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The Errors in Plasma Measurements by the Microwave Cavity Techniques

K-B Persson-and E. G. Johnson

This report presents the results of a theoretical and experimental study of the microwave cavity

techniques used in measuring electron density and collision frequency in transient plasmas. Sources
of errors are discussed and certain calibration procedures are recommended to minimize the error.

In particular, the abnormal negative glow discharge in helium is presented as an inexpensive reference

plasma for calibration purposes.

Key words: Collision frequency; helium negative glow discharge; microwave cavity; plasma density.

1 . Introduction

The purpose of this study is to determine and evaluate the assumptions involved in using the microwave cavity technique

to measure the electron density and electron collision frequency for an otherwise unknown plasma, and to make recommenda-

tions which will improve the present procedures. The paper is divided into four different sections. A final section contains

six appendices which show the mathematical and experimental details.

2. Classes of Plasma Measurement Procedures

The ballistic ranges are interested in measurement of the properties of the plasma generated in the wake of supersonic

projectiles. The electron density range in these wakes varies from 10 cm to less than 10 cm The relaxation

times of the plasmas are in the range of tens to hundreds of msec. The electron density range is too large to be subjected to

measurements with only one method; hence the range is covered by using several different, but overlapping methods. The

ballistic ranges use the following microwave methods:

1. The microwave interferometer.

2. The open microwave cavity (Fabry-Perot).

3. The closed microwave cavity.

The microwave interferometer measures the electron density in the upper end of the range. The closed microwave

cavity measures the electron density in the lower end of the range. Several open microwave cavities, operated at different

resonance frequencies cover the range between the microwave interferometer and the closed microwave cavity. The

measurements in the ballistic ranges are one-shot experiments, that is, all the measurements must be accomplished within

times corresponding to the relaxation time of the wake plasma. Economical-technical reasons then favor measuring techniques

based on amplitude and phase angle measurements at fixed frequencies.

The microwave interferometer can, if properly used, be labelled as a basic and reliable method and hence can be in-

corporated in a calibration scheme. However, it can be used reliably only in the high electron density end of the range.

The open microwave cavity has, in addition to properties associated with the closed cavity, problems related to diff-

raction losses. This study primarily directs itself toward understanding the closed cavity system. When appropriate, the

description of the closed cavity system also applies to the open system. The closed cavity system is used with two different

measurement procedures: (a) the frequency shift method and (b) the phase and amplitude method. Both these methods

give a collision frequency, v , and an average electron density {n)m aa

The simplest and most reliable is the frequency shift method, where all measurements are done at the resonance

radian frequency, W of the cavity-plasma system. It is shown in Appendix A that in the perturbation range, where one finds

a linear relation between the changes in the resonance characteristics and the plasma parameter, that the shift A^ of the

cavity due to the insertion of the plasma, is related to the average electron density, defined in A-14, as follows:



To obtain the momentum transfer collision frequency it is in addition necessary to measure the attenuation of the signal

transmitted through the cavity. The electron momentum transfer collision frequency v is then determined by the formula

(H (2)

while S' is the corresponding signal in the absence of the plasma.

The second method, the phase and amplitude method, measures the change in the phase and amplitude, caused by the

insertion of the plasma into the cavity, of a signal transmitted through the cavity at a fixed frequency, the resonance frequency

of the cavity in the absence of the plasma. The average electron density and the electron collision frequency are then, pro-

vided the measurements are done within the perturbation range, obtained from the following formulas

2 2
me (UJ +v ) S

<n> = —± -rr-^- -£- Sin (f -co ) (3)
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presence of the plasma, while co and S are corresponding quantities in the absence of the plasma.

The two methods are contrasted by noting that the frequency shift method relies on a frequency shift and an attenuation

measurement. To obtain the same quantity by the phase and amplitude method it is necessary to measure the phase shift, the

attenuation, as well as the loaded Q of the system in the absence of the plasma, Q . If the two methods are applied to the

same cavity-plasma system and there are no errors, the measurements with the two methods are related as follows

S^ = —— ~ Sin (cp -co ) (5)
UJ 2Q S p o v

'

s' s

—?- = -2- Cos (q> -cp ) (6)S S p o
p p

with the quantities on the left hand side of the equality signs representing measurements by the frequency shift method and the

quantities on the right hand side representing measurements by the phase and amplitude method. The fundamental simplicity

of the frequency shift method makes it very useful to calibrate other methods provided a reference plasma is available, and

the methods are used in the same system. It should be observed that if the same cavity and mode are used for the measure-

ments on the same plasma, as can be the case in the comparison of the frequency shift method and the phase and amplitude

method, then they can be compared without interpreting (n)
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3. Sources of Errors in the Cavity Method

Here we look at two classes of errors, the interpretative and the measurement errors. The first are due to simplifica-

tions of the theory used to understand the experimental results and the second are due to the experimental paraphernalia and

procedures. The first are usually systematic errors and the second may have both systematic and random errors.

3. 1 Interpretation errors.

There are two levels of interpretative errors - those involving the cavity mode of interest and those due to other modes.

a. The single mode errors.

The cavity of interest and the cylindrical plasma are shown in figure 1. The cavity has rotational symmetry around

the axis A- A. The cylindrical sleeves B are cut-off wave guides attached to the cavity to accommodate plasmas longer than

the basic cavity. The idealized version of this cavity, used for the theoretical interpretation of the measurements, is shown

in figure 2. The mode with the lowest resonance frequency, the TM mode, is well separated from the higher modes.

The corresponding electric field distribution is shown qualitatively and the analytical form for its electric field distribution is

(7,

r co

where z is the axial, r the radial, and C2 the angular coordinates, while R is the radius and L the length, excluding the

sleeves, of the cavity. The real field distribution of the true cavity must, in view of the presence of the sleeves, be written as

E = E f (r, z;L, R,G,^) \az o

E = E g (r.ziL.R.C1 )
J

(8)

where f and g are functions of r and z with L, R, Q, and i as parameters. The radius and length of the sleeves are £

and I respectively.

Correct average electron density measurements require the use of the real field distribution given by (8) and not the

distribution given by (7) as is commonly used. This is particularly important if the measurements with the cavity are compared

with measurements done with another cavity with a different field distribution, or with a microwave interferometer. Because

the analytical description is not readily available, we suggest that it is better to measure the field distribution by the method

described in Appendix B.

In addition to the field distribution error which will produce a systematic error in the electron density we can also have

errors traceable to the external circuitry containing the generator, the detecting equipment, and the wave guides or coaxial

lines. Usually the cpupling is done so that the resonance characteristics of the mode used for measurements dominate over

the frequency characteristics of the external circuits. Two basically different systems are used; the one-port system where

one observes the resonance characteristics of the cavity-plasma system on the signal reflected from the cavity and the two-

port system where one measures the resonance characteristics on the signal transmitted through the cavity. The two-port

system is more sensitive than the one-port system and hence gives a larger range of acceptable measurements. The ex-

ternal circuits do influence the resonance characteristics of the system and may introduce systematic errors in the measure-

ments. Appendix C shows typical errors in a two-port system.



Plasma

Electric Field Lines

Figure 1. THE STANDARD CAVITY



Electric Field Lines

Figure 2. THE IDEAL CAVITY



A final source of systematic errors in the single mode approximation comes from the linearization assumptions of the

perturbation theory under high loss conditions. The resonance frequency is experimentally determined as the frequency at

which one observes a maximum of the signal transmitted through the cavity. This frequency is influenced not only by the

couplings to the external circuits but also by the inherent cavity losses, as well as by the losses in the medium contained by

the cavity. Neglecting both the inherent cavity losses, and the influence of the external circuits, one finds from formula (17),

Appendix A, that the frequency shift due to the presence of the plasma is a non-linear function of the electron density. The

two criteria (18) and (19) of Appendix A determine the upper limits of the linear range. For loss factors less than unity, it

is necessary to use the criterion (19) which says that the higher loss factor, the more limited is the linear range.

b. Other mode errors.

We have two classes of additional modes that can be excited because of the nonideal structures in the cavity and the

coupling mechanisms, and because of the nonuniformity of the plasma.

(1) Excitation of higher solenoidal modes.

Imperfections in the cavity and the coupling mechanisms (loops and irises) couple to solenoidal modes other than the

desired one. These higher modes are suppressed by making the imperfections small and by properly locating and designing

the coupling mechanisms. Appendix F shows the experimental effect of different coupling schemes.

When the plasma density approaches the dense condition as is illustrated by formula (27) of Appendix A, we find that

the higher modes can be neglected only if the criteria defined by formula (30) and (31 ) are satisfied. As both these criteria

depend on the plasma and the electric field configuration, we see that the linear range is more restricted for the amplitude

and phase shift method than for the frequency shift method. This difference can be large depending on the coupling mechanisms.

These modes produce systematic frequency and phase shift errors.

(2) Excitation of irrotational modes.

The electric polarization due to the non-uniform plasma or the uniform plasma that partially fills the cavity, and the

radial electric fields generate free space charge which in its turn excites irrotational modes. These modes can produce

systematic errors in the loss factor measurements in addition to the frequency and phase shift errors. Appendix B shows

the strong radial field structure for the cavity system under study. Appendices E and F show the experimental consequences

of these fields. Appendix A shows the theoretical consequences.

3.2 Measurement errors.

The measured quantities and the inferred physical parameters are:

The Frequency Shift Method

Physical parameter Measured quantities

<n>_
(modified electron density) U) , U)

*(>)

S , S , CD . CD
O p O p



The Amplitude and Phase Shift Method

<n>

'*(>)

w, Q T , S , S , <p ,
cp

L, o p o p

S , S , CC , CD

o p o p

(9)

Three types of quantities must be measured, namely: frequencies, phase angles and amplitudes. The determination of

Q involves frequency and amplitude or phase angle measurements. Because frequencies are measured with high precision,

they are henceforth considered error free. The dominant measurement errors are found in the amplitude and phase angle

measurements. They depend strongly on the cavity- circuit system, as is demonstrated in Appendix C, and on the measurement

electronics, as shown in Appendix F.

The order of accuracy of the inferred physical parameters is as follows. Only the modified average electron density

measured with the frequency shift method has no important measurement errors. The loss factor v /^ measured with the

same method has measurement errors because it is then necessary to measure two amplitudes and the loaded Q of the system.

Because the amplitude and phase shift method determines the loss factor by two phase angles and two amplitude measurements,

we expect even less accuracy in this case. The least accurate measurement is the modified average electron density measured

by the amplitude and phase shift method. This measurement requires additionally the determination of the system's loaded Q.

The detailed investigation of the frequency shift method in Appendix F shows the validity of the accuracy ordering. The

variations in the cavity-circuit system and in the electronics have a definite influence on the amplitude and phase shift measure-

ments and have practically no influence on the modified average electron density as measured by the frequency shift method.

4. Calibration Techniques for the Cavity Method Using the Standard Plasma

Because Appendices A and C show clearly that it is not practical to derive general criteria for each measurement

method, which delineate the acceptable linear ranges or proportionality constants, and because there is little hope for any a

priori determination of the systematic errors of the total system, we must introduce a bona fide calibration of the system.

The calibration requires two things: a reproducible measurement method and a reproducible medium, preferably a plasma,

with properties that scan the range of interest and which can be subjected to additional measurements by the methods that

can be absolutely calibrated.

The current ballistic range calibration scheme which uses the microwave interferometer as a reference method, can in

principle be extended to the low electron density range, where the closed microwave cavity is used for the measurements.

However, the cumulative errors in the calibration become very serious because several different instruments must be used

to cover the gap in measurements between the interferometer and the closed cavity. This calibration is further complicated

because the interferometer and the closed cavity measure different average electron densities. Thus, it is necessary to use

a scheme which brings about a closer relation between the microwave cavity measurements and the interferometer measure-

ments.

The standard reference plasma, the pulsed abnormal negative glow in helium of 1 Torr pressure, as described in

Appendix D, has all the properties required from a calibration medium, which must be subjected to measurements by both the

12 -3
microwave interferometer and the closed cavity system. Its electron density varies from 10 cm in the early afterglow to

electrons, 2. 6x10 sec , is sufficiently small so the presence of the loss factor can be neglected in the measurements with



the closed microwave cavity as well as with the microwave interferometer. The plasma tube is very reproducible in physical

construction as well as in terms of the measurement results during its operating life time. It can also be manufactured in

sizes commensurate with the wake plasmas. Because it can be operated in the repetitive pulse mode, or in single shot mode,

as is done in the ballistic ranges, it is amenable to reliable reference methods for the calibration.

Because the microwave interferometer and the closed microwave cavity do not measure the same spatial averages of

the electron density, it is necessary to know accurately the electric field distribution of the cavity and the spatial distribution

of the plasma. As this is not true for the given cavity system, we need a reference method which does not require precise

knowledge of the spatial electron density. As already shown, the frequency shift method is such a method. The interpretation

of the measured average electron density is then deferred until the measurements are compared with the microwave interfero-

meter measurements.

5. Examples of Errors in Different Ballistic Ranges

The investigation of the frequency shift method for measuring the average electron density of the standard reference

plasma (see Appendix F) shows that this method is remarkably insensitive to variations in the circuitry and the electronics.

It is therefore a good reference method for the cavity measurements. It becomes sensitive to the circuitry and the electronics

only for the loss factor measurements because then it is necessary to use amplitude and loaded Q measurements. This ex-

perience implies that any method based on amplitude and phase shift measurements could be subject to large errors. Since all

measurements at the ballistic ranges are based on amplitude and phase angle measurements, a direct comparison using the

standard reference tube and the equipment necessary for the frequency shift measurements was made at two of the ballistic

ranges.

5. 1 Two-port cavity method

The first visit was at the Lincoln Laboratories, Mass. , where, with the cooperation of Dr. W. M. Kornegay, a series

of comparative measurements were made with the standard reference plasma inserted in one of the range cavities. Dr.

1, 2
Kornegay used the amplitude and phase shift method on a two-port system with the measuring technique developed by

Lincoln Laboratories. NBS used the frequency shift method as developed at NBS, Boulder. A typical result of these compara-

tive measurements is shown in figure 3, where the frequency shift due to the presence of the plasma has been plotted as

function of the time in the afterglow of the standard reference plasma. The fully drawn curve represents the NBS measure-

ments. The crosses and circles represent data point derived from single shot runs taken by Lincoln Laboratories with the

amplitude and phase shift method. Their amplitude and phase shift measurements have been converted into an equivalent fre-

quency shift with the help of formula (5) in order to be comparable with the NBS measurements. The discrepancy between the

measurements is large; the amplitude and phase shift method measures the electron density almost an order magnitude smaller

than the frequency shift method. The two curves are almost parallel; indicating that the system used by Lincoln Laboratories

is linear, but with a proportionality constant almost an order of magnitude smaller than predicted by the idealized theory.

This error can be corrected through calibration.

5.2 One-port cavity method

The second visit was to ARO, Arnold Air Force Station, Tenn. Here comparative measurements were done with the

cooperation of C. P. Enis and again on the standard reference plasma, inserted in one of the range cavities. The method used

7
by ARO was the one-port system with the Smith chart oscilloscope display. NBS used the same frequency shift method as was

used at Lincoln Laboratories. The results are shown in figure 4. The data obtained by the one-port system was converted

by ARO into an equivalent frequency shift to become comparable with the data obtained by the NBS method. The fully drawn

line represents the data obtained by NBS. The crosses and squares represent two sets of data points obtained with the ARO
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one-port system. We note that the one-port system is much more limited in the dynamic range than the two-port system, and

that the one-port system as used by ARO appears to be non-linear. The ARO measurements agree reasonably well with the

NBS measurements for high electron densities but are more than an order of magnitude too small at low electron densities.

If one accepts only the part of the measurements where the ARO and the NBS measurements agree, then it follows that the

one-port system has an acceptable dynamic range of less than an order of magnitude.

D. E. Coffman and C. N. Enis of ARO have made a calibration of the ARO one-port system with the Smith chart

oscilloscope display using dry air as a calibrating medium. They demonstrated that they could measure the dielectric con-

stant of dry air under steady state condition, and for a smaller range to within 5 per cent of the value given by NBS. The

measurements were done as a function of the air pressure in the range to 500 Torr. Although these measurements must be

considered correct, they are not a final calibration relative to the measurements executed in the ballistic ranges, which are

done under transient conditions. A dielectric in the form of a gas or solid can not simulate the transient characteristics of

the wake plasma. In contrast, the standard reference plasma does simulate the transient characteristics of the wake plasma.

This observation suggests that perhaps the major part of discrepancy between the data obtained with methods based on

amplitude and phase angle measurements on the one hand and the data obtained from the measurements with the frequency

shift methods on the other hand, are traceable to the transient characteristic of the measurement electronics. It is also

probable that part of the discrepancy between the Lincoln Laboratories measurements and the NBS measurements has the

same source. This is seen because the frequency shift method (see Appendix F) gives no significant errors in the electron

density due to the transients in the electronics while the loss measurements are influenced by the transients.
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6. Conclusions and Recommendations

Because methods based on phase angle and frequency measurements are much less subject to errors caused by trans-

ients than are methods involving amplitude measurements we suggest that the microwave interferometer method, which is

based on phase angle measurements, and the open or closed cavities, using only frequency shift measurements, should be

considered the reference methods. Of these two, the microwave interferometer is the most basic and reliable, but also the

least sensitive. The cavity frequency shift method, operated at the same frequency as the interferometer, can be made

several orders of magnitude more sensitive. On the other hand, the cavity measurement is less desirable because it

measures a more complex average of the electron density. To measure a direct average electron density with either method

requires a probing frequency such that the loss factor is negligible relative to unity. If the loss factor is comparable to or

larger than unity, as is the case with the wake plasmas, then it becomes necessary to use amplitude measurements which are

more prone to errors related to the circuits and the electronics.

To compare above methods to measurements done with more complex ones requires a calibration medium. This

medium must have well known properties which scan the total range of interest and also simulate the transient conditions that

are characteristic of the wake plasmas. The standard reference plasma described in Appendix D satisfies these requirements.

Both reference methods have been used successfully on this plasma under steady state conditions and under the transient

situation represented by its afterglow. The comparative measurements done at Lincoln Laboratories and at ARO indicate that

the system must be calibrated by a medium simulating the wake transients. Both the Lincoln Laboratories system and the ARO

system have been calibrated with dielectrics showing no significant errors. The dielectrics, however, cannot simulate the

transient nature of the wake plasma. The discrepancy between the NBS frequency shift method and the amplitude and phase

methods used in the ballistic ranges showed up only when the measurements were done on the transient standard reference

plasma.

The standard reference plasma is, as yet, not useful in all complex measurement systems available at the ballistic

ranges. The open cavity resonator (Fabry-Perot) presents special problems. Preliminary experiments done by R. A. Hayami,

AC Laboratories, indicate that the quartz envelope of the standard reference plasma introduces too high diffraction losses when

introduced into the open cavity resonator and that it, therefore, cannot be used as a calibration medium for the open cavity

resonators, at least not with the presently used measuring techniques.

Both the electric polarization measurements and the measurements of the loss factor show that interpretative errors

become apparent when electron density exceeds approximately 1/30 of the critical electron density. The usual average electron

density then is inadequate for the interpretation of the measurement. A correct interpretation must include the effects of

irrotational modes and higher solenoidal modes. Consequently, the upper limit of the linear range for measuring electron

densities with the low frequency (5x10 Hz) cavity is about 10 cm for the standard reference plasma. This is not satisfactory

since one must consider that the standard reference plasma has a diameter of 5 inches while the early wake plasma can have a

diameter of less than 1 inch. This limits the linear range for the electron density measurements with the low frequency cavity

to two or at the most three orders of magnitude.

Because of the inherent limitations of the low frequency, closed cavity method as described above, it is desirable to

8 9
replace it with some more reliable method. The dispersometer, an instrument used by Liebe, Thompson and Dillon ' for

measuring the dispersivity of gases, seems to have the desired properties. The dispersometer is a double cavity instrument

with one cavity serving a<s a reference cavity. The two cavities, and especially designed electronics, allow frequency shift

measurements several orders of magnitude smaller than can be done with conventional methods. Translating the experience



with this instrument into equivalent electron density measurements, one finds that it should be possible to measure the electron

density in the plasma, over the range of interest to the ballistic ranges, with one instrument in two modes of operation. This

instrument is presently being built by NBS, using two open cavity resonators with the resonance frequencies 35 and 70 GHz.

These high frequencies have been chosen to avoid interpretative errors associated with the electric polarization of the wake

plasma.
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The Appendices

Appendix A

A theory for a test body or plasma introduced in a microwave cavity

Any material with finite dielectric constant and/or electric conductivity introduced into an active microwave cavity in-

duces currents and polarization charges which shift the resonance frequencies of the cavity modes. If the cavity is excited at a

fixed radian frequency, W, Maxwell's equations can be written as

V x E = - j UD ^ H
o

? xH= jiue E + J*
o

(1)

V- H = O

7-E = g/e = - ^B/ o jUJe

where J, the current density, accounts for all effects of the material introduced into the cavity. The Poynting's equation,

integrated over the volume of the cavity, takes the form

<ExH > = -jiu u <H.H*> -e <E-E*> - <J*E>, ,,,s o o ' (2)

where \ / implies integration over the volume of the cavity and \ ) integration over the inside surface of the cavity. To

account for the effects of the matter introduced into the cavity, we follow Slater and introduce the solenoidal and irrotational

orthonormal modes which satisfy Maxwell's equations and the boundary conditions prescribed by the cavity. The solenoidal set,

E., H. and the corresponding resonance frequency tu. are determined by the equations

(3)

<E. x H.'> = O
l is

U <H. -H.'"> = e <E.-E."> = 6
o l j o l j 1J

vhile the irrotational set is defined by

v
2
5 + k

2
4 = O

s s s

<n x F ) = O (4)
S

f) = o

z <F • F *> = e <# i > = 6
o s r o s r sr



The fields E and H, the current density J and the space charge density q are expanded as follows

(5)

F
s

q= e K k
2

I ,OSS s

where repeated index in a product means summation over that index. Introducing these expansions into equation system (1) and

using the orthogonal properties of the functions defined in (3) and (4), we find the following relations

U). B. - UJ A. - r— = jUJS. (6)
l l 1 j£ l

v '

G
k K = — = - C
s s jUJe s

o

where the coefficient S. prescribes the source of the i mode due to the coupling between the cavity and the waveguide. A re-

sult of these equations is

(7)i ~/WA 2 D.

\
"uT/

"
" jU-'E A.

\ / o 1

vhich, with the definition of the coefficients, can also be written as

JS
i

(8)

®2 <J.£. )

1

jiue <E*E*>
o 1

Introducing these results into Poynting's equations, we see that

*

<ExH > = - jin
~^ zr^r (9)

UJ.

2
<J-E*>

-i -I
x—

jUJe (E-E.)
o x

To use the above formulas in measuring electromagnetic material properties, we need a relation between current den-

sity J and the cavity field E. We first introduce a lossy plasma into the cavity and afterwards a small lossless dielectric

sphere.

The plasma case

The standard formulas describing the plasma influence on the cavity resonances consider only one mode. Because the

plasma is never uniform and does not fill the cavity, and because plasma waves are excited whenever the electric field has

components parallel to the electron density gradient, we find that it is necessary to introduce additional modes, both irrota-

tional and rotational. We illustrate this situation by introducing a lossy non-uniform plasma into the cavity.

An adequate relationship between the current density J and the electric field E for the plasma is obtained from the

moment equations generated from the Boltzmann's transport equation. Since the ions can be assumed stationary, we write the

resulting momentum balance equation for the electrons in the plasma as



-» 2 -» Z -*

(jlU + v )J + c Vq=e W E (10)

where v is the electron collision frequency, c the velocity of acoustical waves in the electron gas, q the free spacem m
charge density associated with the plasma waves, and UJ is the plasma frequency defined by

p me (11)

Introducing the series expansions (5) and (10} and using the relations (6} as well as of the orthogonal properties of the basis

functions we find the following equation system for the coefficients A. and C

iH 2
J

ij ju,(ju>+vm

(a >> n / si
(12)

JU) (JU)+M_) +
2 Z~\ 2

n sj sr x p's
2

». <U) >.
1 x p ' 1

(13)

<U1 E.E. \

2 p a J

(ill >.. 2
P 1J (E.-E.)

^ i v

,
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, (id

2
E.-F >

K P >ri "
^ P ^ ' <E..E.*>

(14)
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/ "\ P 5 r

P
<
F

S
F

« >

Assuming that the coupling coefficients S. and the plasma configuration are known, it is possible to determine all coefficients

A. and C from the equation system (12) and (13), and hence the actual field distribution in the cavity with the plasma. Be-

cause it is computationally impractical we limit ourselves to some specific illustrative cases. First we assume that only the

a solenoidal mode is excited and neglect the presence of all other solenoidal modes as well as all irrotational modes. Equa-

tion (12) then gives

1 +
1+ jY P aa

|
_i

.
2 Q

(15)

(16)

The above normal mode expansion which is in terms of the cavity modes is likely to be very slowly convergent. To get

good convergence, it is probably necessary to get explicitly the actual waves in the plasma first and then determine the

coupling to the cavity modes.



and where the term containing Q has been added in order to account for losses in the a solenoidal mode, due to the cavity it-

self and due to the influence of external circuit coupled to the cavity. This formula is currently used to interpret the plasma

measurements with a microwave cavity. It is used two ways: by measuring the frequency shift and the attenuation at the

actual resonance or by measuring the phase shift and attenuation at the resonance frequency of the empty cavity.

The resonance frequency is experimentally identified as the frequency UJ where the amplitude of A is a maximum.
r a

Assuming that the coupling coefficient S and the Q are independent of the frequency one finds that UU to the first and

second order is determined by the equation

(t)

<U1
c

) \
p aa

J

1+Y

. t I ill
Q_ M 3 (1+Y)

(17)

A linear relationship between the electron density and the frequency shift is therefore obtained only if

_E *£ < . (IS)

2 V 3 m 2
i

p aa
< < 1 (19)

Thus, the maximum electron density measured with the frequency shift method depends on how large error one can tolerate.

Since the chosen frequency in the phase shift and amplitude method is ID it follows that

- - I —
A " S I Q

p aa 1 p aa
(20)

where A is the amplitude of A and cc its phase angle. Therefore,

(cos. -A)

(21)

<lll ')

(22)

(23)

This method requires a measurement of Q and a procedure that assures that the measurement frequency is equal to W
.

Errors associated with these measurement processes are discussed in Appendix C.

Formulas (15) and (23) apply only when one can neglect all other modes. We now illustrate the effects of the coupling

between the solenoidal mode used for the measurements and all other solenoidal modes, We assume that the a mode is the

lowest solenoidal mode, label it with 1 and consider its coupling to the j solenoidal mode. Equation (12) gives us the following

equation for the determination of A .



T' 1+
i-jy
1_ p 1 if p j!

(l-jY)lU
2

is,

Assuming that the measurement frequency UJ is very close to U)
7
we assume that

2 2

p u

'

A, > A., i, j > 1
1 l

giving the following approximate equations for the determination of the coefficients A
J

A. = jS. P 'j

(-24)

(25)

(26)

JS, 1

I-iY
_J2 Li

2 "
l * (1-jY)
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1 2 Li p n
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vith the coefficients C and C defined by
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P H

(28)

(29)

The Q for the empty cavity has again been inserted in order to make the amplitude of A finite in the absence of the

configuration and the coupling mechanisms to the cavity and C is only a function of the plasma configuration. Both these co-

efficients express the effects of the coupling between the 1st solenoidal mode, which is used in the measurements, and the

higher solenoidal modes. Both coefficients are identically equal to zero if the plasma fills the cavity uniformly.

An inspection of formula (27) shows, for the frequency shift method, that the coupling to higher solenoidal modes can be

neglected provided

1 > >
(1-jY)

<W
2
),,

P 11

2

l
(30)

This criterion depends on the mode and plasma configurations and is always violated when the plasma becomes dense. The

criterion for the neglect of the coupling to the higher solenoidal modes is more stringent for the phase and amplitude method

because not only (30) must be satisfied but it is also necessary that

(1-jY)

P 11
(31)



The latter may unfortunately be more limiting than (30) because C is both a function of the mode and plasma configurations and

a function of the coupling mechanisms (loop, iris). This occurs when the coupling coefficients to one or more of the higher

solenoidal modes are larger than the coupling coefficient to the fundamental mode used for the measurements.

Finally, we demonstrate the effects of the coupling to the irrotational modes. Again a general solution is impractical

and we consider, as illustration, the case where the lowest solenoidal mode, labeled with index 1, couples to the r irrota-

tional mode. The solution for the coefficient A derived from the corresponding form of equations (12) and (13) can then be

written as jS.

w
2

<uu
2
>

4 -i + -V-^-H +6 +

w
2 l ~V w

2

(32)
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efficient is by definition written as

(• E 'F ' ) (* E -VU) >

<U1
2
) . P \ r = --L r ' J (34)

P l r <E-E *> k <E-E *>
11 r 11

showing that the irrotational modes are excited only if the electric field, or a component of it, is parallel with the electron

density gradient. The irrotational modes are, therefore, not excited if the plasma fills the cavity uniformly. In most practical

situations, where the plasma is non-uniform, one must however expect irrotational modes to be excited. The influence of an

irrotational mode is largest at its resonance, which occurs when

UJ
2

- <W
2

> - c
2
k

2
= (35)

p rr m r

leading to

<w
2

> (U)
2

>

Y W <W >,,
P 11

Introducing this form of 6 into expression (32) one finds that the criterion for when one may neglect the presence of irrota-

tional modes, can be written as

<w
2
> (U)

2
>

t -s -^ p lr p rl
1

2 , 2 S
< 37 >
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It is important to notice, in view of the form of 5 at resonance, that the irrotational mode will, for Y less than unity, 6how

up as a change in the measured loss mechanism, while, for Y larger than unity, it will primarily influence the measured phase

shift or frequency shift. It is in this connection important to point out that the density of resonances in the coupling to the

irrotational modes is much larger than the density of resonances in the solenoidal modes because the former density is de-

termined by the thermal velocity of the electrons while the latter is determined by the velocity of light. It is, therefore, very

likely that the measurements are more strongly influenced by the presence of irrotational modes than by the presence of higher

solenoidal modes.

In order to be able to view the microwave cavity method as a reliable method for measuring the plasma parameters,

whether one uses the frequency shift or the phase and amplitude shifts, it is necessary to ascertain linearity between the de-

sired parameter and the actually measured quantity. Three different mechanisms contribute to the deviation from the linearity,

namely:

1) The intrinsic loss mechanism of the plasma itself as illustrated by formula (17). This mechanism affects

essentially only the frequency shift method,

2) Coupling to the higher solenoidal modes as illustrated by formula (27). This mechanism not only contributes to

deviations from linearity but may, under unfortunate circumstances, also change the proportionality factor in the linear

range, and

3) Coupling to irrotational modes as shown by formula (32). Because of the high mode density of this mechanism,

it is likely that it is most important for the determination of the upper limit of the linear range.

Unfortunately, the limits depend on the actual cavity design (not the idealized version), on the coupling mechanisms

(iris, loop) used to connect cavity to wave guide, as well as on the shape of the plasma and the electron temperature. In

general the models used for the evaluation of the limits are incomplete and do not allow adequate numerical evaluation. There-

fore, it is most desirable to demonstrate the linearity and the limits of the linear ranges through calibration procedures.

The test sphere

We introduce a small sphere of pure lossless dielectric material with the dielectric constant £ into the cavity. We

assume that the radius p of the sphere is sufficiently small compared to the dimensions of the cavity so that the sphere, wher-

17
ever it is located, can be assumed to be in an essentially uniform electric field. Using a purely electrostatic theory it is

then easily shown that field inside the sphere can be written as

3e ^
(38)2e + e

where E is the field at the location of the sphere but in the absence of the sphere. The frequency of this field is U; and

neglecting magnetic field effects one can then write the equivalent current density inside the sphere as

^ 3s {e-e ) ^
j=iiu(e-e ) E = i w —— — E . (39)

J v
o'

J 2e + £ a
o

The resonance frequency of the a mode in the lossless case, according to (8), is determined by

.J* -,». = ° (40)
jUJe (E .E >



Introducing the current density from {39) one finds that

w
2

3(e-e )

-T" 3~ <41 »

<E
Z

>
3

a

The frequency shift due to the insertion of the test sphere is proportional to the square of the electric field at its location. The

test sphere can, therefore, be used for measuring the electric field distribution provided the electric field does not vary sig-

nificantly within the volume replaced by the sphere. In the general case one has

2 2

(f) -==(*) (42)

where E is the electric field at any point and E
Q

a normalized field. The constant C is in the particular case of the IM

mode written as
3 (e - e )

where H is the height of the cylindrical cavity, R its radius and E the field at the center of the cavity.

Appendix B

Field distribution measurements in the cavity

To transform the cavity measurements into correct plasma parameters it is necessary to know the actual spatial dis-

tribution of the electric fields which interact with the plasma. This means that one should know the field distribution in the

absence of the plasma and also how the field distribution is changed due to the plasma. Because the plasma is generally un-

known, it is impossible to predict quantitatively the changes in the field distribution due to the plasma. Therefore, one must

resort to perturbation theories to interpret the measurements, that is, the measurements are understood only if the changes

in the field can be neglected. To interpret the perturbation measurements it is still necessary to know the electric field dis-

tribution in the absence of the perturbation.

High Q cavities with simple geometries allow use of an analytic description of the electric field provided the couplings

make negligible perturbations on the ideal cavity. If the ideal cavity is changed by the additions of holes, cut-off sleeves etc.
,

to accommodate the plasma, then it is necessary to measure the electric field distribution for the mode used in the measure-

ments. Such is the case for the ballistic range cavities.

The relative electric field at a point inside the cavity is measured by introducing a small test body at that point and by

observing the resulting shift in the resonance frequency of the given mode. This frequency shift is proportional to the square

of the electric field at the test point, provided the test body is a lossless dielectric material. Then the magnetic field influence

is unimportant. The test body should be spherical to make the frequency shift independent of its orientation. A non-spherical

test body can be used to measure the direction of the electric field. The sphere diameter times the gradient of the electric field

should be small compared to the magnitude of the electric field. The formula (42) in Appendix A is then applicable. The co-

efficient C is determined by formula (43) provided the cavity is cylindrical and the mo

To measure the relative field distribution it is not necessary to know the coefficient C.

The field measurements were done on the cavity shown in figure 3-1. The radius of the cylindrical part was 9" and

the height 8". The cut-off sleeves had a radius of 2. 75" and length of 8. 375". The test sphere was made of alumina (Alsimag

748, L 715 C} and had a diameter of 0. 5". The test sphere was attached to a monofilament nylon string with a diameter of

0. 005". In the first set of measurements with this test body, the openings to the cut-off sleeves were covered with Al-foil

to create the cylindrical cavity without the cut-off sleeves. A small hole was cut in the center of one of the Al-foils in order

22



to admit the test body into the cavity and to position it anywhere along the axis of the cavity. A similar hole was cut on the

circumference of the cavity in order to allow the positioning of the test body along a diameter of the cavity. The frequency

shift due to the insertion of the test body at various points along the axis or a diameter of the cavity were then measured.

These results are seen in figure B-l. The measurements agree very well with the theoretical description of the electric

field distribution

o o \ R /

for the TM mode of the ideal cavity. The axial measurements show a perfectly flat profile until the test body comes close

to the walls where the perturbation theory breaks down. The radial field distribution agrees also very well with the field dis-

tribution for the ideal cavity as represented by the dashed curve. The difference between the dashed curve (theory) and the

solid curve (measurements) is largest where the field gradients are largest, indicating that the test body is sensitive to the

gradient of the field. The difference however is insignificant.

The same measurements were repeated after the Al-foils were removed and the cavity became sensitive to the presence

of the cut-off sleeves. These measurements are shown in figure B-2. Obviously both the radial and the axial field distributions

have changed due to the presence of the cut-off sleeves. The biggest change has taken place in the axial field distribution and

the change is so large that the curvature, at the center of the cavity, of the axial field distribution is larger than that of the

radial field distribution. This shows that one cannot neglect the axial coordinate dependence of the electric field, as has been

done with the ballistic range cavities.

A third set of measurements shows how the quartz envelope of the plasma reference tube influences the electric field

distribution of the cavity with cut-off sleeves. An open ended quartz tube with the same dimensions as that of the tube envelope

was introduced coaxially into the cavity with the cut-off sleeves. Measurements were again done along the axis and along a

center diameter. The measurements along the diameter were made possible by drilling holes, slightly larger than the test

body, diametrically opposed to each other in the middle plane of the quartz tube. The results of these measurements are shown

in figure B-3. The main change in the electric field distribution due to the presence of the quartz tube is found in the radial

distribution. The field distribution within the quartz tube, in the symmetry plane perpendicular to the axis, is almost inde-

pendent of the radius. The relative axial distribution of the field is essentially uninfluenced by the presence of the quartz tube.

The strong axial dependence and the change in the radial dependence of the electric field due to the insertion of the

quartz tube are evidence for the presence of strong radial electric field components. The field distribution for the TM . . mode,

generally used for unfolding the measured data into plasma parameters, has no radial electric field components. The true

field distribution gives therefore a different filling factor (see Appendix A) than the assumed ideal field distribution. The

filling factor depends not only on the electric field distribution, but also on the spatial distribution of the plasma. The treat-

ment of the data obtained from the cavity with cut-off sleeves, neglects them and treats the cavity as if it contained a small

diameter, axially uniform plasma. The difference between the real filling factor and the filling factor derived from the

assumed field distribution is, in the case of the low density plasma, of the order of 1 per cent and generally insignificant

relative to other errors. Errors due to the presence of substantial radial electric field components will be large when the

plasma approaches the dense condition. The radial electric field components cause polarization effects at the boundary of the

plasma which are likely to drastically change the fields within the plasma. These effects are difficult to evaluate numerically.

The double perturbation method used in Appendix E shows how the polarization affects the measurements.
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Appendix C

The influence of the microwave circuitry on the cavity measurements

The microwave cavity mode used for the measurements can be represented by a lumped circuit analogue if the inter-

action between the plasma and the microwave field is linear and if the overlapping of neighboring modes can be neglected.

Figure C-'lshows the circuit. The signal generator is connected through an attenuator and a line segment to the cavity input.

The output of the cavity is connected through a line segment to a matched impedance where the voltage measurements are done.

The line segments have the characteristic impedance Z , the propagation constant k and the lengths -t and t respectively.
o b d

The attenuator has also the characteristic impedance Z . The current and voltage at the point a are related to the corres-
o

ponding quantities at the point b in the following manner.

= A
ab "I

' a' 'b/

,
—

. Siny
Cos v. ) —5

—

(2)

MZ Siny, Cosy /
1 o

where v = - J T| is purely imaginary and independent of the frequency. Similarly the dyadics for the two lossless line ele-

ments are

Sin k t

I Cos k{. , j —
J

(3)

jZ Sin k t Cos k I

Sin k I ,

d
Cos k I , j —y

(4)

The Bimplest circuit analogue for the TM . microwave cavity mode is shown in figure C-2. and ife assumed to be

symmetric with respect to the points c and d. The cavity mode is represented by the elements L, R and C. The couplings of

the cavity to transmission lines are characterized by the impedance Z and the mutual inductance M. The dyadic A can

therefore be written as

(5)

Z^Z+DZj), (1+DZj)

Z
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(-L+ rgnsr) (6)

The capacitance C is the sum of two capacitances C and C , with C caused by the insertion of the plasma into the cavity.

In order to simply relate the capacitance C to the plasma parameters we assume that we have a capacitance with the dimen-

sions shown in figure C-3.The total area of a capacitor plate is A, while the distance between the plates is H. An effective

cross section a, smaller than A, is filled with a uniform plasma. The relative dielectric constant for the plasma can be

written as

-H *)
2

V

2. 2 (7)
HI +v

(8)

is the plasma frequency and where v is the effective collision frequency for the electrons. It is easy to show thatm

C „,

Z

p _ (1+jv) P . ,,.. % .

C" " " 2 g ^^ = ' (1+JV) 6
(9)

o 1+v 0J

where

£ A
o

C
H

$-•
2 _ 1

3 ~ LC

(10)

is the capacitance in the absence of the plasma, 6 the filling factor defined as

p=V ("J

and

v

v = — (12)

Assuming that 6, defined by (9), is much smaller than unity, that the unloaded Q of the cavity, defined as

Q = U) RC (13)
o o o v '

is much larger than unity, and that — < 1%, we approximate the quantity D as

£- = 1 + QjB + j<3 [^ - 1 -6| , (14)

(15)

(16)

The currents and the voltages at the points a and e are related through the equation
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Terminating the chain with the characteristic impedance Z , that is, assuming that

(17)

(18)

V
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J
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1
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(20)
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-
, a = D

n
Z
n , Y = -

JT1 , , = 2^ J^_d
_ m=^

>-
b
-

d
(t -t )

O o -y— . (22)

The wave lengths X and X applicable for the transmission lines, and the corresponding frequencies UJ and U) , are chosen

such that s and m are integers times 2n. The dimensionless parameters Q , r and a are design parameters for the cavity.

The requirement that there are no reflections at the points c and d are expressed by the equation

D 2r
(23)

Both a and D are by definition real. D and r are generally complex. Reflections at the points c and d are avoided at one
o

frequency only, if at all.

The measurements are done at the frequency U) which is in the close vicinity of the resonance frequency <W . Introduc-

ing V for the voltage V in the absence of the plasma and V for the same voltage in the presence of the plasma as well as& eo & e
^ ep s r r

assuming that the reference voltage V is uninfluenced by the insertion of the plasma and that Q is much larger than unity,

one can show that

fe-')= kr, '• i) 6 (24)

QL = ! Q (">

($ 1 . (26)



It is the purpose of the experiment to determine V and 6. This is done by measuring the amplitude A and the phase

anele 8 of the voltage ratio V /V = S '
.B s ep' eo e

fluence is negligible. One finds then that

Ulj Sin q (27)

and

2

6 = B j_ _ _J_ stoe_

l+V
2

u.

2 QL S
'

<
28 '

The electron collision frequency v is determined by phase and amplitude measurements only. To obtain the electron density

it is in addition necessary to determine the proportionality constant Q and the filling factor R. The Q , which in the ideal

case is the loaded Q of the cavity and associated circuits, is determined from measurements of the resonance curves for the

K(:H} (29)

When the measurements based on this formula are evaluated and long transmission lines are used, it is necessary to consider

the fact that both A and Q are strongly frequency dependent. We consider this situation when the system is matched at the

points c and d in the absence of the plasma and when U> = uu . This requirements leads to

2r
a =

2 (30)

1 + r n + j

nr e v'2 / (3D

(32)

In the investigation of the consequences of deviations from the ideal situation where Q is real and frequency indepen-

L - C <1- a Cos [be+cj +ja Sin [be +c] !

m- "

(33)

(34)

C = rQ

(35)

Assuming that c and (be) are tuned to be less than a radian we can approximate Q as

2L= C
{

! (36)
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= _ £b ab
2 " " C — ~

(38)

b„ = - (l-a-acY ) 6C —>-

— (1-a)

2

x= Ce = C|"CH (39)

We note that the Q is the amplitude and cp is the phase shift of the signal. The arrows in (38) point to the forms for

the coefficients in the absence of the plasma.

The measurements on the plasma are made at the resonance frequency of the system obtained in the absence of the

plasma. This frequency is found by locating the maximum of the amplitude Q, defined by (37), as function of the frequency.

3
The resonance frequency of the ideal system would be located at the point x = 0. When neglecting terms x and higher one

finds from I
—— I that the maximum actually is located at the point x given by

2,2^ . „ v
2 2 2 2ab

a, + b. +2a a. 5-»o 1-a +a c —

—

1 1 o 2 C

(40)

This formula shows that, in the simultaneous absence of attenuation (a approaching unity) and tuning of the lines (c different

from zero), the presence of long transmission lines or other resonant structures (b very large), displace the resonance fre-

quency of the system from the resonance frequency of the unloaded cavity. The magnitude of this shift can only be discovered

by actually measuring the resonance frequency of the unloaded cavity and compare it with the resonance frequency of the system.

One consequence of a significant difference between the two frequencies is that the proportionality coefficient Q becomes

complex. Introducing x from (40) into (36) one finds that

Q = C j(l-a)+jac (l + -=
*

„ )}. (41)L
( \ c[(I-a)

Z+ac j-Eab/J

Only by tuning the lines such that the resonance frequency of the system becomes identical with the resonance frequency of the

unloaded cavity ( c = ) or by introducing sufficient attenuation ( a < 1 ) is it possible to make Q real.

In practice Q is obtained by measuring the frequencies uu" and UJ' of the half power points. Defining the apparent

Q of the system as

2

2C
O-T = =

=
T. .,.2 , ,,2"1 (42)

^ x"-x' (e"-e*)
[
(
.")

2
-(,M

2

]



it is easily seen from (37) that

a '+b '

2 2

°

-.»}

C(l-a) V2a»-—
C(l-

" C(l-a)

(43)

and the apparent proportionality constant Q '. In the case where the transmission lines are tuned to the resonance frequency

of the unloaded cavity, the formula above simplifies to

(44)
C(l-a) 5-oy

c(1

Even in this case it is possible to have a discrepancy between Q and Q '. The correction term that appears under the

square root sign of (44) is due to storage of energy outside the cavity but between the measuring points. This should properly

be viewed as a correction to the filling factor R which has been calculated on the assumption that all stored energy is located

inside the cavity.

If 6 and y are the true values to be measured, and V and y 1 are the measured values obtained viewing the system

as ideal, that is, if

(45)
Sin n

., _ _J_ Sinn (46)
QL

' S

it is easily shown with equations (24) and (30) that the correct values of 6 and Y are determined by the formulas

(47)

(48)
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The only actually measured quantities that appear in the formulas above are the phase angle 9, the amplitude ratio S,

and Q ', the apparent Q of the system. The quantities Q and x are generally unknown functions of the system para-

meters a, b, c and C. These functions are, in the particular case illustrated here, known functions only because the system

is sufficiently simple to be amenable to analysis. The presently accepted measurement procedure gives neither information

about these functions nor about the system parameters. Most systems, in particular complex systems, can therefore be ex-

pected to have systematic errors which may be very large. In the case illustrated here, large systematic errors appear if the

parameter a approaches unity, which occurs when attenuation is lacking and the coupling to the cavity is strong.

To assure the correct determination of 6 and y, it is necessary to execute one of the following procedures:

1) Ascertain that the system is ideal by demonstrating, through measurements, that Q ' is not significantly

different from Q T and that finiteness of £ does not introduce a significant error.
L, r

2) For the non-ideal system, determine the system parameters a, b, c, and C or their equivalents so that the

complex proportionality constant Q and the displacement £ can be computed.

3) Calibrate the system through measurements on a known plasma or a suitable substitute.

Because the first two procedures are very complex, they should be avoided if the system can be calibrated.

The electron density, or properly speaking of the quantity 5, can also be determined by measuring the shift of the

resonance frequency of the system due to the insertion of the plasma into the cavity. This method is simpler than the method

based on the phase and amplitude measurements. Let Ui be the resonance frequency in the presence of the plasma and U)
ro ro

the corresponding frequency in the absence of the plasma. It is then easily shown from (40) that
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a, b, c —* o

In the ideal case when a and b are sufficiently small one finds therefore that

2 2
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2Aoj

It is important to point out that for high Q system where the parameter C is very large one can write
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showing that the frequency shift method permits larger deviations from the ideal system by allowing large values of the para-

meters a, b, and c. Because the frequency shift method need not measure a calibration constant for the determination of
:

.

it is more attractive than the previous method, which is based on a measurement of the phase, and amplitude as well as a pro-

portionality constant.

The frequency shift method may also be used for measuring the electron momentum transfer collision frequency \jm
It is then, of course, necessary to include a measurement of an attenuation as well as a measurement of the loaded Q of the

system in the absence of the plasma. At resonance in the presence of the plasma and in the ideal case, it is easily shown with

formulas (14) and (19) that

Y6 = 5- — - 1 (56)

L s'

S'= -^ (57)

eo

where V now is measured at the resonance of the system in the presence of the plasma and where V is the corresponding

quantity at resonance and in the absence of the plasma. Because one must measure both an attenuation and the loaded Q of the

cavity, this measurement is subject to the same kind of errors as those in the phase and amplitude method.

Both the frequency shift method, and the method based on phase and amplitude measurements should give the same value

for 6 when the measurements are done on the same plasma. This fact can be used to calibrate the more complex systems. It

is technically very simple to put together an ideal system for measuring 5 with the frequency shift method. By using both

methods simultaneously on the same reference plasma, one can find out whether the more complex system has systematic

errors or not. It is not necessary to know the reference plasma parameters. They need only to be in the same range as those

of the plasmas of interest.



Appendix D

The standard reference plasma

I, Description of the reference tube

A phenomenological description of the cold cathode low pressure DC discharge is given by von Engel Starting from

the cathode of the DC discharge one observes the Aston dark space, the cathode glow, the cathode dark space, the negative glow,

the Faraday dark space and finally the positive column, the anode dark space and anode glow. The electrons are generated on

the cathode surface by ion and photon bombardment. They are accelerated through the Aston dark space, the cathode glow and

the cathode dark space and constitute a fairly well defined beam when they arrive at the negative glow. Most of the negative

glow characteristics are determined by the electron beam. The energy of the electrons is approximately equal to the cathode

fall, the voltage difference between the cathode and the negative glow. The length of the negative glow is determined by the

reaching distance of the electrons, and the Faraday dark space starts where the electron beam has lost its energy. The nega-

tive glow is essentially field free. Its electrons are generated by the beam. The absence of the field allows these electrons to

cool rapidly and to be lost by electron-ion recombination.

The negative glow properties outlined above are approximate for the normal negative glow discharges when the cathode

fall is only a few hundred volts. These properties are dominant when the discharge tube is operated in the abnormal glow

region, where the cathode fall can be an order of magnitude larger than the normal cathode fall. A detailed description of the

12
beam generated negative glow is given by Persson . The best negative glow is found in pure helium which has the smallest

ionization cross section and the minimum electron-ion recombination coefficient {the collisional radiative recombination process}.

The length of the negative glow region and its electron density are therefore larger in helium than in any other gas under com-

parable circumstances.

This abnormal negative glow in helium at 1 Torr pressure is ideally suited as a reference plasma for many reasons:

1. It is easier to introduce and maintain clean helium in a cleaned vacuum envelope than any other gas (by

diffusion through a hot quartz tube). Hence the discharges in pure helium are more reproducible than other gases

and/or mixtures.

2. A discharge tube with well chosen cathode material and tube design does not arc during the operation in the

abnormal glow region. The operational life time and shelf life are then sufficient for the tube to be used as a

reference plasma.

3. The abnormal negative glow in helium at 1 Torr pressure can be made several feet long with diameters in

excess of 6 inches. The design and the operation of the tube are simple.

4. The intrinsic properties of the plasma are insensitive to the plasma dimensions when the length is less

than the beam reaching distance and the radius is greater than the size of the diffusion dominated region.

5. The plasma can be generated in DC, AC and pulsed conditions without losing its basic properties.

6. A properly designed discharge tube operates as well, if not better, in a uniform magnetic field aligned

with the tube axis.

7. Electron densities in excess of 10 cm can be reached with low power, about 100 Watts. The electron

densities highe

tube life time.

8. The bulk of the electrons have a very low electron temperature, approximately 0, 1 eV, and there is no

significant ionization by thermal electrons. Thus, instabilities and oscillations typical of the positive column or arc

type plasmas, which are maintained by ionization due to "thermal" electrons, are not present.
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9.

and the corresponding velocity ratio is large, of the order 200, oscillations due to the two stream instability are not

excited.

10. Due to lack of thermal excitation and ionization and because the majority of the excited electronic states are

populated through the electron-ion recombination process, a Saha equilibrium is established for the higher excited

states which allows accurate determination of the electron density and electron temperature by spectroscopic means.

11. The intrinsic steady state plasma properties differs very little from the "afterglow" plasma. This plasma is

ideally suited for pulsed operations.

12. The pulsed operation of the plasma gives reproducible afterglow with the electron density varying, from 10

-3 ,„5 -3
cm to 10 cm or less.

Consequently, the abnormal negative glow in helium is a good standard reference plasma for the ballistic ranges. The

tube design is shown in figure D-l. The tube dimensions were chosen to fit inside the "standard" cavity of the ballistic ranges,

which has a resonance frequency of 450 Mc for the TM . mode. The envelope is quartz with an inside diameter of 5 inches.

The electrodes are high density, high purity graphite (POCO AXM-5Q1). The tube is symmetric so either electrode can be

used as cathode, thereby doubling its life time. The distance between the electrodes is 20 inches.

Because proper operation makes it necessary to be careful in tube construction, a detailed discussion of the manufactur-

ing procedure follows:

1. The original tubes were built with tungsten brush cathodes. These cathodes were used to discourage arc forma-

tion and arc spots on the cathodes when the tube is operated at the high voltages necessary for the abnormal negative

glow plasmas. Because of the expense and complexities associated with the brush cathode, other designs and cathode

materials were studied. The high density, high purity graphite is an excellent material for cold cathodes because it

has a very low vapor pressure, essentially no melting, and very high boiling point which efficiently discourages the

formation of arc spots. Because the sputtering rate is low, the graphite cathode can be a plane electrode without

important loss in tube life time. To further discourage arc formation on plane electrodes, the cathode is closely fitted

to the inside of the tube envelope without touching the glass. Tubes built with graphite electrodes have the advantage

over tubes with metal electrodes because the carbon deposits sputtered onto the glass walls can be removed without

destroying the tube: (1) By baking the tube or by heating the sputtered glass surfaces with a torch in the presence of

added air or oxygen
, (2) By adding a few percent oxygen to the helium, and running a discharge for a few hours. The

resulting gas mixture is then pumped out and replaced by pure helium.

2. To obtain a reproducible and well defined abnormal negative glow in helium, it is important that the tube be

processed using good, high vacuum technology. All parts of the tube should be cleaned and degreased. The cathode,

in particular the graphite cathodes, must be pre-processed in a high vacuum furnace. The final vacuum stage to the

tube must have traps preventing the oil from the diffusion pump and the forepump from reaching the tube. A vacuum of

10~ Torr can and must be reached by the normal three stage glass constructed oil diffusion pumps. The helium is

purified and fed into the discharge tube by a quartz diffusion leak located on the high vacuum side of the vacuum system.

To remove surface impurities the discharge tube is filled to the desired pressure, the discharge is run for a short time,

and the tube pumped and refilled with pure helium. The tube is then sealed and removed from the vacuum system.
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3. If the tube has been processed correctly it is ready for immediate use after detachment from the vacuum system.

Because the gas pressure will decrease with the use of the tube (clean-up due to sputtering) one must be able to measure

the gas pressure of sealed off tubes. For a given tube size and well defined electrode material, the voltage-current

characteristic is uniquely defined by the pressure. A set of voltage-current characteristics for the standard reference

plasma tube are shown in figure D-2. It is obvious from these measurements that the characteristics are sensitive to

pressure changes. In the reference plasma tube, the voltage -current characteristic measured after several months use

show no measurable change from the characteristic measured when the tube was new.

If a gas discharge tube is to serve as a standard reference tube, it must satisfy several requirements. First, and

most important, the manufacturing procedure and the processing methods must always give the same end product in terms of

the desired measurements when the tube is new and it must have a long shelf life. All measurements on the abnormal negative

glow in helium in the tube discussed have been reproducible within a few per cent and its shelf life is more than adequate, pro-

vided the prescription for its manufacture and processing as outlined above are followed. Second, it is necessary that the

operational life time of the tube is sufficiently long so that many sets of reproducible measurements can be executed. The life

time of the above tube, operated at 1 Torr pressure in helium and with a DC current of 50 mA, is estimated to be about 100

hours. This life time can be extended by one to two orders of magnitude by operating it in pulsed condition.

II. The use of the reference tube.

The reference standard tube for electron density measurements uses a current pulse of 50 mA of 1 msec duration, re-

peated every 200 msec. A typical set of measurements are shown in figure D-3. The electron density during the pulse and in

the early afterglow was measured with a microwave interferometer at 35 GHz. The minimum measurable phase shift of the

interferometer was approximately 0. 2 degree corresponding to a minimum measurable electron density of approximately

10 -3
10 cm . Electron densities below the range of the interferometer were measured with a cavity of the same type as the

"standard cavity" of the ballistic ranges but with a slightly higher resonance frequency, 500 MHz, for the TM mode. The

frequency shift method was used because it is least subject to systematic errors.

The electron densities plotted in figure D-3 were evaluated by assuming an ideal electric field distribution for the TM .

mode and that the electron density was axially uniform with the radial dependence described by the zeroth order Bessel function.

These assumptions do not truely represent the physical situation. Early in the afterglow the electron-ion recombination pro-

cess dominates, giving a spatial electron density distribution that is flatter than the zeroth order Bessel function. In the late

part of the early afterglow the diffusion process dominates and the radial distribution of the electron density is correctly de-

scribed by the zeroth order Bessel function. Thus, the conversion of the interferometer measurements into electron densities

have a systematic error which approaches 50 per cent in the very early afterglow and is very likely to be negligible at the

lower end of the interferometer measurements.

The conversion of the cavity measurements to electron densities generates complex systematic errors. Only for very

low electron densities, where the plasma frequency is significantly lower than the resonance frequency of the TM mode is

the simple perturbation theory applicable. The assumption that the electric field distribution is the ideal TM generates

a systematic error because the real electric field distribution is quite different. This systematic error depends on the electron

density and becomes progressively worse with increasing electron density.

The relative position of the two curves, the first based on the microwave interferometer data and the second on the

cavity data, is uncertain due to the systematic errors. The relative systematic error is likely to be 10 to 30 per cent and to

be largest in the range where the two curves overlap. This error can not be resolved except through a measurement method
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that overlaps the methods used here. Nevertheless, the exceptional reproducibility of the measurements show that the abnormal

negative glow is well suited for comparing different electron density measurement methods.

Appendix E

The effects of polarization in the plasma on measurements.

The most difficult problem associated with the microwave cavity measurements is the evaluation of the systematic

errors due to polarization effects . These become important when the plasma frequency approaches and exceeds the actual

resonance frequency of the cavity. The electric polarization effects dominate, and occur when the electric field has sub-

stantial components parallel to the electron density gradients. Quantitative evaluation of these effects are difficult because

neither the electric field nor electron density distributions are sufficiently well known to unfold the measurements or for an

error estimate. Such is the case for "standard cavity" used in the ballistic ranges where the cut-off sleeves cause strong

radial electric field components (see Appendix B) which are neglected in the usual evaluation of the data. It is simpler to

demonstrate the presence of these errors experimentally.

The standard procedure for measuring the electric field distribution uses a small perturbing sphere. The microwave

cavity used in the ballistic ranges, and the abnormal negative glow plasma used for its calibration, are both large enough to

allow a small perturbing sphere within the plasma. It is then possible to measure the changes in the electric field inside the

plasma due to the plasma. The insertion of a small sphere into the center of the plasma and the cavity shifts the resonance

frequency for two reasons. First, a volume of the plasma equal to the volume of the sphere is displaced by a dielectric

material with properties different from the plasma properties. This shift is proportional to the third power of the radius of

the sphere and the square of the local electric field. A less obvious but more important shift happens because the surface of

the sphere allows electrons and ions to recombine so fast that it acts like an infinite sink. The spatial distribution of the

electrons and ions in the neighborhood of the sphere is therefore determined by the ambipolar diffusion to the surface of the

sphere.

To model the effect of the test sphere on the electron density distribution we chose, far the sake of simplicity, a

spherical cavity of radius R which is very large compared to the test sphere radius £. We assume that the spatial distribution

of the plasma is determined by the ambipolar diffusion equation

V n+ ^ n= (1)

a

where n, v., D are the electron density, the ionization frequency, and ambipolar diffusion coefficients respectively. The

spatial distribution of the electron density n without the test sphere is

Sin k r

n=n
c k r° (2)

o

with

k R= tt, (3)
o

and with n the electron density at the center of the cavity. The introduction of the test sphere at the center of the plasma

changes the coefficients and the spatial distribution to

Sink (r-C)

n = Cn :—*- ia\
p o k r I*/

P



k (R-C) = "
P (5)

The electron density n and the coefficient C are undetermined. They can only be determined in the non-linear for

14
mulation, where one also specifies the recombination rates of electrons and ions at the boundary surfaces. To bypass these

difficulties, the electron density gradient at the boundary surface located at the radius R, is considered uninfluenced by the

presence of the test sphere. One finds, by setting the electron density gradients at the radius R equal for the two cases,

that the coefficient C is equal to unity. The change £ N in the total number N of the electrons in the plasma, due to the in-

sertion of the test body, is

R
3

AN=4n/ r
Z
(n
p
-n)dr- ±^_ % (6)

r

which, if the distributions (2) and (4) are used and the coefficient C is equal to unity to the lowest order in (C/R) becomes

4n R
3

-. (t). (8)

where C now is a different coefficient which depends on the configuration of the plasma. If the radius of the test sphere is

made small enough, it follows that the frequency shift of the microwave cavity, due to the insertion of the test sphere into the

center of the plasma, depends only on the change in the total number of electrons and is independent of the material in the test

sphere. The frequency shift AW due to the insertion of the test sphere can then be written as

AUJ 2 C

^ =
- C

l
n
o
E
p 5 W

where E is the local electric field, and n the local electron density, and where R represents an effective radius of the
p o /» r

plasma, while C is a coefficient which depends on the plasma and cavity configurations.

Figure E-l shows the experimental arrangement used to investigate the plasma polarization effects induced by the cut-

off sleeves. A long quartz tube with an inside diameter slightly larger than 3/8" is attached to the center of a standard

reference plasma tube, allowing an aluminum test sphere of 3/8" diameter to slide in and out of the plasma and the cavity.

A movable iron slug is located in the long quartz tube and attached to the test sphere by a thin nylon filament of such length

that the test sphere could be located either in the center of the plasma or outside the cavity. The test sphere is moved and

held in either position by a magnet operating the iron slug.

The measurement procedure uses the discharge operating in the pulsed condition as described in Appendix D. All

cavity measurements are done in the afterglow. The test sphere is first positioned outside the cavity, and the frequency

shift of the TM mode, due to the plasma presence, is measured as a function of time in the afterglow. The corresponding

inferred electron density n at the center of the plasma, derived from the frequency shift by the perturbation theory outlined

in Appendix A, is shown as curve A of figure E-2. Next, the frequency shift due to the insertion of the test sphere into the

center of the plasma is measured as a function of the time in the afterglow. The latter measurements are shown in curve C

of figure E-2. The electron density is also measured during the discharge pulse and the early afterglow by a 35 GHz micro-

wave interferometer. These measurements are shown by curve B.
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The frequency of the microwave interferometer is large compared to the plasma frequency and the simple perturbation

theory applicable for the interpretation of the corresponding measurements. This is also true for the cavity measurements in

the late afterglow. The dashed curve D which connects the interferometer measurements with the cavity measurements is,

therefore, likely to represent the correct electron density in the range where the cavity measurements are questionable. The

two curves are connected by a straight line because in this range the diffusion losses dominate. The ratio between the electron

densities for the two curves A and C at any given time in the afterglow are given by curve C in figure E-3. This ratio is con-

siderably less than unity in the early afterglow where the plasma frequency is comparable to or larger than the resonance

frequency of the TM mode, and where one can expect strong polarization effects. This is confirmed by the test sphere

measurements.

The density, n , derived from the frequency shift due to the insertion of the test sphere into the plasma center is

written as

n = C n E
2

, (10)
l op

where n is the electron density, E is the local unperturbed electric field, and C is an undetermined constant. The ratio
o P

n, /n is therefore a measure of the electric field E at the center of the plasma. Curve A in figure E-3 shows how this
1 o p

ratio varies with the time in the afterglow. Since perturbation theory shows that the polarization effects vanishes as the

square of the electron density, and E simultaneously goes toward E , one can normalize this curve so the ratio becomes

unity in the very late afterglow. The normalized curve B should represent the square of the ratio E /E if perturbation
P °

theory remained valid over the entire range.

Both curves B and C from figure E-3 show polarization effects. Curve C compares the cavity measurements and the

interferometer measurements and curve B compares the cavity measurements with the test sphere measurements. Both curves

have been replotted in figure E-4 as function of the electron density in the center of the plasma. The vertical broken line in

this figure shows the electron density where the plasma frequency equals the TM resonance frequency. The two curves

correlate in shape but not in magnitude. The test sphere is more sensitive to the polarization effects than is the direct com-

parison of the cavity measurements and the interferometer measurements. The higher sensitivity of the test sphere measure-

ments is likely due to the electron density depression around the test sphere which causes additional polarization effects.

These effects further decrease the electric field in the neighborhood of the test sphere. Since the latter effect acts in series

with the polarization at the outside boundaries of the plasma, it is likely that the frequency shift due to the test sphere should

be proportional to (E /E ) with a larger than 2. A comparison of curves B and C suggest that a is near 4.

The error of the cavity measurements due to the polarization effects are shown by curve C in figure E-4. To have an

error of less than 10 percent it is necessary for the electron density at the plasma center to be 30 times less than the critical

electron density. The critical electron density is defined by equating the plasma frequency to the empty cavity resonance fre-

quency. It must be emphasized that the errors due to polarization effects depend on both the cavity and plasma configurations.



Figure E-3. TEST SPHERE MEASUREMENTS
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Appendix F

The frequency shift method

The experimental arrangement for the frequency shift method is shown schematically in figure F-I. The time marker

generator C triggers the pulse generator D once every ZOO msec. The pulse generated by D controls the current limiting,

high voltage pulser E, which, with the help of the high voltage power supply F, generates a current pulse of 50 mA and 10 msec,

duration through the standard reference plasma tube, which is inserted in the cavity. The time marker generator C

also triggers the scope at the start of the current pulse through the discharge tube. A trigger with a variable time delay,

generated by the scope, starts the UHF sweep generator G. The output from this generator is fed through a matched, calibrated,

and variable attenuator H followed by an isolator to the input loop of the cavity. The output from the cavity is fed through an

isolator and a detector followed by a wide band amplifier I, giving a faithful reproduction of the amplitude envelope of the UHF

signal transmitted through the cavity. The pulse corresponding to the UHF amplitude envelope is then fed through an amplitude

discriminating amplifier adjusted for peak detection. A fraction of the output from the UHF sweep generator G is also fed into

the UHF mixer K where it is mixed with the signal from the UHF signal generator L,, which is monitored by the frequency

counter M. The Z-axis marker generator N generates a sharp trigger when the frequencies from G and L differ by 450 kHz.

This trigger intensifies the spot on the scope at the time when the difference between the two frequencies is 450 kHz. The fre-

quency of the generator L is variable and the bright spot could be located anywhere in time during the scope sweep.

The sweep of the generator is started at time t , and its frequency limits are adjusted so that the cavity resonance

could be seen between the time t and t The parameters are adjusted so that the trace A coincided with a time marker t as

is shown in figure F-2. The frequency of the signal generator L is changed until the bright spot was located at the maximum of

the transmitted signal. The reading on the frequency counter then gave the cavity resonance frequency containing the plasma

corresponding to the time t in the after glow. The attenuator H is adjusted so that the trace A has a predetermined height on

the screen, and the reading on the attenuator is recorded. This process is repeated at regular intervals in the afterglow, from

the early afterglow with very high electron densities, to the very late afterglow where the plasma has disappeared. The

measurements in the very late afterglow serve as reference data, defining the empty cavity resonance frequency, W , and the

transmission amplitude S for the TM__ _ mode.
o Ul U

With the available equipment and the method outlined above, the resonance frequency is easily determined to within one

part in 10 . The transmitted amplitude at resonance had about a 1% error in the absence of noise. It is difficult to measure the

peak amplitude of a transient UHF signal when a large dynamic range is required. These difficulties are due to the width varia-

tion of the detected UHF envelope induced by the changing Q. Since a large dynamic range requires considerable amplification

after the detection, the amplitude becomes sensitive to the frequency characteristics of the amplifiers, which must be narrow

banded to reduce noise. The amplitude discrimination by the amplifier, J, solves this problem. About 5 per cent of the peak

of the detected UHF signal envelope is amplified and used as a null signal by adjusting the attenuator H so that the height of

that null signal, as observed on the screen, is always the same.

To insure that the cavity measurements relate correctly to the electron density and the electron collision frequency, it

is necessary to demonstrate that the measured quantities are reasonably independent of changes in the measurement system.

The loop couplings to the cavity, and the amplifier with amplitude discrimination are the most critical parts of the measure-

ments system; therefore measurements were made with different size loops located in different parts of the cavity. In each con-

figuration, measurements were done with the amplitude discrimination on and off. Two different loop sizes were used; a stan-

dard loop with a loop area of 1 . 5 cm2
and a larger loop with a loop area of 20 cm . A representative set of measurements with
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amplitude discrimination effective, are shown in figure F-3. In this figure is plotted

and the quantity

(i)

p
t(t-)

versus the time in the afterglow. The corresponding measurements with the amplitude discrimination ineffective are shown in

figure F-4. We see that the relative frequency shift of the cavity-plasma system is fairly independent of the loop size, and of

the amplitude discrimination. The coupling and the electronics have however definite influence on the losses as represented by

(2). However, it is more informative to discuss the coupling and electronic influence in terms of the loss factor

Alt-)R O)

where all quantities on the right are obtained from our measurements. This loss factor is, according to the perturbation theory,

independent of the electron density, if the degree of ionization is such that the electron-ion interaction can be neglected.

The average electron momentum transfer collision frequency v is defined as

/q (v) vv f (v) d
3
v

~ m
v = n (4)m

" y-v£(v)d
3
v

where Q is the momentum transfer collision cross section and f(v) the electron velocity distribution. The momentumm
transfer collision cross section for the interaction between electrons and helium atoms is essentially independent of the electron

energy at energies less than 1 eV. This cross section can therefore be considered as a constant for the abnormal negative glow

in helium and its afterglow. The electron velocity distribution of the abnormal negative glow and its afterglow can, for all

practical purposes, be assumed to be Maxwellian. Introducing a Maxwellian velocity distribution function, slightly perturbed

by the measuring field, it is easily shown that formula (4) reduces to

= n Q °_
g m y[T7

' 2 k T

V
1-
^

At a pressure of 1 Torr and room temperature, one finds, by introducing the latest momentum transfer collision

cross section, 5.2x10 cm , measured in electron beam experiments, that v =2. 6x10 sec giving a loss factor of

v Al) = 8. 3x10" (6)m

at the frequency 5x10 Hz used in the present measurements. The loss factor is proportional to the square root of the electron

temperature, but since this temperature essentially is constant at times after 10 msec, in the afterglow and since the electron-

ion interaction can be neglected at times later than 10 msec. , it follows that the loss factor obtained in bona fide measurements

should be constant, independent of the time, for measurements done later than 10 msec, in the afterglow.
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Figure F-4. MEASUREMENTS WITHOUT AMPLITUDE DISCRIMINATION
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The loss factors obtained from the measurements shown in figures F-3 and F-4 have been plotted in figure F-5 as

function of the time in the afterglow and the corresponding electron density. The fully drawn curves represent the data taken

with the amplitude discrimination effective, while the broken lines represent the data obtained with the amplitude discrimination

turned off. The two curves giving the largest loss factors were obtained with the small loop and the two curves giving the

smallest loss factors were obtained with the large loops. The horizontal, fully drawn line represents the constant loss factor

derived from the most recent electron beam scattering experiments. One observes that the loss factors are not independent of

the time in the afterglow and that obviously the loop size and location as well as the amplitude discrimination have consider-

able influence on the measurements. Only one measurement set gives a loss factor which agrees with the value obtained from

the beam experiments, and then only when the electron density is less than 10 cm . That data is obtained by using the small

loops and amplitude discrimination.

The scatter in the data as shown in figure F-5 indicates that the differences between the curves must be viewed as

systematic errors. These systematic errors have the following sources:

1. The generation, due to the onset of polarization of the plasma with increasing electron density, of irrotational

and solenoidal modes.

2. The generation of higher solenoidal modes, due to the finite size of the loops, which interact differently with the

plasma than tiae TM mode does.

3. Systematic errors in the amplitude measurements due to the transient UHF signals.

The first type of systematic error is evident in the curves B, figure F-5, which were obtained with the small loops.

The loss factor increases with increasing electron density. A comparison to the polarization measurement as discussed in

Appendix E shows that the increase in the loss factor becomes evident when the polarization effects show up.

The second type of systematic error is demonstrated by curves A, figure F-5. The loops are now so large and the

loaded Q of the cavity system so low, that there is significant coupling between the loops by modes other than the TM.. . mode.

This situation is described by saying that the signal can be split up into two parts; one part which does interact with the plasma

and another part which does not. Whether these signals add or subtract depends on their relative phase relationship. This

phase depends on the loop sizes, their locations and orientation as well as on the plasma and loaded Q. This accounts for the

radically different behavior of the curves A and B as function of the time in the afterglow or as function of the electron density.

The first type of systematic error manifests itself in the measurements of the average electron density (n) , the

filling factor, and the loss factor v /w. They are characteristic of the cavity, the mode used for the measurements, and them
plasma configuration. These errors are inherent to the present cavity system. Appendix A shows that these errors happen

when the plasma approaches the dense condition. The measurements discussed here and in Appendix E show errors which are

noticeable at electron densities considerably smaller than the critical electron density. The critical electron density for the

9 -3
cavity used is 3. 1x10 cm . We see from Figures F-5 and E-4 that errors due to the polarization effects become noticeable at

electron densities less than 10 cm

The second and third class of systematic errors can be eliminated. The second class of errors is primarily related to

the design of the couplings to the cavity; the size of the loops, their orientation and location. The third class depends on the

design of the electronics used for measuring the relative amplitude of the signal. It is important to notice that the average

electron density as measured by the frequency shift method

m
Aoj

^T (7)
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which in this case, for all practical purposes, is equal to the average electron density ^n) , is not influenced by systematic

errors belonging to the second and third classes, provided it is measured with the frequency shift method. This is predicted by

theory and confirmed experimentally by the data shown in figures F-3 and F-4. When the same quantity is measured with the

amplitude and phase shift method, it is written as

( n ) me <u , S

-,= — q- g- &nfP
p

-«P
o ) (8)

#)
and is now subject, not only to the systematic errors associated with the polarization effects, but also to all systematic errors

belonging to the second and third classes as well as to a new group of errors associated measuring the relative phase of a

transient UHF signal.

The frequency shift method discriminates very well against undesirable modes, a quality entirely missing in the ampli-

tude and phase shift method. This is explained by figure F-6 where a frequency swept signal transmitted through the cavity has

been plotted as function of the frequency. The curve A represents the amplitude of the mode assumed to be used for the

measurements and has the resonance frequency f in the presence of the plasma. The curve B is the amplitude of an undesir-
P

able mode with the resonance frequency f' while f is the resonance frequency of the mode A in the absence of the plasma.
P °

The broken curve represents the total signal due to both modes. The frequency shift method measures the frequency at which

the transmitted signal amplitude has a maximum. It is obvious from figure F-6 that the determination of the resonance fre-

quency of the mode A is relatively insensitive to the presence of the mode B, in particular if the Q of the system is relatively

high. The amplitude and phase shift method does all the measurements at the frequency f . It cannot decide whether an un-

desirable signal is present and measures the sum, with the appropriate phase relation, of the signal associated with both modes.
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Figure F-6. MODE MIXING
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