MAY 191970

NBS TECHNICAL NOTE 500

National Bureau of Standards
JUL 281972
1213
20
100
45753

Edit-Insertion Programs for of Computer Printout

 Automatic TypesettingU.S. ARTMENT OF JMMERCE National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards was established by an act of Congress March 3,1901. Today, in addtion to serving as the Nation's central measurement laboratory, the Burcau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering seiences to the advaneement of technology in industry and commerce. To this end the Bureau conducts research and provides central national scrvices in four broad program areas. These are: (1) basic measurements and standards, (2) matcrials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.
The Bureau comprises the Institutc for Basic Standards, the Institute for Materials Research, the Institute for Applied Teehnology, the Center for Radiation Researeh, the Center for Computer Sciences and Technology, and the Office for Information Programs.
THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics-Electricity-Metrology-Mechanics-Heat—Atomic and Molecular Physies-Radio Physics "-Radio Engineering "-Time and Frequency "-Astrophysics "-Cryogenics."
THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry-Polymers-Metallurgy—Inorganic Materials—Physical Chemistry.
THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of teehnological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards-Weights and Measures - Invention and Innovation - Vehicle Systems Research—Product Evaluation-Building Research—Instrument Shops-Measurement Engineering-Electronic Technology-Technical Analysis.
THE CENTER FOR RADIATION RESEARCH engages in researeh, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation-Linac Radiation-Nuclear Radiation-Applied Radiation.
THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards-Computer Information - Computer Services - Systems Development-Information Processing Technology.
THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data-Clearinghouse for Federal Scientifie and Technical Information *-Office of Technical Information and Publications-Library-Office of Public Information-Office of International Relations.

[^0]Nat. Bur. Stand. (U.S.), Tech. Note 500, 50 pages (Apr. 1970) CODEN: NBTNA

Edit-Insertion Programs for Automatic Typesetting of Computer Printout

Carla G. Messina and Joseph Hilsenrath
Office of Standard Reference Data
National Bureau of Standards
Washington, D.C. 20234

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

FOREWORD

This report describes one of a series of computer programs being developed by the Data Systems Design Group of the NBS Office of Standard Reference Data to assist the Data Centers affiliated with the National Standard Reference Data System. The text of this report was reproduced from a typescript prepared on a typewriter terminal connected to a time-shared computer system. The program listing was produced from a magnetic tape which was produced from one of the programs described in this report.

TABLE OF CONTENTS

1. Introduction 1
2. Program Characteristics 2
2.1 Modification for Improved Run Efficiency 3
3. The Subroutines 6
4. The Control Cards 6
4.1 Control Cards for SETLST and AMATCH 6
4.2 The Control Cards for SUBSTITUTE 7
4.3 Control Cards for KWIND. 8
5. Applications 10
5.1 Applications to Program Listings 10
5.2 Applications to KWIC Indexes 11
5.3 Applications Requiring Multiple Grids 11
6. Acknowledgements 20
7. References 20
APPENDIX I
Program Listings 21
SETLST 22
KWIND 26
Subroutine SUBST 30
Subroutine SUNLK 34
Subroutine SULOCK 35
Subroutine CHECKI 36
Subroutine AMATCH 37
Subroutine NPRINT 39
APPENDIX II
Subroutine NPRINT 42
Subroutine PACK 43
Subroutine TPNRD 44
Patches for labeled COMMON 45

Edit-Insertion Programs for Automatic Typesetting of Computer Printout

by
Carla G. Messina and Joseph Hilsenrath

SETLST and KWIND are FORTRAN programs which accept a card deck or Fortran records on magnetic tape and insert the appropriate flags and shift symbols required by many of the "standard" typesetting programs associated with phototypesetting devices. The programs are specialized to the particular application; the typesetting device and associated programs; and to the desired typeface, by means of control cards and substitution tables supplied at run time. Examples are shown of applications to program listings, KWIC indexes, and normal computer output. When the input is in tabular form, the program permits more sophisticated operations including rearrangement, removal of trailing blanks, typeface changes between columns, etc. These programs can handle any records which can be read by a FORTRAN READ statement under an " A " format control.

Key words: Applications, computers, computer-assisted typesetting, FORTRAN programs, KWIC index, phototypesetting, printing.

1. Introduction

The ease with which a computer is able to prepare a permuted title index has resulted in the proliferation of such indexes. Usually these indexes are produced by a photoreduction of the computer print-out. Often, the quality of the printed index leaves much to be desired. Even when extreme care is taken to see that the text is legible, the pages are not usually in the correct proportion for a standard size of printed page. Program listings are more often than not reproduced with marginal clarity.

A technique for automatic-typesetting of program listings and KWIC indexes enables one to produce a page with so called "graphic arts" quality. A suitably selected typeface and size and a correspondingly appropriate page depth (number of lines per page) offers additional opportunity for economy of space and money as well as improved readability.

A technique for automatic typesetting of tables direct from magnetic tapes was developed at NBS by W. R. Bozman in 1962 [1]. Since that time several books of data have been produced by this method. The production of each of these books entailed the preparation of special programs requiring the services of a programmer experienced in machine language programming and having detailed knowledge of the operation of the Linofilm machine.

A more general pioneering effort in computer-assisted typesetting was carried on at MIT under the leadership of Dr. Michael P. Barnett. While it is unfortunate that the programs produced by Barnett and coworkers have not been maintained in recent years, the results of that work - described too modestly as "experiments" - have been fully recorded [3].

In recent months the Data Systems Design group of the NBS Office of Standard Reference Data has addressed itself to the problem of preparing a series of general purpose programs for text preparation, editing and photocomposition. This report describes the two programs which will enable any computer user to prepare magnetic tapes for phototypesetting of program listings, of KWIC indexes, and other material normally run on a line printer.

The program SETLST is in the spirit of the pioneering work of Barnett [3]. In some respects it is less general than that of Barnett's TABPRINT, since we do not typeset column headings and rules, but rather rely on overlays (for these.) It is more flexible where character stream transformation is required in changing upper case characters to upper and lower case, and in substitution of Greek characters and special symbols for their designation in the text.

Unlike TABPRINT which produces output to drive a particular photounit, SETLST produces tapes which need to be run through a typesetting program before the material can be set. It is however a feature of SETLST that it can insert any flags or header as may be required and hence is not restricted to a particular typesetting program or a particular machine. The specific strings or headers or flags are supplied at run time.

The program KWIND uses the same subroutines as SETLST but is especially tailored for typesetting of KWIC indexes. It is a characteristic of KWIC indexes that they have a gutter in the middle of the page which the KWIND program recognizes in order to operate on each half separately. On either side of the gutter KWIC lines have one of five characteristics, the line is either set flush left, or flush right, or flush left and right with a gap in the middle, or completely full or completely blank. The KWIND program scans the line, determines which type of line it is, and proceeds in the following manner. The flush left line is set flush left, and the program goes on to the next line. The flush right line is set flush right and the program goes on to the next line. The third type of line requires fancier treatment. The left hand piece is set flush left exclusive of the trailing blanks, the rest of the line is reset flush right without film advance and ignoring the leading blanks, then the program goes on to the next line. The fourth type of line is justified to an appropriate pica width. In addition to the two main fields described above, KWIND allows the designation of two additional fields to carry an identification. As duplication of fields is allowed, it is possible to repeat a single identification segment on both the left and right side of the index.

2. Program Characteristics

The programs discussed here operate on a file consisting of a program deck, or a series of records on tape, or the output tape (print tape) of a KWIC index, to produce another tape in precisely the format required for phototypesetting systems at the Government Printing Office or on other comparable systems. The program - suitably instructed via control cards - inserts a sequence of flags or locators or format designators where needed. The program is specialized to the particular application; the typesetting device and associated programs; and to the desired typeface; by means of control cards and a substitution table supplied at run time.

The substitution table is required to provide capital letters where desired and to indicate the location of punctuation and other symbols, the distribution of which is not standard on keyboards or grids. Another important use of the substitution table is to insert instructions in the character stream to obtain characters (mathematical symbols, Greek letters, etc.) not on the primary grid.

In most cases a typeset page will be longer than the 60 or so lines on a normal computer listing, hence the headings or dates or footings or page numbers which often appear on each page of computer output are extraneous and must be deleted. This the program does in an interesting way.

A series of control cards are supplied which contain the exact contents of the lines that are to be deleted. There is one card for each type of line. Any line in the file whose first 80 characters match any of the control cards is automatically ignored. While this takes care of any number of lines of text which remain fixed from page to page, there is still the problem of ignoring lines which give the page number which will vary from page to page. For this purpose, a provision has been made for indicating which fields are to be ignored in making the match. Since information which varies from page to page (like a table or a page number) is in a fixed location, an "ignore" symbol in these positions will do the j ob. Which symbol is used as an "ignore" symbol is open to choice as it is specifically indicated on one of the control cards.

The programs given in the following pages are written in as low level dialect of Fortran as possible to facilitate their use on machines of different manufacture and compilers of different vintage. As a consequence the programs may be somewhat less efficient than ones written without these restraints.

In particular, we have made it a practice to imbed arguments in CALL statements rather than placing them in labeled COMMON. Experience in running production jobs on the NBS compiler indicated that a 10% saving in run time was achieved by modifying the program by the introduction of a set of labeled common statements. These and other changes needed to take advantage of the features of the compiler on the NBS 1108 are given in Appendix II. The places where these changes are to be made are clearly marked on the program listings in Appendix I.

Figure la. The control. cards and substitution table required by SETLST to format computer output for processing through the Mod I Autoset program at the Government Printing Office in order to utilize the monowidth typewriter grid shown in Figure 2.

```
ABCDEFGHI JKLN.NOPQRSTUUWXYZO123456789
\(1080 \quad 0 \quad 508\)
FIELD 1 GOES FROM 1 TO 80
THE FOLLOWING 1 CARDS CONTAIN THE INSERT STRINGS.
!F1
    O
SUBROUTINE AMATCH INPUT
    4 '
>>
FINIS$
ABCDEFGHI JKLN:NOPQRSTUUWXYZO123456789'/(*)=,$ & +
    5 6 3
        0>< 0
        0>< 1
/!F1/ /!F1/
/A/ />A/
/B/ />B/
/C/ />C/
/D/ />D/
    \vdots
/Y/
/Z/
I+1 1>8/
ノ=1 />9/
/*/ />0/
1/1 % 1>/1
/(/ />,/
/)/ />./
/@/ 1>2/
/#/ 1>1/
/&/ />-/
/:/ />;/
1!/ /// %
/?/ />?/
FINIS
```

Figure lb. A printout supplied at the end of a SETLST run of the control cards shown in Figure la. Note that the substitution table which was entered in free-field format has been lined up for readability. The slash shown as string delimiters are uniformly supplied by the program regardless of what the actual string delimiter was on input. In particular, since the delimiter itself cannot be contained in the string it delimits, the control cards marked above with an asterisk had periods for delimiters.

Figure 2. The layout of characters on the monowidth grid used to typeset the examples shown here. Note the connection between the layout of the graphics and the substitution table in the previous figure. Because other typefaces have different distributions of characters in the shift and unshift position, it is a great advantage to define the locations of the character via a substitution table rather than in the program proper. The advantage of this grid is that it contains all of the characters on a model 26 key punch. The use of most other grids for typesetting of computer listings require time consuming grid changes.

The program SETLST makes use of two general purpose subroutines. The first of these, AMATCH, compares an input record to see if the front part matches one of a number of character strings supplied at run time. SETLST uses this to throw away unwanted lines from the input such as page number, page headings, etc.

The second, SUBSTITUTE, is used here primarily to insert shift symbols ahead of those characters which must appear in upper case. The input for this subroutine, which is supplied at run time via a substitute table, also specifies the precise characters which must be inserted in the text stream in place of such punctuation and graphic characters as, :, ?, /, =, +, -, etc. Which characters are substituted for the above symbols depend on the layout of a particular typesetting grid. For this reason the string substitutions are not built into the program. They are supplied on cards as part of the input. This makes the program applicable to systems other than those in use at the Government Printing Office. Other applications of SUBSTITUTE can be found in NBS Technical Note 470 [2]. Figure 1 shows the control cards and substitution table for the character layout on the Clarinda Typewriter grid in use at the Government Printing Office.

The subroutines PACK and N PRINT are used in this program to repack the characters, six to a computer word, and to write them on tape in records longer than the 132 characters normally permitted in FORTRAN. The repacking is necessary as the original files are read in and manipulated in Al format. The subroutine N PRINT is required in order to write longer records than is possible under FORTRAN available on the NBS machine. In this assembly the record length (NCOUT) is specified as 300 characters. In normal usage this figure should be set to coincide with the size of the input buffer of the typesetting program for which the output tape is being prepared.

The Control Cards

4.1 Control Cards for SETLST and AMATCH

The first control card contains the alphabet in order starting in card column one followed by the integers in increasing order. In card column 50 is the end of line symbol required by the typesetting program. The program logic makes use of the location of the characters on the first control card in such a way as to avoid entirely the need to know how a particular machine recognizes a character on a card, what the internal bit representation of that character is, and where that character is placed in a machine word. Nor is it dependent on whether a single character is stored left-adjusted, right-adjusted or any other way. In this way the program is independent of whether the particular machine stores away 3 characters per machine word, or 6 , or any number. If a typesetting program requires a particular character as a halt signal, that character must be punched into card column 50 . The program ends the tape with two characters - a blank and the character designated in card column 50. Pains are taken to ensure that these two characters appear in the same record.

The second control card has six switches, each switch takes up five card fields and must be right adjusted in the field. The first switch contains the number of fields to process (greater than zero). The second switch should be set to -1 when only the printer will have the output, to $\frac{\text { zero when the printer and a tape will have }}{}$ the output, and to 1 when only the tape will contain the output. The third switch contains the length in characters of the input records (80 if from cards, and up to 132 if from tape records.) The fourth switch should be zero when all fields and their locators are to be put out regardless of whether or not the field is completely blank. It should be set to one when blank fields are to be ignored completely. This provision alleviates the flashing of unnecessary blanks. The fifth switch is the unit number from which to read the records to be typeset. The sixth switch is the number of the tape unit on which to write the output.

The third control card contains two numbers for each field denoted by the first switch. These numbers must be separated by at least one space. They indicate the starting and ending locations of the data to be extracted from the input records.

The next group of control cards contain the typesetting flags to be inserted ahead of the segments of the input. The flags are terminated by a blank. There must be as many flags as data fields (segments specified in switch one.)

The fifth type of control card carries the header information in (I2,78A1) format as required by some of the typesetting programs. A blank card must be inserted for those programs which do not require a header.

The next set of controls are needed for the subroutine AMATCH. The first card contains 2 characters in free-field form. The first of these is the character used to terminate the "match strings" discussed below. The next character is treated as a universal character when found in the "match string." It is used to cope with variable pieces of an otherwise fixed context, such as a page number in a heading line. The "match" strings are punched starting in column 1 and extend up to the string deliminator or the end of the card. The control cards for AMATCH are terminated by a card carrying FINIS followed by the character used to terminate the "match" strings.

The last set of control cards following AMATCH carry the instructions for the SUBSTITUTE subroutine. They are described in the next section.
4.2 The Control Cards for SUBSTITUTE

The first control card serves to define the punch configuration for the characters in the text as well as the control characters upon which the operations depend. The presence of the characters on the first card obviates the need to define them explicitly in the program. This simple device makes the program independent of a variety of incompatabilities which are such a source of trouble in adapting programs to different computers.

The program logic uses the disposition of the characters on the first control card in such a way as to avoid entirely the need to know how a particular machine recognizes a character on a card, what the internal bit representation of that character is, and where that character is placed in a machine word. In this way the program is independent of whether the particular machine stores away 3 characters per machine word, or 6 , or even 7. Nor is it dependent on whether a single character is stored left-adjusted, right-adjusted or any other way. The alphabet is punched in order into the first 26 card columns hereinafter referred to as cc, and the digits $0,1, \ldots, 9$ follow in cc27 through 36. The character to be used to delineate the strings in the output of this program is designated in cc38; while cc47 must be left blank in this program and in all programs in this series.

The second card contains three switches in FORMAT (3I2). They serve no purpose here but must be present nevertheless.

The third and fourth control cards in FORMAT ($4 \mathrm{X}, 2 \mathrm{~A}, \mathrm{I}$) , specify the format of the input and output records, respectively. The three items on each card perform the following tasks:
a. The first two items designate the characters used for case-shift lock and case-shift unlock. Their use is required only under circumstances described below.
b. The third item instructs the program to insert on input and delete on output, the case-shift symbols designated in item a. If this number is set to zero, the option is bypassed, in which case the first and second items discussed in item a above may be left blank. If this item is a non-zero integer, it distributes, when present on the third control card, and deletes, if present on the fourth control card, the shift case symbols indicated by the two previous items on the control cards.

Immediately following the fourth control card for substitute is a deck of cards containing the instructions for the string substitutions. In this version of the program, each card carries two strings--the original one and its substitute. The length of the strings this program handles is limited to a total of 76 for the string and its substitute. Thus a "long", string can be replaced by a "short" one and vice versa. Replacement of "long strings" by "long strings" can often be achieved by breaking them up into pieces and substituting piecemeal.

Each of the strings is delimited by a balanced character which is read from the first column of the substitution card. In this way each card can have its own string delimiter. The only requirement is that the delimiter character must not be one which is in the string it delimits. See Figure 1 for a sample set of control cards for this program.

The substitution table must be followed by a card with the word FINIS starting in ccl. It may be followed by the text to be manipulated if the input is from a card reader.

A number of text editing systems reserve one character as a precedence symbol to indicate an upper case letter. Thus if we punch *WASHINGTON we would expect a suitable printer to print out Washington. A single symbol could be used to print the word in all caps if one were prepared to type *W*A*S* ${ }^{*} I^{*} N^{*} G^{*} T^{*} O^{*} N$. This is obviously too time consuming as well as wasteful of valuable computer space. The problem is easily solved by reserving another symbol such as an apostrophe to indicate shift lock and shift unlock. In that case our test word would be keyboarded as follows: 'WASHINGTON'.

Subsequent transformation of these symbols as would be required in going to automatic typesetting or converting from the BCD representation to EBDIC would have to treat the character following the W differently in the strings 'WASHINGTON' and *WASHINGTON. This problem is solved by SUBSTITUTE in the following way., When instructed to do so via the third control card, the program changes 'WASHINGTON' to $'^{\prime} A^{\prime} S^{\prime} H^{\prime} I^{\prime} N^{\prime} G^{\prime} O^{\prime N}$. If instructed to do so via the fourth control card and after carrying out the substitution, the interior shift symbols are deleted and the word is imbedded between the shift and lock symbol and unlock symbol.

4.3 Control Cards for KWIND

The first control card for this program is identical to the first card in SETLST and serves the same purpose.

On control card two, switches $1,2,3$, and 4 perform the same functions respectively as switches $2,3,5$, and 6 of control card two in SETLST.

The third control card defines the fields into which the input line is broken. The order in which the fields are defined is important as the first and fourth fields are taken to be identifiers and the middle two as the index information. Suitable use of 0,0 on this control card provides for omission of one or more of the four fields. Thus on a system which cannot handle the full width of a KWIC index, it is possible to break the job into two portions. The left half can be run through first and the second half on a succeeding run. The two halves can then be pasted together using the duplicate identification numbers for alignment. Figure 9 was produced in this manner on a photounit which permitted a maximum width of only 43 picas. This method may be troublesome if the photounit does not advance the film uniformly.

The next 8 cards serve to define the manner in which line segments will be set as outlined in the introductory remarks on KWIND. Each card carries an arbitrary string of characters which is required by either the photounit or its associated typesetting program to achieve a flush left line, a flush right, a justified line, etc. The order of the cards is important as the program performs different operations after inserting different flags.

The first and the eighth cards must carry the flag (a locator) for the first and the fourth field (in this case an identifier). How this field is set is open to control by the typesetting program external to this program. The remaining cards carry the flags required to achieve the following results:
the $2 n d$ card carries a flag for quad left setting of the first half of a line in the second field.
the 3 rd card carries a flag for quad right setting of the second half of a line in the second field.
the 4 th card carries a flag for setting a justified full line in the second field. the 5 th card carries the flag for the quad left setting of the first half of the thirdfield.
the 6th card carries the flag for quad right setting of the second half of the third field.
the 7 th card carries the flag for setting a justified full line in third field.
The above flags are considered terminated by a blank. All of the eight cards must be present. A blank card is treated as a string of zero length. It will affect the result only in that no flag will be inserted. The last control card, and those which follow are the same as in SETLST.

Applications of these programs fall into three main classes. The first and most straightforward is where we wish the final product to be a facsimile of the page oroduced on a line printer. Computer listings and results of report generators fall in this category. These applications require the duplication of the results, line-for-line and character-for-character, as they appear on the line-printer. The typesetting of such material requires the use of a monowidth typeface as is ordinarily found on a typewriter.

In the second application, we wish to improve the readability of the output by an appropriate transformation of the alphabetic characters to read as if they were originally entered in upper and lower case. Straight text, KWIC indexes, and bibliographies are examples of material which benefit from such treatment. In this application it is often not necessary to restrict the final output to a monowidth typewriter face as the program has ample provision for lining up the output in columns as required. Thus a fancier typeface can be used.

In the third application we can include those cases where material needs to be highlighted through the use of italics or boldfaced characters or even special characters like mathematical symbols or Greek letters. Such applications may require the use of more than one grid on the phototypesetting unit.

Figure 3. A portion of a punched card data file set in a monowidth typeface by SETLST using the control cards shown in Figure 1.

5.1 Applications to Program Listings

Program listings represent a class of applications where it is important to reproduce the material exactly as it appears on punched cards, or on the print tape which drives a line printer, or on magnetic tape records. A monowidth character set resembling the type on a typewriter such as is shown in figure 2 is required here.

In this application we set switch 1 and 3 of the second control card to 1 and 80 respectively to define the entire card as a single field; designate the three characters !Fl to be inserted at the beginning of each line in the output; instruct the program via the substitution table to capitalize each letter of the alphabet and on which keys to find the graphics,,$+-=,($,$) etc. Figures 3,4$, and 5 show the variety of material which was set from a deck of cards and the control cards shown in Figure 1.

Figure 4. A portion of a program listing phototypset at the Government Printing Office from a tape produced by SETLST from the original program deck, using the control cards shown in Figure 1.

5.2 Applications to KWIC Indexes

In order to improve the readability of a KWIC index, it is necessary to do more than set it in a fancy typeface. It is necessary to transform the alphabetic characters to appear in upper and lower case. This is easily accomplished in KWIND via a more extensive substitution table. A typical end result is seen in Figure 6 where most of the words appear in initial caps while articles, preposition, etc., are set in lower case and certain words like USA are set in all caps.

The original format of the index is shown in Figure 7 and the substitution table that accomplished this transformation is shown in Figure 8. The improved readability of Figure 6 results more from the conversion to upper and lower case than it does from the variable width typeface, as can be seen from Figure 9 which is set in Times Roman type but in all caps.

5.3 Applications Requiring Multiple Grids

Thus far the applications stressed the use of but a single grid. Both SETLST and KWIND can handle as many grids as are required or as are permitted by the typesetting program for which the tape is being prepared.

In a number of existing abstract journals (Nuclear Science Abstracts or U.S. Government Research and Development Reports), Greek letters are spelled out and superior letters or figures are preceded by the word "exp." If the tape which produced these publications were run through SETLST it would be possible to replace the word ALPHA or Alpha by a call (=G3, for example) to the appropriate grid which contained the Greek alphabet. Similarly it is possible to call for superior and inferior characters from an appropriate grid.

Figure 5. A typeset version of a formatted computer output. See Figure 14 for the same material photographed from the Computer output.

```
        Therinal Conductance Factors for Preformed
                        Grading Of
                Madins Of
        Grading of Abrasine Grain On Coated
(1965)
    Acrylonitrile Butadiene Styrene
        Acrylonitrile Butadiene Styrene
Colors for Kitchen
Color:s for Bathy
Stove Pipt And
Metal Lath Expanded and Sheet and Metal Plastexind
Solvent Welded Swp Size Cellulose
Girls, and Boys Knit Underwear Exclusive of Rayon,
Waste and Vent Pipe and Fittings (196.j)
PR and Class T) (1963)
Hollow Metal Single
Water Resistant Organic
Polystyrene Plastic Wall Tiles And
Chasers for Self Opening And
Hot Dipped Galvanized Ware Coated
Wire Diameters for Mineral
Coarse
(1942)
Water Resistant Organic
Polystyrene Plastic Wall Tiles And
Chasers for Self Opening And
Hot Dipped Galranized Ware Coated
Wire Diameters for Mineral
Coarse
```

Figure 6. A portion of a KWIC index produced by SETLST from records shown in Figure 7. See Figure 8 for an explanation of circled mistakes.

```
5
&&UVVE-JECK
11. S. DEPT. OF COMMERCF STANDARDS
TITLF WORD INDFX


Figure 7. A portion of the input which produced the result shown in the previous figure. The programs SETLST and KWIND have facile provisions for discarding header lines such as appear in the first two lines above. See Figure 8 for the control cards and the substitution table which was used to achieve the transformation.

\section*{ABCDEFGHIJKLMNOPQRSTUVWXYZO123456789}
0
\(0 \quad 0\)
! I01
! I02
! I03
! I04
! I05
! I06
! I07
! I08

\section*{\$}


FINIS\$
ABCDEFGHIJKLMNOPQRSTUVWXYZO123456789 /
053
\(\rightarrow \leftarrow 0\)
\(\rightarrow \leftarrow 1\)
\(/(\) SRD / / \(\rightarrow\) \(\rightarrow\) S \(\rightarrow \mathrm{D} \rightarrow \mathrm{R} /\)
\(/ \mathrm{PVC} / /(\rightarrow \mathrm{P} \rightarrow \mathrm{V} \rightarrow \mathrm{C} /\)
\(/(\mathrm{PE}) / /(\rightarrow \mathrm{P} \rightarrow \mathrm{E}) /\)
\(/ \mathrm{PR}) / / \rightarrow \mathrm{P} \rightarrow \mathrm{R}) /\)
\(/ \mathrm{PR} / / \rightarrow \mathrm{P} \rightarrow \mathrm{R} /\)
/ SDR/ / \(\rightarrow \mathrm{S} \rightarrow \mathrm{D} \rightarrow \mathrm{R} /\)
/ DWV/ / \(\rightarrow \mathrm{D} \rightarrow \mathrm{W} \rightarrow \mathrm{V} /\)
/ IPS/ / \(\rightarrow \mathrm{I} \rightarrow \mathrm{P} \rightarrow \mathrm{S} /\)
\(/ \mathrm{ABS} / / \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{S} /\)
/ USA/ / \(\rightarrow \mathrm{U} \rightarrow \mathrm{S} \rightarrow \mathrm{A} /\)
/ AND / / AND \(\rightarrow\) /
/ OR / / OR \(\rightarrow\) /
/ FOR / / FOR \(\rightarrow\) /
/ то / / то \(\rightarrow\) /
/ OF / / OF \(\rightarrow\) /
/ WITH / / WITH \(\rightarrow\) /
/ II/ / \(\rightarrow\) I \(\rightarrow\) I/
/ III/ / \(\rightarrow \mathrm{I} \rightarrow \mathrm{I} \rightarrow \mathrm{I} /\)
/ IV/ / \(\rightarrow \mathrm{I} \rightarrow \mathrm{V} /\)
/ VI/ / \(\rightarrow \mathrm{V} \rightarrow \mathrm{I} /\)
/ VII/ / \(\rightarrow \mathrm{V} \rightarrow \mathrm{I} \rightarrow \mathrm{I} /\)
/ VIII/ / \(\rightarrow \mathrm{V} \rightarrow \mathrm{I} \rightarrow \mathrm{I} \rightarrow \mathrm{I} /\)
/ IX/ / \(\rightarrow \mathrm{I} \rightarrow \mathrm{X} /\)
/ XI/ / \(\rightarrow \mathrm{X} \rightarrow \mathrm{I} /\)
/ XII/ / \(\rightarrow \mathrm{X} \rightarrow \mathrm{I} \rightarrow \mathrm{I} /\)
/ XIII/ / \(\rightarrow \mathrm{X} \rightarrow \mathrm{I} \rightarrow \mathrm{I} \rightarrow \mathrm{I} /\)
/ XIV/ / \(\rightarrow \mathrm{X} \rightarrow \mathrm{I} \rightarrow \mathrm{V} /\)
/ XV/ / \(\rightarrow \mathrm{x} \rightarrow \mathrm{V} /\)
/ XVI/ / \(\rightarrow \mathrm{X} \rightarrow \mathrm{V} \rightarrow \mathrm{I} /\)
/ XVII/ / \(\rightarrow \mathrm{X} \rightarrow \mathrm{V} \rightarrow \mathrm{I} \rightarrow \mathrm{I} /\)
/ XVIII/ / \(\rightarrow \mathrm{X} \rightarrow \mathrm{V} \rightarrow \mathrm{I} \rightarrow \mathrm{I} \rightarrow \mathrm{I} /\)
/ XIX// \(\rightarrow \mathrm{X} \rightarrow \mathrm{I} \rightarrow \mathrm{X} /\)
/ XX/ / \(\rightarrow \mathrm{X} \rightarrow \mathrm{X} /\)
\(/!\) IO3A/ /! IO3 \(\rightarrow\) A/
\(/!\) I03B/ /! IO3 \(\rightarrow\) B/
\(/!\) I03C/ /! IO3 \(\rightarrow\) C/
/!I03D/ /! IO3 \(\rightarrow\) D/
\(/!\) I03E/ /! IO3 \(\rightarrow\) E/
\(/!\) IO3X/ / ! IO3 \(\rightarrow\) X/
/!I03Y/ /! IO3 \(\rightarrow\) Y/
/!I03Z/ /! IO3 \(\rightarrow\) Z/
\(/!\) I06A/ /!I06 \(\rightarrow\) A/
\(/!\) I06B/ /! I06 \(\rightarrow\) B/
\(/!\) I06C/ /! I06 \(\rightarrow\) C/
/! I06D/ /! I06 \(\rightarrow\) D/
\(/!\) I06E/ /! I06 \(\rightarrow\) E/
\(/!\) I06X/ /! I06 \(\rightarrow X /\)
/!I06Y/ /!I06 \(\rightarrow \mathrm{Y} /\)
/!I06Z/ /!I06 \(\rightarrow\) Z/
/'A/ /' \(\rightarrow\) A/
\(/\) B/ /' \(\rightarrow\) B/
\(/ \mathrm{C} / /{ }^{\prime} \rightarrow \mathrm{C} /\)
/'D/ / \(\rightarrow\) D/

/'Y/ /' \(\rightarrow \mathrm{Y} /\)
/'Z/ /' \(\rightarrow \mathrm{Z} /\)

Figure 8 concluded
\begin{tabular}{|c|c|}
\hline /'S / / S \(\rightarrow\) / & /+A/ /! \(22!\mathrm{T} 3+\mathrm{U}!\mathrm{Gl}\) ! \(\mathrm{Tl} \rightarrow \mathrm{A} /\) \\
\hline / \(\mathrm{A} / \mathrm{/} \rightarrow \mathrm{~A}\) / & \(/+\mathrm{B} / /!\mathrm{G} 2!\mathrm{T} 3 \leftarrow \mathrm{U}!\mathrm{Gl}!\mathrm{Tl} \rightarrow \mathrm{B} /\) \\
\hline / B/ / \(\rightarrow\) B/ & /+C/ /! 2 2! \(\mathrm{T} 3<-\mathrm{U}\) ! Gl ! \(\mathrm{Tl} \rightarrow \mathrm{C} /\) \\
\hline / C/ / \(\rightarrow\) C/ & /+D/ /! \(\mathrm{G} 2!\mathrm{T} 3 \leftarrow \mathrm{U}!\mathrm{Gl}!\mathrm{Tl} \rightarrow \mathrm{D} /\) \\
\hline / D/ / \(\rightarrow\) D/ &  \\
\hline / E/ / \(\rightarrow\) E/ & /+X/ /! \(\mathrm{G} 2!\mathrm{T} 3<-\mathrm{U}!\mathrm{Gl} 1\) T 1 I \(\mathrm{X} /\) \\
\hline Y \(\times 1 \rightarrow x /\) & /+Y/ /! \(\mathrm{G} 2!\mathrm{T} 3+-\mathrm{U}!\mathrm{Gl}!\mathrm{Tl} \rightarrow \mathrm{Y} /\) \\
\hline / Y/ / \(\rightarrow\) Y/ & /+Z/ / ! \(\mathrm{G} 2!\mathrm{T} 3+\mathrm{U}!\mathrm{Gl}!\mathrm{Tl} \rightarrow \mathrm{Z} /\) \\
\hline / \(\mathrm{z} /\) / \(\rightarrow \mathrm{z}\) / & /=A/ /! G 2 ! \(\mathrm{T} 3 \rightarrow:!\mathrm{Gl}\) ! \(\mathrm{Tl} \rightarrow \mathrm{A} /\) \\
\hline \(/(\mathrm{A}) /(\rightarrow \mathrm{A} /\) & \(/=\mathrm{B} / /!\mathrm{G} 2!\mathrm{T} 3 \rightarrow\) ! \(\mathrm{G} 1!\mathrm{Tl} \rightarrow \mathrm{B} /\) \\
\hline / \(\mathrm{B} / / / \rightarrow \mathrm{B} /\) & /=C/ /! \(\mathrm{G} 2!\mathrm{T3} \rightarrow\) : Gl ! \(\mathrm{Tl} \rightarrow \mathrm{C} /\) \\
\hline / C/ / \(/ \rightarrow \mathrm{C} /\) & \(/=\mathrm{D} / / \mathrm{IG2}\) ! \(\mathrm{T} 3 \rightarrow\) : \(\mathrm{G} 1!\mathrm{Tl} \rightarrow \mathrm{D} /\) \\
\hline / \(\mathrm{D} / 1 / \rightarrow \mathrm{D} /\) & \(/=\mathrm{E} / /!\mathrm{G} 2!\mathrm{T3} \rightarrow\) ! \(\mathrm{G} 1!\mathrm{Tl} \rightarrow \mathrm{E} /\) \\
\hline \[
\frac{\| E \mid /(\rightarrow E \mid}{|X X| \rightarrow X \mid}
\] &  \\
\hline / \(\mathrm{Y} / 1 / \rightarrow \mathrm{Y} /\) &  \\
\hline \(1(\mathrm{z} / 1 / \rightarrow \mathrm{z} /\) & /'S!/ /'S!/ \\
\hline \(\mid-\mathrm{A} / 1 / \rightarrow \mathrm{A} /\) &  \\
\hline \(\mid-\mathrm{B} / 1-\rightarrow \mathrm{B} /\) & /=/ /! \(\mathrm{G} 2!\mathrm{T} 3 \rightarrow\) ! Gl ! \(\mathrm{Tl} /\) \\
\hline \(1-\mathrm{C} / /-\mathrm{C} /\) & FINIS \\
\hline /-D/ /- \(\rightarrow\) D/ & \\
\hline \[
\frac{1-\mathrm{E} / \mid \rightarrow \mathrm{E} /}{|-\widetilde{\mathrm{x} /}|-\rightarrow \mathrm{x} \mid}
\] & \\
\hline /-Y/ / \(\rightarrow \mathrm{Y} /\) & \\
\hline \(\mid-\mathrm{Z} / 1 / \rightarrow \mathrm{z} /\) & \\
\hline \(1 . \mathrm{A} / 1 . \rightarrow \mathrm{A} /\) & \\
\hline / B/ / \(\rightarrow\), \(\mathrm{B}^{\text {/ }}\) & \\
\hline / C/ / \(/ \rightarrow \mathrm{C} /\) & \\
\hline / D/ / \(\rightarrow\) D/ & \\
\hline  & \\
\hline 7.W/ \(/ \rightarrow\) W/ & \\
\hline \(1 . \mathrm{X} / 1 . \rightarrow \mathrm{x} /\) & \\
\hline /.Y/ / \(\rightarrow\) ¢ \(/\) & \\
\hline \(1 . \mathrm{z} / \mathrm{/} \rightarrow \mathrm{z} /\) & \\
\hline
\end{tabular}

Figure 8. Control cards and substitution table for transforming the character stream in Figure 7 to that shown in Figure 6. Note that four sets of alphabet cards are needed to capitalize characters following: a space, a right parenthesis, a hyphen, and the locator ! 103 inserted by the program at the middle gutter. The other substitution cards override these and achieve the desired exceptions. The mistakes in capitalization of the words: "and", and "of", immediately to the left of the middle gutter in Figure 6 result from the omission of two cards from the substitution table. These are /AND!/ /AND!/ and /OF!/ /OF!/.

In many computerized data files, space limitations force the use of a shorthand notation. These can be expanded by appropriate string substitutions. If the data are arranged in colurins, the program allows for selective substitution rather than universal substitution and rearrangement and omissions of columns of numbers, or other alphanumeric characters.

A good example of the versatility of SETLST is afforded by the transformations shown in Figure 10 of an index produced earlier on a line printer in all caps for the publication "CINDA 68 An Index to the Literature on Microscopic Neutron Data." This index is published jointly by the Division of Technical Information Extension of the U.S. Atomic Energy Commission and the Organization for Economic Cooperation and Development.

For this application it is necessary to take advantage of a feature of SETLST which enables one to divide the record into as many as 20 pieces of arbitrary length and to insert any arbitrary flags between them. The first set of control cards shown in Figure 12 causes the program to break the record into 12 pieces and to insert flags ! IOl, etc., in the order indicated, in front of each of the pieces which are defined on the third control card. It is this expanded record upon which the subroutine SUBSTITUTE operates. It is the use of these locators in the substitution table which allows for selective substitution.

It is interesting to note that while the locators were inserted primarily to retain the columnar arrangement when going from fixed width to variable width characters, their presence in the text stream makes it possible to perform sophisticated conditional substitutions, which would otherwise have required a much more complicated and much less versatile program. A brief examination of the substitution table shown in Figure 12 should reveal the flexibility which this feature affords.
5209061
6309189 6623603 6009174 6209190 5109058 6309162 6009171 5909268 6723853 5309245 6009170 5909094 6309011 6623441 6623224 6724048 6523547 6623541 5909 I52 6209361 6423218 6523471 6623841 6623255 6623257 5609116 6523430 6623488 6724048


ENCODERS
\begin{tabular}{|c|c|}
\hline AMPLIFIER CIRCUITS. PART 1. THE SERIES CIRCUIT WITH A & 5909025 \\
\hline AMPLIFIER. TECHNICAL MEMORANDUM & 5209061 \\
\hline AMPLIFIERS & 6309189 \\
\hline AMPLIFIERS EXPLORATORY & 6623603 \\
\hline AMPLIFIERS THEORETICAL LIMIT ATIONS OF GAIN AND & 6009174 \\
\hline AMPLIFIERS /RTION IN FREQUENCY-DEPENDENT TWO-PORT S & 6209190 \\
\hline AMPLIFIERS ASSUMING IDEAL TR ANSFORMERS & 5109058 \\
\hline AMPLIFIERS BY AN EXTENSION OF THE SAMPLED-PARANETER & 6309162 \\
\hline AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI & 6009171 \\
\hline AMPLITUDES. EFFECT FOR RADAR ANGULAR ACCURACY & 5909268 \\
\hline ANALOG COMPUTATION IN PREDICTING DYNAMIC TEMPERATURE & 6723853 \\
\hline ANALOG CONVERTER & 5309245 \\
\hline ANALOG MULTIPLICATION & 6009170 \\
\hline ANALOG MULTIPLIER USING THE FIELD-EFFECT TR ANSISTOR & 5909094 \\
\hline ANALOG MULTIPLIER, BASED ON THE HALL EFFECT & 6309011 \\
\hline ANALOG SIMULATION MANUAL & 623441 \\
\hline ANALOG TECHNIQUE TO DECREASE PEN-TRACKING TIME IN & 6623224 \\
\hline ANALOG TO DIGITAL ENCODERS & 6724048 \\
\hline ANALOG-DIGITAL CIRCUITRY & 6523547 \\
\hline ANALOG-TO-DIGITAL CONVERTER & 6623541 \\
\hline ANALOGUE TECHNIQUES & 5909152 \\
\hline ANALYSIS & 6209361 \\
\hline ANALYSIS & 6423218 \\
\hline ANALYSIS & 6523471 \\
\hline ANALYSIS & 662384 I \\
\hline ANALYSIS & 6623255 \\
\hline ANALYSIS & 6623257 \\
\hline ANALYSIS REPORT NO & 5609116 \\
\hline ANALYSIS CALCULAID. & 6523430 \\
\hline ANALYSIS IED LEARNING AND COMPUTER-BASED INSTRUCTIO & 6623488 \\
\hline ANALYSIS AND CALIBRATION OF ANALOG TO DIGITAL & 6724048 \\
\hline
\end{tabular}

Figure 9. Results from a test of the KWIND program set in Times Roman on a Linofilm at the U.S. Government Printing Office. Letter spacing would improve the readability somewhat but not enough to justify the added expense of phototypsetting. Figure 6 shows how much improvement is achieved by converting to upper and lower case.


\footnotetext{
Figure 10. A table containing superscripts, subscripts, and Greek characters, produced by SETLST from a print tape that produced the output shown in the next figure. This table requires use of more than one grid. Note that the isotope number was put to the left of the element symbol and made a superior figure.
 See Figure 12 for the control cards and substitution table used here.
}

Among the more interesting transformations performed by the control cards shown in Figure 12 are the following:
a. The flag ! I 02 in front of the isotopic number (the second value in the original line) caused the numbers following it to be set as superior figures and flush-right in front of, instead of behind, the element symbol. Two cards in the substitution table served to delete the leading zeros in front of the isotopic number.
b. The columns flagged ! IO3 required quite special treatment. For example, had the word GAMMA appeared elsewhere it would have been simply set with all caps. Here, however, GAMMA is replaced by a character stream which brings in grid two so as to produce the Greek letter \(\Gamma\). Other items in the substitute table transformed \(N\), PROTON to ( \(n, p\) ) and N, ALPHA to ( \(n, \nabla\) ), etc.
c. If a relatively few lines of the file or relatively few words have text extending across the boundaries defined on the third control card, the substitution table can be used to reattach the pieces in the two columns and even move them to another location. The following is an example of such a manipulation: /! I0S EN! I06GY/ /!I13>E>N>E>R>G>Y/ where the lost characters ER are reinserted and the heading ENERGY is shifted to a new location.
d. The inclusion in the substitution table of /!I02 A/ // and /!IOI S/ /I15/ removes from the original records the heading \(S\) A and inserts the new line locator ! I15.
e. While ordinarily the user need not concern himself with the fine points of how the program operates, there is one feature which is important to emphasize.

That program deletes trailing blanks in the defined fields when inserting the locators. For that reason the instruction to delete the \(N\) from field ! I08 in Figures 11 and 13 is written as:
/!I08N!I09/ /!I09/ instead of /!I08N / //


Figure 11. A sample page from the CINDA publication produced on a line printer. The magnetic tape which produced this listing was used as input to SETLST. The control cards which produced the transformation shown in Figure 10 are shown in Figures 12 and 13 . The vertical lines indicate where the program inserted the locators ! I14, ilol, etc., in accord with the instructions on the third and subsequent control cards shown in the next figure. See the next figures for an explanation of the circumscribed items.

ABCDEFGHI UKLNNOPGKSTUVWXYZO123456789
\(1-1 \cdot 2-4 \cdot 5-7 \cdot 10-21 \cdot 24-32 \cdot 35-39 \cdot 42-46,49-63 \cdot 64-67 \cdot 69-71,72-109 \cdot 110-1\)
! 114
! 101
!102
! 103
!104
! 105
!106
!107
!108
! 109
! IIO
:I11
0! 1 1192
\({ }^{\circ} 1\)
IEDITION 99 LIGNES \$
FINIS\$
ABCDEFGHI JKLMNOPQRSTUVWXYZO123456789 /
    000
        >< 0
        >< 1
r!IO3EVALUATION/ /!IO3>EVALUATION/
/!IO3TOTAL XSECT/ /!IO3>TOTAL >X—>SECT/
/!IO3RESON PARAMS/ /!IO3>RESON >PARAMS/
/!I03ELASTIC/ /!I03>ELASTIC/
/!I03DIFF ELASTIC/ /!IO3>DIFF >ELASTIC/
/!IO3N PRUDUCTION/ /!IO3iv >PRODUCTION/
1!IO3NONELASTIC/ /!IO3>INONELASTIC/
/!IO3NONEL GAMMAS/ /!I03>NONEL !G2!T3D!G1!T1'S/
/!IO3TOT INELASTIC/ /!IO3>TOT >INELASTIC/
/!IO3DIFF INELAST/ /!I03>UIFF >INELAST/
/!I03INELST GAMMA/ /!I03>INELST !G2!T3D!G1!T1/
/!IO3N2N REACTION/ /!I03(N.2N) >REACTION/
/!I03THRMLSCATLAW/ /!I03>THRML>SCAT>LAW/
/!IO3ABSORPTION/ /!IO3>ABSORPTION/
/!IO3DISAPPERANC//!IO3)UISAPPERANCE/
/!IO3NoGAMMA/ /!I03(N, !G2!T3D!G1!T1)/
/!IO3SPECT NGAMMA/ /!IO3>SPECT (N. !G2!T3D!G1!T1)/
/!IO3N.PROTON/ /!IO3(N. م)/
/!IO3N-DEUTERON/ /!IOS(iv. D)/

/!L03N.ALPHA/ /!I03(N, ! 2 ! T3A!G1!T1)/

Figure 12. The control cards and a portion of the substitution table used to produce the output shown in Figure 10. The items marked by a circle show, respectively, how the character stream is modified to: a. provide initial caps; b. produce Greek letters; c. provide contractions and insert parentheses, etc. See Figure 13 for the rest of the substitution table.


Figure 13. A continuation of the control cards used for the CINDA publication. The tagged items show how the character stream was modified to: a. restore the letters ER in ENERGY which might otherwise have been lost; b. remove the leading zeros in the isotopic number; c. replace the characters \(S A\) by a new line signal; d. ensure that the letter \(I\) in the locator remains lower case; e. go to another grid for mathematical symbols; \(f\). generate initial caps everywhere except as indicated in the longer substitution strings; g. compensate by inserting spaces for different width values of a minus sign and a decimal point; h. replace successive blanks by appropriate width spaces.
\begin{tabular}{|c|c|c|c|}
\hline  & & 71194 & Example 13 \\
\hline BE゙Tム－HA1（11）LUUNT & HE｜A－HAT（Y2） & & Cuulvt \\
\hline 1．Uい12の17 c．842 & －y9y9y949 & & 6.292 \\
\hline －y¢7ヵuç3 c．nty & －1 1 UUUV13 & & 5．840 \\
\hline －प44．ant J．173 & －UUソソyyy7ヶo & & 5.613 \\
\hline 1．U001／5ら 3．7．66 & －U01UUJU01ヵ & & b． 745 \\
\hline －9yチリnうに4
\[
4.844
\] & －U0UU9yy9y8ob & & 5.875 \\
\hline 1．とひひびるリム
\[
0.398
\] & －vouviuuUuOG4 & & 6.398 \\
\hline AVIKAGE \(=0.954\) & & AVEがAGt \(=\) & 5.964 \\
\hline \begin{tabular}{l}
UIVINITAKA USING UFITIU SHARUIIIIIJE． BETA－HA1（1） \\
ᄂuldivl
\end{tabular} & ntla－HAr（YZ） & 1108 & FXAMipLE 14 COUNT \\
\hline \[
1.00640,27
\]
\[
<\cdot 1 \times 9
\] & －y99yyyyo & & \[
7.000
\] \\
\hline ．Yy9uくj44 J．n10 & －U9999970u & & 5.523 \\
\hline  & －U1UUU012 & & 4.903 \\
\hline －¢4990サ4R 4．515 & －U0U9yyy8zu & & 4.745 \\
\hline 1．UUU01UU \(\quad\)－．OUU & －U0U10U00109 & & 4.963 \\
\hline ．Y9 ¢－0．495 & －UnU0Uyy999778 & & 5．654 \\
\hline AVEKAGE \(=4.157\) & & AVFKAGE＝ & 5.404 \\
\hline UKIHO，WIla KL－URITUGUIVAL」TATIUIN OMITIEL BETA－HAT（11） & HEIA－HAT（Y2） & 1108 & EXAMPLE 15 CUUist \\
\hline －1＜16．34टh－J．0れら & －99414403 & & 1．801 \\
\hline 27ち2．Uゝら7－2．439 & ． \(135<3 ソ 18\) & & ． 453 \\
\hline －10ら7．U931－－． 120 & －．U034 000707 & & －． 129 \\
\hline 146．4733n
\[
-<\cdot \ln 4
\] & －U0＜84Yロ9ヵ3 & & \[
-. \operatorname{con} 7
\] \\
\hline －7．コンカロく入も
\[
-.919
\] & －．U0UUU4 2 50487 & & \[
-.0 \check{ }
\] \\
\hline 1．1otivust •779 & －000012094996 & & ． 67 \\
\hline AVt．R4GE \(=-1.976\) & & AVERAGE＝ & .419 \\
\hline
\end{tabular}

Figure 14．A sample of a formatted output which can be typeset easily using SETLST and a monowidth typeface．See Figure 5 for the typeset version of this table．

\section*{6．Acknowledgements}

The authors wish to express their appreciation for the valuable advice and guidance provided by Mr．Rubin Wagner，Chief of the Computer－Assisted Printing Section of the NBS Office of Technical Information and Publications．His willingness to share his expertise－based on long experience in traditional and modern methods of typesetting and composition－has contributed significantly to our progress in programming for computer－assisted printing in general，and to the preparation of this report in particular．Valuable assistance was rendered by Mrs．Daris Jones in the typing of the manuscript and in the preparation of the camera－ready copy from which this report was produced．

\section*{7．References}
［1］William R．Bozman，Phototypesetting of Computer Output National Bureau of Standards Technical Note 170 （June 25，1962）available from the Superintendent of Documents，U．S．Government Printing Office，Washington， D．C． 20402.
［2］Carla G．Messina and Joseph Hilsenrath，Edpac：Utility Programs for Computer－Assisted Editing，Copy－Production，and Data Retrieval，NBS Technical Note 470 （January 1969）available from the Superintendent of Documents，U．S． Government Printing Office，Washington，D．C． 20402.
［3］Michael P．Barnett，Computer Typesetting／Experiments and Prospects，The MIT Press，Cambridge，Massachusetts 1965.

\section*{APPENDIX I}

The program listings given here were written in such a fashion as to permit their easy implementation on various computers and compilers of different vintage. If a compiler permits use of labeled common blocks, the operating efficiency of these programs can, possibly, be increased by certain indicated changes. The markings to the right of the listings indicate which lines of the program must be replaced by the corresponding marked lines in APPENDIX II to take advantage of labeled common. The < means insert and the period and brace denote lines to be replaced.

TYST TYST2
PROGRAM DEVELOPED AT NBS-NSRDS WASH D.C. BY C. MESSINA \(1 / 68\)

TYST 3

TYST 4 TYPESETTING FROM FIXED FIELD RECORDS.

TYST 5
\(\begin{array}{lll}\text { ALL INPUT RECORDS MUST HAVE THE SAME FORMAT EXCEPT FOR THOSE TYST } & 6 \\ \text { ORDS WHICH ARE DELETED FROM THE FILE BY THE SUBROUTINE (AMATCH). TYST } & 7\end{array}\)
TYPESETTING GRID CHANGES AND OTHER STRING SUBSTITUTIONS ARE TYST 8 INSERTED BY THE SUBROUTINE (SUBST).

THIS PROGRAM REMOVES THE TRAILING BLANKS FROM EVERY FIELD TO TYST 9 TYST 10 BE TYPESET AND WRITES OUT PACKED RECORDS OF VARIABLE LENGTH

TYST 11
TYST 13
CONTROL CARDS
THE FIRST CARD IS SIMILAR TO THE FIRST CARD OF THE SUBROUTINE (SUBST). THE 47TH CARD COLUMN CONTAINS A BLANK AND THE 50TH CARD COLUMN CONTAINS THE END OF RECORD SYMBOL. THE END OF RECORD TYST 14 TYST 15 TYST 16 TYST 17 TYST 18 TYST 19 TYST 20
THE SECOND CARD HAS SIX SWITCHES IN (6I5) FORMAT. TYST 21 ICOL - CONTAINS THE NUMBER OF CARD FIELDS TO BE PROCESSED. TYST 22 ITEST - IS -l FOR PRINTING. - \(\quad 0\) FOR PRINTING AND TAPE WRITING ON UNIT IPTAPE. TYST 23
\[
\text { - } \quad 1 \text { FOR TAPE WRITING ON UNIT IPTAPE. }
\]

TYST 24
TYST 25
LENGTH - IS THE NUMBER OF CHARACTERS IN AN INPUT RECORD READ TYST 26 FROM UNIT IRTAPE.

TYST 27
KEEP - IS ZERO WHEN ALL FIELDS ARE TO BE PRESENT IN THE OUTPUT TYST 28 REGARDLESS OF CONTENT. TYST 29
- IS NON ZERO WHEN ANY FIELD WHICH IS COMPLETELY BLANK IS TYST 30 TO BE IGNORED IN THE OUTPUT (THE INSERT STRING IS TYST 31 ALSO OMITTED.).

TYST 32
IRTAPE - IS THE UNIT ON WHICH THE INPUT RECORDS ARE EXPECTED. TYST 33
IPTAPE - IS THE UNIT ON WHICH TO WRITE THE OUTPUT RECORDS(NOT TYST 34 THE PRINTER).

TYST 35
TYST 36
TYST 37 WISHED IN THE OUTPUT. THE FORMAT IS FREE FIELD AND THE DELIMITERS TYST 38 ARE SEPARATED BY ONE OR AS MANY SPACES AS DESIRED. TYST 39 IN THE FOLLOWING EXAMPLE OF 3 COLUMN FIELDS TYST 40 \(7380 \quad 170 \quad 7380\) THE INFORMATION LOCATED STARTING AT THE 73RD CHARACTER AND EXTENDING TO INCLUDE THE 80TH CHARACTER IS TYPESET, FOLLOWED BY THE INFORMATION CONTAINED IN CHARACTER FIELDS 1 TO 70 AND ENDING WITH THE INFORMATION IN FIELDS 73 TO 80. REPEATING FIELD TYST 41 TYST 42 TYST 43 TYST 44
 ON THE THIRD CONTROL CARD, DUPLICATES THE INFORMATION IN THE OUTPUT RECORD.

TYST 45

THE FOLLOWING ICOL NUMBER OF CARDS CONTAIN THE TYPESETTING INSERT STRINGS. IN THE OUTPUT RECORDS, THESE INSERT STRINGS ARE PLACED BEFORE THE INFORMATION TAKEN FROM THE INPUT RECORDS THESE STRINGS ARE PUNCHED STARTING IN CARD COLUMN ONE AND ARE CONSIDERED TERMINATED BY A BLANK CHARACTER. IF NO STRING IS TO BE INSERTED, A BLANK CARD IS PLACED IN THE INSERT STRING TABLE AT THE APPROPRIATE POSITION.

AFTER THE INSERT STRING TABLE, A CARD IN (1I2,78AI) FORMAT CONTAINS THE IPTAPE HEADER. THE LENGTH OF THE HEADER IS FOLLOWED IMMEDIATELY BY THE HEADER.

TYST 49
TYST 50
TYST 51
TYST 52
TYST 53
TYST 54
TYST 55
TYST 56
TYST 570
TYST 571
TYST 572
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{C THE CONTROL CARDS FOR} & TYST 573 \\
\hline C & SUBROUTINE (AMATCH) ARE PLACED FOLLOWED BY THE CONTROL CARDS FOR & TYST 58 \\
\hline C & SUBROUTINE (SUBST) & TYST 59 \\
\hline C & & TYST 60 \\
\hline \multirow[t]{10}{*}{C} & & TYST 62 \\
\hline & DIMENSION IA \((84), \mathrm{ID}(136), \operatorname{INS}(400), \mathrm{N}(40), \mathrm{NA}(40), \mathrm{NB}(100), \mathrm{IC}(700)\), & TYST 63 \\
\hline & 11B(41UU) & TYST 64 < \\
\hline & ITAPE=5 & TYST 65 \\
\hline & IOTAPE=6 & TYST 66 \\
\hline & READ (ITAPE, 9) (IA ( I) , \(\mathrm{I}=1,80\) ) & TYST 67 \\
\hline & WRITE (IOTAPE, 19) (IA (I), I=l, 80) & TYST 68 \\
\hline & READ (ITAPE, 89) ICOL, ITEST, LENGTH, KEEP, IRTAPE, IPTAPE & TYST 69 \\
\hline & WRITE (IOTAPE,99) ICOL, ITEST, LENGTH, KEEP, IRTAPE, IPTAPE & TYST 70 \\
\hline & IF (ICOL) 2,2,1 & TYST 71 \\
\hline 1 & IF (ICOL-20) 3,3,2 & TYST 72 \\
\hline \multirow[t]{2}{*}{2} & WRITE (IOTAPE,129) & TYST 73 \\
\hline & G0 T0 9999 & TYST 74 \\
\hline \multirow[t]{2}{*}{3} & READ (ITAPE, 9) (ID ( 1 ), I=l, 80) & TYST 75 \\
\hline & L=2* ICOL & TYST 76 \\
\hline \multirow[t]{3}{*}{7} & D0 \(8 \mathrm{I}=1\), L & TYST 77 \\
\hline & \(\mathrm{N}(\mathrm{I})=0\) & TYST 78 \\
\hline & \(\mathrm{NB}(\mathrm{I})=0\) & TYST 79 \\
\hline \multirow[t]{3}{*}{8} & \(N A(I)=0\) & TYST 80 \\
\hline & \(\mathrm{K}=0\) & TYST 81 \\
\hline & DO \(100 \mathrm{I}=1, \mathrm{~L}\) & TYST 82 \\
\hline \multirow[t]{2}{*}{10} & \(\mathrm{K}=\mathrm{K}+1\) & TYST 83 \\
\hline & IF (ID (K)-IA (47)) 30,20,30 & TYST 84 \\
\hline 20 & IF (K-80) 10,25,25 & TYST 85 \\
\hline \multirow[t]{2}{*}{25} & WRITE (IOTAPE, 49) L, (ID (J), J=1, 80) & TYST 86 \\
\hline & G0 T0 9999 & TYST 87 \\
\hline \multirow[t]{2}{*}{30} & D0 \(40 \mathrm{~J}=27,36\) & TYST 88 \\
\hline & IF (ID (KA- A (J)) 40,50,40 & TYST 89 \\
\hline \multirow[t]{2}{*}{40} & CONTINUE & TYST 90 \\
\hline & GO TO 10 & TYST 91 \\
\hline \multirow[t]{4}{*}{50} & \(N(I)=J-27\) & TYST 92 \\
\hline & K=K+l & TYST 93 \\
\hline & D0 \(60 \mathrm{~J}=27,36\) & TYST 94 \\
\hline & IF (ID (K)-IA (J)) 60,70,60 & TYST 95 \\
\hline \multirow[t]{2}{*}{60} & CONTINUE & TYST 96 \\
\hline & GO TO 100 & TYST 97 \\
\hline \multirow[t]{4}{*}{70} & \(\mathrm{N}(\mathrm{I})=10 * N(I)+J-27\) & TYST 98 \\
\hline & \(\mathrm{K}=\mathrm{K}+1\) & TYST 99 \\
\hline & DO \(80 \mathrm{~J}=27,36\) & TYST100 \\
\hline & IF (ID (K)-IA (J)) 80,90,80 & TYSTl01 \\
\hline \multirow[t]{2}{*}{80} & CONTINUE & TYST102 \\
\hline & GO TO 100 & TYST103 \\
\hline 90 & \(\mathrm{N}(\mathrm{I})=10 * N(I)+J-27\) & TYST104 \\
\hline \multirow[t]{4}{*}{100} & CONTINUE & TYST105 \\
\hline & \(\mathrm{J}=0\) & TYST106 \\
\hline & DO \(120 \mathrm{I}=1, \mathrm{~L}\) & TYST107 \\
\hline & IF (N(I)) 110,105,110 & TYST108 \\
\hline 105 & \(\mathrm{J}=\mathrm{J}+1\) & TYST109 \\
\hline 110 & IF (N(I)-132) 120,120,122 & TYSTll0 \\
\hline \multirow[t]{2}{*}{120} & CONTINUE & TYSTlll \\
\hline & IF (J-L) 125,9999,9999 & TYSTll2 \\
\hline \multirow[t]{2}{*}{121} & \(\mathrm{I}=3\) & TYSTll3 \\
\hline & \(\mathrm{N}(\mathrm{I})=\) LENGTH & TYST114 \\
\hline 122 & WRITE (IOTAPE, 39) I,N(I) & TYST115 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & GO T0 9999 & TYST116 \\
\hline \multirow[t]{4}{*}{125} & \(\mathrm{J}=1\) & TYST117 \\
\hline & K=L-1 & TYSTl18 \\
\hline & DO \(145 \mathrm{I}=1, \mathrm{~K}, 2\) & TYSTl19 \\
\hline & IF ( \(\mathrm{N}(\mathrm{I})-\mathrm{N}(\mathrm{I}+1)) 140,140,130\) & TYST120 \\
\hline \multirow[t]{2}{*}{130} & WRITE (IOTAPE,59) \(\mathrm{N}(\mathrm{I}), \mathrm{N}(\mathrm{I}+1), \mathrm{I}\) & TYST121 \\
\hline & G0 T0 9999 & TYST122 \\
\hline 140 & WRITE (IOTAPE,29) J,N(I),N(I+1) & TYST123 \\
\hline \multirow[t]{7}{*}{145} & \(\mathrm{J}=\mathrm{J}+1\) & TYST124 \\
\hline & WRITE (IOTAPE,69) ICOL & TYST125 \\
\hline & N3=1 & TYST126 \\
\hline & D0 \(190 \mathrm{I}=1, \mathrm{ICOL}\) & TYST127 \\
\hline & READ ( ITAPE, 9) (ID (K), \(\mathrm{K}=1,80\) ) & TYST128 \\
\hline & WRITE (IOTAPE, 19) (ID (K), \(\mathrm{K}=1,80\) ) & TYST129 \\
\hline & \(\mathrm{J}=1\) & TYST130 \\
\hline 150 & IF (ID (J)-IA (47)) 160,180,160 & TYST131 \\
\hline \multirow[t]{4}{*}{160} & \(\operatorname{INS}(\mathrm{N} 3)=\mathrm{ID}(\mathrm{J})\) & TYST132 \\
\hline & N3 \(=\) N3 +1 & TYST133 \\
\hline & \(\mathrm{J}=\mathrm{J}+1\) & TYST134 \\
\hline & IF (N3-400) 150,150,170 & TYST135 \\
\hline \multirow[t]{2}{*}{170} & WRITE (IOTAPE,79) & TYST136 \\
\hline & G0 T0 9999 & TYST137 \\
\hline 180 & \(N A(I)=J-1\) & TYST138 \\
\hline \multirow[t]{6}{*}{190} & CONTINUE & TYST139 \\
\hline & K=1 & TYST140 \\
\hline & NB ( 1 ) = 1 & TYST141 \\
\hline & D0 \(191 \mathrm{I}=2, \mathrm{~L}, 2\) & TYST142 \\
\hline & \(\mathrm{NB}(\mathrm{I})=\mathrm{NA}(\mathrm{K})+\mathrm{NB}(\mathrm{I}-\mathrm{l})-1\) & TYST143 \\
\hline & \(N B(I+1)=N A(K)+N B(I-1)\) & TYST144 \\
\hline \multirow[t]{5}{*}{191} & \(\mathrm{K}=\mathrm{K}+1\) & TYST145 \\
\hline & Kl=0 & TYST1451 \\
\hline & READ (ITAPE, 139) Kl, (IB (J), J=1,78) & TYST1452 \\
\hline & WRITE (IOTAPE, 149) Kl, (IB(I), I=1,78) & TYST1453 \\
\hline & IF (Kl) 9999,201,201 & TYST1454 \\
\hline \multirow[t]{3}{*}{201} & CALL AMATCH (IA, ID, LENGTH, 0, MATCH) & TYST146 \\
\hline & CALL SUBST (IC, K, 0) & TYST147 \\
\hline & IF (LENGTH) 121,121,192 & TYST148 \\
\hline 192 & IF (LENGTH-133) 193,193,121 & TYST149 \\
\hline 193 & IF (IPTAPE) 194,195,196 & TYST150 \\
\hline \multirow[t]{2}{*}{194} & WRITE (IOTAPE,119) IRTAPE,IPTAPE & TYST151 \\
\hline & G0 T0 9999 & TYST152 \\
\hline 195 & IPTAPE=3 & TYST153 \\
\hline 196 & IF (IRTAPE) 194,197,198 & TYST154 \\
\hline 197 & IRTAPE=5 & TYST155 \\
\hline 198 & K=0 & TYST156 \\
\hline \multirow[t]{3}{*}{200} & READ (IRTAPE, 9, END=900, ERR=900) (ID (I), I=1,LENGTH) & TYST158) \\
\hline & CALL AMATCH(IA, ID, LENGTH, 1, MATCH) & TYST159 \\
\hline & IF (MATCH) 210,210,200 & TYST160 \\
\hline \multirow[t]{6}{*}{210} & DO \(300 \mathrm{~L}=1\), ICOL & TYST161 \\
\hline & \(\mathrm{Ll}=2 * \mathrm{~L}-1\) & TYST162 \\
\hline & \(\mathrm{L} 2=2 * \mathrm{~L}\) & TYST163 \\
\hline & \(\mathrm{Nl}=\mathrm{N}(\mathrm{Ll})\) & TYST364 \\
\hline & \(\mathrm{N} 2=\mathrm{N}\) (L2) & TYST165 \\
\hline & IF (N1) 300,300,220 & TYST166 \\
\hline 220 & IF (NA(L)) 250,250,230 & TYST167 \\
\hline \multirow[t]{3}{*}{230} & N3=NB (L1) & TYST168 \\
\hline & N4=NB (L2) & TYST169 \\
\hline & D0 \(240 \mathrm{I}=\mathrm{N} 3, \mathrm{~N} 4\) & TYST170 \\
\hline
\end{tabular}


\section*{ITAPE=5}

KWICO110
IOTAPE=6
READ (ITAPE, 9) (IA(I), I=1, 80)
WRITE (IOTAPE, 19) (IA(I), I=1, 80)
READ (ITAPE, 89) ITEST, LENGTH, IRTAPE, IPTAPE
WRITE (IOTAPE,99) ITEST, LENGTH, IRTAPE, IPTAPE
READ (ITAPE, 9) (ID(I), I=1, 80)
DO \(5 \mathrm{I}=1,8\)
\(\mathrm{N}(\mathrm{I})=0\)
\[
N B(I)=0
\]
\(\mathrm{NA}(\mathrm{I})=0\)
\(\mathrm{K}=0\)
DO \(100 \mathrm{I}=1,8\)
K=K+1
IF (ID (K)-IA(47)) 30,20,30
IF (K-80) 10,25,25
WRITE (IOTAPE, 49) (ID(J), J=1,80)
GO TO 9999
D0 \(40 \mathrm{~J}=27,36\)
IF (ID(K)-IA(J)) 40,50,40
CONTINUE
GO TO 10
\(\mathrm{N}(\mathrm{I})=\mathrm{J}-27\)
\(\mathrm{K}=\mathrm{K}+\mathrm{l}\)
DO \(60 \mathrm{~J}=27,36\)
IF (ID(K)-IA(J)) 60,70,60
CONTINUE
GO TO 100
\(\mathrm{N}(\mathrm{I})=10{ }^{*} \mathrm{~N}(\mathrm{I})+\mathrm{J}-27\)
\(\mathrm{K}=\mathrm{K}+1\)
DO \(80 \mathrm{~J}=27,36\)
IF (ID(K)-IA(J)) 80,90,80
CONTINUE
GO TO 100
\(\mathrm{N}(\mathrm{I})=10^{*} \mathrm{~N}(\mathrm{I})+\mathrm{J}-27\)
CONTINUE
\(\mathrm{J}=0\)
DO \(120 \mathrm{I}=1,8\)
IF (N(I)) 110,105,107
\(105 \mathrm{~J}=\mathrm{J}+1\)
107 IF (N(I)-136) 120,120,110
110 WRITE (IOTAPE,39) I,N(I)
GO TO 9999
120 CONTINUE
IF (J-8) 125,9999,9999
\(125 \mathrm{~J}=1\)
DO \(145 \mathrm{I}=1,7,2\)
IF (N(I) \(-\mathrm{N}(\mathrm{I}+1)) 140,140,130\)
130 WRITE (IOTAPE,59) N(I),N(I+1), I
GO TO 9999
140 WRITE (IOTAPE,29) J,N(I),N(I+1)
\(145 \mathrm{~J}=\mathrm{J}+1\)
WRITE (IOTAPE,69)
N3=1
DO \(190 \mathrm{I}=1,8\)

KWICO120
KWIC0130
KWIC0140
KWIC0150
KWIC0160
KWIC0170
KWIC0180
KWIC0190
KWIC0198
KWIC0200
KWIC0210
KWIC0220
KWIC0230
KWIC0240
KWIC0250
KWIC0260
KWIC0270
KWIC0280
KWIC0290
KWIC0300
KWIC0310
KWIC0320
KWIC0330
KWIC0340
KWIC0350
KWIC0360
KWIC0370
KWIC0380
KWIC0390
KWIC0400
KWIC0410
KWIC0420
KWIC0430
KWIC0440
KWIC0450
KWIC0460
KWIC0470
KWIC0480
KWIC0490
KWIC0500
KWIC0510
KWIC0520
KWIC0530
KWIC0540
KWIC0550
KWIC0560
KWIC0570 KWIC0580 KWIC0590 KWIC0600 KWIC0610 KWIC0620 KWIC0630 KWIC0640
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{} & READ ( ITAPE, 9) ( ID ( K ) , \(\mathrm{K}=1,80\) ) & KWIC0650 \\
\hline & WRITE (IOTAPE, 19) (ID ( K ) , K=1, 80) & KWIC0660 \\
\hline & \(\mathrm{J}=1^{1}\) & KWIC0670 \\
\hline 150 & IF (ID(J)-IA (47)) 160,180,160 & KWIC0680 \\
\hline \multirow[t]{4}{*}{160} & INS (N3) \(=\) ID ( J ) & KWIC0690 \\
\hline & \(N 3=N 3+1\) & KWIC0700 \\
\hline & \(\mathrm{J}=\mathrm{J}+1\) & KWIC0710 \\
\hline & IF (N3-80) 150,150,170 & KWIC0720 \\
\hline \multirow[t]{2}{*}{170} & WRITE (IOTAPE, 79) & KWIC0730 \\
\hline & G0 T0 9999 & KWIC0740 \\
\hline 180 & \(\mathrm{NA}(\mathrm{I})=\mathrm{J}-1\) & KWIC0750 \\
\hline \multirow[t]{4}{*}{190} & CONTINUE & KWIC0760 \\
\hline & \(\mathrm{K}=1\) & KWIC0770 \\
\hline & \(\mathrm{NB}(1)=1\) & KWIC0780 \\
\hline & DO \(195 \mathrm{I}=2,16,2\) & KWIC0790 \\
\hline & \(\mathrm{NB}(\mathrm{I})=\mathrm{NA}(\mathrm{K})+\mathrm{NB}(\mathrm{I}-\mathrm{l})-1\) & KWIC0800 \\
\hline & \(\mathrm{NB}(\mathrm{I}+1)=\mathrm{NA}(\mathrm{K})+\mathrm{NB}(\mathrm{I}-1)\) & KWIC0810 \\
\hline \multirow[t]{7}{*}{195} & \(\mathrm{K}=\mathrm{K}+1\) & KWIC0820 \\
\hline & READ (ITAPE, 139) Kl, (IB (J), J=1,78) & \\
\hline & WRITE (IOTAPE, 149) K1, (IB(I), \(\mathrm{I}=1,78\) ) & \\
\hline & CALL AMATCH(IA, ID, LENGTH, \(0, \mathrm{MATCH}\) ) & KWIC0830 \\
\hline & CALL SUBST ( ID, 1,0) & KWIC0832 \\
\hline & \(\mathrm{IT}=\mathrm{N}(6)\) & KWIC0834 \\
\hline & K=0 & KWIC0840 \\
\hline 200 & READ (IRTAPE, 9, END=900, ERR=900) (ID ( I), I=1,LENGTH) & KWIC0850 \\
\hline \multirow[t]{4}{*}{201} & \(\mathrm{Nl}=\mathrm{N}(1)\) & KWIC0860 \\
\hline & \(\mathrm{N} 2=\mathrm{N}(2)\) & KWIC0870 \\
\hline & CALL AMATCH (IA, ID, LENGTH, 1, MATCH) & KWIC0880 \\
\hline & IF (MATCH) 205,205,200 & KWIC0890 \\
\hline 205 & IF (N(1)) 270,270,210 & KWIC0900 \\
\hline 210 & IF (NA(1)) 240,240,220 & KWIC0910 \\
\hline \multirow[t]{4}{*}{220} & N3=NB(1) & KWIC0920 \\
\hline & N4=NB(2) & KWIC0930 \\
\hline & DO \(230 \mathrm{I}=\mathrm{N} 3, \mathrm{~N} 4\) & KWIC0940 \\
\hline & K=K+1 & KWIC0950 \\
\hline 230 & \(\mathrm{IC}(\mathrm{K})=\mathrm{INS}(\mathrm{I})\) & KWIC0960 \\
\hline \multirow[t]{2}{*}{240} & DO \(250 \mathrm{I}=\mathrm{N} 1, \mathrm{~N} 2\) & KWIC0970 \\
\hline & \(\mathrm{K}=\mathrm{K}+1\) & KWIC0980 \\
\hline 250 & \(\mathrm{IC}(\mathrm{K})=\mathrm{ID}(\mathrm{I})\) & KWIC0990 \\
\hline 270 & IF ( \(\mathrm{N}(3)\) ) 500,500,280 & KWIC1000 \\
\hline \multirow[t]{5}{*}{280} & \(\mathrm{Nl}=\mathrm{N}(3)+1\) & KWIC1010 \\
\hline & N2=N(4) & KWIC1020 \\
\hline & J=N1-1 & KWIC1030 \\
\hline & DO \(300 \mathrm{I}=\mathrm{N} 1, \mathrm{~N} 2\) & KWIC1040 \\
\hline & IF (ID (I-1)-IA (47)) 300,290,300 & KWIC1050 \\
\hline 290 & IF (ID(I)-IA (47).) 300,350,300 & KWIC1060 \\
\hline \multirow[t]{2}{*}{300} & CONTINUE & KWIC1070 \\
\hline & IF (NA(4)) 330,330,310 & KWICl080 \\
\hline \multirow[t]{4}{*}{310} & N3=NB(7) & KWIC1090 \\
\hline & N4=NB (8) & KWICl100 \\
\hline & DO \(320 \mathrm{I}=\mathrm{N} 3, \mathrm{~N} 4\) & KWICll10 \\
\hline & \(\mathrm{K}=\mathrm{K}+1\) & KWICl120 \\
\hline 320 & IC ( K ) \(=\) INS \((\mathrm{I}\) ) & KWICl130 \\
\hline \multirow[t]{3}{*}{330} & \(\mathrm{Nl}=\mathrm{N}(3)\) & KWICl140 \\
\hline & DO \(340 \mathrm{I}=\mathrm{N} 1, \mathrm{~N} 2\) & KWICl150 \\
\hline & \(\mathrm{K}=\mathrm{K}+1\) & KWICl160 \\
\hline \multirow[t]{2}{*}{340} & \(\mathrm{IC}(\mathrm{K})=\mathrm{ID}(\mathrm{I})\) & KWIC1170 \\
\hline & GO TO 500 & KWICl180 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 350 & IF ( I-N1) 410,410,360 & KWIC1190 \\
\hline \multirow[t]{5}{*}{} & IF (NA(2)) 390.390.370 & KWIC1200 \\
\hline & N3=NB(3) & KWIC1220 \\
\hline & N4=NB(4) & KWIC1230 \\
\hline & DO \(380 \mathrm{~J}=\mathrm{N} 3, \mathrm{~N} 4\) & KWIC1240 \\
\hline & K=K+1 & KWIC1250 \\
\hline 380 & \(\operatorname{IC}(\mathrm{K})=\operatorname{INS}(\mathrm{J})\) & KWIC1260 \\
\hline \multirow[t]{4}{*}{390} & \(\mathrm{J}=\mathrm{I}-2\) & KWIC1270 \\
\hline & \(\mathrm{Nl}=\mathrm{N}(3)\) & KWIC1280 \\
\hline & DO \(400 \mathrm{I}=\mathrm{Nl}, \mathrm{J}\) & KWIC1290 \\
\hline & K=K+1 & KWIC1300 \\
\hline 400 & IC ( K\()=\mathrm{ID}\) ( I ) & KWIC1310 \\
\hline \multirow[t]{3}{*}{410} & \(\mathrm{J}=\mathrm{J}+1\) & KWIC1320 \\
\hline & DO 430 I=J, N2 & KWIC1330 \\
\hline & IF (ID(I)-IA (47)) 440,430,440 & KWIC1340 \\
\hline \multirow[t]{2}{*}{430} & COntinue & KWIC1350 \\
\hline & GO TO 500 & KWIC1360 \\
\hline 440 & IF (NA(3)) 470,470,450 & KWIC1370 \\
\hline \multirow[t]{4}{*}{450} & \(\mathrm{N} 3=\mathrm{NB}(5)\) & KWIC1380 \\
\hline & \(\mathrm{N} 4=\mathrm{NB}\) (6) & KWIC1390 \\
\hline & D0 \(460 \mathrm{~J}=\mathrm{N} 3, \mathrm{~N} 4\) & KWIC1400 \\
\hline & \(\mathrm{K}=\mathrm{K}+1\) & KWICl410 \\
\hline 460 & \(\mathrm{IC}(\mathrm{K})=\mathrm{INS}(\mathrm{J})\) & KWICl420 \\
\hline \multirow[t]{2}{*}{470} & DO \(480 \mathrm{~J}=\mathrm{I}, \mathrm{N} 2\) & KWICl430 \\
\hline & K=K+1 & KWIC1440 \\
\hline 480 & IC ( K\()=\mathrm{ID}(\mathrm{J})\) & KWIC1450 \\
\hline 500 & IF (N(5)) \(720,720,510\) & KWIC1460 \\
\hline \multirow[t]{5}{*}{510} & \(\mathrm{N}=\mathrm{N}(5)+1\) & KWIC1470 \\
\hline & \(\mathrm{N} 2=\mathrm{N}(6)\) & KWIC1480 \\
\hline & \(\mathrm{J}=\mathrm{Nl}-1\) & KWICl490 \\
\hline & DO \(530 \mathrm{I}=\mathrm{N} 1, \mathrm{~N} 2\) & KWIC1500 \\
\hline & IF (ID (I-1)-IA(47)) 530,520.530 & KWIC1510 \\
\hline 520 & IF (ID(I)-IA(47)) 530,590,530 & KWIC1520 \\
\hline \multirow[t]{2}{*}{530} & CONTINUE & KWIC1530 \\
\hline & IF (NA(7)) 560,560,540 & KWIC1540 \\
\hline \multirow[t]{4}{*}{540} & N3=NB (13) & KWIC1550 \\
\hline & N4=NB(14) & KWIC1560 \\
\hline & DO \(550 \mathrm{I}=\mathrm{N} 3\), N4 & KWIC1570 \\
\hline & \(\mathrm{K}=\mathrm{K}+\mathrm{l}\) & KWIC1580 \\
\hline 550 & \(\mathrm{IC}(\mathrm{K})=\mathrm{INS}(\mathrm{I})\) & KWIC1590 \\
\hline \multirow[t]{3}{*}{560} & \(\mathrm{Nl}=\mathrm{N}(5)\) & KWIC1600 \\
\hline & DO \(570 \mathrm{I}=\mathrm{N} 1, \mathrm{~N} 2\) & KWIC1610 \\
\hline & K=K+1 & KWIC1620 \\
\hline \multirow[t]{2}{*}{570} & \(\mathrm{IC}(\mathrm{K})=\mathrm{ID}(\mathrm{I})\) & KWICl630 \\
\hline & G0 T0 720 & KWIC1640 \\
\hline 590 & IF(I-N1) 650,650,600 & KWIC1650 \\
\hline 600 & IF (NA(5)) 630,630,610 & KWICl660 \\
\hline \multirow[t]{4}{*}{610} & \(\mathrm{N} 3=\mathrm{NB}(9)\) & KWIC1670 \\
\hline & \(\mathrm{N} 4=\mathrm{NB}(10)\) & KWIC1680 \\
\hline & D0 \(620 \mathrm{~J}=\mathrm{N} 3, \mathrm{~N} 4\) & KWIC1690 \\
\hline & K=K+1 & KWIC1700 \\
\hline 620 & IC ( K ) \(=\) INS ( J ) & KWIC1710 \\
\hline \multirow[t]{4}{*}{630} & \(\mathrm{J}=\mathrm{I}-2\) & KWIC1730 \\
\hline & \(\mathrm{Nl}=\mathrm{N}(5)\) & KWIC1740 \\
\hline & DO \(640 \mathrm{I}=\mathrm{Nl}, \mathrm{J}\) & KWIC1750 \\
\hline & \(\mathrm{K}=\mathrm{K}+1\) & KWIC1760 \\
\hline 640 & \(\mathrm{IC}(\mathrm{K})=\mathrm{ID}(\mathrm{I})\) & KWIC1770 \\
\hline
\end{tabular}
```

 6 5 0
 J=J+1
 DO }660\mathrm{ I=J,N2
 IF (ID(I)-IA(47)) 670,660,670
 660 CONTINUE
 GO TO 720
 670 IF (NA(6)) 700,700,680
 680 N3=NB(11)
 N4=NB(12)
 DO 690 J=N3,N4
 K=K+l
 690 IC (K)=INS (J)
 700 DO 7lO J=I,N2
 K=K+l
 710 IC(K)=ID(J)
 720 IF (N(7)) 800,800,730
 730 Nl=N(7)
 N2=N(8) KWIC1940
 IF (NA(8)) 770,770,740 KWICl950
 740 N3=NB(15)
N4=NB(16)
DO 760 I=N3,N4
K=K+1
760 IC (K)=INS (I)
770 DO 780 I=N1,N2
K=K+1
780 IC (K)=ID (I)
800 K2=Kl+1
CALL SUBST(IC,K,l)
Kl=Kl+K
J=0
DO }805\mathrm{ I=K2,K1
J=J+l
IB(I)=IC(J)
K=0
807 CALL NPRINT(KI,ITEST,IB,IA(47),IOTAPE,IPTAPE,0)
850 GO TO 200
900 Kl=Kl+4
C IA(50) CONTAINS THE END OF RECORD SYMBOL,IA(47) CONTAINS A BLANK.
IB(Kl-3)=IA (47)
IB(K1-2)=IA(50)
IB(Kl-1)=IA (47)
IB(Kl)=IA(50)
CALL NPRINT(Kl,ITEST,IB,IA(47),IOTAPE,IPTAPE,1)
9999 STOP
9 FORMAT (136A1)
19 FORMAT (IX,I31AI)
29 FORMAT (7H FIELD ,lI2, l1H GOES FROM ,II3,4H TO ,lI3)
39 FORMAT (57H ONLY LINES WITH 136 OR LESS CHARACTERS ARE ALLOWED, THKWIC2390
lE ,lI6,7H FIELD ,/l1H SPECIFIED ,1I6,18H CHARACTERS. STOP.) KWIC2400
FORMAT(58H EIGHT NUMBERS WERE NOT GIVEN ON THE FOLLOWING CARD. STOKWIC2410
1P. /1X,131A1)
KWIC2420
59 FORMAT (20H THE PAIR OF NUMBERS ,1I6, 5H AND ,1I6, 25H SPECIFYINGKWIC2430
l FIELD NUMBER ,II6, /42H ARE NOT GIVEN IN THE CORRECT ORDER. STOPKWIC2440
2.)
KWIC2450
6 9 ~ F O R M A T ~ (5 0 H ~ T H E ~ F O L L O W I N G ~ 8 ~ C A R D S ~ C O N T A I N ~ T H E ~ I N S E R T ~ S T R I N G S ~ /) K W I C 2 4 6 0 ~
79 FORMAT (60H THE INSERT STRINGS TAKE UP MORE THAN }80\mathrm{ CHARACTERS. STKWIC2470
10P.) KWIC2480
89 FORMAT (10I5)
99 FORMAT (1X,10I5)

149 FORMAT (1X,1I2,78A1)
END

SUBROUTINE SUBST (IB,IW,ITYPE)

SUBSTITUTE SUBROUTINE

TEXTUAL SUBSTITUTION PROGRAM WRITTEN BY C. MESSINA NSRDS-NBS IB(999) IS THE STRING TO BE PROCESSED. ON RETURN FROM SUBST, IB CONTAINS THE REMADE LINE.
IW IS THE LENGTH OF THE INPUT STRING IN IB. ON RETURN FROM SUBST
IW CONTAINS THE NEW LENGTH OF IB.

ITYPE $=0$ WHEN THE SUBSTITUTION TABLE IS READ IN AND ITYPE $=1$
WHEN THE SUBSTITUTION IS TO TAKE PLACE.

THE INPUT DECK AT OBJECT TIME IS THE FOLLOWING SET OF CARDS
THE FIRST CARD IS A DICTIONARY OF THE ALPHABET STARTING WITH THE LETTER A IN CARD COL ONE, A LETTER B IN COL 2 AND SO FORTH. THE NUMBERS FOLLOW THE ALPHABET STARTING WITH ZERO. COL 38 CONTAINS THE PRINT OUT STRING DELIMITER. COL 47 CONTAINS A BLANK.
THE SECOND CARD HAS A ZERO TN COL 2 IF NO CARDS ARE TO BE
CARD HAS A ZERO IN COL 2 IF NO CARDS ARE TO BE PUNCHED SUBS 13
1 IF THE PUNCH TAPE IS TO BE WRITTEN. THE NEXT $2 I 2$ FIELDS ON THIS SUBS 14
CARD, IF POSITIVE NON ZERO INTEGERS, CONTAIN THE IRTAPE NUMBER SUBS 15
AND IPTAPE NUMBER, OTHERWISE THEY ARE SET TO IRTAPE=5 AND IPTAPE=3SUBS 16
THE THIRD AND FOURTH CARDS ARE BOTH IN Al,I3,2A1, I2 FORMATS. SUBS 18
THE FIRST TWO FIELDS ARE IGNORED ON BOTH CARDS IN THIS VERSION. SUBS 19
THE 3RD FIELD IS THE SHIFT TO UPPER CASE SYMBOL, THE 4TH IS SHIFT SUBS 21
TO LOWER CASE SYMBOL, AND THE FIFTH IS THE SHIFT AND LOCK SWITCH SUBS 22
THAT IS 0 IF THE MODE IS NOT SHIFT AND LOCK AND I IF IT IS. SUBS 23
CARDS FIVE ET SEQ CONTAIN THE LIST OF STRINGS TO BE EXCHANGED. SUBS 24
ON EACH CARD THE OLD RECORD OR STRING APPEARS ON THE LEFT SIDE ANDSUBS 25
THE NEW STRING ON THE RIGHT. THE CHARACTER WHICH APPEARS IN CARD SUBS 26
COLUMN 1 IS THE STRING DELIMITER WHICH REMAINS IN FORCE FOR THAT SUBS 27
CARD. IT MAY, HOWEVER, CHANGE FROM CARD TO CARD.
SUBS 28
THE FORMAT IS PRESCRIBED. A CHARACTER IN COL 1 DEFINES THE STARTSUBS 29
OF A STRING. THE SAME CHARACTER MUST APPEAR AFTER THE END SUBS 30
OF THE STRING. THE THIRD APPEARANCE OF THE COLUMN 1 CHARACTER ON SUBS 31
THE CARD STARTS THE 2ND STRING AND THE FOURTH APPEARANCE ENDS IT. SUBS 32
EXAMPLE
/REAL/ /TRUE/
SUBS 33

AFTER THE SUBSTITUTION LIST MUST COME A CARD WITH THE WORD FINIS SUBS 36
STARTING IN CARD COLUMN ONE.

DIMENSION IA (86); N(1000), IC(8000), IB(999)
ITAPE=5
IOTAPE=6
IEND=0
MAXIW=998
IF (ITYPE) 20,20,560
READ (ITAPE, 840) (IA(J), J=1,80)
WRITE (IOTAPE, 890) (IA(J), J=1,80)
READ (ITAPE, 850) ITEST, IRTAPE, IPTAPE
IF (IRTAPE) $30,30,60$
IRTAPE=5
IF (IPTAPE) 70,70,100
IPTAPE=3
100 WRITE (IOTAPE,930) ITEST, IRTAPE, IPTAPE

SUBS 37
SUBS 38
SUBS 39
SUBS 40
SUBS 41
SUBS 42
SUBS 43
SUBS 44
SUBS 45
SUBS 46
SUBS 47
SUBS 48
SUBS 49
SUBS 53
SUBS 54
SUBS 58

```
    READ (ITAPE, 860) IA(81),IWIDEl,IA(83),IA(85), LOCKl
    WRITE (IOTAPE,920) IA(81),IWIDEl,IA(83),IA(85),LOCKl
    READ (ITAPE, 860) IA(82),IWIDE2,IA(84),IA(86), LOCK2
    WRITE (IOTAPE,920) IA(82),IWIDE2,IA(84),IA(86),LOCK2
    Nl=0
    N3=1
    C START OF READING IN SUBSTITUTE LISTS
    READ (ITAPE,840) (IB (J), J=1, 80)
    N2=0
    N22=0
    IF (IB(1)-IA(6)) 210,170,210
    IF (IB(2)-IA(9)) 210,180,210
    IF (IB(3)-IA(14)) 210,190,210
    IF (IB(4)-IA(9)) 210,200,210
    IF (IB(5)-IA(19)) 210,440,210
    DO 230 I=2,78
    IF (IB(I)-IB(1)) 230,220,230
    IF (N2) 160,160,240
    N2=I-1
    J=N2+3
    IF (J-79) 260,250,250
250 WRITE (IOTAPE,900) IB(1),(IB(I),I=l,80)
    GO TO }83
    K=J+l
    DO 270 I=J,79
    IF (IB(I)-IB(1)) 270,280,270
    K=I+2
    G0 T0 250
    D0 290 I=K,80
    IF (IB(I)-IB(1)) 290,300,290
    N22=I-K+l
    GO TO 250
    Nl=Nl+2
    N(N1-1)=N2
    N(Nl)=N22
    N4=N3+N2-l
    IF (N4-7920) 320,320,310
    WRITE (IOTAPE,880) N4,N1
    GO TO 830
320 IF (Nl-1000) 330,330,310
330 J=2
    DO 340 I=N3,N4
    IC (I)=IB (J )
370 IF (N2-38) 380,380,390
380 K=42
390 Kl=K+N22-1
    J=N2+3
    DO 400 L=J,80
```

SUBS 59
SUBS 60
SUBS 61
SUBS 62
SUBS 69
SUBS 70
SUBS 71
SUBS 72
SUBS 73
SUBS 74
SUBS 75
SUBS 76
SUBS 77
SUBS 78
SUBS 79
SUBS 80
SUBS 81
SUBS 82
SUBS 83
SUBS 84
SUBS 85
SUBS 86
SUBS 87
SUBS 88
SUBS 89
SUBS 90
SUBS 91
SUBS 92
SUBS 93
SUBS 94
SUBS 95
SUBS 96
SUBS 97
SUBS 98
SUBS 99
SUBS100
SUBS101
SUBSI02
SUBS103
SUBS104
SUBS105
SUBS106
SUBS107
SUBS108
SUBS109
SUBSIl0
SUBSlll
SUBSIl2
SUBSl13
SUBSIl4
SUBSI15
SUBSIl6
SUBS117
SUBS118
SUBSI19
SUBS 120
$I B(L)=I A(47)$
SUBSI21

$$
\operatorname{IB}(1)=\operatorname{IA}(38)
$$

$\operatorname{IB}(\mathrm{N} 2+2)=\mathrm{IA}(38)$ SUBSI22
$\operatorname{IB}(\mathrm{K}-1)=\mathrm{IA}(38)$
$\operatorname{IB}(\mathrm{Kl}+\mathrm{l})=\mathrm{IA}(38)$
IF (N22) $430,430,410$
SUBS123
SUBSI24
SUBSI25
SUBSI26
410 DO 420 I=N3,N4 SUBSI27

$$
\operatorname{IB}(\mathrm{K})=\mathrm{IC}(\mathrm{I})
$$

$\mathrm{N} 3=\mathrm{N} 3+\mathrm{N} 22$
430 WRITE (IOTAPE, 890) (IB (J), J=1, 80)
GO TO 160
440 IF (Nl-4) 550,450,450 SUBS129 SUBSI30 SUBSI31 SUBS132 SUBSI33
$450 \quad \mathrm{~N} 7=\mathrm{Nl}+2$
460 N3=1
$\mathrm{Kl}=0 \quad$ SUBSI36
N7 $=$ N7-2
SUBS137
IF (N7-4) 470,480,480
SUBS138
$470 \quad \mathrm{~N} 7=\mathrm{N} 7+2$
SUBS139
480 DO $540 \mathrm{I}=4, \mathrm{~N} 7,2$ SUBS140
$\mathrm{N} 2=\mathrm{N}(\mathrm{I}-3)+\mathrm{N}(\mathrm{I}-2)$
N22 $=\mathrm{N}(\mathrm{I}-1)+\mathrm{N}(\mathrm{I})$
SUBS141
IF (N(I-3)-N(I-1)) 500,490,490
SUBS142
SUBS143
$490 \quad \mathrm{~N} 3=\mathrm{N} 3+\mathrm{N} 2$ SUBS144
GO TO 540
SUBS145
$500 \mathrm{~N} 4=\mathrm{N}(\mathrm{I}-3)$
SUBS146
$N(I-3)=N(I-1)$ SUBS147
$\mathrm{N}(\mathrm{I}-1)=\mathrm{N} 4$ SUBS148
$\mathrm{N} 4=\mathrm{N}$ (I)
SUBS149
$N(I)=N(I-2)$ SUBS150
$\mathrm{N}(\mathrm{I}-2)=\mathrm{N} 4$ SUBS151
$\mathrm{Kl}=\mathrm{Kl}+1 \quad$ SUBS152

N6 $=$ N4 4 SUBS160
$520 \mathrm{IC}(\mathrm{K})=\mathrm{IC}(\mathrm{N} 6) \quad$ SUBS161
N3 $=$ N3 + N22 \quad SUBS162
DO 530 J=1,N2 SUBS163
K=N3+J-l
SUBSI64
$530 \operatorname{IC}(\mathrm{~K})=\mathrm{IB}(\mathrm{J}) \quad$ SUBSI65
540 CONTINUE SUBS166
IF (Kl) 550,550,460
550 WRITE (IOTAPE, 890) IA(6),IA(9),IA(14),IA(9),IA(19)
SUBS167
GO TO 820
SUBS168
C START OF SUBSTITUTION
SUBSI69
560 IF (IW-MAXIW) 580.580,570
SUBS170
570 WRITE (IOTAPE, 940) IW, MAXIW,(IB(I), I=1,IW)
SUBSI71
GO TO 830
SUBSI72
580 CALL CHECKI (IA, IB, ITEST,IOTAPE,IPTAPE, IEND, 1)
IF (IEND) 830,590,830
$590 \quad \mathrm{~N} 3=1$
SUBS173
SUBS174
$\mathrm{IB}(\mathrm{IW}+1)=\mathrm{IA}(47)$
SUBS175 $\}$
SUBS176
IF (LOCKl) 600,610,600

END
SUBROUTINE SUNLK（IA，IB，IW，IOTAPE）
DIMENSION IA（86），IB（999）
MAXIW＝998
$\mathrm{L}=0$
$\mathrm{J}=0$
K＝0
DO $60 \mathrm{I}=1$ ．IW
$\operatorname{IF}(\operatorname{IB}(I)-I A(83)) 40,20,40$
L＝L＋1
IF（L－J－1）30，60，30
$\mathrm{K}=1$
GO TO 60
IF（IB（I）－IA（85））60，50，60
$\mathrm{J}=\mathrm{J}+1$
IF（L－J）30，60，30
60 CONTINUE
IF（L－J）80，70，90
$\begin{array}{ll}70 & \text { IF（K）} 80,120,80 \\ 80 & \text { WRITE（IOTAPE，280 }\end{array}$
70 IF（K） $80,120,80$
80
WRITE（IOTAPE，280）
GO TO 150
$90 \operatorname{IF}(\mathrm{IA}(83)-\mathrm{IA}(85)) 80,100,80$
IF（K） $110,120,110$
$\operatorname{IB}(\mathrm{IW})=\mathrm{IA}(85)$
$\mathrm{J}=1$
IF（IB（J）－IA（83）） $140,160,140$
$\mathrm{J}=\mathrm{J}+1$
IF（ $\mathrm{J}-(\mathrm{IW}+1)) 130,150,150$
RETURN
$\operatorname{IF}(I B(J+1)-I A(85)) 190,170,190$
J＝J＋2
DO 180 I＝J，IW
$190 \quad \begin{aligned} & \text { GO T0 } 220 \\ & \operatorname{IF}(\operatorname{IB}(\mathrm{~J}+2)-\mathrm{IA}(85)) 230,200,230\end{aligned}$
WRITE（IOTAPE，910）MAXIW
IF（LOCK2）810，820，810
CALL SULOCK（IA，IB，IW，IOTAPE）
RETURN
STOP
FORMAT（132A1）
FORMAT（1A1，1I3，2A1，1I2） 2ES ARE ，2I6．6H STOP．）

FORMAT（1X，1A1，1I3，2A1，1I2）
FORMAT（1X，50I2）

TB（Iーリ）IB（I）

SUBS234
SUBS235
SUBS236
SUBS237
SUBS238
SUBS240
SUBS241
SUBS242
保

$$
1 \text { LENGTH IS } 8000 \text {, MAXIMUM NUMBER OF PHRASES IS } 400 / 20 \mathrm{H} \text { CURRENT VALUSUBS246 }
$$

SUBS247
FORMAT（1X，131A1）SUBS248
FORMAT（16H THE CHARACTER ，lAl，48H DID NOT APPEAR 4 TIMES ON THE SUBS249 ICARD BELOW．STOP．／1X，80A1）SUBS250

SUBS253
SUBS254
SUBS255
SUBS256
SUBS257－
SSUK 10
SSUK 20
SSUK 30
SSUK 40
SSUK 50
SSUK 60
SSUK 70
SSUK 80
SSUK 90
SSUK 100
SSUK 110
SSUK 120
SSUK 130
SSUK 140
SSUK 150
SSUK 160
SSUK 170
SSUK 180
SSUK 190
SSUK 200
SSUK 210
SSUK 220
SSUK 230
SSUK 240
SSUK 250
SSUK 260
SSUK 270
SSUK 280
SSUK 290
SSUK 300
SSUK 310
SSUK 320
SSUK 330
SSUK 340
SSUK 350
SSUK 360
J=J+3
DO 210 I=J,IW
210 IB(I-l)=IB(I)
220 IW=IW-1
IB(IW+1)=IA(47)
J=J-l
GO TO 130
230 IF ((IW+l)-MAXIW) 250,250,240
240 WRITE (IOTAPE,270)
GO TO 150
250 IW=IW+l
J=J+3
K=IW
DO 260 L=J,IW
IB (K)=IB (K-1)
260 K=K-l
J=J-l
IB(J)=IA(83)
GO TO 160
530
SSUK 550
FORMAT (ll6HOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEFORESSUK 560
l THE MAXIMUM CHARACTER LINE LIMIT WAS EXCEEDED IN SUNLK) SSUK 570
280 FORMAT (69HOTHE FOLLOWING LINE DID NOT CONTAIN A BALANCED SET OF SSSUK 580
lHIFT SYMBOLS.)
END
SUBROUTINE SULOCK(IA,IB,IW,IOTAPE)
DIMENSION IA(86),IB(999)
MAXIW=998
J=l
20 IF (IB(J)-IA(84)) 30,60,30
30 J=J+1
IF (J-(IW+1)) 20,20,50
WRITE (IOTAPE,140)
RETURN
J=J+2
IF (IB(J)-IA(84)) 110,80,110
IW=IW-l
DO 90 K=J,IW
90 IB(K)=IB(K+1)
IB(IW+1)=IA (47)
J=J+1
IF (J-IW) 70,70,100
100 IW=IW+1
IB(IW)=IA(86)
GO TO 50
110 IF (IW-MAXIW) 120,100,40
120 IW=IW+1
J=J+1
K=IW
IB(IW+l)=IA (47)
IB(IW+2)=IA(47)
IB(IW+3)=IA(47)
DO 130 L=J,IW
IB (K)=IB(K-1)
130 K=K-1
IB(J-1)=IA(86)
GO TO 20
140 FORMAT (llGHOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEFORESSLK 300
l THE MAXIMUM CHARACTER LINE LIMIT WAS EXCEEDED IN SULOCK) SSLK 3l0
END

	SUBROUTINE CHECKI(IA,IB,ITEST, IOTAPE,IPTAPE,K,J)	SSCK 10
	DIMENSION IA (86).IB(999)	SSCK 20
	IF (K-1) 20.40,20	SSCK 30
20	L=J-1	SSCK 40
	D0 $30 \mathrm{I}=1,26$	SSCK 50
	$\mathrm{L}=\mathrm{L}+1$	SSCK 60
	IF (IA(I)-IB(L)) 70,30,70	SSCK 70
30	CONTINUE	SSCK 80
	IF (K-2) 40,90,90	SSCK 90
40	$\mathrm{K}=1$	SSCK 100
	WRITE (IOTAPE, 100) (IA(I), I=l, 80)	SSCK 110
	IF (ITEST) 50,80,50	SSCK 120
50	WRITE (IPTAPE,110) (IA (I), I=1,80)	SSCK 130
	IF (IPTAPE-6) $80,80.60$	SSCK 140
60	END FILE IPTAPE	SSCK 150
	GO TO 80	SSCK 160
70	$\mathrm{K}=0$	SSCK 170
80	RETURN	SSCK 180
90	$\mathrm{K}=1$	SSCK 190
	GO TO 80	SSCK 200
100	FORMAT (1X,80A1)	SSCK 210
110	FORMAT (80Al)	SSCK 220
	END	SSCK 230

AMAT 060
IA() CONTAINS THE DICTIONARY OF SPECIAL CHARACTERS NEEDED.
AMAT 070
C IA(47) IS A BLANK AND THE ALPHABET OCCURS BETWEEN IA(1) AND IA(26) AMAT 080

```
        DIMENSION IA(84),IB(80),IC(1000),ID(136),N(40)
        ITAPE=5
        IOTAPE=6
        IF (ITYPE) 300,10,300
    IGNORE=2
    Nl=0
    N3=1
        READ (ITAPE,9) (IB(I),I=1,80)
        DO 20 I=l,80
    IF (IB(I)-IA(47)) 30,20,30
        GO TO 80
30 IEND=IB (I)
        K=I+1
        IF (K-80) 40,40,60
40 DO 50 I=K,80
    IF (IB(I)-IA(47)) 70,50,70
    GO TO 80
80 WRITE (IOTAPE,39) (IB(K),K=1,I)
90 READ (ITAPE,9) (IB(J),J=1,80)
    N2=0
    IF (IB(1)-IA(6)) 160,100,160
```

20 CONTINUE AMAT 390
IGNORE=1 AMAT 400
50 CONTINUE
60 IGNORE=0
$70 \quad \mathrm{IGN}=\mathrm{IB}(\mathrm{I})$
AMAT 350
AMAT 360
AMAT 370
AMAT 410
AMAT 420
AMAT 430
AMAT 440
AMAT 450
AMAT 460
AMAT 470
AMAT 480
AMAT 490
AMAT 500
AMAT 510
AMAT 520
AMAT 530
AMAT 540

100	IF (IB(2) - IA (9)) 160.110.160	AMAT 550
110	$\operatorname{IF}(\operatorname{IB}(3)-\operatorname{IA}(14)) 160,120,160$	AMAT 560
120	$\operatorname{IF}(\operatorname{IB}(4)-\operatorname{IA}(9)) 160,130,160$	AMAT 570
130	IF (IB(5) - IA (19)) 160,140,160	AMAT 580
140	IF (IGNORE - 1) 150,240,150	AMAT 590
150	IF (IB (6) - IEND) 160.240,160	AMAT 600
160	DO $180 \mathrm{I}=1.80$	AMAT 610
	IF (IB (I) - IEND) 180,170,180	AMAT 620
170	IF (N2) 90,90,190	AMAT 630
180	N2=I	AMAT 640
190	$\mathrm{Nl}=\mathrm{N} \mathrm{l}+1$	AMAT 650
	IF (Nl - 40) 200,200,210	AMAT 660
200	$\mathrm{N}(\mathrm{N} 1)=\mathrm{N} 2$	AMAT 670
	N4 $=$ N3+N2-1	AMAT 680
	IF (N4-1000) 220,220,210	AMAT 690
210	WRITE (IOTAPE,29) N4,N1	AMAT 700
9999	STOP	AMAT 710
220	$\mathrm{J}=1$	AMAT 720
	DO $230 \mathrm{I}=\mathrm{N} 3, N 4$	AMAT 730
	$\mathrm{IC}(\mathrm{I})=\mathrm{IB}(\mathrm{J})$	AMAT 740
230	$\mathrm{J}=\mathrm{J}+1$	AMAT 750
	N3=N3+N2	AMAT 760
	WRITE (IOTAPE, 19) (IB (J), J=1, 80)	AMAT 770
	GO TO 90	AMAT 780
240	WRITE (IOTAPE, 19) (IB (J), J=1, 80)	AMAT 790
1000	RETURN	AMAT 800
300	IF (N4) 340,340,310	AMAT 810
310	IF ($1000-\mathrm{N} 4) 340,320,320$	AMAT 820
320	IF (Nl) 340,340,330	AMAT 830
330	IF ($40-\mathrm{Nl}$) 340,350,350	AMAT 840
340	WRITE (IOTAPE, 49)	AMAT 850
	G0 T0 9999	AMAT 860
350	N3=1	AMAT 870
	DO $410 \mathrm{~J}=1, \mathrm{Nl}$	AMAT 880
	N2=N(J)	AMAT 890
	N4=N2+N3-1	AMAT 900
	IF (N2 - LENGTH) 360,360,410	AMAT 910
360	$\mathrm{K}=1$	AMAT 920
	DO 390 I=N3,N4	AMAT 930
	IF (IC(I) - ID (K) 370,390,370	AMAT 940
370	IF (IGNORE-1) 410,410,380	AMAT 950
380	IF (IC(I) - IGN) 410,390,410	AMAT 960
390	$\mathrm{K}=\mathrm{K}+1$	AMAT 970
400	MATCH=J	AMAT 980
	GO TO 1000	AMAT 990
410	$\mathrm{N} 3=\mathrm{N} 3+\mathrm{N} 2$	AMAT1000
	MATCH=0	AMAT1010
	GO TO 1000	AMAT1020
9	FORMAT (136Al)	AMAT1030
19	FORMAT (1X,135A1)	AMAT1040
29	FORMAT (79HOSUBROUTINE AMATCH WAS GIVEN TOO MANY STRINGS. MAXIMUM	AMAT1050
	ISIZE IS 1000 CHARACTERS $/ 34 \mathrm{H}$ OR 40 STRINGS, CURRENT VALUES ARE	AMAT1060
	2 ,2I6.6H STOP.)	AMAT1070
39	FORMAT (25HOSUBROUTINE AMATCH INPUT //1X,80Al)	AMAT1080
49	FORMAT (62HOSUBROUTINE AMATCH WAS NOT CALLED ON TO READ IN STRINGS	AMAT1090
	1. STOP.)	AMAT1100
	END ${ }^{\text {c }}$	AMATIl10

	SUBROUTINE NPRINT(K,ITEST,IC,IBLANK,IOTAPE,IPTAPE,IEND)	NPRI 10
C	THIS VERSION OF NPRINT USES A FORTRAN WRITE STATEMENT	NPRI 20
C	SUBROUTINE NPRINT -NTRAN PRINT- PRINTS OUT RECORDS OF LENGTH	NPRI 30
C	NCOUT FROM THE STRING IC -lal FORMAT- THE CURRENT LENGTH OF	NPRI 40
C	CHARACTERS IN IC IS K. IF K IS LESS THAN NCOUT NOTHING IS DONE	NPRI 50
C	UNLESS THE LAST RECORD IS TO BE WRITTEN INDICATED BY IEND=1	NPRI 60
C	WHEN IEND=-1 THE ENTIRE CONTENTS OF IC IS WRITTEN OUT BUT THE	NPRI 70
C	TAPE IS NOT ENDFILED AND EACH RECORD IS NCOUT CHARACTERS LONG	NPRI 80
C	WHEN IEND=1 THE LAST RECORD IS FILLED WITH IBLANKS FROM K+l To	NPRI 90
C	NCOUT AND AN END OF FILE IS PLACED ON IPTAPE. ITEST IS NEGATIVE	NPRI 100
C	FOR PRINTING, ZERO FOR PRINTING AND WRITING TAPE AND POSTIVE FOR	NPRI 110
C	WRITING TAPE. IOTAPE IS THE SYSTEM PRINTER. IPTAPE IS THE TAPE.	NPRI 120
	DIMENSION IC(4100)	NPRI 130
	NCOUT=132	NPRI 140
10	IF (K) 20,20,80	NPRI 150
20	IF (IEND) 70,70,40	NPRI 160
40	IF (ITEST) 60,50,50	NPRI 170
50	ENDFILE IPTAPE	NPRI 180
60	WRITE (IOTAPE, 19) (IC(I), I=l, NCOUT)	NPRI 190
	WRITE (IOTAPE,9)	NPRI 200
70	RETURN	NPRI 210
80	IF (IEND) 90,110,90	NPRI 220
90	IF (NCOUT* (K/NCOUT)-K) 100,110,100	NPRI 230
100	$\mathrm{K}=\mathrm{NCOUT}^{*}((\mathrm{~K} / \mathrm{NCOUT})+\mathrm{l})$	NPRI 240
110	IF (K-NCOUT) $20,160,160$	NPRI 250
160	$\mathrm{N}=\mathrm{N}+\mathrm{l}$	NPRI 260
	IF (ITEST) $170,170,180$	NPRI 270
170	WRITE (IOTAPE, 19) (IC(I), I=l, NCOUT)	NPRI 280
	WRITE (IOTAPE,59) N,NCOUT	NPRI 290
180	IF (ITEST) 210,200,200	NPRI 300
200	WRITE (IPTAPE, 39) (IC(I), I=l,NCOUT)	NPRI 310
210	IF (K - NCOUT) 10,220,240	NPRI 320
220	$\mathrm{K}=0$	NPRI 330
	DO $230 \mathrm{I}=1$, NCOUT	NPRI 340
230	IC (I) = IBLANK	NPRI 350
	G0 TO 10	NPRI 360
240	$\mathrm{J}=\mathrm{K}$	NPRI 370
	K=0	NPRI 380
	$\mathrm{Kl}=$ NCOUT +1	NPRI 390
	DO $250 \mathrm{I}=\mathrm{Kl}$, J	NPRI 400
	$\mathrm{K}=\mathrm{K}+1$	NPRI 410
250	$\mathrm{IC}(\mathrm{K})=\mathrm{IC}(\mathrm{I})$	NPRI 420
	$\mathrm{Kl}=\mathrm{K}+1$	NPRI 430
	D0 260 I=Kl, J	NPRI 440
260	$I C(I)=I B L A N K$	NPRI 450
	GO T0 110	NPRI 460
9	FORMAT (45HO****** THE ABOVE IS THE LAST RECORD WRITTEN)	NPRI 470
19	FORMAT (1X,100Al)	NPRI 480
39	FORMAT (132Al)	NPRI 490
59	FORMAT ($27 \mathrm{HO} * * * * * *$ ABOVE IS RECORD NO , 1I $6,7 \mathrm{H}$ IT IS 1 I 6 ,	NPRI 500
	1 7H LONG. /)	NPRI 510
	END	NPRI 520

APPENDIX II

This Appendix shows how the programs in Appendix I were modified for the siBS UNIVAC 1108 in order to take full advantage of buffered tape read, buffered tape write, and labeled common. These changes should serve also as a guide for optimizing the programs when run under other systems.

SUBROUTINE NPRINT(K,ITEST,IC,IBLANK,IOTAPE,IPTAPE,IEND)
THIS VERSION OF NPRINT IS A BUFFERED WRITE USING NTRAN AT NBS.
SUBROUTINE NPRINT -NTRAN PRINT- PRINTS OUT RECORDS OF LENGTH NCOUT FROM THE STRING IC - IAI FORMAT- THE CURRENT LENGTH OF
UNLESS THE LAST RECORD IS TO BE WRITTEN INDICATED BY IEND=1

 WHEN IEND \(=-1\) THE ENTIRE CONTENTS OF IC IS WRITTEN OUT BUT THE TAPE
 C
IS NOT ENDFILED AND EACH RECORD IS NCOUT CHARACTERS LONG
WHEN IEND=1 THE LAST RECORD IS FILLED.WITH IBLANKS FROM K+1 TO NTPR 80
NCOUT AND AN END OF FILE IS PLACED ON IPTAPE. ITEST IS NEGATIVE NTPR 90
FOR PRINTING, ZERO FOR PRINTING AND WRITING TAPE AND POSTIVE FOR NTPR 100
WRITING TAPE. IOTAPE IS THE SYSTEM PRINTER. IPTAPE IS THE TAPE.
DIMENSION IC (4100), IWORDS (500)
NCOUT $=300$
IF (K) 20, 20, 80
20 IF (IEND) $70,70,30$
30 IF (L+1) 190,30,40
40 IF (ITEST) 60,50,50
50 CALL NTRAN (IPTAPE,9)
60 WRITE (IOTAPE, 39) (IWORDS (I), $\mathrm{I}=1$, NWOUT)
WRITE (IOTAPE.9)
RETURN
IF (IEND) $90,110,90$
IF (NCOUT* $(\mathrm{K} / \mathrm{NCOUT})-\mathrm{K}) 100,110,100$
$K=\operatorname{NCOUT}^{*}((K / N C O U T)+1)$
IF (K-NCOUT) $20,160,160$
IF (ITEST) $170,170,180$
WRITE (IOTAPE, 19) (IC(I), I=l,NCOUT)
$\mathrm{N}=\mathrm{N}+\mathrm{l}$
WRITE (IOTAPE,59) N,NCOUT,L
IF (ITEST) 210.180.180
IF (L+1) 190,180,200
WRITE (IOTAPE, 29) L
CALL NTRAN (IPTAPE,22)
CALL NTRAN (IPTAPE,9)
WRITE (IOTAPE, 39) (IWORDS (I), I=l,NWOUT)
WRITE (IOTAPE, 49)
STOP
200 CALL PACK (NCOUT, NWOUT, IWORDS, IC, IBLANK)
CALL NTRAN (IPTAPE, l, NWOUT, IWORDS,L)
210 IF (K - NCOUT) 10,220,240
220 K=0
DO 230 I=l, NCOUT
230 IC (I)=IBLANK
GO TO 10
$\mathrm{J}=\mathrm{K}$
K=0
Kl $=$ NCOUT +1
DO $250 \mathrm{I}=\mathrm{Kl}$, J
$K=K+1$NTPR50
NTPR 70

NTPR 10
NTPR 15
NTPR 20
NTPR 30
NTPR 40
NTPR 50
NTPR 70
NTPR 80
NTPR 90
NTPR 100
NTPR 110
NTPR 120
NTPR 130
NTPR 140
NTPR 150
NTPR 160
NTPR 170
NTPR 180
NTPR 190
NTPR 200
NTPR 210
NTPR 220
NTPR 230
NTPR 240
NTPR 250
NTPR 260
NTPR 270
NTPR 280
NTPR 290
NTPR 300
NTPR 310
NTPR 320
NTPR 330
NTPR 340
NTPR 350
NTPR 360
NTPR 370
NTPR 380
NTPR 390
NTPR 400
NTPR 410
NTPR 420
NTPR 430
NTPR 440
NTPR 450
NTPR 460
NTPR 470
NTPR 480
NTPR 490

```
250
    IC (K)=IC (I)
    Kl=K+1
    DO 260 I=Kl,J
260 IC (I)=IBLANK
    GO TO llO
9 FORMAT (45HO******* THE ABOVE IS THE LAST RECORD WRITTEN )
19 FORMAT (1X,100Al)
29 FORMAT(35HO****** NTRAN WRITE ERROR, STATUS= 1IG,7H ****** ///)
39 FORMAT (1X,20A6)
49 FORMAT(//5lH ****** ABOVE RECORD NOT WRITTEN DUE TO NTRAN ERROR
59 FORMAT ( 27HO****** ABOVE IS RECORD NO ,1I6,7H IT IS lI6,
    123H LONG. STATUS WORD IS 1I6 /)
    END
    SUBROUTINE PACK (ICHAR,IWOUT,IWORDS,ISTRIN,IBLANK)
C THIS SUBROUTINE CHANGES INFORMATION STORED IN (Al) FORMAT INTO WORDS
C PACKED SIX CHARACTERS PER WORD ON A UNIVAC llO8.
C ICHAR IS THE NUMBER OF BCD CHARACTERS TO BE PACKED.
C IWOUT IS THE NUMBER OF WORDS CONTAINING THE PACKED INFORMATION
C IWORDS(500) CONTAINS THE PACKED INFORMATION. IF ICHAR IS NOT A
C MULTIPLE OF SIX THE LAST WORD IS FILLED OUT WITH BLANKS.
C ISTRIN(4000) CONTAINS THE UNPACKED INFORMATION
C IBLANK CONTAINS AN UNPACKED BLANK CHARACTER
    DIMENSION IWORDS(500),ISTRIN(4100),IX(6)
    IW=ICHAR
    IF (ICHAR-6*(ICHAR/6)) 10,30,10
10 IW=6*(ICHAR/6)+6
    L=ICHAR+1
    K=0
    DO 20 I=L,IW
    K=K+l
    IX(K)=ISTRIN(I)
20 ISTRIN(I)=IBLANK
30 IWOUT=IW/6
    I=0
    DO 40 IZ=1,IWOUT
    I=I+l
    FLD ( 0,6,IWORDS(IZ))=FLD(0,6,ISTRIN(I))
    I=I+1
    FLD ( 6,6,IWORDS(IZ))=FLD(0,6,ISTRIN(I))
    I=I+l
    FLD (12,6,IWORDS(IZ))=FLD(0,6,ISTRIN(I))
    I=I+l
    FLD (18,6,IWORDS(IZ))=FLD(0,6,ISTRIN(I))
    I=I+l
    FLD (24,6,IWORDS (IZ))=FLD(0,6,ISTRIN(I))
    I=I+l
    FLD (30,6,IWORDS (IZ))=FLD(0,6,ISTRIN (I))
40 CONTINUE
    IF (ICHAR-6*(ICHAR/6)) 50,70,50
50 K=0
    DO 60 I=L,IW
    K=K+1
60 ISTRIN (I)=IX (K)
70 RETURN
    END
```

SUBROUTINE TPNRD NRD 10

DIMENSION IA (84), IB (136)
NRD 15
COMMON /A/ ITEST,ITAPE,IOTAPE,IRTAPE,IPTAPE,ITYPE,IA NRD 20
COMMON /B/ LENTH
NRD 25
COMMON /E/ IRD
NRD 30
COMMON /IID/ IB
NRD 35
DIMENSION IREC(100)
C THIS PROGRAM USES NTRAN TO READ A RECORD FROM IRTAPE INTO IREC.
NRD 40

C IT THEN UNPACKS THE RECORD TO AI FORMAT PLACING IT INTO IB.
ILEN $=100$
NRD 50

JEND = l
NRD 60
$\mathrm{JE}=0$
NRD 70

ICHK $=0$
NRD 72

IF (IRD) 20,70,100
20 IF (IRD+1) $30,10,10$
30 IF (IRD+2) $80,40,80$
$40 \quad \mathrm{JE}=\mathrm{JE}+1$
WRITE (IOTAPE, 190) JE
IF (JEND-JE) 50,50,60
NRD 74
NRD 76
NRD 80
NRD 90
NRD 100
NRD 110
NRD 120
NRD 130
50 RETURN
NRD 140
60 CALL NTRAN (IRTAPE,22)
70 CALL NTRAN (IRTAPE,2,ILEN,IREC,IRD)
GO TO 10
C READ ERROR
80 WRITE (IOTAPE, 200) IRTAPE,IRD
CALL NTRAN (IRTAPE,22)
IERR=IERR +1
CALL NTRAN (IRTAPE,7,1)
IF (IERR-10) 70,90,90
WRITE (IOTAPE, 210)
STOP
100 IW=6* IRD
IF (ICHK-2) $140,130,110$
NRD 150
NRD 160
NRD 170
NRD 180
NRD 190
NRD 200
NRD 210
NRD 220
NRD 230
NRD 240
NRD 250
NRD 260
NRD 270
110 IRI=IRD+19
DO 120 JIl=l,IRI,21
JI2=JIl+20
120 WRITE (IOTAPE,220) (IREC(J),J=JIl,JI2)
130 WRITE $(6,230)$ IRD,ITAPE,IOTAPE,IRTAPE,IPTAPE,IW
CALL CLOCK
NRD 280
NRD 290
NRD 300
NRD 310
NRD 320
NRD 330
$140 \mathrm{~J}=136$
DO $150 \mathrm{I}=1, \mathrm{~J}$
$150 \quad \mathrm{IB}(\mathrm{I})=\mathrm{IA}(47)$
DO $160 \mathrm{I}=1$, LENTH
$\mathrm{J}=\mathrm{I}-((\mathrm{I}-1) / 6) * 6$
$I Z=(I-1) / 6+1$
NRD 340
NRD 350
NRD 360
NRD 370
NRD 380
NRD 390
$160 \operatorname{FLD}(0,6, \operatorname{IB}(\mathrm{I}))=\operatorname{FLD}\left(6^{*}(\mathrm{~J}-1), 6, \operatorname{IREC}(\operatorname{IZ})\right)$
DO $170 \mathrm{~J}=1$, LENTH
NRD 400
$\mathrm{K}=\mathrm{LENTH}-\mathrm{J}+1$
NRD 410
$\operatorname{IF}(\operatorname{IB}(K)) 180,170,180$
170 IB (K) $=$ IA(47)
NRD 420
NRD 430

WRITE (IOTAPE,240)
NRD 440
IERR=IERR +1
NRD 450
IF (IERR-10) 70,70,90
NRD 460
NRD 470
180 IW=K
NRD 480
CALL NTRAN (IRTAPE, 2,ILEN,IREC,IRD)
RETURN
NRD 490
NRD 500
C
190 FORMAT (13H END OF FILE , lI4)
200 FORMAT (25H INPUT/OUTPUT ERROR UNIT ,lI3, 8H STATUS ,1I3)
NRD 510

210 FORMAT (39H NTRAN READ FRRORS REACHED IMT STOP.),
NRD 520
210 FORMAT (39H NTRAN READ ERRORS REACHED LIMIT. STOP.)
NRD 530
220 FORMAT (1X,21A6)
NRD 540

230 FORMAT (1X,13I10)
NRD 550
230 FORMAT (IX,13I10)

NRD 560
240 FORMAT (23H RECORD WAS ALL BLANKS.)
NRD 570
END
NRD 580-


```
IEND=1
```

C	PATCHES TO SUBST	
C		
	SUBROUTINE SUBST	SUBST 10
	COMMON /A/ ITEST, ITAPE, IOTAPE, IRTAPE, IPTAPE, ITYPE, IA	SUBS 11
	COMMON /C/ IW	SUBS 12
	COMMON /IIC/ IB	SUBS 13
	READ (ITAPE, 850) ITES, IRTAP, IPTAP	SUBS 47
C		SUBS 48
C		SUBS 49
C		SUBS 53
C		SUBS 54
	WRITE (IOTAPE, 930) ITES, IRTAP, IPTAP	SUBS 58
C		SUBS174
580	CONTINUE	SUBS175
600	CALL SUNLK	SUBS179]
810	CALL SULOCK	SUBS236]
C	PATCHES TO SUNLK	
C		
	SUBROUTINE SUNLK	SSUK 10
	COMMON /A/ ITEST, ITAPE, IOTAPE, IRTAPE, IPTAPE,ITYPE, IA	SSUK 11
	COMMON /C/ IW	SSUK 12
	COMMON /IIC/ IB	SSUK 13
C	PATCHES TO SULOCK	
C		
	SUBROUTINE SULOCK	SSLK 10
	COMMON /A/ ITEST, ITAPE, IOTAPE,IRTAPE, IPTAPE,ITYPE, IA	SSLK 11
	COMMON /C/ IW	SSLK 12
	COMMON /IIC/ IB	SSLK 13
C	PATCHES TO AMATCH	
C		
	SUBROUTINE AMATCH	AMAT 10]
C		
	COMMON /A/ ITEST, ITAPE, IOTAPE, IRTAPE, IPTAPE, ITYPE, IA	AMAT 291
	COMMON /B/ LENGTH, MATCH	AMAT 292
	COMMON /IID/ ID	AMAT 293
C	PATCHES TO NPRINT WITH FORTRAN WRITE	
C		
	SUBROUTINE NPRINT	NPRI 10
	COMMON /A/ ITEST, ITAPE, IOTAPE, IRTAPE,IPTAPE,ITYPE, IA	NPRI 11
	COMMON /D/ K,IEND,IBLANK	NPRI 12
	COMMON /F/ NCOUT, NWOUT, IWORDS	NPRI 13
	COMMON /IIB/ IC	NPRI 14

$\left.\begin{array}{lrl}\text { SUBROUTINE NPRINT } & \text { NTPR } & 10 \\ \text { COMMON /A/ ITEST, ITAPE, IOTAPE,IRTAPE,IPTAPE,ITYPE,IA } & \text { NTPR } & 11 \\ \text { COMMON /D/ K, IEND, IBLANK } & \text { NTPR } & 12 \\ \text { COMMON /F/ NCOUT, NWOUT, IWORDS } & \text { NTPR } & 13 \\ \text { COMMON /IIB/ IC } & \text { NTPR } & 14\end{array}\right] \mathbf{w}$

PERIODICALS

NONPERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.
Published in three sections, available separately:

- Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $\$ 9.50$; foreign, $\$ 11.75^{*}$.

- Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $\$ 5.00$; foreign, $\$ 6.25$ *

- Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, $\$ 5.00$; foreign, $\$ 6.25^{*}$.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology-for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, $\$ 3.00$; foreign, $\$ 4.00^{*}$.

* Difference in price is due to extra cost of foreign mailing.

Applied Mathematics Series. Mathematical tables, manuals, and studies.
Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.
Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.
Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
National Standard Reference Data Series. NSRDS provides quantitive data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.
Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.
Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Pub-

 lications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.
CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse

U.S. Department of Commerce Springfield, Virginia 22151

Order NBS publications from: Superintendent of Documents
U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE

[^0]: ${ }^{1}$ Headquarters and Laboratories at Gaithersburg. Maryland, unless otherwise noted: mailing address Washington, D.C. 20234.
 \because Located at Boulder. Colorado 80302 .
 a Located at 5285 Port Royal Road. Springfield, Virginia 22151.

