Determination of the Light Elements in Metals: A Bibliography of Activation Analysis Papers
The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
2 Located at Boulder, Colorado 80302.
3 Located at 5285 Port Royal Road, Springfield, Virginia 22151.
Determination of the Light Elements in Metals: A Bibliography of Activation Analysis Papers

G. J. Lutz, Editor

Analytical Chemistry Division
Institute for Materials Research
National Bureau of Standards
Washington, D.C. 20234

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.
OTHER NBS TECHNICAL NOTES IN THIS SERIES

1. Lutz, G. J., Editor. Forensic Science: A Bibliography of Activation Analysis Papers, NBS Technical Note 519, February 1970. 50 cents*

NBS PUBLICATIONS OF INTEREST TO USERS OF THIS SERIES

*Send orders with remittance to: Superintendent of Documents, U.S. Government Printing Office, Washington, D. C. 20402. Remittance from Foreign countries should include an additional one-fourth of the purchase price for postage.
This bibliography is the second of a series of bibliographies on the application of Activation Analysis to specific subjects. The bibliographies in this series are produced from the master files of the Analytical Chemistry Division's Activation Analysis Information Center and will be periodically updated.

W. Wayne Meinke, Chief
Analytical Chemistry Division
DETERMINATION OF THE LIGHT ELEMENTS IN METALS:
A BIBLIOGRAPHY OF ACTIVATION ANALYSIS PAPERS

G. J. Lutz, Editor

References to the Determination of the Light Elements in Metals using Activation Analysis are indexed according to the elements boron, carbon, nitrogen, oxygen, phosphorous, silicon and sulfur. The indexes are arranged by Element Determined and subdivided according to Matrices and Nuclear Reactions involved. An Author Index is included.

Key words: Boron; carbon; light elements; metals; nitrogen; oxygen; phosphorous; silicon; sulfur.

INTRODUCTION

This publication, Determination of the Light Elements in Metals: A Bibliography of Activation Analysis Papers, is the second in a series of specialized bibliographies on Activation Analysis prepared by the Analytical Chemistry Division Activation Analysis Information Center.

Publications obtained by the Center for inclusion in the Activation Analysis file are indexed according to the broad categories of Element Determined, Matrix Analyzed and Technique Used. Currently there are 106 descriptive terms under Matrix Analyzed and 53 under Technique Used.

Items included in this bibliography were extracted from the Elements Determined: Boron, Carbon, Nitrogen, Oxygen, Phosphorous, Silicon and Sulfur and from the appropriate keys of Matrix Analyzed dealing with metals. The form of the indexes is by Element Determined with listings of Matrices and Nuclear Reactions involved.
An author index has been included and it is hoped that readers will point out omissions to the editor. The Center plans to publish revisions to this bibliography commensurate with the growth of the field.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

4 ALBERT, P.
APPLICATION OF RADIOELEMENTS TO THE PURIFICATION OF ALUMINUM AND OF IRON, SERIE A, NO 2928, NO D'ORDRE 3799, THESSES, MASSON ET CIE, ÉDITEURS, PARIS, 72P., 1956 (FRENCH), FACULTY OF SCIENCES, UNIVERSITY OF PARIS.

8 ALBERT, P. * CHAUDRON, G. * SUE, P.
MICRODETERMINATION BY CHEMICAL MEANS OF CARBON IN DEUTERON IRRADIATED IRON, BULL. SOC. CHIM. FRANCE, C97-C102 (1953) (FRENCH), CENTRE D'ETUDES DE CHIMIE METALLURGIQUE, VITRY SUR SEINE, FRANCE.

22 ATCHISON, G.J. * BEAMER, W.H.
DETERMINATION OF TRACE IMPURITIES IN MAGNESIUM BY ACTIVATION ANALYSIS, ANAL. CHEM., 24, 1812-1815 (1952), (ENGLISH), THE DOW CHEMICAL CO., MIDLAND, MICHIGAN.

45 BEARD, D.B. * JOHNSON, R.G. * BRADSHAW, W.G.
RADIOACTIVATION OF OXYGEN AND CARBON IN BERYLLIUM, LMSD-5065, 20P., AUG. 1958, (ENGLISH), NUCLEAR PHYSICS DEPT., RESEARCH AND DEVELOPMENT BRANCH, LOCKHEED AIRCRAFT CORP., SUNNYVALE, CALIF.

46 BEARD, D.B. * JOHNSON, R.G. * BRADSHAW, W.G.
PHOTON ACTIVATION MEASURES OXYGEN, CARBON IN BERYLLIUM, NUCLEONICS, 17, 90-94, 96 (1959), (ENGLISH), LOCKHEED AIRCRAFT CO., PALO ALTO, CALIF.

49 BRADSHAW, W.G. * JOHNSON, R.G. * BEARD, D.B.
BERYLLIUM ANALYZED FOR TRACE IMPURITIES BY GAMMA-RAY ACTIVATION, LMSD-288231, 27P., JAN, 1960, (ENGLISH), LOCKHEED AIRCRAFT CORP., MISSILES AND SPACE DIV., SUNNYVALE, CALIF.

58 GILMAN, A.R. * ISSEROW, S.
ANALYSIS OF OXYGEN IN BERYLLIUM, NMI-1234, 25P., MAY 1, 1960, (ENGLISH), NUCLEAR METALS INC., CONCORD, MASS.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

81 BROOKSPANK, W.A., JR. * LEDDICOTTE, G.W., * REYNOLDS, S.A.
DETERMINATION OF TRACE ELEMENTS IN TITANIUM BY NEUTRON ACTIVATION ANALYSIS,
ANAL. CHEM., 28, 1035-1035 (1956), (ENGLISH).
ANAL. CHEM. DIV., ORNL, OAK RIDGE, TENNESSEE.

102 CHAUDRON, G.
CONTRIBUTION TO THE PROBLEM OF LAST TRACES OF IMPURITIES IN METALS.
BULL. SOC. CHIM. FRANCE, 419-422 (1954), (FRENCH).
LABORATOIRES DE VITRY DU C.N.R.S., FRANCE.

105 MAHONY, J.D.
REACTIONS OF HE-3 WITH LIGHT ELEMENTS APPLICATIONS TO ACTIVATION ANALYSIS,
(ENGLISH). UCRL, BERKELEY, CALIF.

108 COLEMAN, R.F. * PERKIN, J.L.
THE DETERMINATION OF THE OXYGEN CONTENT OF BERYLLIUM METAL BY ACTIVATION,
ANALYST. 84, 233-236 (1959), (ENGLISH). UK AEA,
AWRE. ALDERMASTON, BERKS, ENGLAND.

109 COLEMAN, R.F. * PERKIN, J.L.
APPARATUS FOR THE RONTINE DETERMINATION OF THE OXYGEN CONTENT OF BERYLLIUM METAL BY ACTIVATION.
ANALYST. 85, 154-155 (1960), (ENGLISH). UK AEA,
AWRE. ALDERMASTON, BERKS, ENGLAND.

118 CURIE, I.
DETECTION AND ANALYSIS OF CARBON IN STEEL BY INDUCED RADIOACTIVITY
J. PHYS. Radium, 13, 497-498 (1952), (FRENCH).
LABORATOIRE CURIE DE L INSTITUT DU RADIUM DE PARIS.

119 CURIE, I.
DETECTION AND DETERMINATION OF CARBON IN STEEL BY THE USE OF ARTIFICIAL RADIOACTIVITY.
BULL. SOC. CHIM. FRANCE, C94-C97 (1953), (FRENCH).
LABORATOIRE CURIE DE L INSTITUT DU RADIUM DE PARIS.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

131 ANDERS, O.U. * BRIDEN, D.W.,
Trace oxygen determination in cesium metal and the problem of recoils from the atmosphere during fast-neutron activations.
Anal. Chem., 37, 530-533 (1965), (English),

140 SOCIETA RICERCHE IMPIANTI NUCLEARI
Determination of trace-elements in iron samples by neutron-activation techniques.
EURAFEC-1273, November 1964, (English), Societa Ricerche Impianti Nucleari, Milan, Italy.

161 FOSTER, L.M. * GAITANIS, C.D.,
Determination of phosphorus in aluminum and aluminum oxide by radioactivation analysis.
Anal. Chem., 27, 1342-1344 (1955), (English),
Aluminum Research Laboratories, New Kensington, Pa.

181 GILL, R.A.,
Proton activation analysis in the determination of submicrogram amounts of boron in silicon,
AERE C/R 2756, 25P. (1958), (English), UK AERE,
Harwell, Berkshire, England.

223 HERR, W.,
Trace analysis with radioactive isotopes,
Activation analysis of phosphorus in iron,
Arch. Eisenhuttenwesen, 26, 523-526 (1955),
(German), Mitteilung Aus Dem Max-Planck Institut Fur Chemie, Mainz, Germany.

244 JAMES, J.A. * RICHARDS, D.H.,
Radioactivation analysis of phosphorus in silicon,

246 JAMES, J.A. * RICHARDS, D.H.,
Radiochemical analysis of silicon,
J. Electronics and Control, 3, 500-506 (1957),
DETERMINATION OF LIGHT ELEMENTS
IN METALS — ACCESSION NUMBERS

255 KANT, A. • CALI, J.P. • THOMPSON, H.D.
DETERMINATION OF IMPURITIES IN SILICON BY NEUTRON
ACTIVATION ANALYSIS.
ANAL. CHEM., 26, 1867-1871 (1956), (ENGLISH), AIR
RESEARCH AND DEVELOPMENT COMMAND, AIR FORCE
CAMBRIDGE RESEARCH CENTER, BEDFORD, MASS.

351 VOIGT, A.F. • ABU-SAMRA, A.
ANALYSIS OF A DAMASCUS STEEL BY NEUTRON AND GAMMA
ACTIVATION.
IS-1105, 12P., FEBRUARY 25, 1965, (ENGLISH),
INSTITUTE FOR ATOMIC RESEARCH AND DEPARTMENTS OF
CHEMISTRY AND NUCLEAR ENGINEERING, IOWA STATE
UNIVERSITY, AMES, IOWA.

391 OSMOND, R.G. • SMALE, A.A.
THE DETERMINATION BY RADIOACTIVATION OF THE OXYGEN
CONTENT OF POWDERED METALS WITH PARTICULAR
REFERENCE TO BERYLLIUM.
ANAL. CHIM. ACTA, 10, 117-128 (1954), (ENGLISH)
(FRENCH AND GERMAN SUMMARIES), ANALYTICAL
CHEMISTRY GROUP, AERE, HARWELL, ENGLAND.

398 PLUMB, R.C.
MEASURING TRACE ELEMENTS BY ACTIVATION ANALYSIS.
NUCLEONICS, 14, NO. 5, 48-49 (1956), (ENGLISH),
ALUMINUM RESEARCH LAB., ALUMINUM CORP. OF AMERICA,
NEW KENSINGTON, PA.

401 POINT, J.J.
DETERMINATION OF SMALL AMOUNTS OF CARBON IN IRON
BY PROTON IRRADIATION.
UNESCO/NS/RIC/48 (PRCC, FIRST UNESCO CONF, PARIS,
1957), 8P. (FRENCH), INSTITUT INTERUNIVERSITAIRE
DES SCIENCES NUCLEAIRES, CENTRE DE LA FACULTE
POLYTECHNIQUE DE MONS, BELGIQUE.

417 RIEZLER, W.
ANALYSIS THROUGH NUCLEAR TRANS MUTATION,
Z. NATURFORSCH., 4A, 545-549 (1949), (GERMAN), AUS
DEM PHYSIKALISCHEN INSTITUT DER UNIVERSITAT BONN,
GERMANY.

426 FUJII, I. • MUTO, H. • MIYOSHI, K.
DETERMINATION OF OXYGEN IN METALS BY 14-MEV
NEUTRON ACTIVATION.
BUNSEKI KAGAKU, 13, 249-254 (1964), (JAPANESE)
(ENGLISH SUMMARY), TCKYO SHIBAURA ELECTRIC CO.,
LTD., KAWASAKI, JAPAN.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

452 SHORT, H.G. * WILLIAMS, A.I.,
DETERMINATION OF SMALL AMOUNTS OF SILICON IN HIGH-PURITY IRON.
ANALYST. 83, 624-627 (1958), (ENGLISH), NATIONAL PHYSICAL LAB., TEDDINGTON, MIDDLESEX, ENGLAND.

500 BROADHEAD, K.G. * HEADY, H.H.,
ELIMINATION OF CONTAINER EFFECTS IN ACTIVATION ANALYSIS.
ANAL. CHEM., 37, 759-760 (1965), (ENGLISH), RENO METALLURGY RESEARCH CENTER, BUREAU OF MINES, U.S. DEPARTMENT OF THE INTERIOR, RENO, NEVADA.

509 THOMPSON, B.A. * STRAUSE, B.M. * LEOBEUF, M.B.,
GAMMA SPECTROMETRIC AND RADIOCHEMICAL ANALYSIS FOR IMPURITIES IN ULTRAPURE SILICON.
ANAL. CHEM., 30, 1023-1027 (1958), (ENGLISH), GENERAL ENGINEERING LABORATORY, GENERAL ELECTRIC CO., SCHENECTADY, N.Y.

578 ENGELMANN, C.,
ON THE UTILIZATION OF PARTICLES FOR THE DETERMINATION OF OXYGEN AND CARBON.
COMPT. REND., 258, 4279-4281 (1964), (FRENCH), FRANCE.

596 MC CRARY, J.H. * MORGAN, I.L. * BAGGERLY, L.L.,
NEUTRON ACTIVATION ANALYSIS OF OXYGEN IN BERYLLIUM.
PROCEEDINGS 1961 INTERNATIONAL CONFERENCE ON MODERN TRENDS IN ACTIVATION ANALYSIS, COLLEGE STATION, TEXAS, 24-27, DECEMBER 1961, (ENGLISH), TEXAS NUCLEAR CORP., AUSTIN, TEXAS.

628 KUSAKA, Y. * TSUJI, H.,
DETERMINATION OF SILICON IN IRON AND STEEL BY NONDESTRUCTIVE ACTIVATION ANALYSIS WITH 14 MEV NEUTRONS.
NIPPON KAGAKU ZASSHI, 86, 733-736 (JULY 1965), (JAPANESE) (ENGLISH SUMMARY), KONAN UNIVERSITY, DEPARTMENT OF CHEMISTRY, HIGASHINADA-KU, KOBE-SHI, JAPAN.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

641 EMMERY, J.F. * MULLINS, W.T. * BATE, L.C. * LEDDICOTTE, G.W.
TRACE ELEMENT DETERMINATION IN NIOMBIUM AND ZIRCONIUM METAL BY RADIOACTIVATION ANALYSIS, NIOMBIUM.
TID=7629, 239-243, OCTOBER 1961, (ENGLISH), OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE.

654 WINCHESTER, J.W. * MEYER, R.E. * BATE, L.C. * LEDDICOTTE, G.W.
DETERMINATION OF OXYGEN IN OXIDE FILMS BY NEUTRON ACTIVATION ANALYSIS,
CF=59-7-128, 6P,, JULY 15, 1959, (ENGLISH), OAK RIDGE NATIONAL LAB., OAK RIDGE, TENN.

655 LEONHARDT, W.
DETERMINATION OF SURFACE OXYGEN ON METALS BY ACTIVATION IN THE REACTOR,
ANAL. CHIM. ACTA, 32, 355-369 (1965), (GERMAN)
(ENGLISH AND FRENCH SUMMARIES), ZENTRALINSTITUT FUR KERNFORSCHUNG, ROSSENDORF (D.D.R.).

688 ALBERT, P.
sYSTEMATIC ANALYSIS OF IMPURITIES IN ZONE REFINED ALUMINUM AND IRON BY IRRADIATION IN THE ATOMIC PILE.
PURE AND APPL. CHEM., 1, 111-119 (1960), (FRENCH)
(ENGLISH SUMMARY), C.N.R.S., 15 RUE G. URBAIN, VITRY, SEINE, FRANCE.

703 ALBERT, P.
THE USE OF REACTIONS INDUCED BY ACCELERATED PROTONS, DEUTERONS, HELIONS AND GAMMA PHOTONS IN RADIOACTIVATION ANALYSIS FOR THE DETERMINATION OF OXYGEN, CARBON, AND NITROGEN IN METALS,
PROCEEDINGS INTERNATIONAL CONFERENCE ON MODERN TRENDS IN ACTIVATION ANALYSIS, COLLEGE STATION, TEXAS, 78-85, DECEMBER 1961, (ENGLISH), CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, CENTRE D ETUDES DE CHIMIE METALLURGIQUE, VITRY SUR SEINE, FRANCE.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

704 ALBERT, P.
A COMBINATION OF CHEMICAL AND PHYSICOCHEMICAL METHODS FOR A SYSTEMATIC SEPARATION OF LARGE NUMBERS OF RADIOISOTOPES ON ONE EXPERIMENTAL ANALYSIS OF ALUMINUM, IRON, AND ZIRCONIUM BY RADIOACTIVATION.
PROCEEDINGS INTERNATIONAL CONFERENCE ON MODERN TRENDS IN ACTIVATION ANALYSIS, COLLEGE STATION, TEXAS, 86-94, DECEMBER 1961, (ENGLISH), CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, CENTRE D ETUDES DE CHIMIE METALLURGIQUE, VITRY SUR SEINE, FRANCE.

744 VON ARDENNE, M. * BERNARD, F.
A NUCLEAR PHYSICAL METHOD FOR DETERMINING SMALL QUANTITIES OF CARBON IN IRON.
Z. PHYSIK., 122, 740-748 (1944), (GERMAN), KERNPHYSIKALISCHEN INSTITUT DES REICHSPOSTMINISTERIUMS, BERLIN- LICHTERFELDE-OST UND DER FORSCHUNGSANSTALT DER FRIEDRICH KRP, ESSEN, GERMANY.

760 FOURNET, L.
SYSTEMATIC ANALYSIS OF ZIRCONIUM AFTER NEUTRON IRRADIATION.
THESIS, A LA FACULTE DES SCIENCES DE L UNIVERSITE DE PARIS, 43P., 28 MAY 1962, (FRENCH), FRANCE.

762 CERRAI, E. * GADDA, F.
THE DETERMINATION OF OXYGEN IN ZIRCONIUM BY RADIOACTIVATION WITH 14 MEV NEUTRONS.
ENERGIA NUCLEARE, 9, NO. 6, 317-325 (1962), (ENGLISH) (ITALIAN SUMMARY), LABORATORI CISE * SEGRATE, MILANO, ITALY.

767 ALBERT, P. * GAITTET, L.
USE OF RADIOISOTOPES IN THE SYSTEMATIC ANALYSIS OF IMPURITIES IN METALS OF VERY HIGH PURITY.
RADIOISOTOPES IN THE PHYSICAL SCIENCES AND INDUSTRY. IAEA, VIENNA, 243-259 (1962), (FRENCH) (ENGLISH, RUSSIAN AND SPANISH SUMMARIES), CENTRE D ETUDES DE CHIMIE METALLURGIQUE, CNRS, VITRY, FRANCE.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

814 ALBERT, P. * ENGELMANN, C. * MAY, S. * PETIT, J., ANALYSIS OF OXYGEN, CARBON, AND NITROGEN BY ACTIVATION BY MEANS OF GAMMA, N REACTION, COMPT. REND., 254, 119-121 (1962), (FRENCH), LABORATOIRE DE VITRY DU C.N.R.S. ET CENTRE D ETUDES NUCLEAIRES DE SACLAY, FRANCE.

850 BAKER, C.A., SOME TECHNIQUES FOR THE DETERMINATION OF ISOTOPES OF SHORT HALF-LIFE AS APPLIED TO THE ACTIVATION ANALYSIS OF BERYLLIUM, PRODUCTION AND USE OF SHORT-LIVED RADIOISOTOPES FROM REACTORS (PROCEEDINGS OF A SEMINAR, VIENNA, 5-9 NOVEMBER 1962), VOL. II, 39-44 (1963), (ENGLISH), FRENCH, RUSSIAN AND SPANISH SUMMARIES), UKAEA (RESEARCH GROUP), LONDON, ENGLAND.

864 BLACKBURN, R. * PETERS, B. F. G., DETERMINATION OF PHOSPHORUS IN HYPEREUTECTIC ALUMINUM-SILICON ALLOYS BY A NEUTRON ACTIVATION METHOD, ANAL. CHEM., 35, 1013-13 (1963), (ENGLISH), TUBE INVESTMENTS RESEARCH LABORATORIES, HIXTON HALL, CAMBRIDGE, ENGLAND.

893 HOSTE, J. * LELIAERT, G. * BOUTEU, P., ACTIVATION ANALYSIS OF MINERAL CONSTITUENTS IN STEEL AND PIG IRON WITH THE AID OF AN INTERNAL STANDARD, COMPTES RENDUS DES JOURNEES D ETUDES SUR L ANALYSE PAR ACTIVATION, GRENOBLE, FRANCE, PRESSES UNIVERSITAIRES DE FRANCE, 125, MAY 1961, (FRENCH), UNIVERSITE DE GAND, LABORATOIRE DE CHIMIE ANALYTIQUE, BELGIQUE.
DETERMINATION OF LIGHT ELEMENTS IN METALS — ACCESSION NUMBERS

912 THOMPSON, B.A.
DETERMINATION OF OXIDE FILM THICKNESS BY PROTON ACTIVATION.
GENERAL ENGINEERING LABORATORY, GENERAL ELECTRIC CO., SCHENECTADY, N.Y.

979 LEWIS, J.E.
EXPERIENCE WITH NEUTRON ACTIVATION IN THE ANALYSIS OF ALUMINUM.
SYMPOSIUM ON RADIOISOTOPE IN METALS ANALYSIS AND TESTING, ASTM NO. 261, 46-51 (1959), (ENGLISH).
ALCOA RESEARCH LABORATORIES, NEW KENSINGTON, PA.

985 RAKOVSKII, E.E. * SMAKHTIN, L.A. * YAKOVLEV, Y.V.
THE DETERMINATION OF MICROIMPURITIES IN HIGH PURITY ANTIMONY BY THE RADIOACTIVATION METHOD OF ANALYSIS.
INDUSTRIAL LABORATORY, 26, 1383-1385 (1961), (ENGLISH TRANSLATION), V.I. VERNADSKII INSTITUTE OF GEOCHEMISTRY AND ANALYTICAL CHEMISTRY OF THE ACADEMY OF SCIENCES OF THE USSR, RUSSIA.

1013 ROMMEL, H.
BORON DETERMINATION BY ACTIVATION ANALYSIS USING THE NUCLEAR REACTION B-11 (P,N) C-11.
KERNENERGIE, 5, 859-860 (1962), (GERMAN).
MITTEILUNG AUS DEM ZENTRALINSTITUT FUR KERNPHYSIK, BEREICH RADIOCHEMIE, ROSSEYDORF BEI DRESDEN, GERMANY.

1026 PIERCE, T.B. * PECK, P.F. * HEVRY, W.M.
DETERMINATION OF CARBON IN STEELS BY MEASUREMENT OF THE PROMPT GAMMA-RADIATION EMITTED DURING PROTON BOMBARDMENT.
NATURE, 204, 571-572 (1964), (ENGLISH).
ANALYTICAL CHEMISTRY BRANCH, AEIE, HARWELL, BERKS, ENGLAND.

1067 MIYOSHI, K.
A 14-MEV NEUTRON-ACTIVATION ANALYSIS UNIT FOR OXYGEN DETERMINATION.
TOSHIBA REBYU, 20, 671-676 (JULY 1965), (JAPANESE) (ENGLISH SUMMARY), TAMAGAWA WORKS, TOKYO SHIBAURA ELECTRIC CO., LTD., JAPAN.
<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Language</th>
<th>Summary Language</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1151</td>
<td>Saito, K. * Nozaki, T. * Tanaka, S. * Furukawa, M. * Cheng, H.</td>
<td>Radioactivation Analysis of Oxygen in High-Purity Silicon by Irradiation with Alpha-Particles</td>
<td>Intern. J. Appl. Rad. and Isotopes</td>
<td>1963</td>
<td>English</td>
<td>French, Russian and German summaries</td>
<td>Institute for Nuclear Study, The University of Tokyo, Tanashi, Tokyo, Japan</td>
</tr>
</tbody>
</table>
DETERMINATION OF LIGHT ELEMENTS
IN METALS – ACCESSION NUMBERS

1158 LEONWARDT, W.
THE SENSITIVITY OF OXYGEN DETERMINATION BY
ACTIVATION ANALYSIS IN REACTORS.
KERNENERGIE, 5, 166-170 (1962), (GERMAN),
ZENTRALINSTITUT FUR KERNPHYSIK, BEREICH
RADIOCHEMIE, ROSSENDORF BEI DRESDEN, GERMANY.

1165 AUBOuin, G. * DUGAIN, F. * LAVERLOCHERE, J.
DETERMINATION OF IMPURITIES IN TANTALUM AND
NIobium BY NEUTRON RADIO ACTIVATION,
BULL. SOC. CHIM. FRANCE, 2, 547-551 (1965),
(FRENCH). DR/SAR, CEN GRENOBLE, FRANCE.

1166 MAKASHEVA, I.E. * MASLCOV, I.A. * OBUKHOv, A.P.
RADIOACTIVATION ANALYSIS OF SEMICONDUCTING SILICON
BY MEANS OF A MULTI-CHANNEL GAMMA-SPECTROMETER,
J. ANAL. CHEM. USSR, 15, 375-379 (1960), (ENGLISH
TRANSLATION). PHYSico-TECHNICAL INSTITUTE, ACADEMY
OF SCIENCES, USSR, LENINGRAD, RUSSIA.

1193 NIESE, S. * ROMMEL, H. * MORZEK, P. * HEROLD, C.
ACTIVATION ANALYSIS PURITY TESTING OF TARGETS FOR
ISOTOPE PRODUCTION.
AC'rA CHIM. ACAD. SCI. HUNG., 26, 235-241 (1961).
(GERMAN). ZENTRALINSTITUT FUR KERNPHYSIK,
ROSSENDORF, BEREICH RADIOCHEMIE, GERMANY.

1194 NOZAKI, T. * TANAKA, S. * FURUKAWA, M. * SAITO, K.
RADIOACTIVATION ANALYSIS OF OXYGEN IN SILICON BY
IRRADIATION WITH ALPHA-PARTICLES IN A CYCLOTRON,
NATURE, 196, 39-40 (1961), (ENGLISH), INSTITUTE
FOR NUCLEAR STUDY, UNIVERSITY OF TOKYO, TANASHI,
JAPAN.

1215 SHAMAeva, V.I.
ANALYSIS OF MICROIMPURITIES IN SELENIUM AND IN
TELLURIUM BY NEUTRON ACTIVATION,
RADIOCHEMISTRY, USSR, 113-118 (1960). (ENGLISH
TRANSLATION). RUSSIA.

1219 SIMON, L.
THE DETERMINATION OF C IN IRON BY THE
RADIOACTIVATION METHOD,
HUTNICKE LISTY, 13, 708-711 (1958), (CZECH),
CZECHOSLOVAKIA.
DETERMINATION OF LIGHT ELEMENTS IN METALS – ACCESSION NUMBERS

1263 ENGELMANN, C. * GOSSET, J. * LOEUILLET, M., ROUTINE ACTIVATION ANALYSIS OF CERTAIN IMPURITIES OF BERYLLIUM, BULL. SOC. CHIM. FRANCE, 2, 544-547 (1965), (FRENCH). COMMISSARIAT A L ENERGIE ATOMIQUE, DEPARTMENT DE METALLURGIE, FRANCE.

1309 DUTINA, D., DETERMINATION OF OXYGEN IN ZIRCALOY BY FAST NEUTRON ACTIVATION, KAPL-2000-19, I-14-I-23 (1962), (ENGLISH), KNOLLS ATOMIC POWER LABORATORY, SCHNECTADY, N.Y.

1318 MARKOWITZ, S.S. * MAHONY, J. D., ACTIVATION ANALYSIS FOR OXYGEN AND OTHER ELEMENTS BY HELIUM-3-INDUCED NUCLEAR REACTIONS, ANAL. CHEM., 34, 329-335 (1962), (ENGLISH), LAWRENCE RADIATION LABORATORY AND DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIF.

1394 METCALF, A., A NEUTRON ACTIVATION TECHNIQUE FOR OXYGEN DETERMINATION, STEEL TIMES, 188, 90-92 (1964), (ENGLISH), BISRA STEELMAKING DIVISION, ENGLAND.

1453 BURNS, F.C., DETERMINING THE OXYGEN CONTENT OF STEEL BY NEUTRON ACTIVATION TECHNIQUES, J. METALS, 16, 948 (1964), (ENGLISH), U.S. ARMY MATERIALS RESEARCH AGENCY, WATERTOWN, MASS.

1471 MIGNONSON, E.P. * ALBERT, P., ANALYSIS OF PURE ZIRCONIUM BY NEUTRON RADIO ACTIVATION, BULL. SOC. CHIM. FRANCE, 2, 553-561 (1965), (FRENCH); CENTRE DE ETUDES DE CHIMIE METALLURGIQUE, VITRY, FRANCE.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

1477 CUYPERS, M.
SYSTEMATIC ANALYSIS OF HIGH PURITY COPPER, FOLLOWING ITS IRRADIATION BY THERMAL NEUTRONS, ANN. CHIM. (PARIS), 9, 509-540 (1964), (FRENCH), LABORATOIRE DE RADIOCHIMIE ANALYTIQUE DU CENTRE D ETUDES DE CHIMIE METALLURGIQUE, VITRY (SEINE), FRANCE.

1483 CONDIT, R.H. * HOLT, J.B.
A TECHNIQUE FOR STUDYING OXYGEN DIFFUSION AND LOCATING OXIDE INCLUSION IN METALS BY USING THE PROTON RADIOACTIVATION OF OXYGEN-18.
J. ELECTROCHEM. SOC., 111, 1192-1194 (1964), (ENGLISH), LAWRENCE RADIATION LABORATORY, UNIVERSITY OF CALIFORNIA, LIVERMORE, CALIFORNIA.

1520 ROWNSCH, W.
DETERMINATION OF PHOSPHORUS, SULFUR, AND CHLORINE IN SELENIUM BY ACTIVATION ANALYSIS.
MIKROCHIM. ICHNOANAL. ACTA, 1, 10-16 (1965), (GERMAN) (ENGLISH AND FRENCH SUMMARIES), INSTITUT FUR ANGEWANDTE RADIOAKTIVITAT, LEIPZIG, DER DEUTSCHEN AKADEMIE DER WISSENSCHAFTEN ZU BERLIN, GERMANY.

1546 LOBANOV, E.M. * ZVYAGIN, V.I. * ZVEREV, B.P. * BLINKOV, D.I.
ON THE SENSITIVITY OF A METHOD FOR DETERMINING BORON IN A SILICON BY NEUTRON CAPTURE REACTORS.
RADIATIONNYE EFFEKTY V KONDENSIROVANNYKH SREDAXH, TASHKENT, PUBLISHING HOUSE OF THE SCIENCES, 64-73 (1964), (RUSSIAN), RUSSIA.

1547 LOBANOV, E.M. * ZVYAGIN, V.I. * ZVEREV, B.P.
The Problem of Determining a Low Concentration of Boron Impurity in Silicon.
RADIATIONNYE EFFEKTY V KONDENSIROVANNYKH SREDAXH, TASHKENT, PUBLISHING HOUSE OF THE SCIENCES, 74-76 (1964), (RUSSIAN), RUSSIA.

1560 LUTZ, G.J. * DE SOETE, D.
DETERMINATION OF CARBON IN SODIUM BY PHOTON ACTIVATION ANALYSIS.
ANAL. CHEM., 40, NO, 4, 821-822 (1968), (ENGLISH), NATIONAL BUREAU OF STANDARDS, WASHINGTON, D.C.
DETERMINATION OF LIGHT ELEMENTS IN METALS — ACCESION NUMBERS

1561 Zvyagin, V.I. * Lobanov, E.M. * Zverev, B.P. * Lenchenko, V.M.
APPLICATION OF B-10(α,α′)Li-7 REACTION TO THE DETERMINATION OF BORON IN SILICON,
Radiatsionnye Effekty v Tverdykh TelaK, Tashkent, Publishing House of Academy of Sciences,
56-67 (1963), (Russian), Russia.

1570 Gibbons, D. * Simpson, H.
THE DETERMINATION OF SULPHUR IN MATERIALS OF HIGH NEUTRON ABSORPTION CROSS-SECTION BY FAST NEUTRON ACTIVATION ANALYSIS,

1589 Harris, W.F.
AN INVESTIGATION OF FAST NEUTRON ACTIVATION ANALYSIS FOR DETERMINATION OF OXYGEN IN METALS,
Talanta, 11, 1376-1380 (1964), (English) (German and French summaries), General Atomic Division,
General Dynamics Corp., San Diego, Calif.

THE ANALYSIS OF SILICON IN CAST IRON BY FAST NEUTRON ACTIVATION,

1591 Kohn, R.F. * Green, F.L.
THE DETERMINATION OF SILICON IN ALUMINUM ALLOY BY FAST NEUTRON ACTIVATION ANALYSIS,

1599 Mahony, J.D. * Parsa, B. * Markowitz, S.S.
ACTIVATION ANALYSIS FOR CARBON AND NITROGEN BY HE-3 INDUCED NUCLEAR REACTIONS,
UCRL-11213, 87-90, February 1964, (English), Lawrence Radiation Laboratory, University of California, Berkeley, Calif.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

1604 HOLM, D.M. * SANDERS, W.M. * BRISCOE, W.L. * PARKER, J.L.
MEASUREMENT OF THE SURFACE DISTRIBUTION OF CARBON AND OXYGEN BY HE-3 ACTIVATION AND AUTORADIOGRAPHY, LA-DC-8784, 15P., 1966, (ENGLISH), UNIVERSITY OF CALIFORNIA, LOS ALAMOS SCIENTIFIC LABORATORY, LOS ALAMOS, NEW MEXICO.

1618 CLARK, L. JR. * RASMUSSEN, N.C.
PROMPT ACTIVATION ANALYSIS FOR BORON AND LITHIUM. AFCR-63-575, 92P., OCTOBER 1963, (ENGLISH). MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS.

1621 JAMIN-CHANGEART, F. * TALBOT-BESNARD, S.
SOLUBILITY OF SULFUR IN HIGHLY PURIFIED IRON. COMPT. REND., 258, 907-909 (1964), (FRENCH). CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS, FRANCE.

1709 EMERY, J.F. * MULLINS, W.T. * BATE, L.C. *
LEDDICOTTE, G.W.
TRACE ELEMENT DETERMINATION IN NIOBium AND ZIRCONIUM METAL BY RADIOACTIVITY ANALYSIS, ZIRCONIUM.

1711 ROSS, W.J.
DETERMINATION OF SULFUR BY NEUTRON-ACTIVATION ANALYSIS.
ORNL-3397, 100 (1963), (ENGLISH). OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENN.

1730 BORN, H.J. * WILKNISS, P.E.

1739 BURNS, F.C.
FAST NEUTRON ACTIVATION VS. VACUUM FUSION ANALYSIS FOR OXYGEN IN METALS.
CONF-313-11, SOCIETY FOR APPLIED SPECTROSCOPY, 2ND NATIONAL MEETING, SAN DIEGO, CALIFORNIA, 9P., OCTOBER 14-18, 1963, (ENGLISH). USA.
DETERMINATION OF LIGHT ELEMENTS IN METALS – ACCESSION NUMBERS

1742 Saito, K. * Nozaki, T. * Tanaka, S. * Furukawa, H.
* Cheng, H.

1787 Clark, L., Jr. * Rasmussen, N.C.

1804 Bramlett, E.T.

1816 Engelmann, C.
Determination of Oxygen, Carbon, Nitrogen and Certain Other Impurities in Beryllium, Calcium, Sodium, and Boron by Gamma-Ray Activation, Radiochemical Methods of Analysis, IAEA Vienna, Vol. I, 341-359 (1965), (French) (English, Russian and Spanish summaries), Centre d'Etudes Nucléaires, Saclay, France.

1821 Spenke, H. * Cless-Berkert, T. * Karlik, B.
Determination of Boron in Steel by Neutron Activation Depression, Radiochemical Methods of Analysis, IAEA Vienna, Vol. I, 197-203 (1965), (English) (French, Russian and Spanish summaries), Österreichische Studiengesellschaft für Atomenergie, Institut für Radiumforschung und Kernphysik, Vienna, Austria.

1823 Engelmann, C.
DETERMINATION OF LIGHT ELEMENTS
IN METALS — ACCESSION NUMBERS

1831 MARKOWITZ, S.S. * MAHONY, J.D.
HE-3 ACTIVATION ANALYSIS FOR CARBON BY C-12 (HE-3, ALPHA) C-11 REACTION.
RADIOCHEMICAL METHODS OF ANALYSIS, IAEA VIENNA,
VOL. 1, 419-432 (1965), DEPARTMENT OF CHEMISTRY AND LAWRENCE RADIATION LABORATORY, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIF.

1875 WOOD, D.E. * ROPER, N.J.
FAST NEUTRON ACTIVATION ANALYSIS FOR SILICON IN IRON.
KN-65-140(R), 21P., 15 APRIL 1965, (ENGLISH), KAMAN NUCLEAR, COLORADO SPRINGS, COLORADO.

1900 STEELE, E.L. * LUKENS, H.R.
DEVELOPMENT OF NEUTRON ACTIVATION ANALYSIS PROCEDURES FOR THE DETERMINATION OF OXYGEN IN POTASSIUM. FIRST AND SECOND QUARTERLY REPORT (PERIOD ENDING DECEMBER 26, 1963),
GA-4855, 30P., JANUARY 10, 1964, (ENGLISH), GENERAL ATOMIC DIVISION, GENERAL DYNAMICS CORP., SAN DIEGO, CALIF.

1915 AMSEL, G.
MICROANALYSIS BY THE OBSERVATIONS OF NUCLEAR REACTIONS APPLICATION TO SOLID-STATE PHYSICS (THESIS).
LAL-1053, 39P., MAY 1963, (FRENCH), PARIS, UNIVERSITE, ORSAY, ECOLE NORMALE SUPERIEURE, LABORATOIRE DE L ACCELERATEUR LINEAIRE, FRANCE.

1950 PASZTOR, L.C. * WOOD, C.E.
A COMPARISON OF NEUTRON-ACTIVATION ANALYSIS AND HOT EXTRACTION ANALYSIS OF THE OXYGEN CONTENT OF STEEL,
TALANTA, 13, 389-401 (1966), (ENGLISH) (GERMAN AND FRENCH SUMMARIES), GRAHAM RESEARCH LABORATORY, JONES AND LAUGHLIN STEEL CORPORATION, PITTSBURGH, PA.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

1951 PIERCE, T.B. * PECK, P.F. * HENRY, W.M. * WOOTON, B.W.
THE USE OF A LITHIUM-DRIFTED GERMANIUM DIODE TO DETERMINE CARBON IN STEELS BY MEASUREMENT OF PROMPT GAMMA-RADIATION.
ANAL. CHIM. ACTA, 33, 586-592 (1965), (ENGLISH) (FRENCH AND GERMAN SUMMARIES), ANALYTICAL CHEMISTRY BRANCH AND NUCLEAR PHYSICS DIVISION, ATOMIC ENERGY RESEARCH ESTABLISHMENT, HARWELL, BERKS, ENGLAND.

1956 WOOD, D.E. * JESSEN, P.L. * JONES, R.E.
NEW DEVELOPMENTS IN NEUTRON ACTIVATION SYSTEMS FOR ANALYSIS OF OXYGEN IN STEEL, PAPER PRESENTED TO THE 1966 PITTSBURGH CONFERENCE ON ANALYTICAL CHEMISTRY AND APPLIED SPECTROSCOPY, FEBRUARY 21-25, 1966, 16P., 20 FIGURES, (ENGLISH), KAMAN NUCLEAR, COLORADO SPRINGS, COLORADO.

1965 MALVANO, R. * GROSSO, P.
DETERMINATION OF TRACE ELEMENTS IN IRON BY NEUTRON-ACTIVATION TECHNIQUES, ANAL. CHIM. ACTA, 34, 253-268 (1966), (ENGLISH) (FRENCH AND GERMAN SUMMARIES), SORIN, CENTRO RICERCHE NUCLEARI, SALUGGIA, ITALY.

2381 REVEL, G. * ALBERT, P.
STUDY OF THE POSSIBILITIES OF DETERMINING OXYGEN IN ZIRCONIUM, MOLYBDENUM, HAFNIUM, AND TUNGSTEN BY IRRADIATION WITH HE-3 AND HE-4 PARTICLES, J. NUCL. MATER., 25, 87-92 (1968), (FRENCH) (ENGLISH AND GERMAN SUMMARIES), CNRS, VITRY-SUR-SEINE, FRANCE.

2386 SIMKOVA, M. * PINKAS, V.
DETERMINATION OF IMPURITIES IN SILICON BY ACTIVATION ANALYSIS, ISOTOPENPRAXIS, 3, 88-91 (MARCH 1967), (GERMAN), INSTITUT FUR KERNFORSCHUNG, REZ, PRAG, CZECHOSLOVAKIA.

2418 ISHII, D. * MORI, H. * HIROSE, Y.
DETERMINATION OF OXYGEN IN FERROSILICON BY 14 MEV NEUTRON ACTIVATION ANALYSIS, APPLICATION OF THE GOLD AS INTERNAL STANDARD METHOD, BUNSEKI KAGAKU, 16, NO, 12, 1370-1373 (1967), (JAPANESE) (ENGLISH SUMMARY), FACULTY OF ENGINEERING, NAGOYA UNIVERSITY, CHIKUSA-KU, NAGOYA-SHI, JAPAN.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

2429 PIERCE, T.B. * PECK, P.F. * CUFF, D.R.A.
APPLICATION OF INELASTIC PROTON SCATTERING TO THE RAPID DETERMINATION OF SILICON IN STEELS,
ANAL. CHIM. ACTA, 39, 433-436 (DECEMBER 1967), (ENGLISH) (FRENCH AND GERMAN SUMMARIES),
ANALYTICAL SCIENCES DIVISION, AERE, HARWELL, DIDCOT, BERKS., ENGLAND,

2505 BLAKE, K.R. * MARTIN, T.C. * MORGAN, I.L. *
HOUSTON, C.D.
THE MEASUREMENT OF SURFACE CONTAMINATION OF HIGH-PURITY BERYLLIUM SAMPLES,
PROCEEDINGS 1965 INTERNATIONAL CONFERENCE, MODERN TRENDS IN ACTIVATION ANALYSIS, COLLEGE STATION,
TEXAS, 76-81, APRIL 19-22, 1965, (ENGLISH), TEXAS NUCLEAR CORPORATION, AUSTIN, TEXAS,

2507 GRAY, A.L. * METCALF, A.
INDUSTRIAL APPLICATIONS OF NEUTRON ACTIVATION,
PROCEEDINGS 1965 INTERNATIONAL CONFERENCE, MODERN TRENDS IN ACTIVATION ANALYSIS, COLLEGE STATION,
TEXAS, 86-90, APRIL 19-22, 1965, (ENGLISH), PLESSEY-UK LIMITED, WANTS, ENGLAND,

2523 MOISEEV, V.V. * KUZNETSOV, R.A. * KALININ, A.I.
THE RADIOACTIVATION ANALYSIS OF SILICON AND SILICON COMPOUNDS WITH THE SUCCESSIVE USE OF ION-EXCHANGE CHROMATOGRAPHY,
PROCEEDINGS 1965 INTERNATIONAL CONFERENCE, MODERN TRENDS IN ACTIVATION ANALYSIS, COLLEGE STATION,

2526 WOOD, J.D.,L,H. * DOWNTON, D.W. * BAKES, J.M.
A FAST-NEUTRON ACTIVATION ANALYSIS SYSTEM WITH INDUSTRIAL APPLICATIONS,
PROCEEDINGS 1965 INTERNATIONAL CONFERENCE, MODERN TRENDS IN ACTIVATION ANALYSIS, COLLEGE STATION,
TEXAS, 175-181, APRIL 19-22, 1965, (ENGLISH), SERVICES ELECTRONICS RESEARCH LABORATORY, BALDOCK, HERTFORDSHIRE, ENGLAND,
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

2542 WOOD, D.E. * PASZTOR, L.C.
A COMPARISON OF NEUTRON-ACTIVATION ANALYSIS AND VACUUM-FUSION ANALYSIS OF THE OXYGEN CONTENT OF STEEL.
PROCEEDINGS 1965 INTERNATIONAL CONFERENCE, MODERN TRENDS IN ACTIVATION ANALYSIS, COLLEGE STATION, TEXAS, 259-264, APRIL 19-22, 1965, (ENGLISH), KAMAN NUCLEAR, COLORADO SPRINGS, COLORADO.

2549 BYRNE, J.T. * ILLSLEY, C.T. * PRICE, H.J.
AN AUTOMATIC SYSTEM FOR THE DETERMINATION OF OXYGEN IN BERYLLIUM METAL COMPONENTS.
PROCEEDINGS 1965 INTERNATIONAL CONFERENCE, MODERN TRENDS IN ACTIVATION ANALYSIS, COLLEGE STATION, TEXAS, 304-310, APRIL 19-22, 1965, (ENGLISH), ROCKY FLATS DIVISION, DOW CHEMICAL COMPANY, GOLDEN, COLORADO.

2550 ALBERT, P. * CUYPERS, M. * LÉSBATS, A. * MIGNONSI N, E.P.
NEW DEVELOPMENTS IN THE SYSTEMATIC ANALYSIS OF HIGH PURITY METALS AND ESPECIALLY OF ALUMINUM, COPPER AND ZIRCONIUM.

2562 DE GOEI J, J.J.M. * HOUTMAN, J.P.W.
OXYGEN DETERMINATION USING TRITON ACTIVATION.

2586 VAN WYK, J.M. * CUYPERS, M.Y. * FIT E, L.E. * WAINERDI, R.E.
A STUDY OF THE MACROSCOPIC DISTRIBUTION OF OXYGEN IN A STEEL ROD BY NEUTRON-ACTIVATION AND VACUUM FUSION TECHNIQUES.
ANALYST, 91, 316-323 (MAY 1966), (ENGLISH), SOUTH AFRICAN IRON AND STEEL INDUSTRIAL CORPORATION, PRETORIA, SOUTH AFRICA.
DETERMINATION OF LIGHT ELEMENTS
IN METALS - ACCESSION NUMBERS

2596 EICHELBERGER, J.F. * GROVE, G.R. * JONES, L.V.
MOUND LABORATORY PROGRESS REPORT FOR NOVEMBER
1964.
MLM-1227, 37P., NOVEMBER 30, 1964, (ENGLISH),
MOUND LABORATORY, MIAMI'SBURG, OHIO.

2598 STEELE, E.L. * LUKENS, H.R. * GUINN, V.P.
NEUTRON ACTIVATION ANALYSIS PROCEDURES FOR THE
DETERMINATION OF OXYGEN IN POTASSIUM,
GA-5982, 51P., DECEMBER 1964, (ENGLISH), GENERAL
ATOMIC DIVISION, GENERAL DYNAMICS CORPORATION, SAN
DIEGO, CALIF.

2615 KOPINECK, H.J. * SOMMERKORN, G. * BASS, R. *
PRESSER, G.
DETERMINATION OF THE OXYGEN CONTENT OF STEEL WITH
14-MEV NEUTRONS,
ARCH. EISENHUETTENW., 35, 987-991 (OCTOBER 1964),
(GERMAN) (ENGLISH AND FRENCH SUMMARIES),
MITTEILUNG AUS DER VERSUCHSANSTALT DER HOESCH AG
WESTFALENHUTTE, DORTMUND, GERMANY.

2649 FUJII, I. * MIYOSHI, K. * MUTO, H. * SHIMURA, K.
APPLICATION OF A FAST NEUTRON ACTIVATION METHOD TO
THE DETERMINATION OF OXYGEN IN IRON AND STEEL,
ANAL. CHIM. ACTA, 34, 146-153 (FEBRUARY 1966),
(ENGLISH) (FRENCH AND GERMAN SUMMARIES), CENTRAL
RESEARCH LABORATORY, TOKYO SHIBAURA ELECTRIC CO.,
LTD., KANAGAWA-KEN, TOKYO, JAPAN.

2652 PIERCE, T.B. * PECK, P.F. * HENRY, W.M.
THE RAPID DETERMINATION OF CARBON IN STEELS BY
MEASUREMENT OF THE PROMPT RADIATION EMITTED DURING
DEUTERON BOMBARDMENT,
ANALYST, 90, 339-345 (JUNE 1965), (ENGLISH),
ATOMIC ENERGY RESEARCH ESTABLISHMENT, HARWELL,
DIDCOT, BERKS., ENGLAND.

2678 NICKEL, H. * ROTTMANN, J. * STOCKER, H.J. *
KOSTER-PFLUGMACHER, A. * FROMBERG, M.G.
DETERMINATION OF THE OXYGEN CONTENT OF STEEL AND
METAL POWDERS WITH 14.4 MEV NEUTRONS,
ARCH. EISENHUETTENW., 35, 637-647 (JULY 1964),
(GERMAN) (ENGLISH AND FRENCH SUMMARIES), INSTITUT
FUR REAKTORWERKSTOFFE, KERNFORSCHUNGSANLAGE
JULICH, GERMANY.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

2686 BENJAMIN, R.W. * BLAKE, K.R. * MORGAN, I.L.,
HIGH SENSITIVITY OXYGEN ANALYSIS OF METALLIC SAMPLES WITH FAST NEUTRONS,
ANAL. CHEM., 38, 947-949 (JUNE 1966), (ENGLISH),
TENIX NUCLEAR CORP., AUSTIN, TEXAS.

2712 ROMMEL, H.
DETERMINATION OF BORON IN SILICON AND GERMANIUM BY PROTON AND DEUTERON ACTIVATION,
ANAL. CHIM. ACTA, 34, Nu. 4, 427-446 (1966),
(GERMAN), (ENGLISH AND FRENCH SUMMARIES),
DEUTSCHE AKADEMIE DER WISSENSCHAFTEN ZU BERLIN,
GERMANY.

2721 ALIMARIN, I.P. * YAKOVLEV, Y.V. *
SHCHULEPNIKOV, M.N. * PEREZHOGIN, G.P.
MEASUREMENT OF SMALL AMOUNTS OF IMPURITIES IN THALLIUM, GALLIUM, PHOSPHORUS AND ANTIMONY BY RADIOACTIVATION ANALYSIS,
AEC-TR-6466/1, 288-292, UNDATED, (ENGLISH TRANSLATION), RUSSIA.

2734 STEELE, E.L.
DEVELOPMENT OF NEUTRON ACTIVATION ANALYSIS PROCEDURES FOR THE DETERMINATION OF OXYGEN IN POTASSIUM.
QUARTERLY REPORT NO. 3, PERIOD ENDING MARCH 31, 1964,
N64-27382, 19P., JUNE 19, 1964, (ENGLISH),
GENERAL ATOMIC DIVISION, GENERAL DYNAMICS CORPORATION, SAN DIEGO, CALIF.

2764 BARIKOVA, Y.F. * MINAEV, V.M. * SAMOSADNYI, V.T.
DETERMINATION OF IMPURITIES IN STEEL BY NEUTRON-ACTIVATION ANALYSIS,
ZAVODSK. LAB., 32, 47-49 (1966), (RUSSIAN), RUSSIA.

2798 TWITTY, B.L. * FRITZ, K.M.
A RAPID DETERMINATION OF OXYGEN IN HIGH-PURITY MAGNESIUM CHIPS BY NEUTRON ACTIVATION ANALYSIS,
NLCO-973, 23P., MAY 1956, (ENGLISH), NATIONAL LEAD COMPANY OF OHIO.

2802 LEPETIT, H.
MICRODETERMINATION OF OXYGEN IN METALS BY RADIOACTIVE REAGENTS AND BY ACTIVATION WITH FAST NEUTRONS AT 14 MEV. (THESIS),
LYCEN-6524, 115P., JULY 21, 1965, (FRENCH), L UNIVERSITY DE LYON, FRANCE.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

2983 PERDJIJON, J.
THE RAPID AND NONDESTRUCTIVE DETERMINATION OF OXYGEN IN STEELS BY RADIOACTIVATION.
BULL. INFORM. A.T.E.N., NO. 57, SUPPL., 3-6 (JANUARY-FEBRUARY 1966), (FRENCH). CIVIL DES MINES A LA S.A.M.E.S., FRANCE.

3059 RASMUSSEN, N.C. * THOMPSON, T.J.
NEUTRON AND GAMMA-RAY SPECTROSCOPY AND ACTIVATION ANALYSIS. FINAL REPORT, JANUARY 1, 1961-JANUARY 1, 1966.
AD-633252, 176P., FEBRUARY 1966, (ENGLISH). MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS.

DEUTERON ACTIVATION ANALYSIS FOR C, N, AND O IN HIGH-PURITY METALLIC SURFACES.
TRANS. AMER. NUCL. SCI., 9, 104 (JUNE 1966), (ENGLISH). TEXAS NUCLEAR CORP., AUSTIN, TEXAS.

3073 ANDERSON, G.H. * KEMPCHINSKY, P.C. * LAVERTY, A.
THE DETERMINATION OF OXYGEN IN BERYLLIUM-COMPARISON OF NEUTRON ACTIVATION AND BROMINE-METHANOL METHODS.
TRANS. AMER. NUCL. SCI., 9, 107 (JUNE 1966), (ENGLISH). GENERAL ATOMIC DIVISION, GENERAL DYNAMICS CORP., SAN DIEGO, CALIFORNIA.

3085 GAHN, R.F. * ROSENBLUM, L.
ACCURACY OF THREE METHODS FOR DETERMINATION OF OXYGEN IN POTASSIUM AT CONCENTRATIONS LESS THAN 20 PPM.
ANAL. CHEM., 38, 1014-1018 (JULY 1966), (ENGLISH). LEWIS RESEARCH CENTER, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, CLEVELAND, OHIO.

3090 PERDJIJON, J.
RAPID DETERMINATION OF OXYGEN IN METALS BY RADIOACTIVATION.
REV. MET. (PARIS), 63, 27-32 (JANUARY 1966), (FRENCH). S.A. DE MACHINES ELECTROSTATIQUES (SAMES), GRENOBLE, FRANCE.
DETERMINATION OF LIGHT ELEMENTS IN METALS – ACCESSION NUMBERS

3357 Twitty, B.L. * Fritz, K.M.,
The Determination of Oxygen in Magnesium, Steel, and Titanium, Internal Standard Techniques in 14-Mev Activation Analysis,
NLCO-979, 21P., June 1, 1966, (English),
National Lead Company of Ohio, Cincinnati, Ohio.

3361 Lobanov, E.M. * Zvyagin, V.I. * Zverev, B.P. * Blinkov, D.I.,
Determination of Light Elements in Silicon and Other Materials by Neutron Activation,

3466 Garbrah, B.W. * Whitley, J.E.,
Determination of Boron by Thermal Neutron Capture Gamma-Ray Analysis,

3502 Crawford, G.I.,
Oxygen in Metals, Activation Analysis, Principles and Applications,

3721 Albert, P. * Deyris, M. * Revel, G.,
Determination of Oxygen in Aluminum and Zirconium by Irradiation with He-3 Ions,

3722 Deyris, M. * Albert, P.,
Possibilities for Determination of Oxygen in Aluminum by Irradiation with Alpha Particles,
DETERMINATION OF LIGHT ELEMENTS IN METALS — ACCESSION NUMBERS

3727 PETIT, J., *SCHAUB, B., *ENGELMANN, C.,
ZONE FUSION AND ACTIVATION ANALYSIS.
(June 1962). (French), Service de Recherches de
Metallurgie Physique et Chimique, France.

3746 SCHRAMEL, P., *MUNZER, H.,
DETECTION OF OXYGEN IN METALS, PARTICULARLY IN
STEEL, BY ACTIVATION ANALYSIS WITH 14,4-MEV
NEUTRONS.
Institut fur Radiumforschung und Kernphysik, Wien,
Austria.

3768 FUJII, I., *MUTO, H.,
14 MEV NEUTRON ACTIVATION ANALYSIS USING A NEW
ANALYTICAL INSTRUMENT.
Proc. Japan Conference on Radioisotopes, 5th, No. 3,
170-172 (1963). (Japanese), Tokyo Shibaura
Electric Co. Ltd., Japan.

3771 KOBAYASHI, M., *SAWAII, T., *WAGATSUKA, S., *
MAEDA, S.,
ACTIVATION ANALYSIS OF OXYGEN BY MEANS OF (GAMMA,
NEUTRON) NUCLEAR REACTION.
Proc. Japan Conference on Radioisotopes, 5th, No. 3,
179-181 (1963). (Japanese), Tokyo Metropolitan
Isotope Center, Japan.

MORGAN, I.L.,
ELEMENTAL TRACE ANALYSIS BY CHARGED PARTICLE AND
NEUTRON ACTIVATION.
Oro-2980-14, 44p, July 1, 1966, (English), Texas
Nuclear Corporation, Austin, Texas.

OBSERVATION OF THE MICROSCOPIC DISTRIBUTION OF
OXYGEN AND CARBON IN METALS BY HE-3 ACTIVATION.
LA-3515, 16p., May 10, 1966, (English), Los Alamos
Scientific Laboratory of the University of
California, Los Alamos, New Mexico.

3981 TWITTY, R.L., *FRITZ, K.M.,
INTERNAL STANDARD TECHNIQUES FOR DETERMINATION OF
OXYGEN IN MAGNESIUM, STEEL, AND TITANIUM BY
ACTIVATION ANALYSIS.
(English), National Lead Co., of Ohio, Cincinnati,
Ohio.
DETERMINATION OF LIGHT ELEMENTS IN METALS — ACCESSION NUMBERS

3986 AUMANN, D.C. * BORN, H.J. * HEYKELMANN, R
USE OF FAST REACTOR NEUTRONS FOR RAPID AND NONDESTRUCTIVE TRACE ANALYSIS, ESPECIALLY OF OXYGEN.
Z. ANAL. CHEM., 221, 101-108 (1966), (GERMAN) (ENGLISH SUMMARY), INSTITUT FUR RADIOCHEMIE, TECHNISCHE HOCHSCHULE MUNCHEN, GERMANY.

3992 WILKNISS, P.E. * BORN, H.J.
ACTIVATION ANALYSIS OF OXYGEN AT THE SURFACE OF SOLIDS,
INTERN. J. APPL. RADIATION ISOTOPIES, 18, 57-64 (JANUARY 1967), (GERMAN) (ENGLISH, FRENCH AND RUSSIAN SUMMARIES), INSTITUT FUR RADIOCHEMIE DER TECHNISCHEN HOCHSCHULE MUNCHEN, GERMANY.

4211 ALBERT, P.
RADIOCHEMICAL METHODS IN ANALYTICAL CHEMISTRY.
ACTIVATION ANALYSIS WITH GAMMA RAY PHOTONS AND CHARGED PARTICLES,
CHIMIA, 21, NO. 3, 116-125 (1967), (FRENCH) (ENGLISH SUMMARY), CENTRE D ETUDES DE CHIMIE METALLURGIQUE DU C.N.R.S., VITRY, FRANCE.

4226 RYAN, V.A. * GREEN, J.L. * LOWENHaupt, E.H.
OXYGEN AND CARBON CONTENT OF LANTHANIDE AND ACTINIDE METALS OBTAINED BY REDUCTION OF WET AND DRY PRODUCED TRIFLUORIDES,
J. INORG. NUCL. CHEM., 29, 581-584 (FEBRUARY 1967), (ENGLISH), DEPARTMENT OF CHEMISTRY, UNIVERSITY OF WYOMING, LARAMIE, WYOMING.

4260 LEPETIT, H. * TOUSSET, J.
PRECISION AND CALIBRATION IN THE DETERMINATION OF OXYGEN BY NEUTRONS AT 14 MEV.
JOURNEE DE RADIOCHIMIE ANALYTIQUE, 39-76, 1965, (FRENCH), INSTITUT DE PHYSIQUE NUCLEAIRE DE LYON, FRANCE.

4277 DOROSH, M.M. * MAZYUKOVICH, N.P. * SHKODA-ULYANOV, V.A.
ANALYZING THE OXYGEN CONTENT OF CERTAIN METALS BY RECORDING THE DELAYED NEUTRONS PRODUCED IN THE O-18 (GAMMA, P) N-17 REACTION,
SOVIET ATOMIC ENERGY, 807-810 (SEPT. 1966), (ENGLISH TRANSLATION), RUSSIA.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

4300 GOBRECHT, H. * TAUSEND, A. * BRATTER, P. * WILLERS, G.
DETERMINATION OF SULPHUR AND ANTIMONY IN SELENIUM BY EPITHERMAL NEUTRON ACTIVATION ANALYSIS,
SOLID STATE COMMUN., 4, 311-314 (JUNE 1966), (ENGLISH). PHYSIKALISCHES INSTITUT DER
TECHNISCHEN UNIVERSITAT BERLIN AND HAHN-MEITNER-INSTITUT FUR KERNFORSCHUNG BERLIN,
GERMANY.

4386 PERSIANI, C. * SPIRA, J. * BASTIAN, R.
PHOTON-ACTIVATION ANALYSIS OF CAESIUM,
TALANTA, 14, NO. 5, 563-573 (1967), (ENGLISH)
(GERMAN AND FRENCH SUMMARIES), REPUBLIC AVIATION
CORP., FARMINGDALE, N.Y., AND MONTEFIORIE HOSPITAL,
BRONX, N.Y.

5238 MOLLER, E. * NILSSON, L. * STARFELT, N.
MICROANALYSIS OF LIGHT ELEMENTS BY MEANS OF (D, N)
REACTIONS,
NUCL. INSTRUM. METHODS, 50, 270-276 (1967),
(ENGLISH). AB ATOMENERGI, STUDSVIK, NYKOPING,
SWEDEN.

5321 ANDREEV, A.V. * BARIT, I.Y. * MUSAELYAN, R.M. * PRONMAN, I.M.
DETERMINATION OF OXYGEN IN MOLYBDENUM BY
ACTIVATION WITH FAST NEUTRONS,
J. ANAL. CHEM., USSR, 21, NO. 12, 1292-1295
(DECEMBER 1966), (ENGLISH TRANSLATION), RUSSIA.

5380 FUJII, I. * MUTO, H.
A DIRECT READ-OUT SYSTEM FOR FAST NEUTRON
ACTIVATION ANALYSIS FOR OXYGEN IN STEELS,
ANAL. CHIM. ACTA, 39, NO. 3, 329-333 (1967),
(ENGLISH) (FRENCH AND GERMAN SUMMARIES), CENTRAL
RESEARCH LABORATORY, TOKYO SHIBAURA ELECTRIC CO.,
LTD., KOMUKAI, KAWASAKI, JAPAN.

5408 ARMijo, J.S. * ROSENBAUM, H.S.
BORON DETECTION IN METALS BY ALPHA-PARTICLE
TRACKING,
J. APPL. PHYS., 38, 2064-2069 (APRIL 1967),
(ENGLISH). GENERAL ELECTRIC COMPANY, VALLECITOS
NUCLEAR CENTER, NUCLEONICS LABORATORY, PLEASANTON,
CALIF.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

5409 Gibbons, D. * Olive, G. * Sevier, P. * Deutschman, J.E.
DETERMINATION OF THE OXYGEN CONTENT OF ALUMINIUM BY 14 MEV-NEUTRON RADIOACTIVATION ANALYSIS.
J. INST. METALS, 95, NO. 9, 280-283 (1967), (ENGLISH). WANTAGE RESEARCH LABORATORY, AERE, WANTAGE, BERKS, ALUMINIUM LABORATORIES LTD., BANBURY, OXON., ENGLAND AND ALUMINUM COMPANY OF CANADA, ARVIDA, QUEBEC, CANADA.

5429 Dragnev, T.N.
NUCLEAR METHODS FOR DETERMINING BORON IN SILICON.
COMPT. REND. ACAD. BULL. SCI., 19, 711-714 (1966), (BULGARIAN).

5431 Fujii, I. * Muto, H.
DETERMINATION OF OXYGEN IN TITANIUM METAL BY A FAST NEUTRON ACTIVATION METHOD.
BUNSEKI KAGAKU, 15, 856-858 (AUG, 1966), (JAPANESE) (ENGLISH SUMMARY). CENTRAL RESEARCH LABORATORY, TOKYO SHIBAURA ELECTRIC CO., KAWASAKI-SHI, JAPAN.

5432 Fujii, I. * Takada, K. * Muto, H.
DETERMINATION OF OXYGEN IN ALUMINUM BY A FAST NEUTRON ACTIVATION METHOD.
BUNSEKI KAGAKU, 15, NO. 11, 1239-1245 (1966), (JAPANESE) (ENGLISH SUMMARY). TOSHIBA CENTRAL RESEARCH LABORATORY, KAWASAKI AND NIPPON LIGHT METAL RESEARCH LABORATORY, SHIZUOKA, JAPAN.

5450 Stoll, N. * Wagner, A. * Goedert, L.
INVESTIGATIONS OF THE INDUSTRIAL APPLICATION POSSIBILITIES OF ACTIVATION ANALYSIS FOR THE DETERMINATION OF OXYGEN AND EVENTUALLY OF NITROGEN AND HYDROGEN IN STEEL. PART I. BIBLIOGRAPHICAL REPORT.

5451 Stoll, N. * Wagner, A. * Goedert, L.
INVESTIGATIONS OF THE INDUSTRIAL APPLICATION POSSIBILITIES OF ACTIVATION ANALYSIS FOR THE DETERMINATION OF OXYGEN AND EVENTUALLY NITROGEN AND HYDROGEN IN STEEL. PART II. DESCRIPTION AND RESULTS OF THE TESTS.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

5452 STOLL, N. * WAGNER, A. * GOEDERT, L.

5708 PERDIJON, J.
OXYGEN DETERMINATION IN STEEL BY ACTIVATION ANALYSIS. A RAPID NON-DESTRUCTIVE METHOD. ATOMWIRTSCHAFT, 12, 131-133 (MARCH 1967), (GERMAN). INGENIEUR CIVIL DES MINES, GRENOBLE, FRANCE.

5772 HOSTÉ, J. * DE SOETE, D. * SPEECKE, A.

5781 ANDREEV, A.V. * BARIT, I.Y. * PRONMAN, I.M.
DETERMINATION OF THE OXYGEN IN NIOBium AND TITANIUM BY THE METHOD OF ACTIVATION WITH FAST NEUTRONS. INDUSTRIAL LABORATORY, 33, NO. 9, 1306-1308 (SEPTEMBER 1967), (ENGLISH TRANSLATION). STATE SCIENTIFIC RESEARCH AND PLANNING INSTITUTE OF RARE METAL PRODUCTION, RUSSIA.

5782 BARIT, I.Y. * KUDINOV, B.S. * MUSAFLYAN, R.M. * PRONMAN, I.M.
DETERMINATION OF NITROGEN IN PURE NIobium BY THE METHOD OF ACTIVATION WITH NEUTRONS WITH ENERGY OF 14 MEv. INDUSTRIAL LABORATORY, 33, NO. 9, 1309-1311 (SEPTEMBER 1967), (ENGLISH TRANSLATION). RUSSIA.

5919 FURUKAWA, Y. * KOYAMA, M. * YUKI, M.
DETERMINATION OF BORON CONTENT IN SEVERAL MEDIUMS BY PROMPT GAMMA RAY ANALYSIS. RADIOISOTOPES (TOKYO), 16, 499-503 (OCTOBER 1967), (ENGLISH) (JAPANESE SUMMARY). ATOMIC ENERGY RESEARCH LABORATORY OF MUSASHI INSTITUTE OF TECHNOLOGY, JAPAN.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

5921 SAWAI, T. * ALBERT, P.,
ACTIVATION ANALYSIS OF OXYGEN IN ALUMINIUM BY USING ALPHA AND HE-3 PARTICLES,
RADIOISOTOPES (TOKYO), 16, 509-513 (OCTOBER 1967),
(JAPANESE) (ENGLISH SUMMARY), TOKYO METROPOLITAN ISOTOPE RESEARCH CENTER, JAPAN AND CENTRE D ETUDES DE CHIMIE METALLURGIQUE DU C.N.R.S., FRANCE.

5932 HUGHES, J. D.H. * ROGERS, G.T.
HIGH-RESOLUTION AUTORADIOGRAPHY OF TRACE BORON IN METALS AND SOLIDS,
J. INST. METALS, 95, 299-302 (OCTOBER 1967),
(ENGLISH), WANTAGE RESEARCH LABORATORY, AERE, WANTAGE, BERKS., ENGLAND.

5938 REVEL, G. * ALBERT, P.
DETERMINATION OF OXYGEN IN ZIRCONIUM, MOLYBDENUM, HAFNIUM, AND TUNGSTEN BY IRRADIATION WITH HE-3 4,
COMPT. REND., SER. C, 265, 1443-1446 (DECEMBER 18, 1967), (FRENCH), CENTRE D ETUDES DE CHIMIE METALLURGIQUE DU C.N.R.S., VITRY-SUR-SEINE, VAL-DE-MARNE, FRANCE.

5954 REVEL, G. * CHAUDRON, T. * DEBRUN, J.L. * ALBERT, P.
DETERMINATION OF CARBON IN PURE IRON BY IRRADIATION WITH GAMMA PHOTONS,
COMPT. REND., SER. C, 226, 322-324 (JANUARY 29, 1968), (FRENCH), CENTRE D ETUDES DE CHIMIE METALLURGIQUE, VITRY, VAL-DE-MARNE, FRANCE.

6053 ALEKSANDROVA, G.I. * DEMIDOV, A.M. *
KOTELNIKOV, G.A. * PLESHAKOVA, G.P. * SUKHOV, G.V. *
DETERMINATION OF THE OXYGEN CONTENT IN GERMANIUM AND SILICON BY ACTIVATION WITH HE-3 IONS,
soviet atomic energy, 23, NO. 2, 787-801 (1967),
(ENGLISH TRANSLATION), RUSSIA.

6072 ALEKSANDROVA, G.I. * DEMIDOV, A.M. *
KOTELNIKOV, G.A. * PLESHAKOVA, G.P. * SUKHOV, G.V. *
DETERMINATION OF THE OXYGEN CONTENT IN GERMANIUM AND SILICON BY ACTIVATION BY HE-3 IONS,
IAE-1165, 15P., 1966, (RUSSIAN), INSTITUT ATOMNOI ENERGII, GOSUDARSTVENNYI KOMITET PO ISPOLZOVANIYU ATOMNOI ENERGII SSSR, MOSCOW, RUSSIA.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

6086 NADKARNI, R.A. * HALDAR, B.C.,
DETERMINATION OF SILICON, PHOSPHORUS AND SULFUR IN ALLOY STEEL BY NEUTRON ACTIVATION ANALYSIS.
ANAL. CHIM. ACTA, 42, 279-284 (AUGUST 1968),
(ENGLISH) (FRENCH AND GERMAN SUMMARIES).
INORGANIC AND NUCLEAR CHEMISTRY LABORATORY,
INSTITUTE OF SCIENCE, BOMBAY, INDIA.

6226 CALI, J.P. * LOWE, L.F. * REILLY, E.M. * THOMPSON, H.D.
DETAILED PROCEDURES FOR THE DETERMINATION OF SEVERAL ELEMENTS BY NEUTRON ACTIVATION ANALYSIS.
ERD-CRRC-TM-57-103, 29P., FEBRUARY 1957,
(ENGLISH), AIR FORCE CAMBRIDGE RESEARCH CENTER,
BEDFORD, MASS.

6398 VAN GRIEKEN, R. * GIJBELS, R. * SPEECKE, A. *
HOSTE, J.
INTERNAL STANDARD ACTIVATION ANALYSIS OF SILICON IN STEEL.
ANAL. CHIM. ACTA, 43, NO. 3, 381-395 (1968),
(ENGLISH) (FRENCH AND GERMAN SUMMARIES).
INSTITUTE FOR NUCLEAR SCIENCES, GHENT UNIVERSITY,
BELGIUM.

6410 ALBERT, P. * BLOURI, J. * CLEYRENGUE, C. *
DESCAMPS, N. * LE HERICY, J.
CONTRIBUTION TO THE STUDY OF DETERMINATION BY RADIOACTIVATION OF SULFUR AND PHOSPHORUS IN VERY SMALL CONCENTRATION METALS OF VERY HIGH PURITY (ALUMINUM, MAGNESIUM, COPPER, IRON, NICKEL).
J. RADIOANAL. CHEM., 1, 297-311 (1968), (FRENCH)
(ENGLISH SUMMARY), LABORATOIRE D'ANALYSE PAR ACTIVATION DU CENTRE D'ETUDES DE CHIMIE METALLURGIQUE DU CNRS, VITRY, FRANCE.

6412 ALBERT, P. * BLOURI, J. * CLEYRENGUE, C. *
DESCAMPS, N. * LE HERICY, J.
CONTRIBUTION TO THE STUDY OF DETERMINATION BY RADIOACTIVATION OF SULFUR AND PHOSPHORUS IN VERY SMALL CONCENTRATIONS IN METALS OF VERY HIGH PURITY (ALUMINUM, MAGNESIUM, COPPER, IRON, NICKEL).
J. RADIOANAL. CHEM., 1, 389-396 (1968), (FRENCH)
(ENGLISH SUMMARY), LABORATOIRE D'ANALYSE PAR ACTIVATION DU CENTRE D'ETUDES DE CHIMIE METALLURGIQUE DU CNRS, VITRY, FRANCE.
DETERMINATION OF LIGHT ELEMENTS IN METALS — ACCESSION NUMBERS

DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

6591 BARRANDON, J.N. * DEBRUN, J.L. * ALBERT, P.
DETERMINATION OF LOW OXYGEN CONTENT IN IRON, NICKEL, AND CHROME BY ACTIVATION WITH ALPHA PARTICLES.
PROCEEDINGS OF THE 2ND CONFERENCE ON PRACTICAL ASPECTS OF ACTIVATION ANALYSIS WITH CHARGED PARTICLES, LIEGE (BELGIUM), SEPTEMBER 21-22, 1967.

6593 ENGELMANN, C. * FRITZ, B. * GOSSET, J. * GRAEFF, P.
* LOEUILLET, M.
DETERMINATION OF LOW QUANTITIES OF OXYGEN AND CARBON BY ACTIVATION WITH PHOTONS AND ALPHA PARTICLES.
PROCEEDINGS OF THE 2ND CONFERENCE ON PRACTICAL ASPECTS OF ACTIVATION ANALYSIS WITH CHARGED PARTICLES, LIEGE (BELGIUM), SEPTEMBER 21-22, 1967.

6595 CUYPERS, M. * QUAGLIA, L. * ROBAYE, G. * DUMONT, P.
* BARRANDON, J.N.
RESEARCH ON THE REACTION O-16(D,P) PRODUCT WITH THE THIN OXYGEN LAYER ON THE SURFACE OF METALS.
PROCEEDINGS OF THE 2ND CONFERENCE ON PRACTICAL ASPECTS OF ACTIVATION ANALYSIS WITH CHARGED PARTICLES, LIEGE (BELGIUM), SEPTEMBER 21-22, 1967.

6694 BRUNE, D. * JIRLOW, K.
DETERMINATION OF OXYGEN IN ALUMINIUM BY MEANS OF 14 MEV NEUTRONS WITH AN ACCOUNT OF FLUX ATTENUATION IN THE SAMPLE.
J. RADIOANALYTICAL CHEMISTRY, 2, 49-54 (1969), (ENGLISH). AB ATOMENERGI, STOCKHOLM, STUDSVIK, SWEDEN.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

6723 VAN GRIEKEN, R. * GIJBELS, R. * SPEECKE, A. * HOSSTE, J., THE DETERMINATION OF SILICON IN STEEL BY 14-MEV NEUTRON ACTIVATION ANALYSIS. ANAL. CHIM. ACTA, 43, NO. 2, 199-209 (1968), (ENGLISH) (FRENCH AND GERMAN SUMMARIES), INSTITUTE FOR NUCLEAR SCIENCES, GHENT UNIVERSITY, GHENT, BELGIUM.

6728 GIJBELS, R. * SPEECKE, A. * HOSSTE, J., AN OXYGEN STANDARD FOR THE DETERMINATION OF OXYGEN IN STEEL BY 14-MEV NEUTRON ACTIVATION ANALYSIS. ANAL. CHIM. ACTA, 43, NO. 2, 183-198 (1968), (ENGLISH) (FRENCH AND GERMAN SUMMARIES), INSTITUTE FOR NUCLEAR SCIENCES, GHENT UNIVERSITY, GHENT, BELGIUM.

6742 BAKER, C.A. * WILLIAMS, D.R., PHOTON ACTIVATION ANALYSIS FOR CARBON AND OXYGEN, TALANTA, 15, NO. 11, 1143-1151 (1968), (ENGLISH) (GERMAN AND FRENCH SUMMARIES), ANALYTICAL SCIENCES DIVISION, AERE, HARWELL, DIDCOT, BERKS., ENGLAND.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

6750 ANDERSEN, G.H.
THE DETERMINATION OF OXYGEN IN TITANIUM AND REFRACTORY METALS BY ACTIVATION ANALYSIS,
NUCLEONICS IN AEROSPACE, POLISHUK, P. (ED.), NEW YORK, PLENUM PRESS, 317-322, 1968, (ENGLISH),
GENERAL ATOMIC DIVISION OF GENERAL DYNAMICS CORPORATION, SAN DIEGO, CALIF.

6752 HOLM, D.M. * SANDERS, W.M. * BRISCOE, W.L. *
PARKER, J.L.
MEASUREMENT OF THE SURFACE DISTRIBUTION OF CARBON AND OXYGEN BY HE-3 ACTIVATION AND AUTORADIOGRAPHY,
NUCLEONICS IN AEROSPACE, POLISHUK, P. (ED.), NEW YORK, PLENUM PRESS, 306-313, 1968, (ENGLISH),
UNIVERSITY OF CALIFORNIA, LOS ALAMOS SCIENTIFIC LABORATORY, LOS ALAMOS, NEW MEXICO.

6844 BARWINSKI, A. * BUCZEK, A. * GORSKI, L. *
JANCZYSZYNN, J. * KWIECINSKI, S. * LOSKA, L.
ACTIVATION ANALYSIS OF CHROMIUM, SILICON, NICKEL, TUNGSTEN IN ALLOYS BY JSING A NEUTRON GENERATOR,
ISOTOPENPRAXIS, 4, 15-19 (JANUARY 1968), (GERMAN), INSTITUT FUR KERNTECHNIK DER AKADEMIE FUR BERGBAU UND HUTTENEAUSE, KRAKOW.

6856 MIYAGAWA, K. * ICHIJIMA, I. * ASAI, A. * NOMURA, E.
* MISHIMA, I.
THE DETERMINATION OF OXYGEN IN STEEL BY THE ACTIVATION ANALYSIS WITH FAST NEUTRONS,
THE 9TH JAPAN CONFERENCE ON RADIOISOTOPES (ABSTRACTS OF PAPERS), NIPPON TOSHI CENTER,

6978 COSGROVE, J.F.
ROUTINE DETERMINATION OF MAJOR COMPONENTS BY ACTIVATION ANALYSIS,
NBS SPEC. PUBL. 312, VOL. I, MODERN TRENDS IN ACTIVATION ANALYSIS, 457-459, JUNE 1969,
(ENGLISH), THE BAYSDIE LABORATORY, RESEARCH CENTER OF GENERAL TELEPHONE AND ELECTRONICS LABORATORIES INC., BAYSDIE, N.Y.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

7011 BUTLER, J.W., * WOLICKI, E.A.,
SURFACE ANALYSIS OF GOLD AND PLATINUM DISKS BY
ACTIVATION METHODS AND BY PROMPT RADIATION FROM
NUCLEAR REACTIONS,
NBS Spec. Publ. 312, Vol. II. Modern Trends in
Activation Analysis, 791-793, June 1969,
(English). Nuclear Physics Division, U.S. Naval
Research Laboratory, Washington, D.C.

7012 BARRANDON, J.N., * ALBERT, P.
DETERMINATION OF OXYGEN PRESENT AT THE SURFACE OF
METALS BY IRRADIATION WITH 2 MEV TRITONS,
NBS Spec. Publ. 312, Vol. II. Modern Trends in
Activation Analysis, 794-801, June 1969.
(English). CNRS-C.E.C.M., Vitry, France.

7015 ENGELMANN, C. * GOSSET, J., * LDEUVILLET, M., *
MARSCHAL, A. * OSSART, P., * BOISSIER, M.,
EXAMPLES OF DETERMINATION OF LIGHT ELEMENTS IN
VARIOUS HIGH PURITY MATERIALS, BY GAMMA PHOTON AND
CHARGED PARTICLE ACTIVATION,
NBS Spec. Publ. 312, Vol. II. Modern Trends in
Activation Analysis, 819-828, June 1969,
(English). Centre d'Etudes Nucléaires de Saclay,
Département de Métallurgie, GIF S/Yvette
(Essonne). France.

7017 MACKINTOSH, W.D., * JERVIS, R.E.,
PHOTON ACTIVATION ANALYSIS OF OXYGEN AND CARBON IN
A EUTECTIC MIXTURE OF LEAD AND BISMUTH USING A
LINAC,
NBS Spec. Publ. 312, Vol. II. Modern Trends in
Activation Analysis, 835-837, June 1969,
(English). Atomic Energy of Canada Ltd., Ontario,
Canada and University of Toronto, Toronto, Canada.

7018 REVEL, G., * CHAUDRON, T., * DEBRUN, J.L., * ALBERT, P.,
DETERMINATION OF CARBON IN HIGH PURITY IRON BY
IRRADIATION IN PHOTONS,
NBS Spec. Publ. 312, Vol. II. Modern Trends in
Activation Analysis, 838-841, June 1969,
(English). CNRS-C.E.C.M., Vitry, France.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

7019 NOZAKI, T. * YATSURUGI, Y. * AKIYAMA, N. * IMAI, I.
CHARGED PARTICLE ACTIVATION ANALYSIS FOR CARBON,
NITROGEN, AND OXYGEN IN SEMICONDUCTOR SILICON.
NBS SPEC. PUBL. 312, VOL. II, MODERN TRENDS IN
ACTIVATION ANALYSIS, 842-846, JUNE 1969.
(ENGLISH). THE INSTITUTE OF PHYSICAL AND CHEMICAL
RESEARCH, YAMAMOTO-MACHI, SAITAMA, AND KOMATSU
ELECTRONIC METALS CO., LTD., HIRATSUKA, KANAGAWA,
JAPAN.

7076 GIJBELS, R. * SPEECKE, A. * HOSTE, J.
AN OXYGEN STANDARD FOR THE DETERMINATION OF OXYGEN
IN STEEL BY 14 MEV NEUTRON ACTIVATION ANALYSIS.
NBS SPEC. PUBL. 312, VOL. II, MODERN TRENDS IN
ACTIVATION ANALYSIS, 1298-1305, JUNE 1969.
(ENGLISH). INSTITUTE FOR NUCLEAR SCIENCES, GENT
UNIVERSITY, PROEFUINSTRATT, GENT, BELGIUM.

7097 CHIRA, M.
ACTIVATION ANALYSIS OF OXYGEN IN METALLIC
BERYLLIUM BY FAST NEUTRONS.
PROC. MEM. LECT. MEET. ANNIV. FOUND. NAT. RES.
INST. METALS, 10TH, TOKYO, 199-201, 1966.
(ENGLISH). METAL CHEMISTRY DIVISION, NATIONAL
RESEARCH INSTITUTE OF METALS, TOKYO.

7106 ENGELMANN, C. * LOEUILLLET, M.
PHOTON ACTIVATION FOR A NONDESTRUCTIVE
DETERMINATION OF SMALL QUANTITIES OF OXYGEN IN
VERY PURE SODIUM,
(ENGLISH). DEPARTEMENT DE METALLURGIE CEN SACLAY.

7142 SCHRAMEL, P.
DETECTION OF OXYGEN IN METALS, ESPECIALLY STEEL,
BY ACTIVATION ANALYSIS WITH 14.5 MEV NEUTRONS.
OESTERR. AKAD. WISS., 4ATH.-NATURWISS, KL.,
sitzungssber. AHT. II, 174, NO. 8-10, 535-557
(1965). (GERMAN). INSTITUT FUR RADIOFORSCHUNG,

7145 DOGE, H.G. * GROSSE-RUYKEN, H.
DETERMINATION OF IMPURITIES IN MOLYBDENUM AND
TUNGSTEN BY ACTIVATION ANALYSIS.
INSTITUT FUR METALLPHYSIK UND REINSMETALLE,
DRESDEN, DER DEUTSCHEN AKADEMIE DER WISSENSCHAFTEN
ZU BERLIN, UND INSTITUT FUR ANORGANISCHE UND
ANORGANISCH-TECHNISCHE CHEMIE DER TU DRESDEN,
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

7162 PARKER, J.L. * HOLM, D.M,
MEASUREMENT OF CARBON GRADIENT IN STAINLESS STEEL BY HE-3 ACTIVATION AND AUTORADIOGRAPHY,
LA-4008, 9P., APRIL 1968, (ENGLISH). LOS ALAMOS SCIENTIFIC LABORATORY, UNIVERSITY OF CALIFORNIA, LOS ALAMOS, NEW MEXICO.

7170 PLAKSIN, I.N. * STARCHIK, L.P. * TUSTANOVSKII, V.T.
DETERMINATION OF SILICON, IRON, AND MANGANESE IN FERROSILICON BY NEUTRON ACTIVATION ANALYSIS,
NAUCH. SOORSHCH. INST. GORN. DELA, 29, 106-111 (1965), (RUSSIAN). RUSSIA.

7172 MAC ARTHUR, I.R. * MORRIS, D.F.C.
RADIOCHEMICAL METHODS FOR THE DETERMINATION OF TRACE ELEMENTS IN NICKEL ALLOYS. PART II,
DETERMINATION OF CHLORINE, PHOSPHORUS AND SULPHUR.
METALLURGIA, LXXX, NO. 477, 37-42 (JULY 1969),
(ENGLISH). DEPARTMENT OF CHEMISTRY, BRUNEL UNIVERSITY, LONDON.

7200 AMSÉL, G. * DAVID, D. * BERANGER, G. * BOISOT, P. *
DE GELAS, R. * LACOMBE, P.
NUCLEAR METHODS FOR DETERMINATION OF IMPURITIES ON THE SURFACE OF METALS,
J. NUCL. MATER., 29, 144-153 (FEBRUARY 1969),
(FRENCH). LABORATOIRE DE PHYSIQUE, E.N.S., AND C.R.M., ECOLE DES MINES DE PARIS, PARIS, FRANCE.

7213 MOISEEV, L.I. * BLOKHNA, V.I. * BOGATYREV, V.K.
THE POSSIBILITY OF DETERMINING GASES IN METALS BY RADIOACTIVATION METHODS,
J. RADIOANAL. CHEM., USSR, 23, NO. 11, 1492-1497 (NOVEMBER 1968), (ENGLISH TRANSLATION), RUSSIA.

7214 KAREV, V.N. * DOLYA, G.P. * SIVOKON, N.V. *
TUTUBALIN, A.I. * KHALIN, N.F. * ZADVORNYI, A.S.
NEUTRON ACTIVATION ANALYSIS DETERMINATION OF OXYGEN IN BERYLLIUM,
INDUSTRIAL LABORATORY, 34, NO. 12, 1724-1726 (DECEMBER 1968), (ENGLISH TRANSLATION), PHYSICS AND ENGINEERING INSTITUTE OF THE ACADEMY OF SCIENCES OF THE UKRAINIAN SSR, KHARKOV.
DETERMINATION OF LIGHT ELEMENTS
IN METALS—ACCESSION NUMBERS

7230 DERUN, J.L. * BARRANDCN, J.V. * ALBERT, P.
ACTIVATION ANALYSIS USING HE-4 AND HE-3 IONS.
DETERMINATION OF TRACE OXYGEN IN HIGH PURITY IRON,
NICKEL, AND CHROMIUM. STUDIES ON CARBON
DETERMINATION.
BULL. SOC. CHIM. FR., NO. 3, 1011-1016 (MARCH
1969). (FRENCH). LABORATOIRE D'ANALYSE PAR
ACTIVATION DU CENTRE D'ETUDES DE CHIMIE
METALLURGIQUE, CNRS, VITRY-SUR-SEINE.

7248 ROOK, H.L. * SCHWEIKERT, E.A.
ULTRATRACE DETERMINATION OF OXYGEN AND CARBON BY
CHARGED PARTICLE ACTIVATION ANALYSIS.
(ENGLISH). ACTIVATION ANALYSIS RESEARCH
LABORATORY, TEXAS A AND M UNIVERSITY, COLLEGE
STATION, TEXAS.

7285 KONECNY, K. * VOBECKY, M. * JUNA, J.
NON-DESTRUCTIVE DETERMINATION OF BORON IN METALLIC
ALLOYS BY MEANS OF A NUCLEAR REACTION.
JAD. ENERG., 15, 128-130 (APRIL 1969), (CZECH).
USTAV JADERNEHO VYZKLU CSAV, REZ.

7289 HOSTE, J. * SPEECKE, A. * DE SOETE, D.
DETERMINATION OF OXYGEN IN STEELS BY NEUTRON
ACTIVATION. I. PRINCIPLE OF THE METHOD AND
DESCRIPTION OF THE EQUIPMENT.
CNRM (CENT. NAT. RECH. MET.) MET. REP., NO. 13,
29-32 (DECEMBER 1967), (ENGLISH) (GERMAN AND
FRENCH SUMMARIES), UNIVERSITY OF GHENT.

7291 HANS, A. * TYOU, P. * LACOMBLE, M. * COLOETTE, F.
DETERMINATION OF OXYGEN IN STEELS BY NEUTRON
ACTIVATION. III, RESULTS OF THE EXPERIMENTS
CARRIED OUT IN THE FIRST HALF OF 1967 WITH THE
EQUIPMENT INSTALLED AT THE LD STEEL PLANT OF S.A.
COCKERILL-OGREE-PROVIDENCE.
CNRM (CENT. NAT. RECH. MET.) MET. REP., NO. 13,
37-46 (DECEMBER 1967), (ENGLISH) (GERMAN AND
FRENCH SUMMARIES), COCKERILL-OGREE-PROVIDENCE
AND C.N.R.M.
DETERMINATION OF LIGHT ELEMENTS IN METALS - ACCESSION NUMBERS

7307 SCHUSTER, E. * WOHLLEBEN, K.
DETERMINATION OF LIGHT ELEMENTS IN SILICON AND SELENIUM BY ION ACTIVATION ANALYSIS,
Z. ANAL. CHEM., 245, NO. 4, 239-244 (1969),
(GERMAN) (ENGLISH SUMMARY), KERNTECHNISCHE LABORATORIEN UND FORSCHUNGS LABORATORIUM ERLANGEN DER SIEMENS A.G.

7330 MIYAGAWA, K. * SHIMURA, K. * ASAI, A. * NOMURA, E. * YAMAGISHI, M.
APPLICATION OF A FAST NEUTRON ACTIVATION METHOD TO THE CONTROL OF OXYGEN CONTENT IN IRON AND STEEL MAKING PROCESS,
TETSU TO HAGANE, 55, 209-215 (FEBRUARY 1969),
(JAPANESE) (ENGLISH SUMMARY), FUJI IRON AND STEEL CO. LTD., JAPAN.

7343 BERRY, L.
ACTIVATION DETERMINATION OF OXYGEN AND NITROGEN IN SOLIDS. APPLICATION TO THE STUDY OF SURFACE REACTIONS,

7344 BIHET, O.L.
OXYGEN DETERMINATION IN STEEL BY NEUTRON ACTIVATION,
STAHL EISEN, 88, 1244-1246 (OCTOBER 31, 1968),
(GERMAN), GERMANY.

7361 JUNA, J. * KONECNY, K. * VOBECKY, M.
NUCLEAR REACTION METHOD FOR THE DETERMINATION OF BORON,
COLLECT. CZECH. CHEM. COMMUN., 1605-1611 (MAY 1969), (ENGLISH), NUCLEAR RESEARCH INSTITUTE, CZECHOSLOVAK ACADEMY OF SCIENCES, PRAGUE-REZ, CZECHOSLOVAKIA.

7387 JANCZYSZYN, J. * LOSKA, L. * TACZANOWSKI, S.
DETERMINATION OF OXYGEN IN METALLIC COPPER BY FAST NEUTRON ACTIVATION ANALYSIS,
CHEMIA ANALITYCZNA, 14, 391-396 (1969), (POLISH)
(ENGLISH SUMMARY), INSTYTUT TECHNIKI JADROWEJ AKADEMII GORNICZO-HUTNICZEJ, KRAKOW, POLAND.
DETERMINATION OF LIGHT ELEMENTS IN METALS – ACCESSION NUMBERS

7407 ATALLA, L.T. & LIMA, F.W.,
THE DETERMINATION OF IMPURITIES IN MAGNESIUM METAL BY ACTIVATION ANALYSIS,
IEA NO. 167, 23P., JUNE 1968, (SPANISH), DIVISAO DE RADIOQUIMICA, INSTITUTO DE ENERGIA ATOMICA, SAO PAULO, BRAZIL.

7417 GUINN, V.P.,
IN-SITU MEASUREMENT OF OXYGEN IN WELDS BY NONDESTRUCTIVE NEUTRON ACTIVATION ANALYSIS,
PROCEEDINGS 1968 SYMPOSIUM ON THE NDT OF WELDS AND MATERIALS JOINING, EVANSTON, ILLINOIS, THE AMERICAN SOCIETY FOR NON-DESTRUCTIVE TESTING, INC., 547-556, 1968, (ENGLISH), GULF GENERAL ATOMIC INC., SAN DIEGO, CALIF.

7419 STOLL, N. & WAGNER, A. & GOEDERT, L.,
APPLICATION OF ACTIVATION ANALYSIS FOR DETERMINATION OF OXYGEN IN STEEL,
STAHLEISEN, 88, 775-782 (JULY 11, 1968), (GERMAN AND FRENCH), GERMANY.
APPENDIX I
ABDURAKHMANOVA, S.R. 6705
ABU-SAMRA, A. 351
AKIYAMA, N. 7019
ALBERT, P. 4 8 688 703 704 767 814 1378 1471
2381 2550 3721 3722 4211 5921 5938
5954 6410 6412 6568 6590 6591 7012
7018 7230
ALEKSANDROVA, G.I. 6053 6072
ALIMARIN, I.P. 2721
AMSEL, G. 1915 7200
ANDERS, O.U. 131
ANDERSEN, G.H. 6750
ANDERSON, G.H. 3073
ANDREEV, A.V. 5321 5781
ARMijo, J.S. 5408
ASAI, A. 6856 7330
ATALLA, L.T. 7407
ATCHISON, G.J. 22
AUBOuin, G. 1165
AUMANN, D.C. 3986
BABIKOVA, Y.F. 2764
BAGGERLY, L.L. 596
BAKER, C.A. 850 6742
BAKES, J.M. 2526
BALLAUX, C. 6446
BARIT, I.Y. 5321 5781 5782
BARRANDON, J.N. 6591 6595 7012 7230
BARWINSKI, A. 6844
BASMAJIAN, J.A. 3977
BASS, R. 2615
BASTIAN, R. 4386
BATE, L.C. 641 654 1709
1-1
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer, W.H.</td>
<td>22</td>
</tr>
<tr>
<td>Beard, D.B.</td>
<td>45 46 49</td>
</tr>
<tr>
<td>Benjamin, R.W.</td>
<td>2686 3070</td>
</tr>
<tr>
<td>Beranger, G.</td>
<td>7200</td>
</tr>
<tr>
<td>Bernhard, F.</td>
<td>744</td>
</tr>
<tr>
<td>Berry, L.</td>
<td>7343</td>
</tr>
<tr>
<td>Bihet, O.L.</td>
<td>7344</td>
</tr>
<tr>
<td>Blackburn, R.</td>
<td>864</td>
</tr>
<tr>
<td>Blake, K.R.</td>
<td>2505 2686 3070 3976</td>
</tr>
<tr>
<td>Blinkov, D.I.</td>
<td>1546 3361</td>
</tr>
<tr>
<td>Blokhin, V.I.</td>
<td>7213</td>
</tr>
<tr>
<td>Blouri, J.</td>
<td>6410 6412 6568</td>
</tr>
<tr>
<td>Bogancs, J.</td>
<td>6572</td>
</tr>
<tr>
<td>Bogatyrev, V.K.</td>
<td>7213</td>
</tr>
<tr>
<td>Boisot, P.</td>
<td>7200</td>
</tr>
<tr>
<td>Boissier, M.</td>
<td>7015</td>
</tr>
<tr>
<td>Born, H.J.</td>
<td>1730 3986 3992</td>
</tr>
<tr>
<td>Bouten, P.</td>
<td>1085</td>
</tr>
<tr>
<td>Bouteu, P.</td>
<td>893</td>
</tr>
<tr>
<td>Bradshaw, W.G.</td>
<td>45 46 49</td>
</tr>
<tr>
<td>Bramlitt, E.T.</td>
<td>1804</td>
</tr>
<tr>
<td>Bratter, P.</td>
<td>4300</td>
</tr>
<tr>
<td>Briden, D.W.</td>
<td>131</td>
</tr>
<tr>
<td>Briscoe, W.L.</td>
<td>1604 6752</td>
</tr>
<tr>
<td>Broadhead, K.G.</td>
<td>500</td>
</tr>
<tr>
<td>Brooksbank, W.A., Jr.</td>
<td>81</td>
</tr>
<tr>
<td>Brune, D.</td>
<td>6694</td>
</tr>
<tr>
<td>Buczek, A.</td>
<td>6844</td>
</tr>
<tr>
<td>Burns, F.C.</td>
<td>1453 1739</td>
</tr>
<tr>
<td>Busch, G.</td>
<td>1091</td>
</tr>
<tr>
<td>Butler, J.W.</td>
<td>7011</td>
</tr>
<tr>
<td>Byrne, J.T.</td>
<td>2549</td>
</tr>
</tbody>
</table>

I-2
DETERMINATION OF LIGHT ELEMENTS IN METALS - AUTHOR INDEX

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALI, J.P.</td>
<td>255 6226</td>
</tr>
<tr>
<td>CERRAI, E.</td>
<td>762</td>
</tr>
<tr>
<td>CHAUDRON, G.</td>
<td>8 102</td>
</tr>
<tr>
<td>CHAUDRON, T.</td>
<td>5954 7018</td>
</tr>
<tr>
<td>CHENG, H.</td>
<td>1151 1742</td>
</tr>
<tr>
<td>CHIBA, M.</td>
<td>7097</td>
</tr>
<tr>
<td>CHOPOROV, D.Y.</td>
<td>6053 6072</td>
</tr>
<tr>
<td>CLARK, L., JR.</td>
<td>1618 1787</td>
</tr>
<tr>
<td>CLESS-BERNERT, T.</td>
<td>1821</td>
</tr>
<tr>
<td>CLEYRERGUE, C.</td>
<td>6410 6412 6568</td>
</tr>
<tr>
<td>COLEMAN, R.F.</td>
<td>108 109 1103 1104</td>
</tr>
<tr>
<td>COLLETTE, F.</td>
<td>7291</td>
</tr>
<tr>
<td>CONDIT, R.H.</td>
<td>1483</td>
</tr>
<tr>
<td>COSGROVE, J.F.</td>
<td>6978</td>
</tr>
<tr>
<td>CRAWFORD, G.I.</td>
<td>3502</td>
</tr>
<tr>
<td>CUFF, D.R.A.</td>
<td>2429</td>
</tr>
<tr>
<td>CURIE, I.</td>
<td>118 119</td>
</tr>
<tr>
<td>CUYPERS, J.</td>
<td>1378</td>
</tr>
<tr>
<td>CUYPERS, M.</td>
<td>1378 1477 1550 6595</td>
</tr>
<tr>
<td>CUYPERS, M.Y.</td>
<td>2586</td>
</tr>
<tr>
<td>DAMS, R.</td>
<td>6446</td>
</tr>
<tr>
<td>DANFORTH, J.P.</td>
<td>1590</td>
</tr>
<tr>
<td>DAVID, D.</td>
<td>7200</td>
</tr>
<tr>
<td>DE GELAS, B.</td>
<td>7200</td>
</tr>
<tr>
<td>DE GOEIJ, J.J.M.</td>
<td>2562</td>
</tr>
<tr>
<td>DE SOETE, D.</td>
<td>1560 5772 7289</td>
</tr>
<tr>
<td>DEBRUN, J.L.</td>
<td>5954 6591 7018 7230</td>
</tr>
<tr>
<td>DEL MILAGRO PEREZ, M.</td>
<td>6722</td>
</tr>
<tr>
<td>DEMIDOV, A.M.</td>
<td>6053 6072</td>
</tr>
<tr>
<td>DESCHAMPS, N.</td>
<td>6410 6412 6568</td>
</tr>
<tr>
<td>DEUTSCHMAN, J.E.</td>
<td>5409</td>
</tr>
</tbody>
</table>

I-3
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEYRIS, M.</td>
<td>3721 3722</td>
</tr>
<tr>
<td>DOGE, H.G.</td>
<td>7145</td>
</tr>
<tr>
<td>DOLYA, G.P.</td>
<td>7214</td>
</tr>
<tr>
<td>DOROSH, M.M.</td>
<td>4277</td>
</tr>
<tr>
<td>DOWNTON, D.W.</td>
<td>2526</td>
</tr>
<tr>
<td>DRAGNEV, T.N.</td>
<td>5429</td>
</tr>
<tr>
<td>DUGAIN, F.</td>
<td>1165</td>
</tr>
<tr>
<td>DUMONT, P.</td>
<td>6595</td>
</tr>
<tr>
<td>DUTINA, D.</td>
<td>1309</td>
</tr>
<tr>
<td>EICHELBERGER, J.</td>
<td>2596</td>
</tr>
<tr>
<td>EMERY, J.F.</td>
<td>641 1709</td>
</tr>
<tr>
<td>ENGELMANN, C.</td>
<td>578 814 1263 1816 1823 3727 6593 7015 7106</td>
</tr>
<tr>
<td>ENGLAND, L.D.</td>
<td>3070 3976</td>
</tr>
<tr>
<td>FITE, L.E.</td>
<td>2586</td>
</tr>
<tr>
<td>FOSTER, L.M.</td>
<td>161</td>
</tr>
<tr>
<td>FOURNET, L.</td>
<td>760</td>
</tr>
<tr>
<td>FRITZ, B.</td>
<td>6593</td>
</tr>
<tr>
<td>FRITZ, K.M.</td>
<td>2798 3357 3981</td>
</tr>
<tr>
<td>FROHBERG, M.G.</td>
<td>2678</td>
</tr>
<tr>
<td>FUJII, I.</td>
<td>426 2649 3768 5380 5431 5432</td>
</tr>
<tr>
<td>FURUKAWA, M.</td>
<td>1151 1194 1742</td>
</tr>
<tr>
<td>FURUKAWA, Y.</td>
<td>5919</td>
</tr>
<tr>
<td>GADDA, F.</td>
<td>762</td>
</tr>
<tr>
<td>GAHN, R.F.</td>
<td>3085</td>
</tr>
<tr>
<td>GAITANIS, C.D.</td>
<td>161</td>
</tr>
<tr>
<td>GAITTET, J.</td>
<td>767</td>
</tr>
<tr>
<td>GARBRAH, B.W.</td>
<td>3466</td>
</tr>
<tr>
<td>GEBAUHR, W.</td>
<td>1118</td>
</tr>
<tr>
<td>Author</td>
<td>Pages</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Gibbons, D.</td>
<td>1570 5409</td>
</tr>
<tr>
<td>Giijbels, R.</td>
<td>6398 6723 6728 7076</td>
</tr>
<tr>
<td>Gill, R.A.</td>
<td>181</td>
</tr>
<tr>
<td>Gilman, A.R.</td>
<td>58</td>
</tr>
<tr>
<td>Gobbi, A.</td>
<td>1091</td>
</tr>
<tr>
<td>Gobrecht, H.</td>
<td>4300</td>
</tr>
<tr>
<td>Goedert, L.</td>
<td>5450 5451 5452 7419</td>
</tr>
<tr>
<td>Gorski, L.</td>
<td>6844</td>
</tr>
<tr>
<td>Gossot, J.</td>
<td>1263 6593 7015</td>
</tr>
<tr>
<td>Graeff, P.</td>
<td>6593</td>
</tr>
<tr>
<td>Gray, A.L.</td>
<td>2507</td>
</tr>
<tr>
<td>Green, F.L.</td>
<td>1590 1591</td>
</tr>
<tr>
<td>Green, J.L.</td>
<td>4226</td>
</tr>
<tr>
<td>Grosse-Ruyken, H.</td>
<td>7145</td>
</tr>
<tr>
<td>Gross, P.</td>
<td>1965</td>
</tr>
<tr>
<td>Grove, G.R.</td>
<td>2596</td>
</tr>
<tr>
<td>Gruverman, I.J.</td>
<td>1124</td>
</tr>
<tr>
<td>Guinn, V.P.</td>
<td>2598 7417</td>
</tr>
<tr>
<td>Haldar, B.C.</td>
<td>6086</td>
</tr>
<tr>
<td>Hans, A.</td>
<td>7291</td>
</tr>
<tr>
<td>Harris, W.F.</td>
<td>1589</td>
</tr>
<tr>
<td>Heady, H.H.</td>
<td>500</td>
</tr>
<tr>
<td>Henkelmann, R.</td>
<td>3986</td>
</tr>
<tr>
<td>Henninger, W.A.</td>
<td>1124</td>
</tr>
<tr>
<td>Henry, W.M.</td>
<td>1026 1951 2652</td>
</tr>
<tr>
<td>Herold, C.</td>
<td>1193</td>
</tr>
<tr>
<td>Herr, W.</td>
<td>223</td>
</tr>
<tr>
<td>Hirose, Y.</td>
<td>2418</td>
</tr>
<tr>
<td>Holm, D.M.</td>
<td>1604 3977 6752 1762</td>
</tr>
<tr>
<td>Holt, J.B.</td>
<td>1483</td>
</tr>
<tr>
<td>Hooton, B.W.</td>
<td>1951</td>
</tr>
</tbody>
</table>

I-5
DETERMINATION OF LIGHT ELEMENTS IN METALS - AUTHOR INDEX

<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOSTE, J.</td>
<td>893, 1085, 5772, 6398, 6446, 6723, 6728, 7076, 7289</td>
</tr>
<tr>
<td>HOUSTON, C.D.</td>
<td>2505, 3070</td>
</tr>
<tr>
<td>HOUTMAN, J.P.W.</td>
<td>2562</td>
</tr>
<tr>
<td>HUGHES, J.D.H.</td>
<td>5932</td>
</tr>
<tr>
<td>ICHIJIMA, I.</td>
<td>6856</td>
</tr>
<tr>
<td>ILLSLEY, C.T.</td>
<td>2549</td>
</tr>
<tr>
<td>IMAI, I.</td>
<td>7019</td>
</tr>
<tr>
<td>ISHII, D.</td>
<td>2418</td>
</tr>
<tr>
<td>ISSEROW, S.</td>
<td>58</td>
</tr>
<tr>
<td>JAMES, J.A.</td>
<td>244, 246</td>
</tr>
<tr>
<td>JAMIN-CHANGEART, F.</td>
<td>1621</td>
</tr>
<tr>
<td>JANCZYSZYN, J.</td>
<td>6844, 7387</td>
</tr>
<tr>
<td>JERVIS, R.E.</td>
<td>7017</td>
</tr>
<tr>
<td>JESSEN, P.L.</td>
<td>1956</td>
</tr>
<tr>
<td>JIRLOW, K.</td>
<td>6694</td>
</tr>
<tr>
<td>JOHNSON, R.G.</td>
<td>45, 46, 49</td>
</tr>
<tr>
<td>JONES, L.V.</td>
<td>2596</td>
</tr>
<tr>
<td>JONES, R.E.</td>
<td>1956</td>
</tr>
<tr>
<td>JUNA, J.</td>
<td>7285, 7361</td>
</tr>
<tr>
<td>KALININ, A.I.</td>
<td>2523</td>
</tr>
<tr>
<td>KANT, A.</td>
<td>255</td>
</tr>
<tr>
<td>KAREV, V.N.</td>
<td>7214</td>
</tr>
<tr>
<td>KARLIK, B.</td>
<td>1821</td>
</tr>
<tr>
<td>KEMPCHINSKY, P.C.</td>
<td>3073</td>
</tr>
<tr>
<td>KERWICK, W.</td>
<td>1590</td>
</tr>
<tr>
<td>KHALIN, N.F.</td>
<td>7214</td>
</tr>
<tr>
<td>KINSEY, R.J.</td>
<td>1590</td>
</tr>
<tr>
<td>KIREEV, V.A.</td>
<td>6705</td>
</tr>
</tbody>
</table>

I-6
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOBAYASHI, M.</td>
<td>3771</td>
</tr>
<tr>
<td>KOHN, R.E.</td>
<td>1590 1591</td>
</tr>
<tr>
<td>KONECNY, K.</td>
<td>7285 7361</td>
</tr>
<tr>
<td>KOPINECK, H.J.</td>
<td>2615</td>
</tr>
<tr>
<td>KOSTER-PFLUGMACHER, A.</td>
<td>2678</td>
</tr>
<tr>
<td>KOTELNIKOV, G.A.</td>
<td>6053 6072</td>
</tr>
<tr>
<td>KOYAMA, M.</td>
<td>5919</td>
</tr>
<tr>
<td>KUDINOV, B.S.</td>
<td>5782</td>
</tr>
<tr>
<td>KUSAKA, Y.</td>
<td>628</td>
</tr>
<tr>
<td>KUZNETSOV, R.A.</td>
<td>2523</td>
</tr>
<tr>
<td>KWIECINSKI, S.</td>
<td>6844</td>
</tr>
<tr>
<td>LACOMBE, P.</td>
<td>7200</td>
</tr>
<tr>
<td>LACOMBLE, M.</td>
<td>7291</td>
</tr>
<tr>
<td>LAVERLOCHERE, J.</td>
<td>1165</td>
</tr>
<tr>
<td>LAVERTY, A.</td>
<td>3073</td>
</tr>
<tr>
<td>LE HERICY, J.</td>
<td>1378 6410 6412 6568</td>
</tr>
<tr>
<td>LEBOEUF, M.B.</td>
<td>509</td>
</tr>
<tr>
<td>LEDDICOTTE, G.W.</td>
<td>81 641 654 1709</td>
</tr>
<tr>
<td>LELIAERT, G.</td>
<td>893</td>
</tr>
<tr>
<td>LENCHENKO, V.M.</td>
<td>1561</td>
</tr>
<tr>
<td>LEONHARDT, W.</td>
<td>655 1158</td>
</tr>
<tr>
<td>LEPETIT, H.</td>
<td>2802 4260</td>
</tr>
<tr>
<td>LESBATS, A.</td>
<td>2550</td>
</tr>
<tr>
<td>LEWIS, J.E.</td>
<td>979</td>
</tr>
<tr>
<td>LIMA, F.W.</td>
<td>7407</td>
</tr>
<tr>
<td>LOBANOV, E.M.</td>
<td>1546 1547 1561 3361</td>
</tr>
<tr>
<td>LOEUILLLET, M.</td>
<td>1263 6593 7015 7106</td>
</tr>
<tr>
<td>LOSKA, L.</td>
<td>6844 7387</td>
</tr>
<tr>
<td>LOWE, L.F.</td>
<td>6226</td>
</tr>
<tr>
<td>LOWENHAUPT, E.H.</td>
<td>4226</td>
</tr>
</tbody>
</table>

I-7
DETERMINATION OF LIGHT ELEMENTS
IN METALS – AUTHOR INDEX

LUKENS, H.R. 1900 2598
LUTZ, G.J. 1560

MAC ARTHUR, I.R. 7172
MACKINTOSH, W.D. 7017
MAEDA, S. 3771
MAHONY, J.D. 105 1318 1599 1831
MAKASHEVA, I.E. 1166
MALVANO, R. 1965
MARKOWITZ, S.S. 1318 1599 1831
MARMIER, P. 1091
MARSCHAL, A. 7015
MARTIN, J. 1118
MARTIN, T.C. 2505
MASLOV, I.A. 1166
MAY, S. 814
MAZYUKEVICH, N.P. 4277
MC CRARY, J.H. 596
MELLET, M. 892
METCALF, A. 1394 2507
MEYER, R.E. 654
MIGNONSIN, E.P. 1471 1550
MINAEV, V.M. 2764
MISHIMA, I. 6856
MIYAGAWA, K. 6856 7330
MIYOSHI, K. 426 1067 2649
MOISEEV, L.I. 7213
MOISEEV, V.V. 2523
MOLLER, E. 5238
MORGAN, I.L. 596 2505 2686 3070 3976
MORI, H. 2418
MORRIS, D.F.C. 7172

I-8
<table>
<thead>
<tr>
<th>Author</th>
<th>Index 1</th>
<th>Index 2</th>
<th>Index 3</th>
<th>Index 4</th>
<th>Index 5</th>
<th>Index 6</th>
<th>Index 7</th>
<th>Index 8</th>
<th>Index 9</th>
<th>Index 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORZEK, P.</td>
<td>1193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULLINS, W.T.</td>
<td>641 1709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUNZER, H.</td>
<td>3746</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSAELYAN, R.M.</td>
<td>5321 5782</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUTO, H.</td>
<td>426 2649 3768 5380 5431 5432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADKARNI, R.A.</td>
<td>6086</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAGATSUKA, S.</td>
<td>3771</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVALIKHIN, L.V.</td>
<td>6705</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICKEL, H.</td>
<td>2678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIESE, S.</td>
<td>1193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NILSSON, L.</td>
<td>5238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMURA, E.</td>
<td>6856 7330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOZAKI, T.</td>
<td>1151 1194 1742 7019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBUKHOV, A.P.</td>
<td>1166</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLIVE, G.</td>
<td>5409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSMOND, R.G.</td>
<td>391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSSART, P.</td>
<td>7015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARKER, C.V., JR.</td>
<td>3976</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARKER, J.L.</td>
<td>1604 6752 7162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARS, B.</td>
<td>1599</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASZTOR, L.C.</td>
<td>1950 2542</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECK, P.F.</td>
<td>1026 1951 2429 2652</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERDIJON, J.</td>
<td>2983 3090 5708</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEREZHOGIN, G.P.</td>
<td>2721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERKIN, J.L.</td>
<td>108 109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERSIANI, C.</td>
<td>4386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETERS, B.F.G.</td>
<td>864</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETIT, J.</td>
<td>814 3727</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIERCE, T.B.</td>
<td>1026 1951 2429 2652</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I-9</td>
</tr>
</tbody>
</table>
DETERMINATION OF LIGHT ELEMENTS IN METALS — AUTHOR INDEX

PINKAS, V. 2386
PLAKSIN, I.N. 7170
PLASHAKOVA, G.P. 6053
PLESHAKOVA, G.P. 6072
PLUMB, R.C. 398
POINT, J.J. 401
PRESSER, G. 2615
PRICE, H.J. 2549
PRONMAN, I.M. 5321 5781 5782
QUAGLIA, L. 6595
QUITTNER, P. 6572
RAKOVSKII, E.E. 985
RASMUSSEN, N.C. 1618 1787 3059
REILLY, E.M. 6226
REVEL, G. 2381 3721 5938 5954 6590 7018
REYNOLDS, S.A. 81
RICHARDS, D.H. 244 246
RIEZLER, W. 417
ROBAYE, G. 6595
ROGERS, G.T. 5932
ROHNSCH, W. 1520
ROMMEL, H. 1013 1193 2712
ROOK, H.L. 7248
ROPER, N.J. 1875
ROSENBAUM, H.S. 5408
ROSENBLUM, L. 3085
ROSS, W.J. 1711
ROTTMANN, J. 2678
RYAN, V.A. 4226
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoll, N.</td>
<td>5450 5451 5452 7419</td>
</tr>
<tr>
<td>Strause, B.M.</td>
<td>509</td>
</tr>
<tr>
<td>Sue, P.</td>
<td>8</td>
</tr>
<tr>
<td>Sukhov, G.V.</td>
<td>6053 6072</td>
</tr>
<tr>
<td>Szabo, E.</td>
<td>6572</td>
</tr>
<tr>
<td>Taczanowski, S.</td>
<td>7387</td>
</tr>
<tr>
<td>Takada, K.</td>
<td>5432</td>
</tr>
<tr>
<td>Talanin, Y.N.</td>
<td>6705</td>
</tr>
<tr>
<td>Talbot-Besnard, S.</td>
<td>1621</td>
</tr>
<tr>
<td>Tanaka, S.</td>
<td>1151 1194 1742</td>
</tr>
<tr>
<td>Tausend, A.</td>
<td>4300</td>
</tr>
<tr>
<td>Thompson, B.A.</td>
<td>509 912</td>
</tr>
<tr>
<td>Thompson, H.D.</td>
<td>255 6226</td>
</tr>
<tr>
<td>Thompson, T.J.</td>
<td>3059</td>
</tr>
<tr>
<td>Tousset, J.</td>
<td>4260</td>
</tr>
<tr>
<td>Tsuji, H.</td>
<td>628</td>
</tr>
<tr>
<td>Tustanovskii, V.T.</td>
<td>7170</td>
</tr>
<tr>
<td>Tutubalin, A.I.</td>
<td>7214</td>
</tr>
<tr>
<td>Twitty, B.L.</td>
<td>2798 3357 3981</td>
</tr>
<tr>
<td>Tyou, P.</td>
<td>7291</td>
</tr>
<tr>
<td>Van Grieken, R.</td>
<td>6398 6723</td>
</tr>
<tr>
<td>Van Wyk, J.M.</td>
<td>2586</td>
</tr>
<tr>
<td>Vobecky, M.</td>
<td>7285 7361</td>
</tr>
<tr>
<td>Voigt, A.F.</td>
<td>351</td>
</tr>
<tr>
<td>Von Ardenne, M.</td>
<td>744</td>
</tr>
<tr>
<td>Wagner, A.</td>
<td>5450 5451 5452 7419</td>
</tr>
<tr>
<td>Wainerdi, R.E.</td>
<td>2586</td>
</tr>
<tr>
<td>Whitley, J.E.</td>
<td>3466</td>
</tr>
<tr>
<td>Wilkniss, P.E.</td>
<td>1730 3992</td>
</tr>
</tbody>
</table>

I-12
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WILLERS, G.</td>
<td>4300</td>
</tr>
<tr>
<td>WILLIAMS, A.I.</td>
<td>452</td>
</tr>
<tr>
<td>WILLIAMS, D.R.</td>
<td>6742</td>
</tr>
<tr>
<td>WINCHESTER, J.W.</td>
<td>654</td>
</tr>
<tr>
<td>WOHLLEBEN, K.</td>
<td>6581 6736 7307</td>
</tr>
<tr>
<td>WOLICKI, E.A.</td>
<td>7011</td>
</tr>
<tr>
<td>WOOD, D.E.</td>
<td>1875 1950 1956 2542</td>
</tr>
<tr>
<td>WOOD, J.D.L.H.</td>
<td>2526</td>
</tr>
<tr>
<td>YAKOVLEV, Y.V.</td>
<td>985 2721</td>
</tr>
<tr>
<td>TAMAGISHI, M.</td>
<td>7330</td>
</tr>
<tr>
<td>YATSURUGI, Y.</td>
<td>7019</td>
</tr>
<tr>
<td>YUKI, M.</td>
<td>5919</td>
</tr>
<tr>
<td>ZADVORNYI, A.S.</td>
<td>7214</td>
</tr>
<tr>
<td>ZVEREV, B.P.</td>
<td>1546 1547 1561 3361</td>
</tr>
<tr>
<td>ZVYAGIN, V.I.</td>
<td>1546 1547 1561 3361</td>
</tr>
</tbody>
</table>
APPENDIX II
DETERMINATION OF LIGHT ELEMENTS IN METALS - MATRIX INDEX

BORON

ALUMINUM 1618 1787 3059 5919
GERMANIUM 2712
METALS, GENERAL 7285
NICKEL ALLOYS 3976
SILICON 181 1013 1091 1546 1547 1561 2712 3361 5429
STEEL 1821 3466 5408 5932 7361

CARBON

ALUMINUM 4 578 688 703 767
BERYLLIUM 45 46 49 578 1263 1816 2505 3070 3727 3976
BORON 1816
CALCIUM 1816
CESIUM 4386
GERMANIUM 1604 6752 7015
GOLD 105 1599 1831 7011
IRON 4 8 401 417 703 744 1219 5954 7015 7018
IRON-ALUMINUM ALLOYS 578
LEAD-BISMUTH ALLOYS 7017
METALS, GENERAL 7213
MOLYBDENUM 3070 6742
NICKEL 1604 6593 6752
NIOBium 7015
PLATINUM 7011
SILICON 1831 6581 6593 6736 7019 7307
SILVER 105
SODIUM 1560 1816
STEEL 118 119 351 1026 1604 1951 2652 5238 6742 6752 7162

II-1
DETERMINATION OF LIGHT ELEMENTS
IN METALS - MATRIX INDEX

CARBON (CONTINUED)

TANTALUM 1604 3977 6752 7015
TERBIUM 4226
TUNGSTEN 3070
ZIRCONIUM 703 1604 6752

NITROGEN

ALUMINUM 703
BERYLLIUM 49 703 1263 1816 2505 3070 3976
IRON 7015
METALS, GENERAL 5238 7213 7343
MOLYBDENUM 3070
NIOBium 5782 7015
SILICON 7019
TUNGSTEN 3070
ZIRCONIUM 703 760

OXYGEN

ALUMINUM 578 654 655 1067 1589 1804 3721 3722 3771 3992 4211 5409 5432 5772 5921 6591 6694 6978 7012
AMERICIUM 4226
BERYLLIUM 45 46 49 58 108 109 391 500 578 596 814 1103 1104 1263 1318 1816 2505 2549 2686 3070 3073 3090 3727 3976 4277 7097 7214
BISMUTH 5772
BORON 1816 4260
CADMIUM 5772
CALCIUM 1816
CERIUM 500
CESIUM 131 4386
CHROMIUM 500 3090 6591 7230

II-2
DETERMINATION OF LIGHT ELEMENTS IN METALS - MATRIX INDEX

OXYGEN (CONTINUED)

COBALT 5772
COPPER 655 1067 1103 3768 5772 7387
CURIUM 4226
GERMANIUM 1604 1739 6053 6072 6752
GOLD 105 655 1831 7011
HAFNIUM 2381 5938 6590
IRON 426 655 1067 1589 2649 3768 6591 7015 7230 7330
IRON-ALUMINUM ALLOYS 578 1067
LANTHANUM 500
LEAD 5772
LEAD-BISMUTH ALLOYS 7017
LITHIUM-MAGNESIUM ALLOYS 2562
MAGNESIUM 2798 3357 3981
METALS, GENERAL 1158 1483 1823 1915 2802 3986 6742 7213 7417
MOLYBDENUM 500 1067 1589 2381 3070 3768 5321 5938 6590 6705
NICKEL 426 655 1067 1604 6591 6752 7230
NI OBNIUM 1103 1589 1739 5772 5781 7015
PLATINUM 655 7011
POTASSIUM 1900 2598 2734 3085
SELENIUM 7307
SILICON 1151 1194 1742 6053 6072 6593 6978 7015 7019 7248
SILICON-IRON ALLOYS 1589 2418
SILVER 105
SILVER-ZIRCONIUM ALLOYS 3977
SODIUM 1816 7106
Determinatio

n of Light Elements

in Metals - Matrix Index

Oxygen (Continued)

<table>
<thead>
<tr>
<th>Element</th>
<th>Reference Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>426 500 1067 1103 1394 1453</td>
</tr>
<tr>
<td></td>
<td>1604 1950 1956 2507 2526 2542</td>
</tr>
<tr>
<td></td>
<td>2586 2615 2649 2678 2764 2983</td>
</tr>
<tr>
<td></td>
<td>3357 3502 3746 3768 3981 5238</td>
</tr>
<tr>
<td></td>
<td>5380 5450 5451 5452 5708 5772</td>
</tr>
<tr>
<td></td>
<td>6595 6728 6752 6856 7076 7142</td>
</tr>
<tr>
<td></td>
<td>7289 7291 7330 7344 7419</td>
</tr>
<tr>
<td>Tantalum</td>
<td>912 1067 1604 3090 3977 5772</td>
</tr>
<tr>
<td></td>
<td>6752</td>
</tr>
<tr>
<td>Terbium</td>
<td>4226</td>
</tr>
<tr>
<td>Thorium</td>
<td>105 1318 1730</td>
</tr>
<tr>
<td>Tin</td>
<td>500</td>
</tr>
<tr>
<td>Titanium</td>
<td>426 1067 1103 1739 3357 3981</td>
</tr>
<tr>
<td></td>
<td>4277 5431 5772 5781 6750</td>
</tr>
<tr>
<td>Tungsten</td>
<td>500 1067 2381 3070 3768 5938</td>
</tr>
<tr>
<td></td>
<td>6590</td>
</tr>
<tr>
<td>Vanadium</td>
<td>500</td>
</tr>
<tr>
<td>Zinc</td>
<td>5772</td>
</tr>
<tr>
<td>Zircoaly</td>
<td>426 1067 1309 3768</td>
</tr>
<tr>
<td>Zirconium</td>
<td>655 762 1103 1604 2381 3090</td>
</tr>
<tr>
<td></td>
<td>3721 4277 5772 5938 6590 6595</td>
</tr>
<tr>
<td></td>
<td>6752 7012 7200</td>
</tr>
</tbody>
</table>

Phosphorous

<table>
<thead>
<tr>
<th>Element</th>
<th>Reference Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>4 161 398 688 767 979 2550 6410</td>
</tr>
<tr>
<td>Aluminum-Silicon Alloys</td>
<td>864</td>
</tr>
<tr>
<td>Antimony</td>
<td>985 2721</td>
</tr>
<tr>
<td>Copper</td>
<td>1477 2550 6412</td>
</tr>
<tr>
<td>Gallium</td>
<td>2721</td>
</tr>
<tr>
<td>Gold</td>
<td>1193</td>
</tr>
<tr>
<td>Iron</td>
<td>4 140 223 688 767 893 1965 6568</td>
</tr>
<tr>
<td>Magnesium</td>
<td>22 6410</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>7145</td>
</tr>
<tr>
<td>Nickel</td>
<td>892 6568</td>
</tr>
<tr>
<td>Nickel Alloys</td>
<td>7172</td>
</tr>
</tbody>
</table>

II-4
DETERMINATION OF LIGHT ELEMENTS
IN METALS - MATRIX INDEX

PHOSPHOROUS (CONTINUED)

<table>
<thead>
<tr>
<th>Element</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIOBium</td>
<td>641 1165 1709</td>
</tr>
<tr>
<td>SELENIUM</td>
<td>1215 1520 6446</td>
</tr>
<tr>
<td>SILICON</td>
<td>244 246 255 509 892 1118 1166 2386 2523 6226 6572</td>
</tr>
<tr>
<td>STEEL</td>
<td>893 1085 1124 2764 6086</td>
</tr>
<tr>
<td>TANTALUM</td>
<td>1165</td>
</tr>
<tr>
<td>TELLURIUM</td>
<td>1215</td>
</tr>
<tr>
<td>THALLIUM</td>
<td>2721</td>
</tr>
<tr>
<td>TUNGSTEN</td>
<td>7145</td>
</tr>
<tr>
<td>ZIRCONIUM</td>
<td>1471 1709 2550</td>
</tr>
</tbody>
</table>

SILICON

<table>
<thead>
<tr>
<th>Element</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMINUM</td>
<td>4 102 417 1591</td>
</tr>
<tr>
<td>BERYLLIUM</td>
<td>850 1263</td>
</tr>
<tr>
<td>IRON</td>
<td>4 452 628 1590 1875</td>
</tr>
<tr>
<td>MAGNESIUM</td>
<td>7407</td>
</tr>
<tr>
<td>NICKEL ALLOYS</td>
<td>6844</td>
</tr>
<tr>
<td>NIOBium</td>
<td>641</td>
</tr>
<tr>
<td>STEEL</td>
<td>628 2429 2596 6086 6398 6723 7170</td>
</tr>
<tr>
<td>TITANIUM</td>
<td>81</td>
</tr>
<tr>
<td>ZIRCONIUM</td>
<td>1709</td>
</tr>
</tbody>
</table>

SULFUR

<table>
<thead>
<tr>
<th>Element</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMINUM</td>
<td>688 704 767 2550 6410 6412 6568</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>1570</td>
</tr>
<tr>
<td>COPPER</td>
<td>1378 1477 2550 6410 6412 6568</td>
</tr>
<tr>
<td>GOLD</td>
<td>1193</td>
</tr>
<tr>
<td>IRON</td>
<td>140 688 767 1621 1965 6410 6412 6568</td>
</tr>
<tr>
<td>MAGNESIUM</td>
<td>22 6410 6412 6568</td>
</tr>
<tr>
<td>NICKEL</td>
<td>6410 6412 6568</td>
</tr>
</tbody>
</table>

II-5
SULFUR (CONTINUED)

<table>
<thead>
<tr>
<th>Element</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>NICKEL ALLOYS</td>
<td>7172</td>
</tr>
<tr>
<td>NIOBIUM</td>
<td>641</td>
</tr>
<tr>
<td>SELENIUM</td>
<td>1215 1520 4300 6446</td>
</tr>
<tr>
<td>SILICON</td>
<td>892</td>
</tr>
<tr>
<td>STEEL</td>
<td>893 1085 1124 1711 2764 6086</td>
</tr>
<tr>
<td>TELLURIUM</td>
<td>1215</td>
</tr>
<tr>
<td>ZIRCONIUM</td>
<td>1471 1709 2550</td>
</tr>
</tbody>
</table>

APPENDIX III
DETERMINATION OF LIGHT ELEMENTS IN METALS - REACTION INDEX

BORON

\[
\begin{align*}
11^B(p,n)11^C & \quad 181 \ 1013 \ 1091 \ 2712 \\
10^B(d,n)11^C & \quad 2712 \\
10^B(n,\alpha)^7Li & \quad 1546 \ 1547 \ 1561 \ 1618 \ 1787 \ 3059 \\
 & \quad \text{electronic } \alpha \text{ counting} \quad 3361 \ 5429 \\
10^B(n,\alpha)^7Li & \quad 5408 \ 5932 \\
 & \quad \text{track counting} \\
10^B(n,\alpha)^7Li & \quad 1546 \ 1547 \ 1561 \ 1361 \ 3466 \ 5919 \\
 & \quad \text{neutron flux depression} \quad 1821 \\
10^B(n,\alpha)^7Li & \quad 7285 \ 7361 \\
 & \quad \text{prompt } ^7Li \text{ gamma ray} \\
\text{Deuteron bombardment} & \quad 3976 \\
\end{align*}
\]

CARBON

\[
\begin{align*}
12^C(d,n)^{13}N & \quad 4 \ 8 \ 118 \ 119 \ 417 \ 688 \ 744 \ 767 \\
 & \quad 1219 \ 1951 \ 2505 \ 3070 \ 3976 \ 5238 \\
 & \quad 6581 \ 6736 \ 7307 \\
12^C(\gamma,n)^{11}C & \quad 45 \ 46 \ 49 \ 351 \ 703 \ 1263 \ 1560 \ 1816 \\
 & \quad 3727 \ 4386 \ 5954 \ 6593 \ 6742 \ 7015 \\
 & \quad 7017 \ 7018 \\
12^C(^3He,\alpha)^{11}C & \quad 105 \ 1599 \ 1604 \ 1831 \ 3977 \ 4226 \\
 & \quad 6752 \ 7011 \ 7019 \ 7162 \\
12^C(p,\gamma)^{13}N & \quad 401 \ 744 \ 1026 \ 1219 \\
12^C(\alpha,\alpha n)^{11}C & \quad 578 \\
12^C(d,p)^{13}C & \quad \text{(prompt } \gamma \text{ detection)} \quad 2652 \\
\end{align*}
\]

III-1
Determination of Light Elements in Metals - Reaction Index

Nitrogen

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energies (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{14}_N(\gamma,n)^{13}_N$</td>
<td>49 703 760 1263 1816 7015</td>
</tr>
<tr>
<td>$^{14}_N(d,n)^{15}_O$</td>
<td>2505 3070 3976</td>
</tr>
<tr>
<td>$^{14}_N(d,n)$ - prompt neutron detection</td>
<td>5238</td>
</tr>
<tr>
<td>$^{14}_N(n,2n)$ - C-W generator</td>
<td>5782</td>
</tr>
<tr>
<td>$^{14}_N(p,a)^{11}_C$</td>
<td>7019</td>
</tr>
</tbody>
</table>

Oxygen

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energies (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>108 109 131 426 500 596 762</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>1067 1103 1104 1309 1394 1453</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>1589 1739 1804 1900 1950 1956</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>2418 2505 2507 2526 2542 2549</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>2586 2598 2615 2649 2678 2686</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>2734 2764 2798 2802 2983 3073</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>3085 3090 3357 3502 3746 3768</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>3981 4260 5321 5380 5409 5431</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>5432 5451 5452 5708 5772 5781</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>6694 6705 6728 6750 6856 6978</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>7076 7097 7142 7214 7289 7291</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - 14 MeV neutrons from Cockcroft Walton generator</td>
<td>7330 7344 7387 7417 7419</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energies (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{16}_O(a,pn)^{18}_F$</td>
<td>578 1151 1194 1742 2381 3722</td>
</tr>
<tr>
<td>$^{16}_O(a,pn)^{18}_F$</td>
<td>5921 5938 6590 6591 6593 7015</td>
</tr>
<tr>
<td>$^{16}_O(a,pn)^{18}_F$</td>
<td>7230 7248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energies (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{18}_O(p,n)^{18}_F$</td>
<td>912 1483</td>
</tr>
<tr>
<td>$^{18}_O(p,n)^{18}_F$</td>
<td>4277</td>
</tr>
<tr>
<td>$^{18}_O(p,n)^{18}_F$</td>
<td>7012</td>
</tr>
<tr>
<td>$^{16}_O(n,p)^{16}_N$ - reactor neutrons</td>
<td>3986</td>
</tr>
<tr>
<td>$^{16}_O(d,n)^{17}_F$</td>
<td>3070 3976 5238 7307</td>
</tr>
<tr>
<td>$^{16}_O(d,p)^{17}_O$ - prompt (\gamma)'s</td>
<td>6595</td>
</tr>
<tr>
<td>$^{16}_O(p,a)^{13}_N$</td>
<td>7248</td>
</tr>
</tbody>
</table>

III-2
DETERMINATION OF LIGHT ELEMENTS IN METALS – REACTION INDEX

OXYGEN (Continued)

\[{\text{^{16}O}}(\gamma, n) {\text{^{15}O}} \]
\[45 \ 46 \ 49 \ 58 \ 814 \ 1263 \ 1816 \ 3727 \]
\[3771 \ 4386 \ 6742 \ 7015 \ 7017 \ 7106 \]

\[{\text{^{16}O}}({\text{^3He}}, p) {\text{^{18}F}} \]
\[105 \ 1318 \ 1604 \ 1831 \ 2381 \ 3721 \]
\[3977 \ 4211 \ 4226 \ 5921 \ 5938 \ 6053 \]
\[6072 \ 6590 \ 6752 \ 7011 \ 7015 \ 7019 \]
\[7230 \ 7248 \]

\[{\text{^{16}O}}(t, n) {\text{^{18}F}}; \text{tritons from} \ {\text{^6Li}}(n, \alpha)t \]
\[391 \ 654 \ 655 \ 1158 \ 1730 \ 2562 \ 3992 \]

PHOSPHOROUS

\[{\text{^{31}P}}(n, \gamma) {\text{^{32}P}} \]
\[4 \ 22 \ 140 \ 161 \ 223 \ 244 \ 246 \ 255 \]
\[398 \ 509 \ 641 \ 688 \ 767 \ 864 \ 892 \ 893 \]
\[979 \ 985 \ 1085 \ 1118 \ 1124 \ 1165 \ 1166 \]
\[1193 \ 1215 \ 1471 \ 1477 \ 1520 \ 1709 \]
\[2386 \ 2523 \ 2550 \ 2721 \ 2764 \ 6086 \]
\[6226 \ 6410 \ 6412 \ 6446 \ 6568 \ 6572 \]
\[7145 \ 7172 \]

SILICON

proton scattering
\[{\text{^{28}Si}}(n, \gamma) {\text{^{29}Si}} \]
\[2429 \]
\[4 \ 81 \ 102 \ 417 \ 452 \ 641 \ 850 \ 1263 \]
\[1709 \ 6086 \ 7407 \]

\[{\text{^{28}Si}}(n, p) {\text{^{28}Al}} \]
\[\text{C-W Generator} \]
\[628 \ 1875 \ 2596 \ 6398 \ 6723 \ 6844 \ 7170 \]

\[{\text{^{28}Si}}(n, p) {\text{^{28}Al}} \]
\[\text{Po-Be source} \]
\[1590 \ 1591 \]

SULFUR

\[{\text{^{34}S}}(n, \gamma) {\text{^{35}S}} \]
\[22 \ 140 \ 641 \ 688 \ 767 \ 892 \ 893 \ 1085 \]
\[1124 \ 1193 \ 1215 \ 1378 \ 1471 \ 1477 \]
\[1520 \ 1621 \ 1711 \ 2550 \ 6086 \ 6410 \]
\[6446 \ 6568 \]

\[{\text{^{32}S}}(n, p) {\text{^{32}P}} \]
\[704 \ 1520 \ 1570 \ 1709 \ 1965 \ 2764 \]
\[4300 \ 6412 \ 6446 \ 6568 \ 7172 \]

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

- **Physics and Chemistry**
 Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $9.50; foreign, $11.75*.

- **Mathematical Sciences**
 Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $5.00; foreign, $6.25*.

- **Engineering and Instrumentation**
 Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, $5.00; foreign, $6.25*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, $3.00; foreign, $4.00*.

* Difference in price is due to extra cost of foreign mailing.

Order NBS publications from: Superintendent of Documents
Government Printing Office
Washington, D.C. 20402

NONPERIODICALS

- **Applied Mathematics Series.** Mathematical tables, manuals, and studies.
- **Building Science Series.** Research results, test methods, and performance criteria of building materials, components, systems, and structures.
- **Handbooks.** Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
- **Special Publications.** Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.
- **Monographs.** Major contributions to the technical literature on various subjects related to the Bureau’s scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-36 entitled, Standardization of Data Elements and Codes in Data Systems.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse
U.S. Department of Commerce
Springfield, Virginia 22151