NBS TECHNLCAL NOTE 568

 ICATION
Simulation of Air Traffic Control Radar Beacon Code Assignnment Plans

Final Report

U.S. ARTMENT OF MMERCE National Bureau of

TECHNICAL NOTE 568

ISSUED MARCH 1971
Nat. Bur. Stand. (U.S.), Tech. Note 568, 76 pages (Mar. 1971) CODEN: NBTNA

Simulation of Air Traffic Control Radar Beacon Code Assignment Plans

Final Report

R. D. Elbourn
Information Processing Technology Division Center for Computer Sciences and Technology

and
Judith F. Gilsinn Operations Research Section Applied Mathematics Division

National Bureau of Standards Washington, D.C. 20234

Sponsored by the Department of Transportation Federal Aviation Administration Inter-agency Agreement DOT-FA69WAI-162

> NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

1. Introduction. 1
2. The Simulation Model. 4
3. Traffic Statistics. 8
4. Center Assignment Plan. 11
5. Master Assignment Plan. 23
6. Airline Assignment Plan 29
7. Altitude Strata Assignment Plan 33
8. Directional Assignment Plan 35
9. Fixed Code Assignment Plan. 36
10. Summary 37
Appendix A. Center-to-Center Flight Model 41Appendix B. On Simulation Strategies and SimulationProgramming Languages47
Appendix C. Traffic Flow Data. 51
LIST OF FIGURES
Figure 1. Duration of inter-center flights. 12
Figure 2. Duration of flights within the same center. 13
Figure 3. Regional airlines that could share a code bank. 31
Figure 4. Route map between the 21 airports 40
Table 1. Operations by centers 9
Table 2. Number of aircraft with beacon codes in each center on the hour 10
Table 3. Maximum number of aircraft with beacon codes in each center during each hour 10
Table 4. Distribution of duration of flights 14
Table 5. Three center assignment plans 14
Table 6. Center assignment plan with 700 codes for inter- center flights assigned by random selection 18
Table 7. Master assignment plan with codes returned at each handoff. 26
Table 8. Master assignment plan with codes returned only at
arriva1 27
Table 9. Flights of regional airlines in the 21 centers 28
Table 10. Use of same centers by regional airlines 30
Table 11. Comparison of code assignment plans 38
Table 12. Analysis of local flights 44
Table 13. Analysis of local flights 45
Table 14. Analysis of local flights (concluded) 46
Table 15. Departures from, arrivals at, and handoffs to each
center by hours. 52

Simulation of Air Traffic Control Radar
Beacon Code Assignment Plans
Final Report
R.D. Elbourn and J.F. Gilsinn

Abstract

In the Air Traffic Control Radar Beacon System transponders in the aircraft use one of 4096 identity codes when replying to interrogation from the Secondary Surveillance Radar. Two types of plans for assigning identity codes to aircraft were tested by simulating in a digital computer a peak day's IFR traffic in the USA. In one type each Air Route Traffic Control Center assigns codes independently of all the others, while in the other type a single master center makes all the code assignments for the USA. Four other types of plans are discussed, and an assignment plan of mixed type is proposed for further study. The strategy of simulation and the use of the SIMSCRIPT language are discussed in an appendix.

Key words: Air traffic control; beacon code assignment; digital simulation; radar beacon system.

1. Introduction

The primary, skin-reflection radar used for air traffic control is supplemented by a Secondary Surveillance Radar or Air Traffic Control Radar Beacon System (ATCRBS), which employs radar beacon transponders in the aircraft. Interrogation from the ground by the proper signal causes the transponder to reply with a special pulse sequence that is one of 4096 discrete identification codes. If instrument flight rule (IFR) traffic in the USA triples by 1980, as is predicted, there will be many more aircraft flying IFR in the USA during a busy hour than there are beacon codes. Thus arises the problem of how to assign codes to aircraft so that the same code can be used simultaneously by
several aircraft in the USA, yet two aircraft using the same code will not come into the same area and have their identities confused. This report describes a study of various radar beacon code assignment plans by using a digital computer to simulate their operation on a peak day's IFR traffic in the USA.

For human recognition a beacon code is represented by four octal digits in the range 0000 to 7777. A pilot can set his transponder to any beacon code just by flipping four eight-position thumbwheels. Nevertheless, it is desirable to minimize code changes in flight because each change requir es another controller-to-pilot communication, and there is always a chance of turning to a wrong code.

By 1973 a computer-based semi-automatic system for air traffic control is expected to be installed in most large and medium enroute and terminal ATC facilities. In such a system a computer uses radar data to track each aircraft under control and files the data on each aircraft under a unique track number. The beacon code that accompanies a secondary radar reply is not normally of concern to the controller, but is used by the computer to find directly the number of the track that should be updated.

To appreciate how much computer work the beacon code saves, one might recall that the largest single task of the computers in the SAGE air defense system was correlating new radar returns with the proper tracks. Now what happens to this system if two aircraft with different track numbers have the same beacon code? The computer may start to update the wrong track, but the new position coordinates will usually be so different from the old that it will be apparent that this
is the wrong track, and the computer should look for another track having the same beacon code. Only when the two tracks cross in nearly the same position should identity be in danger of interchange. However, because there is some burden on the computer in rejecting wrong correlations, all the code assignment plans considered in this study have ıncorporated the conservative rule that no two aircraft may use the same beacon code within the area controlled by one Air Route Traffic Control Center (ARTCC). This rule keeps beacon codes as well as track numbers unique within the area served by a single computer.

This computer may receive data from a radar that is sited near the boundary between two control areas, so. that it looks into both areas. Such a radar may well see two aircraft, one in each area, with the same beacon code. We assume that in this case the computer will use the geographical separation of the targets.to decide as described above which radar return comes from the aircraft it is tracking.

Code plans in this study are all intended for use in the semiautomatic system. In Section 7 there is some discussion of compatibility with the present 64-code manual system, but these two systems use codes for completely different purposes. In the manual system beacon codes permit the selective display of targets by classes such as arriving aircraft, departing aircraft, or aircraft in the high altitude sector. They are not used for individual identity. The semi-automatic system does not need to get this classification information from the beacon code; it has the information in the computer's file record and incorporates it in the alphanumeric display.

Another rule, adopted for all simulations after the initial phase of this study, is that beacon codes are assigned to flights 30 minutes before departure. This, however, is an adjustable parameter in the computer programsa
2. The Simulation Model

The problem of generating a representative sample of air traffic for testing a code plan was solved by the FAA's giving to NBS in April 1969 a magnetic tape called a Peak Day's IFR Traffic Tape for the USA. This tape describes 31,598 flights by giving the following flight plan data on each:
> 1. Aircraft identity
> 2. User class; ioe。

> Air carrier

> General aviation, or Military
3. Aircraft type
4. True airspeed
5. Departure airport
6. Flying altitude
7. Destination airport
8. Departure time

Notice that in this usage a flight lasts only from take-off to landing. The continuation after an intermediate stop is another flight.

Because we do not have a peak day traffic tape for the projected traffic of 1980 , the 1969 traffic is used, but code assignment plans are sought that will work with many fewer than 4096 codes,
in fact fewer than 1000. It will be shown that the plans we simulate require a number of codes proportional to the traffic served; hence this policy leaves room for at least a three times increase in traffic as well as the reservation of some codes by the military. The ratio of the number of aircraft served to the number of codes used is an important measure of goodness in an assignment plan.

Instead of describing the complete airways structure of the USA within the simulation model and routing the flights via the airways, it was considered adequate to use straight line flight paths from the departure airport to the destination airport. Rather than true great circles the paths of simulated flight are straight lines on a flat map. The map projection is Lambert Conformal Conic with standard parallels at 33° and 45° north latitude. Thus it became necessary to look up the latitude and longitude of each airport mentioned on the Peak Day Tape and to convert these into x, y map coordinates. Places were omitted in the following circumstances:

1. The identifier recorded on the tape was not in the list of location identifiers.
2. The airport was outside the contiguous 48 states.
3. The location was an airways intersection rather than an airport.
4. The airport was not listed in either the IFR-or VFR-Supplements (DOD Flight Information Publication (Enroute)).
5. The airport was not on a list supplied by the FAA and had fewer than 10 operations on the Peak Day Tape.

The result was a list of 1113 airports and 27,692 flights between these airports. These flights were recorded on the exogenous events tapes used to drive the simulation programs. International flights are not included but in comparison with domestic flights their volume is small.

At the start of the simulated day there should be a representative number of flights already in progress, otherwise it would take several hours for traffic to build up to its proper density, and during these early hours there would be too few handoffs between control centers and too few arrivals at destinations. The end of the simulated day occurs at the same hour as the beginning, so the most obvious solution is to record the status of those flights in progress at the end of the day, make their times 24 hours earlier, and preload them into the system as flights in progress at the start of the day. Thus the events of a simulated day are treated as one complete cycle of a daily recurring sequence.

Since the Peak Day Tape gives only the departure time of a flight, the times of arrival at subsequent points are computed by using as ground speed the value reported for true airspeed. In a few cases this value is zero, so 500 knots is used instead. When the destination of the flight is the same airport from which it departed, a duration of one hour is assumed.

The boundaries of the control areas of the 21 ARTCC's are described to the computer by the coordinates of about 300 corner points. Latitudes and longitudes of the corners were scaled from the enroute high altitude US jet route wall planning charts of 3 April 1969 and were converted to x , y map coordinates. The problem of finding where a path of flight
crosses the boundary of a center is solved as follows. A new system of x, y coordinates is defined by shifting the origin of coordinates to the departure airport and rotating the axes until the positive x-axis points to the destination airport. The new y-coordinate of a point is thus its distance (positive to the left) from the path of flight. Given that the flight is in center area A, the new y-coordinate of each boundary point of A is computed point-by-point around the boundary in clockwise sequence. If two successive boundary points have new y-coordinates with opposite signs, then they lie on opposite sides of the flight path, so the path crosses the linear boundary segment between them. The crossing point is then easily computed. Because the shapes of the center boundaries are not necessarily convex, a straight path of flight may cross the boundary of one center 2,4 , or more times. A11 crossings are found, but only the nearest one in the forward direction of flight is retained. The time of arrival at this point becomes the time of handoff to the next center. Of course, if the destination airport is nearer than the nearest boundary crossing ahead, then the flight will terminate without another handoff.

The curious irregularities of some center boundaries were doubtless introduced to put the crossings of busy airways in convenient places, but they introduce some adventitious crossings of the straight-line flight paths. For example, the line from New York's Kennedy Airport to Los Angeles International crosses from Indianapolis Center into Chicago, back into Indianapolis, and again into Chicago before reaching Kansas City.

Before any code assignment plans were simulated, some runs were made to get statistics on how the traffic sample is distributed in time and space. Table 1 shows the number of departures from, handoffs to, and arrivals at each center area during the 24 hours. Appendix C gives for each center area and for each hour of the day the number of departures to each center area, the number of arrivals from each center area, and the number of handoffs from each adjacent center.

There are many small discrepancies on the order of 10 units between these data and corresponding data obtained later from the code plan simulation runs. These may be the result of taking the hourly data summaries about 3 seconds later in the flight statistics runs. Whatever their cause the discrepancies are much too small to affect any conclusions; therefore repeating runs in an attempt to get exact agreement was not considered worthwhile.

Table 2 shows the number of aircraft with beacon codes in each center on each hour during the day. The numbers include those aircraft that have been given a code because they will depart within a half hour. The total number of codes in use in the USA reached 2593 at both 20:00 and 21:00 GMT, while the number in the Chicago center reached 244 at 24:00 GMT. The maximum numbers of codes required will in general be reached within rather than on the hours. These maxima are given in Table 3. Chicago center needed 260 codes sometime between 23:00 and 24:00 GMT. Canada appears as a center because some straight-line flights between points in the USA pass over Ontario, although no flights originating or terminating in Canada were included.

Table 1. Operations by centers

Center	Departures from	$\begin{gathered} \text { Handoffs } \\ \text { to } \end{gathered}$	$\begin{gathered} \text { Arrivals } \\ \text { at } \end{gathered}$
Albuquerque	717	811	769
Atlanta	1688	1609	1651
Boston	1619	687	1434
Chicago	2701	2227	2746
Cleveland	2413	2753	2302
Denver	614	1058	601
Fort Worth	1675	1294	1674
Great Falls	265	155	276
Houston	1638	67.1	1592
Indianapolis	1520	1947	1474
Jacks onville	1162	1358	1108
Kansas City	1276	1262	1318
Los Angeles	1783	874	1764
Memphis	757	1228	826
Miami	905	463	884
Minneapolis	777	423	759
New York	2064	2596	2571
Oakland	1131	617	1168
Salt Lake City	301	502	305
Seattle	748	177	702
Washington	1938	1563	1768
Tota 1s	27692	24261	27692

Table 2. Number of aircraft with beacon codes in each center on the hour

CENTER
80STON
NEW YOKK
WA5HINGTON
JACK50.VVILLE
MIAMI
canada
CLEVELAND
A ILANTA
INUIANAPOLIS
CHICAGU
MEMPHI \triangle
HOUSTO:
MINNEAPOLIS
KANSAS CITY
FORT WURTH
GREAT FALL5 DENVER
albuqulrgue
5ALT LaKE CY
5EATTLE
oAKLAN,
lo5 Andeles
total

54	49	45	25	13	9	6	9	3	14	75	94	99	109	108	96	90	102	118	110	104	93	90	71
100	89	51	46	51	28	13	8	16	18	84	155	167	189	174	151	141	140	151	169	159	156	156	120
112	71	58	19	28	19	7	11	7	24	47	117	164	190	174	167	157	149	184	161	146	135	129	128
75	60	46	46	21	13	13	A	11	13	8	34	59	138	134	116	132	116	148	145	143	131	122	113
31	37	52	32	20	17	9	8	7	4	18	37	76	87	59	66	64	85	95	78	80	76	58	60
2	3	0	0	0	0	0	1	0	1	ก	0	2	$?$	3	5	2	4	4	$?$	0	0	0	1
112	102	64	66	46	28	25	29	20	31	ค1	173	194	205	193	158	159	203	217	210	202	185	168	140
123	92	54	51	42	20	13	10	16	14	18	51	111	115	122	137	155	156	159	172	167	172	141	139
106	70	57	43	36	17	18	4	9	22	16	60	124	148	146	128	129	130	11?	172	189	157	147	1.35
171	143	103	141	64	35	29	39	31	31	25	51	148	189	215	189	186	207	200	227	201	233	23.3	244
52	51	39	24	23	9	11	7	4	6	14	39	61	85	100	96	95	80	84	90	102	87	90	61
91	60	64	45	34	14	7	11	4	4	5	14	52	125	146	174	166	165	139	166	157	163	156	130
30	23	32	17	11	8	8	4	6	9	19	39	78	62	59	58	68	61	69	53	49	51	59	58
106	64	67	46	39	31	15	25	27	15	8	23	62	118	124	118	106	128	131	133	161	136	145	10 A
100	79	46	45	30	22	18	20	11	9	17	58	117	133	167	204	175	192	197	207	202	186	165	129
12	12	8	10	54	53	15	31	28	19	19	6	3	5	10	17	22	24	11	12	20	24	10	14
87	68	53	40	24	29	23	27	35	19	11	15	29	49	50	81	95	1 ? 0	83	78	86	84	84	97
60	63	58	43	35	21	22	19	14	14	11	8	11	27	79	106	101	94	97	99	122	120	93	90
34	39	29	24	24	11	9	12	6	11	12	5	4	7	25.	36	57	48	46	36	47	41	37	39
36	39	39	25	23	25	21	24	35	25	21	19	17	33	52	60	57	49	51	47	36	44	52	46
77	91	63	56	42	36	25	13	8	11	4	6	18	52	93	114	126	86	91	85	77	71	84	96
153	111	97	$8 ?$	79	62	55	34	20	24	13	14	16	32	74	122	136	148	130	141	150	118	129	137

Table 3. Maximum number of aircraft with beacon codes in each center during each hour

CENTER
BOSTON
NEW YOikK
WA5 HIIJUTON
JACK50IV ILLE
MIAMI
CANADA
CLEVELITIN
aTLANTA
ATLANTA
INDIANAPOLI5
CHICAG,
MEMPHIS
HOUSTOM
MINNEAPOLI5
KANSA5 CITY
FORT WURTH
GREAT FALL5
DEivVER
ALbu@ulRque
5ALT LAKE CY
5EATTLE
oakland
LO5 ANGELE5
Maximum
$\begin{array}{llllllllllllllllllllllllllll}\text { GiMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 27 & 23 & 24\end{array}$

7	59	57	46	25	14	14	9	9	14	77	97	104	115	116	110	100	116.	122	132	116	115	100	92
120	110	91	56	53	51	29	16	17	18	84	169	175	192	196	179	164	141	163	179	191	165	163	161
142	112	77	59	40	30	19	14	13	24	51	119	168	193	190	185	167	165	187	190	182	153	151	139
116	76	60	53	51	28	13	15	11	14	13	35	62	138	150	138	137	140	154	181	147	162	13 ?	126
61	41	53	53	32	20	18	10	9	7	18	39	76	89	91	70	67	91	104	95	87	84	77	65
4	4	4	1	1	1	0	1	2	1	1	3	2	6	6	5	5	5	7	6	3	2	7	7
153	126	104	67	75	50	29	34	32	31	81	185	198	214	205	196	170	209	217	218	212	205	198	173
145	131	92	66	53	47	21	13	18	20	18	60	112	127	132	154	169	168	164	174	179	203	180	156
139	111	79	60	61	36	27	21	11	23	24	61	125	155	170	149	135	135	142	174	183	189	169	152
247	171	1.43	144	141	67	37	43	43	38	34	52	153	192	230	229	208	213	207	237	235	237	240	260
71	55	51	39	28	27	12	11	7	7	14	39	61	85	106	102	107	98	92	107	107	107	97	96
130	93	69	64	47	34	16	11	13	7	8	14	52	125	165	174	192	176	176	167	171	172	176	158
58	34	34	36	17	12	9	8	6	8	19	39	78	81	65	66	75	75	72	74	57	56	66	61
121	113	79	76	46	40	31	28	27	29	16	24	63	122	135	137	124	129	139	148	165	170	147	146
130	100	84	55	49	33	22	26	20	11	21	60	117	141	158	206	209	193	206	208	?28	209	186	166
18	14	13	14	54	57	53	3 3	35	30	22	19	10	7	12	18	23	24	25	12	23	25	24	16
108	90	69	57	40	29	29	27	42	35	21	15	29	53	54	83	101	124	120	85	98	97	89	98
90	69	73	58	45	35	29	24	21	17	18	11	15	27	79	115	113	104	104	100	122	133	120	96
47	39	41	29	29	24	15	15	12	11	16	12	4	9	26	37	57	61	52	46	48	58	48	40
52	53	39	41	32	25	25	26	37	37	30	25	22	35	54	63	72	67	51	57	51	47.	54	54
97	91	101	66	58	47	36	27	13	13	11	6	18	53	93	118	126	127	91	93	85	80	86	103
160	153	119	105	84	83	63	60	35	31	26	18	20	32	79	127	139	159	150	150	179	152	131	139
247	71	43	144	141	3	63	60	43	38	84	85	198	14	30	229	209	213	217	237	235	3		60

MAXIMUM

132
196
193
181
104
7
218
203
189
260
107
197
81
170
228
57
124
133
61
72
127
179
260

To study the utilization times of codes one wants data on the distribution of the durations of flights. Flights that originate and terminate at the same airport are a special class, because they have been arbitrarily assigned a duration of one hour. In some code plans it is desirable to treat flights that originate and terminate in the same center area differently from flights that must be handed off because they originate and terminate in different center areas. For these two classes flights were tabulated by 10 -minute intervals of duration from zero to 480 minutes. Figures 1 and 2 show the cumulative distribution curves for these two classes plotted with a normal probability scale for the cumulative percentage of flights and a logarithmic scale for the duration of flight. The near linearity of these curves shows that the distributions are approximately log-normal. Unfortunately 10 minutes is too long an interval to describe well the shorter flights within a single center area, but the only substantial departure from log-normality is that the flights within a single center area have too few flights of 120 minutes or longer duration. The flights that return to the same airport are counted here as having zero duration. Table 4 gives the means and some selected percentile points for these distributions。

4. Center Assignment Plan

In a center assignment plan each ARTCC has available to it the complete set of radar beacon codes. It keeps a record of which codes are in use within its control area, and it issues each originating flight an unused code. A flight coming into a center's control area from outside may retain its code if this code is not in use in this area. Otherwise its code is changed to an unused one. Thus

FLIGHT DURATION-MINUTES (LOGARITHMIC SCALE)

FIGÚRE 1. .Duration of inter-center flights

FLIGHT DURATION-MINUTES

FIGURE 2. Duration of flights within the same center 13

Table 4. Distribution of duration of flights

	Within one center, minutes	Between different centers, minutes
Means:	20	68
Percentiles:		
1	8	10
10	16	20
25	27	30
50	81	77
90	13,496	139
No。of Flights		275

Table 5. Three center assignment plans, 25,646 flights, 800 codes

	Issue from top, return to bottom	Issue from top return to top	Issue by random selection
Handoffs	18,986	18,986	18,986
Code changes	3,200	10,976	2,469
Percent changes	17%	58%	13%

each center prevents duplication of codes within its control area, but use of the same code in different control areas is freely permitted. There is no communication between centers to reserve codes for extended flights。

The first suggestion for a center assignment plan required each center to keep a list of its codes that are not in use, to issue codes from the top of the list, and to return them to the bottom. An alternative is to return codes to the top of the list. In the preliminary phase of this project both these plans were simulated using a simplified model of air traffic movements that is described in Appendix A of this report. But neither plan performed as well as a third plan in which codes were issued in random sequence. The comparative results when 800 codes were available to each center are shown in Table 5.

At the start of simulation all 21 code 1 ists were in the natural sequence $1,2,3, \ldots$. Because all centers began issuing the same codes, the probability of code conflict at handoff was high. When codes were returned to the bottoms of the lists, the code lists gradually became randomly shuffled so that performance tended toward that of the random plan. However, when codes were returned to the tops of the lists, no center could get further into its list than the maximum number of codes in use at one time. Most of each list was never used, and all centers continued using only the lowest numbered codes, so conflicts were frequent.

Another disadvantage of both plans that issue codes from a list or stack is that their implementation requires an excessive amount of computer memory. For 800 codes and 21 centers they require (800)(21) $=$ 16,800 words. Each word contains two addresses, one pointing to the preceding code in the stack and one pointing to the succeeding code. An attempt to run the simulation with 1100 codes aborted with memory overflow. The random assignment plan needs only one bit for each code and each center to tell whether or not that code is in use in that center.

The idea behind the better-working random assignment plan is the following. Consider one aircraft coming into a new center. One wishes to minimize the probability that its code is in use in this center. But if the center had no prior knowledge of which particular code this aircraft is using, it could do no better than to make the probability of use equally small for all codes. In other words the codes in use should be randomly scattered throughout the space of available codes. When a code is needed, the computer makes a random draw from the whole complement of available codes by invoking a pseudo-random number generating routine. If this code is in use, another is drawn until an unused code is obtained.

Reflection on this plan suggested a further improvement. Recall that the traffic sample divides about equally between local flights that do not leave the center area in which they originate and nonlocal flights that terminate in other centers. The local flights can be served without any code conflicts at all if each center uses the same bank of only about 100 codes for them. The remaining, say 700 , codes can then be used in the random assignment plan for the nonlocal flights.

Because there are almost as many codes available for many fewer flights, many fewer code changes will be required.

The particular code assigned to a local flight never has any effect in the simulation; therefore the program does not assign any codes to local flights. Instead it counts the number of local flights in progress (including those that will start within one-half hour) in order to learn how large a code bank needs to be reserved for local flights.

Table 6 shows the hour-by-hour and center-by-center results of simulating the center assignment plan using 700 codes for the nonlocal flights and issuing codes one-half hour before departure. The overall summary results are:

Handoffs
Actual codes changed
percentage 9.76%
Expected code changes 2,727
percentage 11.08%
Most local flights in one center 116

The numbers of code changes that actually occur are random variables. They are sums of the code changes that occur on individual handoffs and each of these depends on the particular "deal" of the random code assignments. At a particular handoff let n be the random variable that equals 1 if a code change is required and equals 0 if a change is not required. If p is the probability that a code change will be required, then the expectation value of n is

$$
E(n)=1 \cdot p+0 \cdot(1-p)=p,
$$

$\begin{array}{rr}1 & 7 \\ 0 & 0 \\ 0 & 0 \\ ? & \end{array}$
7
0
0
3
8
0
0
3
$\begin{array}{ll}6 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
7
0
0
0 19
0
0
13 26
2
1
3

44
2
3
3

6 | | 46 |
| :---: | :---: |
| 3 | 3 |
| 4 | 4 |
| | 38 | 61

5
6
3
 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrr}110 & 55 & 33 & 60 & 50 & 23 & 15 & 11 & 12 & 8 & 10 & 16 & 54 & 96 & 110 & A 6 & 90 & 103 & 91 & 132 & 102 & 130 & 102 & 109 \\ 12 & 11 & 2 & 3 & \frac{1}{2} & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 9 & 13 & A & 11 & 10 & 10 & 24 & 18 & 19 & 13 & 15 \\ 14 & 7 & 2 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 11 & 12 & 11 & 15 & 15 & 12 & 20 & 17 & 24 & 15 & 15 \\ 41 & 39 & 37 & 25 & 14 & 6 & 7 & 3 & 3 & 3 & 6 & 20 & 16 & 45 & 49 & 50 & 45 & 57 & 59 & 61 & 58 & 61 & 57 & 54\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrr}110 & 55 & 33 & 60 & 50 & 23 & 15 & 11 & 12 & 8 & 10 & 16 & 54 & 96 & 110 & A 6 & 90 & 103 & 91 & 132 & 102 & 130 & 102 & 109 \\ 12 & 11 & 2 & 3 & \frac{1}{2} & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 9 & 13 & A & 11 & 10 & 10 & 24 & 18 & 19 & 13 & 15 \\ 14 & 7 & 2 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 11 & 12 & 11 & 15 & 15 & 12 & 20 & 17 & 24 & 15 & 15 \\ 41 & 39 & 37 & 25 & 14 & 6 & 7 & 3 & 3 & 3 & 6 & 20 & 16 & 45 & 49 & 50 & 45 & 57 & 59 & 61 & 58 & 61 & 57 & 54\end{array}$

56
9
5
4
4

51
61 atLanta
\qquad ACTUAL COOE CHANGLS EAPECTEU CODE CHAINGES LuCAL FLIGHTS

BOSTON
Haivooffs to
Aitual CODE Chantes
EAPECTEO COOE CHAINGES
LUCAL FLIGHTS
Chivago
\qquad
altual cooe chianges
ALPPECTED COUE CHANGES 2
LUCAL FLIGHTS $\begin{array}{rrrrrr}36 & 39 & 30 & 14 & 13 & 13 \\ 3 & 0 & 3 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 42 & 26 & 34 & 27 & 12 & 6\end{array}$

7
0
0
4 $\begin{array}{ll}5 & 2 \\ 0 & 0 \\ 0 & 0 \\ 4 & 5\end{array}$ 3
0
0
9 $\begin{array}{rr}7 & 28 \\ 0 & 2 \\ 0 & 2 \\ 3 & 43\end{array}$ $27 \quad 47$ $47 \quad 43 \quad 3$ 35
0
2
58 $\begin{array}{rr}37 & 35 \\ 3 & 2 \\ 2 & 3 \\ 56 & 60\end{array}$ 42
4
3
67 48
0
4
66 46
5
3
54 3
1
3
50 35
2
2
53 $\begin{array}{rr}2.3 \\ 2 & 5 \\ 2 & 3 \\ 53 & 45\end{array}$ 680
31
41 clevelano

OENVER
HAIVGOFFS TO
ACTUAL COOE CHANGES
ACTUAL COOE CHANGES
EXPECTEU COOE CHAIIGES
LUCAL FLIUHTS
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrr}86 & 65 & 44 & 41 & 21 & 22 & 25 & 24 & 34 & 21 & 14 & 5 & 6 & 13 & 16 & 60 & A 2 & 83 & 71 & 59 & 59 & 72 & 6 A & 67 & 105 A \\ 12 & 7 & 4 & 2 & 2 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 3 & 1 & 3 & 5 & 8 & 8 & 1 & 6 & 7 & 7 & 5 & 85 \\ 10 & 6 & 3 & 2 & 1 & 1 & 1 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 1 & 4 & A & 10 & 9 & 5 & 5 & 7 & 6 & 7 & 89 \\ 17 & 19 & 14 & 12 & 12 & 8 & 6 & 4 & 4 & 1 & 1 & 7 & 7 & 23 & 22 & 24 & 28 & 26 & 24 & 22 & 26 & 21 & 20 & 21 & 8\end{array}$
FOKI WORTH
HANOOFFS TO ALTUAL CODE CHANGES
EAPECTEU CODE CHAIVGES
LUCAL FLIGHTS

jREat FALLS
HAIJUOFFS TO
ACTUAL COOE CHANGES
EMPECTEÍO COOE CHANGES
$\begin{array}{rrrrrrrrrrrr}12 & 9 & a & 9 & 4 & 1 & 2 & 3 & 5 & 3 & 1 & 4 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 4 & 6 & 8 & 50 & 51 & 51 & 29 & 31 & 27 & 20 & 18\end{array}$
LUCAL FLIGHTS
houston
HANOUFFS TO
ALTUAL CODE CHANGES
EAPECTED CODE CHAIVGES
EAPECTED CODE
LJCAL FLIGHTS

INO ANAPOLIS
HANDOFFS TO
ALTUAL CODE CHANGES
EAPECTEO COOE CHANGES
EAPECTEO CODE CHELS
119
14
15
42 $\begin{array}{rrrrrr}72 & 62 & 34 & 66 & 39 & 24 \\ 5 & 6 & 1 & 1 & 1 & 0 \\ 7 & 4 & 2 & 3 & 1 & 1 \\ 36 & 21 & 22 & 20 & 7 & 4\end{array}$
JACKSONVILLE
 ACTUAL CODE CHANGES
EAPECTED CODE CHANGES EAPECTED CODE

KANSAS CITY
MACNOOFFS TO CODE CHANGES
ACTUAL CODE CHANGES
EXPECTED CODE CHAIIGE
EXPECTED CODE
LUCAL FLIGHTS
$\begin{array}{rrrrrrr}75 & 54 & 49 & 62 & 36 & 25 & 11 \\ 9 & 4 & 3 & 3 & 4 & 0 & 0 \\ 8 & 3 & 3 & 4 & 2 & 0 & 0 \\ 31 & 23 & 16 & 10 & 9 & 5 & 3\end{array}$
$\begin{array}{ll}8 & 4 \\ 0 & 0 \\ 0 & 0 \\ 1 & 5\end{array}$
3
0
0
4 11
0
0
14 22
0
1
14 $\begin{array}{rrrrrrrrr}75 & 54 & 64 & 30 & 29 & 21 & 9 & 14 & 20 \\ 12 & 5 & 5 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 5 & 4 & 2 & 1 & 1 & 0 & 0 & 0 \\ 37 & 32 & 26 & 25 & 17 & 11 & 10 & 10 & 9\end{array}$

LOS ANGELES HANODFFS TO
ALTUAL COOE CHANGES
EAPECTED COOE CHAHGES
LUCAL FLIGHTS
MEMPHIS
HANOOFFS TO
ACTUAL COOE CHANGES
ACTUAL COOE CHANGES
EXPECTEO COOE CHANGES
LUCAL FLIGHTS
M1AnI
HANOOFFS TO
ALTUAL COOE CHANGE5
EAPECTEU COOE CHAT,GES
LUCAL FLIGHTS
MINU, EAPOLIS
HANOOFFS TO
ALTUAL COOE CHANGES
altual cooe Changes
Expecteu cooe change
LUCAL FLIGHTS
NEA YORK
HANNOOFFS TO
ACTUAL COOE CHANGES
ACTUAL COOE CHAPGES
EXPEC TEO COUE
LUGAL FLIGHTS
oaklano
HANOOFFS TO
ACTUAL COOE CHANGES
EXPECTEO COOE CHANGES
LUCAL FLIGHTS
SALT LANE CY
HANOUFFS TO
ACTUAL COOE CHAHGES
EXPECTEU COOE CHANGES
LUCAL FLIGHTS
SEAT TLE

WASIIINOTON
 $\begin{array}{llllllllllllllllllllllllllllllllllll}A C T U A L ~ C U D E ~ C H A N G E S ~ & 21 & 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 15 & 15 & 10 & 20 & 10 & 11 & 19 & 6 & 19 & 19 & 6 & 5 & 183 \\ \text { EAPECTEO COOE CHAIGGES } & 14 & 4 & 3 & 1 & 2 & 0 & 0 & 0 & 0 & n & n & 3 & 9 & 14 & 11 & 18 & 12 & 11 & 16 & 17 & 17 & 14 & 16 & 13 & 197\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}\text { EAPECTEO COOE CHAIGGES } & 14 & 4 & 3 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & n & 3 & 9 & 14 & 11 & 18 & 12 & 11 & 16 & 17 & 17 & 14 & 16 & 13 \\ \text { LUGAL FLIGHTS } & 44 & 36 & 26 & 22 & 0 & 5 & 4 & 4 & 1 & 11 & 26 & 37 & 36 & 81 & A 6 & 79 & 58 & 59 & 77 & 69 & 67 & 56 & 35 & 39\end{array}$
and the variance of n is

$$
\sigma^{2}=E(n-p)^{2}=(1-p)^{2} p+(0-p)^{2}(1-p)=p(1-p)
$$

When independent random variables are added, their expected values and variances are additive; therefore, if i denotes the i-th handoff, the expected number of code changes is

$$
\mathrm{E}\left(\Sigma \mathrm{n}_{\mathrm{i}}\right)=\Sigma \mathrm{p}_{\mathrm{i}}
$$

and the variance of the number of code changes is

$$
\sigma^{2}=\Sigma p_{i}\left(1-p_{1}\right)
$$

If the p_{i} tend to be about 0.1 , then the factors $\left(1-p_{i}\right)$ are about 0.9 , so the variance is about 0.9 times the expected number, and the standard deviation is about 0.95 times the square root of the expected number. Thus, if the number of code changes expected in a particular center during a particular hour is 4 one should not be at all surprised to actually observe any number in the range 4 ± 2.

Because the sampling variations are so large, one would like to obtain from the simulation some more stable estimate of the number of code changes to expect. If the codes in use in a center are distributed independently of the code of an incoming aircraft, then the probability that a code change will be required in just

$$
p=\frac{A}{C}
$$

where A is the number of codes in use in the center and C is number of codes in the code bank. Probabilities computed in this way were accumulated to obtain the numbers called "expected code changes" in the tables of results. The numbers of actual code changes are almost always smaller than the "expected code changes" and the total of the actual code changes, 2370 , is less than the expected 2727 by about 7
standard deviations. The thing that is wrong is the assumption that all the codes in use in the center are distributed independently of the code of the entering aircraft.

To see how the assumption of independence may fail to be satisfied, consider a particular flight, say, UA411 entering the Chicago center area from Cleveland. A few aircraft now in the Chicago center may have been in the Cleveland center area while UA411 was there. The codes of these aircraft are certainly not the same as UA411's code because Cleveland would not allow a conflicting code assignmenta The true probability that UA411's code will have to be changed is

$$
\begin{equation*}
p=\frac{A-N}{C-N} \tag{1}
\end{equation*}
$$

where N is the number of aircraft with these nonindependently assigned codes. Subtracting N from the numerator and denominator gives a smaller probability of change. Unfortunately there is no practical way to know the value of N at each handoff and so to compute the true expected numbers of code changes. However, as a first approximation to removing the erroneous bias, one can multiply each number reported under "expected code changes" by the factor $2370 / 272^{3} 7=0.87$.

If the traffic doubles in numbers and we wish to keep the same probability of code change at each handoff, then eq. (1) shows that we have to double the size of the code bank; i.e.

$$
p=\frac{2 A-2 N}{2 C-2 N}=\frac{A-N}{C-N}
$$

Of course the total number of handoffs doubles, and the total number of code changes doubles.

The following variation on the random assignment plan was suggested with a view toward minimizing code changes in flight. It uses 2800 codes for inter-center flights, divided into four banks of 700 codes each. The four banks are assigned to centers like four colors to a map; $i_{a} e$, center areas with a common boundary use different banks. Furthermore it is attempted to avoid repeating the same bank along heavily traveled routes. If the banks are called A, B, C, and D, they are assigned to centers as follows:

D Albuquerque
A Atlanta

A Boston
A Chicago
C Cleveland

B Denver
A Fort Worth

C Great Falls
B Houston

B Indianapolis
C Jacksonville

C Kansas City
C B Los Angeles
D Memphis
D Miami
D Minneapolis
B New York
B Oakland

A Salt Lake City
D Seattle

D Washington, D。C。

The device of using four banks assigned as above was compared by simulation with the use of 2800 codes in a single bank. The results are as follows:
Total handoffs24,261
Expected code changes 681
percent 2. 80%
Actual code changes (1 bank) 507
percent 2.09%
Actual code changes (4 banks) 310
percent 1.28\%
Ratio: 507/310 1.63

Thus it appears that there is an advantage of 1.6 times in the use of four banks in non-adjacent assignments. However, one caution should be noted: if traffic increases by three times, a busy center will contain more than 700 flights in the peak hour. This may still not exhaust the code bank if enough of these flights have codes in other banks because they originated outside this center.

Let us discuss this problem a little further. At most 2618 aircraft have codes at one time, and only somewhat more than half of these are flying between different centers, so 2800 codes are more than enough to give each inter-center flight a unique code. Suppose each center were given a unique code bank proportional to its busy hour departures. Then at this level of traffic every inter-center flight would get a unique code. But when the traffic becomes great enough to exhaust some center's code bank, what code should it issue? It could make a random selection from outside its own code bank, but it just might select a code of its neighboring center into which the flight is about to go. Clearly it would be better to use a code of some remote center. Or better yet, it might consult the flight plan of this aircraft
and use a code from some center remote from any in which this aircraft will fly. Randomization is not an optimum policy when it ignores relevant information.

Now suppose traffic increases much further; say it reaches two or three times the level that each center can accommodate from its own code bank. Now no center really knows what codes any other center is issuing. In this case the random assignment strategy actually becomes optimum.

So at low traffic densities unique code banks are optimum and at very high densities random selection is optimum. It is at intermediate densities that an optimum procedure is complicated and further study is needed.
5. Master Assignment Plan

In a master assignment plan one master control center assigns radar beacon codes for all IFR flights in the United States. All flight plans are sent to the master center, and this center is notified of every handoff and every arrival so that it can update its file of codes in use. With all this information the master center can assign codes so that no two aircraft in the same ARTCC control area ever have the same code. Thus no one is required to change his code in flight unless there is a diversion, or a flight plan is changed in flight. By issuing the same code to different flights whenever they will not enter the same center area, the master center can try to minimize the number of codes required. The simulation to be described found that 465 codes suffice for the 27,692 flights of the peak day's IFR traffic.

The master center keeps track of which codes are in use in each ARTCC. When a flight plan is filed, in this model 30 minutes before departure, the master center first determines in which centers this flight will fly. Then it finds the first code that is not in use in any of these centers and reserves that code for the flight.

This process is accomplished in the computer simulation by reserving one computer word for each code. Within that word each center has its own corresponding bit position in which a 1-bit signifies that that code is in use in that center. When a flight is handed off from a center or terminates in a center, the corresponding 1-bit is reset to 0 .

While analyzing a flight plan the computer generates a mask word that contains a 1 in the bit position of every center in which the flight will fly. It then uses this mask to test the memory words of code number 1 , then number 2 , and so forth until it finds the first word that has 0's everywhere that the mask has a 1. Each of these 0 's is changed to a 1 , and the corresponding code is assigned to the flight.

It may seem wasteful to reserve a code in Los Angeles 30 minutes before the flight will depart from New York, but in order to let some other aircraft use that code in Los Angeles before the flight from New York arrives, one would have to keep track of code reservations by blocks of time. This would multiply the records that must be kept by the number of time blocks used and would correspondingly increase the time spent in searching them. The saving in codes that might result does not seem worth the greater complication of the system.

Table 7 gives the results of simulating the master assignment plan. The number of aircraft with codes reached 2618 in the hours 20:00 to $22: 00 \mathrm{GMT}$, and the highest code in use reached 465 , so on the average each code was serving over $51 / 2$ aircraft.

To achieve its virtues of no code changes in flight and great economy in code use, the master assignment plan requires many communications to the master center. It would save 24,261 messages on the peak day if the master center were not notified of handoffs. A code would then remain reserved in every center area that a flight flies over until the flight ends. Table 8 shows that this scheme increases the number of codes needed from 465 to 547 , which seems a very modest increase considering the communications saved.

One may now ask how many more codes are necessary if the level of traffic doubles. Suppose that these added aircraft are called blue aircraft and that they are served from a second code bank called blue codes. Clearly the blue code bank will have to be the same size as the original code bank, since it serves the same number of aircraft. Thus the number of codes required is no more than twice the original number. If the blue codes are appended to the end of the original bank and the combined bank is treated as one, then when the computer is seeking a code for a blue aircraft it will first scan the original codes, and sometimes it will find one of them available. The increased scanning of the original codes will result in their being used more densely, and so not all the blue bank will be needed. However, it would require additional simulation with a larger traffic sample to find how much slower than linear is the growth of the number of codes required.

Table 7. Master assignment plan with codes returned at each hand-off

Hour GMT	On the hour		Maximum during. preceding hour	
	Aircraft with codes	Highest code in use	Aircraft with codes	Highest code in use
1	1694	463	2161	465
2	1397	463	1726	463
3	1105	459	1420	463
4	913	459	1126	459
5	732	326	926	459
6	502	326	740	326
7	358	326	507	326
8	354	326	380	326
9	318	233	360	326
10	329	165	332	233
11	512	165	521	165
12	1021	303	1040	303
13	1612	341	1612	341
14	2101	388	2101	388
15	2272	392	2328	392
16	2368	409	2454	409
17	2380	409	2480	409
18	2456	428	2485	428
19	2480	454	2547	454
20	2550	463	2599	463
21	2542	460	2618	463
22	2431	460	2618	460
23	2321	465	2465	465
24	2137	465	2350	465

Table 8. Master assignment plan with codes returned only at arrival

Hour GMT	On the hour		Maximum during preceding hour	
	Aircraft with codes	Highest code in use	Aircraft with codes	Highest code in use
1	1694	530	2161	545
2	1397	530	1726	530
3	1105	530	1420	530
4	913	530	1126	530
5	732	492	926	530
6	502	492	740	492
7	358	492	507	492
8	354	492	380	492
9	318	288	360	492
10	329	184	332	288
11	512	184	521	184
12	1021	327	1040	327
13	1612	395	1612	395
14	2101	454	2101	454
15	2272	470	2328	470
16	2368	485	2454	485
17	2380	491	2480	491
18	2456	510	2485	510
19	2480	529	2547	529
20	2550	537	2599	537
21	2542	547	2618	547
22	2431	545	2618	547
23	2321	545	2465	545
24	2137	545	2350	545

Table 9. Flights of regional airlines in the 21 centers

M=Many flights F=Few flights Blank=No flights	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 3 \\ & H \\ & -1 \\ & \vdots \end{aligned}$	d 0 0 0 0 - - 4				Ozark	$\begin{aligned} & \text { H } \\ & \text { 1 } \\ & 0 \\ & \text { E } \\ & 0 \\ & 0 \\ & \dot{\sim} \\ & \hline \end{aligned}$	$$	
Albuquerque Atlanta Boston	F	M	M	M			M	M	M
Chicago Cleveland Denver	F	M M	M M	M	M M F	M F F	F		F
Fort Worth Great Falls Houston	F		M M		F	F		F M	M M
Indianapolis Jacksonville Kansas City		M F	M		F	M M	M M	M F	
Los Angeles Memphis Miami	M	F	F M			M	M	M	F M
Minneapolis New York Oak1and	M	M		F M	M	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	F		
Salt Lake City Seattle Washington	M M	M	M	F		F	M		

"Basic Concept--Each airline is allocated a block of codes which it in turn assigns. Airlines whose routes do not cross or overlap may be allocated the same codes. Non air carrier aircraft will be assigned codes by the FAA," from "Modeling Objectives Pertaining to ATCRBS Code Utilization Mode1," Project 150-534, October 11, 1968, Federal Aviation Administration, Systems Research and Development Service, Systems Analysis Division.

We take "whose routes do not cross or overlap" to mean "whose routes do not enter the same center area." If such airlines are to be found, they are surely among the regional air carriers. Inspection of a route map for nine regional airlines yielded the data in Table 9。 The distinction between many and few flights in a center area is rather subjective, but it was made in the hope that special treatment of a few connections such as Trans Texas from Albuquerque to Los Angeles would eliminate a number of overlaps. In Table 10 an M is entered between two airlines if there is any center area in which both have many flights. An F is entered if in every center area in which both have flights, one or the other has few flights. Finally a 0 means there is no center area in which both have flights. To see which airlines may use the same code bank the data in Table 10 are transformed into compatibility diagrams in Figure 3. Lines in Figure 3a connect airlines that have 0 between them in Table 10. Three airlines, Air West, Mohawk, and Southern are connected in a triangle which indicates that they can share the same code bank with no conflicts. But then the remaining six airlines must each have its own code bank, because

Table 10. Use of same centers by regional airlines

	4 0 0 3 3 4 4 4					$\begin{aligned} & \underset{\sim}{\sim} \\ & \sim \\ & N \\ & N \end{aligned}$			
Air West		0	M	0	F	F	0	0	F
Allegheny	0		M	M	M	M	M	F	F
Frontier	M	M		0	M	M	M	M	M
Mohawk	0	M	0		M	F	F	0	0
North Central	F	M	M	M		M	F	F	F
Ozark	F	M	M	F	M		M	M	M
Piedmont	0	M	M	F	F	M		M	M
Southern	0	F	M	0	F	M	M		M
Trans Texas	F	F	M	0	F	M	M	M	

$$
\begin{aligned}
& M=\text { Many flights } \\
& F=\text { Few flights } \\
& 0=\text { No flights }
\end{aligned}
$$

(a) COMPATIBLE WITH NO CONFLICTING FUGHTS

(b) COMPATIBLE WITH FEW CONFLICTING FLIGHTS

FIGURE 3. Regional airlines that could share a code-bank
there is no compatible pair independent of the first three. Alternatively the same number of code banks, seven, will suffice if Air West shares with Allegheny, Piedmont, or Southern, and Mohawk shares with Frontier, Soutern (if Air West does not), or Trans Texas.

In Figure $3 b$ airlines are connected if they have either a 0 or an F between them in Table 10. This diagrams the relaxed relationship of "compatibility except for a few flights". If four airlines were able to use the same code bank, they would be connected in a quadrilateral complete with both diagonals, but there is no such configuration in Figure 3b. There are nine triangles but every one contains Air West, so only one group of three airlines can use the same code bank. After choosing the three, one can find two independent pairs, then the remaining two airlines must have their own code banks. Five code banks are required in a11. Alternatively four pairs and one singleton' can be found.

Considering that this plan takes care of only nine of the airlines and leaves both the other airlines and all of general and military aviation to use other code banks, one sees that the search for airlines that can use the same code bank is not very profitable.

A more promising approach is to preassign codes to all
scheduled airline flights. The algorithm used in the master assignment plan, described in Section 5, could make these assignments with a nearly minimal number of codes. The value found there, about $51 / 2$ concurrent flights per code, would probably be achieved, except that some allowance must be made for delays. If most delays would be covered by a 30 percent extension of the scheduled flight duration, then about 30 percent more codes would be needed. To incorporate schedule changes the preassignment algorithm should be rerun perhaps once a month. Advantages of preassigning codes are the reduction of communications to obtain and to release codes and the convenience of each scheduled flight's using the same code every day. Newly scheduled flights and flights that are excessively delayed can be assigned codes in the same fashion as nonscheduled flights.
7. Altitude Strata Assignment Plan
"Basic Concept--Codes will be assigned on the basis of aircraft being within certain altitude layers which may be compatible with the 64 code assignment scheme. In addition, certain codes will be used for climb and descent indications." Ibid. If altitudes are partitioned into layers and the code-banks are partitioned in proportion to the populations in these layers, then the center assignment plan or the master assignment plan will work just
as well in each layer as it does in the unpartitioned system. But why do that? First, it does not save any codes because different code banks must be used for different layers. Second, the semiautomatic system has other means to obtain and retain altitude information and displays it right alongside the target symbol. Third, the 64-code assignment scheme is not really compatible with this or with any discrete code plan.

The 4096 -code system uses the beacon code as a unique identifier of an individual aircraft, whereas the 64 -code system like its parent the IFF system uses the code to signify membership in a class. The decoder on the controller's display can select for display any 10 out of 64 classes defined by two of the four octal digits in the reply. Because these classes are arrival, departure, high altitude sector, etc., an aircraft must necessarily change codes as it passes from one phase of flight to another. During the interim when the semi-automatic traffic control system with 4096-code capability is used in some parts of the country, and the manual system with only 64 -code capability is used in others, it would seem simplest to accept a code change at handoff from one system to the other.

To a limited extent the schemes can be superimposed. The other two octal digits allow 64 discrete codes to be associated with each code in the 64 -code system. If there are no more than 64 aircraft in an arrival, departure, or high altitude sector, then each can have a discrete code. But what is the purpose of this unless the aircraft are simultaneously under the surveillance of two observers, one with 4096-code capability and one with only 64? Sixty-four codes is hardly
a large enough number for feeding into a 4096-code system, and the identity is changed on handoff, say, from departure to high altitude sector. The two systems are just different enough to be incompatible.

8. Directional Assignment Plan

"Basic Concept--For example, north/south flights on the west coast, midwest, and east could use the same codes since the flights will not run together. In general, flights which do not share a common center could use the same codes." Ibid。

The last sentence quoted is a basic objective of the algorithm for the master assignment plan described in Section 5. Partitioning the country into groups or tiers of centers will not make this plan work any better and may make it work a little worse by introducing extra constraints. On the other hand partitioning can make the random assignment plan work a little better.

Suppose the country is divided into n parts such that a fraction q of the flights extends into more than one part while a fraction (1-q)/n flies within each part. If the same ratio of codes to aircraft is to be retained, a fraction q of the original codes is needed for the extended flights and a fraction (1-q)/n for the local flights. Two cases yield values:
fraction of original codes needed n
q
1/3
$2 / 3$
3
$1 / 2$
$2 / 3$
It appears that for reasonable numbers the improvement is significant but not spectacular because it is difficult to find divisions with n large without having q large.

The directional corridors are hopefully such a division. But in thinking about air traffic it is easy to think mostly about the long nonstop flights such as New York to Los Angeles or Boston to Miami. It is easy to forget that these are a very small fraction of all the flights. Most flights are much shorter and may be more randomly distributed in direction. For this reason it may be better to group centers into nearly round clumps rather than into long, narrow strips. Because intuition is such a poor guide, it might be worthwhile to count the flights on the peak-day tape that stay within several different partitions of the centers. However, the results might be changed considerably if the scheduled airline flights were taken out by preassigning their codes.

In summary, one can study this plan further, but the results will have a specialized applicability and the benefits will be limited.

9. Fixed Code Assignment Plan

"Basic Concept--Each air carrier aircraft receives a unique code when it enters the commercial service. This code is not changed no matter where the aircraft goes in CONUS. The remaining aircraft are assigned codes under one of the other plans such as 'Center Assignment'." Ibid.

The only question about this plan is whether it is feasible to have so many codes reserved for this one purpose. Projections of the air carrier fleet ${ }^{1}$ are

1968
2452
1980
3600
1995
6700

[^0]Simulations of two assignment plans for radar beacon codes show that the 1969 level of IFR traffic in the USA can be served with only 500 to 800 codes. With these plans the same grade of service for twice as much traffic will require twice as many codes. The two assignment plans are quite different because they satisfy very different constraints in the code handling system. Neither plan is optimum in the sense of giving the best performance possible under the constraints it assumes, but each is rather simple and so establishes a level of performance that can be achieved without much complication.

Table 11 gives comparative results for two variations of each plan. The master assignment plan uses three or four communications with the master center per flight, but requires no code changes in flight and uses the fewest codes. The center assignment plan uses no communications with a master center but requires nearly one code change for every ten handoffs when only 816 codes are used (116 codes are for flights that stay within a single center's area). Using 2916 codes and in particular using different banks in adjacent centers reduces the code changes to only one in 810 handoffs.

A good code assignment plan will probably incorporate features from various simple plans. For example one might include the following:

1. Scheduled air carriers have codes preassigned by the algorithm of the master assignment plan.
2. A single bank of about 100 codes is used by all centers for flights that do not leave that center area.
Table 11. Comparison of code assignment plans

		Master assignment plan		Center assignment plan	
		Codes released at handoff	Codes retained at handoff	1 bank of 700 codes	4 banks of 700 codes
Codes required		465	547	816	2916
Messages to/fro	m master center	79,645	55,384	0	0
Code changes in	flight	0	0	2,370	310
General data: Total flights		27,692			
Handoffs between centers		24,261			
Aircraft with codes, max. 2,618					

3. The remaining codes are divided into unique banks allocated to the different centers in proportion to their traffic.
4. The algorithm to be used when this unique bank is exhausted is subject to further development, but for a start one might try a random choice from the banks of those centers that are not adjacent to the center issuing the code.

Figure 4. Route map between the 21 airports. Distances in statute miles.

At the start of this project, i。e. in Phase I, it was apparent that quite a lot of clerical work would be necessary to put into machine usable form the data required to simulate flights along straight paths from airport to airport with handoff of control at each crossing of a center boundary, One had to look up the latitude and longitude of each airport and of each corner of a center's boundary then convert all these into x, y coordinates in a suitable map projection. It was desired to get preliminary simulation results on some assignment plans before all this was done. The scheme invented for doing this is called the "center-to-center flight model".

In this model just one airport is assumed in each of the 21 air route traffic control areas. All flights originating or terminating in a control area are assumed to originate or terminate at this one airport. Moreover all flights between adjacent control areas are assumed to follow a straight line between their respective airports. Figure 4 , a map of the U.S., shows these 21 airports and the 44 paths between the airports of adjacent centers. Longer flights are assumed to follow a shortest path through this network. Handoff between centers is performed at the midpoint of each connecting path. Flight duration is just the distance divided by the speed except that flights within a single center area are given arbitrarily a duration of one hour.

In Phase II of the project, when the airport-to-airport model was introduced, it became apparent that the two models give rather different results. Figure 1 , on page 12 , shows by the dotted line the
distribution of durations of flights between different centers under the center-to-center model. This roughly parallels the curve for the airport-to-airport model, but there are fewer very short flights, and the overall average duration is 31 minutes longer. Average duration for the airport-tomairport model is 68 minutes, and for the center-to-center model it is 99 minutes. When one adds to each the 30 minutes that codes are issued before departure, the result is that about 32 percent more inter-center flights have codes at any time.

Another notable difference between the models is that 20,776 handoffs occur in the center-to-center model and 24,261 in the airport-to-airport. There appear to be two reasons for the difference. Even though two centers have a boundary segment in common, a straight line between a point in one and a point in the other may go through part of a third center. In the center-to-center model hand-off would be directly between the first two rather than via the third. The second: reason is that the boundaries of the centers are not convex. A straight line may cross the boundary of the same center four or more times instead of just twice. The straight-line flights of the airport-toairport model are probably a little worse in this respect than the actual routes of the airways, but the number of hand-offs in the airport-to-airport model is probably more realistic than the number in the center-to-center.

The Phase I traffic sample was analyzed to see how many flights remained within one center area and how many of those returned to the same airport. This analysis was not repeated in Phase II, because the results are not dependent on the model used. Tables 12-14 give the results from Phase I. These show that of all flights 48 percent stay within one center and 8.9 percent return to the same airport.

Other results from the center-to-center model are not tabulated here, because the corresponding results from the airport-to-airport model are considered more realistic.

Table 12. Analysis of local flights
Flights with origin and destination in the same center

Center	Genera1 Aviation	Air Carrier	Military	Tota1
Albuquerque	13	86	224	323
Atlanta	232	389	92	713
Great Fa11s	16	54	94	164
Boston	321	267	84	672
Cleveland	456	516	34	1006
Fort Worth	152	268	364	784
Washington	169	361	240	770
Denver	68	222	8	298
Houston	299	339	385	1023
Indianapolis	235	317	99	651
Jacksonvi1le	75	122	182	379
New York	354	279	53	686
Los Angeles	395	397	180	972
Miami	82	219	120	421
Memphis	53	169	64	286
Minneapolis	105	210	76	406
Chicago	468	701	1245	
Seattle	134	267	106	507
Oakland	98	232	121	451
Salt Lake Cy	39	67	7	113
Kansas City	175	236	88	499

Table 13. Analysis of local flights
Flights with origin and destination airports the same

Center	Genera1 Aviation	$\begin{gathered} \text { Air } \\ \text { Carrier } \end{gathered}$	Military	Total
Albuquerque	1	3	204	208
Atlanta	22	2	54	78
Great Falls	1	1	87	89
Boston	14	8	55	77
Cleve land	13	2	30	45
Fort Worth	27	2	319	348
Washington	5	2	125	132
Denver	11	6	5	22
Houston	25	6	296	327
Indianapolis	3	0	83	86
Jacks onville	11	4	109	124
New York	8	7	16	31
Los Angeles	4	19	59	82
Miami	2	4	92	98
Memphis	5	5	39	49
Minneapolis	13	1	85	99
Chicago	31	9	50	90
Seattle	22	0	80	102
Oakland	4	3	102	109
Salt Lake Cy	9	0	7	16
Kansas City	7	3	58	68
Total	238	87	1955	2280

Table 14. Analysis of local flights (concluded)
Flights within one center with different origin and destination airports

Center	Genera1 Aviation	$\underset{\text { Air }}{\text { Carrier }}$	Military	Total
Albuquerque	12	83	20	115
Atlanta	210	387	38	635
Great Falls	15	53	7	75
Boston	307	259	29	595
Cleve 1and	443	514	4	961
Fort Worth	125	266	45	436
Washington	164	359	115	638
Denver	57	216	3	276
Houston	274	333	89	696
Indianapolis	232	317	16	565
Jacksonville	64	118	73	255
New York	346	272	37	655
Los Angeles	391	378	121	890
Miami	80	215	28	323
Memphis	48	164	25	237
Minneapolis	92	209	6	307
Chicago	437	692	26	1155
Seattle	112	267	26	405
Oak1and	94	229	19	342
Salt Lake City	30	67	0	97
Kansas City	168	233	30	431
Total	3701	5631	757	10089

Flights with origin and destination in different centers

Tota1	3860	7812	1605	13277
Total F1ights	7799	13530	4317	25646

When this project was undertaken, one view that was expressed held that in the long run there would be a great economy in building a very detailed computer model of the air traffic system that would contain every feature pertinent to almost any simulation one might wish to undertake. The economy was expected in the ease of adapting this model to deal with one or another question one might seek to answer by simulation. Specifically in this project it should be very easy to adapt this model to any code assignment plan that could be devised.

The contrary view was that no computer memory is large enough to store all that detail and no computer fast enough to run such a simulation at a reasonable speed. The imperatives of economy of memory and of computer time require that one write a specific simulation program for each question, and that one include in it no detail not relevant to that question. A simulation should use as simplified and abstract a model of reality as the question posed will allow.

The second view prevailed in the execution of this project, and the writers feel that the results amply justify this decision. Computing time never became a limitation, but staying within memory capacity definitely required shoehorning. The machine used is a UNIVAC 1108 with 65,536 words of memory, but only about 53,000 words are available. to the user. Consider that 2,618 flights are in progress at one time. For each flight one must store at least these data: (1) origin, (2) destination, (3) speed, (4) distance travelled up to this time, and (5) beacon code. These five items were packed into four computer words,
but one must also store an event notice that will call the proper subroutine for the next event in the flight, either a handoff or an arrival. A handoff notice contains an identifier of the flight, identifiers of the two centers involved in the handoff, and two words of scheduling information packed into four words in all. If there are eight words stored for each of $2,618 \mathrm{flights}$, then 20,944 words are used to give this minimal description of the situation. One would like to store a few other things such as the direction cosines of the flight path but the necessity of shoehorning dictated that they be recomputed at each event.

Next are some data tables. For each of 1113 airports one stores x coordinate, y coordinate, and center using 3339 words. For 587 boundary points of centers one stores x, y, and adjacent center, using 1721 words. Four words of results tabulated for each of 21 centers and 24 hours comes to 2016 words. The table to show which codes are in use in which centers might be 700 words. Finally, the SIMSCRIPT system routines, the event routines, and necessary library routines for a typical simulation used 12,341 words. The total of the above is 41,061 words, so there is not much room for additional details.

Unfortunately all this has to be in memory all the time. There is no part that is unused long enough to permit moving it out and back in again. If some assignment plan should exceed memory capacity in spite of shoehorning, the most feasible tactic seems to be to simulate only a 50 percent sample of the traffic by using every other fiight and counting two codes in use for it.

The running time of these simulations was gratifyingly short. Simulating a peak day required only about 10 minutes of computer time. For each of 27,692 flights one record was read from the exogenous events tape, and, on the average, three event routines were performed, a departure, a hand-off, and an arriva1. This averages about 22 milliseconds per flight or only 7 milliseconds per event routine.

Those who urged the very detailed approach to simulation suggested that each aircraft in turn be advanced by one minute's flying time then a search be made to see whether it had crossed a center's boundary. This would have been much slower, possibly 30 times slower. A 10 minute simulation run is fine, but five hours?

The center assignment plan and the master assignment plan work so differently that they require almost completely different programs. The center plan jumps from flight to flight always doing next whatever departure, or handoff, or arrival occurs next in simulated time. In the master plan, however, the master center cannot issue a beacon code for a new flight plan until it has simulated the whole flight to find in which centers it will fly. So the sequence of work in the computer is quite different for the two plans.

What the programmer must rewrite, however, is only about 350 (FORTRAN-1ike) SIMSCRIPT statements. Most of the 12,000 or so words of simulation program in the computer memory are SIMSCRIPT system routines that the programmer never has to write and which are the same for any digital simulation whether of air traffic or anything else. The system dynamically allocates temporary storage for descriptions of flights and for event notices. It stacks event notices in their sequence
of performance and controls the progress of simulated time. It interprets, through indirect addressing, subscripted names such as CTRA (ORIGN(FLT)), which is the center in which is the airport that is the origin of a particular flight. The SIMSCRIPT programming language contains the invariant structure that is useful in one simulation after another. Thus it provides the economy that was sought in an elaborate invariant model.

The most notable alternative to SIMSCRIPT is GPSS, which possibly is even more popular. GPSS is based on block diagrams and requires little experience in programming; whereas SIMSCRIPT is nearly an extension of FORTRAN and requires the FORTRAN level of programming skill. A SIMSCRIPT program is easily changed by just replacing statements, but changing a GPSS program is likely to require extensive renumbering of blocks. Perhaps the fatal defect of GPSS for our purpose is that it would require flights to be generated internally according to some probability scheme such as the Poisson law. It cannot accept an external source of flights like the peak day tape. A lesser consideration is that, while there is a very good version of GPSS for the IBM System 360, the implementation on the UNIVAC 1108 is rather primitive。

SIMSCRIPT on the 1108 proved very convenient and reliable, and the programs should be transferable to an IBM System 360 with little change except for control cards.

Appendix C Traffic Flow Data

The following tables describe the traffic sample employed in these simulations by giving for each center area and each hour of the day the number of departures to each center area, the number of arrivals from each center area, and the number of handoffs from each adjacent center. The events called departures in these tables are really the filing of a flight plan and the issuing of a beacon code. Actual departure occurs one half hour later.

Table 15. Departures from, arrivals at, and handoffs to each center by hours
PAGE
Boston 53
New York 54
Washington 55
Jacksonville 56
Miami 57
Cleveland 58
Atlanta 59
Indianapolis 60
Chicago 61
Memphis 62
Houston 63
Minneapolis 64
Kansas City 65
Fort Worth 66
Great Falls 67
Denver 68
Albuquerque 69
Salt Lake City 70
Seattle 71
Oakland 72
Los Angeles 73

NUMBER OF DEPARTURES FROM ROSTON

	$\begin{aligned} & \text { AT GMIT } \\ & \text { EST } \end{aligned}$	$\begin{array}{r} 1 \\ 20 \end{array}$	$\begin{array}{r} 2 \\ 21 \end{array}$	22	4 23	5 24	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	7 2	$\begin{aligned} & 8 \\ & 3 \end{aligned}$	9	$\begin{array}{r} 10 \\ 5 \end{array}$	$\begin{array}{r} 11 \\ 6 \end{array}$	$\begin{array}{r} 12 \\ 7 \end{array}$	$\begin{array}{r} 13 \\ 8 \end{array}$	$\begin{array}{r} 14 \\ 9 \end{array}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 16 \\ & 11 \end{aligned}$	$\begin{aligned} & 17 \\ & 12 \end{aligned}$	$\begin{aligned} & 18 \\ & 13 \end{aligned}$	$\begin{aligned} & 19 \\ & 14 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 21 \\ & 16 \end{aligned}$	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 24 \\ & 19 \end{aligned}$	
TO																										TOTAL
BOSTON		2 H	27	34	12	8	4	4	4	1	11	39	35	40	57	48	52	55	62	55	57	45	41	48	37	804
NEW YOriK		23	19	12	7	3	4	2	2	2	3	22	35	38	24	30	32	17	34	35	31	32	33	35	17	492
WASHINUTON		2	1	1	1	1	0	0	0	0	n	7	8	9	5	5	1	3	6	10	7	7	7	1	5	87
JACKSOI.VILLE		0	0	0	0	0	0	0	0	0	0	0	0	ก	1	0	0	0	2	0	0	1	0	0	0	4
MI AMI		0	0	0	1	0	0	0	0	0	0	0	0	2	2	1	1	1	1	n	0	1	3	0	0	13
CLEVELAND		2	4	4	4	3	0	3	0	0	0	7	9	10	6	7	3	8	7	6	9	7	5	7	8	119
ATLANTA		0	0	0	0	1	0	0	0	0	0	n	2	0	0	0	0	1	0	0	1	0	1	0	0	6
INO'I ANAPOL 15		0	0	0	0	2	0	0	0	0	0	1	2	3	0	1	0	1	0	0	4	0	0	0	2	16
CHICAGU		0	1	1	2	0	1	0	0	0	0	0	4	2	2	4	8	1	1	8	4	2	2	2	2	47
MEMPHIS		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	3
M1NNEAPUL1S		1	u	0	0	0	0	n	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	3
KANSAS CITY		0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	1	0	6
DENVER		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	$?$
SEATTLE		0	0	0	0	0	0	0	0	0	0	ก	0	1	0	0	0	0	0	0	0	0	0	0	0	1
OAKLANU		0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	2	1	0	6
LOS ANUELES		0	0	0	0	0	0	0	0	0	0	0	0	1	2	0	2	0	1	0	0	0	3	1	0	10
TOTAL		56	52	52	27	18	9	9	6	3	14	77	95	107	101	98	102	87	115	115	116	96	97	96	71	1619

NUMBER OF ARRIVALS AT BOSTON

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ \text { EST } & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$
FROI 4
GOSTO:

WACKINEIVILLE JACKSO
MI AMI
MI AMI
ATLANTA
INDI ANAPOLIS
CHICAGU
MEMPHIS
MOUSTOIV
MANSAS CITY
KANSAS CITY
FURT WORTH
FORT WOR
DENVER
SEATTLE
OAKLAN
LOS ANOELES
TOTAL

42	27	32	26	15	7	3
16	17	18	8	7	6	8
9	3	3	3	0	0	0
1	0	0	0	0	0	0
1	5	1	0	0	3	1
8	4	6	3	1	1	0
0	1	0	0	0	0	0
1	0	0	0	0	0	0
0	3	2	1	2	2	0
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	0
1	0	0	0	0	0	0
0	1	0	0	0	0	0
0	2	0	0	0	0	0
81	63	03	42	25	19	12

3	4
2	1
0	0
0	0
0	0
0	1
0	0
0	0
0	2
0	0
0	0
0	0
0	1
0	0
0	0
0	0
0	0
0	0
0	0
5	9

1	11	35
1	2	10
0	1	2
0	0	0
0	0	0
1	0	3
0	0	1
0	0	0
0	1	0
0	0	0
0	n	0
0	0	0
1	n	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
4	15	52

15
5
0
0
9
n
1
0
0
0
0
1
0
n
n
n
0
0
68 $\begin{array}{rr}7 & 37 \\ 5 & 17 \\ 5 & 6 \\ 0 & 0 \\ 0 & 0 \\ 9 & 6 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ 55
21
5
0
0
8
0
2
4
0
0
0
0
0
0
0
0
0
0

05 $\begin{array}{rr}58 & 49 \\ 20 & 16 \\ 9 & 6 \\ 0 & 0 \\ 0 & 0 \\ 6 & 5 \\ 0 & 0 \\ 0 & 1 \\ 2 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 96 & 77\end{array}$ 57
24
6
1
1
7
0
0
0
0
0
0
0
0
0
0
0
0
0

96 60
14
5
1
0
8
0
1
4
0
0
0
0
0
1
0
0
0
0 $\begin{array}{rr}61 & 50 \\ 29 & 16 \\ 4 & 8 \\ 1 & 0 \\ 1 & 3 \\ 10 & 6 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & n \\ 0 & n \\ 1 & 1 \\ 0 & 1 \\ 0 & 88\end{array}$ $\begin{array}{rr}46 & 45 \\ 26 & 11 \\ 5 & 8 \\ 0 & 0 \\ 1 & 1 \\ 6 & 4 \\ 0 & 0 \\ 1 & 3 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & n \\ 0 & 0 \\ 2 & 0 \\ 88 & 73\end{array}$ 44
23
6
2
2
11
1
1
2
0
0
0
0
0
0
0
0
0
0

NUMBER OF HANDOFFS TO ROSTON

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ \text { EST } & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$
FROM:

```
NEW YOKK
CANADA CLEVELAND
```

TOTAL
 $\begin{array}{rrrrrrrrrrrrrrrrr}5 & 1 & 3 & 6 & 23 & 24 & 40 & 38 & 32 & 34 & 30 & 35 & 40 & 40 & 32 & 27 & 50 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 & 5 & 3 & 5 & 3 & 3 & 1 & 4 & 7 & 8 & 6 & 3 & 8 & 1\end{array}$ 595
7
76 7
76 678

NUMBER OF DEPARTURES FROM NEW YORK

$$
\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}
\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\
\text { EST } & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19
\end{array}
$$

BOSTON
NEN YOKK
WASHINUTON
JACKSONVILLE
MIAMI
CLEVELAND
ATLANTA
INDIANAPOLIS
CHICAGU
MEMPHIS
HOUSTO.
MINNEAPOLIS
KANSAS CITY
KANSAS CITY
FORT WURTH
DENVEK
ALBUQUERQUE
SALT LAKE CY
SEATTLE
OAKLANU
LUS ANGELES

18	20	7	8	9	5	2	1	1
21	25	13	13	9	6	2	0	0
3	9	7	2	1	1	0	0	1
1	0	0	1	0	0	0	0	0
4	3	0	1	0	2	0	0	0
21	16	10	5	1	3	2	1	1
0	1	1	3	0	0	2	1	0
2	2	0	0	1	0	0	0	0
7	2	6	2	8	0	3	2	1
2	0	0	0	0	0	0	0	0
0	2	2	1	0	0	0	1	0
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0
1	0	0	2	0	1	3	0	0
0	1	0	0	1	1	1	0	0

2
9
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0 10
38
16
1
0
18
2
0
2
0
1
0
0
0
0
0
0
0
0
0 20
47
26
2
0
23
7
3
7
0
0
0
2
0
0
0
0
0
0
0 19
43
21
2
2
22
4
0
5
1
3
1
4
1
2
1
0
0
2
2 14
69
15
1
7
23
2
6
5
0
1
0
1
3
0
0
0
1
2
3 22
55
19
3
3
22
1
3
10
2
0
0
0
0
0
0
0
0
4
3 17
55
14
0
4
21
2
3
8
0
1
0
0
0
1
0
0
0
1
0 19
49
12
2
3
17
4
4
9
0
2
1
1
1
0
0
0
0
1
1 15
38
14
2
3
15
0
3
6
0
0
0
2
0
0
0
0
0
2
1 25
39
21
1
1
22
3
4
8
0
2
0
0
0
0
0
0
0
3
1 27
40
14
1
3
16
2
8
7
0
1
0
0
2
1
0
0
0
1
0 20
41
19
2
1
24
0
3
8
0
0
2
2
0
0
0
0
0
1
1 11
26
15
1
6
31
6
3
7
0
1
1
2
2
3
1
0
0
1
2 22
30
10
3
5
16
5
6
9
0
3
1
4
1
0
0
0
1
2
1 14
26
11
0
0
22
3
3
8
2
1
1
2
0
0
0
1
0
2
3 328
694
$25 ?$
23
48
353
49
54
130
7
27
9
27
10
7
2
$?$
2 TOTAL $\begin{array}{lllllll}80 & 81 & 46 & 40 & 30 & 19 & 16\end{array}$ 4 $\begin{array}{lllllll}\text { A8 } & 137 & 135 & 153 & 147 & 127 & 126\end{array}$ 2064

NUMBER OF ARRIVALS AT NEW YORK

FRO:
BOSTON
NEW YORK
WASHINGTON
JACKSONVILLE
MIAMI
CLEVELAND
aTLANTA
INDIANAPOLIS
CHICAGU
CHICAGU
MENSTO
HOUSTOM
MINNEAPOLIS
KANSAS CITY
FORT WURTH
DENVER
ALBUGULRQUE
SEATTLE
OAKLANU
OAKLANU
LOS ANGELES
TOTAL

AT	EST	1 20	21	3 22	4 23	5 24	6 1	7	8 3	9 4	10 5	11 6	12 7	$\begin{array}{r} 13 \\ 8 \end{array}$	14 9	15	16 11	$\begin{aligned} & 17 \\ & 12 \end{aligned}$	18 13	$\begin{aligned} & 19 \\ & 14 \end{aligned}$	20 15	21 16	22	23 18	24	
																										TOTAL
		17	24	18	13	6	3	4	2	2	1	5	25	32	30	31	29	33	15	- 35	28	37	30	36	35	491
		30	19	20	17	11	9	5	2	0	0	16	38	42	46	64	65	51	46	42	36	46	39	26	25	695
		18	25	21	A	4	1	2	0	5	2	3	12	22	23	32	29	27	26	20	27	34	25	19	32	417
		3	3	0	0	0	0	0	1	1	2	2	0	0	1	0	1	3	2	1	0	1	1	4	5	31
		4	9	1	0	1	12	1	0	1	0	0	0	1	0	2	7	7	1	2	12	9	9	7	5	91
		15	17	20	5	2	8	4	2	1	5	3	8	30	25	28	20	28	17	24	23	28	32	24	24	393
		7	¢	3	2	0	5	2	0	3	0	2	3	1	1	4	1	3	6	6	3	1	6	7	7	79
		4	3	1	3	1	0	2	0	1	0	0	0	2	3	0	8	2	2	3	3	4	5	5	8	60
		8	6	7	6	6	8	3	1	2	1	1	0	4	3	6	8	5	3	10	4	7	10	9	6	124
		0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	1	1	1	7
		1	2	1	0	0	0	2	1	0	0	1	0	0	0	0	0	0	2	2	3	1	1	1	1	19
		1	2	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	3	2	0	2	0	14
		3	6	0	0	2	1	2	1	1	1	1	0	0	0	0	4	1	0	1	2	2	4	1	3	36
		4	1	0	0	0	0	1	1	1	0	0	0	0	0	1	0	4	0	1	3	1	1	2	0	21
		0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	3	0	0	$?$	0	0	0	7
		0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	2	0	0	0	5
		0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	3	0	0	0	2	7
		2	1	2	0	2	0	0	0	1	4	2	0	1	0	1	0	0	0	1	6	5	3	2	3	36
		3	1	1	1	3	0	0	0	0	0	6	3	1	1	0	0	0	0	0	1	7	3	2	5	38

NUMBER OF HANDOFFS TO NEW YORK

FROw	AT	Givit	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
		EST	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	-13	14	15	16	17	18	19	
																											TOTAL
BOSTON			26	30	18	18	14	7	6	2	2	2	7	46	54	61	41	48	47	29	44	57	53	52	57	43	764
WASHINGTON			52	46	30	13	13	15	7	6	11	4	10	23	35	38	49	42	49	51	43	57	63	51	58	54	820
CLEVELaND			48	51	37	21	29	15	5	10	16	9	16	35	57	59	53	60	55	36	60	68	79	72	53	68	1012
TOTAL			126	127	85	52	56	37	18	18	29	15	33	104	146	158	143	150	151	116	147	182	195	175	168	165	2596

	NUMBER OF DEPARTURES FROM WASHINGTON																										
	$\begin{aligned} & \text { AT GMT } \\ & \text { EST } \end{aligned}$		1	\angle	3	4	5	6	7	\&	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
			20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
To																											TOTAL
BOSTOH			2	3	2	0	0	0	0	0	0	2	1	8	8	6	5	8	6	5	7	5	8	6	4	8	94
NEW YO.rK			22	20	13	3	0	3	0	4	3	3	10	25	$3 n$	31	26	26	24	25	26	35	20	26	24	18	417
WASHINOTON			31	23	26	5	7	3	2	1	1	11	26	41	69	71	71	54	54	51	64	61	44	28	34	32	810
JACKSONVILLE			3	2	0	0	0	1	0	0	1	1	1	4	6	5	7	6	4	9	\&	\&	7	2	1	8	84
M1AMI			0	1	0	0	0	0	0	0	0	ก	n	3	6	3	4	2	2	3	1	3	0	1	1	?	$3 ?$
CLEVELaND			3	2	6	0	0	0	0	0	0	1	2	13	5	6	4	9	5	7	7	8	6	6	2	10	103
AtLANTÁ			7	3	4	2	1	1	0	1	0	0	3	11	16	6	9	4	12	8	10	7	7	10	12	7	141
Indianapolis			4	1	2	1	0	0	0	0	1	1	3	6	4	6	7	2	7	2	9	3	8	6	4	3	80
CHICAGU			4	0	2	0	2	0	0	0	0	0	0	6	0	3	6	1	7	4	5	1	3	4	5	1	54
MEMPH1S			1	1	0	0	0	2	0	0	0	0	2	3	6	2	4	2	2	2	1	1	3	3	1	1	37
HOUSTO..			0	0	1	0	0	0	0	ก	0	0	0	0	2	2	1	0	2	0	1	3	1	0	3	0	16
MINNEAPOLIS			0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	2	1	0	0	0	2	0	7
KANSAS City			0	u	0	1	0	0	0	0	0	0	0	2	?	0	0	3	2	0	2	0	2	5	0	2.	21
FUKT WURTH			0	u	0	1	1	0	0	0	0	0	0	1	0	2	0	3	1	3	2	1	1	1	1	1	19
grieat falls			0	0	0	0	0	0	0	0	0	0	0	1	0	\bigcirc	0	0	0	0	\bigcirc	0	0	0	\bigcirc	0	1
DENVER			0	0	0	0	0	0	ก	0	ก	0	1	0	0	0	0	0	1	0	1	ก	0	0	1	0	4
ALbugulrgue			0	0	0	0	0	0	0	0	0	0	n	0	1	0	0	0	0	0	n	0	0	0	ก	0	1
SEATTLE			0	0	0	0	0	0	0	0	0	0	0		ก	ก	0	0	0	0	0	0	0	0	1	ก	1
OAKLANU			1	0	0	0	0	0	ก	0	0	0	n	0	1	0	ก	1	0	0	ก	0	n	1	1	0	5
Los angekles			0	0	0	1	0	0	0	0	0	0	0	0	1	2	1	1	0	1	1	0	0	4	0	0	17
total			78	56	56	14	11	10	2	6	6	19	49	124	158	145	145	123	129	122	146	1.36	110	103	97	93	1938
	Number of arrivals at washington																										
	AT	GMT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$2 ?$	23	24	
		EST	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
FROM																											TOTAL
BOSTON			3	3	1	2	0	1	1	0	0	0	0	3	6	7	9	7	2	3	5	2	10	9	8	5	87
NEW YOnk			11	3	10	6	1	2	1	0	0	1	1	11	24	28	13	23	13	8	17	19	16	15	17	12	252
WASHINUTON			31	36	27	22	7	5	2	4	0	1	16	26	45	56	71	77	51	51	51	67	50	56	27	31	810
JACKSOIVV1LLE			8	3	6	2	2	2	1	0	1	1	0	0	2	0	8	1	4	8	6	5	5	5	4	6	80
MIAMI			2	2	0	0	0	2	0	0	0	0	n	0	0	1	0	5	1	1	3	2	0	6	?	?	29
CLEVELaidd			8	8	3	0	1	0	1	0	0	0	ก	0	11	9	4	7	13	6	8	11	10	7	3	3	113
ATLANTA			9	4	6	4	4	3	0	1	0	0	1	1	5	5	8	11	14	5	17	7	5	9	13	13	145
Indianapolis			8	0	4	7	4	0	3	1	0	0	0	0	0	5	7	6	8	7	12	5	11	3	5	9	105
CHICAGU			1	5	3	4	2	3	1	0	1	0	0	0	0	1	3	4	2	1	3	3	2	3	1	?	45
MEMPHIS			2	3	1	0	1	0	1	2	0	0	n	0	ก	n	0	1	1	0	0	1	3	3	3	1	23
HOUSTOA			1	0	?	1	0	0	0	0	0	n	1	0	0	n	1	0	3	1	1		1	0	0	0	17
MINNEAFOLIS			1	0	0	0	0	0	0	0	0	0	,	0	ก	n	n	0	0	0	ก	0	n	0	1	0	?
KANSAS CITY			1	2	1	0	0	0	ก	0	0	0	0	0	ก	0	1	1	1	0	2	1	1	0	3	2	16
FORT WURTH			3	1	2	0	0	0	1	n	1	n		0	n	0	0	0	1	1	1	2	5	1	0	1	20
DEINVER			1	1	1	0	0	0	0	0	0	0	0	0	0	0	n	0	0	0	2	0	n	0	n	0	5
ALBUQULRQUE			1	0	0	0	0	0	0	0	0	n	0	0	0	0	0	0	0	0	0	0	0	0	n	0	1
SEATTLE			0	0	0	0	0	0	0	0	0	n	n	0	0	0	0	0	0	0	1	2	1	0	0	0	4
OAKLANU			2	0	0	0	0	0	0	0	0	1	n	0	0	0	n	0	0	0	ก	1	1	0	n	0	5
Los afigeles			?	0	1	1	0	0	0	0	0	0	3	1	0	0	0	0	0	0	1	n	3	1	n	1	14
total			95	71	68	49	22	18	12	8	3	4	22	42	93	112	175	143	114	92	130	128	124	118	87	BB	176B

NUMBER OF HANDOFFS TO WASHINGTON

FROM
NEW YOKK
JACKSOivVILLE CLEVELAND ATLANTA INDIANAPOLIS TOTAL $\begin{array}{rlrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ & \text { EST } & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$ TOTAL $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}22 & 11 & 21 & 7 & 12 & 4 & 4 & 3 & 0 & 1 & 3 & 26 & 47 & 52 & 37 & 44 & 23 & 28 & 41 & 30 & 36 & 29 & 44 & 35 & 560 \\ 22 & 5 & 5 & 3 & 20 & 3 & 1 & 2 & 3 & 2 & 2 & 1 & 3 & 4 & 14 & 21 & 11 & 11 & 19 & 21 & 18 & 19 & 18 & 24 & 252 \\ 29 & 12 & 12 & 8 & 7 & 5 & 3 & 2 & 3 & 1 & 3 & 2 & 13 & 17 & 8 & 18 & 17 & 11 & 22 & 23 & 27 & 17 & 13 & 17 & 290 \\ 25 & 17 & 8 & 8 & 11 & 4 & 2 & 3 & 2 & 4 & 2 & 3 & 8 & 14 & 17 & 22 & 26 & 19 & 19 & 19 & 19 & 31 & 24 & 15 & 327 \\ 12 & 5 & 7 & 3 & 3 & 3 & 1 & 4 & 0 & 0 & 1 & 0 & 2 & 7 & 4 & 11 & 13 & 5 & 9 & 13 & 13 & 7 & 6 & 10 & 139\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}110 & 50 & 53 & 29 & 53 & 19 & 11 & 14 & 8 & 8 & 11 & 32 & 73 & 94 & 80 & 116 & 90 & 74 & 110 & 106 & 113 & 103 & 105 & 101 & 1563\end{array}$

NUMBER OF DEPARTURES FROM JACKSONVILLE

то

BOSTON
NEW YOKK
WASHINUTON
JACKSOwVILLE
MIAMI
CLEVELAND
ATLANTA
INDI ANAPOLIS
CHICAGU
MEMPHI \supset
MOUSTO.
MINNEAPOLIS
MINNEAPOLIS
KANSAS CITY
KANSAS CIT
FORT WURTH
albugucroue
OAKLANU
LOS ANUELES
TOTAL

0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
4	3	1	0	2	1	0	2
23	14	12	9	4	4	1	0
7	7	3	3	4	0	2	1
0	1	1	1	0	0	1	0
7	5	5	9	2	2	1	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	1	1	1	0	1	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	2	4	3	0	0	0	0
49	33	27	27	12	8	6	3

n
1
1
3
0
0
4
0
0
0
0
0
0
0
0
0
0
9

0	0	0	1
0	0	1	2
0	1	2	8
3	16	22	56
2	4	7	2
0	0	0	1
2	12	16	20
0	0	0	1
0	0	2	n
0	0	1	2
0	1	2	3
0	0	0	0
0	0	n	0
0	0	1	3
n	1	0	0
0	0	0	0
0	0	0	0
7	35	54	99

$\begin{array}{rr}0 & 0 \\ 3 & 2 \\ 2 & 4 \\ 36 & 42 \\ 6 & 7 \\ 1 & 0 \\ 16 & 14 \\ 1 & 0 \\ 0 & 0 \\ 1 & 1 \\ 4 & 1 \\ 1 & 0 \\ 0 & 2 \\ 0 & 1 \\ 0 & 2 \\ 0 & 0 \\ 0 & 3\end{array}$ $\begin{array}{rr}0 & 1 \\ 2 & 0 \\ 4 & 8 \\ 42 & 46 \\ 7 & 6 \\ 0 & 0 \\ 14 & 16 \\ 0 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 6 \\ 0 & 0 \\ 2 & 1 \\ 1 & 0 \\ 2 & 0 \\ 0 & 0 \\ 3 & 1\end{array}$ $\begin{array}{rr}1 & \\ 0 & \\ 7 & \\ 35 & 4 \\ 4 & 1 \\ 1 & \\ 11 & 1 \\ 3 & \\ 1 & \\ 1 & \\ 1 & \\ 0 \\ 0 & \\ 2 \\ 0 \\ 0 & \\ 0 & \\ 67 & \end{array}$ $\begin{array}{rr}n & n \\ 1 & 2 \\ 6 & 4 \\ 44 & 44 \\ 13 & 6 \\ 1 & 0 \\ 12 & 19 \\ 3 & 2 \\ 1 & 1 \\ 3 & 2 \\ 5 & 2 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 0 \\ n & 1 \\ 93 & 85\end{array}$ $\begin{array}{rr}1 & 1 \\ 4 & 4 \\ 4 & 5 \\ 33 & 26 \\ 8 & 8 \\ 3 & 2 \\ 15 & 23 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 2 & 5 \\ 0 & 0 \\ 2 & 0 \\ 4 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 4 \\ 76 & 81\end{array}$ 1
4
9
34
11
1
14
0
0
1
1
0
0
1
0
1
0
 6
31
80
533
124
15
242
12
8
16
40
1
6
16
6
4
27
1162

NUMBER OF ARRIVALS AT JACKSONVIILE

FROw

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ \text { EST } & 20 & 21 & 22 & 23 & 24 & 1 & 2 & -3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$ TOTAL
BOSTON
NEW YOKK
WASHINGTON
JACKSONVILLE
MIAMI
CLEVELAND
ATLANTA
INDIANAPOLIS
CHI CAGU
MEMPHIS
HOUSTOI
MINNEAPOLIS
KANSAS CITY
FORT WURTH
ALBUQULROUE
SEATTLL
OAKLANU
LOS ANGELES
TOTAL

TOTAL

0	0	0	0	0	0	0
2	1	1	0	1	0	0
6	5	1	2	0	0	1
29	21	17	13	7	5	3
3	4	7	5	3	2	1
0	1	0	0	1	0	0
11	7	11	0	7	5	0
0	1	0	0	0	0	0
0	2	1	0	0	0	0
2	0	1	0	1	0	0
3	2	3	6	0	1	0
0	0	0	0	0	0	0
0	1	1	0	0	0	0
1	3	1	1	1	0	0
1	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	1	0
2	1	0	0	1	0	0
60	49	44	37	22	14	5

0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	1	0	4
0	0	0	0	0	0	3	$?$	1	3	0	0	3	2	1	2	1	23
0	0	0	1	2	4	1	5	4	8	7	5	11	7	6	8	0	84
1	0	4	5	5	13	16	41	50	39	50	32	40	41	42	35	24	533
1	1	1	0	1	1	5	8	6	6	6	8	7	15	12	9	6	118
0	0	0	0	0	0	0	0	1	1	0	0	1	2	1	$0 \cdot$	0	8
0	0	1	1	1	5	7	8	5	16	18	12	11	14	18	17	11	194
1	0	0	0	0	0	1	2	0	0	0	2	2	1	$?$	3	2	17
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	6
0	0	0	n	0	0	0	0	0	1	2	1	5	1	3	0	1	18
0	0	0	0	0	0	1	0	3	3	7	7	4	2	5	6	1	54
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1	0	2	1	0	1	0	0	0	0	7
0	0	0	0	0	0	0	0	0	2	3	2	1	2	1	1	1	20
0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	5
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	4
0	1	0	1	0	0	0	0	0	0	0	1	1	1	0	0	2	11
3	2	6	8	9	24	34	67	71	83	'94	70	R8	91	92	84	51	1108

NUMBER OF HANDOFFS TO JACKSONVIILE

FROM
WASHINOTON
MI AMI
ATLANTA
HOUSTON
 TOTAL
total

| 13 | 5 | 8 | 2 | 2 | 0 | 4 | 0 | 0 | 1 | 1 | 5 | 5 | 9 | 23 | 16 | 15 | 11 | 18 | 17 | 14 | 8 | 11 | 9 | 197 |
| ---: |
| 22 | 10 | 10 | 27 | 17 | 6 | 3 | 3 | 2 | 2 | 0 | 2 | 6 | 28 | 37 | 20 | 20 | 18 | 46 | 51 | 40 | 43 | 37 | 34 | 484 |
| 31 | 33 | 23 | 25 | 15 | 19 | 4 | 4 | 2 | 1 | 2 | 4 | 11 | 19 | 21 | 22 | 44 | 53 | 30 | 42 | 38 | 48 | 37 | 32 | 560 |
| 9 | 0 | 8 | 8 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 4 | 6 | 9 | 10 | 8 | 13 | 8 | 10 | 6 | 6 | 117 |
| 75 | 54 | 49 | 62 | 36 | 25 | 11 | 8 | 4 | 5 | 3 | 11 | 22 | 58 | 85 | 64 | 88 | 92 | 102 | 123 | 100 | 109 | 91 | 81 | 1358 |

NUMBER OF DEPARTURES FROM MIAMI

TO
$\begin{array}{llrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ & \text { EST } & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$
TOTAL

BOSTON	1	0	2	2	0	0	0	0	0	0	0	0	0	0	0	1	1	0	4	1	2	1	4	1	20
NEW YOKK	0	0	11	2	1	1	0	0	0	0	1	0	5	7	4	3	5	12	9	6	8	4	8	4	91
WASHINGTON	0	0	0	2	0	0	0	0	0	0	0	1	0	6	1	2	1	3	0	6	1	1	4	1	29
JACKSOIWV ILLE	3	6	5	4	1	0	1	0	1	0	1	3	9	10	8	4	3	11	6	11	14	10	2	5	118
MIAMI	11	13	13	10	9	3	6	5	2	1	16	30	43	28	23	29	20	28	36	26	22	23	14	15	431
CLEVELAIND	1	1	2	3	1	0	1	0	0	0	0	0	1	3	2	2	1	4	5	2	4	?	3	3	41
ATLANTA	2	1	2	1	2	2	1	0	1	1	0	2	9	1	4	4	1	6	10	1	8	10	2	4	75
INUIANAPOLIS	0	0	0	2	0	0	0	1	0	0	0	0	0	1	0	0	0	3	2	0	?	0	0	3	14
CHICAGU	0	0	6	1	0	0	0	0	0	0	0	0	1	3	1	0	2	0	7	0	2	3	3	3	32
MEMPHIS	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	2	0	1	0	6
HOUSTO.	0	1	0	0	0	0	0	0	0	0	0	0	1	7	0	1	1	5	0	2	3	1	3	1	26
KANSAS CITY	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	4	0	0	1	7
FORT WURTH	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	4	1	0	1	1	0	10
ALBUQUERQUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	\bigcirc	0	0	0	0	0	1
OAKLANU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
LOS ANGELES	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	3
TOTAL	19	27	41	27	14	6	9	6	4	2	18	36	71	68	43	48	35	76	B4	56	72	57	45	41	905

NUMBER OF ARRIVALS AT MIAMI

	$\begin{aligned} & \text { AT G:AT } \\ & \text { EST } \end{aligned}$	20	$\begin{array}{r} 2 \\ 21 \end{array}$	$\begin{array}{r} 3 \\ 22 \end{array}$	$\begin{array}{r} 4 \\ 23 \end{array}$	5 24	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	7 2	$\begin{aligned} & 8 \\ & 3 \end{aligned}$	9	$\begin{array}{r} 10 \\ 5 \end{array}$	$\begin{array}{r} 11 \\ 6 \end{array}$	$\begin{array}{r} 12 \\ 7 \end{array}$	$\begin{array}{r} 13 \\ 8 \end{array}$	$\begin{array}{r} 14 \\ 9 \end{array}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	16	$\begin{aligned} & 17 \\ & 12 \end{aligned}$	$\begin{aligned} & 18 \\ & 13 \end{aligned}$	$\begin{aligned} & 19 \\ & 14 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	21	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 24 \\ & 19 \end{aligned}$	
TO						.																				TOTAL
BOSTON		5	4	2	1	1	0	0	2	0	2	6	6	9	5	5	8	4	8	9	7	5	7	11	7	114
NEW YOKK		19	19	4	3	8	3	4	1	5	4	11	29	26	30	22	21	21	24	24	29	30	22	26	8	393
WASHINUTON		5	3	1	0	1	0	0	0	0	0	3	12	6	6	7	14	6	7	10	10	6	2	4	10	11.3
JACKSO.VVILLE		1	- 0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	2	1	0	0	0	1	8
MI AMI		1	2	1	1	0	0	0	0	0	0	0	0	5	4	0	1	3	0	1	0	0	0	0	1	20
CLEVELAND		30	32	22	24	13	13	4	6	4	8	33	82	71	67	74	49	59	72	69	64	70	57	48	43	1014
ATLANTA		1	0	2	2	2	1	0	0	1	1	1	4	5	3	4	3	2	4	4	0	2	6	4	3	55
INDIAINAPOLIS		8	8	2	3	4	1	0	3	3	2	8	22	14	25	15	14	9	21	20	14	15	6	10	4	231
CHICAGU		8	12	8	11	6	2	3	4	5	6	6	21	20	20	23	71	18	15	25	18	19	18	14	14	317
MEMPHI'		0	0	1	2	0	0	0	1	0	0	0	2	1	1	1	2	0	0	n	1	0	1	0	0	13
HOUSTOI.		0	0	0	0	0	0	n	0	0	0	n	0	0	0	0	0	0	1	0	0	1	0	n	0	$?$
MINNEAPOLIS		0	1	0	0	1	0	2	0	0	1	0	1	6	7	6	1	6	4	4	2	4	7	2	1	56
KANSAS CITY		4	0	0	3	1	1	2	1	1	1	1	6	2	1	2	1	3	2	4	1	0	4	2	0	4.3
FORT NURTH		0	U	0	0	0	0	n	0	0	0	n	0	1	1	0	0	0	0	1	2	0	1	0	0	6
GREAT FALLS		0	u	1	0	0	0	0	0	0	0	ก	0	n	0	n	0	0	0	n	0	n	0	0	0	1
DENVER		1	\checkmark	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	ก	0	0	0	1	0	n	0	0	0	2
OAKLANL		0	\checkmark	0	0	0	0	0	1	0	0	0	0	0	1	3	0	0	0	0	0	0	1	0	1	7
LUS AINuELES		0	1	1	0	0	0	0	1	1	-)	1	0	1	1	2	4	0	0	0	0	1	2	2	0	18

TOTAL

NUMBER OF ARRIVALS AT CLEVFLAND

FROッ
BOSTON
NEW YOKK
WASHINOTON
JACKSO.rVILLE MIAMI
CLEVELAND
CLEVELA
AILANTA
INDI ANAPOLIS
INDI ANAP
CHICAGU
CHICAGU
MEMPHI
MEMPHI
HOUSTO:
HOUSTOA
MINNEATOLIS
KAIVSAS CITY
FORT WURTH
OAKLANL
LOS ANUELES
TOTAL

AT GMT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$2 ?$	23	24	
EST	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
				,																					TOTAL
	8	1	7	2	5	3	0	2	1	0	0	8	8	6	7	6	5	6	6	6	13	6	3	10	119
	24	21	17	9	5	2	3	3	1	1	0	16	20	23	20	24	19	21	14	19	16	23	31	20	$35 ?$
	8	5	2	6	0	0	0	0	0	0	1	3	7	9	6	4	6	4	9	9	9	4	6	4	102
	2	0	2	1	1	1	0	1	0	0	0	0	0	0	0	1	0	0	1	1	1	1	2	0	15
	1	5	1	1	2	4	0	1	1	0	0	0	0	0	1	1	2	3	2	2	3	5	2	4	41
	43	29	33	24	21	12	12	5	5	3	8	51	73	65	67	78	55	51	66	75	65	73	64	36	1014
	9	5	1	1	0	2	0	1	0	0	2	1	0	0	1	2	3	2	2	2	6	$?$	3	5	50
	11	13	9	4	5	4	3	3	1	1	1	0	10	10	9	7	7	11	11	10	15	15	24	18	202
	24	16	14	9	13	9	3	3	2	1	0	4	6	17	16	16	8	16	16	15	23	28	23	17	299
	1	0	1	0	0	0	0	0	0	0	0	0	0	2	0	1	1	2	0	$?$	0	2	2	1	15
	0	0	0	1	0	0	0	0	0	0	n	0	0	0	ก	0	1	0	0	0	n	0	ก	0	2
	4	0	1	4	2	1	1	0	0	0	1	0	2	4	2	3	3	3	3	8	1	2	1	0	46
	1	2	1	1	0	0	2	0	0	0	n	0	0	0	0	1	1	3	2	3	1	2	0	0	20
	0	0	0	0	0	0	0	0	0	ก	n	0	0	0	0	0	0	0	0	0	0	2	0	0	?
	$?$	0	0	0	0	0	0	1	0	n	n	0	0	0	0	0	0	0	1	0	1	0	0	1	6
	1	2	0	0	1	0	0	1	1	0	3	1	0	1	0	0	0	0	0	0	5	0	0	1	17

NUMBER OF HANDOFFS TO CLEVELAND

NUMBER OF DEPARTURES FROM ATI ANTA

	At gimt	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	27	23	24	
	E゙ST	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
10																										TOTAL
BUSTON		0	0	0	0	0	0	0	0	0	1	\bigcirc	0	0	0	n	0	0	0	0	0	0	0	1	1	3
NEW YOKK		4	3	2	2	2	1	$?$	1	2	1	2	2	5	1	1	4	8	2	4	6	5	7	5	7	79
WASHINOTON		7	3	$?$	5	2	1	0	0	1	0	1	4	8	11	12	9	8	16	6	7	14	11	8	9	145
JACKSONVILLE		5	12	8	7	4	0	0	0	1	1	0	8	9	4	8	16	16	13	14	13	19	15	10	11	194
M1AM1		7	10	4	1	2	1	1	0	0	0	1	4	0	4	1	5	11	7	4	7	9	5	7	7	98
CLevelaido		3	2	0	1	0	1	0	0	1	1	1	1	1	1	1	2	3	4	5	3	3	6	7	3	50
A TLANTA		30	37	18	16	6	6	3	3	2	3	5	21	43	39	40	45	48	55	58	48	43	60	43	38	710
1 NDIANAPOLIS		8	3	0	0	1	2	0	0	4	0	0	3	4	6	2	8	7	8	8	7	8	5	6	5	95
CHICAGU		0	4	1	0	0	0	1	1	0	1	0	2	0	1	2	1	4	3	3	2	2	2	4	1	35
MEMPH1S		5	7	5	0	2	0	0	1	0	2	1	3	14	11	10	16	16	13	7	6	15	6	9	4	153
HUUSTO.1		4	3	2	2	1	1	0	0	1	0	3	2	2	4	4	2	8	7	2	6	5	8	4	1	73
M1NNEAPOL15		0	u	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	1	0	0	0	1	0	0	0	0	$?$
KANSAS C1TY		0	1	0	0	0	0	0	0	0	1	n	0	0	0	0	1	0	0	1	1	2	0	1	1	9
FORT WURTH		1	1	0	1	1	0	0	0	0	1	1	2	1	0	2	1	1	2	2	2	2	4	2	3	30
DEIVVER		0	0	1	0	0	0	0	0	0	0	n	0	0	0	0	2	0	0	0	0	n	0	0	0	3
ALBUQULRGUE		0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	1	0	0	0	0	n	0	1	0	4
OAKLANU		1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	n	0	4
LOS ANGELES		1	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	1	0	0	0	n	0	0	0	$?$

 NUMBER OF ARRIVALS AT ATLANTA

BOSTON
NEW YORK
WASHI NOTON
JACKSOIVVILLE M1AM1
MIAM1
GLEVELAND
CLEVELAND
ATLANTA
ATLANTA
INDIANAPOLIS
CHICAGV
MEMPHIS
HOUSTOIN
MINNEAPOLIS
KAINSAS CITY
DENVER
DENVER
ALSUQUERQUE
ALOUQUERQUE
SALT LAKE CY
OAKLAIVU
LOS ANUELES

0	0	0	0	0	0	1
2	5	1	1	1	3	0
9	8	2	5	2	1	0
17	9	6	7	3	6	2
8	3	1	3	1	1	2
5	2	2	0	2	2	1
37	31	36	21	14	6	7
10	6	2	2	4	1	1
1	3	1	2	0	0	0
5	3	3	5	1	0	2
4	5	1	2	2	1	1
0	0	0	0	0	0	0
1	1	0	0	0	0	0
1	2	1	0	1	0	0
0	0	0	0	1	0	0
1	0	0	0	0	0	0
0	0	0	0	1	0	0
0	1	0	0	0	1	0
0	0	1	0	0	0	0

0	0	0
1	2	0
1	0	1
1	0	1
1	1	0
2	0	0
2	3	2
0	0	0
1	2	0
0	1	0
1	3	0
0	0	\bigcirc
0	0	0
0	0	1
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1

NUMBER OF HANDOFFS TO ATLANTA

FRO.n
WASHINOTON
 HOUSTON

TOTAL $\begin{array}{rlrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ & \text { EST } & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$ TOTAL

| 19 | 12 | 3 | 11 | 8 | 3 | 0 | 1 | 4 | 0 | 1 | 7 | 21 | 29 | 17 | 18 | 21 | 20 | 11 | 24 | 15 | 14 | 20 | 17 | 296 |
| ---: |
| 39 | 21 | 7 | 28 | 19 | 6 | 6 | 6 | 3 | 1 | 5 | 6 | 13 | 28 | 52 | 27 | 24 | 34 | 30 | 56 | 34 | 58 | 45 | 39 | 587 |
| 23 | 8 | 10 | 7 | 13 | 8 | 3 | 1 | 0 | 2 | 3 | 0 | 8 | 21 | 23 | 18 | 19 | 21 | 21 | 23 | 25 | 22 | 17 | 24 | 320 |
| 26 | 11 | 12 | 11 | 9 | 6 | 6 | 2 | 4 | 5 | 1 | 3 | 10 | 14 | 16 | 21 | 23 | 27 | 25 | 26 | 25 | 31 | 19 | 28 | 361 |
| 3 | 3 | 1 | 3 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 4 | 3 | 2 | 3 | 1 | 4 | 3 | 3 | 5 | 1 | 1 | 45 |
| 110 | 55 | 33 | 60 | 50 | 23 | 15 | 11 | 12 | 8 | 10 | 16 | 54 | 96 | 111 | 86 | 90 | 103 | 91 | 132 | 102 | 130 | 102 | 109 | 1609 |

	AT	$\begin{aligned} & \text { GMT } \\ & \text { CST } \end{aligned}$	NUMBER OF DEPARTURES FROM INDIANAPOLIS																								TOTAL
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
			19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
TO																											
BOSTON			0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	1	1	1	$?$	3	0	1	0	13
NEW YORK			1	1	3	1	0	1	0	1	0	0	0	3	4	3	5	0	3	5	2	3	8	5	7	4	60
WASH1NOTON			1	5	6	3	3	0	1	0	0	0	0	2	7	7	4	10	9	7	9	7	4	8	8	4	105
JACKSOINV 1LLE			0	0	0	1	0	0	0	0	0	0	0	2	0	1	1	0	1	3	3	2	1	0	2	0	17
M1AM1			0	0	0	2	1	0	1	0	0	0	0	1	1	5	1	3	1	0	2	0	3	1	1	$?$	25
CLEVELAND			14	6	7	4	3	4	1	1	2	1	$?$	8	10	6	10	7	12	10	10	18	20	22	13	11	202
ATLANTA			4	2	4	1	1	1	0	0	1	2	1	6	5	10	6	7	4	7	7	12	10	9	6	8	114
1ND1ATAPOLIS			36	26	18	20	9	2	2	0	0	0	2	15	41	50	56	46	36	39	34	51	51	44	52	37	667
CHICAGU			10	5	7	3	4	1	1	2	0	0	2	0	16	15	7	6	9	5	4	8	13	8	12	8	146
MEMPHIS			2	3	4	0	0	0	1	0	0	1	0	1	1	9	5	4	5	6	2	3	4	3	3	4	61
HOUSTO.4			3	0	0	0	0	0	0	0	0	0	n	0	0	1	0	0	0	2	1	1	0	1	0	0	9
M1INNEAPOLIS			0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	2	0	1	0	6
Kansas City			2	7	4	1	1	1	0	0	0	0	1	5	3	5	5	4	4	7	0	$?$	5	1	5	1	64
FORT WORTH			1	0	0	0	0	0	0	0	0	0	0	0	1	2	2	0	1	1	2	2	1	2	0	1	16
DENVER			0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
ALBUQUERQUE			1	0	0	0	0	0	0	0	0	0	1	0	0	1	2	0	0	0	0	0	0	0	0	3	8
OAKLANU			0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	$?$
LOS ANGELES			0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	2	4
TOTAL			75	56	53	36	22	10	7	4	3	4	10	44	92	116	104	88	88	93	77	113	125	104	111	85	1520

NUMBER OF ARRIVALS AT INDIANAPOI. IS

	AT GMT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
	CST	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
FRO:																										TOTAL
BOSTON		0	2	0	0	0	1	0	1	0	0	0	0	1	1	2	1	1	2	0	0	1	2	1	0 .	16
NEW YOKK		3	6	2	0	0	1	0	0	0	0	0	0	1	1	3	4	2	5	2	4	7	6	1	6	54
WASHINGTON		5	3	2	1	2	0	0	0	0	0	1	3	3	8	4	6	4	7	2	4	5	7	7	6	-80
JACK SONV 1LLE		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	1	4	2	0	0	12
M1AM1		0	2	1	0	0	2	0	0	0	1	0	0	0	0	0	1	0	0	0	2	3	0	2	0	14
CLEVELAND		8	6	6	4	2	3	2	1	1	3	4	7	20	12	23	16	13	14	22	17	13	12	14	8	231
ATLANTA		7	8	6	0	0	1	2	0	0	2	2	0	1	7	4	2	7	7	5	7	10	7	6	4	95
1ND 1ANAPOL 15		38	3is	23	16	22	6	4	1	0	0	0	2	22	34	50	57	48	35	44	32	51	49	45	50	667
CHICAGU		14	9	7	5	11	3	0	2	2	0	0	4	3	13	10	8	10	10	8	16	7	14	15	10	181
MEMPH13		3	2	2	1	0	0	0	1	0	0	0	1	2	0	5	1	3	3	1	3	4	1	7	3	43
HOUSTON		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	3
MINNEAPOLIS		1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	1	1	0	6
Kansas City		2	3	1	1	3	1	1	1	1	0	0	0	2	3	5	0	2	1	2	5	4	5	5	$?$	50
FORT WJRTH		1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	2	0	0	0	$?$	0	1	1	11
DENVER		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
ALBUQUERQUE		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	1	0	0	0	0	2
OAKLANU		0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3
LOS ANGELES		0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	1	0	2	0	5
TOTAL		H2	83	52	29	40	18	9	9	4	7	9	17	55	79	107	97	93	25	on	93	113	1 nf	108	90	1474

NUMBER OF HANDOFFS TO INDIANAPOI IS
$\begin{array}{rlrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \text { R } & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ \text { CST } & 19 & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \text { B } & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$
FRO:4
WASHINGTON
CLEVELAND
ATLANTA
CHICAGU
MEMPHIS
KANSAS CITY
TOTAL

| 8 | 3 | 4 | 1 | 0 | 1 | 2 | 0 | 0 | 1 | 1 | 2 | 10 | 10 | 12 | 9 | 7 | 11 | 10 | 14 | 6 | 12 | 11 | 11 | 146 |
| ---: |
| 32 | 16 | 16 | 6 | 15 | 10 | 4 | 4 | 4 | 4 | 1 | 17 | 42 | 42 | 52 | 35 | 37 | 37 | 38 | 40 | 39 | 32 | 35 | 28 | 586 |
| 18 | 23 | 9 | 2 | 9 | 8 | 4 | 0 | 1 | 8 | 2 | 1 | 4 | 8 | 11 | 13 | 13 | 22 | 20 | 25 | 28 | 21 | 17 | 23 | 290 |
| 35 | 16 | 23 | 16 | 31 | 14 | 6 | 7 | 7 | 11 | 14 | 7 | 20 | 24 | 28 | 26 | 30 | 19 | 24 | 49 | 35 | 26 | 34 | 39 | 541 |
| 15 | 4 | 5 | 5 | 6 | 1 | 4 | 4 | 1 | 0 | 0 | 3 | 4 | 5 | 10 | 10 | 14 | 12 | 16 | 15 | 14 | 17 | 14 | 19 | 198 |
| 11 | 10 | 5 | 4 | 6 | 5 | 4 | 1 | 3 | 9 | 2 | 0 | 4 | 6 | 12 | 5 | 6 | 6 | 10 | 16 | 19 | 15 | 12 | 15 | 186 |
| 119 | 72 | 62 | 34 | 67 | 39 | 24 | 16 | 16 | 33 | 20 | 30 | 84 | 95 | 125 | 98 | 107 | 107 | 118 | 159 | 141 | 123 | 123 | 135 | 1947 |

NUMBER OF DEPARTURES FROM CHICAGO

то
BOSTON
NEW YOKK
WASHINOTON
JACK SOIV ILLE M1AM1 CLEVELAND ATLANTA
INDI ANAPOLIS
chicasu
MEMPHIS
houstar
M1INNEAPOL15
KANSAS CITY
FORT WURTH
GREAT FALLS
DENVER
ALBUQUCRQUE
SALT LAKE CY
Stattle
oaklanu
LOS ANGELES
TOTAL

2	1	2	2	0	0
5	5	9	6	5	0
1	5	1	5	1	0
1	0	0	0	0	0
0	1	0	11	0	0
17	10	9	14	8	4
1	2	1	0	0	1
6	7	5	11	3	1
57	50	46	65	29	11
1	0	1	0	0	0
0	2	0	0	0	0
12	11	13	11	6	3
7	11	8	4	7	3
3	2	0	3	0	0
0	0	0	0	0	0
3	1	4	1	2	3
1	3	0	0	1	0
0	0	0	0	0	0
1	1	1	0	0	0
2	2	1	0	0	0
2	3	3	2	0	2

$\begin{array}{ll}2 & 0 \\ 2 & 3 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 3 & 1 \\ 0 & 2 \\ 1 & 2 \\ 9 & 8 \\ 0 & 0 \\ 0 & 0 \\ 0 & 2 \\ 3 & 1 \\ 0 & 0 \\ 0 & 0 \\ 1 & 2 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 1 & 2\end{array}$
$\begin{array}{ll} & 1 \\ 3 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 2 & 1 \\ 2 & 0 \\ 8 & 3 \\ 0 & 0 \\ 0 & 0 \\ 2 & 2 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 2 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 0 & 2 \\ 2 & 1\end{array}$
0
0
0
0
0
0
0
0
2
0
0
1
0
2
n
1
0
0
1
3
2
n
3
0
n
n
3
1
3
2
n
n
0
1
n
n
0
n
n
0
0
1
1
3
0
0
0
9
1
6
23
1
0
1
2
3
0
0
0
0
0
0
1
2
6
2
0
0
18
1
16
62
1
1
4
13
4
0
0
2
0
0
0
0
3
6
4
1
1
15
2
9
91
3
0
14
15
1
0
2
0
0
0
0
1
0
6
3
0
3
12
0
6
109
2
0
15
13
3
0
5
0
0
0
1
4
1
5
1
1
4
14
4
8
89
0
1
8
12
2
0
1
3
0
3
4
5
3
3
4
0
3
14
2
10
83
0
3
13
14
2
0
6
3
1
1
0
2
1
9
1
0
3
17
1
12
74
3
0
8
13
2
0
3
1
0
0
0
4
1
8
3
1
2
12
2
15
68
2
0
8
11
3
0
3
2
1
1
2
4
0
9
2
0
2
26
3
9
82
1
0
10
11
2
3
2
2
0
1
3
3
0
7
3
1
0
27
3
11
85
0
0
9
8
3
0
2
1
0
0
3
3
3
6
2
0
0
28
1
15
93
2
1
8
11
5
0
3
2
1
1
2
1
0
9
2
0
3
16
2
8
90
1
1
4
19
1
0
4
2
1
1
3
5
-

NUMBER OF ARRIVAL5 AT CHICAG
$\begin{array}{rlrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 2 ? & 23 & 24 \\ & \text { CST } & 19 & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$
FRUMi
BOSTON
NE H YORK
WASHINOTON
JACK5O.vVILLE M1AM1
CLEVELAND
ATLANTA
1NUIANAPOLI5
CHICAGO
MEMPHIS
MEMPHIS
MOUSTOIY
KANSAS CITY
FORT WURTH
GKEAT FALLS
DENVER
ALBUQUERQUE
SALT LAKE CY
SEATTLE
OAKLANU
OAKLANU
LOS ANGELES
TOTAL

3	1	2	0	1	2	0
6	8	5	2	4	5	6
3	2	2	2	0	2	0
1	0	1	0	1	0	0
4	1	2	0	1	5	0
16	12	9	10	10	3	4
4	2	1	1	3	0	0
6	15	5	6	4	2	3
86	63	53	45	67	26	10
1	1	1	0	1	0	1
2	2	1	2	0	0	0
14	10	10	3	2	2	1
16	15	7	7	5	3	2
2	0	0	1	2	0	1
0	1	0	1	0	0	0
5	3	2	2	4	1	0
1	2	0	1	0	0	1
0	0	1	0	0	0	0
2	4	0	1	0	0	0
3	4	2	1	0	0	1
2	4	8	2	1	1	0

$\begin{array}{lll}1 & 0 & 0 \\ 1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 4 & 3 \\ 0 & 0 & 2 \\ 2 & 1 & 0 \\ 9 & 6 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \\ 1 & 2 & 2 \\ 0 & 1 & 4\end{array}$

0	0
0	0
0	0
0	0
0	0
7	8
1	0
0	2
3	4
0	0
0	0
0	5
1	1
0	0
0	0
1	0
0	2
n	0
3	0
3	1
2	6

$\begin{array}{rrrrr}0 & 5 & 2 & 3 & 3 \\ 3 & 9 & 6 & 3 & 12 \\ 2 & 4 & 0 & 3 & 6 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 18 & 20 & 20 & 23 & 21 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 13 & 15 & 6 & 8 \\ 21 & 64 & 98 & 105 & 92 \\ 0 & 1 & 2 & 1 & 4 \\ 0 & 0 & 0 & 1 & 2 \\ 12 & 12 & 8 & 11 & 14 \\ 2 & 6 & 15 & 10 & 10 \\ 0 & 1 & 2 & 6 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 3 & 4 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{rr}3 & 3 \\ 12 & 6 \\ 6 & 4 \\ 0 & 0 \\ 1 & 0 \\ 21 & 17 \\ 1 & 2 \\ 8 & 9 \\ 92 & 79 \\ 4 & 3 \\ 2 & 1 \\ 14 & 14 \\ 10 & 8 \\ 3 & 3 \\ 0 & 0 \\ 2 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 5 \\ 0 & 1 \\ 0 & 0\end{array}$ $\begin{array}{rr}3 & 1 \\ 6 & 10 \\ 4 & 2 \\ 0 & 0 \\ 0 & 2 \\ 17 & 14 \\ 2 & 2 \\ 9 & 7 \\ 79 & 71 \\ 3 & 2 \\ 1 & 0 \\ 14 & 10 \\ 8 & 14 \\ 3 & 2 \\ 0 & 0 \\ 1 & 6 \\ 1 & 3 \\ 0 & 1 \\ 5 & 2 \\ 1 & 6 \\ 0 & 4\end{array}$
$\begin{array}{rr}1 & 5 \\ 0 & 7 \\ 2 & 3 \\ 0 & 0 \\ 2 & 0 \\ 4 & 22 \\ 2 & 3 \\ 7 & 4 \\ 1 & 68 \\ 2 & 0 \\ 0 & 0 \\ 0 & 11 \\ 4 & 6 \\ 2 & 2 \\ 0 & 0 \\ 6 & 4 \\ 3 & 1 \\ 1 & 0 \\ 2 & 1 \\ 6 & 2 \\ 4 & 8\end{array}$
6
6
6
0
1
22
1
6
84
1
3
14
10
3
0
5
1
0
0
3
3
5
8
4
1
6
17
3
12
76
4
0
13
15
3
0
3
1
1
4
2
2
3
9
2
1
1
21
3
9
98
3
1
14
7
2
0
2
3
1
1
2
4
TOTAL

$\begin{array}{llllll}177 & 156 & 117 & 87 & 106 & 52 \\ 30\end{array}$
NUMBER OF HANDOFF5 TO CHICAGO
$\begin{array}{rlrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ & \text { CST } & 19 & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \text { A } & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$
FRO
CLEVELAND
INUI ANAPOLIS
MINNEAPOLIS
KANSAS CITY
DENVEK
TOTAL

| 31 | 28 | 15 | 18 | 23 | 13 | 6 | 12 | 11 | 7 | 9 | 13 | 36 | 48 | 42 | 40 | 46 | 42 | 37 | 44 | 35 | 45 | 44 | 49 | 694 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 33 | 17 | 19 | 15 | 15 | 20 | 4 | 10 | 3 | 7 | 6 | 5 | 10 | 29 | 35 | 21 | 31 | 24 | 24 | 31 | 28 | 41 | 31 | 38 | 497 |
| 27 | 12 | 11 | 5 | 2 | 2 | 1 | 1 | 3 | 3 | 2 | 7 | 23 | 14 | 13 | 15 | 22 | 36 | 20 | 22 | 23 | 20 | 23 | 19 | 326 |
| 30 | 30 | 11 | 14 | 13 | 3 | 6 | 3 | 5 | 11 | 6 | 1 | 6 | 15 | 26 | 24 | 23 | 20 | 24 | 30 | 25 | 30 | 29 | 37 | 422 |
| 19 | 16 | 11 | 5 | 4 | 1 | 7 | 11 | 9 | 13 | 8 | 3 | 3 | 6 | 6 | 8 | 6 | 27 | 28 | 27 | 14 | 14 | 21 | 21 | 288 |

	$\begin{aligned} & \text { AT GiAT } \\ & \text { CST } \end{aligned}$	1 19	20	3 21	4 22	$\begin{array}{r} 5 \\ 23 \end{array}$	6 24	7 1	8 2	9 3	10	$\begin{array}{r} 11 \\ 5 \end{array}$	12 6	$\begin{array}{r} 13 \\ 7 \end{array}$	14 8	15 9	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	17 11	18 12	19 13	20 14	21 15	$\begin{aligned} & 27 \\ & 16 \end{aligned}$	$\begin{aligned} & 23 \\ & 17 \end{aligned}$	$\begin{aligned} & 24 \\ & 18 \end{aligned}$	
TO																										TOTAL
BOSTON		0	0	0	0	ก	0	0	0	ก	0	n	0	ก	0	\bigcirc	0	0	0	0	1	0	0	0^{\prime}	0	1
NEW YOKK		1	0	0	0	0	0	ก	0	0	0	0	0	1	1	\bigcirc	0	1	1	0	0	0	1	1	0	7
WASHIHOTON		0	0	0	1	1	0	2	0	0	0	0	0	0	1	0	1	0	1	1	5	3	0	3	4	23
JACKSOAVILLE		1	0	1	0	0	0	\bigcirc	0	0	0	ก	0	0	0	2	2	0	1	5	1	3	0	2	ก	18
MI AMI		1	0	0	0	0	0	ก	0	0	0	1	0	2	0	0	0	0	0	$?$	0	0	1	0	0	7
CLEVELAND		1	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1	1	2	2	0	1	2	0	1	15
ATLANTA		4	3	4	1	1	0	1	1	0	0	1	3	8	5	8	7	9	5	9	8	9	11	8	4	110
INDIANAPOLIS		0	0	2	0	0	0	1	0	0	1	0	2	3	2	1	4	4	2	0	5	2	5	4	5	43
CHICAGU		0	1	0	2	0	0	0	0	0	0	1	0	3	2	1	5	1	0	1	4	5	2	1	1	30
MEIMPHIS.		14	8	3	3	2	3	3	1	1	0	3	23	18	21	25	21	20	18	20	21	22	23	15	10	298
HOUSTOIV		4	1	2	1	1	1	0	1	0	1	0	2	1	4	3	5	3	2	2	3	2	5	3	5	57
MINNEAPOLIS		0	0	0	0	0	0	ก	0	0	0	0	0	0	\bigcirc	ก	0	0	0	ก	0	1	1	0	0	2
KANSAS CITY		4	2	4	1	1	0	2	0	0	0	0	0	2	6	5	5	3	5	7	4	6	5	4	1	67
FORT WUKTH		3	2	1	1	1	0	1	1	1	1	0	0	2	7	7	5	8	2	5	6	2	5	3	8	72
DEINVER		0	\checkmark	0	0	0	0	0	0	ก	n	n	1	0	0	\bigcirc	0	0	0	1	0	0	0	n	0	$?$
ALSUQIJcRQUE		0	0	0	0	0	0	0	0	0	0	ก	0	0	0	2	2	1	0	n	2	0	0	0	0	7
LOS ANGELES		0	1	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	1	1	0	0	0	0	0	0	0	0	3
total		33	18	17	10	7	4	10	4	2	3	7	32	41	50	55	59	51	39	55	60	56	61	44	39	757

NUMBER OF ARRIVALS AT MEMPHIS

$$
\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}
\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & \\
\text { CST } & 19 & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & \text { TOTAL }
\end{array}
$$

BOSTON
NEW YORK
WASHINUTON
JACKSO: VI LLE
MIAMI
CLEVELAND
ATLANTA
INUI ANAPOLIS
CHICAGU
MEMPHIS
MEMPHIS
HOUSTO
MINNEAFOLIS
KANSAS CITY
FORT WURTH
DENVER
ALBUQUCRGUE LOS ANvELES

TOTAL

0	0	0	0	0	0	0	0	ก	n	ก	0	n	0	n	0	0	1	n	0	n	2	0	0	3
1	1	2	0	0	0	0	0	0	ก	n	0	0	0	0	1	2	0	0	0	0	0	0	0	7
1	1	1	0	0	0	2	0	0	0	ก	0	2	4	5	4	1	3	2	1	3	1	1	5	37
1	2	0	0	0	0	ก	0	0	0	ก	0	0	1	1	2	0	1	1	3	1	1	2	0	16
0	1	0	0	0	0	0	0	0	ก	\bigcirc	0	ก	0	1	1	0	0	0	0	1	0	0	2	6
0	0	0	1	1	1	0	0	0	0	0	1	1	1	1	1	1	2	0	0	0	1	1	0	13
6	4	7	5	1	2	0	0	1	0	0	2	3	9	12	10	18	14	14	7	10	15	3	10	15.3
2	4	3	3	1	0	0	1	0	ก	1	0	0	0	5	8	7	3	4	4	5	2	4	4	61
0	2	1	0	1	0	0	0	0	n	0	0	0	2	1	2	1	1	2	2	0	1	2	1	19
11	13	6	4	4	3	1	3	2	0	0	2	20	19	22	26	17	25	22	15	21	27	19	16	298
2	1	1	2	3	3	0	0	0	0	0	0	0	2	2	3	5	8	7	1	3	3	5	3	54
0	1	0	0	0	0	0	0	0	0	ก	0	\bigcirc	0	\bigcirc	0	0	0	\bigcirc	0	1	0	0	0	2
4	2	0	4	4	4	1	1	1	0	0	0	0	1	3	3	2	5	0	3	4	$?$	5	?	51
6	3	0	0	1	2	0	0	0	0	0	3	5	10	5	5	4	4	7	10	7	2	5	5	84
0	0	0	ก	0	1	0	0	0	0	n	0	0	n	ก	1	1	0	0	0	0	$0{ }^{-1}$	0	1.	4
$?$	0	0	0	0	0	0	0	0	0	n.	0	0	0	0	0	0	1	1	1	3	1	1	0	10
0	0	0	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	1	2	8
36	35	21	19	16	17	5	5	4	0	2	9	31	49	58	67	. 59	68	60	47	59	59	49	51	826

NIIMBER OF HANDOFFS TO MEMPHIS

NUMBER OF DEPARTURES FROM HOUSTON
ro
 BOSTON NEW YOKK WASHINOTON
MIAMI
CLEVELAND
ATLANTA
INLANTA
INUIANAPOLIS
CHICAGU
MEMPHI:
HOUSTO
HOUSTO
FORT WURTH
GREAT + ALLS
DENVER
ALBUQUERQUE
SALT LAKE CY
SALT LaKE
OAKLANU
LOS ANGELES

1	0	0	0	0	0
0	0	0	2	0	1
2	1	0	0	0	0
3	1	5	1	1	0
3	0	3	1	0	0
0	0	0	0	0	0
4	0	4	0	3	0
0	0	0	0	0	0
1	2	0	0	0	0
1	1	2	4	1	0
41	30	37	18	12	6
2	2	1	2	0	0
7	0	4	5	10	2
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	0
0	0	2	0	0	0
0	0	1	0	0	0
0	0	1	1	0	0
2	0	2	1	2	0
70	45	62	35	29	9

n	0	0	n
0	0	1	0
0	1	0	0
0	0	0	0
0	0	0	0
0	0	0	0
2	1	0	0
0	0	0	0
0	0	0	0
0	0	0	0
4	4	0	2
1	0	0	0
0	0	0	1
0	0	0	0
0	0	0	0
0	1	0	0
0	0	0	0
0	0	0	0
1	1	0	0
0	0	0	0
8	8	1	3

0	n	0	n	0	0	0
0	1	0	1	3	1	1
1	2	1	0	2	0	1
0	1	1	7	2	8	5
0	1	1	3	1	0	1
0	1	0	n	0	0	0
1	2	4	3	1	1	3
1	n	1	n	0	1	0
0	0	1	4	0	0	0
1	2	5	2	10	4	4
5	27	65	81	85	94	83
0	1	3	2	1	1	1
0	9	11	14	23	15	23
0	n	0	0	0	0	0
0	0	0	1	3	0	0
1	0	6	7	3	1	6
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	1	1	1	0	n
0	2	1	0	4	2	3

0
2
0
2
3
0
3
0
2
1
68
3
19
0
0
6
0
0
2
3
 2
19
12
54
27
2
51
3
15
54
026
27
234
1
9
55
$?$
1
11
33

「OTAL

NUMBER OF ARRIVALS AT HOUSTON

FROim	AT GMT	1	2	3	4	5	6	7	B	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
	CST	19	20	21	23	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
																										TOTAL
NEH YOKK		2	3	0	0	3	1	1	0	0	1	0	0	1	0	0	3	0	0	3	0	2	1	0	1	22
WASHINOTON		$?$	2	0	0	1	0	0	0	0	0	0	0	ก	0	2	2	1	0	0	0	1	2	1	2	16
JACKSO.JVILLE		3	1	0	2	1	0	0	0	0	0	0	1	0	0	3	7	2	1	4	2	5	1	3	4	40
M1AMI		1	1	1	0	0	0	0	0	0	0	0	0	0	\bigcirc	3	2	0	4	2	3	1	1	3	4	26
CLEVELAISD		0	0	0	0	0	0	\bigcirc	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	1	0	1	0	$?$
A TlANTA		7	4	5	2	2	1	2	0	0	1	0	1	3	1	3	3	2	8	6	2	6	1	8	3	71
INDI ANAPOLIS		1	\checkmark	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	3	0	0	9
CHICAGU		U	4	0	$?$	0	0	0	0	0	0	0	0	0	0	0	1	0	1	3	0	0	0	0	1	12
MEMPHIS		7	3	3	1	1	0	3	0	1	0	0	0	2	2	3	4	4	2	3	1	3	3	4	$?$	$5 ?$
HOUSTO..		57	44	37	32	23	10	6	3	5	0	2	3	6	18	65	72	90	8S	94	68	82	76	76	72	1026
MIINNEAPOLIS		0	0	0	\bigcirc	0	0	0	0	0	\bigcirc	n	0	ก	0	n	0	0	0	0	0	0	0	0	1	1
KANSAS CITY		4	2	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	\bigcirc	2	4	4	0	2	0	1	3	2	24
FORT WURTH		15	11	6	5	7	1	1	0	3	3	1	2	7	11	18	3	21	12	16	18	10	18	16	5	210
UENVER		1	4	1	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	1	0	0	0	1	0	2	1	- 0	7
ALBUQUERQUE		2	2	1	1	2	1	0	0	0	1	0	1	0	0	0	0	1	1	2	3	6	2	3	4	3.3
SALT LAKE CY		0	0	0	1	0	0	0	0	1	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	1
SEATTLE		0	0	1	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	1	0	0	0	0	2
OAKLAIJU		0	\cup	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	3	2	10
LOS ANUÉLES		4	1	2	0	1	4	0	0	0	1	0	0	2	1	0	0	0	1	1	0	2	$?$	4	$?$	28
total		106	78	58	47	41	19	14	3	10	7	4	8	21	3.3	47	100	125	121	135	102	119	113	126	105	1597

	NUMBER OF HANDOFFS TO HOUSTON																											
	$\begin{aligned} & \text { AT GNiT } \\ & \text { CST } \end{aligned}$		$\begin{array}{r} 1 \\ 19 \end{array}$	$\begin{array}{r} 2 \\ 20 \end{array}$	$\begin{array}{r} 3 \\ 21 \end{array}$	$\begin{array}{r} 4 \\ 22 \end{array}$	$\begin{array}{r} 5 \\ 23 \end{array}$	$\begin{array}{r} 6 \\ 24 \end{array}$	71	$\begin{aligned} & 8 \\ & 2 \end{aligned}$	$\begin{aligned} & 9 \\ & 3 \end{aligned}$	$\begin{array}{r} 10 \\ 4 \end{array}$	$\begin{array}{r} 11 \\ 5 \end{array}$	$\begin{array}{r} 12 \\ 6 \end{array}$	$\begin{array}{r} 13 \\ 7 \end{array}$	$\begin{array}{r} 14 \\ 8 \end{array}$	$\begin{array}{r} 15 \\ 9 \end{array}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{aligned} & 17 \\ & 11 \end{aligned}$	$\begin{aligned} & 18 \\ & 12 \end{aligned}$	$\begin{aligned} & 19 \\ & 13 \end{aligned}$	20	21	22	$23 \quad 24$			
			15																				16	17	18			
FRO_{14}																											TOTAL	
JACKSOIVVILLE				5	2	3	3	0	0	0	0	1	0	0	0	3	4	7	8	9	8	11	12	9	5	1.1	9	110
A TLANTA			1	3	4	3	1	1	1	0	0	1	0	1	1	1	4	2	4	5	5	3	3	6	3	3	S6	
MEMPHIS			8	3	4	4	4	2	1	0	1	1	0	1	4	3	5	5	13	2	7	6	5	$?$	9	8	9 R	
FORT WURTH			17	27	16	8	13	5	0	3	5	3	2	7	10	18	14	22	28	24	33	30	26	36	31	29	407	
TOTAL.			31	35	27	18	18	8	2	3	7	5	2	9	18	26	30	37	54	39	56	S1	43	49	54	49	671	

NUMGER OF DEPARTURES FROM MINNFAPOLIS

$\begin{aligned} & \text { AT Gint } \\ & \text { CST } \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	23	23	24	
	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
																									TOTAL
	0	0	0	0	0	0	0	0	0	0	ก	1	0	0	0	0	0	0	0	0	0	0	0	0	1
	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	2	3	2	0	2	0	1	1	14
	0	0	0	0	0	0	0	0	0	ก	n	0	n	0	0	0	0	0	0	n	1	n	1	0	$?$
	0	0	0	0	0	0	0	0	0	0	ก	0	0	0	0	0	0	0	0	1	n	0	0	0	1
	2	0	5	1	1	0	0	0	0	1	1	4	5	2	2	1	4	5	5	1	$?$	0	$?$	$?$	46
	0	0	0	0	0	0	0	0	0	0	n	0	1	0	0	1	0	0	0	0	0	0	n	0	$?$
	0	0	0	0	0	0	0	0	0	0	n	0	0	0	1	0	0	1	1	0	0	2	0	1	6
	12	8	3	2	1	1	1	1	0	0	2	15	13	9	10	15	15	9	11	16	12	11	13	13	193
	0	0	0	0	0	0	0	0	0	0	n	0	n	0	n	0	1	0	0	0	n	0	n	1	$?$
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
	10	H	10	14	7	4	4	0	2	3	A	23	54	38	25	29	30	33	34	20	22	27	29	18	$44 ?$
	0	6	0	0	0	0	0	0	0	0	1	1	2	1	0	2	5	1	n	0	2	1	1	1	18
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0	n	0	0	0	0	0	3
	1	1	2	0	0	0	0	0	1	0	1	0	0	2	1	1	0	2	1	0	1	2	0	1	17
	0	1	0	1	0	0	0	0	0	0	n	0	1	0	0	1	1	0	n	1	0	0	0	2	
	0	1	0	0	0	0	0	0	0	0	n	0	0	1	0	0	0	0	n	1	n	0	0	0	3
	1	0	1	0	0	0	0	0	0	0	n	0	0	0	0	2	0	0	0	0	0	0	1	0	5
	0	0	1	0	0	0	0	0	0	0	n	0	1	0	0	0	0	0	1	0	0	0	n	0	3
	0	0	1	0	0	1	0	0	0	0	0	0	$?$	0	1	0	0	0	1	$?$	0	0	1	1	10
	27	19	24	18	9	6	5	1	3	4	13	45	79	4.3	40	53	60	54	S7	$4 ?$	42	43	49	41	777

NUMBER OF ARRIVALS AT MINNEAPOLTS

FRO:
BOSTON
NEW YORK
WASHINUTON
JACKSOivV 1LLE
CLEVELAND
ATLANTA
ATLANTA
INOIANAPOLIS
CHICAGU
MEMPHI \supset
MINNEAFOLIS
KANSAS CITY
FORT WURTH
GREAT FALLS
UEINVER
ALBUQUERQUE
ALBUQULRQUE
SALT LAKE CY
SALT LAKE CY
SEATTLE
OAKLANU
LOS ANGELES
TOTAL

NUMBER OF HANDOFFS TO MINNFAPOLTS

TOTAL

| CANADA | 0 | 0 | 1 | n | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 3 | 0 | 1 | 0 | 0 | 10 | | | |
| :--- | ---: |
| CLEVELAND | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 3 | 10 | 3 | 2 | 2 | 5 | 2 | 3 | 3 | 7 | 2 | 48 | | | |
| CHICAGU | 17 | 14 | 18 | 13 | 12 | 7 | 2 | 3 | 4 | 3 | 2 | 0 | 5 | 7 | 17 | 23 | 16 | 19 | 17 | 15 | 15 | 14 | 17 | 23 | 283 | | | |
| GREAT FALLS | 1 | 4 | 1 | 1 | 0 | 2 | 2 | 2 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 0 | 5 | 7 | 2 | 0 | 5 | 6 | 1 | 2 | 48 | | | |
| OENVER | 4 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 4 | 1 | 2 | 3 | 5 | 0 | 1 | 0 | 2 | 3 | 34 | | | |
| | | | | | 19 | 23 | 17 | 14 | 9 | 4 | 6 | 6 | 6 | 5 | 0 | 6 | 13 | 34 | 27 | 25 | 31 | 30 | 20 | 24 | 24 | 27 | 30 | 423 |

NUMBER OF OEPARTURES FROM KAIJSAS C1TY

	AT GMT	1	2	3	4	5	6	7	A		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
	CST	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
TO																										TOTAL
BOSTON		0	0	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	ก	0	0	0	5
NE W YOrk		2	0	2	1	2	1	2	0	1	0	0	0	0	4	2	0	1	1	2	3	2	3	4	3	36
WASH1IJUTON		2	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	2	1	1	0	3	1	2	1	16
JACKSO.NVILLE		1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	0	0	0	1	0	0	7
MIAMI		1	0	1	1	0	0	0	0	0	0	0	0	0	0	2	1	2	0	0	0	1	0	0	1	10
CLEVELANO		2	1	0	0	2	0	0	0	0	0	0	0	0	0	1	3	2	3	2	0	2	0	0	$?$	20
ATLANTA		0	U	0	0	0	0	0	0	0	0	1	0	\bigcirc	2	1	0	0	2	0	1	1	1	4	1	14
INUIANAPOLIS		2	0	1	4	1	1	2	0	0	0	0	1	5	5	0	1	1	4	3	6	7	0	3	3	50
CHICAGL		15	5	8	6	2	2	0	4	2	2	0	2	7	16	12	7	7	15	9	8	13	9	14	11	176
MEMPHI $>$		4	1	5	1	4	1	1	1	0	0	0	0	1	3	3	3	4	0	4	5	3	3	3	1	51
HOUSTOM		0	0	0	0	0	0	0	0	0	0	0	0	1	2	3	5	0	0	2	3	3	3	1	1	24
MINNEAPOLIS		1	0	0	1	0	1	0	0	0	0	0	1	0	0	1	0	0	0	1	0	2	1	2	0	11
KANSAS CITY		24	24	20	20	11	9	3	9	6	2	0	7	36	38	44	43	43	43	32	46	52	50	34	30	626
FORT WURTH		5	7	6	6	4	2	1	1	0	3	0	1	3	3	7	3	4	6	9	9	8	13	10	9	120
GKEAT FALLS		0	0	0	0	0	0	0	0	0	0	n	0	ก	0	n	0	0	0	0	0	0	0	1	0	1
DENVER		4	3	2	3	0	0	1	1	0	0	0	0	0	2	3	4	0	1	3	$?$	2	2	5	5	43
ALbuQuéroue		2	0	1	2	0	0	0	0	1	0	0	0	0	0	4	1	1	1	2	2	3	2	2	2	26
SALT LAKE CY		0	0	1	0	0	0	0	0	0	0	0	0	0	0	n	0	0	0	0	0	0	0	0	0	1
SEATTLE		$?$	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	6
OAKLAIJU		1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	2	0	0	0	0	1	0	2	1	11
LOS ANuELES		1	1	0	0	1	2	1	0	0	1	\bigcirc	0	0	0	2	0	0	1	3	1	2	2	0	4	22
TOTAL		69	44	49	47	27	19	12	16	10	A	1	13	54	79	87	74	68	80	74	86	106	91	87	75	1276

NUMBER OF ARRIVALS AT KANSAS CITY

NUMEER OF HANDOFFS TO KANSAS CITY

NUMBER OF DEPARTURES FROM FORT WORTH
to

AT GMT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
																									TOTAL
	0	0	0	0	0	0	0	0	0	n	1	0	0	0	0	0	0	0	0	0	0	1	0	0	2
	0	0	0	0	2	1	0	0	0	0	0	0	1	3	1	0	2	2	1	4	1	1	2	0	21
	1	4	0	0	1	1	0	0	0	0	0	0	0	1	1	0	3	2	3	2	0	1	4	0	20
	2	1	0	0	0	0	0	0	0	0	0	0	0	2	1	4	1	0	2	1	1	2	1	2	20
	1	0.	0	0	0	0	0	0	0	0	0	0	0	1	n	0	0	1	1	0	0	0	0	0	4
	0	0	0	0	9	0	ก	0	ก	0	n	0	0	0	0	0	1	0	1	0	0	0	0	0	$?$
	1	1	0	1	0	0	0	1	0	0	0	3	1	3	1	6	1	6	3	3	1	1	2	1	36
	1	0	0	0	1	0	0	0	0	0	0	0	0	0	2	0	0	0	2	1	1	0	1	2	11
	0	1	1	1	1	0	0	0	0	0	0	2	2	5	5	$?$	4	0	5	2	2	6	4	2	45
	3	1	0	0	2	0	0	0	1	2	$?$	6	8	5	5	6	5	6	7	11	2	3	4	5	84
	10	6	5	6	3	0	0	3	3	1	1	10	16	13	7	19	14	19	14	16	13	12	7	12	210
	0	0	0	0	0	0	n	0	0	n	ก	1	ก	0	0	0	ก	0	1	0	ก	0	0	0	$?$
	5	6	3	1	3	0	3	1	0	0	1	4	5	A	6	8	5	4	2	5	5	7	6	3	91
	23	29	16	11	3	7	7	3	3	1	4	30	65	58	79°	76	63	58	83	78	78	59	48	38	920
	1	0	0	0	0	0	0	0	0	0	0	0	ก	0	0	0	0	0	0	0	0	0	0	0	1
	2	2	0	$1)$	0	0	0	1	0	0	0	0	1	1	4	2	0	2	1	4	6	3	1	2	32
	5	5	2	1	2	1	0	0	0	0	0	1	B	7	4	3	3	7	6	5	12	16	A	5	101
	$1)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	？	0	0	1	0	0	3
	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	n	0	0	1	\bigcirc	1	4
	0	1	0	1	0	0	0	0	0	0	0	0	0	3	1	0	1	1	0	2	0	0	3	1	14
	3	4	3	1	0	0	0	0	1	1	0	1	1	4	6	3	4	2	0	4	1	5	6	$?$	52
	58	5＊	30	23	18	10	10	9	8	5	9	58	108	115	123	129	107	110	134	138	123	119	97	76	1675

NUMBER OF ARRIVALS AT FORT WORTH
NEW YJKX
WASHINGTON
JACKSOHVILLE
M1AMI
CLEVELAND
ATLANT：
INDIANAPOLIS
CHICAG
MEMPHIS
HOUSTOW
MINNEAHOLIS
KANSAS CITY
FORT WURTH
GREAT FALLS
DEINVER
ALEUOUCRGUE
SALT LAKE CY
SEATTLE
OAKLANU
LOS ANUELES
TOTAL

FRO．
NE W YOizK
WASH1HUTON
JACKSOWV1LLEE
MIAMI
CLEVEL，ND
ATLANTM
ATLANTM
INUIANAPOLIS
CHICAGU
MEMPHI：
HOUSTO
MINNEAYOLIS
KANSAS CITY
FGRT WURTH
GREAT FALLS DEIVVER
ALBUGULRQUE
SALT LAKE CY
SEATTLE
OARLANL
LOS ANGELES
TOTAL
$\begin{array}{rlrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GNT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \text { A } & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ \text { CST } & 19 & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$
TOTAL

3	0	0	0	0	0	0
1	1	0	0	0	1	1
1	2	0	0	0	0	0
1	0	1	0	0	0	0
0	0	0	0	0	0	0
2	3	3	0	0	0	2
0	2	0	1	0	0	0
2	2	2	2	1	2	0
6	3	3	1	0	2	0
15	8	8	6	3	13	0
0	0	0	0	0	0	0
9	10	6	8	4	4	2
41	34	31	15	11	3	6
0	0	0	0	0	0	0
1	5	0	2	0	0	0
3	5	3	2	3	2	0
1	1	0	0	0	0	0
0	0	0	0	3	0	0
0	0	3	0	0	0	0
7	0	2	2	2	1	0
93	76	62	39	27	28	11

$\begin{array}{ccc}n & n & n \\ n & 0 & n \\ n & n & n \\ 0 & 0 & n \\ n & n & n \\ 0 & 0 & 1 \\ 0 & 0 & n \\ 0 & 0 & n \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & n & n \\ 3 & 1 & 2 \\ 6 & 2 & 0 \\ n & 0 & n \\ n & n & 1 \\ 0 & 0 & 0 \\ 0 & 1 & n \\ n & 1 & n \\ n & n & 1 \\ 2 & 1 & 0\end{array}$
0
0
0
0
0
0
0
2
0
0
0
0
8
0
0
0
0
0
0
4 0
0
0
0
0
0
0
1
0
2
0
1
24
0
0
2
0
0
0
3 n
1
0
0
0
2
0
1
1
7
0
2
55
0
0
2
0
0
0
0 n
0
1
0
1
1
2
3
4
7
0
4
59
0
1
3
0
0
0
1 2
2
1
0
1
1
0
2
7
16
0
5
55
1
0
5
0
0
0
0 2
0
1
0
0
0
3
5
10
14
0
4
91
0
1
6
0
0
2
0 0
2
2
0
0
2
1
2
5
17
0
5
59
0
0
5
0
0
1
2
 0
3
1
1
0
1
2
0
1
15
1
9
80
0
0
7
0
0
2
2 n
2
1
5
1
2
0
2
5
20
1
6
80
0
2
6
n
0
2
2
 1
1
4
0
0
1
1
2
5
17
0
14
65
0
0
9
1
0
0
7 FODOFWONDONFMNUNーートO

NUMAER OF HANDOFFS TO FORT WORTH

	AT	Gint	1	2	3	4	5	6	7	A	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
		CST	19	20	21	22	23	24	1	2	3	4	5	6	7	A	9	10	11	12	13	14	15	16	17	18	
FROi																											TOTAL
MEMPHIS			18	24	15	10	4	11	4	2	1	1	4	2	1	5	19	25	23	26	18	19	25	21	25	22.	321
HOUSTOH			17	19	12	12	11	13	1	2	3	0	1	2	5	13	24	34	42	31	35	24	32	39	36	38	446
KAINSAS CITY．			17	12	11	14	5	3	0	2	？	3	$?$	0	2	11	10	13	9	9	11	14	14	20	26	22	$23 ?$
ALBUQUERGUE			20	11	13	9	10	3	4	7	4	3	6	7	4	3	5	9	19	20	21	27	23	28	24	15	295

To

	AT GIMT	1	2	3	4	5	6	7	¢	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
	MST	18	19	20	21	22	2.3	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
To																				.						TOTAL
CHICAGv		0	u	0	0	0	0	ก	0	n	0	n	0	ก	0	n	0	0	0	n	0	ก	0	1	1	2
MINNEATOL IS		1	u	0	0	0	2	0	0	0	0	0	0	0	1	0	0	1	1	0	2	2	0	0	0	10
FORT WURTH		0	u	0	0	ก	0	0	0	0	n	n	0	n	1	0	0	0	0	n	0	0	0	n	0	1
GRLAT raLLS		3	5	7	5	49	3	12	20	14	10	12	2	4	4	5	5	7	10	5	6	8	7	6	3	212
DENVER		0	0	0	0	11	0	0	0	0	0	n	0	0	0	0	1	2	0	0	0	3	3	0	1	10
SALT LAKE CY		0	2	0	0	0	0	0	0	0	0	n	0	,	1	0	1	1	0	0	0	0	3	1	0	10
SEATTLE		1	1	1	1	0	1	0	0	0	1	0	0	1	0	1	0	1	1	1	0	3	3	0	1	18
LUS ANUELES		0	u	0	n	0	0	n	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	$?$
TOTAL		5	8	8	6	49	6	12	20	14	11	12	3	6	7	7	7	12	12	6	\&	16	16	8	6	265

NUMBER OF ARRIVALS AT GREAT FALI S

FRO ${ }_{101}$
WA HHINUTOIV
CLEVELNND
CHICAGU
HOUSTO.
MINNEAHOLIS
KANSAS CITY
FORT WUKTH
GREAT FALLS
DENVER
ALBUQULRQUE
SALT LAKE CY
SEATTLL
OAKLANU
LOS ANUELES

TOTAL

	$\begin{aligned} & \text { AT GMT } \\ & \text { MST } \end{aligned}$	1	2	3	4	5	6	7	A	9	10	11	12	13	14	15	16	17	18	19	20	21	23	23	24	
		18	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
101																										TOTAL
Jutolv		0	0	0	0	0	0	0	0	0	0	n	0	0	0	n	0	1	0	n	0	n	0	0	0	1
mad		0	0	0	0	$?$	1	n	0	0	0	n	0	n	0	n	0	0	0	0	0	0	n	0	n	1
U		0	0	0	0	0	0	n	0	0	n	n	0	n	0	0	0	0	0	0	0	1	2	0	0	3
,		1	0	0	0	0	0	0	0	0	0	$ก$	0	0	0	0	0	0	0	0	0	0	0	0	0	1
AHOLIS		2	1	1	1	1	0	0	0	0	0	n	1	1	0	1	2	1	0	1	1	0	0	3	0	17
CITY		0	0	1	n	0	0	0	0	n	0	n	0	n	0	0	0	0	0	n	0	0	0	0	0	1
JUKTH		0	0	1	0	0	0	0	0	0	0	ก	0	n	0	0	0	0	0	0	0	0	0	0	0	1
r ALLS		5	2	6	7	3	2	50	4	17	20	10	17	5	3	1	6	8	3	9	9	8	5	6	6	212
		$?$	1	1	1	1	1	0	0	0	1	0	0	0	0	0	1	0	1	1	0	2	0	2	0	15
d_RQUE		1	\checkmark	0	n	0	0	0	0	n	0	n	0	0	0	n	0	0	0	n	n	0	0	0	0	1
HKE CY		0	0	1	0	0	0	0	0	0	0	n	0	1	0	n	1	0	0	0	1	1	0	1	0	6
L		1	1	0	2	0	0	0	1	0	0	0	0	0	1	0	0	2	1	2	0	0	0	1	1	13
Vu		0	\checkmark	0	0	0	0	0	0	n	n	n	0	0	0	0	0	0	2	0	0	n	0	0	0	2
NuELES		0	0	0	0	0	0	0	0	0	0	n	0	0	0	0	0	0	0	1	1	0	0	0	0	2
		12	'	11	11	5	4	50	5	17	$` 21$	10	18	7	4	2	10	12	7	14	12	12	7	13	7	276

NUMBER OF HANDOFFS TO GREAT FALIS

FRO..
MINNEAFOLIS
DENVER
SALT LAKE CY
SEATTLE

TOTAL

total

NUMBER OF DEPARTURES FROM DENVER

то

AT GMT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
M.ST	18	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
																									TOTAL
	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	3	0	0	2	0	0	0	0	0	1	7
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	1	1	1	5
	0	0	0	0	0	0	0	0	0	0	n	0	0	0	0	0	0	0	0	0	0	0	1	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	0	0	0	0	0	0	0	0	0	0	n	0	0	0	0	0	0	0	0	0	0	0	n	1	1
	0	4	2	2	1	1	0	1	1	0	0	2	4	4	2	2	4	4	6	4	?	1	4	4	55
	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	4
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	2	0	0	1	0	2	0	7
	1	1	1	0	0	0	0	0	0	0	0	0	2	0	1	1	2	2	1	2	0	0	2	1	17
	4	3	0	0	2	0	1	0	1	1	0	0	1	4	4	1	1	4	4	3	3	3	1	1	42
	$?$	1	0	0	0	0	0	0	0	1	n	0	1	0	2	1	2	2	2	1	0	0	5	3	23
	2	0	1	2	0	0	0	1	0	0	0	0	0	1	1	0	0	2	1	0	$?$	1	0	1	15
	17	14	11	12	9	6	2	3	1	1	2	6	12	24	20	23	18	26	11	21	19	19	19	14	310
	1	2	4	1	0	1	0	0	0	n	0	1	4	0	3	4	0	4	1	2	3	2	2	1	36
	1	1	2	1	1	0	1	0	1	0	0	0	1	2	5	2	1	4	1	1	4	3	2	5	39
	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	0	1	0	1	-9
		0	0	2	0	0	0	0	0	0	0	0	1	1	0	2	0	1	0	0	2	2	0	1	14
	3	1	2	0	0	0	0	0	1	0	0	0	1	1	3	2	2	2	4	1	1	0	3	0	27
	34	28	23	22	13	8	5	5	5	3	2	9	PR	3R	45	43	32	56	37	35	37	33	42	36	614

NUMBER OF ARRIVALS AT DENVER
BOSTON NEW YOKX WASHINOTOIN MLAM1
ATLANT.
1ND1 ANAPOLIS
CHICAGU
MEMPHI
MEMPHI
HOUSTO\%
MIINNEAYOL
MIINNEAFOLIS
KAINSAS CITY
FORT WURTH
GREAT rALLS
DENVER
ALBUQUCRQUE
SALT LAKE CY
SEATTLC
OAKLANU
LOS ANUELES
TOTAL

FRO.

BOSTON
NEW YOKK
WASHINGTON
CLEVELAND
ATLANTA
INUI ANAPOLIS
CHICAGU
MEMPHIS
HOUSTO.,
MINNEAFOLIS
KANSAS CITY
FORT WURTH
GREAT FALLS
DENVER
ALBUQUERQUE
SALT LAKE CY.
SALT LAK
oAKLANU
LOS ANGELES
TOTAL

NUMBER OF HANDOFFS. TO DENVER

	AT Gint	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
	MST	18	19	20	21	22	$\begin{array}{r} 6 \\ 23 \end{array}$	24	1	2	3	4	- 5	6	7	8	9	10	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	12	13	$\begin{aligned} & 21 \\ & 14 \end{aligned}$	$\begin{aligned} & 22 \\ & 15 \end{aligned}$	16	17	
FRO_{4}																										TOTAL
CHICAGU		26	20	12	12	4	5	6	2	7	8	5	3	0	5	7	23	20	14	17	14	17	12	16	21	276
MININEAYOLIS		2	1	1	3	0	0	1	1	0	0	1	0	0	4	1	0	2	1	0	2	2	0	0	0	27
KAIVSAS CITY		13	12	10	4	3	2	3	2	3	0	0	1	1	1	4	12	13	5	7	13	7	11	6	14	147
GREAT r ALLS		1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2	1	0	0	0	3	0	10
ALBUQUERQUE		20	10	9	9	2	5	4	1	1	1	2	0	3	1	1	10	7	10	6	4	3	11	12	6	13 A
SALT LAKE CY		11	10	8	5	5	6	9	4	11	2	3	0	0	2	2	11	28	29	18	13	10	15	18	14	234
LOS ANOELES		12	11	4	8	7	4	2	14	12	10	3	1	1	0	1	4	11	22	22	13	20	23	13	13	231
TOTAL		85	65	44	41	21	22.	25	24	34	21	14	5	6	13	16	60	82	83	71	59	59	72	68	68	105R

NUMBER OF ARRIVALS AT ALBUNUFRQIIE

$\begin{array}{llrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ \text { MST } & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$

FROM

NEW YORK	0	1	0	0	0	0	0
WASHINUTON	0	1	0	0	0	0	0
JACKSOINVILLE	1	0	0	1	0	0	0
MIAMI	0	0	0	0	0	0	0
ATLANTA	1	0	0	0	0	0	0
INDIAINAPOLIS	0	1	0	2	0	1	0
CHICAGU	3	0	3	2	2	0	1
MEMPHIS	0	0	0	0	0	0	0
HOUSTO.J	1	4	0	0	0	0	0
KANSAS CITY	2	3	1	1	1	0	1
FURT WURTH	5	3	7	2	2	3	0
DENVER	1	1	3	4	1	0	1
ALbuQutrque	16	10	12	11	7	8	4
SALT LAKE CY	1	0	0	0	0	1	0
SEATTLE	0	0	0	0	0	0	0
OAKLANL	1.	6	1	1	0	0	0
LOS ANOELES	12	4	3	3	9	6	4
TOTAL	44	33	30	27	22	19	11

NUMBER OF HANDOFFS TO ALBUDUERGIIE

$\begin{aligned} & \text { AT GMT } \\ & \text { PST } \end{aligned}$	1	2	3	4	5	6	7	\&	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
	17	13	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
																									TOTAL
	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ก	0	1	0	0	0	1	0	0	1	3
	0	0	0	0	1	0	0	0	0	0	n	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	4
	0	\checkmark	0	ก	0	0	0	0	0	\bigcirc	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	4
	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	2	0	1	0	0	0	6
	1	2	2	0	1	1	1	1	0	1	n	0	0	2	2	0	2	3	2	0	3	1	1	0	26
	0	0	0	0	1	0	0	0	0	0	0	0	\bigcirc	0	0	1	1	0	3	1	0	1	0	0	8
	7	10	5	4	7	2	2	2	1	4	4	0	2	1	10	6	9	12	13	16	15	13	9	14	168
	1	1	1	3	3	0	1	1	0	1	0	0	0	0	0	0	3	0	3	0	5	1	2	0	26
	3	4	2	0	1	0	1	0	0	0	0	1	0	1	1	1	2	1	4	1	1	3	1	3	31
	2	1	1	0	2	0	0	0	0	0	3	0	0	0	1	0	3	0	2	0	1	0	2	4	22
	14	21	11	7	16	3	5	5	1	7	8	1	2	5	16	8	21	17	30	18	27	20	16	22	301

NUMBER OF ARRIVALS AT SALT LAKE CY

CHICAGU
HOUSTOIV
MINNEAYOLIS
MINNEAPOLIS
KANSAS CITY
FORT WORTH
FORT WORTH
GREAT F
DENVER
ALBUQUERGUE SALT LAKE CY SEATTLL
OAKLAND
LOS ANOELES
TOTAL

FHUM
New YOikK
CHICAGU
HOUS TOW
MINNEAROLIS
KANSAS CITY
FOKT WURTH
GHEAT FALLS
GHEAT FA
DENVER
ALGUQULRGUE
SALT LAKE CY
SALT LAK
SEATTLE
SEATTLL
OAKLAINL
LOS ANGELES
total
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ \text { PST } & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$
TOTAL

0	0	1	0	0	0	0	1	0	0	n	0	0	0	\cap	0	0	0	0	0	0	0	0	0	2
0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	4
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
0	0	0	1	0	0	n	0	0	0	ก	0	0	0	1	0	0	0	0	0	0	1	0	0	3
0	0	0	1	0	0	0	0	0	0	n	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	ก	0	0	0	0	0	0	0	0	ก	0	0	0	0	0	0	0	0	1	2	0	3
0	0	1	1	0	0	0	0	0	0	ก	0	0	1	0	1	1	1	0	0	0	0	$?$	2	10
5	0	2	1	2	1	0	1	0	1	0	0	0	0	5	2	2	1	5	1	0	4	2	4	39
0	0	1	1	0	1	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	7
15	7	8	9	3	6	2	2	1	2	3	3	2	2	3	7	6	7	14	13	13	19	11	10	168
0	1	1	3	4	0	1	0	0	1	1	0	1	1	2	2	5	3	0	0	0	1	3	0	30
3	0	2	0	0	1	0	0	0	0	1	1	0	0	0	3	0	1	1	2	1	2	1	1	20
?	2	0	0	4	0	0	0	2	0	0	0	0	0	0	0	2	1	0	0	2	0	1	0	16
25	11	16	18	13	9	4	5	3	4	5	4	3	4	12	16	16	14	22	17	16	29	22	17	305

NUMBER OF HANDOFFS TO SALT LAKF CY

FRO. 1
GREAT FALLS
DENVEK
SEATTLE
oakLanis
LUS ANOELES
rotal

TO

BOSTON NE W YUKK WASHINUTON JACKSOIVIL
CHICAGU CHICAGU
HOUSTON
HOUSTON
MINNEAFOL
KANSAS CITY
FORT WURTH
GREAT FALLS
DENVER
ALBUQULRQUE
SALT LAKE CY
StATTLE
StATTLE
OAKLANU
LOS ANUELES
total

NUMBER OF ARRIVALS AT SEATTLF
 TOTAL

BOSTON
NLW YOKK
WASHINGTOIN
CHICAGU
HOUSTON
M1INNEAPOLIS
KANSAS CITY
FURT WURTH
FORT WURTH
GKEAT +AL
OENVEH
SALT Lake cy
SEATTLE
OAKLANL
OAKLANL
LUS ANOELES

$$
\begin{array}{rr}
0 & n \\
0 & n \\
0 & n \\
0 & 0 \\
0 & n \\
0 & 0 \\
0 & n \\
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 0 \\
13 & 24 \\
n & 0 \\
0 & 0
\end{array}
$$

$$
\begin{array}{rrr}
1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
7 & 0 & 0 \\
7 & 0 & 0 \\
+ & 29 & 29 \\
0 & 3 & 7 \\
7 & 0 & 0
\end{array}
$$

$$
\begin{array}{rrr}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 2 & 2 \\
0 & 0 & 0 \\
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 2 & 4 \\
41 & 32 & 30 \\
5 & 5 & 3 \\
2 & 2 & 1
\end{array}
$$

TOTA.

$$
\begin{array}{rrrrrrr}
0 & 0 & 0 & n & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & n \\
0 & 1 & 0 & n & 0 & 0 & 0 \\
1 & 1 & 3 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & n \\
0 & 0 & 0 & 3 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 2 & 1 & 0 & 1 \\
0 & 1 & 0 & 2 & 0 & 1 & 0 \\
2 & 1 & 1 & 1 & 1 & 3 & 1 \\
30 & 25 & 23 & 17 & 16 & 16 & 16 \\
4 & 3 & 2 & 5 & 4 & 0 & 2 \\
3 & 1 & 2 & 1 & 3 & 1 & 1 \\
42 & 37 & 3 & 33 & 29 & 22 & 24
\end{array}
$$

$$
\begin{array}{rrrrrr}
0 & 0 & 0 & n & 0 & 0 \\
0 & 0 & 0 & n & 0 & 0 \\
0 & 0 & n & n & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & n & 0 & 0 \\
0 & 0 & n & n & 0 & 0 \\
0 & 0 & 0 & n & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & n & 0 & 0 \\
2 & 0 & 0 & 1 & 1 & 0 \\
19 & 8 & 25 & 15 & 13 & 19 \\
0 & 1 & n & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
21 & 0 & 26 & 10 & 16 & -20
\end{array}
$$

$$
\begin{array}{rr}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0 \\
1 & 3 \\
0 & 0 \\
0 & 3 \\
26 & 21 \\
3 & 3 \\
1 & 0 \\
3 & 21
\end{array}
$$

$$
\begin{array}{r}
n \\
0 \\
n \\
1 \\
0 \\
0 \\
0 \\
0 \\
2 \\
0 \\
2 \\
19 \\
3 \\
2
\end{array}
$$

$$
\begin{array}{r}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
1 \\
1 \\
1 \\
23 \\
3 \\
-2 \\
20
\end{array}
$$

$$
\begin{array}{r}
1 \\
? \\
1 \\
19 \\
1 \\
5 \\
6 \\
4 \\
18 \\
9 \\
26 \\
530 \\
57 \\
23 \\
702
\end{array}
$$

NUMBER OF HANDOFFS TO SEATTLE

FROM

TOTAL

2	6	7	1	4	2	0
2	3	2	2	4	4	2
6	2	5	8	3	3	0
10	11	14	11	11	9	2

0	2	2
1	0	1
1	1	0
2	3	3

$\begin{array}{rrrrrrrrr}2 & 1 & 0 & 1 & 1 & 1 & 4 & 5 & 1 \\ 1 & 0 & 0 & 2 & 0 & 1 & 3 & 5 & 2 \\ 0 & 0 & 1 & 1 & 5 & 8 & 10 & 5 & 3\end{array}$

4	3	2
5	2	3
5	5	5

NUMBER OF DEPARTURES FROM OAKLAND

	AT GVT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		23		
	PST	17	13	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
TO																										TOTAL
BOSTON		0	0	0	0	0	0	0	0	0	0	ก	0	0	0	ก	2	0	0	ก	0	1	0	0	0	3
NEW YOHK		1	0	0	0	2	2	3	1	0	0	0	0	1	0	2	6	5	2	2	3	2	0	3	1	36
YASHINOTON		0	u	0	0	0	1	0	0	0	0	0	0	0	0	ก	1	1	0	0	0	2	0	0	0	5
JACKSOHVILLE		1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	\bigcirc	0	0	0	0	1	4
MIAM1		0	0	0	0	1	0	0	0	ก	0	0	0	0	0	0	1	0	0	ก	0	\bigcirc	0	0	0	2
CLEVELAND		0	0	0	1	0	0	0	0	0	0	0	0	\bigcirc	0	0	1	1	0	0	0	2	1.	0	0	6
ATLANTA		0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	\bigcirc	0	0	1	0	0	4
INDI IANAPOLIS		0	0	0	1	1	0	0	0	0	0	n	0	0	0	ก	0	0	0	1	0	0	0	0	0	3
CHICAGU		1	0	0	1	1	2	2	3	0	1	0	0	0	0	3	4	4	1	3	2	2	4	2	2	38
HOUSTOA		0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	1	2	1	1	0	2	10
MINNEAPOLIS		0	1	0	0	0	0	n	0	0	0	ก	0	0	0	0	0	0	0	0	0	0	2	\bigcirc	0	3
KANSAS CITY		1	0	0	0	0	0	0	0	D	0	0	0	0	0	1	1	1	0	1	0	2	0	0	1	8
FORT WURTH		0	0	0	0	0	0	0	0	1	0	0	0	0	1	3	1	0	2	1	0	0	0	0	3	12
GREAT raLLS		0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	ก	2	0	0	ก	0	0	0	0	0	$?$
DENVER		0	1	2	1	0	0	0	0	0	0	\bigcirc	0	0	1	6	2	2	1	2	1	1	0	1	1	22
ALBUQUcirgue		1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	3	1	2	3	3	0	1	6	23
SALT LAKE CY		0	2	0	1	0	0	0	0	0	1	1	0	0	2	1	1	1	2	1	2	0	2	2	1	20
SLATTLE		2	3	6	1	2	0	0	1	1	0	0	0	1	1	5	6	4	7	3	2	2	3	4	3	57
OAKLAINU		30	33	37	26	16	11	8	2	3	1	0	2	15	33	36	58	52	39	40	38	25	23	31	38	597
LOS ANUELES		18	16	12	11	10	10	7	5	1	1	2	1	1	13	19	24	23	15	17	11	11	16	19	13	276
TOTAL		55	58	57	44	33	26	21	12	6	4	3	3	18	51	81	111	98	70	74	64	54	53	63	72	1131

NUMBER OF ARRIVALS AT OAKLANT

BOSTON NE Y YOKK WASHINUTON JACKSONV ILLE MIAM1
CLEVELAIVD
ATLANT 4
INDIANAPOLIS
CHICAGU
MINNEAHOLIS
KANSAS CITY
FURT WURTH
DENVER
ALsuQulhaue
SALT LAKE CY
Stattle
OAKLANL
LOS ANUELES
TOTAL

0	2	1	0	0	0	0	0	0	0	ก	0	0	0	0	0	0	1	ก	1	0	0	1	0	6
1	1	1	2	2	0	0	2	0	0	3	0	1	0	0	0	1	1	2	2	3	3	1	3	29
0	2	0	0	1	0	0	0	0	0	ก	0	n	0	n	0	1	0	n	1	0	0	0	0	5
0	0	1	0	0	1	0	0	0	0	n	0	0	0	0	0	0	0	0	0	0	0	1	1	4
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	1
0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	1	0	0	0	0	0	7
0	0	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	n	0	0	0	0	1	4
0	0	0	0	0	0	0	0	0	0	0	0	ก	0	0	0	0	0	1	0	0	0	1	0	2
1	3	2	$?$	2	2	0	0	0	D	0	2	3	0	0	0	0	1	4	0	0	1	5	2	30
1	2	1	0	0	0	0	2	0	0	$?$	0	0	0	0	0	0	0	0	2	1	0	n	0	11
0	\checkmark	0	0	0	1	0	0	0	0	n	0	0	0	0	1	0	0	0	0	0	1	0	0	3
0	1	2	2	1	0	0	0	0	0	ก	0	0	0	0	0	0	1	1	0	2	0	ก	1	11
1	1	2	0	0	1	1	0	0	0	0	0	0	0	0	0	2	1	2	1	0	0	2	0	14
1	0	2	1	0	2	0	0	0	0	0	0	0	0	1	1	0	2	0	1	0	0	1	2	14
0	7	3	1	1	2	0	0	0	0	0	0	1	0	0	1	2	1	0	1	2	2	2	2	28
4	2	3	4	1	0	1	0	1	0	0	0	0	1	0	2	0	2	1	3	1	3	1	1	31
8	6	6	3	3	1	2	0	0	3	ก	0	2	0	1	4	3	7	3	4	1	8	4	5	74
38	29	40	28	31	17	11	6	2	2	2	0	3	14	28	43	40	66	36	43	36	25	27	30	597
22	23	38	19	12	15	17	13	2	2	3	0	1	1	3	6	16	10	14	15	17	18	15	15	297
77	80	103	63	56	42	32	23	6	7	11	2	11	16	33	58	66	95	65	74	6.3	61	61	63	1168

NUMRER OF HANDOFFS TO OAKL-AND

FRO.1

SALT LAKE CY
Stattle
los anueles
TOTAL

AT GMT	17	2	3	4	5	6	7 3	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
PST	17	18	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
																									TOTAL
	9	11	13	8	11	2	0	1	2	0	2	3	3	1	3	1	6	16	9	10	5	8	10	7	141
	4	7	4	5	3	5	0	0	1	3	0	1	1	0	4	5	7	6	3	4	7.	6	7	11	94
	25	47	30	24	14	25	15	10	2	7	3	0	2	1	5	12	21	16	12	24	18	24	24	21	382
	38	65	47	37	28	32	15	11	5	10	5	4	6	2	12	18	34	38	24	38	30	38	41	39	617

NUMBER OF DEPARTURES FROM LOS ANGELES

NUMBER OF ARRIVALS AT LOS ANGELES
$\begin{array}{llrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 27 & 23 & 24 \\ \text { PST } & 17 & 18 & 19 & 20 & 21 & 27 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$
FHO:
BOSTOIV WASHINUTON JACKSONVILLE JACKSONVIL
MIAMI
CLEVELAND
ATLANTA
INUI ANAPOLIS
CHICAGU
MEMPHI
MINNEATOL IS
KANSAS CITY
KANSAS CITY
FORT WURTH
FORT WURTH
GREAT F
DENVER
DENVER
SALT LAKE CY
SEATTLE
OAKLANU
LOS ANUELES
TOTAL

0	4	1	0	0	0	0	0	0
0	4	0	3	0	1	0	0	0
0	4	0	0	0	0	0	1	0
2	2	0	0	1	1	2	0	7
0	1	0	0	0	0	0	0	0
2	1	2	0	0	2	0	0	0
0	0	0	0	1	0	0	0	0
0	0	2	0	0	0	0	0	0
1	0	1	3	4	2	2	0	2
0	0	0	0	1	0	0	0	0
4	4	0	1	2	0	1	2	0
1	1	1	0	0	1	0	0	1
2	1	3	2	1	0	0	3	0
4	4	1	4	2	2	0	1	1
0	0	0	0	0	0	0	0	0
1	2	4	0	2	0	0	0	0
8	11	9	11	8	3	1	2	1
3	3	3	1	0	2	0	0	0
2	0	3	1	1	1	2	0	0
11	20	21	11	8	12	12	6	5
05	64	57	42	40	42	24	16	7

n	0
2	0
0	0
0	0
0	0
1	1
0	0
0	0
2	1
n	0
1	1
0	0
0	0
0	1
0	0
1	0
0	1
0	3
1	0
2	1
2	10

$\begin{array}{rr}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 2 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 11 \\ 15 & 11\end{array}$ 0
0
0
0
0
2
0
0
1
0
2
0
0
4
0
1
6
1
0
16
47

1
2
2
0
0
1
0
1
1
0
0
1
0
2
0
3
5
0
2
26
64 2
2
1
0
1
2
0
0
4
0
0
0
2
4
0
1
10
0
2
17
64 0
3
1
0
0
2
n
0
5
1
2
0
0
3
0
2
5
2
2
20
88 2
0
1
1
1
2
1
0
3
1
3
1
0
3
1
3
3
2
0
20
65 0
1
1
1
0
0
0
0
3
0
3
0
1
1
0
4
5
0
2
11
72 $\begin{array}{rr}0 & 0 \\ 1 & 2 \\ 0 & 1 \\ 2 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 4 & 4 \\ 0 & 0 \\ 1 & 3 \\ 2 & 0 \\ 3 & 2 \\ 6 & 3 \\ 0 & 0 \\ 1 & 1 \\ 4 & 6 \\ 2 & 0 \\ 1 & 0 \\ 11 & 14 \\ 84 & 60\end{array}$ TOTAL

NUMBER OF HANDOFFS TO LOS ANGELFS
$\begin{array}{llrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { AT GMT } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ \text { PST } & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$
FRO.
DEINVER
ALiUUQUERQUE
SALT LAKE CY
OAKLANJ

| 26 | 22 | 10 | 14 | 8 | 3 | 5 | 6 | 2 | 8 | 3 | 2 | 4 | 1 | 5 | 11 | 20 | 13 | 14 | 16 | 10 | 13 | 9 | 8 | 233 |
| ---: |
| 28 | 17 | 10 | 18 | 14 | 6 | 4 | 6 | 5 | 4 | 0 | 2 | 3 | 4 | 5 | 11 | 10 | 12 | 21 | 16 | 9 | 17 | 16 | 13 | 251 |
| 6 | 2 | 3 | 3 | 0 | 3 | 0 | 1 | 0 | 2 | 1 | 3 | 0 | 0 | 0 | 1 | 3 | 3 | 1 | 3 | 4 | 5 | 2 | 1 | 47 |
| 1 | 24 | 19 | 15 | 12 | 13 | 11 | 7 | 5 | 1 | 3 | 2 | 1 | 1 | 15 | 26 | 28 | 29 | 17 | 21 | 17 | 16 | 16 | 23 | 343 |
| 81 | 65 | 42 | 50 | 34 | 25 | 20 | 20 | 12 | 15 | 7 | 9 | 8 | 6 | 25 | 49 | 61 | 57 | 53 | 56 | 40 | 51 | 43 | 45 | 874 |

Latest developments in the subject area of this publication, as well as in other areas where the National Bureau of Standards is active, are reported in the NBS Technical News Bulletin. See following page.

how to keep abreast of nbs activities

Your purchase of this publication indicates an interest in the research, development, technology, or service activities of the National Bureau of Standards.

The best source of current awareness in your specific area, as well as in other NBS programs of possible interest, is the TECHNICAL NEWS BULLETIN, a monthly magazine designed for engineers, chemists, physicists, research and product development managers, librarians, and company executives.

If you do not now receive the TECHNICAL NEWS BULLETIN and would like to subscribe, and/or to review some recent issues, please fill out and return the form below.

Mail to: Office of Technical Information and Publications National Bureau of Standards Washington, D. C. 20234

Name \qquad
Affiliation \qquad
Address \qquad
City State \qquad Zip \qquad
\square Please send complimentary past issues of the Technical News Bulletin.
\square Please enter my 1-yr subscription. Enclosed is my check or money order for $\$ 3.00$ (additional $\$ 1.00$ for foreign mailing). Check is made payable to: SUPERINTENDENT OF DOCUMENTS.

TN 568

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

- Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $\$ 9.50$; foreign, $\$ 11.75^{*}$.

- Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $\$ 5.00$; foreign, $\$ 6.25 *$.

- Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, $\$ 5.00$; foreign, $\$ 6.25^{*}$.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology-for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, $\$ 3.00$; foreign, $\$ 4.00^{*}$.

NONPERIODICALS
Applied Mathematics Series. Mathematical tables, manuals, and studies.
Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.
Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.
Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.
Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Pub-

lications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.

* Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:
Superintendent of Documents
Government Printing Office
Washington, D.C. 20402
U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

[^0]: TWallace L. Ashby, "Future demand for air traffic services," Proc. IEEE vol. 58, pp. 292-299; March 1970.

