

NITED STATES ARTMENT OF MMERCE BLICATION

NBS TECHNICAL NOTE 576

Computer Code for the Calculation of Thermal Neutron Absorption in Spherical and Cylindrical Neutron Sources

U.S. ARTMENT OF DMMERCE National Bureau of 3 andards 53 76 1 The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation²—Nuclear Radiation²—Applied Radiation²—Quantum Electronics³—Electromagnetics³—Time and Frequency³—Laboratory Astrophysics³—Cryogenics³.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Reactor Radiation—Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute also monitors NBS engineering standards activities and provides liaison between NBS and national and international engineering standards bodies. The Institute consists of the following technical divisions and offices:

Engineering Standards Services—Weights and Measures—Flammable Fabrics— Invention and Innovation—Vehicle Systems Research—Product Evaluation Technology—Building Research—Electronic Technology—Technical Analysis— Measurement Engineering.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information—Computer Services —Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world, and directs the public information activities of the Bureau. The Office consists of the following organizational units:

Office of Standard Reference Data—Office of Technical Information and Publications—Library—Office of Public Information—Office of International Relations.

 ¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
 ² Part of the Center for Radiation Research.

³ Located at Boulder, Colorado 80302.

IAL BUREAU OF STANDARDS

UNITED STATES DEPARTMENT OF COMMERCE Maurice H. Stans, Secretary

ISSUED MAY 1971

Nat. Bur. Stand. (U.S.), Tech. Nate 576, 25 pages (May 1971) CODEN: NBTNA

Computer Code for the Calculation of Thermal Neutron Absorption in Spherical and Cylindrical Neutron Sources

V. Spiegel, Jr. and W. M. Murphey

Nuclear Radiation Division Institute for Basic Standards National Bureau of Standards Washington, D.C. 20234

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402. (Order by SD Catalog No. C 13.46:576). Price 35 cents. Stock No. 0303 0851

Abstract

A computer code has been written in FORTRAN IV for the calculation of thermal neutron absorption in spherical and cylindrical neutron sources. The formalism of the calculation, the structure of the computer code, a listing of the code, and some sample results are presented. The comparison of the results of this calculation to experiment appears elsewhere (1).

Key words: Manganous sulfate bath calibration of neutron sources; neutron; neutron standards.

Computer Code for the Calculation of Thermal Neutron Absorption in Spherical and Cylindrical Neutron Sources

V. Spiegel, Jr. and William M. Murphey*

1. INTRODUCTION

This calculation has been carried out in connection with a program to reduce the uncertainties in the corrections applied to the manganous sulfate bath calibration of neutron sources (2,3). The correction considered here is to account for the reduction of the manganese activity due to the loss of thermalized neutrons absorbed in the neutron source itself.

The source may be composed of up to three cladding and one, possibly fissionable, core material. The calculation is carried out in a single interaction approximation, i.e., the effects of elastic and inelastic scattering of thermal neutrons are neglected. This approximation is adequate because the neutrons are in thermal equilibrium and because the correction which is applied to the calibration is small (typically 1% or less). Two cases are available. The first is for a spherically symmetric source and the second is for a cylindrically symmetric source. Each consists of a core and up to three cladding layers. The thicknesses of the ends and side of a cladding cylinder may all be different. A measurement or knowledge of the thermal-neutron flux at the source location is required. The thermal-neutron flux is assumed to be isotropic, which enables one to carry out the computation as a sum of mono-directional fluxes from different directions. All integrations are performed with Weddle's formula (4).

2. DESCRIPTION OF THE CALCULATION

Part I. The probability of neutron loss for a given neutron direction and position.

If the source materials are labeled A, B, C, and D from the inside out, then the probability of a thermal neutron interacting in passing through the source is

$$\sum_{a} \Sigma_{a}(t) - \Sigma_{b} D(t) - \Sigma_{c} C(t) - \Sigma_{d} d(t)$$

$$P(t) = 1 - e$$

$$(1)$$

where a(t) is the thickness of "A" material for this particular direction and location of passing through the source, b(t) is the total thickness of "B" material, etc., and "t" denotes any particular path through the source. The Σ 's are the appropriate macroscopic cross sections, Σ_a being the sum of

^{*} Present address is: Technical Analysis Division, Institute for Applied Technology, National Bureau of Standards, Washington, D.C. 20234.

the absorption and fission cross sections for the "A" material, being the absorption cross section for the "B" material, b etc.

The probability of fission in the fissionable material is given by

$$P_{f}(t) = \frac{\Sigma_{af}}{\Sigma_{a}} (1 - e^{-\Sigma_{a}a(t)}) (e^{-(\Sigma_{d}d'(t) + \Sigma_{c}c'(t) + \Sigma_{b}b'(t))}) (2)$$

where d'(t) is the thickness of the "D" layer passed in this direction and location going from the outside into the "A" material, c'(t) the thickness of the "C" layer passed in going into the source, etc., and Σ_{af} is the macroscopic fission cross section of material "A".

Part II. Case 1. A spherically symmetric source.

In this case the probability of neutron disappearance for a neutron striking the source is given by

$$P = \frac{\int_{0}^{R} 2\pi y P(y) dy}{\pi R^{2}}$$
(3)

where R is the outer radius of the source and y is the perpendicular distance from the center of the source to the path through it. The probability of fission is similarly

$$P_{f} = \frac{\int_{0}^{R} 2\pi y P_{f}(y) dy}{\pi R^{2}}$$
(4)

The probability of loss of neutrons from the bath per neutron striking the source is therefore

$$P_{I} = P - k P_{f}$$
(5)

where k is the number of neutrons per fission interaction.

Part II. Case 2. A cylindrically symmetric source.

The notation for the dimensions of the source is given in Figure 1. Since an isotropic flux is assumed it is necessary only to consider monodirectional fluxes from an appropriate number of different directions. By symmetry it is most convenient to use cylindrical coordinates. For convenience in normalization and avoidance of solid angle considerations an imaginary sphere is placed about the source and all neutrons striking this sphere are included in the integrals and probabilities. This procedure does not affect the results when they are finally expressed in terms of neutrons lost as a percent of the source strength or in terms of a given thermal flux in the vicinity of the source.

Given that a neutron enters this imaginary sphere, let the probability of transmission without interaction be P_{T} , probability of interaction be P_{I} , probability of absorption be P_A and the probability of fission be P_f . The probability of neutron loss in the source P_{T} is

$$P_{L} = P_{T} - kP_{f} = 1 - P_{T} - kP_{f}$$
(6)

where k is the number of neutrons per fission. The program computes P_T and P_f by integration and P_I and P_A by $P_I = 1 - P_T$ and $P_A = P_T - P_f$.

Part III. The integration and normalization.

Consider the cylindrical source surrounded with a sphere centered about the core material with radius, R, just large enough to enclose the outer cylinder as shown in Figure 1(a). The thermal-neutron flux is taken to be isotropic. Neutron flux is the number of neutrons per second entering a sphere of 1 square centimeter cross section. The number of neutrons per second entering the sphere surrounding the cylindrical source is the cross sectional area of the surrounding sphere times the thermal flux.

Since the geometry is symmetric about the x-axis, the probability for various results for an isotropic flux will equal the probabilities evaluated assuming a flux uniformly distributed in z, w, and φ but all paths constrained to lie in planes parallel to the x-y plane. The neutron paths are perpendicular to all points along the w-axis within the sphere and φ is the angle between the y and w axes. The probability of transmission of a neutron through the imaginary sphere averaged over all directions is thus

$$P_{T} = \int dz \int d\phi \int dw P_{T}(z, w, \phi)/2\pi(\pi R^{2})$$
(7)
-R o -r(z)

The probability of transmission, $P_{T}(z, w, \varphi)$ is

$$P_{T}(z,w,\varphi) = e^{-(\Sigma_{a}a(z,w,\varphi) + \Sigma_{b}b(z,w,\varphi) + \Sigma_{c}c(z,w,\varphi) + \Sigma_{d}d(z,w,\varphi))}$$
(8)

where the Σ 's are the macroscopic cross sections. Parameters are as in the spherical case and the a, b, c, and d are the thicknesses of the A, B, C, and D materials as seen at the particular z, w, and φ . For a transparent source the macroscopic cross sections are all zero and equation (7) integrates to unity. The fission probability is similarly

$$P_{F} = \int_{-R}^{R} dz \int_{0}^{2\pi} d\varphi \int_{-r(z)}^{r(z)} dw P_{f}(z,w,\varphi)/2\pi(\pi R^{2})$$
(9)

where $P_f(z, w, \varphi) = (1-e^{-\beta})e^{-\gamma}(\sigma_{af}/\sigma_a)$.

In $P_{f}(z,w,\phi)$; $\beta = \Sigma_{a} a(z,w,\phi)$, $1-e^{-\beta}$ is the probability for interaction in the "A" material,

$$Y = \Sigma_{b} b_{i}(z, w, \varphi) + \Sigma_{c} c_{i}(z, w, \varphi) + \Sigma_{d} d_{i}(z, w, \varphi)$$

where $b_i(z,w,\phi)$ is the thickness of the "B" layer transversed passing into the "A" material and likewise for c_i and d_i ; - γ e is the probability for passing through the cladding material without interaction; σ_{af} is the fission cross section for the "A" material, and (σ_{af}/σ_a) is the probability for fission, given that an interaction occurs in the "A"

3. DESCRIPTION OF THE CODE

3.1 Spherical Case Calculation

material.

3.1.1 Organization of the Code

The program first reads the title card and input data, converts the source dimensions from inches to centimeters and then prints out an echo check of the title, input data and converted dimensions.

The approximate total number of subdivisions, NY, of the radius is specified in the input. Then each layer is subdivided in proportion to its thickness in the radial direction. The boundary between the central core and first encapsulation or the boundary between any of the encapsulations are always made an endpoint of subdivision so that any discontinuities occasioned by a change in derivative at a boundary do not occur within an interval of integration.

The integration of Equation (4) then begins with the central core and continues to the outside radius, layer by layer. All neutron paths at a given radius are perpendicular to a cross section through the center of the source and are equal in length. Subroutine Grand calculates the interaction probability in the A, B, C, and D materials and the transmission probability along the path specified. The probability of interaction in each material and the transmission probability with its error are summed and normalized in the main program. The results are then printed below the echo printout of the input data.

3.1.2 Approximations in the Numerical Integration

The numerical integration was performed using Weddle's Rule (4). If the core material has been divided into N subdivisions, Weddle's Rule replaces the integrand of the integral by N fifth-degree parabolas and numerically integrates over that region. The accuracy of the integration and estimate of the error depend upon the size of the integration intervals. Convergence of the integration procedure was checked for a plutonium-beryllium source with encapsulations of tantalum and stainless steel by varying the number of subdivisions, NY, of the radius between 10 and 1,000. In Table 1 the calculated transmissions and estimated errors are shown together with the actual error based upon accepting the finest subdivision as the correct answer. The estimated and actual error appear to agree for 20 subdivisions of NY, but this degree of accuracy is certainly not necessary. The difference in net neutron loss calculated for NY equal 10 and 1000 is only 0.005% out of 0.278%.

This program has been run in double precision, because it was created, for the most part, from the deck of cards to the cylindrical case, which had to be run in double precision. The number of additions involved in the transmission integral is approximately equal to 6 times the number of subdivisions, NY, of the radius specified in the input. Therefore no rounding error should be introduced by performing the program in single precision. The program takes about 3 seconds to compile and about 2 seconds to execute in the case of NY equal 100. It requires 1437 words of memory.

3.2 Cylindrical Case Calculation

3.2.1 Organization of the Code

Here too the title card and input data are read, the source dimensions are converted to centimeters, and an echo check of the input is printed.

According to the number, NZ, of subdivisions in the Zdirection, specified in the input, each layer in the Z-direction is subdivided in proportion to its thickness. The subdivision of the angle of integration from zero to $\pi/2$ is performed according to the number, NPHI, specified in the input. The subdivisions along the W-axis are set at the interface of any two materials in a plane parallel to the X-Y axis, distance Z above the origin. The D, C, and B materials in the negative W-direction, the core A material, and the B, C, and D materials in the positive W-direction are all divided into six subintervals. The limits of integation for each of these subintervals along the W-axis are passed to Subroutine IN. It checks the length of the interval and will further subdivide it by 6 or 36, if it is more than 6 times the length of a subdivision in the Z-direction. It sums and weights the contributions to the transmission, the error for the transmission, and the interaction in the core material for each path through the source perpendicular to the W-axis between the specified limits of integration and returns the result to the main program. These in turn are summed and weighted according to the Weddle Rule for the integration over angle, φ , and then over height, Z. The probabilities for transmission with its error, absorption, and fission are then printed.

Subroutine C2 calculates the X and Y coordinates of the points of incidence and the pathlength through any of the cylindrical source encapsulations or core material and returns the result to Subroutine Grand. Subroutine Grand calculates the segments of the path in each of the source materials in order to compute the transmission and fission probabilities along that path and returns the result to Subroutine PCE. Subroutine PCE subdivides by six the subinterval specified by Subroutine IN and performs the six point Weddle integration of transmission and fission probabilities with an estimate of the error for this segment of transmission. The seven values of the integrand are received from Subroutine Grand and after proper normalization the results are returned to Subroutine IN.

3.2.2 Approximations in the Numerical Integration

The comments about the use of the Weddle Rule in 3.1.2 also apply here. In this case we integrate over Z, φ , and W. The size of the integration steps for Z and φ are specified in the input and, because the interval along the W-axis va-

ries with angle, φ , the thicknesses of the encapsulations. and the inside or core length, the length of the W integration step is tested against the length of the Z step and further subdivided, if necessary. The absolute values of the estimated error for each segment of integration along the W-axis are summed and added in quadrature with the estimated error in the φ integration. This error is then added in quadrature with the estimated error in the Z integration. It is also possible to test the relative error of any subinterval by testing against ET, which is specified in the input, and to further subdivide, if necessary. It has been found, however, that ET may safely be set as low as 1% or 0.5% without causing many subdivisions, but setting ET as low as 0.1% or 0.05% will suddenly cause so many subdivisions that the program will be stopped automatically by exceeding the maximum time specified on the run card and all data are then lost. The transmission integral has also been found to be insensitive to the value of ET. Each time an interval in the W integration is subdivided once, twice or three times a counter, KB, KC, or KD is incremented and printed in the program output.

The convergence of the cylindrical program has been tested for two different plutonium-beryllium sources, one with a single nickel encapsulation and the other with encapsulations of tantalum and stainless steel. In Figure 2 are shown the calculated transmissions and estimated errors for the nickel encapsulated source for various specified subdivisions of the Z and φ integrals, NZ and NPHI, respectively. A solid line joins those points for which NPHI is held constant at 10 and a dashed line joins those points for which NZ is held constant at 10. Two points are also shown for both NPHI and NZ equal to 5 and 15. Taking finer steps in the Z integral, which forces finer steps in the W integral, increases the transmission for this source, whereas finer steps in the φ integral decreases it. Taking equal steps in Z and φ appear to result in a more rapid convergence, though this may be fortuitous. The difference in net neutron loss in the source for the two extreme points on the figure amounts to 0.01%, which is of no consequence in such a calculation. The convergence of the program for the tantalum and stainless steel encapsulated source was tested for NZ equal NPHI at values of 3, 6, and 10. The transmissions were 0.1839, 0.1842 and 0.1843, respectively. The negligible difference in transmission corresponded to run times of 188, 516, and 1172 seconds, respectively.

This program was affected by rounding errors when run in single precision by two different compilers. The results were only independent of choice of compiler, when run in double precision. The program takes about 5 seconds to compile and requires 2992 words of memory. Typical run times are listed in the above paragraph.

4.1 SPHERICAL CASE

4.1.1 LIST OF THE PROGRAM

```
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
                                                                             1
   DIMENSION V(6), T(14), EH(6), RZZ(5), KA(4)
                                                                              2
   DATA V/2.D0,5.D0,1.D0,6.D0,1.D0,5.D0/,
                                                        EH/1.D0,-6.D0,
                                                                              3
  115.D0,-20.D0,15.D0,-6.D0/,CC/1.D-8/
                                                                              4
  1 FORMAT(13A6, A2/7G8, 4, I4)
                                                                              5
 3 FORMAT(12G6.3)
                                                                              6
 4 FORMAT(1H1,13A6,A2/' SOURCE DIMENSIONS'25X'/ MACROSCOPIC CROSS SEC
                                                                              7
  1 *17X*/ INTEGRATION PARAMETERS*/* RA =*G14.6,* TB =*G14.6,*
                                                                              8
  1 / SIGAA='G14.6, AK ='G14.6, / NY ='I6/' RB ='G14.6, TC
                                                                             9
  1 = 'G14.6, ' / SIGAF='G14.6, ' F = 'G14.6,
                                                           /! RC =!G1
                                                                            10
   14.6, ' TD = 'G14.6, ' / SIGB = 'G14.6,
                                                            /! RD =!G
                                                                            11
                       * / SIGC = 'G14.6,21X* / NCY = * I6/ 42X
  114.6,21X
                                                                            12
                      ! / SIGD =!G14.6.21X! /!
  1
                                                           1
                                                                            13
                                              1 2X 1 / COVER / WALL
  1
      11X
                IN INCHES,
                                                                            14
                                         !/13X!OUTSIDE DIAMETER=!G12.6;
   1 THICKNESS
                                                                            15
  11 /
        B'4XG12.6,
                                         /43X1/ C14XG12.6.
                                                                            16
              143X 1/
                      D:4XG12.6)
                                                                            17
                     FOR A SINGLE NEUTRON STRIKING THE SOURCE .... /
 5 FORMAT(3X/ 46H
                                                                            18
  120X35HTHE TRANSMISSION PROBABILITY IS 22XG16.8/
120X35HTHE INTERACTION PROBABILITY IS 22XG16.8/
                                                                            19
                                                                            20
  120X35HTHE ABSORPTION PROBABILITY IS
                                            22XG16.8/
                                                                            21
  120X44HTHE 'A' MATERIAL INTERACTION PROBABILITY IS 13XG16.8 /
                                                                            22
  120X44HTHE 'B' MATERIAL INTERACTION PROBABILITY IS 13XG16.8 /
                                                                            23
  120X44HTHE *C* MATERIAL INTERACTION PROBABILITY IS 13XG16.8 /
                                                                            24
  120X44HTHE 'D' MATERIAL INTERACTION PROBABILITY IS 13XG16.8 /
                                                                            25
  120X57HTHE PROBABILITY FOR A FISSION ABSORPTION IS
                                                                    G16
                                                                            26
  1.8/16X* NEUTRONS OUT PER NEUTRON STRIKE IS * 22XG16.8
                                                                            27
  1/20X NEUTRONS LOST PER NEUTRON STRIKE 22XG16.8, .
                                                                            28
  1//38H THE CROSS SECTION OF THE SOURCE IS G13.8, CM**2.
                                                                            29
  1/3X THE ERROR IN THE TRANSMISSION PROBABILITY IS ESTIMATED TO BE
                                                                            30
  1'G12.3, 'PERCENT.')
                                                                            31
 7 FORMAT(3X/ 44H
                      FOR A FLUX OF ONE NEUTRON PER CM**2-SEC. (G12'5,
                                                                            32
  141H NEUTRONS PER SEC) STRIKING THE SOURCE ..../
                                                                            33
  120X26HTHE TRANSMISSION IS G16.8.20H NEUTRONS PER SECOND/
                                                                            34
  120X26HTHE INTERACTION IS
120X26HTHE ABSORPTION IS
                                    G16.8,20H NEUTRONS PER SECOND/
                                                                            35
  120X26HTHE ABSORPTION ISG16.8,20H NEUTRONS PER SECOND/120X26HTHE FISSION EMISSION ISG16.8,20H NEUTRONS PER SECOND/
                                                                            36
                                                                            37
  116X26HAND THE RESULTANT LOSS IS 4XG16.8, NEUTRONS PER SECOND. 1)
                                                                            38
 8 FORMAT(3X/ 35H IF THE MEASURED THERMAL FLUX IS G12.4, PER CE
                                                                            39
  INT OF Q PER CM**2 THEN ... !/
                                                                            40
                                    G16.8,14H PER CENT OF Q/
  120X26HTHE TRANSMISSION IS
                                                                            41
  120X26HTHE INTERACTION IS
120X26HTHE ABSORPTION IS
                                    G16.8,14H PER CENT OF Q/
                                                                            42
                                   G16.8,14H PER CENT OF Q/
                                                                            43
  120X26HTHE FISSION EMISSION IS G16.8,14H PER CENT OF Q/
                                                                            44
  116X26HAND THE RESULTANT LOSS IS 4XG16.8, PER CENT OF Q. !)
                                                                            45
 9 FORMAT(1X'THE NUMBER OF GRAND CALLS WAS'I8, THE LARGEST SUBDIVIS
                                                                            46
  110N OF THE RADIUS WAS 'G16.8)
                                                                            47
100 READ(5,1)T,SIGAA,SIGAF,SIGB,SIGC,SIGD,AK,F,NY
                                                                            48
   READ(5,3) DIA, TBI, TCI, TDI OUTSIDE DIAMETER+SHELL THICKNESSES
                                                                            49
                           COUNTER RESET FOR NUMBER OF SUB GRAND CALLS
    IGRAND=0
                                                                            50
                           INCY EQUALS THE NUMBER OF LAYERS
                                                                            51
   NCY=4
                           3 LAYERS
    IF(TDI.LT.CC) NCY=3
                                                                            52
    IF(TCI.LT.CC) NCY=2
                           +
                             2 LAYERS
                                                                            53
                           1 LAYER
    IF(TBI.LT.CC) NCY=1
                                                                            54
                           THE INPUT DIMENSIONS WERE IN INCHES
                                                                            55
   TB=TBI*2.54D0
                           *F=THE NEUTRON FLUX IN PERCENT OF Q
                                                                            56
   TC=TCI*2.54D0
                           T=TITLE, AK=NEUTRONS PER FISSION
    TD=TDI*2.54D0
                                                                            57
   RD=DIA*2.54D0/2.D0
                           'OUTSIDE RADIUS
                                                                            58
                           FOR ONE LAYER A, B, C, AND D DIMENS. ARE EQUAL
                                                                            59
   RC=RD-TD
   RB=RC-TC
                           'FOR TWO LAYERS B,C, AND D DIMENSIONS ARE EQUAL 60
   RA=RB-TB
                           FOR THREE LAYERS C AND D DIMENSIONS ARE EQUAL 61
   DY=0.D0
                           *LARGEST DIV. OF RADIUS, Y, IS MAX VALUE OF DA 62
   SIGAT=SIGAF+SIGAA
                          'SIGAT=TOTAL CROSS SECTION, 'A' MATERIAL
                                                                            63
```

WRITE(6,4)T,RA,TB,SIGAA,AK,NY,RB,TC,SIGAF,F,RC,TD,SIGB,RD,SIGC, 64 1 NCY,SIGD,DIA,TBI,TCI,TDI 65 R77(1)=0.0066 RZZ(2)=RA67 RZZ(3) = RB68 RZZ(4) = RC69 RZZ(5)=RD70 EKI=0.D0 71 STI=0.D0 72 SYD=0.D0 73 SYC=0.D0 74 SYB=0.D0 75 SYA=0.D0 76 ANY=NY/RD 'NY=APPROXIMATE NO. OF Y INTERVALS 77 KA(1) = RA*ANY + .5DOTHIS IS TO SUBDIVIDE THE Y-LAYERS IN 78 KA(2)=(RB-RA)*ANY+.5D0 PROPORTION TO THE THICKNESS OF EACH LAYER 79 KA(3)=(RC-RB)*ANY+.5DO 'FROM ZERO TO RA, FROM RA TO RB, FROM RB 80 KA(4)=(RD-RC)*ANY+.5D0 'TO RC, AND FROM RC TO RD. Y-INTEGRATION WILL 81 ALWAYS OCCUR AT LAYER BOUNDARIES AND AVOID DO 281 IAR=1,NCY 82 IF(KA(IAR).LT.1)KA(IAR)=1 'DISCONTINUITIES. 83 $DA = (RZZ(IAR+1) - RZZ(IAR)) / (6 \cdot DO * KA(IAR))$ 84 IF (DA.GT.DY)DY=DA **'LARGEST DIVISION OF RADIUS, Y** 85 'THE NUMBER OF PTS OF INTEGR. IN EACH LAYER NYP = 6 * KA(IAR) + 186 IVY=2'IVY= Y INTEGRATION WEDDLE RULE COEF INDICATOR 87 SPYT=0.D0 Y PARTIAL SUM RESET OF TRANSMISSION AND 88 SPYD=0.D0 INTERACTION IN DI MATERIAL 89 SPYC=0.D0 **INTERACTION IN** .C. MATERIAL 90 INTERACTION IN SPYB=0.D0 B. MATERIAL 91 SPYA=0.D0 **INTERACTION IN A MATERIAL** 92 EK=0.D0 'ERROR RESET FOR Y INTEGRAL IN DO LOOP 280 93 TEK=0.D0 ITEMPORARY EK 94 DO 280 I=1,NYP BEGIN Y INTEGR.FR O-RA-RB-RC-RD 95 Y=DA*DBLE (I-1)+RZZ(IAR) 96 RDY=0.D0 97 RCY=0.D0 98 RBY=0.DO 99 RAY=0.D0 100 GO TO (173,172,171,170),NCY 101 170 IF(RD.GT.Y)RDY=DSQRT(RD**2-Y**2) 102 171 IF(RC.GT.Y) RCY=DSQRT(RC**2-Y**2) 'HIT C LAYER, IF THERE IS ONE 103 172 IF(RB.GT.Y) RBY=DSQRT(RB**2-Y**2) 'HIT B LAYER, IF THERE IS ONE 104 173 IF(RA.GT.Y) RAY=DSQRT(RA**2-Y**2) 'HIT A LAYER 105 CALL GRAND(Y, SPIA, SPIB, SPIC, SPID, SPT) 106 IF(I.EQ.1.OR.I.EQ.NYP) GO TO 270 107 GO TO(180,181,182,183),NCY 108 109 183 SPYD=SPYD+V(IVY)*SPID 182 SPYC=SPYC+V(IVY)*SPIC 110 181 SPYB=SPYB+V(IVY)*SPIB 111 180 SPYA=SPYA+V(IVY)*SPIA 112 SPYT=SPYT+V(IVY)*SPT 113 TEK=TEK+EH(IVY)*SPT 'SUM ABSOLUTE VALUE OF ERROR EACH 6 SUBINTERVALS 114 115 IVY = IVY + 1116 IF(IVY.GE.7) IVY=1 117 IF(IVY.EQ.2)GO TO 269 118 GO TO 280 269 EK=EK+DABS(TEK) *EK=ERROR IN Y INTEGRAL DUE TO WEDDLE RULE 119 120 TEK=SPT GO TO 280 121 270 GO TO(271,272,273,274), NCY COEFF. OF FIRST AND LAST TERMS IS 1. 122 123 274 SPYD=SPYD+SPID 273 SPYC=SPYC+SPIC 124 272 SPYB=SPYB+SPIB 125 271 SPYA=SPYA+SPIA 126 127 SPYT=SPYT+SPT 128 EK=EK+SPT 280 CONTINUE 129 EKI=EKI+EK*DA/140.DO Y NORMALIZATION, WEDDLE RULE 130 **TRANSMISSION INTEGRAL** 131 STI=.3D0*DA*SPYT+STI GO TO(290,291,292,293),NCY 132 133 293 SYD=SYD+0.3D0*DA*SPYD 134 292 SYC=SYC+0.3D0*DA*SPYC 291 SYB=SYB+0.3D0*DA*SPYB 135

290	SYA=SYA+0.3D0*DA*SPYA		136
281	CONTINUE	'END OF Y INTEGRAL	137
	VNORM=2.D0/RD**2	VNORM=2/RD**2 AND UNIT NORMALIZES	138
	STIS=STI*VNORM	THE INTEGRALS	139
	SAFIS=SYA*VNORM	INTERACTION IN A MATERIAL	140
	SBFIS=SYB*VNORM	'INTERACTION IN 'B' MATERIAL	141
	SCFIS=SYC*VNORM	'INTERACTION IN 'C' MATERIAL	142
	SDFIS=SYD*VNORM	'INTERACTION IN 'D' MATERIAL	143
	IF (SIGAT+LT+T+JGO TO	282	144
	SFIS=SAFIS*SIGAF/SIGAT	FISSION PART OF 'A' INTERACTION	145
	GO TO 283		146
282	SFIS=U.DU	INCUTRONS OUT DED NEUTRON ULTITUS SPUEDE	147
283	SNUS=SFIS*AK+STIS	INCURRENCE CROSS SECTION	148
	ACRUS=3.141600*RD**2	SUURCE CRUSS SECTION	149
	ETSOULSTIS	ISINGLE STRIKE TRANSMISSION PROPARATITY	150
		SINGLE STRIKE INTERACTION PROBABILITY	151
	EMUL SO-SETS	ISINGLE STRIKE INTERACTION PRODADILITY	152
		ISINGLE STRIKE ADSODDTION DODADILITY	153
	FOUTSO = FTSOU + FMUL SO * AK	INFITEONS OUT DEP NEUTRON STRIKING SOUDCE	104
		IRESULTANT LOSS	152
	EDT-STIS#ACPOS	HINT FLUY TRANSMISSION	150
	EPT=EINSOU¥ACROS	AUNIT FLUX INTERACTION	150
	EPA=EABSOUL#ACROS		150
	FPE=SEIS*AK*ACROS	UNIT FLUX FISSION	160
	ENI S=EPI-EPE	UNIT FLUX NET LOSS	161
	FOT=F*FPT	PERCENT O OF TRANSMISSION	161
	FOI=F*FPI	PERCENT Q INTERACTION	163
	FOA=E*EPA	PERCENT Q ABSORPTION	164
	FQF=F*FPF	PERCENT Q FISSION GAIN	165
	FQL=F*FNLS	PERCENT Q NET LOSS	166
	WRITE(6.9)IGRAND.DY		167
	WRITE(6,5) FTSOU, FINSOU	J, FABSOU, SAFIS, SBFIS, SCFIS, SDFIS, FMULSO,	168
1	FOUTSO, FNOUT, ACROS, EM		169
	WRITE(6,7)ACROS, FPT, FPI	FPA, FPF, FNLS	170
	WRITE(6,8)F, FQT, FQI, FQA	FQF,FQL	171
	GO TO 100		172
			173
	SUBROUTINE GRAND (W, DUMA	• DUMB • DUMC • DUMD • DMDA)	174
	IGRAND=IGRAND+1	COUNT OF SUBROUTINE CALL	175
	DUMA=0.D0	CONTAINS MULTIPLICATION PART OF INTEGRAND	176
	DUMB=0.D0		177
	DUMC=0.D0		178
	DUMD=0.D0		179
	A=0.D0		180
	B=0.D0		181
	C=0.D0		182
			183
~ . ^	GU TU (370,360,350,340)	ATHE AMOUNT OF A D.C. AND D. MATERIAL	104
340	$D = (RDY - RCY) + 2 \cdot D0$	TRAVERSED IS A R.C. AND D. RESPECTIVELY	102
350	P = (P P Y - P A Y) + 2 = D 0	TRAVERSED IS ADDICT AND DO RESPECTIVELTO	100
270	A-DAVES DO		100
510			100
			107
		TRANSMISSION RART OF INTEGRAND	101
	DEXD-DEXP(-SIGD*D/2.DO)	TRANSMISSION FART OF INTEGRAD	102
	DEXC=DEXP(-SIGC*C/2,D0)		193
	DEXB=DEXP(-SIGB*B/2.DO)		194
	DEXA=DEXP(-SIGAT#A/2.DC		195
	GO TO(400.401.402.403)	NCY	196
403	DUMDA = W + (1 - DMDEX)	INTERACTION IN A BACAAND D MATERIAL	197
402	DUMCA=W* (DEXD-DMDEX/DEX	(D) INTERACTION IN A.B. AND C MATERIAL	198
401	DUMBA=W*(DEXD*DEXC-DMDF	X/(DEXD*DEXC)) INTERACTION IN A AND B MATERIAL	199
400	DUMA=W* (DEXD*DEXC*DEXB-	DMDEX/(DEXD*DEXC*DEXB)) INTERACA IN A MAT.	200
	GO TO(410,411,412,413)	NCY	201
413	DUMD=DUMDA-DUMCA	INTERACTION IN D MATERIAL	202
412	DUMC=DUMCA-DUMBA	INTERACTION IN C MATERIAL	203
411	DUMB=DUMBA-DUMA	INTERACTION IN B MATERIAL	204
410	RETURN		205
	END		201

TITLE CARD

	LILE CAR		FURMA	I LISAOSAZ.	,				
EQUIVAL	ENT SPHE	ERICAL	SOURCE F	OR CYLIND	RICAL	SOURCE M-	621	CARD	1
MACROS	COPIC CRO	DSS SEC	TIONS AND	D INTEGRAT	FION P	ARAMETERS	. FORMAT(7G	B•4•I4)	
123456	789012345	5678901	234567890	0123456789	901234	567890123	456789012345	578901234567	890
1.865	4.305	1.16	.2811	•0	2.8	•122	100	CARD	2
SIGAA	SIGAF	SIGB	SIGC	SIGD	AK	F	NY		
I	I	I	I	I	I	I	1/6 NUMBE	R OF INTEGRA	-
I	I	I	I	I	I	I	TION STEP.	S	
I	I	I	I	I	Ι	FLUX	IN PERCENT OF	F SOURCE	
I	I	I	I	I	I	STREN	GTH PER CM**	2	
I	I	I	I	I	NUMB	ER OF NEU	TRONS PER FI	SSION	
I	I	I	I	ABSORP	FION C	ROSS SECT	ION PER CM F	OR D MATERIA	L
I	I	I	ABSORF	PTION CROS	SS SEC	TION PER	CM FOR C MAT	ERIAL	
I	I	ABSORI	PTION CRO	OSS SECTIO	ON PER	CM FOR B	MATERIAL		
I	FISSION	V CROSS	SECTION	PER CM FC	DR A M	ATERIAL			
ABSORP	TION CROS	SS SECT	ON PER (CM FOR A M	1A TERI	AL			
4	SOURCE DI	IMENSIO	S IN INC	CHES. FO	DRMAT(12G6.3)			

EODMAT(1246.42)

123456789012 1.913.11 .071 CARD 3 TBI TCI DIA TDI T ī D SHELL THICKNESS IN INCHES T C SHELL THICKNESS IN INCHES T T Ŧ B SHELL THICKNESS IN INCHES OUTSIDE DIAMETER OF SOURCE IN INCHES

4.1.3 SIMPLIFIED SAMPLE OUTPUT

EQUIVALENT SPHERICAL SOURCE FOR THE CYLINDRICAL PU-BE M-621 SOURCE SOURCE DIMENSION INPUT IN INCHES, OD=1.913, B SHELL=0.110, C SHELL=0.071. MACROSCOPIC CROSS SECTIONS PER CM SIGAA= 1.865 • SIGAF= 4.305 SIGB= 1.16 , SIGC= 0.2811 NEUTRONS PER FISSION = 2.80 NY=100. FOR A SINGLE NEUTRON STRIKING THE SOURCE ... THE TRANSMISSION PROBABILITY IS .13567724+0 THE INTERACTION PROBABILITY IS ·86432276+0 THE ABSORPTION PROBABILITY IS •59782176+0 THE 'A' MATERIAL INTERACTION PROBABILITY IS ·38195382+0 THE 'B' MATERIAL INTERACTION PROBABILITY IS .36978466+0 THE 'C' MATERIAL INTERACTION PROBABILITY IS 11258428+0 THE PROBABILITY FOR A FISSION ABSORPTION IS ·26650101+0 NEUTRONS OUT PER NEUTRON STRIKE IS ·88188005+0 NEUTRONS LOST PER NEUTRON STRIKE IS 11811995+0 THE CROSS SECTION OF THE SOURCE IN CM**2 IS 18543353+2 THE PERCENT ERROR IN THE TRANSMISSION PROBABILITY IS .0512 IF THE MEASURED THERMAL FLUX IN PERCENT OF Q PER CM**2 IS .122 THE TRANSMISSION IN PERCENT OF Q IS ·30694114+0 THE INTERACTION IN PERCENT OF Q IS 19553480+1 THE ABSORPTION IN PERCENT OF Q IS .13524456+1 .16881265+1 THE FISSION IN PERCENT OF Q IS AND THE RESULTANT LOSS IN PERCENT OF Q IS .26722146+0

EQUIVALENT SPHERICAL SOURCE FOR THE CYLINDRICAL PU-BE A SOURCE SOURCE DIMENSION INPUT IN INCHES, OD=1.180, B SHELL=0.044. MACROSCOPIC CROSS SECTIONS PER CM SIGAA= 1.214 • SIGAF= 2.802 SIGB= 0.4106 NEUTRONS PER FISSION = 2.80 NY=100. FOR A SINGLE NEUTRON STRIKING THE SOURCE ... THE TRANSMISSION PROBABILITY IS .26256084+0 THE INTERACTION PROBABILITY IS .73743916+0 •41973395+0 THE ABSORPTION PROBABILITY IS THE 'A' MATERIAL INTERACTION PROBABILITY IS •45535478+0 .28208437+0 THE 'B' MATERIAL INTERACTION PROBABILITY IS •31770520+0 THE PROBABILITY FOR A FISSION ABSORPTION IS NEUTRONS OUT PER NEUTRON STRIKE IS 11521354+1 NEUTRONS LOST PER NEUTRON STRIKE IS -.15213542+0 THE CROSS SECTION OF THE SOURCE IN CM**2 IS •70554114+1 THE PERCENT ERROR IN THE TRANSMISSION PROBABILITY IS.0185IF THE MEASURED THERMAL FLUX IN PERCENT OF Q PER CM**2 IS.122THE TRANSMISSION IN PERCENT OF Q IS.22600192+0THE INTERACTION IN PERCENT OF Q IS.63475827+0THE ABSORPTION IN PERCENT OF Q IS.36129028+0THE FISSION IN PERCENT OF Q IS.76571038+0AND THE RESULTANT LOSS IN PERCENT OF Q IS-.13095211+0

EQUIVALENT SPHERICAL SOURCE FOR THE CYLINDRICAL AM-BE SOURCE SOURCE DIMENSION INPUT IN INCHES, OD=1.551, B SHELL=0.080, C SHELL=0.042. MACROSCOPIC CROSS SECTIONS PER CM SIGAA= .1704 , SIGAF= 0.00082 , SIGB= 1.16 , SIGC= 0.281 NEUTRONS PER FISSION = 2.89 NY=100. FOR A SINGLE NEUTRON STRIKING THE SOURCE ... THE TRANSMISSION PROBABILITY IS .34932104+0 THE INTERACTION PROBABILITY IS .65067896+0 •64994216+0 THE ABSORPTION PROBABILITY IS THE 'A' MATERIAL INTERACTION PROBABILITY IS 15384751+0 THE 'B' MATERIAL INTERACTION PROBABILITY IS •41839021+0 THE 'C' MATERIAL INTERACTION PROBABILITY IS •78441236-1 THE PROBABILITY FOR A FISSION ABSORPTION IS .73680038-3 NEUTRONS OUT PER NEUTRON STRIKE IS .35145039+0 NEUTRONS LOST PER NEUTRON STRIKE IS 64854961+0 THE CROSS SECTION OF THE SOURCE IN CM**2 IS 12189389+2 THE PERCENT ERROR IN THE TRANSMISSION PROBABILITY IS .0240 IF THE MEASURED THERMAL FLUX IN PERCENT OF Q PER CM**2 IS .121 THE TRANSMISSION IN PERCENT OF Q IS •51521920+0 THE INTERACTION IN PERCENT OF Q IS •95969683+0 THE ABSORPTION IN PERCENT OF Q IS •95861012+0 THE FISSION IN PERCENT OF Q IS .31406170-2 AND THE RESULTANT LOSS IN PERCENT OF Q IS •95655622+0

4.2 CYLINDRICAL CASE

4.2.1 LIST OF THE PROGRAM

```
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
                                                                                  1
 DIMENSION V(6), T(14), EH(6), AW(8), RZZ(5), KA(4)
                                                                                  2
  ALIM(RZABCD, DLRDP) = RZABCD/CX+(DLRDP-RZABCD*S/CX)*S
                                                                                  3
 DATA V/2.D0,5.D0,1.D0,6.D0,1.D0,5.D0/
                                                     ,EH/1.D0,-6.D0,
                                                                                  4
115.D0,-20.D0,15.D0,-6.D0/,CC/1.D-8/
                                                                                  5
1 FORMAT(13A6, A2/7G8.4, 2I3, G8.4)
                                                                                  6
                                                                                  7
3 FORMAT(12G6.3)
4 FORMAT(1H1,13A6,A2/ SOURCE DIMENSIONS 25X / MACROSCOPIC CROSS SEC
                                                                                  8
      '17X'/ INTEGRATION PARAMETERS'/' RA ='G14.6,' TRB ='G14.6,'
1
                                                                                  9
1 / SIGAA='G14.6,' AK ='G14.6,' / NZ ='I6/' RB ='G14.6,' TRC
1 ='G14.6,' / SIGAF='G14.6,' F ='G14.6,' / NPHI ='I6/' RC ='G1
                                                                                 10
                                                                                 11
14.6, 'TRD = 'G14.6, '/ SIGB = 'G14.6, 21X' / ET = 'G14.6/' RD = 'G
114.6, 'TLB = 'G14.6, '/ SIGC = 'G14.6, 21X' / NCY = 'I6/' DLA = 'G14
                                                                                 12
                                                                                 13
1.6, TLC = 'G14.6, ' / SIGD = 'G14.6, 21X' /'
                                                              /21X + TLD =
                                                                                 14
1'G14.6, //// IN INCHES, OUTSIDE LENGTH ='G12.6, / COVER / WALL
                                                                                 15
1 THICKNESS / LEFT END / RIGHT END:/12X:OUTSIDE DIAMETER=:G12.6;
                                                                                 16
1' / B'4XG12.6,4X'/'G12.6, ' /'GJ2.6/42X'/ C'4XG12.6,4X'/'G12.6
                                                                                 17
1,*/*G12.6/42X*/D*4XG12.6,4X*/*G12.6,*/*G12.6)FORMAT(3X/46HFOR A SINGLE NEUTRON STRIKING THE SOURCE.../
                                                                                 18
5 FORMAT(3X/ 46H
                                                                                 19
120X35HTHE TRANSMISSION PROBABILITY IS 22XG16.8/
                                                                                 20
120X35HTHE INTERACTION PROBABILITY IS
120X35HTHE ABSORPTION PROBABILITY IS
                                               22XG16.8/
                                                                                 21
                                               22XG16.8/
                                                                                 22
120X55HTHE 'A' MATERIAL ABSORPTION INTERACTION PROBABILITY IS 2XG16
                                                                                 23
1.8/20X52HTHE 'A' MATERIAL FISSION INTERACTION PROBABILITY IS 5XG16
                                                                                 24
1.8/20X44HTHE 'A' MATERIAL INTERACTION PROBABILITY IS 13XG16.8 /
                                                                                 25
120X49HTHE CLADDING MATERIAL INTERACTION PROBABILITY IS 8XG16.8
                                                                                 26
    /16X'
             NEUTRONS OUT PER NEUTRON STRIKE IS 1 22XG16.8
                                                                                 27
1/20X NEUTRONS LOST PER NEUTRON STRIKE 22XG16.8, . .
                                                                                 28
1//46H THE AVERAGE CROSS SECTION OF THE SOURCE IS G13.8., CM**2.
                                                                                 29
1)
                                                                                 30
```

FOR A SINGLE THERMAL NEUTRON STRIKING A SPHERE 6 FORMAT(3X/ 62H 31 10F RADIUS R=G13.8, CM, WHICH JUST SURROUNDS THE SOURCE.... 1/ 32 120X40HTHE PROBABILITY OF MISSING THE SOURCE IS17XG16.8/ 33 120X THE TRANSMISSION (INCLUDING MISS) PROBABILITY IS 9XG16.8/ 34 120X35HTHE INTERACTION PROBABILITY IS 22XG16.8/ 35 120X35HTHE ABSORPTION PROBABILITY IS 22XG16.8/ 36 120X44HTHE 'A' MATERIAL INTERACTION PROBABILITY IS 13XG16.8 37 120X57HTHE PROBABILITY FOR A FISSION ABSORPTION IS G16 38 NEUTRONS OUT PER NEUTRON INTO SPHERE 21XG16.8,2H ./3X'T 1.8/16X+ 39 1HE ERROR IN THE TRANSMISSION PROBABILITY IS ESTIMATED TO BE 'G12.3 40 PER CENT. !) 1,1 41 7 FORMAT(3X/ 44H FOR A FLUX OF ONE NEUTRON PER CM**2-SEC.(G12.5, 42 151H NEUTRONS PER SEC) STRIKING THE THE ABOVE SPHERE .../ 43 120X26HTHE TRANSMISSION IS G16.8,20H NEUTRONS PER SECOND/ 44 120X26HTHE INTERACTION IS G16.8,20H NEUTRONS PER SECOND/ 45 G16.8, 20H NEUTRONS PER SECOND/ 120X26HTHE ABSORPTION IS 46 120X26HTHE FISSION EMISSION IS G16.8,20H NEUTRONS PER SECOND/ 47 116X26HAND THE RESULTANT LOSS IS 4XG16.8, NEUTRONS PER SECOND. 1) 48 8 FORMAT(3X/ 35H IF THE MEASURED THERMAL FLUX IS G12.4, PER CE 49 INT OF Q PER CM**2 THEN !/ 50 120X26HTHE TRANSMISSION IS G16.8,14H PER CENT OF Q/ 51 120X26HTHE INTERACTION IS G16.8,14H PER CENT OF Q/ 52 120X26HTHE ABSORPTION IS G16.8,14H PER CENT OF Q/ 53 120X26HTHE FISSION EMISSION IS G16.8,14H PER CENT OF 54 Q/ 116X26HAND THE RESULTANT LOSS IS 4XG16.8, PER CENT OF Q. !) 55 9 FORMAT(1X'THE NUMBER OF GRAND CALLS WAS'I8, ', 2ND 3RD, AND 4TH ORD 56 1ER COUNTS, KB, KC, AND KD WERE'I8, ', 'I8, ', AND'I8, /1X'THE LARGEST R 57 1ELATIVE ERRORS, ERL1, ERL2, AND ERL3, ENCOUNTERED AFTER THE 1ST, 2 58 IND, AND 3RD SUBDIVISIONS, THE LARGEST !/lx!SUBDIVISION,DZ, ALONG 59] THE Z-AXIS, AND THE LARGEST 3RD ORDER SUBDIVISION, DWD, OF THE W-60 1AXIS, WERE! / 5(4X,G16.8)) 61 SECOND ORDER COUNT, STATEMENT 60+2, SUB IN 100 KB=0 62 KC=0 THIRD ORDER COUNT, STATEMENT 65+2 SUB IN 63 FOURTH ORDER COUNT, STATEMENT 121 SUB IN KD=064 READ(5,1)T,SIGAA,SIGAF,SIGB,SIGC,SIGD,AK,F,NPHI,NZ,ET 65 IF(ET.LT...1D-2)ET=.1D-1'ET=SPECIFIED RELATIVE ERROR IN SUBROUTINE IN 66 READ(5,3) AA, AB, TRBI, TLBI, TSB, TRCI, TLCI, TSC, TRDI, TLDI, TSD 67 COUNTER RESET FOR NUMBER OF SUB GRAND CALLS IGRAND=0 68 AA=OUTSIDE LENGTH IN INCHES NCY = 469 IF (TSD.LT.CC.AND.TRDI.LT.CC.AND.TLDI.LT.CC) NCY=3 . 3 LAYERS 70 IF (TSC.LT.CC.AND.TRCI.LT.CC.AND.TLCI.LT.CC) NCY=2 ' 2 LAYERS 71 IF(TSB+LT+CC+AND+TRBI+LT+CC+AND+TLBI+LT+CC) NCY=1 1 LAYER 72 TRB=2.54D0*TRBI **THE INPUT DIMENSIONS WERE IN INCHES** 73 'F=THE NEUTRON FLUX IN PERCENT OF Q 74 TLB=2.54D0*TLBI **AK=NEUTRONS PER FISSION** TRC=2.54D0*TRCI 75 TLC=2.54D0*TLCI **INCY=THE NUMBER OF DIFFERENT MATERIALS** 76 77 TRD=2.54D0*TRDI 'T=TITLE TLD=2.54D0*TLDI 'TRB= THICKNESS, RIGHT END, B CYLINDER 78 OUTSIDE RADIUS RD=AB*2.54D0/2.D0 79 'FOR ONE LAYER A, B, C, AND D DIMENS. ARE EQUAL RC=RD-2.54D0*TSD 80 FOR TWO LAYERS B,C, AND D DIMENSIONS ARE EQUAL 81 RB=RC-2.54D0*TSC FOR THREE LAYERS C AND D DIMENSIONS ARE EQUAL 82 RA=RB-2.54DO*TSB DLA=2.54D0*AA-TRB-TRC-TRD-TLB-TLC-TLD 83 BLA=DLA/2.DO **ONE-HALF OF INSIDE LENGTH** 84 **AB=OUTSIDE DIAMETER OF SOURCE IN INCHES** 85 DRB=BLA+TRB DRC = DRB + TRCISIGAA=MACROSCOPIC ABSORBTION CROSS SECTION OF 86 MATERIAL A IN PER CM. . DRD=DRC+TRD 87 ISIGAF= FISSION IN IAI IN PER CM. 88 DLB=BLA+TLB 89 DLC=DLB+TLC ISIGB=ABSORPTION IN IB! DLD=DLC+TLD 'TLD=THICKNESS, LEFT END, CYLINDER D 90 RTR=DSQRT(DRD**2+RD**2) RA=RADIUS OF CYLINDER A 91 RTL=DSQRT(DLD**2+RD**2) 92 93 R=RTL 94 **IR=SURROUNDING SPHERE RADIUS** IF(RTR.GT.RTL) R=RTR 'SEE ST 210+4. SKIPS W INTEGR. IF LIM. TOO SMALL ELM=R*0.001D0 95 ERL1=0.D0 'LARGEST ERROR IN THE 1ST, 2ND, AND 3RD 96 **ORDER WEDDLE DIVISIONS IN SUBROUTINE IN.** 97 ERL2=0.D0 98 ERL3=0.D0 'LARGEST DIVISION OF W-AXIS, SUBROUTINE IN 99 DWD=0.D0'LARGEST DIV. OF Z-AXIS IS MAX VALUE OF DZ=0.D0 100 DA 'SIGAT=TOTAL CROSS SECTION, 'A' MATERIAL SIGAT=SIGAF+SIGAA 101 *NZ=NO. OF DIVS. OF Z FOR WEDDLE INTEGRATION 102 RK=DLD

IF (DRD.GT.DLD)RK=DRD RK=LARGER OF DRD AND DLD 103 U=DATAN2(RK,RD) !ARCTAN(RK/RD) 104 AG=U*(R**2) 105 ARE=RD*RK 106 AD= CROSS SECTIONAL AREA OF SPHERE ABOVE AD = AG - ARF107 NPHIP=6*NPHI+1 CYLINDER AND NOT IN THE Z INTEGRAL RANGE. 108 VKB= THE NUMBER OF PHI INTERVALS PER 90 DEGR VKB=6.DO*NPHI 109 DB=1.5707963D0/VKB DB= PHI INTERVAL IN RADIANS 110 WRITE(6,4)T,RA,TRB,SIGAA,AK,NZ,RB,TRC,SIGAF,F,NPHI ,RC,TRD,SIGB,ET 111 ,RD,TLB,SIGC,NCY,DLA,TLC,SIGD,TLD,AA,AB,TSB,TLBI,TRBI,TSC,TLCI, 1 112] FRCI, TSD, TLDI, TRDI 113 RZZ(1)=0.D0114 RZZ(2) = RA115 RZZ(3) = RB116 RZZ(4) = RC117 RZZ(5) = RD118 EJI=0.D0 119 EKI=0.D0 120 STI=0.D0 121 SFI=0.D0 122 SMI=0.DO 123 NZ=APPROXIMATE NO. OF Z INTERVALS ANZ=NZ/RD 124 KA(1) = RA*ANZ + .5DO'THIS IS TO SUBDIVIDE THE Z-LAYERS IN 125 KA(2)=(RB-RA)*ANZ+.5DO 'PROPORTION TO THE THICKNESS OF EACH LAYER 126 KA(3)=(RC-RB)*ANZ+.5D0 'FROM ZERO TO RA, FROM RA TO RB, FROM RB 127 KA(4)=(RD-RC)*ANZ+.5D0 'TO RC, AND FROM RC TO RD. Z-INTEGRATION WILL 128 ALWAYS OCCUR AT LAYER BOUNDARIES AND AVOID DO 281 IAR=1,NCY 129 IF(KA(IAR).LT.1)KA(IAR)=1 .DISCONTINUITIES. 130 IF((RZZ(IAR+1)-RZZ(IAR)).LT.ELM)GO TO 281'IN CASE OF ZERO SIDEWALL 131 $DA = (RZZ(IAR+1) - RZZ(IAR))/(6 \cdot DO*KA(IAR))$ 132 LARGEST DIVISION OF Z-AXIS IF (DA.GT.DZ)DZ=DA 133 NZP=6*KA(IAR)+1 THE NUMBER OF Z STEPS 134 **'IVZ= Z INTEGRATION WEDDLE RULE COEF INDICATOR 135** IVZ=2"Z PARTIAL SUM RESET OF TRANSMISSION, SPZT=0.D0 136 SPZM=0.D0 MULTIPLICATION, AND 137 SPZMIS=0.DO **MISSES** 138 'ERROR RESET FOR Z INTEGRAND IN DO LOOP 280 EJ=0.D0 139 EK=0.D0 'ERROR RESET FOR Z INTEGRAL IN DO LOOP 280 140 ITEMPORARY EK TEK=0.D0 141 DO 280 I=1,NZP 'BEGIN-Z INTEGR-FROM O-RA-RB-RC-RD 142

 IVP=2
 *ANGLE INTEGRATION WEDDLE RULE COEFFICIENT INDICATOR.

 SPPT=0.D0
 *ANGLE PARTIAL SUM RESET OF TRANSMISSION,

 143 144 SPPM=0.D0 MULTIPLICATION, AND 145 SPPMIS=0.D0 **IMISSES** 146 **'ERROR RESET FOR PHI INTEGRAND IN DO LOOP 250** EF=0.D0 147 'ERROR RESET FOR PHI INTEGRAL IN DO LOOP 250 EG=0.D0 148 TEG=0.D0 ITEMPORARY EG 149 Z=DA*DBLE (I-1)+RZZ(IAR) 150 RZ=DSQRT(R**2-Z**2)151 152 RZD=0.D0RZC=0.D0 153 RZB=0.D0 154 155 RZA=0.D0 GO TO (173,172,171,170),NCY 156 170 IF (RD.GT.Z)RZD=DSQRT(RD**2-Z**2) 157 171 IF(RC.GT.Z) RZC=DSQRT(RC**2-Z**2) 'HIT C LAYER, IF THERE IS ONE 158 172 IF(RB.GT.Z) RZB=DSQRT(RB**2-Z**2) 'HIT B LAYER, IF THERE IS ONE 159 173 IF(RA.GT.Z) RZA=DSQRT(RA**2-Z**2) 'HIT A LAYER 160 BEGINNING OF PHI INTEGRATION FOR PHI FROM DO 250 J=1,NPHIP 161 10 TO 90 DEGREES ONLY. PHI IS THE ANGLE 162 PHI=DB*DBLE(J-1) BETWEEN THE Y-AXIS AND W-AXIS 163 S=DSIN(PHI) CX=DCOS(PHI) 164 W PARTIAL SUM RESET OF TRANSMISSION, SPWT=0.DO 165 SPWM=0.D0 AND MULTIPLICATION 166 IFLAG=3 PHI NOT EQUAL TO 0 OR 90 DEGREES 167 IF(J.EQ.1) GO TO 180 168 IF(J.EQ.NPHIP) GO TO 185 169 GO TO 200 170 171 180 IFLAG=1 'PHI=0 DEGREES GO TO(184,183,182,181),NCY 172 W(1) IS THE POSITION ALONG THE W-AXIS THAT A 173 181 AW(1) = -RZDINEUTRON, INCIDENT PERPENDICULARLY FROM THE AW(8) = RZD174

182	AW(2) = -RZC	STRIKE THE LEET ONTER CORNER OF THE D	175
183	AW(7) = RZC AW(3) = -R7R	MATERIAL AW(2) AW(3) AND AW(4) WILL JUST	177
105	AW(6) = RZB	STRIKE THE C, B, AND A LAYERS, RESPECTIVELY.	178
184	AW(4) = -RZA	AW(5), AW(6), AW(7), AND AW(8) WILL JUST	179
	AW(5)=RZA	STRIKE THE UPPER RIGHT OUTER CORNER OF THE	180
	GO TO 210	A, B, C, AND D MATERIALS, RESPECTIVELY. THIS	5181
185	IFLAG=2 PHI=90 DEGREES.	AVOIDS DISCONTINUITIES IN THE DERIVATIVES FOR	182
	GO TO(189,188,187,186),	NCY THE WEDDLE RULE.	183
186	AW(1) = -DLD		184
107	AW(8) = DRD		185
101	AW(2) = DEC		100
188	AW(3) = -DLB		188
100	AW(6) = DRB		189
189	AW(4) = -BLA		190
	AW(5)=BLA		191
	GO TO 210		192
200	GO TO(204,203,202,201),	NCY	193
201	AW(1) = -ALIM(RZU, DLU)		194
202	AW(2) = ALIM(RZC)ORO)		192
202	$AW(2) = ALIM(RZC \cdot DRC)$		197
203	AW(3)=-ALIM(RZB,DLB)		198
	AW(6)=ALIM(RZB,DRB)		199
204	AW(4) = -ALIM(RZA, BLA)		200
	AW(5) = -AW(4)		201
210	LL=5-NCY		202
		100-28 THE DORTION OF THE COHERE CHT REVOND	203
	$BQ=2 \cdot DQ*(2 \cdot DQ*R7 - DELW)$	CYLINDER BECAUSE OF INCIDENCE FROM TWO	204
	IF (DELW.LT.ELM) GO TO 23	1 IDIRECTIONS	205
	EZ=0.D0		207
	DO 230 I2=LL,LU		208
	CALL IN(AW(I2),AW(I2+1)	,E,SPT,SPM)	209
			210
	SPWI=SPWI+SPI SPWM=SPWM+SPM		211
230	CONTINUE	FND OF W INTEGRAL DO LOOP, WHICH BECOMES	213
231	GO TO(240,240,235), IFLA	G'INTEGRAND FOR PHI INTGR. WITH ABS. ERROR EZ	214
235	SPPT=SPPT+V(IVP)*SPWT		215
	SPPM=SPPM+V(IVP)*SPWM		216
	SPPMIS=SPPMIS+V(IVP)*RQ	MISS CYLINDER CALCULATION	217
	EF=EF+(V(IVP)* EZ)**2	MARSOLUTE VALUE OF EPROP FACH 4 SUBDIVISIONS	218
	IVP=IVP+1	IEH(IVP)=WEDDLE RULE ERROR CONSTANTS	219
	$IF(IVP \bullet GE \bullet 7) IVP = 1$	CHAIN /- HEDDEE ROLL ERROR CONSTRATS	221
	IF(IVP.EQ.2)GO TO 239		222
	GO TO 250		223
239	EG = EG + DABS(TEG)	EG=ERROR IN PHI INTEGRAL DUE TO WEDDLE RULE	224
	TEG=SPWT		225
240	GO TO 250	COFFE, FOR FIRST AND LAST TERMS IS ONE	226
240	SPPM=SPPM+SPWM	COEFF. FOR FIRST AND LAST TERMS IS ONE	228
	SPPMIS=SPPMIS+RQ		229
	EG=EG+SPWT		230
	EF=EF+EZ**2		231
250	CONTINUE	END OF PHI INTEGRAL DO LOOP, WHICH BECOMES	232
	SPPT=SPPT*0.3D0*DB	INTEGRAND FOR THE Z INTEGRAL	233
		FOR THE BUI DART	234
	EF = 3D0 * DB * DSQRT(FE)		236
	EG=EG*DB/140.D0		237
	EI=DSQRT(EG**2+EF**2)	EI=TOTAL ABS. ERROR ESTIM. FOR PHI INTEGRAL	238
	IF(I.EQ.1.OR.I.EQ.NZP)	GO TO 270	239
	SPZT=SPZT+V(IVZ)*SPPT		240
	SPZM=SPZM+V(IVZ)*SPPM	11/7	241
	SPZMIS=SPZMIS+SPPMIS*V(IVA) FERROR**2 DUE TO INTEGRAND UNCERT, IN 7 INTEG	242
	TEK=TEK+EH(IVZ)*SPPTISU	M ABSOLUTE VALUE OF ERROR EACH 6 SUBDIVISIONS	244
	IVZ=IVZ+1		245
	IF(IVZ.GE.7) IVZ=1		246

	IF(IVZ.EQ.2)GO TO 269		247
	GO TO 280		248
269	EK=EK+DABS(TEK)	EK=ERROR IN Z INTEGRAL DUE TO WEDDLE RULE	249
	IEK=SPPI		250
270	SD7T+SD7T+SDPT	COFFE, OF EIDST AND LAST TERMS IS 1	251
210	SP7M=SP7M+SPPM	COLITE OF FIRST AND LAST FERMS IS I.	252
	SPZMIS=SPZMIS+SPPMIS		222
	EJ=EJ+EI**2		255
	EK=EK+SPPT		256
280	CONTINUE		257
	EJI=EJI+•3D0*DA*DSQRT(E	J) Z NORMALIZATION, WEDDLE RULE	258
	EKI=EKI+EK*DA/140.DO	· TRANSMISSION ANTI-SOL	259
	STI= 3D0*DA*SPZI+STI	IRANSMISSION INTEGRAL	260
	SFI= 3D0*DA*SP2M+SFI	INTEGRAL	261
281	CONTINUE	IEND OF 7 INTEGRAL	262
201	AR =3.1416D0*(R**2)	SPHERE CROSS SECTION	264
	VNORM=2.D0/(3.1416D0*AR) 'UNIT NORMALIZES THE INTEGRALS	265
	EL=DSQRT(EJI**2+EKI**2)		266
	STIS=STI*VNORM		267
	SAFIS=SFI*VNORM	INTERACTION IN 'A' MATERIAL	268
	IF(SIGAT.LT.1.D-4)GO TO		269
	SFIS=SAFIS*SIGAF/SIGAT	FISSION PART OF 'A' INTERACTION	270
282	SEIS-0.D0		271
282	SMIS=SMIXVNORM		272
205	SLM=2.DO*AD/AR	UNIT NORMALIZED, LUMP MISS PART	274
	SNOS=SFIS*AK+SLM+SMIS+S	TIS INEUTRONS OUT PER NEUTRON HITTING SPHERE	275
	FMIS=SLM+SMIS	SINGLE NEUTRON MISS PROBABILITY	276
	ACROS=AR*(1.DO-FMIS)	AVERAGE SOURCE CROSS SECTION	277
	FTRANS=SLM+STIS+SMIS	SINGLE NEUTRON TRANSMISSION PROBABILITY	278
	EM=EL*1.D2*VNORM/FTRANS	'EM=ESTIMATE OF PER CENT ERROR IN FTRANS	279
	FINIEI.DU-FIRANS	ISINGLE NEUTRON EXISTIN PROBABILITY	280
	FABS=FINT-FMUI	ISINGLE NEUTRON ABSORPTION PROBABILITY	282
	FNO=FMUL*AK+FTRANS	INEUTRONS OUT PER NEUTRON STRIKING SPHERE	283
	FTSOU= (FTRANS-FMIS) * AR/	ACROS ISINGLE STRIKE TRANSMISSION PROBABILITY	284
	FINSOU=1.DO-FTSOU	SINGLE STRIKE INTERACTION PROBABILITY	285
	FSAFIS=SAFIS/(1.DO-FMIS	S) SINGLE STRIKE AN INTERACTION PROBABILITY	286
	FMULSO=FMUL/(1.DO-FMIS)	SINGLE STRIKE FISSION PROBABILITY	287
	AAIP=FSAFIS-FMULSO	SINGLE STRIKE 'A' ABSORPTION INTERACT. PROBABLE	288
		ISINGLE STRIKE CLADDING INTERACTION PRODADIL.	207
	FOUTSO=FTSOU+FMULSO*AK	INFUTRONS OUT PER NEUTRON STRIKING SOURCE	291
	FNOUT=1.DO-FOUTSO	IRESULTANT LOSS	292
	FPT=FTRANS*AR	UNIT FLUX TRANSMISSION	293
	FPI=FINT*AR	UNIT FLUX INTERACTION	294
	FPA=FABS*AR	UNIT FLUX ABSORPTION	295
	FPF=FMUL*AR*AK	UNIT FLUX FISSION	296
	FNLS=FPI-FPF	UNIT FLUX, NET LUSS	297
		PERCENT OF TRANSMISSION	290
	FQA=F*FPA	PERCENT Q ABSORPTION	300
	FQF=F*FPF	PERCENT Q FISSION GAIN	301
	FQL=F*FNLS	PERCENT Q NET LOSS	302
	WRITE(6,9)IGRAND, KB, KC,	KD, ERL1, ERL2, ERL3, DZ, DWD	303
	WRITE(6,5) FTSOU, FINSOU	J,FABSOU,AAIP,FMULSO,FSAFIS,BCDIP,FOUTSO,	304
	IFNOUT, ACROS		305
	WRITE(6.7)AP .FPT. FDT. FD	DA FDF FNI S	307
	WRITE(6.8) F. FOT. FOT. FOT.		308
	GO TO 100		309
			310
	SUBROUTINE IN(FLL, FUL, E	ANS, QE) TO GIVE THE WEDDLE RULE INTEGRAL TO	311
	DW1=(FUL-FLL)/36.D0	A SPECIFIED RELATIVE ERROR ET.	312
	DW2=DW1/6.DO	IF THE SUBDIVISION ALONG THE W-AXIS IS 6	313
	IF (DW2 •G1 •DA)GO TO 65	TIMES LARGER THAN IN THE Z-DIRECTION, THEN	314
	CALL DCE (ELL SELL ANS A	ACEN	316
	IF (ANS_LT_1_D-4)GO TO F		317
	EE=DABS(AE/ANS)		318

the second

		IF(EE.GT.ERL1)ERL1=EE IF(EE.GT.ET)GO TO 60 E=AE DETURN	ERL1 IS LA	RGEST ERROR IN FLL=LOWER LIMIT FUL=UPPER LIMIT	1ST ORDER WEDDLE DI	V.319 320 321
	50	E=0.DO RETURN				323
	6 0	ADIV=6.D0 IA1=6 KB=KB+1 GO TO 70		RESET COUNTER I	N STATEMENT 100	325 326 327 328
	65	ADIV=36.D0 IA1=36				329 330
		KC=KC+1 DW3=DW2/6.D0	'	3RD ORDER COUNT		331 332
	70	IF(DW3.GT.DWD)DWD=DW3 ED=(FUL-FLL)/ADIV P1I=0.D0 QE=0.D0	'DWD IS LAF	RGEST 3RD ORDER PCE RETURNS ABS	SUBDIV. OF W-AXIS OLUTE ERROR.	333 334 335 336
		FL2=FLL FU2=FLL+ED DO 120 IA=1,IA1 CALL PCE(FL2,FU2,PI,PEI	»QF) Ⅰ	2ND ORDER OR 3R	DORDER	338 339 340 341
		P1I=P1I+PI QE=QE+QF				342 343
	120	E=E+PEI FL2=FU2 FU2=FU2+ED ANS=PII	1	INCREMENT LIMIT	S	344 345 346 347
		IF (ANS.LT.1.0-4)GO TO 1 EE=DABS(E/ANS) IF (IA1.EQ.36)GO TO 121 IF (EE.GT.ERL2)ERL2=EE	22 •ERL2 IS LA	ARGEST ERROR IN	2ND ORDER WEDDLE DI	348 349 350 V•351
	121	IF (EE.GT.ET)GO TO 65 RETURN IF (EE.GT.ET)KD=KD+1 IF (EE.GT.ERL3)ERL3=EE	•4TH ORDER •TIMES 3RD •SATISFY RE •ERL3 IS LA	COUNT,KD,USED H ORDER WEDDLE ER LATIVE ERROR ET ARGEST ERROR IN	ERE TO COUNT NO OF ROR FAILS TO IN INPUT 3RD ORDER WEDDLE DI	352 353 354 V•355
	122	RETURN E=0.D0 RETURN				356 357 358 359
		SUBROUTINE PCE(FL,FU,AI DIMENSION VII(7),VIE(7) DATA VII/1.D0,5.D0,1.D0 1-20.D0,15.D0,-6.D0,1.D0	• AE • QC • GI • • ANI • 6 • DO • 1 • DO • • • CA / 3 • D - 1 •	/ES THE WEDDLE C > FU USING 6 SEG >5.DO,1.DO/,VIE/ (, CB/.71428571D	ORRECT SUM BETWEEN MENTS. '1.DO,-6.DO,15.DO, -2/ TRANSMISSION RAPT	FL360 361 362 363
		PI=0.D0 QB=0.D0 PE=0.D0 X=FL	QC IS THE AE IS THE EC IS THE X IS THE	SECOND INTEGRAL ABSOLUTE ERROR INCREMENT SIZE	, MULTIPLICATION PA IN THE FIRST INTEGR	RT365 AL366 367 368
		DO 100 ID=1,7 CALL GRAND(X,QA,QG) PI=PI+QG*VII(ID) QB=QB+VII(ID)*QA PE=PE+QG*VIE(ID)	'QA IS THE 'QG IS THE 'PI IS THE 'QB IS THE	MULTIPLICATION TRANSMISSION PA TRANSMISSION PA MULTIPLICATION	PART, INTEGRAND RT, INTEGRAND RT PARTIAL SUM PARTIAL SUM	369 370 371 372 373
	100	X=X+EC AI=CA*EC*PI AE=DABS(CB*EC*PE) QC=CA*EC*QB RETURN	PE IS THE	ERROR PARTIAL S MULTIPLICATION	UM (6TH DIFFERENCE) PART ANSWER	374 375 376 377 378
c	F I CON	SUBROUTINE GRAND(₩,DUMC NAL EVALUATION OF THE IN TRIBUTIONS ARE ADDED FOR	DUMD) TEGRAND, WH	HICH IS PUT INTO	PCE CE FROM OPPOSITE	379 380 381 382
C C	DIR	ECTIONS, SO THAT THE PHI STEAD OF FROM 0 TO PI.	INTEGRAL	IS CARRIED OUT F	ROM O TO PI/2 INTEGRAND.	383 384
		IGRAND=IGRAND+1 DUMC=0.D0 A=0.D0 B=0.D0	CONTAINS M	NULTIPLICATION P	ART OF INTEGRAND	385 386 387 388
		C=0.D0 D=0.D0				389 390

	CO TOLOO. 60 20.101 NCV	INCV-NUMBER OF LAVERS	
	G0 10(90,80,30,10),NC1	INCTENOMBER OF LATERS	391
10	CALL C2(IB, DRD, DLD, RZD, W	(,XID,YID,D)	392
	GO TO (20,30),IB		393
20	DUMD=2.DO	TRANSMISSION. IT MISSES IN BOTH DIRECTIONS	304
	DETUDN		
~ ~	RETURN	I WEE WEE EN	395
30	CALL CZ(IB, DRC, DLC, RZC, W		396
	IF(IB.EQ.2) GO TO 60		397
	IF(NCY.EQ.3) GO TO 20		398
	GO TO 130		200
60	CALL CZITE DEP. DIE EZE W		577
60	CALL CZ(ID)UND)ULD)RZD9W	***ID*TID*D;	400
	IF (IB-EQ-2) GO TO 90		401
	IF (NCY.EQ.2) GO TO 20		402
	GO TO 130		403
00	CALL CZITBABLAABLAAR7AAW		100
90	CALL CETIO, DEA, DEA, KEA,		404
	IF(IB-EQ-2) GO TO 130		405
	IF (NCY • EQ • 1) GO TO 20		406
130	GO TO (170,160,150,140),	NCY	407
40	D = D - C	THE AMOUNT OF A.B.C. AND D MATERIAL	408
50	C-C-B	TRAVERSED IS A BACA AND DA RESPECTIVELY.	400
		TRAVENSED IS ADDICH AND DU RESPECTIVELTS	409
160	D=D-A		410
170	DUM=-(SIGAT*A+SIGB*B+SIG	SC*C+SIGD*D)	411
	DUMD=2.DO*DEXP(DUM)	TRANSMISSION	412
	IF(IB.EQ.1) RETURN	DID NOT HIT A MATERIAL. NO FISSION	413
	DIDI-0.D0		414
			414
	DIDO=0.D0		415
	DICI=0.00		416
	DICO=0.D0		417
	DBPBASIGAT*A		410
	DEDEC- (1 DO DEVELOPEDAL)		410
	UBPBE=(1.00-DEXP(DBPBA))		419
	GO TO (220,210,200,190),	NCY	420
190	DIDI=DSQRT((XID-XIC)**2+	+(YID-YIC)**2) 'ENTRY THICK. FOR FISSION CALC.	421
	DIDO=D-DIDI	SAME, FROM OTHER SIDE	422
0.0	DICI-DSORT//XIC-YIBL**2+		4.22
.00			423
	DICO=C-DICI		424
210	DIBI=DSQRT((XIB-XIA)**2+	+(YIB-YIA)**2)	425
	DIRO-D DIRT		1.26
			420
	DUMBI = -(SIGD*DIDI+SIGC*D)	DICI+SIGB*DIBI)	420
	DIBOED-DIBI DUMBI =- (SIGD*DIDI+SIGC*D	DICI+SIGB*DIBI)	427
	DUMBI=-(SIGD*DIDI+SIGC*D DUMBO=-(SIGD*DIDO+SIGC*D	DICI+SIGB*DIBI) DICO+SIGB*DIBO)	427
	DUMBI=-(SIGD*DIDI+SIGC*D DUMBO=-(SIGD*DIDO+SIGC*D DUMCI=DEXP(DUMBI)	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT	427 428 429
	DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMCO=DEXP(DUMBO)	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE	427 428 429 430
	DUMBI=-(SIGD*DIDI+SIGC*D DUMBO=-(SIGD*DIDO+SIGC*D DUMCI=DEXP(DUMBI) DUMCO=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE	427 428 429 430 431
	DIBOEDEDIBI DUMBI = - (SIGD*DIDI+SIGC*D DUMBO = - (SIGD*DIDO+SIGC*D DUMCI = DEXP(DUMBI) DUMCO = DEXP(DUMBO) DUMC = (DUMCI+DUMCO)*DBPBE	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE	427 428 429 430 431 432
	DUMBI=-(SIGD*DIDI+SIGC*D DUMB0=-(SIGD*DIDO+SIGC*D DUMC=-(SIGD*DIDO+SIGC*D DUMCI=DEXP(DUMBI) DUMC0=DEXP(DUMB0) DUMC=(DUMCI+DUMC0)*DBPBE RETURN	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE	427 428 429 430 431 432
220	DIBOLED-UBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMCO=DEXP(DUMBO) DUMCC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.00*DBPBE	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE	427 428 429 430 431 432 433
220	DIBOLED-UIDI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMCO=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.00*DBPBE RETURN	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE	420 427 428 429 430 431 432 433 434
220	DIBOEDEDIDI DUMBI=-(SIGD*DIDI+SIGC*D DUMB0=-(SIGD*DIDO+SIGC*D DUMCI=DEXP(DUMBI) DUMC0=DEXP(DUMB0) DUMC=(DUMCI+DUMC0)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE	420 427 428 429 430 431 432 433 434 435
220	DIBOLED-UBI DUMBI=-(SIGD*DIDI+SIGC*D DUMB0=-(SIGD*DIDO+SIGC*D DUMCI=DEXP(DUMBI) DUMC0=DEXP(DUMB0) DUMC=(DUMCI+DUMC0)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN SUBROUTINE C2(IB.DR.DL.C	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE E	420 427 428 429 430 431 432 433 434 435 436
220	DIBUEDEDIDI DUMBI=-(SIGD*DIDI+SIGC*C DUMB0=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC0=DEXP(DUMB0) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C VPE(X)=C2W*CX=S*(X=C2W*S)	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE E C2R,C2W,XI,YI,DTHRU) SV(CY : Y=COORDINATE, GIVEN X, PHI, AND (2W(=W)	427 428 429 430 431 432 433 435 435 436
220	DIBOLED-UBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC0=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S)	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE E C2R,C2W,XI,YI,DTHRU) S)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W)	427 428 429 430 431 432 433 434 435 436 437
220	DIBOLED-DIBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMCO=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*CX- SUBROUTINE C2W*CX-S*(X-C2W*CX- SUBROUTINE C2W*CX- SUBROUTINE C2W*CX- SUBRO	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE E C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W)	427 428 429 430 431 432 433 434 435 436 437 438
220	DIBOLED-UBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMCO=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE E C2R,C2W,XI,YI,DTHRU) S)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W)	427 428 429 430 431 432 433 434 435 436 437 438 439
220	DIBOLED-UBI DUMBI=-(SIGD*DIDI+SIGC*C DUMB0=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC0=DEXP(DUMB0) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE E C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) C2W,S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W)	427 428 429 430 431 432 433 435 435 435 438 439 440
220	DIBOLED-DIBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 REYPF(DR)	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE E C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W)	427 428 430 432 433 433 433 433 433 433 433 433 433
220	DIBOLED-DIBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMCO=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 TR=YPF(DR) L=YPF(DR)	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE E C2R,C2W,XI,YI,DTHRU) S)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W)	4207 4228 4290 431 432 433 435 435 436 438 4430 4430 4441
220	DIBOLED-UBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMCO=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EG.1)GO TO 101 IF(IFLAG.EG.2)GO TO 102 IR=YPF(DR) TL=YPF(DL) DIHBU=0.DO	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE E C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W)	4207 4228 430 431 432 433 435 435 438 4430 442 442 442 442 4442
220	DIBOLEDEDIDI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 IR=YPF(DR) TL=YPF(-DL) DTHRU=0.D0	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE E C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W)	4227 4228 4301 4322 4331 4323 4334 4335 4336 438 4390 4441 4442 4442
220	DIBOLED-DIBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 TR=YPF(DR) TL=YPF(DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 30	DICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE E C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W)	427 428 429 4301 432 431 432 433 434 435 436 437 438 439 440 441 442 443 444
220	DIBOLED-DIBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMCO=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 TR=YPF(DR) TL=YPF(DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 30 IB=1	<pre>>DICI+SIGB*DIBI) DICO+SIGB*DIBO)</pre>	4207 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 4444 4445
220	DIBOLED-DIBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMCODEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 TR=YPF(DR) TL=YPF(-DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 30 IB=1 RETURN	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE E C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 5)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER.</pre>	427 428 428 430 431 432 433 433 433 433 433 433 433 433 433
220	DIBOLED-DIBI DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 R=YPF(DR) TL=YPF(-DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 30 IB=1 RETURN E(C2R.GE.TL) GO TO 20	<pre>OICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 5)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER.</pre>	427 428 429 430 431 432 433 433 433 433 433 433 433 433 433
220 20 30	DIBOLED-DIBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMCO=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EG.1)GO TO 101 IF(IFLAG.EG.2)GO TO 102 TR=YPF(DR) TL=YPF(-DL) DTHRU=0.DO IF(C2R.GT.TR) GO TO 30 IB=1 RETURN IF(-C2R.GE.TL) GO TO 20	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE</pre>	427 428 430 431 432 433 433 433 433 433 433 433 443 433 443 443 443 4444
220 20 30	DIBOLED-DIBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMCO=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EG.1)GO TO 101 IF(IFLAG.EG.2)GO TO 102 IR=YPF(DR) TL=YPF(-DL) DTHRU=0.DO IF(C2R.GT.TR) GO TO 30 IB=1 RETURN IF(-C2R.GE.TL) GO TO 20 IB=2	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) b)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER.</pre>	427 428 430 431 432 433 433 433 433 433 433 433 433 433
220 20 30	DIBO-B-DIBI DUMBI =- (SIGD*DIDI+SIGC*C DUMB0=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 R=YPF(DR) TL=YPF(-DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 30 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 5)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'YOUTRON MISSES CYLINDER. 'NEUTRON MISSES CYLINDER.</pre>	427 428 430 431 432 433 435 433 435 435 435 435 435 436 436 445 445 445 445 446 445 446 445 446 446
220 20 30	DIBOLEDEDIDI DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 TR=YPF(DR) TL=YPF(-DL) DTHRU=0.DO IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 60 XI=DR	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE</pre>	427 427 428 430 4334 4344 4444 4445 4445 4447 4449 4447 4449 4447 4449 4456 4447 4449 4456 4457 4457 4456 4457 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457 4456 4457
220 20 30	DIBOLEDEDIDI DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 TR=YPF(DR) TL=YPF(DL) DTHRU=0.DO IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE C2R,C2W,XI,YI,DTHRU) S)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) S)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER. 'NEUTRON HITS END</pre>	427 4278 42304 43344 43344354 43344354 43344354 443544338 444444444444444444444444444444444444
220 20 30	DIBOLEDEDIDI DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.I)GO TO 101 IF(IFLAG.EQ.I)GO TO 102 IR=YPF(DR) TL=YPF(-DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OPPOSITE SIDE 2 22R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 5)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER. 'NEUTRON HITS END</pre>	427 4278 4230 43314 43344 43367 43367 43389 44423 44444 44444 44444 44444 44444 44444 44444 4444 4456 445 455
220 20 30	DIBOLEDEDIDI DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 TR=YPF(DR) TL=YPF(-DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 VI=YEF(CDL)	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 5)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER. 'NEUTRON HITS END 'NEUTRON HITS END 'NEUTRON HITS END</pre>	42784294431444444444444444444444444444444444
220 20 30	DIBOLEDEDIDI DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EG.1)GO TO 101 IF(IFLAG.EG.2)GO TO 102 TR=YPF(DR) TL=YPF(-DL) DTHRU=0.DO IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 XI=XPF(-C2R)	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE 2 22R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 5)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER. 'NEUTRON HITS END 'NEUTRON HITS BOTTOM.</pre>	427 4278 4290 4301 4334 4344 4445 4445 4445 44552 2354 45522 3552 45522
220 20 30	DIBOUDEDIDIE DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EG.I)GO TO 101 IF(IFLAG.EG.I)GO TO 102 IR=YPF(DR) TL=YPF(-DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GE.TL) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 XI=XPF(-C2R)	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE C2R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 5)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER. 'NEUTRON HITS END 'NEUTRON HITS BOTTOM.</pre>	427 428 430 4334 4334 43367 43367 43367 43367 43367 443367 443367 44323 4444 44423 4444 444 4444
220 20 30 60 70	DIBO-B-DIBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*C YF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 IR=YPF(DR) TL=YPF(-DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 XI=XPF(-C2R) YI=-C2R IF(C2R.GT.TL) GO TO 90	<pre>PICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE C2R,C2W,XI,YI,DTHRU) S)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) S)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER. 'NEUTRON HITS END 'NEUTRON HITS BOTTOM.</pre>	42789423044334433443344434444444444444444444
220 20 30 60 70	DIBOLEDEDIDI DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 IR=YPF(DR) TL=YPF(-DL) DTHRU=0.DO IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 XI=XPF(-C2R) IF(C2R.GT.TL) GO TO 90 XO=XPF(C2R)	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE 22R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 5)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER. 'NEUTRON HITS END 'NEUTRON HITS BOTTOM. 'NEUTRON EXITS FROM THE TOP.</pre>	4278423044332443344334433443344434444444444
220 20 30 60 70	DIBOLEDEDIDI DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 TR=YPF(DR) TL=YPF(DL) DTHRU=0.DO IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 XI=XPF(-C2R) YI=-C2R IF(C2R.GT.TL) GO TO 90 XO=XPF(C2R)	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</pre>	427890443312334456784444444444444444444444444444444444
220 20 30 60 70	DIBU-B-DIBI DUMBI =- (SIGD*DIDI+SIGC*C DUMB0=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=DEXP(DUMBO) DUMC=(DUMCI+DUMCO)*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 IR=YPF(DR) TL=YPF(-DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 XI=XPF(-C2R) YI=-C2R IF(C2R.GT.TL) GO TO 90 XO=XPF(C2R)	<pre>PICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE 'PROM OFPOSITE SIDE 'PROM OFPOSITE SIDE 'FROM OFFOSITE SIDE 'FROM OFFOSIT</pre>	42789423044334443444444444444444444444444444
220 30 60 70	DIBO-B-DIBI DUMBI=-(SIGD*DIDI+SIGC*C DUMBO=-(SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 IR=YPF(DR) IL=YPF(-DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 XI=XPF(-C2R) YI=-C2R GO TO 100	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE 22R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 5)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) -Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER. 'NEUTRON HITS END 'NEUTRON HITS BOTTOM. 'NEUTRON HITS BOTTOM. 'NEUTRON EXITS FROM THE TOP.</pre>	4278944332443344334443444444444444444444444
220 20 30 60 70 90	DIBOLEDEDIDI DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EG.1)GO TO 101 IF(IFLAG.EG.1)GO TO 101 IF(IFLAG.EG.2)GO TO 102 TR=YPF(DR) TL=YPF(-DL) DTHRU=0.DO IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 XI=XPF(-C2R) YI=-C2R IF(C2R.GT.TL) GO TO 90 X0=XPF(C2R) Y0=C2R GO TO 100 X0=-DL	<pre>>ICI+SIGB*DIBI) >ICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE 2 22R,C2W,XI,YI,DTHRU) S)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) S)/CX ' Y-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER. 'NEUTRON HITS END 'NEUTRON HITS BOTTOM. 'NEUTRON HITS FROM THE TOP. 'NEUTRON EXITS FROM THE END</pre>	42789423044334443444444444444444444444444444
220 20 30 60 70 90	DIBO-B-DIBI DUMBI =- (SIGD*DIDI+SIGC*C DUMB0=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EG.I)GO TO 101 IF(IFLAG.EG.2)GO TO 102 IR=YPF(DR) TL=YPF(-DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 XI=XPF(-C2R) YI=-C2R IF(C2R.GT.TL) GO TO 90 XO=XPF(C2R) YO=C2R GO TO 100 XO=-DL YO=TL	<pre>PICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE 'PROM OFFOSITE SIDE 'PROM OFFOSIT</pre>	4278931227893344434444444444444444444444444444444
220 20 30 60 70 90	DIBO-B-DIBI DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.D0*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*S XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 IR=YPF(DR) TL=YPF(DR) TL=YPF(DL) DTHRU=0.D0 IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 XI=XPF(-C2R) YI=-C2R GO TO 100 XO=XPF(C2R) YO=C2R GO TO 100 XO=-DL YO=TL DTHRU=DSORT((YI=YO)**240	<pre>>ICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE C2R,C2W.XI.YI.DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 'Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'Y)/S ' X-COORDINATE, GIVEN Y, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER. 'NEUTRON HITS END 'NEUTRON HITS BOTTOM. 'NEUTRON EXITS FROM THE TOP. 'NEUTRON EXITS FROM THE END (YI-YO)**2)</pre>	4278944331443444444444444444444444444444444
220 20 30 60 70 90	DIBOLEDEDIDI DUMBI =- (SIGD*DIDI+SIGC*C DUMBO=- (SIGD*DIDO+SIGC*C DUMCI=DEXP(DUMBI) DUMC=(DUMCI+DUMCO)*DBPBE RETURN DUMC=2.DO*DBPBE RETURN SUBROUTINE C2(IB,DR,DL,C YPF(X)=C2W*CX-S*(X-C2W*C XPF(Y)=C2W*S+CX*(C2W*CX- IF(IFLAG.EQ.1)GO TO 101 IF(IFLAG.EQ.2)GO TO 102 TR=YPF(DR) TL=YPF(-DL) DTHRU=0.DO IF(C2R.GT.TR) GO TO 20 IB=1 RETURN IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 20 IB=2 IF(-C2R.GT.TR) GO TO 60 XI=DR YI=TR GO TO 70 XI=XPF(-C2R) YI=-C2R IF(C2R.GT.TL) GO TO 90 XO=XPF(C2R) YO=C2R GO TO 100 XO=-DL YO=TL DTHRU=DSQRT((XI-XO)**2+0)	<pre>>ICI+SIGB*DIBI) DICO+SIGB*DIBO) 'FISSION EFFECT 'FROM OFPOSITE SIDE 22R,C2W,XI,YI,DTHRU) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 5)/CX ' Y-COORDINATE, GIVEN X, PHI, AND C2W(=W) 'NEUTRON MISSES CYLINDER. 'NEUTRON MISSES CYLINDER. 'NEUTRON HITS CYLINDER. 'NEUTRON HITS END 'NEUTRON HITS BOTTOM. 'NEUTRON HITS FROM THE TOP. 'NEUTRON EXITS FROM THE TOP. 'NEUTRON EXITS FROM THE END (YI-YO)**2)</pre>	427894227894233443374844444444444444444444444444444

101	DTHRU=DR+DL	463
	XI=DR	464
	YI=C2W	465
	IB=2	466
	RETURN	467
102	2 DTHRU=2.D0*C2R	468
	XI=C2W	469
	Y I = - C2R	470
	IB=2	471
	RETURN	472
	END	473

4.2.2 LIST OF THE INPUT DATA DECK

	TITLE C	ARD.		FORMAT	13A6,A	(2)					
SOURCE	M-621	PU-	BE 80	GRAM, T	A AND	STAINLES	SS STEEL B	ENCAPSULATE	ED	CARD) 1
MACROS	COPIC (CROSS	SECTIO	NS AND	INTEGR	RATION P	ARAMETERS	FORMAT(7)	7G8.4,2I	3,68.	,4)
123456	7890123	34567	8901234	5678901	234567	8901234	5678901234	45678901234	+5678901	23456	7890
1.865	4.305	5 1	.16	.2811	• 0	2•8	•122	10 10.0	01	CARD	2
SIGAA	SIGAF	= S	IGB	SIGC	SIGD	AK	F	N- NZ EI	r		
I	I	I		I	I	I	I	PHII I			
I	I	I		I	I	I	I	I I MI	INIMUM F	RACTI	ON-
1	1	1		1	I	1	I	I I AL	ERROR	ALLOW	VED
I	1	1		1	I	l	I		V SUBROL	JIINE	PCE
1	1	1		1	1	1	1 T	1 1/6 P	NUMBER C		NIE-
1	1 T	1		1	1	1	1	I GRATI	ION SIEP	·5	
1	L T	1		1	I T	1	L T		SER OF P	HI IN	NIE-
T	T	1		I T	I T	I	FLUX	IN DEDCENT	OF SOUR		
T	T	T		I T	T	Ť	STREN	STH PER CM	61 300k	.CL	
T	T	T		T	T	NUMB	ER OF NEU	TRONS PER P	TISSTON		
Î	Î	Ī		ī	ABSOF	PTION C	ROSS SECT	ION PER CM	FOR D M	ATERI	AL
I	Ī	Ī		- ABSORPT	ION CF	ROSS SEC	TION PER	CM FOR C MA	TERIAL		
I	Ī	Ā	BSORPTI	ON CROS	S SECI	ION PER	CM FOR B	MATERIAL			
I	FISS	ION C	ROSS SE	CTION P	ER CM	FOR A M	ATERIAL				
ABSORP	TION CF	ROSS	SECTION	PER CM	FOR	MATERI	AL				
	SOURCE	DIME	NSIONS	IN INCH	ES.	FORMAT(12G6•3)				
123456	789012	34567	8901234	5678901	23456	78901234	567890123	45678901234	45678901	23456	57890
2.72	1.310	.100	•250	.070 .	250	100 .0	3.0	•0 •0		CARD) 3
AA	AB .	TRBI	TLBI	TSB T	RCJ 1	ILCI TS	C TRDI	TLDI TSD			
I	I	I	I	I I]	I I	I	I D SI	IDE WALL	IN I	[N•
I	I	I	I	I I		II	I	D LEFT END	D IN INC	THES	
I	I	1	I	II		I I	D RIG	HI END IN I	INCHES		
1	I	1	i				SIDE WALL	IN INCHES			
1	Т., т	1	1			LEFI EI	ND IN INC	HES			
1	1	1	1		KIGH	I END IN	INCHES				
1	1 T	1		5 SIDE	WALL J		5				
T	I I					- 5					
T	OUTSTO	E DIA	METER I		s						
OUTSIC	DE LENG		INCHES	in thene	3						
001010			i inchilo								

4.2.3 SIMPLIFIED SAMPLE OUTPUT

CYLINDRICAL PU-BE M-621 SOURCE. ENCAPSULATED IN TANTALUM AND ST. STEEL. SOURCE DIMENSION INPUT IN INCHES, L = $2 \cdot 72$, OD = $1 \cdot 31$, B WALL = $0 \cdot 07$, B ENDS = $0 \cdot 25$ AND $0 \cdot 1$, C WALL = $0 \cdot 03$, C ENDS = $0 \cdot 1$ AND $0 \cdot 25$. MACROSCOPIC CROSS SECTIONS PER CM SIGAA= 1.865 , SIGAF= 4.305 SIGB= 1.16 , SIGC= 0.2811 . NZ=10. NPHI=10. NEUTRONS PER FISSION = 2.80. FOR A SINGLE NEUTRON STRIKING THE SOURCE ... THE TRANSMISSION PROBABILITY IS ·18433302+0 THE INTERACTION PROBABILITY IS 81566698+0 •54509177+0 THE ABSORPTION PROBABILITY IS THE 'A' MATERIAL ABSORPTION INTERACTION PROBABILITY IS 11721783+0 THE 'A' MATERIAL FISSION INTERACTION PROBABILITY IS .27057522+0 THE 'A' MATERIAL INTERACTION PROBABILITY IS .38779305+0

THE CLADDING MATERIAL INTERACTION PROBABILITY IS	•42787393+0
NEUTRONS OUT PER NEUTRON STRIKE IS	•94194362+0
NEUTRONS LOST PER NEUTRON STRIKE IS	.58056380+0
THE AVERAGE CROSS SECTION OF THE SOURCE IN CM**2 IS	·20170300+2
THE DEPCENT ERPOR IN THE TRANSMISSION PROBABILITY IS	.0162
TE TE MEASURE THE THE THREE THREE THREE THREE THE MEASURE THE MEASURE THE PARTY IN DECEMENT OF A DECEMENT OF A	122
IF THE MEASURED THERMAL FLOW IN PERCENT OF Q PER CM**2 IS	•122
THE INTERACTION IN PERCENT OF Q IS	•200/1/42+1
THE ABSORPTION IN PERCENT OF Q IS	•13413491+1
THE FISSION IN PERCENT OF Q IS	•18643104+1
AND THE RESULTANT LOSS IN PERCENT OF Q IS	14286378+0
CYLINDRICAL SOURCE PU-BE A. ENCAPSULATED IN NICKEL.	
SOURCE DIMENSION INPUT IN INCHES, I = 1,031, OD = 1,031, B	WALL = 0.128
P = NDS = 0.112 AND 0.129	
B LINDS - DETILE AND DETILS	
MACROSCOPIC CROSS SECTIONS FER CM	
$SIGAA = 1 \cdot 214$, $SIGAF = 2 \cdot 802$, $SIGB = 0 \cdot 4106$	
NEUTRONS PER FISSION = 2.80. NZ=15. NPHI=15.	
FOR A SINGLE NEUTRON STRIKING THE SOURCE	
THE TRANSMISSION PROBABILITY IS	31458511+0
THE INTERACTION PROBABILITY IS	68541489+0
THE ABSORPTION PROBABILITY IS	.38173937+0
THE 'A' MATERIAL ABSORPTION INTERACTION PROBABILITY IS	13157105+0
THE TAL MATERIAL EISSION INTERACTION PROBABILITY IS	-30367551+0
THE AA MATERIAL INTERACTION PROBABILITY IS	43524656+0
THE CLASSING MATERIAL INTERACTION FROMADICITY IS	-45524656+0
THE CLADDING MATERIAL INTERACTION PROBABILITY IS	•25016833+0
NEUTRONS OUT PER NEUTRON STRIKE IS	•11648765+1
NEUTRONS LOST PER NEUTRON STRIKE IS -	•16487655+0
THE AVERAGE CROSS SECTION OF THE SOURCE IN CM**2 IS	•77943026+1
THE PERCENT ERROR IN THE TRANSMISSION PROBABILITY IS	•0270
IF THE MEASURED THERMAL FLUX IN PERCENT OF Q PER CM**2 IS	•122
THE INTERACTION IN PERCENT OF Q IS	.65176438+0
THE ABSORPTION IN PERCENT OF Q IS	.36299785+0
THE FISSION IN PERCENT OF O IS	• 80854631+0
AND THE RESULTANT LOSS IN DEPCENT OF O IS	15678192+0
CYLINDETCAL AMORE SOURCE ENCADED ATED IN TANTALUM AND STA	TNU ECC STEEL
COURCE DIMENSION INDUIT IN INCUSSION - 1 255 DE - 1 255	INCESS STEEL.
SUBRCE DIMENSION INPUT IN INCHES, $L = 1.555$, $OD = 1.555$, B	WALL = 0.07
B ENDS = 0.07, C WALL = 0.03, C ENDS = 0.05.	
MACROSCOPIC CROSS SECTIONS PER CM	
SIGAA= •1704 , SIGAF= 0•00082 , SIGB≈ 1•16 , SIGC=	0.281
NEUTRONS PER FISSION = 2.89. NZ=10. NPHI=10.	
FOR A SINGLE NEUTRON STRIKING THE SOURCE	
THE TRANSMISSION PROBABILITY IS	•40678453+0
THE INTERACTION PROBABILITY IS	.59321547+0
THE ABSORPTION PROBABILITY IS	-59253429+0
THE TAL MATERIAL ABSORPTION INTERACTION PROBABILITY IS	.14155335+0
THE ALL MATERIAL ADJOINT INTERACTION TRODUCTION TROUBLETT IS	69119306-3
THE AA MATERIAL FISSION INTERACTION PROBABLY ITY IS	1422245210
THE 'A' MATERIAL INTERACTION PROBABILITY IS	•14223453+0
THE CLADDING MATERIAL INTERACTION PROBABILITY IS	•45098094+0
NEUTRONS OUT PER NEUTRON STRIKE IS	•40875315+0
NEUTRONS LOST PER NEUTRON STRIKE IS	•59124685+0
THE AVERAGE CROSS SECTION OF THE SOURCE IN CM**2 IS	13463194+2
THE PERCENT ERROR IN THE TRANSMISSION PROBABILITY IS	.0356
IF THE MEASURED THERMAL FLUX IN PERCENT OF Q PER CM**2 IS	•121
THE INTERACTION IN PERCENT OF Q IS	.96637561+0
THE ABSORPTION IN PERCENT OF Q IS	.96526593+0
THE EISSION IN PERCENT OF Q IS	-32069762-2
AND THE RESULTANT LOSS IN REPOENT OF O IS	.96316863+0
AND THE RESOLUTION LOSS IN FLICENT OF & 13	

Table 1.

Neutron Transmission Convergence Test for the Spherical Source Program

NY	Transmission	Estimated Error	Actual Error*
10	0.14653888	0.819%	1.205%
20	0.14542886	0.438%	0.438%
50	0.14495702	0.113%	0.113%
100	0.14485061	0.041%	0.039%
500	0.14479752	0.008%	0.002%
1000	0.14479397	0.004%	-

5 h.

* Actual Error listed here assumes that transmission for NY = 1000 is correct.

W

RZC

RZ

Z = Z

►X

1 (c) VIEW FROM +Z

1 (d) VIEW FROM +Z

RZB

RŽA

RŻD

Figure 1. Diagram for the cylindrical source program. The cylindrical source is surrounded by an imaginary sphere with center on the X axis in the middle of the core material. Figure l(d) shows the intersection of a plane parallel to the X-Y axis with the source at Z.

Figure 2. The calculated Transmission and Estimated Error for a nickel encapsulated Pu-Be cylindrical source for various specified subdivisions of the Z and φ integrals, NZ and NPHI. The solid line joins points for which NPHI equals 10 and the dashed line joins points for which NZ equals 10. Two points are shown for both NPHI and NZ equal to 5 and 15.

REFERENCES

- 1. Spiegel, Jr., V. and Murphey, W. M.: Metrologia (1971) (In press).
- 2. Murphey, W. M.: Nuclear Instr. Methods 37, 13 (1965).
- 3. Mosburg, Jr., E. R.: J. Research Natl. Bur. Standards 62, 189 (1959).
- 4. Scarborough, J. B.: <u>Numerical Mathematical Analysis</u>, Baltimore: The Johns Hopkins Press: London: <u>Humphrey</u> Milford Oxford University Press 1930; pp. 120 and 155.

Latest developments in the subject area of this publication, as well as in other areas where the National Bureau of Standards is active, are reported in the NBS Technical News Bulletin. See following page.

3

HOW TO KEEP ABREAST OF NBS ACTIVITIES

Your purchase of this publication indicates an interest in the research, development, technology, or service activities of the National Bureau of Standards.

The best source of current awareness in your specific area, as well as in other NBS programs of possible interest, is the TECHNICAL NEWS BULLETIN, a monthly magazine designed for engineers, chemists, physicists, research and product development managers, librarians, and company executives.

If you do not now receive the TECHNICAL NEWS BULLETIN and would like to subscribe, and/or to review some recent issues, please fill out and return the form below.

Mail to: Office of Technical Information and Publications National Bureau of Standards Washington, D. C. 20234
Name
Affiliation
Address
City State Zip
Please send complimentary past issues of the Technical News Bulletin.
Please enter my 1-yr subscription. Enclosed is my check or money order for \$3.00 (additional \$1.00 for foreign mailing). Check is made payable to: SUPERINTENDENT OF DOCUMENTS.
TN 576

U.S. DEPT, OF COMM.				
BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBS-TN-576	2. Gov't Accession No.	3. Recipient's	s Accession No.
4. TITLE AND SUBTITLE			5. Publicatio	n Date
Computer Code for	the Calculation of Ther	mal Neutron	May 19	71
Absorption in Sphe Sources	erical and Cylindrical N	leutron	6. Performing	Organization Code
7. AUTHOR(S) V. Spiegel, Jr. ar	nd W. M. Murphey		8. Performing	Organization
9. PERFORMING ORGANIZATIO	ON NAME AND ADDRESS		10. Project/T 5030	ask/Work Unit No. 220
DEPARTMENT WASHINGTON,	OF COMMERCE D.C. 20234		11. Contract/	Grant No.
12. Sponsoring Organization Nam Nuclear H Institute	e and Address Radiation Division e for Basic Standards		13. Type of R Coyered Final	eport & Period
National Washingto	Bureau of Standards on, D.C. 20234		14, Sponsorin	g Agency Code
5. SUPPLEMENTARY NOTES				
6. ABSTRACT (A 200-word or 1	less factual summary of most significant i	formation If docume	nt includes a s	ignificant
bibliography or literature sur	vey, mention it here.)	normation. If docume	ne merudes a s	ignificant
A compute	er code has been writter	In FORTRAN	TV for	
the calculation	on of thermal neutron at	sorption in	spherica	ז
and cylindrica	al neutron sources. The	formalism c	f the ca	1-
culation, the	structure of the comput	er code, a l	isting o	f
the code, and	some sample results are	presented.	The com	-
parison of the	e results of this calcul	ation to exp	eriment	
		The second second		
appears in Met	trologia 7, No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia <u>7</u> , No. 1, 34-38	(1971).		
appears in Met	trologia 7, No. 1, 34-38	fate bath ca	libratio	n of neutron
appears in Met 7. KEY WORDS (Alphabetical of Neutron; neutron s sources.	order, separated by semicolons) Standards; manganous sul	fate bath ca	libratio	n of neutron
appears in Met 7. KEY WORDS (Alphabetical of Neutron; neutron s Sources. 18. AVAILABILITY STATEMEN	trologia <u>7</u> , No. 1, 34-38 order, separated by semicolons) standards; manganous sul	fate bath ca	libratio	n of neutron 21. NO. OF PAGES
appears in Met ^{17.} KEY WORDS (Alphabetical of Neutron; neutron s Sources. ^{18.} AVAILABILITY STATEMEN	order, separated by semicolons) Standards; manganous sul	fate bath ca	libration Y CLASS PORT)	n of neutron 21. NO. OF PAGES 10
appears in Met ^{17.} KEY WORDS (Alphabetical of Neutron; neutron s sources. ^{18.} AVAILABILITY STATEMEN [X] UNLIMITED.	trologia <u>7</u> , No. 1, 34-38 order, separated by semicolons) standards; manganous sul	fate bath ca	libration Y CLASS PORT)	n of neutron 21. NO. OF PAGES 40
appears in Met 77. KEY WORDS (Alphabetical of Neutron; neutron s Sources. 18. AVAILABILITY STATEMEN [X] UNLIMITED.	order, separated by semicolons) Standards; manganous sul	fate bath ca 19. SECURIT (THIS RE UNCL ASS 20. SECURIT	libration Y CLASS PORT) SIFIED	n of neutron 21. NO. OF PAGES 40
appears in Met appears in Met 7. KEY WORDS (Alphabetical of Neutron; neutron s Sources. 18. AVAILABILITY STATEMEN [X] UNLIMITED. [] FOR OFFICIAL DI TO NTIS.	order, separated by semicolons) Standards; manganous sul	fate bath ca 19. SECURIT (THIS RE UNCL ASS 20. SECURIT (THIS PA	libration Y CLASS PORT) SIFIED Y CLASS GE)	n of neutron 21. NO. OF PAGES 40 22. Price
appears in Met appears in Met 17. KEY WORDS (Alphabetical of Neutron; neutron s Sources. 18. AVAILABILITY STATEMEN [X] UNLIMITED. [J] FOR OFFICIAL DI TO NTIS.	trologia <u>7</u> , No. 1, 34-38 order, separated by semicolons) standards; manganous sul IT STRIBUTION. DO NOT RELEASE	fate bath ca 19. SECURIT (THIS RE UNCL ASS 20. SECURIT (THIS PA	libratio Y CLASS PORT) SIFIED Y CLASS GE)	n of neutron 21. NO. OF PAGES 40 22. Price 35 cents
appears in Met appears in Met 7. KEY WORDS (Alphaberical of Neutron; neutron s Sources. 18. AVAILABILITY STATEMEN [X] UNLIMITED. [] FOR OF FICIAL DI TO NTIS.	brologia <u>7</u> , No. 1, 34-38 order, separated by semicolons) standards; manganous sul IT STRIBUTION. DO NOT RELEASE	fate bath ca 19. SECURIT (THIS RE UNCL ASS UNCL ASS UNCL ASS	libration Y CLASS PORT) SIFIED Y CLASS GE) SIFIED	n of neutron 21. NO. OF PAGES 40 22. Price 35 cents

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$9.50; foreign, \$11.75*.

Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

• Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

Superintendent of Documents Government Printing Office Washington, D.C. 20402

NONPERÍODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

NBS Special Publication 305, Supplement 1, Publications of the NBS, 1968-1969. When ordering, include Catalog No. C13.10:305. Price \$4.50; foreign, \$5.75.

U.S. DEPARTMENT OF COMMERCE

WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE