JUN 31971

NBS TECHNICAL NOTE 600

U. S. ARTMENT OF MMERCE

National Bureau of andards

Corrections and Calculations on

 an X-ray Diffraction Line Profile: A Computer Program
NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ${ }^{1}$ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics-Electricity-Heat-Mechanics-Optical Physics-Linac Radiation ${ }^{2}$-Nuclear Radiation ${ }^{2}$-Applied Radiation ${ }^{2}$-Quantum Electronics ${ }^{3}$ Electromagnetics ${ }^{3}$-Time and Frequency ${ }^{3}$-Laboratory Astrophysics ${ }^{3}$-Cryogenics ${ }^{3}$.
THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institution's, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry-Polymers-Metallurgy-Inorganic Materials-Reactor Radiation-Physical Chemistry.
THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute also monitors NBS engineering standards activities and provides liaison between NBS and national and international engineering standards bodies. The Institute consists of the following technical divisions and offices:

Engineering Standards Services-Weights and Measures-Flammable FabricsInvention and Innovation-Vehicle Systems Research-Product Evaluation Technology-Building Research-Electronic Technology-Technical AnalysisMeasurement Engineering.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards-Computer Information-Computer Services -Systems Development-Information Processing Technology.
THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world, and directs the public information activities of the Bureau. The Office consists of the following organizational units:

Office of Standard Reference Data-Office of Technical Information and Publications-Library-Office of Public Information-Office of International Relations.

[^0]
UNITED STATES DEPARTMENT OF COMMERCE
 Maurice H. Stans, Secretary
 NATIONAL BUREAU OF STANDARDS Lewis M. Branscomb, Director

Nat. Bur. Stand. (U.S.), Tech. Note 600, 34 pages (June 1971) CODEN: NBTNA

Corrections and Calculations on an X-ray Diffraction Line Profile: A Computer Program

Raymond E. Schramm
Cryogenics Division
Institute for Basic Standards National Bureau of Standards
Boulder, Colorado 80302

> NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

Table of Contents

page
List of Tables iv
List of Figures iv
Abstract 1

1. Introduction 1
2. Background Calculation, "BACK" 4
3. Angular Correction, "ANG" 5
4. 1 Lorentz-polarization Factor (LP) 5
3.2 Atomic Scattering Factor (f). 5
5. 3 Sample Absorption (A) 7
6. Rachinger Separation, "RACH" 8
7. Center of Gravity Calculation, "CENTROID" 10
8. Peak Calculation, "PEAK" 13
9. Curve Smoothing, "SMOOTH" 14
10. Data Input and Output and a Sample Card Input 15
11. Program Listing 22
12. Appendix: Corrections Necessary When Using Other Radiations, Samples, and Geometries 28
References 29

List of Tables

Table page

1. List of symbols used 3
2. Normalized atomic scattering factors, f 6
3. Power series coefficients for the atomic scattering factors 6
List of Figures
Figure page
4. X-ray diffraction line profile. 2

Corrections and Calculations on an X-ray
Diffraction Line Profile: A Computer Program
Raymond E. Schramm
This computer program was written to perform corrections and make calculations on an x-ray diffraction profile before Fourier analysis. The corrections are for background and for variations of intensity with the Bragg angle. Also calculated are the separation of the $K \alpha_{1}-K \alpha_{2}$ doublet and the centroid and position of peak maximum with their standard deviations. There is also an option to smooth the profile.

Key Words: Computer programs, Fourier analysis, nickel steels, x-ray analysis, x-ray diffraction, statistics.

1. Introduction

Annealed and heavily strained x-ray diffraction line profiles (fig. 1) can be compared to provide information on parameters such as particle size, dislocation density, and stacking fault energy. One scheme to do this is Fourier analysis. Gazzara, Stiglich, Meyer, and Hansen ${ }^{[1]}$ wrote a computer program "UNFOLD" to perform the mathematical operations; several other programs are also available. ${ }^{[2,3]}$ In working with a series of iron-nickel alloys, it became necessary to make corrections and calculations on the $x-r a y$ data in addition to those available in the program of Gazzara, et al. The program "PREP" was written to unify the preparation for programs such as "UNFOLD" by making all of the following calculations.

Within subroutines corrections are made for:

1. Background intensity.
2. Variation of intensity with the Bragg angle due to geometrical factors.

Subroutines are also used to determine:

1. Rachinger separation ${ }^{[4]}$ of the $K \alpha_{1}-K \alpha_{2}$ doublet.
2. Centroids of the $K \alpha$ and $K \alpha_{1}$ profiles with estimated standard deviations.
3. Peak maxima of the $K \alpha$ and $K \alpha_{1}$ profiles with estimated standard deviations.
${ }^{1}$ Figures in brackets indicate the literature references at the end of this paper.

Table 1. List of Symbols Used.

Symbol
Page of
Meaning
First Appearance

a	4	Background intensity on low angle side of diffraction lines.
b	4	Background intensity at an arbitrary point.
c	7	Composite angular correction factor.
d	8	Angular separation of $K \alpha_{1}-K \alpha_{2}$ doublet.
f	5	Atomic scattering factor.
h	7	Cylindrical specimen height.
m	7	Specimen density.
n	4	Number of experimental points or pairs of $2 \theta_{i}$ and $I\left(2 \theta_{i}\right)$.
r	5	Cylindrical specimen radius.
x	7	Mass fraction of Nickel
z	4	Background intensity on high angle side of diffraction line.
A	5	Sample absorption factor.
B, C, D,	13	Parameters of parabolic fit to peak.
G	2	Profile center of gravity.
I, I_{1}, I_{2}	4	Reflected intensity (counts/unit time) due to the radiations $K \alpha, K \alpha_{1}$, and $K \alpha_{2}$ respectively.
$\mathrm{K} \alpha, \mathrm{K} \alpha_{1}, \mathrm{~K} \alpha_{2}$	1	Characteristic radiations of the X-ray tube target.
LP	5	Lorentz-polarization factor.
α	5	Bragg angle of crystal monochromator.
52θ	14	Increment in 2θ between individual measurements.
$\Delta 2 \theta$	10	Angular span between first and last measurements.
θ	1	Specimen Bragg angle of reflection; 2θ is twice this angle. $2 \theta_{\text {max }}$ is the position of the peak maximum.
$\lambda, \lambda_{1}, \lambda_{2}$	8	W avelengths of $K \alpha, K \alpha_{1}$, and $K \alpha_{2}$ radiations respectively.
μ	5	Linear X-ray absorption coefficients.
ρ	7	Specimen mass density
ρ_{s}	7	Mass density of powder sample.
σ	11	Standard deviation of center of gravity and peak maximum.

It has been found advantageous to smooth the profiles of cold-worked samples before Fourier analysis so an option to do this has been provided. It is also possible to have the corrected profile data punched in a format ready to enter "UNFOLD".

Angular positions are entered invalues of 2θ (twice the Bragg angle). The diffraction intensities must be in the fixed-time mode (intensity count at each angular increment determined for a fixed length of time) and measured at equal increments of 2θ across the entire profile. Several constants are written into the program assuming Debye-Scherrer geometry, the use of a monochromator with Co $K \alpha$ radiation, and iron-nickel or silver samples. The changes necessary when using other geometries, radiations, or samples are listed in the Appendix.

This program has been written in FORTRAN language and executed on a CDC 3800^{*} computer.
2. Background Calculation, "BACK"

The background intensity is the measured radiation that is scattered into the detector by means other than primary Bragg reflection of the K_{α} component by the specimen. It generally arises from a number of sources: fluorescent radiation from the specimen, diffraction of the continuous spectrum, incoherent scattering from the specimen, and diffraction or scatter from something other than the specimen itself (e.g., collimator, air, etc.).

This calculation is made by arbitrarily averaging the intensities of the first five points and the last five points and then drawing a straight line through these two averaged points.

Line Profile

*The use of trade names in this paper in no way implies endorseme nt or approval by NBS and is included only to define the procedure.

Set:

$$
\begin{aligned}
& a=\frac{1}{5} \sum_{i=1}^{5} I\left(2 \theta_{i}\right) \\
& z=\frac{1}{5} \sum_{i=0}^{4} I\left(2 \theta_{n-i}\right)
\end{aligned}
$$

Then

$$
b_{i}=\left(\frac{z-a}{2 \theta_{n}-2 \theta_{1}}\right) 2 \theta_{i}+\frac{a\left(2 \theta_{n}\right)-z\left(2 \theta_{1}\right)}{2 \theta_{n}-2 \theta_{1}}
$$

where b_{i} is the background intensity at $2 \theta_{i}$.
Background subtraction is an available option in "UNFOLD".

3. Angular Correction, "ANG"

There are several factors affecting the diffracted intensity which are functions of the Bragg angles. This angular correction is divided into three parts.

3.1. Lorentz-polarization Factor (LP)

When a monochromator is used ${ }^{[5]}$

$$
L P=\frac{1+\cos ^{2} 2 \alpha \cos ^{2} 2 \theta}{\sin ^{2} \theta \cos \theta}
$$

where α is the Bragg angle of the crystal in the monochromator and θ is the Bragg angle of the specimen.

3. 2. Atomic Scattering Factor (f)

The atomic scattering factor (f) is a function of $\frac{\sin \theta}{\lambda}, \lambda$ being the wavelength of the radiation being used. Tables of this factor for various values of $\frac{\sin \theta}{\lambda}$ and for various atomic models are available ${ }^{[6]}$. The values used are given in table 2 in a normalized form (from self-consistent wave functions) for iron, nickel, and silver.

To determine f at intermediate values of $\frac{\sin \theta}{\lambda}$ a power series polynomial was fitted to the values in table 2. For a better fit $\frac{\sin \theta}{\lambda}$ was divided into three ranges. The values for this fit are given in table 3.

Table 2. - Normalized atomic scattering factors, f

$\frac{\sin \theta}{\lambda}$	Fe	Ni	Ag
0.00	1.000	1.000	1.000
0.05	0.9731	0.9768	0.9817
0.10	0.9108	0.9214	0.9336
0.15	0.8404	0.8568	0.8698
0.20	0.7727	0.7925	0.8017
0.25	0.7077	0.7300	0.7362
0.30	0.6450	0.6689	0.6762
0.35	0.5323		0.6234
0.40	0.4412	0.5557	0.5781
0.50	0.3735	0.4611	0.5066
0.60	0.3258	0.3875	0.4547
0.70		0.3332	0.4151

Table 3. - Power series coefficients for the atomic scattering factors

$$
f=a+b\left(\frac{\sin \theta}{\lambda}\right)+c\left(\frac{\sin \theta}{\lambda}\right)^{2}+d\left(\frac{\sin \theta}{\lambda}\right)^{3}
$$

Coefficient	Fe	Ni	Ag	Range of $\frac{\sin \theta}{\lambda}$
a	+1.000	+1.000	$+1.000$	$0 \leq \frac{\sin \theta}{\lambda} \leq 0.12$
b	-0. 184	-0.142	-0.068	
c	-7.080	-6.644	-5.960	
a	+1.0637002	+1.0645004	+1.0685171	$0.12<\frac{\sin \theta}{\lambda} \leq 0.35$
b	-1.6056701	-1.4746725	-1.2033810	
c	+0.86001593	+0.68002691	-1.2685714	
d	-0.53335684	-0.53337307	+3.0666667	
a	+1. 1987014	+1.1781009	+1.2061000	$\frac{\sin \theta}{\lambda}>0.35$
b	-2.3833411	-2.1006716	-2.4973333	
c	+2.0200144	+4.4750092	+2.8050000	
d	-0.56667538	-0.28333892	-1.2166667	

In the case of the iron-nickel alloys it was arbitrarily decided to use the atomic scattering factor for Fe for all bcc alloys and the atomic scattering factor for Ni for all fcc alloys. This gives a reasonable approximation to the electron density distribution in the alloy.

3.3. Sample Absorption (A)

For a flat specimen in a focusing geometry the sample absorption factor is independent of $2 \theta^{[7]}$. However, for a Debye-Scherrer geometry ${ }^{[8,9]}$ a cylindrical sample is used and Bradley ${ }^{[10]}$ gives the absorption factor:

$$
A=\frac{1}{\pi \mu r}\left\{1-\frac{\ell n(\sec \theta+\tan \theta)}{\sec \theta \tan \theta}\right\}+\frac{\sin 2 \theta}{2 \pi \mu^{2} r^{2}}+\frac{1}{\pi \mu^{3} r^{3}}\left[-\frac{1}{4}+\frac{3}{4} \cos ^{2} \theta\left\{\frac{1}{2}+\frac{1}{2} \frac{\ell n(\sec \theta+\tan \theta)}{\sec \theta \tan \theta}\right\}\right]
$$ for $\mu r>10$, where μ is the linear absorption coefficient and r is the radius of the cylindrical specimen.

Using trigonometric identities this factor can be restated:
$A=\frac{1}{\pi \mu r}\left\{1-\frac{\cos ^{2} \theta \ell n\left(\frac{1+\sin \theta}{\cos \theta}\right)}{\sin \theta}\right\}+\frac{\sin 2 \theta}{2 \pi(\mu r)^{2}}+\frac{1}{\pi(\mu r)^{3}}\left[-\frac{1}{4}+\frac{3}{8} \cos ^{2} \theta\left\{1+\frac{\cos ^{2} \theta \ell n\left(\frac{1+\sin \theta}{\cos \theta}\right)}{\sin \theta}\right\}\right]$.

Bradley notes that for a diluted specimen (as in this case, we have used a powder mixed with cement):

$$
\mu r=\frac{\mu}{\rho} \frac{m}{\pi r h},
$$

where $\frac{\mu}{\rho}$ is the mass absorption coefficient, m is the mass of the powder in a specimen of height h and radius r. For a powder with three components (as Fe, Ni, and inactive cement)

$$
\mu r=\left[\left(\frac{\mu}{\rho}\right)_{N i} x+\left(\frac{\mu}{\rho}\right)_{F e}(1-x)\right] \frac{m}{\pi r h}
$$

where x is the mass fraction of the Ni. Now:

$$
\frac{m}{\pi r h}=r \rho_{s}, \quad \rho_{s}=\text { the mass density of the final sample. }
$$

mass absorption coefficients here for Co $K \propto$ radiation are ${ }^{[11]}$:

$$
\left(\frac{\mu}{\rho}\right)_{\mathrm{Ni}}=75.1, \quad\left(\frac{\mu}{\rho}\right)_{\mathrm{Fe}}=59.5, \quad\left(\frac{\mu}{\rho}\right)_{\mathrm{Ag}}=332
$$

Also: $\quad \mathrm{r}=0.1 \mathrm{~cm}, \rho_{\mathrm{s}}(\mathrm{Fe}-\mathrm{Ni}$ alloys $)=3.65 \mathrm{~g} / \mathrm{cm}^{3}, \quad \rho_{\mathrm{s}}(\mathrm{Ag})=3.92 \mathrm{~g} / \mathrm{cm}^{3}$.
The total angular correction factor used to multiply the intensity is composed of the preceeding three elements.

$$
\mathrm{c}=\frac{1}{f^{2}(\mathrm{LP}) \mathrm{A}}
$$

This is normalized to unity at $2 \theta_{1}$.
"UNFOLD" has the option to make this correction taking into account the Lorenzpolarization and atomic scattering factors. This is all that is necessary when using a flat sample but the Debye-Scherrer geometry requires the inclusion of the absorption factor.

4. Rachinger Separation, "RACH"

The Rachinger method
[4] is a graphical means of separating the $\mathrm{K} \alpha_{1}-\mathrm{K} \alpha_{2}$ line doublet.

$$
\begin{aligned}
& I_{1}\left(2 \theta_{i}\right)=I\left(2 \theta_{i}\right)-I_{2}\left(2 \theta_{i}\right) \text { where } \\
& I=\text { intensity due to } \alpha_{1}+\alpha_{2} \text { (recorded intensity) } \\
& I_{1}=" \quad \text { " } \quad \text { " } \alpha_{1} \text {. } \\
& I_{2}=" \quad " \quad " \alpha_{2} .
\end{aligned}
$$

The usual assumption [is made that the $K \alpha_{2}$ intensity is half that of the $K \alpha_{1}$ so that:

$$
\mathrm{I}_{2}\left(2 \theta_{\mathrm{i}}\right)=\frac{1}{2} \mathrm{I}_{1}(2 \theta-\mathrm{d}),
$$

where d is the doublet separation. Now

$$
I_{1}\left(2 \theta_{i}\right)=I\left(2 \theta_{i}\right)-\frac{1}{2} I_{1}\left(2 \theta_{i}-d\right) .
$$

It is important that data be collected sufficiently far out on the low angle side of the profile so that the calculation is started at a diffraction angle sufficiently small that $I_{2} \approx 0$, or the measured intensity is due mainly to the $K \alpha_{1}$ component. Values of I_{1} at higher angles can then be determined by successive calculations.

The doublet separation, d, is determined from an approximate peak position of the $\mathrm{K} \alpha$ curve and the wavelengths λ, λ_{1}, and λ_{2} of the $K \alpha, K \alpha_{1}$, and $K \alpha_{2}$ radiations respectively.

From the Bragg equation:

$$
\dot{\lambda}=2 \mathrm{~d}^{\prime} \sin \theta \text { and } \lambda_{1}=2 d^{\prime} \sin \theta_{1}
$$

(d^{\prime} = interplanar spacing),

$$
\sin \theta_{1}=\frac{\lambda_{1}}{\lambda} \sin \theta_{0}
$$

Similarly for the $\mathrm{K} \alpha_{2}$ component:

$$
\begin{aligned}
& \sin \theta_{2}=\frac{\lambda_{2}}{\lambda} \sin \theta,
\end{aligned}
$$

and the doublet separation in 2θ is

$$
d=2 \theta_{2}-2 \theta_{1}
$$

or

$$
d=2\left\{\sin ^{-1}\left[\frac{\lambda_{2}}{\lambda} \sin \theta\right]-\sin ^{-1}\left[\frac{\lambda_{1}}{\lambda} \sin \theta\right]\right\}
$$

For cobalt radiation

$$
\begin{aligned}
& \lambda=1.79021 \AA, \\
& \lambda_{1}=1.78892 \AA . \\
& \lambda_{2}=1.79278 \AA .
\end{aligned}
$$

In general, the angle $\left(2 \theta_{i}-d\right)$ will not coincide with any of the angular values $2 \theta_{j}$ so it is necessary to interpolate. Assume:

$$
2 \theta_{j} \leq 2 \theta_{i}-d \leq 2 \theta_{k} .
$$

A straight line is fitted between $I_{1}\left(2 \theta_{j}\right)$ and $I_{1}\left(2 \theta_{k}\right)$ and:

$$
I_{1}\left(2 \theta_{i}-d\right)=\frac{I_{1}\left(2 \theta_{k}\right)-I_{1}\left(2 \theta_{j}\right)}{2 \theta_{k}-2 \theta_{j}}\left(2 \theta_{i}-d\right)+\frac{\left[I_{1}\left(2 \theta_{j}\right)\right]\left(2 \theta_{k}\right)-\left[I_{l}\left(2 \theta_{k}\right)\right]\left(2 \theta_{j}\right)}{2 \theta_{k}-2 \theta_{j}}
$$

Although it is not apparent, the Rachinger separation has a tendency to oscillate or become assymmetrical on the high angle side of the profile. This is especially true for a sharp, well separated $\mathrm{K} \alpha$ line. For this reason the options for card punching and mathematical smoothing are applied only to the corrected $K \alpha$ profile in this program. This section is still included, however, for those occasions when it might be useful.
5. Center of Gravity Calculation, "CENTROID"

The centroid or center of gravity is one measure of the position of the diffraction line. It is of value in measuring lattice parameters ${ }^{[13]}$, twin fault probabilities ${ }^{[14]}$, etc. According to Pike and Wilson ${ }^{[13]}$ the center of gravity is determined by

$$
\begin{equation*}
G=\frac{\sum_{1}\left(I_{i}-b_{i}\right) c_{i}\left(2 \theta \theta_{i}\right)}{\sum_{i}\left(I_{i}-b_{i}\right) c_{i}} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& G=\text { center of gravity, } \\
& 2 \theta_{i}=\text { angular position }, \\
& I_{i}=\text { measured intensity }, \\
& b_{i}=\text { background (calculated in sec. } 2 \text {), } \\
& c_{i}=\text { angular correction factor (calculated in sec. 3). } \\
& \text { The summations are over all points. }
\end{aligned}
$$

Equation (1) is modified from the equation given by Pike and Wilson by the presence of the c_{i}

$$
\begin{aligned}
& \text { From the calculation of the background (sec. 2) } \\
& \qquad \text { setting } \Delta 2 \theta_{i}=2 \theta_{n}-2 \theta_{1}, \\
& \qquad b_{i}=\left(\frac{z-a}{\Delta 2 \theta}\right) 2 \theta_{i}+\frac{a\left(2 \theta_{n}\right)-z\left(2 \theta_{1}\right)}{\Delta 2 \theta^{2}} ;
\end{aligned}
$$

or

$$
\begin{equation*}
b_{i}=z\left(\frac{2 \theta_{i}-2 \theta_{1}}{\Delta 2 \theta}\right)-a\left(\frac{2 \theta_{i}-2 \theta_{n}}{\Delta 2 \theta}\right) \tag{2}
\end{equation*}
$$

Substituting eq (2) into eq (1)

$$
G=\frac{\Sigma \sum_{i}\left[I_{i}-z\left(\frac{2 \theta_{i}-2 \theta_{1}}{\Delta 2 \theta}\right)+a\left(\frac{2 \theta_{i}-2 \theta_{n}}{\Delta 2 \theta}\right)\right] c_{i}^{\left(2 \theta_{i}\right)}}{\Sigma_{i}\left[I_{i}-z\left(\frac{2 i_{i}-2 \theta}{\Delta 2 \theta}\right)+a\left(\frac{i_{i}-2 \theta}{\Delta 2 \theta}\right)\right] c_{i}},
$$

$$
\begin{equation*}
\left.G=\frac{\sum_{i} I_{i} c_{i}\left(2 \theta_{i}\right)-z \sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}\left(2 \theta_{i}\right)+a \sum_{i}\left(\frac{2 \theta_{i}-2 \theta_{n}}{\Delta 2 \theta}\right) c_{i} \cdot\left(2 \theta_{i}\right)}{\sum_{i} I_{i} c_{i}-z \sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}+a \sum_{i}\left(\frac{2 \theta}{i}-2 \theta n\right.} \frac{\Delta 2 \theta}{\Delta 2 \theta}\right) c_{i} \quad . \tag{3}
\end{equation*}
$$

An estimate of the standard deviation is given by the standard propagation of error.

$$
\begin{equation*}
\sigma^{2}(G)=\sum_{i}\left(\frac{\partial G}{\partial I_{i}}\right)^{2} \sigma^{2}\left(I_{i}\right)+\left(\frac{\partial G}{\partial a}\right)^{2} \sigma^{2}(a)+\left(\frac{\partial G}{\partial z}\right)^{2} \sigma^{2}(z) \tag{4}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \frac{\partial G}{\partial I_{i}}=\frac{\left(2 \theta_{i}\right) c_{i}}{\sum_{i} I_{i} c_{i}-z \sum_{i}\left(\frac{2{ }_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}+a \sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}} \\
& \frac{c_{i}\left[\sum_{i} I_{i} c_{i}\left(2 \theta_{i}\right)-z \sum_{i}\left(\frac{2{ }_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}\left(2 \theta_{i}\right)+a \sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i} \cdot\left(2 \theta_{i}\right)\right]}{\left[\sum \sum_{i} I_{i} c_{i}-z \sum_{i}\left(\frac{2 i_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}+a \sum_{i} c_{i}\left(\frac{2 \theta_{i}-2 \theta n}{\Delta 2 \theta}\right)\right]^{2}} .
\end{aligned}
$$

On substituting from eq (3)

$$
\begin{equation*}
\left.\frac{\partial G}{\partial I_{i}}=\frac{\left(2 \theta i_{i}-G\right) c_{i}}{\sum_{i} I_{i} c_{i}-z \sum_{i}\left(\frac{2 \theta i}{\Delta 2 \theta}-2 \theta\right.}\right) c_{i}+a \sum_{i}\left(\frac{2 \theta i}{\Delta 2 \theta} n{ }_{i}\right) c_{i} \quad . \tag{5}
\end{equation*}
$$

Also

$$
\frac{\partial G}{\partial a}=\frac{\sum_{i}\left(\frac{2 \theta_{i}-2 \theta_{n}}{\Delta 2 \theta}\right) c_{i} \cdot\left(2 \theta_{i}\right)}{\sum_{i} I_{i} c_{i}-z \sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}+a \sum_{i}\left(\frac{2 \theta_{i}-2 \theta_{n}}{\Delta 2 \theta}\right) c_{i}}
$$

$$
-\frac{\sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}\left[\sum_{i} I_{i} c_{i} \cdot\left(2 \theta_{i}\right)-z \sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i} \cdot\left(2 \theta_{i}\right)+a \sum_{i}\left(\frac{2 \theta_{i}-2 \theta_{n}}{\Delta 2 \theta}\right) c_{i} \cdot\left(2 \theta_{i}\right)\right]}{\left[\sum_{i} I_{i} c_{i}-z \sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}+a \sum_{i}\left(\frac{2 \theta i_{i}-2 \theta{ }_{n}}{\Delta 2 \theta}\right) c_{i}\right]^{2}} .
$$

On substituting from eq (3)

$$
\frac{\partial G}{\partial a}=\frac{\sum_{i}\left(\frac{2 \theta_{i}-2 \theta n}{\Delta 2 \theta}\right) c_{i} \cdot\left(2 \theta_{i}\right)-G \sum_{i}\left(\frac{2 \theta_{i}-2 \theta n}{\Delta 2 \theta}\right) c_{i},}{\sum_{i} I_{i} c_{i}-z \sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}+a \sum\left(\frac{\sum_{i}-2 \theta n}{\Delta 2 \theta}\right) c_{i}}
$$

Or

$$
\begin{equation*}
\frac{\partial G}{\partial a}=\frac{\sum_{i}\left(\frac{2 \theta_{i}-2 \theta_{n}}{\Delta 2 \theta}\right) c_{i} \cdot\left(2 \theta_{i}-G\right)}{\sum_{i} I_{i} c_{i}-z \sum_{i}\left(\frac{{ }_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}+a \sum_{i}\left(\frac{2 i_{i}-2 \theta n}{\Delta 2 \theta}\right) c_{i}} . \tag{6}
\end{equation*}
$$

Also:

$$
\begin{aligned}
& \frac{\partial G}{\partial z}=\frac{-\sum_{i}\left(\frac{2 i_{i}-2 \theta 1}{\Delta 2 \theta}\right) c_{i} \cdot\left(2 \theta_{i}\right)}{\sum_{i} I_{i} c_{i}-z \sum_{i}\left(\frac{2 \theta i^{-2 \theta} 1}{\Delta 2 \theta}\right) c_{i}+a \sum_{i}\left(\frac{2 \theta i^{-2 \theta} n}{\Delta 2 \theta}\right) c_{i}} \\
& +\frac{\sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i} \cdot\left[\sum_{i} I_{i} c_{i} \cdot\left(2 \theta_{i}\right)-z \sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i} \cdot\left(2 \theta_{i}\right)+a \sum_{i}\left(\frac{2 \theta_{i}-2 \theta_{n}}{\Delta 2 \theta}\right) c_{i} \cdot\left(2 \theta_{i}\right)\right]}{\left[\sum I_{i} c_{i}-z \sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i}+a \sum_{i}\left(\frac{2 \theta{ }_{i}-2 \theta_{n}}{\Delta 2 \theta}\right) c_{i}\right]^{2}},
\end{aligned}
$$

or

$$
\begin{equation*}
\frac{\partial G}{\partial z}=\frac{\sum_{i}\left(\frac{2 \theta_{i}-2 \theta}{\Delta 2 \theta}\right) c_{i} \cdot\left(G-2 \theta_{i}\right)}{\sum_{i} I_{i} c_{i}-z \sum_{i}\left(\frac{2 \theta i^{-2 \theta} 1}{\Delta 2 \theta}\right) c_{i}+a \sum_{i}\left(\frac{2 \theta i^{-2 \theta} n}{\Delta 2 \theta}\right) c_{i}} . \tag{7}
\end{equation*}
$$

And, since the standard deviation of a random variable is the square root of that variable,

$$
\begin{equation*}
\sigma^{2}\left(I_{i}\right)=I_{i} \tag{8}
\end{equation*}
$$

also $a=\frac{1}{5} \sum_{i=1}^{5} I_{i} \quad$ (see sec. 2),

$$
\sigma^{2}(\mathrm{a})=\sum_{\mathrm{i}}\left(\frac{\partial \mathrm{a}}{\partial \mathrm{I}_{\mathrm{i}}}\right)^{2} \sigma^{2}\left(\mathrm{I}_{\mathrm{i}}\right) \quad \text { where } \quad \frac{\partial \mathrm{a}}{\partial \mathrm{I}_{\mathrm{i}}}=\frac{1}{5}
$$

so $\quad \sigma^{2}(a)=\frac{1}{25} \sum_{i=1}^{5} I_{i}=\frac{1}{5} a$.
In a similar manner for z,

$$
\begin{equation*}
\sigma^{2}(z)=\frac{1}{5} z \tag{10}
\end{equation*}
$$

The center of gravity is calculated from eq (1) and the estimate of its standard deviation is determined from eq (4) using eq (5) through eq (10).

6. Peak Calculation, "PEAK"

The position of peak maximum is another measure of the profile's angular loca-
tion. It also is used to measure lattice parameter and twin fault probabilities, as well as stacking fault probabilities ${ }^{[15]}$.

A portion of the profile on either side of the maximum (we generally used a total of 7 to 9 points) is fitted to a parabola ${ }^{[16]}$ and the maximum of that curve is determined.

$$
I_{i}=B+C \cdot\left(2 \theta_{i}\right)+D \cdot\left(2 \theta_{i}\right)^{2}
$$

Differentiating:

$$
\frac{d I_{i}}{d\left(2 \theta_{i}\right)}=C+2 D \cdot\left(2 \theta_{i}\right)=0
$$

so that

$$
\begin{equation*}
\text { peak }=2 \theta_{\max }=-\frac{C}{2 D} \tag{11}
\end{equation*}
$$

where B, C, and D are the parameters of the fitted curve.
The standard propagation of error with correlation between the variables C and D gives:

$$
\begin{aligned}
\sigma^{2}\left(2 \theta_{\max }\right)= & \left(\frac{\partial\left(2 \theta_{\text {max }}\right)}{\partial \mathrm{C}}\right)^{2} \sigma^{2}(\mathrm{C})+\left(\frac{\partial\left(2 \theta_{\text {max }}\right)}{\partial \mathrm{D}}\right)^{2} \sigma^{2}(\mathrm{D}) \\
& +2\left(\frac{\partial\left(2 \theta_{\text {max }}\right)}{\partial \mathrm{C}}\right)\left(\frac{\partial\left(2 \theta_{\text {max }}\right)}{\partial \mathrm{D}}\right) \sigma(\mathrm{C}) \sigma(\mathrm{D}) .
\end{aligned}
$$

Differentiating eq (ll) this becomes

$$
\begin{aligned}
\sigma^{2}\left(2 \theta_{\max }\right) & =\left(\frac{1}{4 D^{2}}\right) \sigma^{2}(C)+\left(\frac{C^{2}}{4 D^{4}}\right) \sigma^{2}(D)+2\left(\frac{-1}{2 D}\right)\left(\frac{C}{2 D^{2}}\right) \sigma(C) \sigma(D) \\
& =\frac{\left(2 \theta \max ^{\prime}\right)^{2}}{C^{2}} \sigma^{2}(C)+\frac{\left(2 \theta \max ^{2}\right)^{2}}{D^{2}} \sigma^{2}(D)-2 \frac{\left(2 \theta \max ^{2}\right.}{C D} \sigma(C) \sigma(D) .
\end{aligned}
$$

A modification of a computer program written by W. J. Hall was used here to compute the curve parameters and their standard deviations. This program performs an orthonormal curve fitting using Bjork's modification ${ }^{[17,18]}$ of the Gram-Schmidt technique.

7. Curve Smoothing, "SMOOTH"

In the course of experimenting on several iron-nickel alloys, it was found that the Fourier analyses of the diffraction profiles were far more repeatable if the data from the cold-worked sample were first smoothed. This subroutine affords the option of performing this operation.

The intensity curve is mathematically smoothed by a least-squares fit of a quartic equation to seven points, taking the value at the midpoint and then advancing the group of points by one unit and repeating the process. [19]

$$
I_{i}(\text { smoothed })=\left(I_{i-3}-18 I_{i-2}+63 I_{i-1}+164 I_{i}+63 I_{i+1}-18 I_{i+2}+I_{i+3}\right) / 256
$$

Three points are added before the initial intensity and three after the final intensity and they are all set equal to zero.

This smoothing operation can be performed repeatedly (limited to 99 times by format). It is possible to have up to ten of these smoothed curves printed and to have one of them card punched for input to "UNFOLD".
8. Data Input and Output and a Sample

Card Input

Card
1

2

3

5
6.

Smoothing numbers to be printed. (This card is 1015 omitted if $3 a \neq 2$. The number in $3 c$ must be one of these numbers).

Lower and upper angular limits for parabolic
2F10. 2 fit to determine profile maximum.

Intensities
10F7. 0

Output data includes:

1. Identification

2. Table containing angular positions, recorded intensities, backgrounds, angular corrections, and the corrected $\mathrm{K} \alpha$ and $\mathrm{K} \alpha_{1}$ profiles.

[^1]3. Line maximum and center of gravity with their standard deviations for $\mathrm{K} \alpha$ and $K \alpha_{1}$ profiles.
4. Peak value used for punching "UNFOLD" input and smoothing number used (if applicable).
5. Table containing angular positions and smoothed $\mathrm{K} \alpha$ profile (if applicable). A sample of input and output follows.

Punched Card Input

Printed Output

FE-28NI COLD-WORKED (111)

| 2 THETA | REC $C N T$ | BACK | ANG COR | ALPHA | ALPHA I |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | |
| 50.60 | 270 | 264 | 1.0000 | 6 | 0 |
| 50.62 | 260 | 264 | 1.0004 | -4 | 0 |
| 50.64 | 260 | 264 | 1.0009 | -4 | 0 |
| 50.66 | 270 | 264 | 1.0013 | 6 | 0 |
| 50.68 | 260 | 264 | 1.0017 | -4 | 0 |
| 50.70 | 290 | 264 | 1.0022 | 26 | 0 |
| 50.72 | 240 | 264 | 1.0026 | -24 | 0 |
| 50.74 | 290 | 264 | 1.0030 | 26 | 0 |
| 50.76 | 310 | 264 | 1.0035 | 46 | 46 |
| 50.78 | 310 | 264 | 1.0039 | 46 | 46 |
| 50.80 | 290 | 265 | 1.0044 | 26 | 26 |
| 50.82 | 290 | 265 | 1.0048 | 26 | 26 |
| 50.84 | 310 | 265 | 1.0052 | 46 | 46 |
| 50.86 | 300 | 265 | 1.0057 | 35 | 35 |
| 50.88 | 270 | 265 | 1.0061 | 5 | -17 |
| 50.90 | 260 | 265 | 1.0065 | -5 | -28 |
| 50.92 | 320 | 265 | 1.0070 | 56 | 43 |
| 50.94 | 280 | 265 | 1.0074 | 15 | 2 |
| 50.96 | 330 | 265 | 1.0078 | 66 | 43 |
| 50.98 | 330 | 265 | 1.0083 | 66 | 48 |
| 51.00 | 300 | 265 | 1.0087 | 35 | 43 |
| 51.02 | 330 | 265 | 1.0092 | 65 | 79 |
| 51.04 | 360 | 265 | 1.0096 | 96 | 75 |

51.06	340	265	1.0100	75	74
51.08	370	265	1.0105	106	85
51.10	330	265	1.0109	65	42
51.12	350	265	1.0113	86	64
51.14	360	265	1.0118	96	56
51.16	340	266	1.0122	75	38
51.18	350	266	1.0127	85	48
51.20	390	266	1.0131	126	84
51.22	400	266	1.0135	136	115
51.24	400	266	1.0140	136	104
51.26	370	266	1.0144	106	77
51.28	420	266	1.0148	156	137
51.30	450	266	1.0153	187	163
51.32	490	266	1.0157	228	186
51.34	470	266	1.0162	207	150
51.36	510	266	1.0166	248	196
51.38	510	266	1.0170	248	209
51.40	530	266	1.0175	268	200
51.42	600	266	1.0179	340	259
51.44	620	266	1.0184	360	267
51.46	710	266	1.0188	452	377
51.48	740	266	1.0192	483	385
51.50	740	266	1.0197	483	378
51.52	830	267	1.0201	575	475
51.54	910	267	1.0206	657	528
51.56	950	267	1.0210	698	564
51.58	940	267	1.0214	688	500
51.60	1010	267	1.0219	760	567
51.62	1170	267	1.0223	923	734
51.64	1260	267	1.0228	1016	779
51.66	1330	267	1.0232	1088	824
51.68	1410	267	1.0236	1170	888
51.70	1550	267	1.0241	1314	1063
51.72	1620	267	1.0245	1386	1103
51.74	1720	267	100250	1489	1123
51.76	1840	267	1.0254	1613	1224
51.78	1940	267	1.0258	1716	1304
51.80	2050	267	1.0263	1830	1386
51.82	2130	267	1.0267	1912	1382
51.84	2220	267	1.0272	2006	1454
51.86	2270	267	1.0276	2058	1496
51.88	2350	267	1.0280	2141	1530
51.90	2380	268	1.0285	2173	1521
51.92	2390	268	1.0289	2184	1491
51.94	2390	268	1.0294	2185	1494
51.96	2360	268	1.0298	2155	1428
51.98	2320	268	1.0303	2114	1366
52.00	2280	268	1.0307	2074	1309
52.02	2190	268	1.0311	1982	1221
52.04	2040	268	1.0316	1828	1082
52.06	1940	268	1.0320	1726	979
52.08	1840	268	1.0325	1623	908
52.10	1600	268	1.0329	1376	692
52.12	1330	268	1.0334	1097	442
52.14	1160	268	1.0338	922	311
52.16	1050	268	1.0342	809	266
52.18	950	268	1.0347	705	215
52.20	860	268	1.0351	612	158
52.22	810	268	1.0356	561	213
52.24	760	268	1.0360	509	286
52.26	720	269	1.0365	468	312
52.28	670	269	1.0369	416	283
52.30	610	269	1.0374	354	246
52.32	560	269	1.0378	302	223
			18		

52.34	510	269	1.0382	250	144
52.36	490	269	1.0387	230	87
52.38	470	269	1.0391	209	53
52.40	440	269	1.0396	178	36
52.42	420	269	1.0400	157	34
52.44	400	269	1.0405	136	25
52.46	390	269	1.0409	126	53
52.48	380	269	1.0414	115	71
52.50	370	269	1.0418	105	78
52.52	360	269	1.0422	95	76
52.54	350	269	1.0427	84	67
52.56	340	269	1.0431	74	61
52.58	330	269	1.0436	63	37
52.60	320	269	1.0440	53	17
52.62	310	270	1.0445	42	3
52.64	300	270	1.0449	32	-6
52.66	290	270	1.0454	21	-12
52.68	280	270	1.0458	11	-20
52.70	270	270	1.0463	0	-18
52.72	270	270	1.0467	0	-9
52.74	270	270	1.0471	0	-2
52.76	270	270	1.0476	0	3
52.78	270	270	1.0480	0	6
52.80	270	270	1.0485	0	10

```
ALPHA CURVE
PEAK MAX = 51.9298
    STD DEV = 0.1335
PEAK FIGURED FROM 51.72 TO 52.02
LINE CG = 51.8653 STD DEV = 0.0045
ALPHA 1 CURVE
PEAK MAX = 51.8958
    STD DEV = 0.2744
PEAK FIGURED FROM 51.68 TO 51.98
LINE CG = 51.8257 STD DEV = 0.0065
PUNCH PEAK FOR ALPHA = 51.92
SMOOTHING }
```

ANGLE	INPUT	SMOOTH	2	SMOOTH	4	SMOOTH	6
50.60	6	2	0	-0	SMOOTH	8	
50.62	-4	-1	-1	-1	-0		
50.64	-4	-3	-2	-1	-1		
50.66	6	1	2	2	-1		
50.68	-4	7	5	4	2		
50.70	26	4	2	2	3		
50.72	-24	-1	3	5	2		
50.74	26	17	19	20	7		
50.76	46	43	39	36	20		
50.78	46	43	41	40	35		
50.80	26	29	33	35	39		
50.82	26	30	32	34	36		
50.84	46	40	37	34	35		
50.86	35	31	28	26	33		
					25		

50.88	5	8	12	14	16
50.90	-5	10	12	13	14
50.92	56	29	26	25	25
50.94	15	40	42	41	41
50.96	66	54	53	52	51
50.98	66	57	55	54	54
51.00	35	50	54	56	57
51.02	65	64	65	66	67
51.04	96	85	82	81	80
51.06	75	91	91	89	88
51.08	106	88	87	88	88
51.10	65	80	82	84	84
51.12	86	83	83	83	82
51.14	96	87	84	82	82
51.16	75	81	83	84	85
51.18	85	91	94	97	98
51.20	126	120	118	117	116
51.22	136	137	132	129	127
51.24	136	128	128	128	128
51.26	106	122	126	130	152
51.28	156	149	150	152	153
51.30	187	191	187	185	184
51.32	228	215	213	212	210
51.34	207	224	225	226	225
51.36	248	236	235	235	236
51.38	248	251	251	251	251
51.40	268	278	279	280	281
51.42	340	323	324	325	326
51.44	360	380	381	381	380
51.46	452	439	435	432	429
51.48	483	474	471	471	471
51.50	483	502	510	514	517
51.52	575	571	574	576	576
51.54	657	652	643	637	633
51.56	698	685	680	677	675
51.58	688	700	708	714	718
51.60	760	775	782	787	790
51.62	923	905	899	895	893
51.64	1016	1014	1008	1004	1001
51.66	1088	1090	1095	1097	1097
51.68	1170	1184	1187	1189	1190
51.70	1314	1295	1291	1290	1289
51.72	1386	1394	1394	1393	1392
51.74	1489	1493	1496	1497	1498
51.76	1613	1607	1607	1607	1608
51.78	1716	1721	1720	1719	1719
51.80	1830	1825	1825	1824	1824
51.82	1912	1918	1917	1917	1917
51.84	2006	1998	1998	1999	1999
51.86	2058	2069	2071	2071	2072
51.88	2141	2133	2132	2131	2131
51.90	2173	2173	2172	2171	2171
51.92	2184	2187	2187	2187	2187
51.94	2185	2181	2180	2181	2181
51.96	2155	2156	2157	2159	2160
51.98	2114	2120	2123	2123	2122
52.00	2074	2069	2064	2061	2059
52.02	1982	1971	1969	1968	1969
52.04	1828	1844	1852	1858	1861
52.06	1726	1734	1736	1736	1736
52.08	1623	1599	1587	1579	1574
52.10	1376	1373	1369	1365	1363
52.12	1097	1114	1124	1130	1134
52.14	922	924	929	933	938

52.16	809	803	799	797	797
$52 \cdot 18$	705	703	701	699	698
52.20	612	618	620	621	621
52.22	561	557	558	559	560
52.24	509	511	511	510	510
52.26	468	466	465	465	464
52.28	416	415	414	413	412
52.30	354	356	356	356	356
$52 \cdot 32$	302	300	300	301	302
52.34	250	255	257	258	259
$52 \cdot 36$	230	228	228	228	228
52.38	209	206	205	204	203
52.40	178	180	180	180	180
52.42	157	156	156	157	157
52.44	136	138	138	138	139
52.46	126	125	125	125	125
52.48	115	115	115	115	115
52.50	105	105	105	105	105
52.52	95	95	95	95	95
52.54	84	84	84	84	84
52.56	74	74	74	74	74
52.58	63	63	63	63	63
52.60	53	53	53	53	53
52.62	42	42	42	42	42
52.64	32	32	32	32	32
52.66	21	21	21	21	21
52.68	11	10	10	10	10
52.70	0	2	2	3	3
52.72	0	-0	-0	-0	-0
52.74	0	-0	-0	-1	-1
52.76	0	0	0	-0	-0
52.78	0	0	0	0	0
$52 \cdot 80$	0	0	0	0	0

Punched Card Output For "UNFOLD"

2187.	2180.	2157.	2123.	2064.	1969.	1852.	1736.	1587.	1369.
1124.	929.	799.	701.	620.	558.	511.	465.	414.	356.
300.	257.	228.	205.	180.	156.	138.	125.	115.	105.
95.	84.	74.	63.	53.	42.	32.	21.	10.	2.
-0.	-0.	0 .	0.	0.					
2187.	2172.	2132.	2071.	1998.	1917.	1825.	1720.	1607.	1496
1394.	1291.	1187.	1095.	1008.	899.	782.	708.	680.	643.
574.	510.	471.	435.	381.	324.	279 。	251.	235.	225.
213.	187.	150.	126.	128.	132.	118.	94.	83.	84.
83.	82.	87.	91.	82.	65.	54.	55.	53.	42.
26.	12.	12.	28.	37.	32.	33.	41.	39.	19.
3.	2.	5.	2.	-2.	-1.	0 。			

The listing which follows includes two versions on the subroutine "ANG", one for the two phase $\mathrm{Fe}-\mathrm{Ni}$ alloys and one for Ag . Of course, only one version should appear in the program deck. The program has been written in FORTRAN.

PROGRAM PREP
DIMENSION $Y(300), Y 1(300), Y C(300), N S(10)$
COMMON $X(300), B(300), C(300), N$
DOUBLE PRECISION PK,PKI,CG,CGI,SDPK,SDPKI,SDCG,SDCGI
READ 6
IF (EOF,60) 999,100
READ 2, N,AI,AINC,APK,V,FN,IG
READ 1, IPUN,NP,NUMP
IF (IPUN-2) 121,120,121
READ 1,(NS(I),I=1,NP)
DO $101 \mathrm{~J}=1, \mathrm{~N}$
$X(J)=A I+(J-1) * A I N C$
READ 3, R1,R2
READ 4, $(Y(J), J=1, N)$
CALL BACK (Y, A, Z, D)
CALL ANG(IG,V,FN)
CALL RACH(Y,Y1,APK,A1)
CALL CENTROID(Y,CG,SDCG,A,Z,D)
CALL CENTROID(YI,CGI,SDCGI,A,Z,D)
CALL PEAK (Y,PK,SDPK,R1,R2)
NN = XFIXF((PK - Al*360.13.1415927)/AINC)
R3 $=$ R1-NN*AINC
$R 4=R 2-N N * A I N C$
CALL PEAK (Y1,PK1,SDPK1,R3,R4)
DO $103 \mathrm{~J}=1 \mathrm{~N}$
IF (APK-X(J))103,102,103
$102 \quad \mathrm{NF}=\mathrm{J}$
GO TO 104
103 CONTINUE
104 DO $105 \mathrm{~J}=1, \mathrm{~N}$
$Y 1(J)=(Y 1(J)-B(J)) * C(J)$
$105 \quad Y C(J)=(Y(J)-B(J)) * C(J)$
PRINT 14
PRINT 6
PRINT $7,(X(J), Y(J), B(J), C(J), Y((J), Y 1(J), J=1, N) ~$
PRINT $8,(X(J)$
PRINT 9, PK,SDPK
PRINT 10, R1,R2
PRINT 11, CG,SDCG
PRINT 12. PKI, SDPK1
PRINT 10, R3,R4
PRINT 11,CGI,SDCGI
IF (IPUN) 107,107,108
IF (IPUN-2) 110,109,109
109 CALL SMOOTH(YC,NUMP,NS,NP,NCEN)
GO TO 107
$110 \quad P P=A I+(N F-1) * A I N C$
PRINT 13, PP
DO $106 \mathrm{~K}=1$, NF
$C(K)=Y C(N F+1-K)$
PUNCH 5, (YC(J), J=NF,N)
PUNCH 5, (C(J),J=1,NF)
107 GO TO 111
1 FORMAT (10I5)
FORMAT (I10,5F10.2,I10)
FORMAT (2F10.2)
FORMAT (1OF7.0)
FORMAT (10(F6.0.\$.\$))
FORMAT 150 H
FORMAT (///3X,\$2 THETA\$, $3 X, \$ R E C$ CNT $\$, 6 X, \$ B A C K \$, 3 X, \$ A N G$)
1 \$ALPHA\$, $3 X$, \$ALPHA $1 \$ / 1$
FORMAT (F10.2,2F10.0,F10.4,2F10.0)
FORMAT (///\$ ALPHA CURVE $\$ / \$$ PEAK MAX $=\$, F 9.4 / \$$ STD DEV $=\$$,
1F9.4)
FORMAT (1X, \$PEAK FIGURED FROM $\$, F 7.2,2 X, \$$ TO\$,F7.2)
FORMAT ($/ \$$ LINE CG $=\$$ F9.4. $\$$ STD DEV $=\$, F 9.4$)
FORMAT $(/ / / \$$ ALPHA 1 CURVE $\$ / \$$ PEAK MAX $=\$, F 9.4 / \$$ STD DEV $=\$$,
1F9.4)
FORMAT (///1X,\$PUNCH PEAK FOR ALPHA $=\$, F 7.2$)
FORMAT (//////)
END

SUBROUTINE BACK (Y, A, Z, D)

```
    COMMON X(300), B(300),C(300):N
    DIMENSION Y(300)
    A = (Y(1)+Y(2)+Y(3)+Y(4)+Y(5))/5.
    Z = YY(N-4)+Y(N-3)+Y(N-2)+Y(N-1)+Y(N))/5.
    D = X(N) - X(1)
    DO 200 J=1,N
    B(J)=(Z-A)*X(J)/D+(A*X(N)-Z*X(1))/D
    RETURN
    END
```


SUBROUTINE ANG(IG,V,FN)

ANGULAR CORRECTION - FOR FE-NI ALLOY SAMPLES AND CO RADIATION COMMON X(300), $B(300), C(300), N$
$P I=3.1415927$
$D A=\cos (31.2333 * P I / 180) * *$.
DO $313 \mathrm{~J}=1, \mathrm{~N}$
A
SL $=\operatorname{SIN}((X(J)+V) * P I / 360) /$.
IF (IG-1) 306,306,301
IF (SL-0.12) 302,302,303
$F=1 .-0.142 * S L-6.44 * S L * * 2$
GO TO 311
C-FCC
IF (SL-0.35) 304,304,305
$F=1.0645004-1.4746725 * S L+0.68002691 * S L * * 2-0.53337307 * S L * * 3 \quad$ D-FCC
GO TO 311
$\mathrm{F}=1.1781009-2.1006716 * S L+1.4750092 * \mathrm{SL} * * 2-0.28333892 * \mathrm{SL} * * 3$
GO TO 311
E-FCC
IF (SL-0.12) 307,307,308
$F=1 .-0.184 * S L-7.08 * S L * * 2$
GO TO 311
$C-B C C$
IF (SL-0.35) 309,309,310
$\mathrm{F}=1.0637002-1.6056701 * S L+0.86001593 * S L * * 2-0.53335684 * S L * * 3$
D-BCC
GO TO 311
$F=1.1987014-2.2833411 * S L+2.0200144 * S L * * 2-0.56667538 * S L * * 3 \quad E-B C C$

```
    BB=}\operatorname{cos((X(J)+V)*PI/360.)
    CC= SIN((X(J)+V)*PI/180.)
    D= Cos((X(J)+V)*PI/180.)
    C(J)=(A**2)*BB/(F*F*(10+DA*D**2))
    E=BB*BB*LOGF ((1.+A)/BB)/A
        H
    RM = (75.1*FN + 59.5*(1.-FN))*0.365
    ABS = (I\bullet-E)/(PI*RM)+CC/(2.*PI*RM*RM)+(-. 25+.375*BB*BB*(1\bullet+E))/
    I
1(PI*RM**3)
SUBROUTINE ANG(IG,V,FN)
ANGULAR CORRECTION - FOR AG SAMPLES AND CO RADIATION
COMMON \(\mathrm{X}(200), \mathrm{B}(200), C(200), N\)
\(P I=3.1415927\)
\(D A=\operatorname{COS}(31.2333 * P I / 180) * *\).
DO \(313 \mathrm{~J}=1, \mathrm{~N}\)
A
\(S L=S I N((X(J)+V) * P I / 360) /\).1.79021 .
IF (SL-0.12) 307,307,308
\(F=1 .-0.068 * S L-5.96 * S L * * 2\)
GO TO 311
IF (SL-0.35) \(309,309,310\)
\(\mathrm{F}=1.0685171-1.2033810 * S L-1.2685714 * S L * * 2+3.0666667 * S L * * 3\)
GO TO 311
\(F=1.2061-2.4973333 * S L+2.805 * S L * * 2-1.2166667 * S L * * 3\)
\(B B=\cos ((X(J)+V) * P I / 360\).
\(C C=\operatorname{SIN}((X(J)+V) * P I / 180\).
\(D=\cos ((X(J)+V) * P I / 180\).
\(C(J)=\left(A^{* *} 2\right) * B B /\left(F * F^{*}\left(1 \bullet+D A * D^{*} * 2\right)\right)\)
\(E=B B * B B * \operatorname{LOGF}((1 \bullet+A) / B B) / A\)
\(A B S=(1,-E) /(P I * R M)+C C /(2 \cdot * P I * R M * R M)+(-\cdot 25+.375 * B B * B B *(1 \bullet+E)) /\) 1(PI*RM**3)
\(C(J)=C(J) / A B S\)
\(C N=C(1)\)
DO \(312 \mathrm{~J}=1, \mathrm{~N}\)
\(C(J)=C(J) / C N\)
RETURN
END
SUBROUTINE RACH(Y,Y1,APK,P1)
RACHINGER SEPARATION - FOR CO RADIATION
COMMON \(\mathrm{X}(300), \mathrm{B}(300), C(300), N\)
DIMENSION Y(300), Y1(300)
\(\mathrm{P} 1=1.78892 / 1.79021 * S I N(A P K * 3.1415927 / 360\).
\(\mathrm{P} 2=1.79278 / 1.79021 * \operatorname{SIN}(A P K * 3.1415927 / 360\).
\(P_{1}=\operatorname{ATAN(P1/SQRT(1.-P1**2))}\)
\(P 2=\operatorname{ATAN}(P 2 / S Q R T(1 .-P 2 * * 2))\)
\(D=(P 2-P 1) * 360.13 \cdot 1415927\)
DO \(606 \mathrm{I}=2, \mathrm{~N}\)
```

```
        IF (X(I)-X(I)-D) 606,605,605
        DO \(600 \mathrm{~J}=1\), I
        \(Y 1(J)=B(J)\)
        \(I A=I+1\)
        GO TO 607
        606
607
601
602
604
608
603
```

C
C
C
SUBROUTINE CENTROID(Y,CG,SDCG,A,Z,D)
COMMON X(300), B(300), C(300), N
DIMENSION Y(300)
DOUBLE PRECISION S(6),P1
DO $500 \mathrm{~J}=1,6$
$S(J)=0$.
P1 $=0$.
DO $501 \mathrm{~J}=1, \mathrm{~N}$
$S(1)=S(1)+Y(J) * X(J) * C(J)$
$S(2)=S(2)+(X(J)-X(1)) / D * C(J) * X(J)$
$S(3)=S(3)+(X(J)-X(N)) / D * C(J) * X(J)$
$S(4)=S(4)+Y(J) * C(J)$
$S(5)=S(5)+(X(J)-X(1)) / D * C(J)$
$S(6)=S(6)+(X(J)-X(N)) / D * C(J)$
$C G=(S(1)-Z * S(2)+A * S(3)) /(S(4)-Z * S(5)+A * S(6))$
DO $502 \mathrm{~J}=1, \mathrm{~N}$
$P 1=P 1+Y(J) *(X(J)-C G) *(X(J)-C G) * C(J) * C(J) /(S(4)-Z * S(5)+A * S(6)) /$
1(S(4)-Z*S(5)+A*S(6))
SDCG $=P 1+A / 5 * *(S(3)-C G * S(6)) *(S(3)-C G * S(6)) /(S(4)-Z * S(5)+A * S(6))$
1/(S(4)-Z*S(5)+A*S(6))
SDCG=SDCG+Z/5•*(CG*S(5)-S(2))*(CG*S(5)-S(2))/(S(4)-Z*S(5)+A*S(6))/ / / (5)
$1(S(4)-2 * S(5)+A * S(6))$
SDCG = DSQRT(SDCG)
RETURN
END
SUBROUTINE PEAK (Z,PK,SDPK,R1,R2)

PARABOLIC FIT TO PEAK MAX
COMMON X(300), BG(300), COR(300), N
DIMENSION $A(99,3), B(99), C(3,3), D(3), R(200), Y(3), Z(300), E(3,3)$,
1 AA(3)

```
    TYPE DOUBLE A,B,C,D,R,Y,AA,PK,SDPK
    DO 406 J=1,N
    IF (RI-X(J)) 403,403,406
    IRI = J
    GO TO 411
4 0 6 ~ C O N T I N U E ~
4 1 1 ~ D O ~ 4 0 4 ~ J = I R I , N
    IF (R2-X(J)) 407,405,404
405 IR2 = J
    GO TO 412
407 IR2 = J-1
    GO TO 412
404 CONTINUE
412 NP = IR2-IR1+1
    DO 401 I=IRI,IR2
    A(I-IRI+1,I)=1.0
    A(I-IRI+1,2)=X(I)
    A(I-IRI+1,3)= X(I)*X(I)
    B(I-IRI+I)=(Z(I)-BG(I))*COR(I)
    D(1)=0.0
    Y(1)=0.0
    SS=0.
    DO 1 I=1,NP
    SS=B(I)*B(I)+SS
    D(1)=A(I,I)*A(I,I)+D(I)
    1 Y(1)=A(I,I)*B(I)+Y(I)
    Y(1)=Y(1)/D(1)
    IR=0
    DO 5 K=2,3
    IR=IR+1
    R(IR)=0.0
    DO 2 I=1,NP
    2R(IR)=A(I,K-1)*A(I,J)+R(IR)
    R(IR)=R(IR)/D(K-I)
    DO 3 I=1,NP
    3 A(I,J)=A(I,J)-A(I,K-1)*R(IR)
    D(K)=0.0
    Y(K)=0.0
    DO 4 I=1,NP
    B(I)=B(I)-A(I,K-1)*Y(K-1)
    Y(K)=A(I,K)*B(I)+Y(K)
    4D(K)=A(I,K)*A(I,K)+D(K)
    5 Y(K)=Y(K)/D(K)
        DO 55 I= 1,3
        AA(I)=Y(I)*D(I)**0.5
        SS=SS-AA(I)*AA(I)
        FN=NP-I
        IF(FN) 51,51,52
    SD = O.
        GO TO 53
52 SD=SQRT(SS/FN)
5 3
    DO 55 J=1,I
55 E(I,J)=SD
        IRS=-3
        DO 8 K=1,3
        IRS=IRS-K+4
        IR=IRS
        DO 8 JJ=1,K
        J=K-JJ+1
        C(K,J)=Y(J)
        IF(JJ-1) 8,8,6
        6O 7 I=2,JJ
        C(K,J)=C(K,J)-C(K,K-I+2)*R(IR)
```

 E(K,J)=E(K,J)+ABSF(R(IR)*E(K,K-I+2))
 7 IR=IR-1
 8 IR=IR-3 +K
 PK = -C(3,2)/(2.*C(3,3))
 SDPK = DSQRT((PK*E(3,2)/C(3,2))**2 + (PK*E(3,3)/C(3,3))**2 -
 1 2*(PK**2)*E(3,2)*E(3,3)/C(3,2)/C(3,3))
 RETURN
 END
    ```
    SUBROUTINE SMOOTH(YC,NUMP, NS, NP, NCEN)
    DIMENSION \(S(11,500), D 1(500), D 2(500), N S(10), Y C(300)\)
    COMMON X(300), B(300), C(300), IIJM
    \(X 1=X(N C E N)\)
    DO \(22 \mathrm{~N}=1\), NUM
    \(S(1, N+3)=Y C(N)\)
    NUM \(=\) NUM +3
    DO \(20 \quad \mathrm{~N}=1.3\)
    \(D 2(N)=0\).
\(20 \mathrm{D} 2(\mathrm{NUM}+\mathrm{N})=0\).
    DO \(5 \mathrm{~N}=4\), NUM
    Dl \((N)=S(1, N)\)
    \(K=0\)
    DO \(12 I=1, N P\)
    J=NS (I)
    DO \(9 \mathrm{~N}=4\), NUM
    \(D 2(N)=D 1(N)\)
    \(K=K+1\)
    DO \(7 \mathrm{~L}=4\), NUM
    D1 \((L)=(D 2(L-3)-18 * * D 2(L-2)+63 * * D 2(L-1)+164 * * D 2(L)+63 * * D 2(L+1)\)
    1-18.*D2(L+2)+D2(L+3))/256.
    IF \((K-J) 8,10,8\)
    \(M=I+1\)
    DO \(11 \mathrm{~N}=4\), NUM
    \(S(M, N)=D 1(N)\)
    CONTINUE
    IF (NUMP) 13,15,13
    NCEN \(=\) NCEN +3
    DO \(18 \mathrm{~N}=1\), NP
    IF (NUMP-NS(N)) \(18,17,18\)
    NUMP \(=N+1\)
    GO TO 19
18 CONTINUE
19 PUNCH 105,(S(NUMP,N),N=NCEN,NUM)
    \(M=\) NCEN -3
    DO \(14 \mathrm{~N}=1, \mathrm{M}\)
    \(K=N C E N-N+1\)
    \(D 2(N)=S(N U M P, K)\)
    PUNCH 105, (D2(N), N=1,M)
    NUMP \(=\) NUMP -1
    PRINT 109, XI,NS(NUMP)
    PRINT 107, ( \(N S(N), N=1, N P\) )
    \(M=N P+1\)
    DO \(16 \mathrm{~N}=4\), NUM
    PRINT \(108, X(N-3),(S(J, N), J=1, M)\)
    FORMAT (10(F6.0,\$.\$))
    FORMAT (////1X,\$ANGLE\$,5X,\$INPUT\$,3X,10(\$SMOOTH \$,I2,1X))
    FORMAT ( \(1 \mathrm{X}, \mathrm{F} 7.2,11 \mathrm{~F} 10.0\) )
    FORMAT (//1X,\$PUNCH PEAK FOR ALPHA \(=\$, F 7.2 / 1 X, \$ S M O O T H I N G \mathbb{S}, I 3)\)
    END
10. Appendix: Corrections Necessary When Using Other Radiations, Samples and Geometries.
Specific program steps are referred to by the letter identification which appears in the identification columns.
A. Other radiations

In "ANG":
The value of the diffraction angle in the monochromator must be inserted into the calculation of DA (step A). In this case, for Co \(\mathrm{K} \alpha\) radiation and a quartz crystal, \(2 \alpha=31.2333^{\circ}\). It is also necessary to use the \(K \propto\) wavelength to determine \(S L\) (step \(B\) ); here \(\lambda=1.79021 \AA\) 。

In "RACH":
The values of the \(K \alpha_{;} K \alpha_{1}\), and \(K \alpha_{2}\) wavelengths (i. e., \(\lambda, \lambda_{1}\), and \(\lambda_{2}\) ) are necessary to evaluate \(P 1\) and \(P 2\) (steps \(A\) and B) as follows:
\[
\begin{aligned}
& \mathrm{Pl}=\frac{\lambda_{1}}{\lambda} \sin \left[\operatorname{APK}\left(\frac{\pi}{360}\right)\right] \\
& \mathrm{P} 2=\frac{\lambda_{2}}{\lambda} \sin \left[\operatorname{APK}\left(\frac{\pi}{360}\right)\right]
\end{aligned}
\]
B. Other samples

In " \(A N G\) ":
The parameters of the power series fit to the atomic scattering factors must be used in steps C, D, and E. RM in step H is the factor \(\mu \mathrm{r}\) in section 3 and must be evaluated as noted there.
C. Other geometries

In "ANG":
When no monochromator is used, DA (step A) should be set equal to one. For a flat sample, eliminate \(C C, E\), and \(R M\) (steps \(F, G\), and \(H\) respectively) and set \(A B S\) (step \(I\) ) equal to one.

\section*{References}
[1] C. P. Gazzara, J. J. Stiglich, Jr., F. P. Meyer, and A. M. Hansen, "A General Computer Program for Particle Size and Strain Analysis", in Advances in X-ray Analysis, Vol. 12, C. S. Barrett, J. B. Newkirk, and G. R. Mallett, Editors (Plenum Press, New York, 1969), p. 257.
[2] R. J. De Angelis, "Evaluation from X-ray Diffraction Profiles of Fourier Coefficients and the Microstrain Distribution Function', in Local Atomic Arrangements by X-ray Diffraction, J. B. Cohen and J. E. Hillard eds. (Gordon and Breach Science Publishers, New York, 1966).
[3] W. Wallace, Automatic Separation of Strain and Particle Size Effects in Experimentally Observed X-ray Line Shapes, ASTIA Rept. \# AD 686311 (1968).
[4] W. A. Rachinger, "A Correction for the \(\alpha_{1} \alpha_{2}\) Doublet in the Measurement of Widths of X-ray Diffraction Lines", J. Sci. Instr. 25, 254, (1948).
[5] B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Co., Inc., Reading, Massachusetts, 1956), p. 172.
[6] International Tables for X-ray Crystallography, Vol. III (Kynoch Press, Birmingham, England, 1962) pp 202f.
[7] Cullity, Op. Cit. , p. 188.
[8] H. M. Otte, "Lattice Parameter Determinations with an X-ray Spectrogoniometer by the Debye-Scherrer Method and the Effect of Specimen Condition', J. Appl. Phys. 32, 1536 (1961).
[9] H. M. Otte and A. L. Esquivel, "Measurement of Applied Stress by X-ray Diffraction', Mater. Sci. Res. 2, 121 (1965).
[10] A. J. Bradley, "The Absorption Factor for the Powder and Rotating-Crystal Methods of X-ray Crystal Analysis", Proc. Phys. Soc. 47, 879 (1935).
[11] Cullity, Op. Cit. , p. 466.
[12] Ibid., p 464.
E. R. Pike and A. J. C. Wilson, "Counter Diffractometer - The Theory of the Use of Centroids of Diffraction Profiles for High Accuracy in the Measurement of Diffraction Angles'", Brit. J. Appl. Phys. 10, 57 (1959).
J. B. Cohen and C. N. J. Wagner, "Determination of Twin Fault Probabilities from the Diffraction Patterns of fcc Metals and Alloys", J. Appl. Phys. 33, 2073 (1962).
B. E. Warren and E. P. Warekois, "Stacking Faults in Cold Worked Alpha-Brass", Acta Met. 3, 473 (1955).
[16] Cullity, Op. Cit., p. 448.
[17] A. Björk, "Solving Linear Least Squares Problems by Gram-Schmidt Orthogonalization", BIT (Nordisk tidskrift for informations-behandling) 2, 1 (1967).
[18] A. Björk, "Iterative Refinement of Linear Least Squares Solutions I", BIT 7, 257 (1967).
[19] F. M. Clikeman, A. J. Bureau, and M. G. Stewart, "Photoproton Reaction in Be \({ }^{9} 1\), Phys. Rev. 126, 1822 (1962).

\section*{PERIODICALS}

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.
Published in three sections, available separately:

\section*{- Physics and Chemistry}

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$9.50; foreign, \$11.75*.

\section*{- Mathematical Sciences}

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in nathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \(\$ 5.00\); foreign, \(\$ 6.25^{*}\).

\section*{- Engineering and Instrumentation}

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \(\$ 5.00\); foreign, \(\$ 6.25^{*}\).

\section*{TECHNICAL NEWS BULLETIN}

The best single source of information concerning the Bureau's research, developmental, cocperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology--for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \(\$ 3.00\); foreign, \(\$ 4.00^{*}\).
* Difference in price is due to extra cost of foreign mailing.

Applied Mathematics Series. Mathematical tables, manuals, and studies.
Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.
Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.
Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

\section*{National Standard Reference Data Series.}

NSRDS provides quantitive data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.
Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.
Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

\section*{Federal Information Processing Standards Pub-} lications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.
U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS


PENALTY FOR PRIVATE USE, \(\$ 300\)
```


[^0]: ${ }^{1}$ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
 2 Part of the Center for Radiation Research
 ${ }^{3}$ Located at Boulder, Colorado 80302.

[^1]: Using the Debye-Scherrer technique, it is possible to calibrate the diffractometer by examining the reflection on both positive and negative sides of the diffraction cone ${ }^{[6,8]}$. This gives a correction factor to the angle read from the instrument.

