f) = \frac{2}{n^2} \left(\frac{\nu_{\text{one unit}}}{A_{\text{ptp}}} \right)^2. \quad (E1)$$

However, eq (E2) is the valid equation when we have two equally noisy signals (test and reference) driving the mixer.

$$\mathcal{L}(f) = \frac{1}{n^2} \left(\frac{\nu_{\text{two units}}}{A_{\text{ptp}}} \right)^2. \quad (E2)$$

In case the device being measured has amplification of times n (i.e., frequency multiplication or frequency synthesis), the definition of Script $\mathcal{L}(f)$ requires that the factor n^2 appear in eqs (E1) and (E2). For example, a frequency synthesizer with output at 45.55 MHz, and with its input driven at 5 MHz, is characterized by n equal 9.11 corresponding to a phase fluctuations increase expressed in decibels of 19.2 dB.

$$10 \log n^2 = 20 \log n = 20 \log 9.11 = 19.2 \text{ dB}. \quad (E3)$$

Both (E1) and (E2) require that the beat signal out of the mixer be sinusoidal when the two input signals are slightly out of zero beat. The peak-to-peak amplitude of the beat is A_{ptp}.
APPENDIX E cont.

For convenience of computation and plotting it often is advantageous to set the beat frequency voltage (before locking) to some special voltage such as \(\frac{1}{\sqrt{10}} \) volts (0.316 V) peak-to-peak at the mixer output. Then (after lock) with the output of the phase detector expressed in rms nanovolts per root hertz, direct plotting is facilitated for Script \(\mathcal{L}(f) \) in decibels versus frequency in hertz. In this case 1000, 100, and 10 nanovolts per root hertz correspond to -110, -130, and -150 dB respectively. A sample calculation demonstrating this convenience is shown below.

Given:
\[
A_{\text{ptp}} = 0.316 \text{ V (i.e., } \frac{1}{\sqrt{10}} \text{ V)}, \quad (E4) \\
V = 100 \text{ nV} \cdot \text{Hz}^{-1/2} \text{ rms} \quad (E5)
\]

at \(f \) equal to 20 Hz for a pair of equally noisy devices having no frequency multiplication (\(n = 1 \)):

\[
\mathcal{L}(f) = \left(\frac{V_{\text{two units}}}{A_{\text{ptp}}} \right)^2 = \left(\frac{100 \text{ nV} \cdot \text{Hz}^{-1/2}}{0.316 \text{ V}} \right)^2 = \left(\frac{10^{-7}}{\sqrt{10^{-1}}} \right)^2 \text{Hz}^{-1} = \frac{10^{-14}}{10^{-1}} \text{Hz}^{-1} \quad (E7)
\]

\[
= 10^{-13} \text{Hz}^{-1} = -130 \text{ dB} \quad (E8)
\]

at \(f \) equal to 20 Hz. Or, using logarithms:
APPENDIX E cont.

\[\mathcal{L}(f) = 20 \log_{10} \left(\frac{v_{\text{two units}}}{A_{\text{ptp}}} \right) \]

(E9)

\[= 20 \log_{10} \left(\frac{10^{-7} \text{ V} \cdot \text{Hz}^{-\frac{1}{2}}}{10^{-\frac{1}{2}} \text{ V}} \right) = 20(-7 + 0.5) = -130 \text{ dB} \]

(E10)

at \(f \) equal to 20 Hz.

If the phase noise were to follow flicker law \((1/f)\), at \(f \) equal to 1 Hz the mean square noise would be 20 times worse (13 dB greater). That is

\[\mathcal{L}(1 \text{ Hz}) = -130 \text{ dB} + 13 \text{ dB} = -117 \text{ dB}. \]

(E11)
A Sample Calculation of Allan Variance, $\sigma_y^2(\tau)$

$$\sigma_y^2(\tau) = \langle \sigma_y^2(N = 2, T = \tau, \tau) \rangle = \left\langle \frac{(\bar{y}_{k+1} - \bar{y}_k)^2}{2} \right\rangle \approx \frac{1}{2(M-1)} \sum_{k=1}^{M-1} (\bar{y}_{k+1} - \bar{y}_k)^2$$

(F1)

in the example below:

Number of data values available, $M = 9$
Number of differences averaged, $M - 1 = 8$
Sampling time interval $\tau = 1s$

<table>
<thead>
<tr>
<th>Data values (\bar{y})</th>
<th>First differences $(\bar{y}_{k+1} - \bar{y}_k)$</th>
<th>First differences squared $(\bar{y}_{k+1} - \bar{y}_k)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>809</td>
<td>- 83</td>
<td>6889</td>
</tr>
<tr>
<td>823</td>
<td>14</td>
<td>196</td>
</tr>
<tr>
<td>798</td>
<td>- 25</td>
<td>625</td>
</tr>
<tr>
<td>671</td>
<td>-127</td>
<td>16129</td>
</tr>
<tr>
<td>644</td>
<td>- 27</td>
<td>729</td>
</tr>
<tr>
<td>883</td>
<td>239</td>
<td>57121</td>
</tr>
<tr>
<td>903</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>677</td>
<td>- 226</td>
<td>51076</td>
</tr>
</tbody>
</table>

$$\sum_{k=1}^{M-1} (\bar{y}_{k+1} - \bar{y}_k)^2 = 133165$$

Based on these data:

$$\sigma_y^2(\tau) = \frac{133165}{2(8)} = 8322.81$$

(F2)

$$[\sigma_y^2(\tau)]^{\frac{1}{2}} = \sqrt{8322.81} = 91.23, \: N = 2, \: T = \tau = 1s.$$

(F3)

In this example, the data values may be understood to be expressed in parts in 10^{12}.

50
APPENDIX F cont.

Using the same data as in the above example it is possible to calculate the Allan variance for $\tau = 2\,\text{s}$ by averaging pairs of adjacent data values and using these averaged values as new data values to proceed with the calculation as before. Allan variance values may be obtained for $\tau = 3\,\text{s}$ by averaging three adjacent data values in a similar manner, etc., for larger values of τ.

Ideally the calculation is done via a computer and a large number, M, of data values should be used. (Typically $M = 256$ data values are used in the NBS computer program.) The statistical confidence of the calculated Allan variance improves nominally as the square root of the number, M, of data values used. For $M = 256$, the confidence of the Allan variance is not expected to be better than approximately $\frac{1}{\sqrt{256}} \times 100\% \approx 7\%$ in the rms sense. The use of $M \gg 1$ is logically similar to the use of $B_a \cdot \tau_a \gg 1$ in spectrum analysis measurements, where B_a is the analysis bandwidth (frequency window) of the spectrum analyzer, and τ_a is the post-detection averaging time of the spectrum analyzer.
COMPUTING COUNTER $\sigma_y(\tau)$ PROGRAM
USING AN EFFICIENT OVERLAPPING ESTIMATOR

David W. Allan

(1) MANUAL
(2) Enter carrier or basic frequency
(3) $c \xrightarrow{} x$
 [skip to (33) if program is already in]
(4) LEARN
(5) CLEAR x
(6) $b \xrightarrow{} x$
(7) MODULE or PLUG-IN
(8) $a \xrightarrow{} x$
(9) X FER PROGRAM
(10) MODULE or PLUG-IN
(11) $a \xrightarrow{} x$
(12) $a \xrightarrow{} x$
(13) $- \xrightarrow{} (subtract)$
(14) $xy \xrightarrow{}$
(15) $\xrightarrow{} (multiply)$
(16) $bx \xrightarrow{} y$
(17) $+ \xrightarrow{} (add)$
(18) $bx \xrightarrow{} x$
(19) REPEAT
(20) $x \xrightarrow{}$ FER PROGRAM
(21) $N \times y$
(22) $N \times y$
(23) $+ \xrightarrow{} (add)$
(24) $a \xrightarrow{} x$
(25) $b \xrightarrow{} xy$
(26) $a \xrightarrow{} xy$
(27) $\div \xrightarrow{} (divide)$
(28) $\sqrt{x} \xrightarrow{}$
(29) $c \xrightarrow{} xy$
(30) $\div \xrightarrow{} (divide)$
(31) DISPLAY x
(32) PAUSE
(33) RUN
(34) START

Program will automatically re-
peat unless righthand PAUSE
switch is in HALT position

τ = Sample time (computing counter "measurement time")
$T - \tau \approx 0.003$ seconds (compute + cycle time)
$N = 2$

Number set on repeat loop corresponds to the number of estimates of the
variance. For good confidence levels 100 or more estimates usually are
required.
APPENDIX H

Some Important References
for Measurement and Specification of Frequency Stability

General References

1. November or December of even-numbered years IEEE Transactions on Instrumentation and Measurement (Conference on Precision Electromagnetic Measurements, held every two years).

4. The annual Proceedings of the Symposium on Frequency Control (Fort Monmouth). The Proceedings are not edited nor reviewed.

5. J. A. Barnes, A. R. Chi, L. S. Cutler, et al., "Characterization of Frequency Stability," NBS Technical Note 394 (October 1970); also published in IEEE Trans. on Instr. and Meas. IM-20, No. 2, pp. 105-120 (May 1971). This is the most definitive discussion to date of the characterization and measurement of frequency stability. It was prepared by the Subcommittee on Frequency Stability of the Institute of Electrical and Electronic Engineers.

APPENDIX H cont.

Some Specific Papers

8. D. W. Allan, "Statistics of Atomic Frequency Standards," Proc. IEEE, vol. 54, pp. 221-230, February 1966. A thorough understanding of this paper is important for everyone who wishes to measure and quote performance of frequency standards in the time domain, e.g., σ versus τ plots. The data analysis must take into account the number of samples taken and how they are used.

13. L. S. Cutler, "Present Status in Short Term Frequency Stability," Frequency, vol. 5, pp. 13-15, September-October 1967. This is a well-written, concise progress report with indications for future effort. Caution: His examples I and II were not in fact state-of-the-art, while example IV has some factor-of-ten typographical errors as given.
APPENDIX H cont.

BIBLIOGRAPHY

11. J. J. Bagnall, Jr., "The Effect of Noise on an Oscillator Controlled by a Primary Reference," NEREM 1959 Record, pp. 84-86.

15. J. A. Barnes, "Tables of Bias Functions, B_1 and B_2, for Variances Based on Finite Samples of Processes with Power Law Spectral Densities," NBS Technical Note 375, January 1969.

BIBLIOGRAPHY cont.

BIBLIOGRAPHY cont.

BIBLIOGRAPHY cont.

1. TITLE AND SUBTITLE
Frequency Stability Specification and Measurement:
High Frequency and Microwave Signals

7. AUTHOR(S)
John H. Shoaf, Donald Halford, A. S. Risley

9. PERFORMING ORGANIZATION NAME AND ADDRESS
NATIONAL BUREAU OF STANDARDS, Boulder Labs.
DEPARTMENT OF COMMERCE
Boulder, CO 80302

12. Sponsoring Organization Name and Address
Army/Navy/Air Force
Joint Technical Coordinating Group for Metrology and
Metrology Engineering Center
Pomona, CA
Attn: Peter Strucker

16. ABSTRACT
This report gives concise definitions for specifying frequency stability for
measurements in the frequency domain and time domain. Standards of terminology
and of measurement techniques are recommended. Measurement systems in the
high frequency and microwave regions are described in adequate detail so that the
systems may be duplicated.

17. KEY WORDS
Allan variance; frequency stability measurements; measurement system description;
phase noise, spectral density; stability definitions; terminology standards.

18. AVAILABILITY STATEMENT

- [X] UNLIMITED.
- [] FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS.

19. SECURITY CLASS (THIS REPORT)
UNCLASSIFIED

20. SECURITY CLASS (THIS PAGE)
UNCLASSIFIED

21. NO. OF PAGES
70

22. Price
.65
NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts. Includes listings of other NBS papers as issued.

Published in two sections, available separately:

- Physics and Chemistry
 Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $9.50; $2.25 additional for foreign mailing.

- Mathematical Sciences
 Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $5.00; $1.25 additional for foreign mailing.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's measurement, research, developmental, cooperative, and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Includes listing of all NBS papers as issued. Annual subscription: Domestic, $3.00; $1.00 additional for foreign mailing.

Bibliographic Subscription Services

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau: Cryogenic Data Center Current Awareness Service (weekly), Liquefied Natural Gas (quarterly), Superconducting Devices and Materials (quarterly), and Electromagnetic Metrology Current Awareness Service (monthly). Available only from NBS Boulder Laboratories. Ordering and cost information may be obtained from the Program Information Office, National Bureau of Standards, Boulder, Colorado 80302.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality, and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other-agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.

Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

CATALOGS OF NBS PUBLICATIONS

