National Bureau of Standaros Library, E-01 Admin. Bldg.

MAY 19 1970

NBS TECHNICAL NOTE 500

National Bureau of Standards JUL 2 8 1972

> QC 100 U5153

in to

Edit-Insertion Programs for Automatic Typesetting of Computer Printout

U.S. ARTMENT OF MMERCE National Bureau of Standards

ITED STATES RTMENT OF IMERCE

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molecular Physics—Radio Physics "—Radio Engineering "—Time and Frequency "—Astrophysics "—Cryogenics."

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry. **THE INSTITUTE FOR APPLIED TECHNOLOGY** provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards—Weights and Measures — Invention and Innovation — Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Measurement Engineering—Electronic Technology—Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation-Linac Radiation-Nuclear Radiation-Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information — Computer Services — Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data—Clearinghouse for Federal Scientific and Technical Information "—Office of Technical Information and Publications—Library—Office of Public Information—Office of International Relations.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234. ² Located at Boulder, Colorado 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

Nat. Bur. Stand. (U.S.), Tech. Note 500, 50 pages (Apr. 1970) CODEN: NBTNA

Edit-Insertion Programs for Automatic Typesetting of Computer Printout

Carla G. Messina and Joseph Hilsenrath Office of Standard Reference Data National Bureau of Standards Washington, D.C. 20234

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402 (Order by SD Catalog No. C13.46:500), Price 60 cents.

FOREWORD

This report describes one of a series of computer programs being developed by the Data Systems Design Group of the NBS Office of Standard Reference Data to assist the Data Centers affiliated with the National Standard Reference Data System. The text of this report was reproduced from a typescript prepared on a typewriter terminal connected to a time-shared computer system. The program listing was produced from a magnetic tape which was produced from one of the programs described in this report.

TABLE OF CONTENTS

1.	Introduction 1
2.	Program Characteristics 2
2.1	Modification for Improved Run Efficiency 3
3.	The Subroutines
4.	The Control Cards
4.1	Control Cards for SETLST and AMATCH 6
4.2	The Control Cards for SUBSTITUTE
4.3	Control Cards for KWIND 8
5.	Applications10
5.1	Applications to Program Listings10
5.2	Applications to KWIC Indexes
5.3	Applications Requiring Multiple Grids11
6.	Acknowledgements
7.	References

APPENDIX I

Program Li	stings
SETLST	
KWIND	
Subroutine	SUBST
Subroutine	SUNLK
Subroutine	SULOCK
Subroutine	CHECKI
Subroutine	AMATCH
Subroutine	NPRINT

APPENDIX II

Subroutine	NPRINT		 	 42
Subroutine	PACK		 	 43
Subroutine	TPNRD		 	 44
Patches for	abeled	COMMON.	 	 45

Edit-Insertion Programs for Automatic Typesetting of Computer Printout

by

Carla G. Messina and Joseph Hilsenrath

SETLST and KWIND are FORTRAN programs which accept a card deck or Fortran records on magnetic tape and insert the appropriate flags and shift symbols required by many of the "standard" typesetting programs associated with phototypesetting devices. The programs are specialized to the particular application; the typesetting device and associated programs; and to the desired typeface, by means of control cards and substitution tables supplied at run time. Examples are shown of applications to program listings, KWIC indexes, and normal computer output. When the input is in tabular form, the program permits more sophisticated operations including rearrangement, removal of trailing blanks, typeface changes between columns, etc. These programs can handle any records which can be read by a FORTRAN READ statement under an "A" format control.

Key words: Applications, computers, computer-assisted typesetting, FORTRAN programs, KWIC index, phototypesetting, printing.

1. Introduction

The ease with which a computer is able to prepare a permuted title index has resulted in the proliferation of such indexes. Usually these indexes are produced by a photoreduction of the computer print-out. Often, the quality of the printed index leaves much to be desired. Even when extreme care is taken to see that the text is legible, the pages are not usually in the correct proportion for a standard size of printed page. Program listings are more often than not reproduced with marginal clarity.

A technique for automatic-typesetting of program listings and KWIC indexes enables one to produce a page with so called "graphic arts" quality. A suitably selected typeface and size and a correspondingly appropriate page depth (number of lines per page) offers additional opportunity for economy of space and money as well as improved readability.

A technique for automatic typesetting of tables direct from magnetic tapes was developed at NBS by W. R. Bozman in 1962 [1]. Since that time several books of data have been produced by this method. The production of each of these books entailed the preparation of special programs requiring the services of a programmer experienced in machine language programming and having detailed knowledge of the operation of the Linofilm machine.

A more general pioneering effort in computer-assisted typesetting was carried on at MIT under the leadership of Dr. Michael P. Barnett. While it is unfortunate that the programs produced by Barnett and coworkers have not been maintained in recent years, the results of that work - described too modestly as "experiments" - have been fully recorded [3].

In recent months the Data Systems Design group of the NBS Office of Standard Reference Data has addressed itself to the problem of preparing a series of general purpose programs for text preparation, editing and photocomposition. This report describes the two programs which will enable any computer user to prepare magnetic tapes for phototypesetting of program listings, of KWIC indexes, and other material normally run on a line printer.

1

The program SETLST is in the spirit of the pioneering work of Barnett [3]. In some respects it is less general than that of Barnett's TABPRINT, since we do not typeset column headings and rules, but rather rely on overlays (for these.) It is more flexible where character stream transformation is required in changing upper case characters to upper and lower case, and in substitution of Greek characters and special symbols for their designation in the text.

Unlike TABPRINT which produces output to drive a particular photounit, SETLST produces tapes which need to be run through a typesetting program before the material can be set. It is however a feature of SETLST that it can insert any flags or header as may be required and hence is not restricted to a particular typesetting program or a particular machine. The specific strings or headers or flags are supplied at run time.

The program KWIND uses the same subroutines as SETLST but is especially tailored for typesetting of KWIC indexes. It is a characteristic of KWIC indexes that they have a gutter in the middle of the page which the KWIND program recognizes in order to operate on each half separately. On either side of the gutter KWIC lines have one of five characteristics, the line is either set flush left, or flush right, or flush left and right with a gap in the middle, or completely full or completely blank. The KWIND program scans the line, determines which type of line it is, and proceeds in the following manner. The flush left line is set flush left, and the program goes on to the next line. The flush right line is set flush right and the program goes on to the next line. The third type of line requires fancier treatment. The left hand piece is set flush left exclusive of the trailing blanks, the rest of the line is reset flush right without film advance and ignoring the leading blanks, then the program goes on to the next line. The fourth type of line is justified to an appropriate pica width. In addition to the two main fields described above, KWIND allows the designation of two additional fields to carry an identification. As duplication on both the left and right side of the index.

2. Program Characteristics

The programs discussed here operate on a file consisting of a program deck, or a series of records on tape, or the output tape (print tape) of a KWIC index, to produce another tape in precisely the format required for phototypesetting systems at the Government Printing Office or on other comparable systems. The program - suitably instructed via control cards - inserts a sequence of flags or locators or format designators where needed. The program is specialized to the particular application; the typesetting device and associated programs; and to the desired typeface; by means of control cards and a substitution table supplied at run time.

The substitution table is required to provide capital letters where desired and to indicate the location of punctuation and other symbols, the distribution of which is not standard on keyboards or grids. Another important use of the substitution table is to insert instructions in the character stream to obtain characters (mathematical symbols, Greek letters, etc.) not on the primary grid.

In most cases a typeset page will be longer than the 60 or so lines on a normal computer listing, hence the headings or dates or footings or page numbers which often appear on each page of computer output are extraneous and must be deleted. This the program does in an interesting way.

A series of control cards are supplied which contain the exact contents of the lines that are to be deleted. There is one card for each type of line. Any line in the file whose first 80 characters match any of the control cards is automatically ignored. While this takes care of any number of lines of text which remain fixed from page to page, there is still the problem of ignoring lines which give the page number which will vary from page to page. For this purpose, a provision has been made for indicating which fields are to be ignored in making the match. Since information which varies from page to page (like a table or a page number) is in a fixed location, an "ignore" symbol in these positions will do the job. Which symbol is used as an "ignore" symbol is open to choice as it is specifically indicated on one of the control cards.

2.1 Modification for Improved Run Efficiency

The programs given in the following pages are written in as low level dialect of Fortran as possible to facilitate their use on machines of different manufacture and compilers of different vintage. As a consequence the programs may be somewhat less efficient than ones written without these restraints.

In particular, we have made it a practice to imbed arguments in CALL statements rather than placing them in labeled COMMON. Experience in running production jobs on the NBS compiler indicated that a 10% saving in run time was achieved by modifying the program by the introduction of a set of labeled common statements. These and other changes needed to take advantage of the features of the compiler on the NBS 1108 are given in Appendix II. The places where these changes are to be made are clearly marked on the program listings in Appendix I.

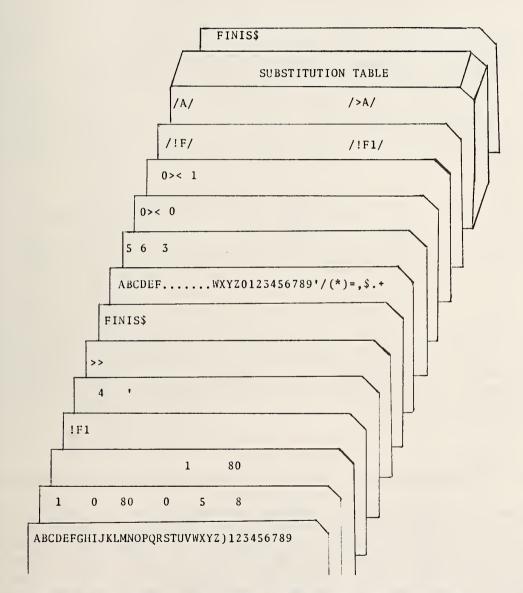


Figure 1a. The control cards and substitution table required by SETLST to format computer output for processing through the Mod I Autoset program at the Government Printing Office in order to utilize the monowidth typewriter grid shown in Figure 2.

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456	5789 /
1 0 80 0 5 8	
FIELD 1 GOES FROM 1 TO 80	
THE FOLLOWING 1 CARDS CONTAIN	THE INSERT STRINGS.
!F1	
0	
SUBROUTINE AMATCH INPUT	
4 *	
>>	
FINIS\$	
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456	5789'/(*)=,5.+
5 6 3	
0>< 0	
0>< 1	
/!F1/	/!F1/
/A/	/>A/
/B/	/>B/
/C/	/>C/
/D/	/>D/
•	÷
/X/	/>X/
/Y/	/>Y/
/Z/	/>Z/
/+/	/>8/
/=/	/>9/
/*/	/>0/
/// 半	1>11
/(/	1>,1
1)/	/>./
/@/	/>2/
/#/	/>1/
/&/	/>-/
/:/	/>;/
	/// ¥ />?/
	12:1
FINIS	

Figure 1b. A printout supplied at the end of a SETLST run of the control cards shown in Figure 1a. Note that the substitution table which was entered in free-field format has been lined up for readability. The slash shown as string delimiters are uniformly supplied by the program regardless of what the actual string delimiter was on input. In particular, since the delimiter itself cannot be contained in the string it delimits, the control cards marked above with an asterisk had periods for delimiters.

Linofilm Keyboard Chart CLARINDA TYPEWRITER

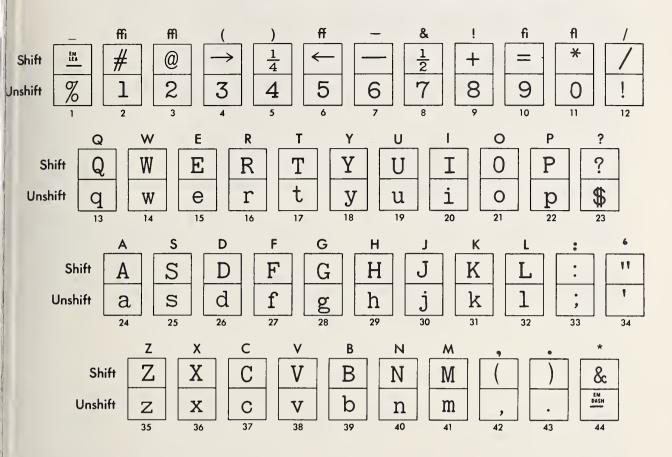


Figure 2. The layout of characters on the monowidth grid used to typeset the examples shown here. Note the connection between the layout of the graphics and the substitution table in the previous figure. Because other typefaces have different distributions of characters in the shift and unshift position, it is a great advantage to define the locations of the character via a substitution table rather than in the program proper. The advantage of this grid is that it contains all of the characters on a model 26 key punch. The use of most other grids for typesetting of computer listings require time consuming grid changes.

5

X-4

The program SETLST makes use of two general purpose subroutines. The first of these, AMATCH, compares an input record to see if the front part matches one of a number of character strings supplied at run time. SETLST uses this to throw away unwanted lines from the input such as page number, page headings, etc.

The second, SUBSTITUTE, is used here primarily to insert shift symbols ahead of those characters which must appear in upper case. The input for this subroutine, which is supplied at run time via a substitute table, also specifies the precise characters which must be inserted in the text stream in place of such punctuation and graphic characters as, :, ?, /, =, +, -, etc. Which characters are substituted for the above symbols depend on the layout of a particular typesetting grid. For this reason the string substitutions are not built into the program. They are supplied on cards as part of the input. This makes the program applicable to systems other than those in use at the Government Printing Office. Other applications of SUBSTITUTE can be found in NBS Technical Note 470 [2]. Figure 1 shows the control cards and substitution table for the character layout on the Clarinda Typewriter grid in use at the Government Printing Office.

The subroutines PACK and N PRINT are used in this program to repack the characters, six to a computer word, and to write them on tape in records longer than the 132 characters normally permitted in FORTRAN. The repacking is necessary as the original files are read in and manipulated in Al format. The subroutine N PRINT is required in order to write longer records than is possible under FORTRAN available on the NBS machine. In this assembly the record length (NCOUT) is specified as 300 characters. In normal usage this figure should be set to coincide with the size of the input buffer of the typesetting program for which the output tape is being prepared.

The Control Cards

4.1 Control Cards for SETLST and AMATCH

The first control card contains the alphabet in order starting in card column one followed by the integers in increasing order. In card column 50 is the end of line symbol required by the typesetting program. The program logic makes use of the location of the characters on the first control card in such a way as to avoid entirely the need to know how a particular machine recognizes a character on a card, what the internal bit representation of that character is, and where that character is placed in a machine word. Nor is it dependent on whether a single character is stored left-adjusted, right-adjusted or any other way. In this way the program is independent of whether the particular machine stores away 3 characters per machine word, or 6, or any number. If a typesetting program requires a particular character as a halt signal, that character must be punched into card column 50. The program ends the tape with two characters - a blank and the character designated in card column 50. Pains are taken to ensure that these two characters appear in the same record.

The second control card has six switches, each switch takes up five card fields and must be right adjusted in the field. The first switch contains the number of fields to process (greater than zero). The second switch should be set to -1 when only the printer will have the output, to zero when the printer and a tape will have the output, and to 1 when only the tape will contain the output. The third switch contains the length in characters of the input records (80 if from cards, and up to 132 if from tape records.) The fourth switch should be zero when all fields and their locators are to be put out regardless of whether or not the field is completely blank. It should be set to one when blank fields are to be ignored completely. This provision alleviates the flashing of unnecessary blanks. The fifth switch is the unit number from which to read the records to be typeset. The sixth switch is the number of the tape unit on which to write the output.

The third control card contains two numbers for each field denoted by the first switch. These numbers must be separated by at least one space. They indicate the starting and ending locations of the data to be extracted from the input records.

The next group of control cards contain the typesetting flags to be inserted ahead of the segments of the input. The flags are terminated by a blank. There must be as many flags as data fields (segments specified in switch one.) The fifth type of control card carries the header information in (I2,78A1) format as required by some of the typesetting programs. A blank card must be inserted for those programs which do not require a header.

The next set of controls are needed for the subroutine AMATCH. The first card contains 2 characters in free-field form. The first of these is the character used to terminate the "match strings" discussed below. The next character is treated as a universal character when found in the "match string." It is used to cope with variable pieces of an otherwise fixed context, such as a page number in a heading line. The "match" strings are punched starting in column 1 and extend up to the string deliminator or the end of the card. The control cards for AMATCH are terminated by a card carrying FINIS followed by the character used to terminate the "match" strings.

The last set of control cards following AMATCH carry the instructions for the SUBSTITUTE subroutine. They are described in the next section.

4.2 The Control Cards for SUBSTITUTE

The first control card serves to define the punch configuration for the characters in the text as well as the control characters upon which the operations depend. The presence of the characters on the first card obviates the need to define them explicitly in the program. This simple device makes the program independent of a variety of incompatabilities which are such a source of trouble in adapting programs to different computers.

The program logic uses the disposition of the characters on the first control card in such a way as to avoid entirely the need to know how a particular machine recognizes a character on a card, what the internal bit representation of that character is, and where that character is placed in a machine word. In this way the program is independent of whether the particular machine stores away 3 characters per machine word, or 6, or even 7. Nor is it dependent on whether a single character is stored left-adjusted, right-adjusted or any other way. The alphabet is punched in order into the first 26 card columns hereinafter referred to as cc, and the digits 0,1,..., 9 follow in cc27 through 36. The character to be used to delineate the strings in the output of this program is designated in cc38; while cc47 must be left blank in this program and in all programs in this series.

The second card contains three switches in FORMAT (312). They serve no purpose here but must be present nevertheless.

The third and fourth control cards in FORMAT (4X, 2A1, I2), specify the format of the <u>input and output</u> records, respectively. The three items on each card perform the following tasks:

a. The first two items designate the characters used for case-shift lock and case-shift unlock. Their use is required only under circumstances described below.

b. The third item instructs the program to insert on input and delete on output, the case-shift symbols designated in item a. If this number is set to zero, the option is bypassed, in which case the first and second items discussed in item a above may be left blank. If this item is a non-zero integer, it distributes, when present on the third control card, and deletes, if present on the fourth control card, the shift case symbols indicated by the two previous items on the control cards.

Immediately following the fourth control card for substitute is a deck of cards containing the instructions for the string substitutions. In this version of the program, each card carries two strings-the original one and its substitute. The length of the strings this program handles is limited to a total of 76 for the string and its substitute. Thus a "long" string can be replaced by a "short" one and vice versa. Replacement of "long strings" by "long strings" can often be achieved by breaking them up into pieces and substituting piecemeal.

Each of the strings is delimited by a balanced character which is read from the first column of the substitution card. In this way each card can have its own string delimiter. The only requirement is that the delimiter character must not be one which is in the string it delimits. See Figure 1 for a sample set of control cards for this program.

The substitution table must be followed by a card with the word FINIS starting in ccl. It may be followed by the text to be manipulated if the input is from a card reader.

A number of text editing systems reserve one character as a precedence symbol to indicate an upper case letter. Thus if we punch *WASHINGTON we would expect a suitable printer to print out Washington. A single symbol could be used to print the word in all caps if one were prepared to type *W*A*S*H*I*N*G*T*O*N. This is obviously too time consuming as well as wasteful of valuable computer space. The problem is easily solved by reserving another symbol such as an apostrophe to indicate shift lock and shift unlock. In that case our test word would be keyboarded as follows: 'WASHINGTON'.

Subsequent transformation of these symbols as would be required in going to automatic typesetting or converting from the BCD representation to EBDIC would have to treat the character following the W differently in the strings 'WASHINGTON' and *WASHINGTON. This problem is solved by SUBSTITUTE in the following way. When instructed to do so via the third control card, the program changes 'WASHINGTON' to 'W'A'S'H'I'N'G'T'O'N. If instructed to do so via the fourth control card and after carrying out the substitution, the interior shift symbols are deleted and the word is imbedded between the shift and lock symbol and unlock symbol.

4.3 Control Cards for KWIND

The first control card for this program is identical to the first card in SETLST and serves the same purpose.

On control card two, switches 1,2,3, and 4 perform the same functions respectively as switches 2,3,5, and 6 of control card two in SETLST.

The third control card defines the fields into which the input line is broken. The order in which the fields are defined is important as the first and fourth fields are taken to be identifiers and the middle two as the index information. Suitable use of 0,0 on this control card provides for omission of one or more of the four fields. Thus on a system which cannot handle the full width of a KWIC index, it is possible to break the job into two portions. The left half can be run through first and the second half on a succeeding run. The two halves can then be pasted together using the duplicate identification numbers for alignment. Figure 9 was produced in this manner on a photounit which permitted a maximum width of only 43 picas. This method may be troublesome if the photounit does not advance the film uniformly.

The next 8 cards serve to define the manner in which line segments will be set as outlined in the introductory remarks on KWIND. Each card carries an arbitrary string of characters which is required by either the photounit or its associated typesetting program to achieve a flush left line, a flush right, a justified line, etc. The order of the cards is important as the program performs different operations after inserting different flags.

The first and the eighth cards must carry the flag (a locator) for the first and the fourth field (in this case an identifier). How this field is set is open to control by the typesetting program external to this program. The remaining cards carry the flags required to achieve the following results:

the 2nd card carries a flag for quad left setting of the first half of a line in the second field.

the $\frac{3rd}{second}$ carries a flag for quad right setting of the second half of a line in the second field.

the 4th card carries a flag for setting a justified full line in the second field.

the 5th card carries the flag for the quad left setting of the first half of the third field.

the 6th card carries the flag for quad right setting of the second half of the third field.

the 7th card carries the flag for setting a justified full line in third field.

The above flags are considered terminated by a blank. All of the eight cards must be present. A blank card is treated as a string of zero length. It will affect the result only in that no flag will be inserted. The last control card, and those which follow are the same as in SETLST.

5. Applications

Applications of these programs fall into three main classes. The first and most straightforward is where we wish the final product to be a facsimile of the page produced on a line printer. Computer listings and results of report generators fall in this category. These applications require the duplication of the results, linefor-line and character-for-character, as they appear on the line-printer. The typesetting of such material requires the use of a monowidth typeface as is ordinarily found on a typewriter.

In the second application, we wish to improve the readability of the output by an appropriate transformation of the alphabetic characters to read as if they were originally entered in upper and lower case. Straight text, KWIC indexes, and bibliographies are examples of material which benefit from such treatment. In this application it is often not necessary to restrict the final output to a monowidth typewriter face as the program has ample provision for lining up the output in columns as required. Thus a fancier typeface can be used.

In the third application we can include those cases where material needs to be highlighted through the use of italics or boldfaced characters or even special characters like mathematical symbols or Greek letters. Such applications may require the use of more than one grid on the phototypesetting unit.

COMPND 1 3-*BENZYL-2,6-DIPHENYL-2/H-THIOPYRAN-5-	BPTPCA
COMPND 2 CARBOXALDEHYDE	BPTPCA
AUTHOR 1 MAZHAR–UL–HAQUE, C.N.CAUGHLAN	BPTPCA
JRNL 1 CHEM.COMMUNIC 34 1967 066	BPTPCA
CDFRML 1 C25H2001S1	BPTPCA
CRYST1 11.004 11.062 16.855 96.5 P 21/N	BPTPCA
COMPND 1 2,6-*DIMETHYLBENZOIC ACID	DMBNZA10
AUTHOR 1 R.ANCA, S.MARTINEZ-CARRERA, S.GARCIA-BLANCO	DMBNZA10
JRNL 1 ACTA CRYST. 23 1010 1967 001	DMBNZA10
CDFRML 1 (C1H3)2 C3H3C10101H1	DMBNZA10
CRYST1 15.24 4.04 13.16 94*08 P 21/A	DMBNZA10
CRYST2 0.01 0.01 0.01	DMBNZA10
CRYST3 4 1.227 1.21	DMBNZA10
COMPND 1 2 ALPHA-*BROMOARBORINONE	BRARB010
AUTHOR 1 O.KENNARD, L.RIVA SDI SANSEVERINO, J.S.ROLLETT	BRARB010
JRNL 1 TETRAHEDRON 23 131 1967 16	BRARB010
CDFRML 1 C30H47BR101	BRARB010
CRYST1 12.84 8.68 22.46 P 21 21 21	BRARB010
CRYST2 0.01 0.01 0.04 219.0	BRARB010
CRYST3 4 1.34 1.39	BRARB010
COMPND 1 (*GLYCYL-/L-HISTIDINATO) COPPER(II) SESQUIHYDRATE	CUGLHI10
AUTHOR 1 J.F.BLOUNT, K.A.FRASER, H.C.FREEMAN, J.T.SZYMANSKI,	CUGLHI10
AUTHOR 2 CH.WANG	CUGLHI10
JRNL 1 ACTA CRYST. 22 396 1967 001	CUGLHI10
CDFRML 1 C8H10CU103N4/ 1.5H201	CUGLHI10
CRYST1 11.24 17.84 P 43 21 2	CUGLHI10
CRYST2 0.02 0.04	CUGLHI10
CRYST3 8 1.772 1.72 0.02	CUGLHI10
COMPND 1 *MONOAQUO(BETA-ALANYL-/L-HISTIDINATO) COPPER(II)	ALHICU10
COMPND 2 MONOHYDRATE	ALHICU10

Figure 3. A portion of a punched card data file set in a monowidth typeface by SETLST using the control cards shown in Figure 1.

5.1 Applications to Program Listings

Program listings represent a class of applications where it is important to reproduce the material exactly as it appears on punched cards, or on the print tape which drives a line printer, or on magnetic tape records. A monowidth character set resembling the type on a typewriter such as is shown in Figure 2 is required here.

In this application we set switch 1 and 3 of the second control card to 1 and 80 respectively to define the entire card as a single field; designate the three characters !F1 to be inserted at the beginning of each line in the output; instruct the program via the substitution table to capitalize each letter of the alphabet and on which keys to find the graphics +, -, =, (,) etc. Figures 3, 4, and 5 show the variety of material which was set from a deck of cards and the control cards shown in Figure 1.

	CALL NUMFND(SCAN, A, 80, START, GOOF)
	IF((A.GE.79).OR.(GOOF.LE.O)) CALL EXIT
	CALL NUMFND(SCAN, A, 80, STOP, GOOF)
	IF(GOOF.LE.O) CALL EXIT
	READ(5,1) (SCAN(A), A=1,80)
	D0 7 A=1,72
~	IF(SCAN(A).NE.BLANK) GO TO 8
7 9	
10	WRITE(6,10)
10	FORMAT('ONO OR POOR SKIPCC CARD. RUN ABORTED.') CALL EXIT
8	D0 11 $B=1,6$
Ŭ	IF(SCAN(A).NE.CHK(B)) GO TO 9
11	A=A+1
	D0 12 B=A,80
	IF(SCAN(B).NE.BLANK) GO TO 13
12	CONTINUE
	GO TO 14
13	SKIP=SCAN(B)
14	READ(5,1) (SCAN(A), A=1, 80)
19	READ(7, 1, END=20) (TAPE(A), A=1, 80)
	DO 16 B=START, STOP
	IF(SCAN(B).EQ.SKIP) GO TO 16 IF(TAPE(B).NE.SCAN(B)) GO TO 19
16	CONTINUE
10	WRITE(6,17) (TAPE(A), A=1,80)
17	FORMAT(17X,80A1)
	GO TO 19
18	CALL EXIT
20	D=D+1
	GO TO 15
	END

Figure 4. A portion of a program listing phototypset at the Government Printing Office from a tape produced by SETLST from the original program deck, using the control cards shown in Figure 1. In order to improve the readability of a KWIC index, it is necessary to do more than set it in a fancy typeface. It is necessary to transform the alphabetic characters to appear in upper and lower case. This is easily accomplished in KWIND via a more extensive substitution table. A typical end result is seen in Figure 6 where most of the words appear in initial caps while articles, preposition, etc., are set in lower case and certain words like USA are set in all caps.

The original format of the index is shown in Figure 7 and the substitution table that accomplished this transformation is shown in Figure 8. The improved readability of Figure 6 results more from the conversion to upper and lower case than it does from the variable width typeface, as can be seen from Figure 9 which is set in Times Roman type but in all caps.

5.3 Applications Requiring Multiple Grids

Thus far the applications stressed the use of but a single grid. Both SETLST and KWIND can handle as many grids as are required or as are permitted by the typesetting program for which the tape is being prepared.

In a number of existing abstract journals (Nuclear Science Abstracts or U.S. Government Research and Development Reports), Greek letters are spelled out and superior letters or figures are preceded by the word "exp." If the tape which produced these publications were run through SETLST it would be possible to replace the word ALPHA or Alpha by a call (=G3, for example) to the appropriate grid which contained the Greek alphabet. Similarly it is possible to call for superior and inferior characters from an appropriate grid.

DETAILS FOR TABLE 1 SINGLE	PRECISION (8	DIGITS)		
		510110,		
OMNITAB, USING ORTHO SUBROUTI	NE		7094	EXAMPLE 13
BETA-HAT (Y1)	COUNT	BETA-HAT (Y2)		COUNT
1.0012817	2.892	.99999949		6.292
.99780273	2.658	.10000013		5.886
.99932861	3.173	.0099999756		5.613
	3.756	.0010000018		5.745
.99998569	4.844	.000099999866		5.873
1.0000004	6.398	.000010000004		6.398
AVERAGE =	3 954		AVERAGE =	5.968
in Endob	0.001		III DI IIIO D	01000
OMNITAB, USING ORTHO SUBROUTI	NE		1108	EXAMPLE 14
BETA-HAT (Y1)		BETA-HAT (Y2)		COUNT
1.0064697	2.189	.99999990		7.000
.99902344	3.010	.099999700		5.523
.99975586	3.612	.010000125		4.903
.99996948	4.515	.00099998200		4.745
1.0000100	5.000	.00010000109		4.963
.99999968	6.495	.0000099999778		5.654
AVERAGE =	4.137		AVERAGE =	5.464
ORTHO, WITH RE-ORTHOGONALIZAT			1108	EXAMPLE 15
	COUNT	BETA-HAT (Y2)		COUNT
	-3.085	.98419483		1.801
2752.0557	3.439 -3.025	.13523918		. 453
-1057.0931	-3.025	0034660707		129
	-2.164	.0028495983		267
	919	0000049256487		021
1.1663037	.779	.000012094996		. 679
AVERAGE =	-1.976		AVERAGE =	. 419

Figure 5. A typeset version of a formatted computer output. See Figure 14 for the same material photographed from the Computer output.

Thermal Conductance Factors for Preformed	Above-Deck Roof Insulation (1955)	USC	R257
Grading Of	Abrasive Grain for Grinding Wheels (1965)	USC	CS271
Grading Of	Abrasive Grain On Coated Abrasive Products (1967)	USC	PS8
Coated	Abrasive Products (1955)	U SC	R89
Grading of Abrasive Grain On Coated	Abrasive Products (1967)	U'SC	PS8
(1965) Acrylonitrile Butadiene Styrene	ABS Plastic Drain, Waste and Vent Pipe and Fittings	USC	CS270
Acrylonitrile Butadiene Styrene	ABS Plastic Pipe (SDR PR and Class T) (1963)	USC	CS254
Rigid	ABS Plastic Pipe, IPS Dimensions (1959)	USC	CS218
Colors for Kitchen	Accessories (1938)	USC	CS62
Colors for Bathroom	Accessories (1938)	USC	CS63
Stove Pipe And	Accessories (1942)	USC	R 190
Metal Lath Expanded and Sheet and Metal Plastering	Accessories (1960)	USC	R3
	Accoustical Materials (1960)	USC	R262
Solvent Welded Swp Size Cellulose	Acetate Butyrate Pipe (1957)	USC	CS206
Girls, and Boys Knit Underwear Exclusive of Rayon,	Acetate, and Nylon (1955) Infants, Childrens,	USC	CS198
waste and Vent Pipe and Fittings (1965)	Acrylonitrile Butadiene Styrene ABS Plastic Drain,	USC	CS270
PR and Class T) (1963)	Acrylonitrile Butadiene Styrene ABS Plastic Pipe (SDR	USC	CS254
Hollow Metal Single	Acting Swing Doors, Frames and Trim (1928)	USC	R82
	Adhesive Plaster (1952)	USC	R85
Water Resistant Organic	Adhesives for Installation of Clay Tile (1952)	USC	CS181
Polystyrene Plastic Wall Tiles And	Adhesives for Their Application (1950)	USC	CS168
Chasers for Self Opening And	Adjustable Die Heads (1929)	USC	R 51
Hot Dipped Galvanized Ware Coated	After Fabrication (1959)	USC	CS161
Wire Diameters for Mineral	Aggregate Production Screens (1942)	USC	R147
Coarse	Aggregates, Crushed Stone, Gravel, and Slag (1948)	USC	R 163
Polyethylene Sheeting Construction, Industrial And	Agricultural Application (1961)	USC	C S238
(1942)	Agricultural Insecticide and Fungicide Packages	USC	R41

Figure 6. A portion of a KWIC index produced by SETLST from records shown in Figure 7. See Figure 8 for an explanation of circled mistakes.

GRADING OF ABRASIVE GRAIN FOR GRINDING WHEELS (1965) GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1967) COATED ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1967) (1965) GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1967) (1965) GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1967) (1965) ACRYLONITRILE BUTADIENE STYRENE ABS PLASTIC DRAIN, WASTF AND VENT PIPF AND FITTINGS ACRYLONITRILE BUTADIENE STYRENE ABS PLASTIC PIPF, IPS DIMENSIONS (1959) COLORS FOR KITCHEN ACCESSORIES (1938) COLORS FOR RATHROM ACCESSORIES (1938) STOVF PIPF AND ACCESSORIES (1938) STOVF PIPF AND ACCESSORIES (1942) MEIAL LATH EXPANDED ANU SHEET AND METAL PLASTFRING ACCESSORIES (1960) ACCOUSTICAL MATERIALS (1960) ACCUVENT WELDED SWP SIZE CELLULOSS ACRYLONITRILE BUTARTE PIPE (1957) URLS, AND HOYS KHIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) INFANTS, CHIIDRENS, WASTE AND VENT PIPE AND FITTINGS (1965) ACRYLONITRILE BUTARTE PIPE (1957) WATER RESISTANT ORGANICA DHESIVES FOR INSTALLATION OF CLAY TILE (1952) WATER RESISTANT ORGANICA DADUISTALE NITADIENE STRENE ARS PLASTIC DRAIN, ADHESIVE PLASTER (1952) WATER RESISTANT ORGANICA DADUISTABLE DIF HEADS (1929) HOT DIPPED GALVANIZED WARE COATED ADHESIVES FOR THEIR APPOLICATION (1950) CHASERS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1942) COARSE AGGREGATES, CRISHED STONE, GRAVEL, AND SLAG (1948) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION (1951) WIRE DIAMETERS FOR MINERAL AGGREGATES, CRISHED STONE, GRAVEL, AND SLAG (1948) VELYETHYLENF SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES		84
GRADING OF ABRASIVE GRAIN FOR GRINNING WHEELS (1965) GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1955) GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1955) GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1957) (1965) GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1967) ACRYLONITRILE BUTADIENE STYRENE ABS PLASTIC DRAIN, WASTF AND VENT PIPF AND FITTINGS ACRYLONITRILE BUTADIENE STYRENE ABS PLASTIC PIPF, IPS DIMENSIONS (1959) COLORS FOR RATHROOM ACCESSORIES (1938) COLORS FOR RATHROOM ACCESSORIES (1938) STOVF PIPF AND ACCESSORIES (1938) STOVF PIPF AND ACCESSORIES (1942) WELAL LATH EXPANDED AND SHEET AND METAL PLASTFRING ACCESSORIES (1960) ACCOUSTICAL MATFRIALS (1960) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC ORAIN, ACRYLONITRILE BUTADIENE STRENE ARS PLASTIC ORAIN, ACRYLONITRILE BUTADIENE STRENE ARS PLASTIC ORAIN, ACRYLONITRILE AUTADIENE STRENE ARS PLASTIC ORAIN, ACRYLONITRILE AUTADIENE STRENE ARS PLASTIC ORAIN, ACRYLONITRILE BUTADIENE STRENE ARS PLASTIC ORAIN, ACRYLONITRILE BUTADIENE STRENE ARS PLASTIC ORAIN, ACRYLONITRILE BUTADIENE STRENE ARS PLASTIC ORAIN, ACRYLONITRILE BUTADIENES FOR INSTALLATION OF CLAY TILE (1952) WATER REFSISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) WATER REFSISTANT ORGANIC ADHESIVES FOR THEIN APPLICATION (1950) CHASFR FOR SELF OPENING AND		n,
GRADING OF ABRASIVE GRAIN FOR GRINNING WHEELS (1965) GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1955) GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1955) GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1957) (1965) GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1967) ACRYLONITRILE BUTADIENE STYRENE ABS PLASTIC DRAIN, WASTF AND VENT PIPF AND FITTINGS ACRYLONITRILE BUTADIENE STYRENE ABS PLASTIC PIPF (SOR PR AND CLASS T) (1963) RIGID ABS PLASTIC PIPF, IPS OIMENSIONS (1959) COLORS FOR RATHROOM ACCESSORIES (1938) COLORS FOR RATHROOM ACCESSORIES (1938) STOVF PIPF AND ACCESSORIES (1938) STOVF PIPF AND ACCESSORIES (1942) WEIAL LATH EXPANDED AND SHEET AND METAL PLASTERING ACCESSORIES (1960) ACCOUSTICAL MATFRIALS (1960) GULVENT WELDED SWP SIZE CFLLULOSE ACFTATE BUTYRATF PIPE (1957) GIRLS, AND HOYS KHIIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYI,ON (1955) INFANTS, CHILDRENS, MASTE AND VENT PIPF, AND FITTINGS (1965) PR AND CLASS 1) (1963) HOLLOW METAL SINGLE ACTINE BUTYRATE PIPE (1957) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) WATER RESISTANT ORGANIC ADHESIVES FOR THEIR APPLICATION (1950) CHASFRS FOR SELF OPENING AND ADHESIVES FOR THEIR APPLICATION (1950) HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1959) WIRE DIAMETERS FOR SILF OPENING AND ADHESIVES FOR THEIR APPLICATION (1950) HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1959) WIRE DIAMETERS FOR SILF OPENING AND ADJUSTABLE DIF HEADS (1942) COARSE AGGREGATES, CRUSHED STORE, GRAVEL, AND SLAG (1948) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) (1942)	USC R	257
COATED ARRASIVE PRODUCTS (1955) GRADING OF ABRASIVE GRAIN ON COATED ARRASIVE PRODUCTS (1967) (1965) GRADING OF ABRASIVE GRAIN ON COATED ARRASIVE PRODUCTS (1967) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC DRAIN, WASTE AND VENT PIPF AND FITTINGS ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC PIPF (SDR PR AND CLASS T) (1963) RIGID ARS PLASTIC PIPF, IPS DIMENSIONS (1959) COLORS FOR RATHROOM ACCESSORIES (193R) COLORS FOR RATHROM ACCESSORIES (193R) STOVF PIPF AND ACCESSORIES (1942) WEIAL LATH EXPANDED ANU SHEET AND METAL PLASTFRING ACCESSORIES (1942) SOLVENT WELDED SWP SIZE CFLLULOSE ACFTATE BUTYRATF PIPE (1957) GIRLS, AND HOYS KHIT UNDERWEAR EXCLUSIVE OF RAYON, ACCESTATE, AND NYION (1955) INFANTS, CHIIDRENS, ACRYLONITRILE BUTADIENF STYRENE ARS PLASTIC DRAIN, ACCYLONITRILE BUTADIENF STYRENE ARS PLASTIC DRAIN, PR AND CLASS 1) (1963) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) WATER RESISTANT ORGANIC ADHESIVES FOR THEIR APPLICATION (1950) CHASFNS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) WATE INDIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATE PRODUCTION SCREENS (1942) POLYETHYLENF SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1951) (1942)	USC C	S271
GRADING OF ABRASIVE GRAIN ON COATED ABRASIVE PRODUCTS (1967) (1965) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC DRIN, WASTE AND VENT PIPF AND FITTINGS ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC PIPF (SDR PR AND CLASS T) (1963) RIGID ABS PLASTIC PIPF, IPS DIMENSIONS (1959) COLORS FOR RATHROOM ACCESSORIES (193R) COLORS FOR RATHROM ACCESSORIES (193R) STOVF PIPF AND ACCESSORIES (193R) STOVF PIPF AND ACCESSORIES (1942) ME1AL LATH EXPANDED ANU SHEET AND METAL PLASTFRING ACCESSORIES (1942) STOVF PIPF AND ACCESSORIES (1942) STOVF PIPF AND ACCESSORIES (1960) ACCOUSTICAL MATFRIALS (1960) SOLVENT WELDED SWP SIZE CFLLULOSE ACFTATE BUTYRATF PIPE (1957) GINLS, AND KOYS KHIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) INFANTS, CHIDDERNS, WASTE AND VENT PIPE AND FITTINGS (1965) HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) WATER RESISTANT ORGANIC ADHESIVES FOR THEIR APPLICATION OF CLAY TILE (1952) WATER RESISTANT ORGANIC ADHESIVES FOR THEIR APPLICATION (1950) CHASFKS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) WATER DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATE PRODUCTION SCREENS (1942) POLYETHYLEARE SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) (1942)	USC P	PS8
(1965) ACRYLONITRILE BUTADIENE STYRENE ABS PLASTIC DRAIN, WASTE AND VENT PIPE AND FITTINGS ACRYLONITRILE BUTADIENE STYRENE ABS PLASTIC PIPE (SOR PR AND CLASS T) (1963) RIGID ABS PLASTIC PIPE, ISS DIMENSIONS (1959) COLORS FOR KITCHEN ACCESSORIES (193A) COLORS FOR RATHROOM ACCESSORIES (193A) STOVE PIPE AND ACCESSORIES (193A) STOVE PIPE AND ACCESSORIES (1942) METAL LATH EXPANDED ANU SHEET AND METAL PLASTERING ACCESSORIES (1960) ACCOUSTICAL MATFRIALS (1960) SOLVENT WELDED SWP SIZE CFLULLOSE ACETATE BUTYRATE PIPE (1957) GINLS, AND BOYS KHIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) INFANTS, CHILORENS, WASTE AND VENT PIPE AND FITTINGS (1965) PR AND CLASS 1) (1963) MOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) WATER RESISTANT ORGANIC ADHESIVE FOR INSTALLATION OF CLAY TILE (1952) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) WATER SET SON SELF OPENING AND ADJUSTABLE DIF HEADS (1929) WATER DIAMETERS FOR SILF OPENING AND ADJUSTABLE DIF HEADS (1929) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRISHED STONE, GRAVEL, AND SLAG (1948) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATE PRODUCTION SCREENS (1942) AGRICULTURAL APPLICATION (1961) (1942)	USC R	889
ACRYLONITRILE BUTADIENE STYRENE ABS PLASTIC PIPF (SDR PR AND CLASS T) (1963) RIGID ABS PLASTIC PIPF, IPS DIMENSIONS (1959) COLORS FOR KITCHEN ACCESSORIES (193A) COLORS FOR RATHROOM ACCESSORIES (193A) STOVF PIPF AND ACCESSORIES (1942) WEIAL LATH EXPANDED ANU SHEET AND METAL PLASTFRING ACCESSORIES (1940) SOLVENT WELDED SWP SIZE CFLLULOSE ACFTATE BUTYRATF PIPE (1957) GINLS, AND HOYS KNIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) NEIAL UNT HELDED SWP SIZE CFLLULOSE ACFTATE BUTYRATF PIPE (1957) GINLS, AND HOYS KNIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) NETAL UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) WASTE AND FITTINGS (1965) ACRYLONITRILE BUTADIENF STYRENE ARS PLASTIC DRAIN, ACRYLONITRILE BUTADIENF STYRENE, AND TRIM (1928) MUT DIPEDE OR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) WIRE DIAMETERS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCRFENS (1942) COARSE AGGREGATES, CRISHED STONE, GRAVEL, AND SLAG (1948) (1942) AGRICULTURAL APPLICATION (1961) (1942)	USC P	PS8
RIGID ABS PLASTIC PIPF, TPS DIMENSIONS (1959) COLORS FOR KITCHEN ACCESSORIES (193A) COLORS FOR RATHROOM ACCESSORIES (193A) STOVF PIPF AND ACCESSORIES (1942) WE1AL LATH EXPANDED AND SHEET AND METAL PLASTFRING ACCESSORIES (1942) SOLVENT WELDED SWP SIZE CFLLULOSE ACFTATE BUTYRATE PIPE (1957) OIRLS, AND HOYS KINIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) INFANTS, CHILDRENS, WASTE AND VENT PIPE AND FITTINGS (1965) ACCYLONITRILE BUTADIENE STYRENE ARS PLASTIC DRAIN, PR AND CLASS 1) (1963) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC DRAIN, HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) ADHESIVE PLASTER (1952) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) WATER RESISTANT ORGANIC ADHESIVES FOR THEIR APPLICATION (1950) CHASENS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) HOT DIPPED GALVANIZED WARE COATED AFTER FRABS (192) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRISHED STONE, GRAVEL, AND SLAG (1948) WATER FETING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) (1942)	USC C	S270
COLORS FOR KITCHEN ACCESSORIES (1938) COLORS FOR RATHROOM ACCESSORIES (1938) STOVF PIPF AND ACCESSORIES (1942) ME1AL LATH EXPANDED AND SHEET AND METAL PLASTERING ACCESSORIES (1960) ACCOUSTICAL MATFRIALS (1960) SULVENT WELDED SWP SIZE CFLULLOSE ACFTATE BUTYRATE PIPE (1957) GIRLS, AND BOYS KHIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) INFANTS, CHILORENS, WASTE AND VENT PIPE AND FITTINGS (1965) ACRYLONITRILE RUTADIENF STYRENE ARS PLASTIC DRAIN, PR AND CLASS 1) (1963) ACRYLONITRILE RUTADIENF STYRENE ARS PLASTIC DRAIN, HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1950) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRISHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) (1942)	USC C	CS254
COLORS FOR RATHROOM ACCESSORIES (1938) STOVF PIPF AND ACCESSORIES (1942) METAL LATH EXPANDED AND SHEET AND METAL PLASTFRING ACCESSORIES (1942) ACCOUSTICAL MATFRIALS (1960) ACCOUSTICAL MATFRIALS (1960) SOLVENT WELDED SWP SIZE CFLLULOSE ACFTATE BUTYRATE PIPE (1957) OIRLS, AND BOYS KHIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) INFANTS, CHIDRENS, WASTE AND VENT PIPE AND FITTINGS (1965) ACRYLONITRILE BUITADIENE STYRENE ARS PLASTIC DRAIN, ACRYLONITRILE BUITADIENE STYRENE ARS PLASTIC DRAIN, ACRYLONITRILE BUITADIENE STYRENE ARS PLASTIC PIPE (SDR HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) ADHESIVE PLASTER (1952) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) CHASERS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1950) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRISHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND GRICULTURAL APPLICATION (1961) (1942)	USC C	S216
SOLVENT WELDED SWP SIZE CELLULOSE ACFTATE BUTYRATF PIPE (1957) GIRLS, AND BOYS KHIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) INFANTS, CHIDRENS, WASTE AND VENT PIPE AND FITTINGS (1965) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC DRAIN, PR AND CLASS 1) (1963) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC DTPF (SDR HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) ADHESIVE PLASTR (1952) WATER REFSISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) POLYSTYRENE PLASTIC WALL TILES, AND ADHESIVES FOR INSTALLATION (1950) CHASERS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1959) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND GRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC C	:562
SOLVENT WELDED SWP SIZE CELLULOSE ACFTATE BUTYRATF PIPE (1957) GIRLS, AND BOYS KHIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) INFANTS, CHIDRENS, WASTE AND VENT PIPE AND FITTINGS (1965) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC DRAIN, PR AND CLASS 1) (1963) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC DTPF (SDR HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) ADHESIVE PLASTR (1952) WATER REFSISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) POLYSTYRENE PLASTIC WALL TILES, AND ADHESIVES FOR THEIR APPLICATION (1950) CHASENE STOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND GRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	usc c	
SOLVENT WELDED SWP SIZE CELLULOSE ACFTATE BUTYRATE PIPE (1957) GIRLS, AND BOYS KHIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) INFANTS, CHIDRENS, WASTE AND VENT PIPE AND FITTINGS (1965) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC DRAIN, PR AND CLASS 1) (1963) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC DTPF (SDR HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) ADHESIVE PLASTER (1952) WATER REFSISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) CHASERS FOR SELF OPENING AND ADHESIVES FOR THEIR APPLICATION (1950) CHASERS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC R	190
SOLVENT WELDED SWP SIZE CELLULOSE ACFTATE BUTYRATF PIPE (1957) GIRLS, AND BOYS KHIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) INFANTS, CHIDRENS, WASTE AND VENT PIPE AND FITTINGS (1965) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC DRAIN, PR AND CLASS 1) (1963) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC DTPF (SDR HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) ADHESIVE PLASTR (1952) WATER REFSISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) POLYSTYRENE PLASTIC WALL TILES, AND ADHESIVES FOR INSTALLATION (1950) CHASERS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1959) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND GRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC R	
GIRLS, AND BOYS KHIT UNDERWEAR EXCLUSIVE OF RAYON, ACETATE, AND NYLON (1955) INFANTS, CHILDRENS, WASTE AND VENT PIPE AND FITINGS (1965) ACRYLONITRILE BUTADIENF STYRENE ARS PLASTIC DRAIN, PR AND CLASS 1) (1963) ACRYLONITRILE BUTADIENF STYRENE ARS PLASTIC PIPF (SDR HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) POLYSTYRENE PLASTIC WALL TILES, AND ADHESIVES FOR THEIR APPLICATION (1950) CHASFRS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1950) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENF SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL INSECTICIDE PACKAGES	USC R	
WASTE AND VENT PTPE AND FITTINGS (1965) PR AND CLASS T) (1963) HOLLOW METAL SINGLE ACTUONITRILE BUTADIENE STYRENE ARS PLASTIC DRAIN, ACRYLONITRILE BUTADIENE STRENE ARS PLASTIC DRAIN, ACRYLONITRIL BUTADIENE AGREE ACRYLONITRILE BUTADIENE ARGED ACRYLONITRILE BUTADIENE STRENE ARS PLASTIC DRAIN, ACRYLONITRILE BUTADIENE STRENE ARS PLASTIC DRAIN, ACRYLONITRIL AND ADDISTAL AND ADDISTAL AND AGRICULTURAL INSECTICIDE AND FUNCICIDE PACKAGES ACRYLONITRAL INSECTICIDE AND FUNCICIDE PACKAGES	USC C	
PR AND CLASS 1) (1963) ACRYLONITRILE BUTADIENE STYRENE ARS PLASTIC PIPE (SDR I HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) ADHESIVE PLASTRE (1952) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) POLYSTYRENE PLASTIC WALL TILES, AND ADHESIVES FOR INSTALLATION OF CLAY TILE (1950) CHASERS FOR SELE OPENING AND ADHESIVES FOR THEIR APPLICATION (1950) CHASERS FOR SELE OPENING AND ADJUSTABLE DIE HEADS (1929) HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1959) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) (1942)		
HOLLOW METAL SINGLE ACTING SWING DOORS, FRAMES AND TRIM (1928) ADHESIVE PLASTER (1952) WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) POLYSTYRENE PLASTIC WALL TILES, AND ADHESIVES FOR THEIR APPLICATION (1950) CHASFKS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) HOT DIPPED GALVANIZED) WARE COATED AFTER FABRICATION (1959) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENF SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC C	
ADHESIVE PLASTER (1952) WATER REFSISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) POLYSTYRENE PLASTIC WALL TILES, AND ADHESIVES FOR THEIR APPLICATION (1950) CHASERS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1959) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) (1942)		
WATER RESISTANT ORGANIC ADHESIVES FOR INSTALLATION OF CLAY TILE (1952) POLYSTYRENE PLASTIC WALL TILES, AND ADHESIVES FOR THEIR APPLICATION (1950) CHASERS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1959) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCREENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION; INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) AGRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC R	
POLYSTYRENE PLASTIC WALL TILES, AND ADHESIVES FOR THEIR APPLICATION (1950) CHASFKS FOR SELF OPENING AND ADJUSTABLE DIF HEADS (1929) HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1959) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCRFENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) AGRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC R	
HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1959) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCRFENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) (1942) AGRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC C	
HOT DIPPED GALVANIZED WARE COATED AFTER FABRICATION (1959) WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCRFENS (1942) COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) (1942) AGRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC C	
WIRE DIAMETERS FOR MINERAL AGGREGATE PRODUCTION SCRFENS (1942) COARSE AGGREGATES, CRISHED STONE, GRAVEL, AND SLAG (1948) POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) (1942) AGRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC R	
COARSE AGGREGATES, CRUSHED STONE, GRAVEL, AND SLAG (1948) U POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) (1942) AGRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC C	
POLYETHYLENE SHEFTING CONSTRUCTION, INDUSTRIAL AND AGRICULTURAL APPLICATION (1961) (1942) AGRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC R	
(1942) AGRICULTURAL INSECTICIDE AND FUNGICIDE PACKAGES	USC R USC C	
HONTEDETOTAL INSECTICISE THERADES		
PACKAVING OF FIRST ALD UNIT URESSINGS AND TREATMENTS (1941)	USC R	
PACKAGING OF AIR BRAKE (FLECTRIC RAILWAY) PARTS (1935)	USC R	
	USC R	
	USC C	

Figure 7. A portion of the input which produced the result shown in the previous figure. The programs SETLST and KWIND have facile provisions for discarding header lines such as appear in the first two lines above. See Figure 8 for the control cards and the substitution table which was used to achieve the transformation.

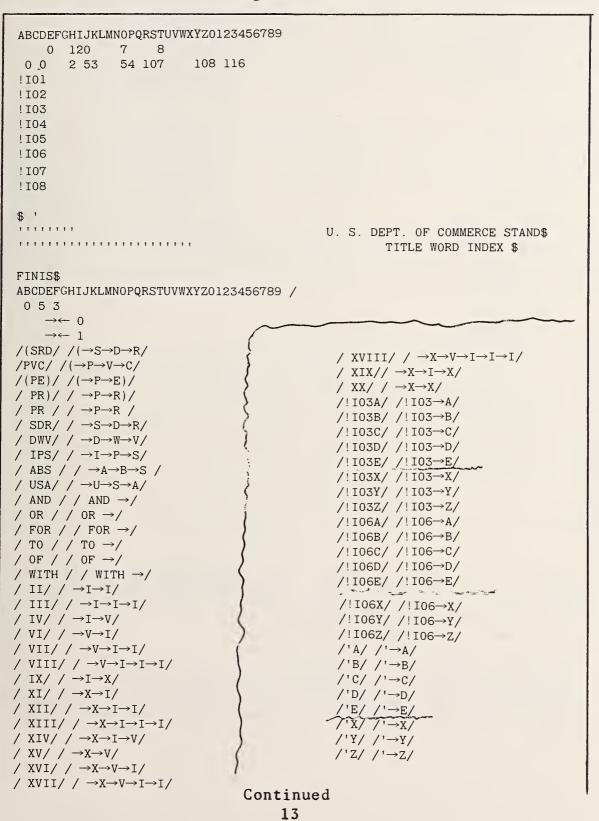


Figure 8. Control cards and substitution table for transforming the character stream in Figure 7 to that shown in Figure 6. Note that four sets of alphabet cards are needed to capitalize characters following: a space, a right parenthesis, a hyphen, and the locator !IO3 inserted by the program at the middle gutter. The other substitution cards override these and achieve the desired exceptions. The mistakes in capitalization of the words: "and", and "of", immediately to the left of the middle gutter in Figure 6 result from the omission of two cards from the substitution table. These are /AND!/ /AND!/ and /OF!/ /OF!/. In many computerized data files, space limitations force the use of a shorthand notation. These can be expanded by appropriate string substitutions. If the data are arranged in columns, the program allows for selective substitution rather than universal substitution and rearrangement and omissions of columns of numbers, or other alphanumeric characters.

A good example of the versatility of SETLST is afforded by the transformations shown in Figure 10 of an index produced earlier on a line printer in all caps for the publication "CINDA 68 An Index to the Literature on Microscopic Neutron Data." This index is published jointly by the Division of Technical Information Extension of the U.S. Atomic Energy Commission and the Organization for Economic Cooperation and Development.

For this application it is necessary to take advantage of a feature of SETLST which enables one to divide the record into as many as 20 pieces of arbitrary length and to insert any arbitrary flags between them. The first set of control cards shown in Figure 12 causes the program to break the record into 12 pieces and to insert flags !101, etc., in the order indicated, in front of each of the pieces which are defined on the third control card. It is this expanded record upon which the subroutine SUBSTITUTE operates. It is the use of these locators in the substitution table which allows for selective substitution.

It is interesting to note that while the locators were inserted primarily to retain the columnar arrangement when going from fixed width to variable width characters, their presence in the text stream makes it possible to perform sophisticated conditional substitutions, which would otherwise have required a much more complicated and much less versatile program. A brief examination of the substitution table shown in Figure 12 should reveal the flexibility which this feature affords.

5909025 NONLINEAR INDUCTOR MAGNETIC AMPLIFIER CIRCUITS. PART 1. THE SERIES CIRCUIT WITH A 590902 5209061 MSAC PULSE POWER AMPLIFIER. CIRCUITS. PART 1. THE SERIES CIRCUIT WITH A 520906 6309189 COMPARISON OF HOT-ELECTRON AND RELATED AMPLIFIERS 630916 630917 6623603 DEVELOPMENT ON COUPLING. SCHEMES FOR PLASMA AMPLIFIERS EXPLORATORY 660917 6209104 STEMS WITH APPLICATION TO COMMON-EMITTER TRANSISTOR AMPLIFIERS THEORETICAL LIMITATIONS OF GAIN AND 66091 6209105 YSTEMS WITH APPLICATION TO COMMON-EMITTER TRANSISTOR AMPLIFIERS (RTION IN FREQUENCY DEPENDENT TWO-PORT S 62090 6309162 TECHNIQUE THE DESIGN OF WIDEBAND TRANSISTOR AMPLIFIERS SOUNING IDEAL TRANSFORMERS 510905 6009171 TY OPTIMAL DESIGN OF MULTI-STAGE TUNED TRANSISTOR AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI 60091 6723853 EXCURSIONS OF ORBITING SPACECRAFT USE OF ANALOG COMPUTATION IN PREDICTING DYNAMIC TEMPERATURE 672385	
5209061 MSAC PULSE POWER AMPLIFIER. TECHNICAL MEMORANDUM 520906 6309189 COMPARISON OF HOT-ELECTRON AND RELATED AMPLIFIERS 630918 6623603 DEVELOPMENT ON COUPLING SCHEMES FOR PLASMA AMPLIFIERS EXPLORATORY 6630918 6009174 BANDWIDTH IN WIDE-BAND TRANSISTOR AND ESAKI DIODE AMPLIFIERS THEORETICAL LIMITATIONS OF GAIN AND 600917 6209100 YSTEMS WITH APPLICATION TO COMMON-EMITTER TRANSISTOR AMPLIFIERS THEORETICAL LIMITATIONS OF GAIN AND 600917 6109052 RISE TIME IN PULSE POWER AMPLIFIERS ASSUMING IDEAL TRANSFORIERS 510905 6309162 TECHNIQUE THE DESIGN OF WIDEBAND TRANSISTOR AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI 600917 6309162 TECHNIQUE THE DESIGN OF WIDEBAND TRANSISTOR AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI 600917 65090263 BINARY QUANTIZATION OF SICONAL AMPLIFIERS EFFECT FOR RADAR ANGULAR ACCURACY 590926 6723853 EXCURSIONS OF ORBITING SPACECRAFT USE OF ANALOG COMPUTATION IN PREDICTING DYNAMIC TEMPERATURE 672387	25
6309189 COMPARISON OF HOT-ELECTRON AND RELATED AMPLIFIERS 6309189 66030180 6623603 DEVELOPMENT ON COUPLING SCHEMES FOR PLASMA AMPLIFIERS EXPLORATORY 662360 6009174 BANDWIDTH IN WIDE-BAND TRANSISTOR AND ESAKI DIODE AMPLIFIERS THEORETICAL LIMITATIONS OF GAIN AND 660911 6209190 YSTEMS WITH APPLICATION TO COMMON-EMITTER TRANSISTOR AMPLIFIERS (RTION IN FREQUENCY DEPENDENT TWO-PORTS S 620910 6309162 TECHNIQUE THE DESIGN OF WIDEBAND TRANSISTOR AMPLIFIERS BY AN EXTENSION OF THE SAMPLED-PARAMETER 630910 6009171 TY OPTIMAL DESIGN OF MULTI-STAGE TUNED TRANSISTOR AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI 600917 6723853 EXCURSIONS OF ORBITING SPACECRAFT USE OF ANALOG COMPUTATION IN PREDICTING DYNAMIC TEMPERATURE 672383	
6623603 DEVELOPMENT ON COUPLING SCHEMES FOR PLASMA AMPLIFIERS EXPLORATORY 6623603 6009174 BANDWIDTH IN WIDE-BAND TRANSISTOR AND ESAKI DIODE AMPLIFIERS THEORETICAL LIMITATIONS OF GAIN AND 600917 6209190 YSTEMS WITH APPLICATION TO COMMON-EMITTER TRANSISTOR AMPLIFIERS THEORETICAL LIMITATIONS OF GAIN AND 600917 6309162 RISE TIME IN PULSE POWER AMPLIFIERS SUMING IDEAL TRANSFORMERS 510905 6309162 TECHNIQUE THE DESIGN OF WIDEBAND TRANSISTOR AMPLIFIERS BY AN EXTENSION OF THE SAMPLED-PARAMETER 630914 6009171 TY OPTIMAL DESIGN OF MULTI-STAGE TUNED TRANSISTOR AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI 600917 6228853 EXCURSIONS OF ORBITING SPACECRAFT USE OF ANALOG COMPUTATION IN PREDICTING DYNAMIC TEMPERATURE 67238	
6009174 BANDWIDTH IN WIDE-BAND TRANSISTOR AND ES AKI DIODE AMPLIFIERS THEORETICAL LIMITATIONS OF GAIN AND 600917 6209190 YSTEMS WITH APPLICATION TO COMMON-EMITTER TRANSISTOR AMPLIFIERS //TION IN FREQUENCY DEPENDENT TWO-PORTS 620912 6309162 RISE TIME IN PULSE POWER AMPLIFIERS ASSUMING (DEAL TRANSFORMERS 510905 6309162 TECHNIQUE THE DESIGN OF WIDEBAND TRANSISTOR AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI 609917 6309163 TECHNIQUE THE DESIGN OF MUDEBAND TRANSISTOR AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI 609917 6309164 BINARY QUANTIZATION OF SIGNAL AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI 609917 630917 TY OPTIMAL DESIGN OF MULTI-STAGE TUNED TRANSISTOR AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI 600917 6309164 BINARY QUANTIZATION OF SIGNAL AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI 600917 642853 EXCURSIONS OF ORBITING SPACECRAFT USE OF ANALOG COMPUTATION IN PREDICTING DYNAMIC TEMPERATURE 67238	
6209190 YSTEMS WITH APPLICATION TO COMMON-EMITTER TRANSISTOR AMPLIFIERS /RTION IN FREQUENCY-DEPENDENT TWO-PORTS 620919 5109058 RISE TIME IN PULSE POWER AMPLIFIERS ASSUMING IDEAL TRANSFORMERS 510902 6309162 TECHNIQUE THE DESIGN OF WIDEBAND TRANSISTOR AMPLIFIERS ASSUMING IDEAL TRANSFORMERS 510902 6000171 TY OPTIMAL DESIGN OF MULTI-STAGE TUNED. TRANSISTOR AMPLIFIERS ON SUBERING GAIN, STABILITY, AND SENSITIVI 600917 5909268 BINARY QUANTIZATION OF SIGNAL AMPLITUDES. EFFECT FOR RADAR ANGULAR ACCURACY 59092 6723853 EXCURSIONS OF ORBITING SPACECRAFT USE OF ANALOG COMPUTATION IN PREDICTING DYNAMIC TEMPERATURE 672383	
5109058 RISE TIME IN PULSE POWER AMPLIFIERS ASSUMING IDEAL TRANSFORMERS 510905 6309162 TECHNIQUE THE DESIGN OF WIDEBAND TRANSISTOR AMPLIFIERS BY AN EXTENSION OF THE SAMPLED-PARAMETER 630917 5909268 BINARY QUANTIZATION OF SICNAL AMPLITUDES. EFFECT FOR RADAR ANCULAR ACCURACY 590926 623853 EXCURSIONS OF ORBITING SPACECRAFT USE OF ANALOG COMPUTATION IN PREDICTING DYNAMIC TEMPERATURE 672385	
6309162 TECHNIQUE THE DESIGN OF WIDEBAND TRANSISTOR AMPLIFIERS BY AN EXTENSION OF THE SAMPLED-PARAMETER 630910 6009171 TY OPTIMAL DESIGN OF MULTI-STAGE TUNED-TRANSISTOR AMPLIFIERS CONSIDERING GAIN, STABILITY, AND SENSITIVI 600917 5909268 BINARY QUANTIZATION OF SIGNAL AMPLIFIERS EFFECT FOR RADAR ANGULAR ACCURACY 590926 6723853 EXCURSIONS OF ORBITING SPACECRAFT USE OF ANALOG COMPUTATION IN PREDICTING DYNAMIC TEMPERATURE 672383	
5909268 BINARY QUANTIZATION OF SIGNAL AMPLITUDES. EFFECT FOR RADAR ANGULAR ACCURACY 59092 6723853 EXCURSIONS OF ORBITING SPACECRAFT USE OF ANALOC COMPUTATION IN PREDICTING DYNAMIC TEMPERATURE 672385	
6723853 EXCURSIONS OF ORBITING SPACECRAFT USE OF ANALOG COMPUTATION IN PREDICTING DYNAMIC TEMPERATURE 67238:	71
A STATE D DIGITAL TO ANALOG CONVERTED	68
	53
5309245 A SIMPLE DIGITAL TO ANALOG CONVERTER 53092:	
6009170 APPLICATION OF THE MAGNETORESISTANCE EFFECT TO ANALOG MULTIPLICATION 600917	
5909094 AN ANALOG MULTIPLIER USING THE FIELD-EFFECT TRANSISTOR 590909	
6309011 DEVELOPMENT OF AN ANALOG MULTIPLIER, BASED ON THE HALL EFFECT 630901	
6623441 CONTROL OF REMOTE MANIPULATORS. EXPERIMENTS USING ANALOG SIMULATION MANUAL 662344	
6623224 COMPUTER DISPLAYS INVESTIGATION OF AN ANALOG TECHNIQUE TO DECREASE PEN-TRACKING TIME IN 662322	
6724048 THE ANALYSIS AND CALIBRATION OF ANALOG TO DIGITAL ENCODERS 672402	
6523547 GRAPHICAL PROCESSING USING HYBRID ANALOG-DIGITAL CIRCUITRY 652354	
6623541 TEN-BIT ANALOG-TO-DIGITAL CONVERTER 662354	41
5909152 STUDY OF SEMICONDUCTOR DEVICES BY ANALOGUE TECHNIQUES 5909152	52
6209361 COMPUTING FACILITY MANAGEMENT SURVEY RESULTS AND ANALYSIS 620936	61
6423218 AUTOMATIC SYNTACTIC ANALYSIS 642321	18
6523471 FORMAT ANALYSIS 652347	
6623841 MAU-MACHINE COMMUNICATION IN ON-LINE MATHEMATICAL ANALYSIS 662384	
6623255 MAP. A SYSTEM FOR ON-LINE MATHEMATICAL ANALYSIS 662325	55
6623257 PREDICATION-TYPING - A PILOT STUDY IN SEMANTIC ANALYSIS 662325	57
5609116 2 ON PROGRESS IN MACHINE COMPUTATION AND NUMERICAL ANALYSIS REPORT NO 560911	
6523430 AN ON-LINE SYSTEM FOR ALGEBRAIC COMPUTATION AND ANALYSIS CALCULAID, 652343	30
6623488 N TECHNIQUES TO TEACH ELECTRICAL ENGINEERING NETWORK ANALYSIS /ED LEARNING AND COMPUTER-BASED INSTRUCTIO 662348	88
6724048 ENCODERS THE ANALYSIS AND CALIBRATION OF ANALOG TO DIGITAL 672404	

Figure 9. Results from a test of the KWIND program set in Times Roman on a Linofilm at the U.S. Government Printing Office. Letter spacing would improve the readability somewhat but not enough to justify the added expense of phototypsetting. Figure 6 shows how much improvement is achieved by converting to upper and lower case.

00-00	39194	39098	39099	20007	00100	28185	39171	39172	20103	00100	DEUTERIUM	SERIAL			39633	38742	1 TRITIUM	CLDIAL	SEMIAL	SC	38741	2 HELIUM	SERIAL	QN		38/39	38740	39190	39191	20186	00100	3310/	39188	39185	39189	3 LITHIUM	SERIAL	ON	38738	39692	38837	38835	38834	38737	00000	00000	38832	38830	38829	38828	38831	38836	38827	38826	
MELAUNIAN MULEUUL EFFEUIS INTURUUAND	SALPETER EFFECTIVE RANGES FROM SIGMA	BARSCHALL FROM DEL ISOTROPY ASSUMED	BETHE S.WAVE PHASESHIFT FEF RANGE TH		BAHSCHALL HEUUIL PHUTUNS ISUTA UDS	CROSS 90T0180DEG C.M. FROM RECOIL PS	SACHS TELLER CALC.SEE H2.CH4.NH3.H20	SACHS TELLER CALCISEE H2 CH4 NH3 H20		SALPETEN EFFECTIVE HANGES FROM SIGNA	OCT 1. 1967 PAGE 2 1	COMMENTS			LES LIFP.M. SOURCE TRANSMISSION	CAMPRELL + LEG COEFS TBL+CURVS C-MSYS	OCT 1 1967 DAGE 3	3	COMMENIS		CAMPBELL+ LEG COEFS TBL+CURVS C-MSYS	OCT. 1. 1967 PAGE 4	COMMENTS			CAMPBELL+ LEG COEFS TBL+CURVS C-MSYS	CAMPBELL+ LEG COEFS TBL+CURVS C-MSYS	JARVIS INV N ANG DIST SEVERAL E(P)	WILLARD INV N ANG DIST SEVERAL F(P)		WHEELEH SPIN-UNBIT EFFECT PR 36 330	ADAIN ILVE DISPENSION IN PHASESHIF IS	WHEELER SPIN-ORBIT EFFECT PR 58 590	BLOCH NEW DESCR RESON IN DISPERSN TH	ADAIR. ILVL DISPERSION TH PHASESHIFTS	OCT. 1, 1967 PAGE 5	COMMENTS		CAMPBELL+ LEG COEFS TBL+CURVS C-MSYS	POMERANCE PILE OSC IN REAC SHIELD	BATTAT+ SIG DATA IN ENDF/B FORMAT	RATTAT+ SIG DATA IN ENDE/B FORMAT	BATTAT SIG DATA IN ENDER'R FORMAT		CAMPBELL+ LEG CUERS IBL+CUAVS CINDIS	BATTAT+ SIG DATA IN ENUT/B FURMAT	BATTAT+ SIG DATA IN ENDF/B FOHMAT	BATTAT+ SIG DATA IN ENDF/B FORMAT	BATTAT+ SIG DATA IN ENDF/B FORMAT	BATTAT+ SIG DATA IN ENDF/B FORMAT	BATTAT+ NNA+N2NA DATA IN ENDF/B FORM	BATTAT+ SIG DATA IN ENDF/B FORMAT	PATTAT + SIG DATA IN ENDE/R FORMAT	BATTAT+ SIG DATA IN ENDE/B FORMAT	
cCL	COR	LAS		5.	LAS	CRC	GWU	UWD		COH		I AB	5		MIT	A			LAB		A			5		F	AI	AS I			Z	MIS	PTN	STF	WIS		LAB		N	ORL	LAS	AS		5	R .	LAS	LAS	LAS	LAS	LAS	LAS	I AS			LAG
U/49	4/51	6/49	07/2	C+11	6/46	7/52	7/41	1111		16/4				DAIE	5/52	4/67	, F			DATE	4/67			L F V C	DAIE	4/67	4/67	0,50	6/63	20.00	0/40	6/51	0/40	N/40	6/51			DATE	4/67	3/51	3/67	3/67	2/67	1010	4/0/	3/6/	3/67	3/67	3/67	3/67	3/67	3/67	2/67	79/6	2/01
PH /6 1/50	PH 82 60	PR 75 1819			75	PR 87 223	PR 60 18	9		PH 82 60		NOCI MENTATION		REF VOL PAGE	AFCI1-2128 43	NAA-SB-11980IV			DOCUMENTATION	REF VOL PAGE	NAA-SR-11980IV		NOTATINENTATION		HEF VUL PAGE	NAA-SR-11980IV	NAA-SR-11980IV	PB 70 020		000 00 00	PH 58 682	PH 82 750	PR 58 682	PR 58 829	82		DOCUMENTATION	REF VOL PAGE	NAA-SR-11980IV	PR 83 641	I A-3695	1 4-3695	LA 3606		NAA-SH-119801V	LA-3695	LA-3695	LA-3695	LA-3695	LA-3695	A-3695	1 4-3695		LA-3033	LA-3095
1.0 2	99		~ ~ ~ ~	× n.>				-		6. 6		CALCOON	195	MAX	136		r		ENERGY	MAX	1.2 7		CALCOCK		MAX	1.4 7	187					5.6			5.6	5	ENERGY	MAX	1.4 7		157	- 2 -	- r		1.4 /	1.5 7	1.5 7	1.5 7	1.5 7	1.5 7	157	 	- r		9.9.0
ы. Э.		147			147	147	THR	с 	7			CNIC		NW	105		2		ENE	MIN	1.0.5		CNIC		MIN	4.0 6	106				2.5 6	0	2.5 6	NDG	C		ENE	NIW	2.6.5	THR				- c	2.1.5	3	4.2 6	13	3.6	3.2.6	17.6			- - -	<u>-</u>
Expt Jour	Theo Jour	Exot Jour	Theo lour		Expt Jour	Expt Abst	Theo Jour	Theo lour		Theo Jour		TVDC			Evot Proo	Fuel Dent			TYPE		Eval Rept		TVDE			Eval Rept	Fval Rent	Evot lour			Theo Jour	Theo Jour	Theo Jour	Theo Jour	Theo Jour		ТҮРЕ		Eval Rent	Exnt. Inur	Eval Rent			Eval Hept	Eval Hept	Eval Rept	Eval Rept	Eval Rept	Fval Rent	Fval Rent	Eval Rent	Eval Bent		Eval Hept	Eval Hept
Tofal X-Sect	Total X-Sect	Flactic		Elastic	Diff Elastic	Diff Elastic	ThrmIScatl aw	Them (Cootl and	MUTHOLOGICAW	(n. y.)		VITIANI	DUAN III T		Total Y.Sort	Diff Elactic			OUANTITY		Diff Elastic		OT LANTITV	CUANTINE T		Diff Elastic	Diff Flastic	10 01	(d 'u)	(d · u)	Elastic	Elastic	Diff Elastic	Diff Elastic	Diff Flastic		DUANTITY		Diff Elastic	Absorption	Evaluation	Total Y-Sort		Elastic	Diff Elastic	Nonelastic	Tot Inelastic	(v.v)	(u u)	(u u)	(m m)	Evolution	T-1-1 X C-1	I OTAL A-Sect	Elastic
H.	_ I		-							I		TINDER	ELEMEN						ELEMENT		Ļ.		TH CARCAIT				HP I					He	He	He	H		ELEMENT			12) <u>-</u>	ļ	1	<u>ن</u> ي	- -	<u>,</u>	ŗ	ت پ	611 19	2		5,2	5,3	5	5

Figure 10. A table containing superscripts, subscripts, and Greek characters, produced by SETLST from a print tape that produced the output shown in the next figure. This table requires use of more than one grid. Note that the isotope a superior figure. Note also the substitution of Greek letters for the words alpha, gamma, etc. A table containing superscripts, subscripts, and Greek characters, See Figure 12 for the control cards and substitution table used here. number was put to the left of the element symbol and made

Among the more interesting transformations performed by the control cards shown in Figure 12 are the following:

a. The flag !102 in front of the isotopic number (the second value in the original line) caused the numbers following it to be set as superior figures and flush-right in front of, instead of behind, the element symbol. Two cards in the substitution table served to delete the leading zeros in front of the isotopic number.

b. The columns flagged !103 required quite special treatment. For example, had the word GAMMA appeared elsewhere it would have been simply set with all caps. Here, however, GAMMA is replaced by a character stream which brings in grid two so as to produce the Greek letter Γ . Other items in the substitute table transformed N, PROTON to (n,p) and N, ALPHA to (n, ∇), etc. c. If a relatively few lines of the file or relatively few words have text extending across the boundaries defined on the third control card, the substitution

c. If a relatively few lines of the file or relatively few words have text extending across the boundaries defined on the third control card, the substitution table can be used to reattach the pieces in the two columns and even move them to another location. The following is an example of such a manipulation: /!IO5 EN!IO6GY/ /!II3 > E > N > E>R>G>Y/ where the lost characters ER are reinserted and the heading ENERGY is shifted to a new location.

d. The inclusion in the substitution table of /!102 A/// and /!101 S//115/ removes from the original records the heading S A and inserts the new line locator !115.

e. While ordinarily the user need not concern himself with the fine points of how the program operates, there is one feature which is important to emphasize.

That program deletes trailing blanks in the defined fields when inserting the locators. For that reason the instruction to delete the N from field !108 in Figures 11 and 13 is written as:

/!I08N!I09/ /!I09/ instead of /!I08N / //

DELEMENT QUANTITY	TYPE	EMERGY	POCUMENTATION LAB	-
	FXPT-JOUR		PR 61 152 2/42 UI MANLEY	۰Fd
OH GOISTOTAL XSECT	THEO-JOUR	$\left \begin{array}{c} 3 \\ 3 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\$	PR 76 1750 D/49 COL MELKONIA PR 82 60 4/51 COR SALPETER	A N .)
CH DDI FLASTIC CH DDI DIFF FLASTIC CH DDI DIFF FLASTIC	EXPT-JOUR	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	PR 75 1819 6449 LAS BARSCHAL PP 76 38 7/49 COR BETHE.S PR 75 1819 6/49 LAS BARSCHAL PR 75 1819 6/49 LAS BARSCHAL PR 67 223 7/52 CRC CROSS.90	- 2 A - L <)
CH 001 THEMLSCATLAN THEMLSCATLAN CH 001 N,GAMMA) THEO-JOUR	(-2) = 1	PR 60 18 7/41 GAU SACHS <te< th=""> PR 60 18 7/41 GAU SACHS<te< td=""> PR 82 60 4/51 COR SALPETER</te<></te<>	2 L L 2 L L 2 • E
OELEMENT QUANTITY	EXPT-PROG	/11.0 5/7/1.3 4//	REF VOL PAGE DATE AFCU-2128 43 5/52 MIT 4ES LI(F	/
DO 002 OTFF ELASTIC	TYPE	ENERGY	NAA-SP-119ROIV 4/47 AI CAMPBELL DOCUMENTATION LAB REF VOL PAGE DATE	.+ []
GT DO3 (PIFF ELASTIC	EVAL-REPT	1.0 5 1.2 7.	NAA-SR-11980IV 4/67 AI CAMPBELL DOCUMENTATION REF VOL PAGE DATE	

Figure 11. A sample page from the CINDA publication produced on a line printer. The magnetic tape which produced this listing was used as input to SETLST. The control cards which produced the transformation shown in Figure 10 are shown in Figures 12 and 13. The vertical lines indicate where the program inserted the locators !I14, !I01, etc., in accord with the instructions on the third and subsequent control cards shown in the next figure. See the next figures for an explanation of the circumscribed items. ABCDEFGHIJKLMNOPORSTUVWXYZ0123456789 0 120 1 7 8 12 1-1,2-4,5-7,10-21,24-32,35-39,42-46,49-63,64-67,69-71,72-109,110-1 1114 !I01 :102 !103 104 !105 !106 !107 108 !109 **!110 !I11** 611192 \$1 99 LIGNES \$ 1EDITION FINIS\$ ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 / 0 0 0 >< 0 > 1/:IO3EVALUATION/ /:IO3>EVALUATION/ /!IO3TOTAL XSECT/ /!IO3>TOTAL >X->SECT/ /! IO3RESON PARAMS/ /! IO3>RESON >PARAMS/ /!IO3ELASTIC/ /!IO3>ELASTIC/ /!IO3DIFF ELASTIC/ /!IO3>DIFF >ELASTIC/ /!IO3N PRODUCTION/ /!IO3N >PRODUCTION/ /! IO3NONELASTIC/ /! IO3>HONELASTIC/ /! IO3NONEL GAMMAS/ /! IO3>NONEL !G2!T3D!G1!T1'S/ /!IO3TOT INELASTIC/ /!IO3>TOT >INELASTIC/ /!IO3DIFF INELAST/ /!IO3>DIFF >INELAST/ /!103INELST GAMMA/ /!103>INELST !G2!T3D!G1!T1/ /!IO3N2N REACTION/ /!IO3(N+2N) >REACTION/ /!IO3THRMLSCATLAW/ /!IO3>THRML>SCAT>LAW/ /!IO3ABSORPTION/ /!IO3>ABSORPTION/ /! IO3DISAPPERANC/ /! IO3>DISAPPERANCE/ /!IO3N, GAMMA/ /!IO3(N, !G2!T3D!G1!T1)/ /!103SPECT NGAMMA/ /!I03>SPECT (N, !G2!T3D!G1!T1)/ /!103N, PROTON/ /!103(N, P)/ /!I03N, DEUTERON/ /!I03(N, D)/ -/!IO3N+ALPHA/ /!IO3(N+ !G2!T3A!G1!T1)/

Figure 12. The control cards and a portion of the substitution table used to produce the output shown in Figure 10. The items marked by a circle show, respectively, how the character stream is modified to: a. provide initial caps; b. produce Greek letters; c. provide contractions and insert parentheses, etc. See Figure 13 for the rest of the substitution table.

DOCUMENTATIO/ /!IO7 >D>U>C>U>M>E>N>T>A>T>I>O>N/ /!107 /!108N!I09/ /!I09/ EN!106GY/ /!113>E>N>E>R>G>Y/ 4 /!105 /!I01ELE!I02MEN/ /!I12>E>L>E>M>E>N>T/ /!I01BE/ /!I01>BE/ /!I01LI/ /!I01>LI/ /!I01HE/ /!I01>HE/ /! I0200/ /! IU2/~~ /!1020/ /!102/ < /! IO2 A/ // /!I01 S/ /!I15/ < /!I141/ /! 144/ /!I140/ /!116 / /!1/ /!1/ 4 /+-/ /!G2!T3>)!G1!T1/ / /!30/ 1 1:24/ / / /!18/ 1 / /!12/ /[/ /[/ 131 111 1*1 1 1 /+/ /!G2!T3>1!G1!T1/ ↔ /=/ /!G2!T3>;!G1!T1/ 1A1 12A1 -/W/ />W/ /X/ />X/ /Y/ />Y/ 121 1221 -/ /!08!G2!T31!G1!T1/ -/ /!14!G2!T31!G1!T1/ /!20!G2!T31!G1!T1/ g /!26!G2!T31!G1!T1/ /!32!G2!T31!G1!T1/ -/ FINIS

Figure 13. A continuation of the control cards used for the CINDA publication. The tagged items show how the character stream was modified to: a. restore the letters ER in ENERGY which might otherwise have been lost; b. remove the leading zeros in the isotopic number; c. replace the characters S A by a new line signal; d. ensure that the letter I in the locator remains lower case; e. go to another grid for mathematical symbols; f. generate initial caps everywhere except as indicated in the longer substitution strings; g. compensate by inserting spaces for different width values of a minus sign and a decimal point; h. replace successive blanks by appropriate width spaces.

OMNITAB + USING ORI				7094	EXAMPLE 1
BETA-HAI (11)	-	UNT	HE FA-HAT (Y2)		CUUNT
1+0012817	<• :		• 99999949		6.292
·997HU273	201		•10000013		5+886
.99932001	٥.	173	• 0099999756		5.613
1.0001/55	5.	756	•U01000018		5.745
•99998369	54 e i	844	• 00009999866		5.873
1.0000004	() + ()	398	•000010000004		6.398
	AVERAGE = J.	954		AVERAGE =	5.968
OWNITAR . USING URI	HU SURRUHTINE			1108	EXAMPLE 1
BETA-HAL (I)	LUI	Uiv I	BETA-HAT (Y2)		COUNT
1.0064697	۷٠)	189	• 77777770		7.000
.99902344	3+1	n 1 0	• 099999700		5.523
.99975586	5.1	612	·U10000125		4.903
• 99996948	4 .	515	·00099998200		4.745
1.0000100	5•I	000	·U0U10U00109		4.963
• 99999998	0.0	495	• UNUUU99999778		5+654
	AVERAGE = 4.	137		AVERAGE =	5.464
OKTHO: WITH RE-URI	HUGUNALIZATION	OMITIE	J	1108	EXAMPLE 1
BETA-HAT (II)	COL	JINT	BETA-HAT (Y2)		COUNT
-1216.5426	-0.0	085	.98419483		1.801
2752.0557	-J.C	+39	•13523918		.453
-1057.0931	-3+l)25	0034660707		129
146.97536	-2+3	164	·U0284959A3		267
-7.3080225	0	919	0000049256487		021
1.1003037	•	779	•000012094996		.079
	AVERAGE = -1.0	976		AVERAGE =	•419

Figure 14. A sample of a formatted output which can be typeset easily using SETLST and a monowidth typeface. See Figure 5 for the typeset version of this table.

6. Acknowledgements

The authors wish to express their appreciation for the valuable advice and guidance provided by Mr. Rubin Wagner, Chief of the Computer-Assisted Printing Section of the NBS Office of Technical Information and Publications. His willingness to share his expertise - based on long experience in traditional and modern methods of typesetting and composition - has contributed significantly to our progress in programming for computer-assisted printing in general, and to the preparation of this report in particular. Valuable assistance was rendered by Mrs. Daris Jones in the typing of the manuscript and in the preparation of the camera-ready copy from which this report was produced.

7. References

- [1] William R. Bozman, Phototypesetting of Computer Output National Bureau of Standards Technical Note 170 (June 25, 1962) available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
- [2] Carla G. Messina and Joseph Hilsenrath, Edpac: Utility Programs for Computer-Assisted Editing, Copy-Production, and Data Retrieval, NBS Technical Note 470 (January 1969) available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
- [3] Michael P. Barnett, Computer Typesetting/Experiments and Prospects, The MIT Press, Cambridge, Massachusetts 1965.

APPENDIX I

The program listings given here were written in such a fashion as to permit their easy implementation on various computers and compilers of different vintage. If a compiler permits use of labeled common blocks, the operating efficiency of these programs can, possibly, be increased by certain indicated changes. The markings to the right of the listings indicate which lines of the program must be replaced by the corresponding marked lines in APPENDIX II to take advantage of labeled common. The < means insert and the period and brace denote lines to be replaced.

С SETLST TYST 1 С PROGRAM DEVELOPED AT NBS-NSRDS WASH D.C. BY C. MESSINA 1/68 TYST 2 TYST 3 С С THE PROGRAM SETLST WILL GENERATE SUITABLE OUTPUT RECORDS FOR TYST 4 С TYPESETTING FROM FIXED FIELD RECORDS. TYST 5 TYST 6 С ALL INPUT RECORDS MUST HAVE THE SAME FORMAT EXCEPT FOR THOSE RECORDS WHICH ARE DELETED FROM THE FILE BY THE SUBROUTINE (AMATCH). TYST 7 С TYPESETTING GRID CHANGES AND OTHER STRING SUBSTITUTIONS ARE С TYST 8 С INSERTED BY THE SUBROUTINE (SUBST). TYST 9 THIS PROGRAM REMOVES THE TRAILING BLANKS FROM EVERY FIELD TO С TYST 10 BE TYPESET AND WRITES OUT PACKED RECORDS OF VARIABLE LENGTH TYST 11 С С TYST 13 С CONTROL CARDS TYST 14 THE FIRST CARD IS SIMILAR TO THE FIRST CARD OF THE SUBROUTINE TYST 15 С С (SUBST). THE 47TH CARD COLUMN CONTAINS A BLANK AND THE 50TH CARD TYST 16 С COLUMN CONTAINS THE END OF RECORD SYMBOL. THE END OF RECORD TYST 17 SYMBOL MUST NOT APPEAR IN THE RECORDS TO BE PROCESSED FROM TYST 18 С TYST 19 С UNIT IRTAPE. С TYST 20 THE SECOND CARD HAS SIX SWITCHES IN (615) FORMAT. TYST 21 С - CONTAINS THE NUMBER OF CARD FIELDS TO BE PROCESSED. TYST 22 С ICOL С - IS -1 FOR PRINTING. TYST 23 ITEST O FOR PRINTING AND TAPE WRITING ON UNIT IPTAPE. TYST 24 С С 1 FOR TAPE WRITING ON UNIT IPTAPE. TYST 25 С - IS THE NUMBER OF CHARACTERS IN AN INPUT RECORD READ TYST 26 LENGTH С FROM UNIT IRTAPE. TYST 27 С - IS ZERO WHEN ALL FIELDS ARE TO BE PRESENT IN THE OUTPUT TYST 28 KEEP С REGARDLESS OF CONTENT. TYST 29 С - IS NON ZERO WHEN ANY FIELD WHICH IS COMPLETELY BLANK IS TYST 30 TO BE IGNORED IN THE OUTPUT (THE INSERT STRING IS С TYST 31 С TYST 32 ALSO OMITTED.). С IRTAPE - IS THE UNIT ON WHICH THE INPUT RECORDS ARE EXPECTED. TYST 33 С - IS THE UNIT ON WHICH TO WRITE THE OUTPUT RECORDS (NOT TYST 34 IPTAPE С THE PRINTER). TYST 35 С TYST 36 TYST 37 С THE THIRD CARD CONTAINS THE FIELD DELIMITERS IN THE ORDER WISHED IN THE OUTPUT. THE FORMAT IS FREE FIELD AND THE DELIMITERS TYST 38 С ARE SEPARATED BY ONE OR AS MANY SPACES AS DESIRED. С TYST 39 С IN THE FOLLOWING EXAMPLE OF 3 COLUMN FIELDS TYST 40 С 1 70 73 80 73 80 TYST 41 С THE INFORMATION LOCATED STARTING AT THE 73RD CHARACTER AND TYST 42 С EXTENDING TO INCLUDE THE 80TH CHARACTER IS TYPESET, FOLLOWED TYST 43 BY THE INFORMATION CONTAINED IN CHARACTER FIELDS 1 TO 70 AND С TYST 44 ENDING WITH THE INFORMATION IN FIELDS 73 TO 80. REPEATING FIELD TYST 45 С С DESIGNATIONS ON THE THIRD CONTROL CARD, DUPLICATES THE INFORMATION TYST 46 С IN THE OUTPUT RECORD. TYST 47 С TYST 48 С THE FOLLOWING ICOL NUMBER OF CARDS CONTAIN THE TYPESETTING TYST 49 С INSERT STRINGS. IN THE OUTPUT RECORDS. THESE INSERT STRINGS TYST 50 ARE PLACED BEFORE THE INFORMATION TAKEN FROM THE INPUT RECORDS. С TYST 51 С THESE STRINGS ARE PUNCHED STARTING IN CARD COLUMN ONE AND ARE TYST 52 С CONSIDERED TERMINATED BY A BLANK CHARACTER. IF NO STRING IS TYST 53 TO BE INSERTED, A BLANK CARD IS PLACED IN THE INSERT STRING TABLE TYST 54 С С AT THE APPROPRIATE POSITION. TYST 55 С TYST 56 С AFTER THE INSERT STRING TABLE, A CARD IN (112,78A1) FORMAT TYST 570 С CONTAINS THE IPTAPE HEADER. THE LENGTH OF THE HEADER IS FOLLOWED TYST 571 С IMMEDIATELY BY THE HEADER. **TYST 572**

C C C C C	THE CONTROL CARDS FOR SUBROUTINE (AMATCH) ARE PLACED FOLLOWED BY THE CONTROL CARDS FOR SUBROUTINE (SUBST).	TYST 573 TYST 58 TYST 59 TYST 60 TYST 62
	DIMENSION IA(84), ID(136), INS(400), N(40), NA(40), NB(100), IC(700), IIB(4100) ITAPE=5 IOTAPE=6 READ (ITAPE,9) (IA(I), I=1,80) WRITE (IOTAPE,19) (IA(I), I=1,80)	TYST 63 TYST 64 ∠ TYST 65 TYST 66 TYST 67 TYST 68
	READ (ITAPE,89) ICOL,ITEST,LENGTH,KEEP,IRTAPE,IPTAPE WRITE (IOTAPE,99) ICOL,ITEST,LENGTH,KEEP,IRTAPE,IPTAPE	TYST 69 TYST 70
1	IF (ICOL) 2,2,1 IF (ICOL-20) 3,3,2	TYST 71 TYST 72
2	WRITE (IOTAPE, 129)	TYST 73
	GO TO 9999	TYST 74
3	READ (ITAPE,9) (ID(I), I=1,80)	TYST 75
7	L=2*ICOL	TYST 76
7	DO 8 I=1,L N(I)=0	TYST 77 TYST 78
	NB(I)=0	TYST 79
8	NA(I)=0	TYST 80
	K=0	TYST 81
	D0 100 I=1,L	TYST 82
10	K=K+1	TYST 83
20	IF $(ID(K)-IA(47))$ 30,20,30	TYST 84
20 25	IF (K-80) 10,25,25 WRITE (IOTAPE,49) L,(ID(J),J=1,80)	TYST 85 TYST 86
20	GO TO 9999	TYST 87
30	D0 40 J=27,36	TYST 88
	IF (ID(KA- A(J)) 40,50,40	TYST 89
40	CONTINUE	TYST 90
	GO TO 10	TYST 91
50	N(I) = J - 27	TYST 92
	K=K+1	TYST 93
	D0 60 $J=27,36$	TYST 94
60	IF (ID(K)-IA(J)) 60,70,60 CONTINUE	TYST 95 TYST 96
00	G0 T0 100	TYST 97
70	N(I) = 10 * N(I) + J - 27	TYST 98
	K=K+1	TYST 99
	D0 80 J=27,36	TYST100
	IF (ID(K)-IA(J)) 80,90,80	TYST101
80	CONTINUE	TYST102
90	G0 T0 100 N(I)= $10*N(I)+J-27$	TYST103 TYST104
100	CONTINUE	TYST105
	J=0	TYST106
	D0 120 I=1,L	TYST107
	IF (N(I)) 110,105,110	TYST108
105	J=J+1	TYST109
110	IF (N(I)-132) 120,120,122	TYST110
120	CONTINUE	TYST111
121	IF (J-L) 125,9999,9999 I=3	TYST112 TYST113
+61	N(I)=LENGTH	TYST114
122	WRITE (IOTAPE, 39) I, N(I)	TYST115

	GO TO 9999	TVCT11C
105		TYST116
125	J=1 K-I - D	TYST117
	K=L-1	TYST118
	D0 145 I=1,K,2	TYST119
170	IF $(N(I)-N(I+1))$ 140,140,130	TYST120
130	WRITE (IOTAPE,59) N(I),N(I+1),I	TYST121
1.40	GO TO 9999	TYST122
140	WRITE (IOTAPE,29) J,N(I),N(I+1)	TYST123
145	J=J+1	TYST124
	WRITE (IOTAPE,69) ICOL	TYST125
	N3=1	TYST126
	D0 190 I=1,ICOL	TYST127
	READ (ITAPE,9) (ID(K),K=1,80)	TYST128
	WRITE (IOTAPE,19) (ID(K),K=1,80)	TYST129
	J=1	TYST130
150	IF (ID(J)-IA(47)) 160,180,160	TYST131
160	INS(N3) = ID(J)	TYST132
	N3=N3+1	TYST133
	J=J+1	TYST134
	IF (N3-400) 150,150,170	TYST135
170	WRITE (IOTAPE,79)	TYST136
	GO TO 9999	TYST137
180	NA(I)=J-1	TYST138
190	CONTINUE	TYST139
	K=1	TYST140
	NB(1)=1	TYST141
	D0 191 I=2,L,2	TYST142
	NB(I) = NA(K) + NB(I-1) - 1	TYST143
	NB(I+1) = NA(K) + NB(I-1)	TYST144
191	K=K+1	TYST145
	K1=0	TYST1451
	READ (ITAPE, 139) K1, (IB(J), J=1, 78)	TYST1452
	WRITE (IOTAPE,149) K1, (IB(I), I=1,78)	TYST1453
001	IF (K1) 9999,201,201	TYST1454
201	CALL AMATCH(IA, ID, LENGTH, 0, MATCH)	TYST146
	CALL SUBST(IC,K,O)	TYST147)
100	IF (LENGTH) 121,121,192	TYST148
192	IF (LENGTH-133) 193,193,121	TYST149
193	IF (IPTAPE) 194,195,196	TYST150
194	WRITE (IOTAPE,119) IRTAPE,IPTAPE	TYST151
105	GO TO 9999	TYST152
195	IPTAPE=3	TYST153 TYST154
196	IF (IRTAPE) 194,197,198	
197 198	IRTAPE=5 K=0	TYST155 TYST156
200	READ (IRTAPE,9,END=900,ERR=900) (ID(I),I=1,LENGTH)	TYST158
200	CALL AMATCH(IA, ID, LENGTH, 1, MATCH)	TYST159
	IF (MATCH) 210,210,200	TYST160
210	D0 300 L=1,IC0L	TYST161
210	L1=2*L-1	TYST162
	$L_1=2^L-1$ $L_2=2^L$	TYST163
	N1=N(L1)	TYST163
	N1 = N(L1) N2 = N(L2)	TYST165
	$N_{Z}=N(L_{Z})$ IF (N1) 300,300,220	TYST166
220	IF (N1) 500,500,220 IF (NA(L)) 250,250,230	TYST167
220	N3=NB(L1)	TYST168
200	$N_{3}=NB(L_{2})$	TYST169
	D0 240 I=N3,N4	TYST170

. } <u>+</u>

} c

		myomaga		
0.40	K=K+1	TYST171		
240	IC(K) = INS(I)	TYST172		
250	J=N2	TYST173		
	D0 260 I=N1, N2	TYST174		
0.00	IF $(ID(J)-IA(47))$ 270,260,270	TYST175		
260		TYST176		
	IF (KEEP) 262,268,262	TYST177		
262	IF (NA(L)) 300,300,264	TYST178		
264	K = K - (N4 - N3 + 1)	TYST179		
	GO TO 300	TYST180		
268	J=J+1	TYST181		
270	D0 280 I=N1,J	TYST182		
	K=K+1	TYST183		
280	IC(K) = ID(I)	TYST184		
300	CONTINUE	TYST185		
800	K2=K1+1	TYST186		ы
	CALL SUBST(IC,K,1)	TYST187	•	<u>a</u>
	Kl=Kl+K	TYST188		
	J=0	TYST189		
	D0 805 I=K2,K1	TYST190		
	J=J+1	TYST191		
805	IB(I) = IC(J)	TYST192		
	K=0	TYST193		
807	CALL NPRINT (K1, ITEST, IB, IA(47), IOTAPE, IPTAPE, 0)	TYST194		e
	GO TO 200	TYST205		
900	Kl=Kl+4	TYST206		
	IB(K1-3)=IA(47)	TYST207		
	IB(K1-2) = IA(50)	TYST208		
	IB(K1-1)=IA(47)	TYST209		
	IB(K1)=IA(50)	TYST210		
	CALL NPRINT (K1, ITEST, IB, IA(47), IOTAPE, IPTAPE, 1)	TYST211 •		f
9999	STOP	TYST226		
9	FORMAT (132A1)	TYST227		
19	FORMAT (1X,120A1)	TYST228		
29	FORMAT (7H FIELD , 112, 11H GOES FROM , 113, 4H TO , 113)	TYST229		
39	FORMAT (57H ONLY LINES WITH 132 OR LESS CHARACTERS ARE ALLOWED, T	HTYST230		
	1E ,116,7H FIELD ,/11H SPECIFIED ,116,18H CHARACTERS. STOP.)	TYST231		
49	FORMAT (1X,114,53H NUMBERS WERE NOT GIVEN ON THE FOLLOWING CARD.			
	1TOP. /80A1)	TYST233		
59	FORMAT (20H THE PAIR OF NUMBERS ,116, 5H AND ,116, 25H SPECIFYIN	GTYST234		
	1 FIELD NUMBER ,116, /42H ARE NOT GIVEN IN THE CORRECT ORDER. STO	PTYST235		
	2.)	TYST236		
69	FORMAT (15H THE FOLLOWING ,114,34H CARDS CONTAIN THE INSERT STRI	NTYST237		
	1GS. /)	TYST238		
79	FORMAT (60HOTHE INSERT STRINGS TAKE UP MORE THAN 400 CHARACTERS.S	TTYST239		
	10P.)	TYST240		
89	FORMAT (1015)	TYST241		
99	FORMAT (1X,1015)	TYST242		
119	FORMAT (47H ILLEGAL UNIT SPECIFIED ON SECOND CONTROL CARD. 216)	TYST245		
129	FORMAT (70HOCURRENT DIMENSION STATEMENTS ALLOW FOR A MAXIMUM OF			
	10 FIELDS. STOP.)	TYST247		
139	FORMAT (112,78A1)	TYST248		
149	FORMAT (1X,112,78A1)	TYST249		
	END	TYST250		

С	KWIND, TYPESETTING FOR KWIC INDEXES	KWICOO90 •
	DIMENSIONIA(84), IC(700), ID(136), INS(80), N(8), NA(8), NB(20), IB(4100)KWIC0100
	ITAPE=5	KWIC0110
	IOTAPE=6	KWIC0120
		KWIC0130
	READ (ITAPE,9) $(IA(I), I=1, 80)$	
	WRITE (IOTAPE, 19) (IA(I), I=1, 80)	KWIC0140
	READ (ITAPE,89) ITEST,LENGTH,IRTAPE,IPTAPE	KWIC0150
	WRITE (IOTAPE,99) ITEST,LENGTH,IRTAPE,IPTAPE	KWIC0160
	READ (ITAPE,9) (ID(I),I=1,80)	KWIC0170
	D0 5 I=1,8	KWIC0180
	N(I)=0	KWIC0190
	NB(I)=0	KWIC0198
5	NA(I) = 0	KWIC0200
5	K=0	KWIC0210
	D0 100 I=1,8	KWIC0220
10	K=K+1	KWIC0230
	IF (ID(K)-IA(47)) 30,20,30	KWIC0240
20	IF (K-80) 10,25,25	KWIC0250
25	WRITE (IOTAPE,49) (ID(J),J=1,80)	KWIC0260
	GO TO 9999	KWIC0270
30	D0 40 J=27,36	KWIC0280
	IF (ID(K)-IA(J)) 40,50,40	KWIC0290
40	CONTINUE	KWIC0300
-10	GO TO 10	KWIC0310
50		
50	N(I) = J - 27	KWIC0320
	K=K+1	KWIC0330
	D0 60 J=27,36	KWIC0340
	IF (ID(K)-IA(J)) 60,70,60	KWIC0350
60	CONTINUE	KWIC0360
	GO TO 100	KWIC0370
70	N(I) = 10 * N(I) + J - 27	KWIC0380
	K=K+1	KWIC0390
	D0 80 J=27,36	KWIC0400
	IF (ID(K)-IA(J)) 80,90,80	KWIC0410
80	CONTINUE	KWIC0420
00	G0 T0 100	KWIC0430
90	$N(I) = 10^{\circ}N(I) + J - 27$	KWIC0440
		KWIC0450
100	CONTINUE	
	J=0	KWIC0460
	D0 120 I=1,8	KWIC0470
	IF (N(I)) 110,105,107	KWIC0480
105	J=J+1	KWIC0490
107	IF (N(I)-136) 120,120,110	KWIC0500
110	WRITE (IOTAPE, 39) I, N(I)	KWIC0510
	GO TO 9999	KWIC0520
120	CONTINUE	KWIC0530
	IF (J-8) 125,9999,9999	KWIC0540
125	J=1	KWIC0550
-20	D0 145 I=1,7,2	KWIC0560
	IF (N(I)-N(I+1)) 140,140,130	KWIC0570
130	WRITE (IOTAPE,59) N(I),N(I+1),I	KWIC0580
100		
140	GO TO 9999	KWIC0590
140	WRITE (IOTAPE,29) J,N(I),N(I+1)	KWIC0600
145	J=J+1	KWIC0610
	WRITE (IOTAPE, 69)	KWIC0620
	N3=1	KWIC0630
	D0 190 I=1,8	KWIC0640

READ (ITAPE, 9) (ID(K), K=1, 80) WRITE (IOTAPE, 19) (ID(K), K=1, 80) J=1 IF (ID(J)-IA(47)) 160,180,160 150 160 INS(N3) = ID(J)N3=N3+1 J=J+1IF (N3-80) 150,150,170 170 WRITE (IOTAPE, 79) GO TO 9999 180 NA(I) = J - 1190 CONTINUE K=1NB(1) = 1DO 195 I=2,16,2 NB(I) = NA(K) + NB(I-1) - 1NB(I+1)=NA(K)+NB(I-1)195 K=K+1READ (ITAPE, 139) K1, (IB(J), J=1, 78) WRITE (IOTAPE, 149) K1, (IB(I), I=1,78) CALL AMATCH(IA, ID, LENGTH, O, MATCH) CALL SUBST(ID,1,0) IT = N(6)K=0200 READ (IRTAPE, 9, END=900, ERR=900) (ID(I), I=1, LENGTH)201 N1=N(1)N2=N(2)CALL AMATCH(IA, ID, LENGTH, 1, MATCH) IF (MATCH) 205,205,200 205 IF (N(1)) 270,270,210 210 IF (NA(1)) 240,240,220 220 N3 = NB(1)N4=NB(2)DO 230 I=N3,N4 K=K+1230 IC(K) = INS(I)240 DO 250 I=N1,N2 K=K+1250 IC(K) = ID(I)270 IF (N(3)) 500,500,280 280 N1 = N(3) + 1N2 = N(4)J=N1-1DO 300 I=N1,N2 IF (ID(I-1)-IA(47)) 300,290,300 290 IF (ID(I)-IA(47)) 300,350,300 300 CONTINUE IF (NA(4)) 330,330,310 310 N3=NB(7)N4=NB(8)DO 320 I=N3,N4 K=K+1320 IC(K) = INS(I)330 N1=N(3)DO 340 I=N1,N2 K=K+1340 IC(K) = ID(I)GO TO 500

KWIC0650 KWIC0660 KWIC0670 KWIC0680 KWIC0690 KWIC0700 KWIC0710 KWIC0720 KWIC0730 KWIC0740 KWIC0750 KWIC0760 KWIC0770 KWIC0780 KWIC0790 KWIC0800 KWIC0810 KWIC0820 KWIC0830) KWIC0832 KWIC0834 KWIC0840 KWIC0850 KWIC0860 KWIC0870 KWIC0880 KWIC0890 KWIC0900 KWIC0910 KWIC0920 KWIC0930 KWIC0940 KWIC0950 KWIC0960 i KWIC0970 KWIC0980 KWIC0990 KWIC1000 KWIC1010 KWIC1020 KWIC1030 KWIC1040 KWIC1050 KWIC1060 KWIC1070 KWIC1080 KWIC1090 KWIC1100 KWIC1110 KWIC1120

KWIC1130

KWIC1140

KWIC1150

KWIC1160

KWIC1170

KWIC1180

h

350	IF (I-N1) 410,410,360		KWIC1190
360	IF (NA(2)) 390,390,370		KWIC1200
370	N3=NB(3)		KWIC1220
	N4=NB(4)		KWIC1230
	D0 380 J=N3,N4		KWIC1240
	K=K+1		KWIC1250
380	IC(K) = INS(J)		KWIC1260
390	J=I-2		KWIC1270
	Nl=N(3)		KWIC1280
	D0 400 I=N1,J		KWIC1290
	K=K+1		KWIC1300
400	IC(K) = ID(I)		KWIC1310
410	J=J+1		KWIC1320
	DO 430 I=J,N2		KWIC1330
	IF (ID(I)-IA(47)) 440,430,440		KWIC1340
			10101040
430	CONTINUE		KWIC1350
	GO TO 500		KWIC1360
440	IF (NA(3)) 470,470,450		KWIC1370
450	N3=NB(5)		KWIC1380
	N4=NB(6)		KWIC1390
	DO 460 J=N3,N4		KWIC1400
	K=K+1		KWIC1410
460	IC(K) = INS(J)		KWIC1420
470	D0 480 J=I,N2		KWIC1430
	K=K+1		KWIC1440
480	IC(K) = ID(J)		KWIC1450
500	IF (N(5)) 720,720,510		KWIC1460
510	N1 = N(5) + 1		KWIC1470
	N2=N(6)		KWIC1480
	J=N1-1		KWIC1490
	D0 530 I=N1, N2		KWIC1500
	IF (ID(I-1)-IA(47)) 530,520,530		KWIC1510
520	IF (ID(I)-IA(47)) 530,590,530		KWIC1520
530	CONTINUE		KWIC1530
540	IF (NA(7)) 560,560,540		KWIC1540
540	N3=NB(13)		KWIC1550
	N4=NB(14)		KWIC1560
	D0 550 I=N3,N4		KWIC1570
550	K=K+1		KWIC1580
550	IC(K) = INS(I)		KWIC1590
560	N1=N(5)		KWIC1600
	D0 570 I=N1,N2		KWIC1610
570	K=K+1 IC(K)=ID(I)		KWIC1620 KWIC1630
570	G0 T0 720		KWIC1630 KWIC1640
590	IF(I-N1) 650,650,600		KWIC1640
600	IF (NA(5)) 630,630,610		KWIC1660
610	N3=NB(9)		KWIC1670
010	N4=NB(10)		KWIC1680
	D0 620 J=N3, N4		KWIC1690
	K=K+1		KWIC1700
620	IC(K) = INS(J)		KWIC1710
630	J=I-2		KWIC1730
	Nl=N(5)		KWIC1740
	D0 640 I=N1,J		KWIC1750
	K=K+1		KWIC1760
640	IC(K) = ID(I)		KWIC1770
		0.0	

KWIC1780 650 J=J+1DO 660 I=J,N2 KWIC1790 KWIC1800 IF (ID(I)-IA(47)) 670,660,670 KWIC1810 660 CONTINUE KWIC1820 GO TO 720 KWIC1830 670 IF (NA(6)) 700,700,680 KWIC1840 680 N3=NB(11) KWIC1850 N4 = NB(12)KWIC1860 DO 690 J=N3,N4 KWIC1870 K=K+1KWIC1880 690 IC(K) = INS(J)KWIC1890 DO 710 J=I,N2 700 KWIC1900 K=K+1KWIC1910 710 IC(K) = ID(J)KWIC1920 IF (N(7)) 800,800,730 720 KWIC1930 730 Nl=N(7)N2=N(8)KWIC1940 IF (NA(8)) 770,770,740 KWIC1950 740 N3=NB(15) KWIC1960 N4 = NB(16)KWIC1970 DO 760 I=N3,N4 KWIC1980 KWIC1990 K=K+1KWIC2000 760 IC(K) = INS(I)770 DO 780 I=N1,N2 KWIC2010 K=K+1KWIC2020 IC(K) = ID(I)780 KWIC2030 KWIC2031 800 K2=K1+1 CALL SUBST(IC,K,1) KWIC2032 • 1 KWIC2033 Kl=Kl+K KWIC2034 J=0DO 805 I=K2,K1 KWIC2035 J=J+1KWIC2036 805 IB(I) = IC(J)KWIC2037 K=0 KWIC2038 CALL NPRINT(K1, ITEST, IB, IA(47), IOTAPE, IPTAPE, 0) KWIC2050 • k 807 850 GO TO 200 KWIC2060 900 Kl = Kl + 4KWIC2070 C IA(50) CONTAINS THE END OF RECORD SYMBOL, IA(47) CONTAINS A BLANK. KWIC2080 IB(K1-3) = IA(47)KWIC2090 IB(K1-2) = IA(50)KWIC2100 IB(K1-1) = IA(47)KWIC2180 IB(K1) = IA(50)KWIC2190 CALL NPRINT(K1, ITEST, IB, IA(47), IOTAPE, IPTAPE, 1) KWIC2200 • 9999 STOP KWIC2350 KWIC2360 9 FORMAT (136A1) 19 FORMAT (1X,131A1) KWIC2370 29 FORMAT (7H FIELD , 112, 11H GOES FROM , 113,4H TO , 113) KWIC2380 39 FORMAT (57H ONLY LINES WITH 136 OR LESS CHARACTERS ARE ALLOWED, THKWIC2390 1E ,116,7H FIELD ,/11H SPECIFIED ,116,18H CHARACTERS. STOP.) KWIC2400 49 FORMAT (58H EIGHT NUMBERS WERE NOT GIVEN ON THE FOLLOWING CARD. STOKWIC2410 1P. /1X,131A1) KWIC2420 59 FORMAT (20H THE PAIR OF NUMBERS ,116, 5H AND ,116, 25H SPECIFYINGKWIC2430 1 FIELD NUMBER ,116, /42H ARE NOT GIVEN IN THE CORRECT ORDER. STOPKWIC2440 2.) KWIC2450 69 FORMAT (50H THE FOLLOWING 8 CARDS CONTAIN THE INSERT STRINGS /)KWIC2460 79 FORMAT (60H THE INSERT STRINGS TAKE UP MORE THAN 80 CHARACTERS. STKWIC2470 10P.) KWIC2480 89 FORMAT (1015) KWIC2490 99 FORMAT (1X,1015) KWIC2500

109 FORMAT (61HOTHE LAST LINE WRITTEN BEFORE A TAPE ERROR OR END OF FKWIC2510 IILE IS /IX,131A1 /7 H STOP.) KWIC2520 FORMAT (112,78A1) 139 149 FORMAT (1X,1I2,78A1) END KWIC2530 SUBROUTINE SUBST (IB, IW, ITYPE) SUBS 1 С 2 SUBS С SUBSTITUTE SUBROUTINE 3 SUBS С SUBS 4 С TEXTUAL SUBSTITUTION PROGRAM WRITTEN BY C. MESSINA NSRDS-NBS SUBS 40 С IB(999) IS THE STRING TO BE PROCESSED. ON RETURN FROM SUBST, IB SUBS 41 С CONTAINS THE REMADE LINE. SUBS 42 С IW IS THE LENGTH OF THE INPUT STRING IN IB. ON RETURN FROM SUBST, SUBS 43 С IW CONTAINS THE NEW LENGTH OF IB. SUBS 44 С ITYPE = 0 WHEN THE SUBSTITUTION TABLE IS READ IN AND ITYPE = 1 SUBS 5 С WHEN THE SUBSTITUTION IS TO TAKE PLACE. SUBS 6 С SUBS 7 С THE INPUT DECK AT OBJECT TIME IS THE FOLLOWING SET OF CARDS SUBS 8 THE FIRST CARD IS A DICTIONARY OF THE ALPHABET STARTING WITH THE SUBS 9 С С LETTER A IN CARD COL ONE, A LETTER B IN COL 2 AND SO FORTH. THE SUBS 10 С NUMBERS FOLLOW THE ALPHABET STARTING WITH ZERO. COL 38 CONTAINS SUBS 11 THE PRINT OUT STRING DELIMITER. COL 47 CONTAINS A BLANK. С SUBS 12 С THE SECOND CARD HAS A ZERO IN COL 2 IF NO CARDS ARE TO BE PUNCHED SUBS 13 С 1 IF THE PUNCH TAPE IS TO BE WRITTEN. THE NEXT 212 FIELDS ON THIS SUBS 14 С CARD. IF POSITIVE NON ZERO INTEGERS, CONTAIN THE IRTAPE NUMBER SUBS 15 С AND IPTAPE NUMBER, OTHERWISE THEY ARE SET TO IRTAPE=5 AND IPTAPE=3SUBS 16 С THE THIRD AND FOURTH CARDS ARE BOTH IN A1, I3, 2A1, I2 FORMATS. SUBS 18 С THE FIRST TWO FIELDS ARE IGNORED ON BOTH CARDS IN THIS VERSION. SUBS 19 THE 3RD FIELD IS THE SHIFT TO UPPER CASE SYMBOL. THE 4TH IS SHIFT SUBS 21 С С TO LOWER CASE SYMBOL, AND THE FIFTH IS THE SHIFT AND LOCK SWITCH SUBS 22 THAT IS O IF THE MODE IS NOT SHIFT AND LOCK AND 1 IF IT IS. С SUBS 23 С CARDS FIVE ET SEQ CONTAIN THE LIST OF STRINGS TO BE EXCHANGED. SUBS 24 С ON EACH CARD THE OLD RECORD OR STRING APPEARS ON THE LEFT SIDE ANDSUBS 25 C THE NEW STRING ON THE RIGHT. THE CHARACTER WHICH APPEARS IN CARD SUBS 26 С COLUMN 1 IS THE STRING DELIMITER WHICH REMAINS IN FORCE FOR THAT SUBS 27 С CARD. IT MAY, HOWEVER, CHANGE FROM CARD TO CARD. SUBS 28 С THE FORMAT IS PRESCRIBED. A CHARACTER IN COL 1 DEFINES THE STARTSUBS 29 С OF A STRING. THE SAME CHARACTER MUST APPEAR AFTER THE END SUBS 30 С OF THE STRING. THE THIRD APPEARANCE OF THE COLUMN 1 CHARACTER ON SUBS 31 С THE CARD STARTS THE 2ND STRING AND THE FOURTH APPEARANCE ENDS IT. SUBS 32 EXAMPLE С SUBS 33 С /REAL/ /TRUE/ SUBS 34 С AFTER THE SUBSTITUTION LIST MUST COME A CARD WITH THE WORD FINIS SUBS 36 С STARTING IN CARD COLUMN ONE. SUBS 37 С SUBS 38 DIMENSION IA(86), N(1000), IC(8000), IB(999) SUBS 39 SUBS 40 ITAPE=5 IOTAPE=6 SUBS 41 SUBS 42 IEND=0 MAXIW=998 SUBS 43 SUBS 44 IF (ITYPE) 20,20,560 READ (ITAPE, 840) (IA(J), J=1,80) 20 SUBS 45 SUBS 46 WRITE (IOTAPE, 890) (IA(J), J=1, 80) READ (ITAPE, 850) ITEST, IRTAPE, IPTAPE SUBS 47 IF (IRTAPE) 30,30,60 SUBS 48 30 SUBS 49 IRTAPE=5 SUBS 53 60 IF (IPTAPE) 70,70,100 70 SUBS 54 IPTAPE=3 SUBS 58 100 WRITE (IOTAPE, 930) ITEST, IRTAPE, IPTAPE

30

n

150 C 160 170 180	<pre>READ (ITAPE,860) IA(81).IWIDE1,IA(83),IA(85),LOCK1 WRITE (IOTAPE,920) IA(81),IWIDE1,IA(83),IA(85),LOCK1 READ (ITAPE,860) IA(82),IWIDE2.IA(84),IA(86),LOCK2 WRITE (IOTAPE,920) IA(82),IWIDE2,IA(84),IA(86),LOCK2 N1=0 N3=1 START OF READING IN SUBSTITUTE LISTS READ (ITAPE,840) (IB(J),J=1,80) N2=0 N2=0 IF (IB(1)-IA(6)) 210,170,210 IF (IB(2)-IA(9)) 210,180,210 IF (IB(3)-IA(14)) 210,190,210</pre>	SUBS 59 SUBS 60 SUBS 61 SUBS 62 SUBS 69 SUBS 70 SUBS 71 SUBS 72 SUBS 73 SUBS 74 SUBS 76 SUBS 77
190	IF (IB(4)-IA(9)) 210,200,210	SUBS 78
200	IF (IB(5)-IA(19)) 210,440,210	SUBS 79 SUBS 80
210	D0 230 I=2,78 IF (IB(I)-IB(1)) 230,220,230	SUBS 80 SUBS 81
220	IF (N2) 160,160,240	SUBS 82
230	N2=I-1	SUBS 83
240	J=N2+3	SUBS 84 SUBS 85
250	IF (J-79) 260,250,250 WRITE (IOTAPE,900) IB(1),(IB(I),I=1,80)	SUBS 86
~~~	GO TO 830	SUBS 87
260	K=J+1	SUBS 88
	D0 270 I=J,79 IF (IB(I)-IB(1)) 270,280,270	SUBS 89 SUBS 90
270	K=I+2	SUBS 91
	GO TO 250	SUBS 92
280	D0 290 I=K,80	SUBS 93
290	IF (IB(I)-IB(1)) 290,300,290 N22=I-K+1	SUBS 94 SUBS 95
200	G0 T0 250	SUBS 96
300	N1=N1+2	SUBS 97
	N(N1-1) = N2	SUBS 98
	N(N1) = N22 N4 = N3 + N2 - 1	SUBS 99 SUBS100
	IF (N4-7920) 320, 320, 310	SUBS100
310	WRITE (IOTAPE,880) N4,N1	SUBS102
	GO TO 830	SUBS103
320	IF (N1-1000) 330,330,310	SUBS104 SUBS105
330	J=2 D0 340 I=N3,N4	SUBS105 SUBS106
	IC(I)=IB(J)	SUBS107
340	J=J+1	SUBS108
	N3=N3+N2	SUBS109
350	IF (N22) 370,370,350 N4=N3+N22-1	SUBS110 SUBS111
000	J=K	SUBS112
	D0 360 I=N3,N4	SUBS113
700	IC(I) = IB(J)	SUBS114
360 370	J=J+1 IF (N2-38) 380,380,390	SUBS115 SUBS116
380	K=42	SUBS110
390	K1=K+N22-1	SUBS118
	J=N2+3	SUBS119
	D0 400 L=J,80	SUBS120

400	IB(L) = IA(47)	SUBS121
	IB(1) = IA(38)	SUBS122
	IB(N2+2) = IA(38)	SUBS123
	IB(K-1)=IA(38)	SUBS124
	IB(K1+1) = IA(38)	SUBS125
	IF (N22) 430,430,410	SUBS126
410		
410	D0 420 I=N3, N4	SUBS127
	IB(K) = IC(I)	SUBS128
420	K=K+1	SUBS129
	N3=N3+N22	SUBS130
430	WRITE (IOTAPE,890) (IB(J),J=1,80)	SUBS131
-200		
	GO TO 160	SUBS132
440	IF (N1-4) 550,450,450	SUBS133
450	N7=N1+2	SUBS134
460	N3=1	SUBS135
		0020100
	K1=0	SUBS136
	N7=N7-2	SUBS137
	IF (N7-4) 470,480,480	SUBS138
470	N7=N7+2	SUBS139
480	D0 540 I=4,N7,2	SUBS140
-100		
	N2=N(I-3)+N(I-2)	SUBS141
	N22=N(I-1)+N(I)	SUBS142
	IF (N(I-3)-N(I-1)) 500,490,490	SUBS143
490	N3=N3+N2	SUBS144
	GO TO 540	SUBS145
500	N4=N(I-3)	SUBS146
	N(I-3) = N(I-1)	SUBS147
	N(I-1) = N4	SUBS148
	N4=N(I)	SUBS149
	N(I) = N(I-2)	SUBS140
	N(I-2) = N4	SUBS151
	K1=K1+1	SUBS152
	N4=N3+N2-1	SUBS153
	K=0	SUBS154
	D0 510 J=N3,N4	SUBS155
	K=K+1	SUBS156
510	IB(K) = IC(J)	SUBS157
	D0 520 J=1,N22	SUBS158
	K=N3+J-1	SUBS159
	N6=N4+J	SUBS160
520	IC(K) = IC(NG)	SUBS161
	N3=N3+N22	SUBS162
	D0 530 J=1,N2	SUBS163
	K=N3+J-1	SUBS164
530	IC(K) = IB(J)	SUBS165
540	CONTINUE	SUBS166
	IF (K1) 550,550,460	SUBS167
550	WRITE (IOTAPE, 890) IA(6), IA(9), IA(14), IA(9), IA(19)	SUBS168
000		
	GO TO 820	SUBS169
С	START OF SUBSTITUTION	SUBS170
560	IF (IW-MAXIW) 580,580,570	SUBS171
570	WRITE (IOTAPE,940) IW, MAXIW, (IB(I), I=1, IW)	SUBS172
0.0	GO TO 830	
500		SUBS173
580	CALL CHECKI (IA, IB, ITEST, IOTAPE, IPTAPE, IEND, 1)	SUBS174
	IF (IEND) 830,590,830	SUBS175
590	N3=1	SUBS176
	IB(IW+1) = IA(47)	SUBS177
	IF (LOCK1) 600,610,600	SUBS178
	2.1	

600 610	CALL SUNLK (IA,IB,IW,IOTAPE) K2=1 ILK=0	SUBS179 • P SUBS180 SUBS181
620	N6=0 N7=0	SUBS181 SUBS182 SUBS183
	D0 650 K=K2,IW N3=1	SUBS184 SUBS185
	D0 640 I=2,N1,2	SUBS186
625	IF (IC(N3)-IB(K)) 640,625,640 N2=N(I-1)	SUBS1861 SUBS187
	N22=N(I) IF (IW-K-N2+1) 640,631,631	SUBS188
631	K1 = K	SUBS1885 SUBS189
	N4=N3+N2-1	SUBS190
	D0 630 J=N3,N4 IF (IB(K1)-IC(J)) 640,630,640	SUBS191 SUBS192
630	Kl=Kl+1	SUBS192
000	Kl=Kl-l	SUBS194
	N7=I	SUBS195
	N6=N3	SUBS196
640	GO TO 660 N3=N3+N(I-1)+N(I)	SUBS197 SUBS198
650	CONTINUE	SUBS199
	GO TO 800	SUBS200
660 670	IF (K1-IW) 680,680,670 IW=K1	SUBS201 SUBS202
070	ILK=1	SUBS202
	IF (IW-MAXIW) 680,680,790	SUBS204
680	K1=K	SUBS205
	N2=N(N7-1) N22=N(N7)	SUBS206 SUBS207
	N2=N(N7) N3=N6+N2	SUBS207 SUBS208
	N4=N3+N22-1	SUBS209
	N5=N22-N2	SUBS210
690	IF (N5) 760,690,730 D0 700 J=N3,N4	SUBS211 SUBS212
090	B(K1) = IC(J)	SUBS212 SUBS213
700	Kl=Kl+l	SUBS214
710	IB(IW+1) = IA(47)	SUBS2141
720	IF (ILK) 720,720,800 K2=K1	SUBS215 SUBS216
120	$K_2 - K_1$ IF (K2 - IW) 620,620,800	SUBS210
730	IF (IW+N5-MAXIW) 740,740,790	SUBS218
740	IW=IW+N5	SUBS219
	K2=IW D0 750 J=K1.IW	SUBS220 SUBS221
	K9=K2-N5	SUBS222
	IB(K2)=IB(K9)	SUBS223
750	K2=K2-1	SUBS224
760	GO TO 690 DO 770 J=K1,IW	SUBS225 SUBS226
100	K9=J-N5	SUBS220
770	IB(J)=IB(K9)	SUBS228
	K9=IW+N5+1	SUBS229
780	D0 780 J=K9,IW IB(J)=IA(47)	SUBS230
100	IW=IW+N5	SUBS231 SUBS232
	IF (N22) 710,710,690 33	SUBS233

	<pre>WRITE (IOTAPE,910) MAXIW IF (LOCK2) 810,820,810 CALL SULOCK (IA,IB,IW,IOTAPE) RETURN STOP FORMAT (132A1) FORMAT (4012) FORMAT (1A1,1I3,2A1,1I2) FORMAT (33H LIST OF REPLACEMENTS IS TOO LONG/67H MAXIMUM CHARACTE 1 LENGTH IS 8000, MAXIMUM NUMBER OF PHRASES IS 400/20H CURRENT VAL 2ES ARE ,216,6H STOP.) FORMAT (1X,131A1) FORMAT (16H THE CHARACTER ,1A1,48H DID NOT APPEAR 4 TIMES ON THE 1CARD BELOW. STOP./1X,80A1) FORMAT (40HOTHE LINE FOLLOWING WOULD HAVE EXCEEDED ,116,43H CHARA ITERS IS SUBSTITUTION HAD CONTINUED. )</pre>	USUBS246 SUBS247 SUBS248 SUBS249 SUBS250
920 930 940	FORMAT (1X,1A1,1I3,2A1,1I2) FORMAT (1X,5OI2) FORMAT (19H STRING OF LENGTH =,1I6,43H IS TOO LONG FOR SUBROUTINE ISUBST. LENGTH =,1I6,6H STOP./,1X,12OA1) END	SUBS253 SUBS254 SUBS255 SUBS256 SUBS257-
	SUBROUTINE SUNLK(IA,IB,IW,IOTAPE) DIMENSION IA(86),IB(999) MAXIW=998 L=0 J=0 K=0 D0 60 I=1,IW	SSUK       10         SSUK       20         SSUK       30         SSUK       40         SSUK       50         SSUK       60         SSUK       70
20	IF (IB(I)-IA(83)) 40,20,40 L=L+1	SSUK 80 SSUK 90
70	IF (L-J-1) 30,60,30	SSUK 100
30	K=1 G0 T0 60	SSUK 110 SSUK 120
40	IF (IB(I)-IA(85)) 60,50,60	SSUK 130
50	J=J+1 IF (L-J) 30,60,30	SSUK 140 SSUK 150
60	CONTINUE	SSUK 150 SSUK 160
	IF (L–J) 80,70,90	SSUK 170
70	IF (K) 80,120,80	SSUK 180
80	WRITE (IOTAPE, 280)	SSUK 190
90	GO TO 150 IF (IA(83)-IA(85)) 80,100,80	SSUK 200 SSUK 210
100	K=2*(L/2)-L	SSUK 220
	IF (K) 110,120,110	SSUK 230
110	IW=IW+1 IB(IW)=IA(85)	SSUK 240 SSUK 250
120	J=1	SSUK 260
130	IF (IB(J)-IA(83)) 140,160,140	SSUK 270
140	J=J+1 IF (J-(IW+1)) 130,150,150	SSUK 280 SSUK 290
150	RETURN	SSUK 300
160	IF (IB(J+1)-IA(85)) 190,170,190	SSUK 310
170	J=J+2 D0 180 I=J,IW	SSUK 320 SSUK 330
180	IB(I-1) = IB(I)	SSUK 330
	GO TO 220	SSUK 350
190	IF (IB(J+2)-IA(85)) 230,200,230	SSUK 360

.

200	J=J+3	SSUK 370
010	DO 210 $I=J, IW$	SSUK 380 SSUK 390
210 220	IB(I-1)=IB(I) IW=IW-1	SSUK 400
220	IB(IW+1) = IA(47)	SSUK 410
	J=J-1	SSUK 420
	GO TO 130	SSUK 430
230	IF ((IW+1)-MAXIW) 250,250,240	SSUK 440
240	WRITE (IOTAPE, 270)	SSUK 450
250	GO TO 150 IW=IW+1	SSUK 460 SSUK 470
250	J=J+3	SSUK 480
	K=IW	SSUK 490
	D0 260 L=J,IW	SSUK 500
	IB(K) = IB(K-1)	SSUK 510
260	K=K-1	SSUK 520
	J=J-1	SSUK 530
	IB(J) = IA(83)	SSUK 540
	GO TO 160	SSUK 550
270	FORMAT (116HOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEF	
000	1 THE MAXIMUM CHARACTER LINE LIMIT WAS EXCEEDED IN SUNLK )	
280	FORMAT (69HOTHE FOLLOWING LINE DID NOT CONTAIN A BALANCED SET O 1HIFT SYMBOLS. )	SSUK 580 SSUK 590
	END	SSUK 600
	SUBROUTINE SULOCK(IA, IB, IW, IOTAPE)	SSLK 10 • \$
	DIMENSION IA(86), IB(999)	SSLK 20
	MAXIW=998	SSLK 30
00	J=1	SSLK 40
20 30	IF (IB(J)-IA(84)) 30,60,30 J=J+1	SSLK 50 SSLK 60
30	J=J+1 IF $(J-(IW+1))$ 20,20,50	SSLK 80 SSLK 70
40	WRITE (IOTAPE, 140)	SSLK 80
50	RETURN	SSLK 90
60	J=J+2	SSLK 100
70	IF (IB(J)-IA(84)) 110,80,110	SSLK 110
80	IW=IW-1	SSLK 120
00	DO 90 $K=J, IW$	SSLK 130
90	IB(K)=IB(K+1) IB(IW+1)=IA(47)	SSLK 140 SSLK 150
	J=J+1	SSLK 160
	IF (J-IW) 70,70,100	SSLK 170
100	IW=IW+1	SSLK 180
	IB(IW) = IA(86)	SSLK 190
	GO TO 50	SSLK 200
110	IF (IW-MAXIW) 120,100,40	SSLK 210
120	IW=IW+1 $J=J+1$	SSLK 220 SSLK 230
	K=IW	SSLK 240
	IB(IW+1)=IA(47)	SSLK 245
	IB(IW+2) = IA(47)	SSLK 246
	IB(IW+3) = IA(47)	SSLK 247
	D0 130 L=J,IW IB(K)=IB(K-1)	SSLK 250 SSLK 260
130	K=K-1	SSLK 200 SSLK 270
100	IB(J-1) = IA(86)	SSLK 280
	GO TO 20	SSLK 290
140	FORMAT (116HOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEF	
	1 THE MAXIMUM CHARACTER LINE LIMIT WAS EXCEEDED IN SULOCK )	SSLK 310
	END	SSLK 320

S

	SUBROUTINE CHECKI(IA, IB, ITEST, IOTAPE, IPTAPE, K, J)	SSCK	10
	DIMENSION IA(86), IB(999)	SSCK	20
	IF (K-1) 20,40,20	SSCK	30
20	L=J-1	SSCK	40
	D0 30 I=1,26	SSCK	50
	L=L+1	SSCK	60
	IF (IA(I)-IB(L)) 70,30,70	SSCK	70
30	CONTINUE	SSCK	80
	IF (K-2) 40,90,90	SSCK	90
40	K=1	SSCK	100
	WRITE (IOTAPE,100) (IA(I),I=1,80)	SSCK	110
	IF (ITEST) 50,80,50	SSCK	120
50	WRITE (IPTAPE,110) (IA(I),I=1,80)	SSCK	130
	IF (IPTAPE-6) 80,80,60	SSCK	140
60	END FILE IPTAPE	SSCK	150
	GO TO 80	SSCK	160
70	K=0	SSCK	170
80	RETURN	SSCK	180
90	K=1	SSCK	190
00	GO TO 80	SSCK	200
100	FORMAT (1X,80A1)	SSCK	
110	FORMAT (80A1)	SSCK	
110	END	SSCK	
		SSON	~00

SUBROUTINE AMATCH(IA, ID, LENGTH, ITYPE, MATCH)

С

C	
C IC() IS 1000 CHARACTERS LONG AND 40 MATCH STRINGS ARE ALLOWE	D. AMAT 020
A TO() CONTATNO THE CADING WHICH IS TO BE COMPADED WITH THE DI	CHIONADY ANAM 070
C ID() CONTAINS THE STRING WHICH IS TO BE COMPARED WITH THE DI C STRINGS.	
C STRINGS. C LENGTH IS E LENGTH OF ID(). WHEN LENGTH IS SMALLER THAN A 1	AMAT 040
C STRING, THERE IS NO MATCH.	AMAT 060
C IA() CONTAINS THE DICTIONARY OF SPECIAL CHARACTERS NEEDED.	
C IA(47) IS A BLANK AND THE ALPHABET OCCURS BETWEEN IA(1) AND	
C ITYPE IS THE ENTRY POINT, ZERO FOR READING IN THE MATCH STRI	
C FOR THE PROCESS OF MATCHING THE STRING ID() WITH THE D	
C MATCH IS ZERO IF A MATCH IS NOT FOUND, OTHERWISE MATCH CONTA	
C NUMBER OF THE MATCHED STRING.	AMAT 120
C IEND IS THE CHARACTER USED TO INDICATE THE END OF AN INPUT S	
C IGN IS THE CHARACTER INDICATING A FIELD ON THE MATCH STRING	
C THE PRESENCE OF ANY CHARACTER IS ALLOWED.	AMAT 150
C INPUT FORMAT	AMAT 160
C THE FIRST CARD CONTAINS THE IEND AND IGN CHARACTERS IN TH	
C THE FIRST NONBLANK CHARACTER IS ASSUMED TO BE IEND AND THE SE	
C NONBLANK CHARACTERS TO BE IGN. IF NEITHER CHARACTERS ARE TO B	
C A BLANK CARD MUST BE INSERTED	AMAT 200
C THE FOLLOWING CARDS CONTAIN A MATCH STRING PER CARD WITH	EACH AMAT 210
C STRING STARTING IN CARD COLUMN ONE. IF THE STRING IS NOT TO B	E AMAT 220
C TREATED AS BEING 80 CHARACTERS LONG, IT MUST BE TERMINATED BY	AN IEND AMAT 230
C CHARACTER. ANY CARD FIELD POSITIONS HAVING AN IGN CHARACTER W	ILL BE AMAT 240
C CONSIDERED TO MATCH AUTOMATICALLY.	AMAT 250
C THE LAST CARD HAS STARTING IN CARD COLUMNS 1 TO 6 THE WOR	D FINIS AMAT 260
C WITH THE IEND CHARACTER APPEARING IN CARD COLUMN 7 IF AN IEND	WAS AMAT 270
C SPECIFIED ON THE FIRST INPUT CARD.	AMAT 280
C •	
C DIMENSION IA(84), IB(80), IC(1000), ID(136), N(40) ITAPE=5 IOTAPE=6 IF (ITYPE) 300, 10, 300 10 IGNORE=2 N1=0 N3=1 READ (ITAPE,9) (IB(I), I=1,80) DO 20 I=1 80	AMAT 290 < U
ITAPE=5	AMAT 300 🔪 🗕
IOTAPE=6	AMAT 310
IF (ITYPE) 300,10,300	AMAT 320
10 IGNORE=2	AMAT 330
NI=0	AMAT 340
$N_{3}=1$	AMAT 350
READ $(1TAPE, 9)$ $(1B(1), 1=1, 80)$	AMAT 360
0 20 1-1,00	AMAI 570
IF (IB(I)-IA(47)) 30,20,30	AMAT 380
20 CONTINUE	
20 CONTINUE	AMAT 390
IGNORE=1	AMAT 400
IGNORE=1 GO TO 80	AMAT 400 AMAT 410
IGNORE=1 GO TO 80 30 IEND=IB(I)	AMAT 400 AMAT 410 AMAT 420
IGNORE=1 GO TO 80 30 IEND=IB(I) K=I+1	AMAT 400 AMAT 410 AMAT 420 AMAT 430
IGNORE=1 GO TO 80 30 IEND=IB(I) K=I+1 IF (K-80) 40,40,60	AMAT 400 AMAT 410 AMAT 420 AMAT 430 AMAT 440
IGNORE=1 GO TO 80 30 IEND=IB(I) K=I+1 IF (K-80) 40,40,60 40 DO 50 I=K,80	AMAT 400 AMAT 410 AMAT 420 AMAT 430 AMAT 440 AMAT 450
IGNORE=1 GO TO 80 30 IEND=IB(I) K=I+1 IF (K-80) 40,40,60 40 DO 50 I=K,80 IF (IB(I)-IA(47)) 70,50,70	AMAT 400 AMAT 410 AMAT 420 AMAT 430 AMAT 440 AMAT 450 AMAT 460
IGNORE=1 GO TO 80 30 IEND=IB(I) K=I+1 IF (K-80) 40,40,60 40 DO 50 I=K,80 IF (IB(I)-IA(47)) 70,50,70 50 CONTINUE	AMAT 400 AMAT 410 AMAT 420 AMAT 430 AMAT 440 AMAT 450 AMAT 460 AMAT 470
IGNORE=1 GO TO 80 30 IEND=IB(I) K=I+1 IF (K-80) 40,40,60 40 DO 50 I=K,80 IF (IB(I)-IA(47)) 70,50,70 50 CONTINUE 60 IGNORE=0	AMAT 400 AMAT 410 AMAT 420 AMAT 430 AMAT 440 AMAT 440 AMAT 450 AMAT 460 AMAT 470 AMAT 480
IGNORE=1 GO TO 80 30 IEND=IB(I) K=I+1 IF (K-80) 40,40,60 40 DO 50 I=K,80 IF (IB(I)-IA(47)) 70,50,70 50 CONTINUE 60 IGNORE=0 GO TO 80	AMAT400AMAT410AMAT420AMAT430AMAT440AMAT450AMAT460AMAT470AMAT480AMAT490
IGNORE=1 GO TO 80 30 IEND=IB(I) K=I+1 IF (K-80) 40,40,60 40 DO 50 I=K,80 IF (IB(I)-IA(47)) 70,50,70 50 CONTINUE 60 IGNORE=0 GO TO 80 70 IGN=IB(I)	AMAT400AMAT410AMAT420AMAT430AMAT440AMAT450AMAT460AMAT470AMAT480AMAT490AMAT500
IGNORE=1 GO TO 80 30 IEND=IB(I) K=I+1 IF (K-80) 40,40,60 40 DO 50 I=K,80 IF (IB(I)-IA(47)) 70,50,70 50 CONTINUE 60 IGNORE=0 GO TO 80 70 IGN=IB(I) 80 WRITE (IOTAPE,39) (IB(K),K=1,I)	AMAT400AMAT410AMAT420AMAT430AMAT440AMAT450AMAT460AMAT470AMAT480AMAT490AMAT500AMAT510
IGNORE=1 GO TO 80 30 IEND=IB(I) K=I+1 IF (K-80) 40,40,60 40 DO 50 I=K,80 IF (IB(I)-IA(47)) 70,50,70 50 CONTINUE 60 IGNORE=0 GO TO 80 70 IGN=IB(I) 80 WRITE (IOTAPE,39) (IB(K),K=1,I) 90 READ (ITAPE,9) (IB(J),J=1,80)	AMAT400AMAT410AMAT420AMAT430AMAT440AMAT450AMAT460AMAT470AMAT490AMAT500AMAT510AMAT520
IGNORE=1 GO TO 80 30 IEND=IB(I) K=I+1 IF (K-80) 40,40,60 40 DO 50 I=K,80 IF (IB(I)-IA(47)) 70,50,70 50 CONTINUE 60 IGNORE=0 GO TO 80 70 IGN=IB(I) 80 WRITE (IOTAPE,39) (IB(K),K=1,I)	AMAT400AMAT410AMAT420AMAT430AMAT440AMAT450AMAT460AMAT470AMAT480AMAT490AMAT500AMAT510

100		
100	IF (IB(2) - IA(9)) 160, 110, 160	AMAT 550
110	IF (IB(3) - IA(14)) 160,120,160	AMAT 560
120	IF (IB(4) - IA(9)) 160,130,160	AMAT 570
130	IF (IB(5) - IA(19)) 160,140,160	AMAT 580
140	IF (IGNORE - 1) 150,240,150	AMAT 590
150	IF (IB(6) - IEND) 160,240,160	AMAT 600
160	D0 180 I=1,80	AMAT 610
	IF (IB(I) - IEND) 180,170,180	AMAT 620
170	IF (N2) 90,90,190	AMAT 630
180	N2=I	
		AMAT 640
190	N1=N1+1	AMAT 650
	IF (N1 - 40) 200,200,210	AMAT 660
200	N(N1) = N2	AMAT 670
	N4=N3+N2-1	AMAT 680
	IF (N4-1000) 220,220,210	AMAT 690
210	WRITE (IOTAPE,29) N4,N1	AMAT 700
9999	STOP	AMAT 710
220	J=1	AMAT 720
	D0 230 I=N3,N4	AMAT 730
	IC(I)=IB(J)	AMAT 740
230	J=J+1	AMAT 750
200	N3=N3+N2	AMAT 760
	WRITE (IOTAPE, 19) (IB(J), J=1,80)	AMAT 770
0.40		AMAT 780
240	WRITE (IOTAPE, 19) (IB(J), J=1,80)	AMAT 790
1000	RETURN	AMAT 800
300	IF (N4) 340,340,310	AMAT 810
310	IF (1000-N4) 340,320,320	AMAT 820
320	IF (N1) 340,340,330	AMAT 830
330	IF (40 - N1) 340,350,350	AMAT 840
340	WRITE (IOTAPE,49)	AMAT 850
	GO TO 9999	AMAT 860
350	N3=1	AMAT 870
	D0 410 J=1,N1	AMAT 880
	N2=N(J)	AMAT 890
	N4=N2+N3-1	AMAT 900
	IF (N2 – LENGTH) 360,360,410	AMAT 910
360	K=1	AMAT 920
500		
	DO 390 I=N3, N4	AMAT 930
	IF $(IC(I) - ID(K))$ 370,390,370	AMAT 940
370	IF (IGNORE-1) 410,410,380	AMAT 950
380	IF (IC(I) - IGN) 410,390,410	AMAT 960
390	K=K+1	AMAT 970
400	MATCH=J	AMAT 980
	GO TO 1000	AMAT 990
410	N3=N3+N2	AMAT1000
	MATCH=0	AMAT1010
	GO TO 1000	AMAT1020
9	FORMAT (136A1)	AMAT1030
19	FORMAT (1X,135A1)	AMAT1040
29	FORMAT (79HOSUBROUTINE AMATCH WAS GIVEN TOO MANY STRINGS. MAXIMUM	
20		
	· · · · · · · · · · · · · · · · · · ·	
70	2 ,216,6H STOP.)	AMAT1070
39	FORMAT (25HOSUBROUTINE AMATCH INPUT //1X,80A1)	AMAT1080
49	FORMAT (62HOSUBROUTINE AMATCH WAS NOT CALLED ON TO READ IN STRINGS	
	1. STOP. )	AMAT1100
	END	AMAT1110

```
SUBROUTINE NPRINT(K, ITEST, IC, IBLANK, IOTAPE, IPTAPE, IEND)
                                                                           NPRI 10 • 1
      THIS VERSION OF NPRINT USES A FORTRAN WRITE STATEMENT
С
                                                                           NPRI
                                                                                 20
          SUBROUTINE NPRINT -- NTRAN PRINT- PRINTS OUT RECORDS OF LENGTH
С
                                                                           NPRI
                                                                                 30
      NCOUT FROM THE STRING IC -1A1 FORMAT- THE CURRENT LENGTH OF
С
                                                                           NPRI
                                                                                 40
С
      CHARACTERS IN IC IS K. IF K IS LESS THAN NCOUT NOTHING IS DONE
                                                                           NPRI
                                                                                 50
С
      UNLESS THE LAST RECORD IS TO BE WRITTEN INDICATED BY IEND=1
                                                                           NPRI 60
С
      WHEN IEND=-1 THE ENTIRE CONTENTS OF IC IS WRITTEN OUT BUT THE
                                                                           NPRI 70
      TAPE IS NOT ENDFILED AND EACH RECORD IS NCOUT CHARACTERS LONG
С
                                                                           NPRI 80
      WHEN IEND=1 THE LAST RECORD IS FILLED WITH IBLANKS FROM K+1 TO
С
                                                                           NPRI 90
      NCOUT AND AN END OF FILE IS PLACED ON IPTAPE. ITEST IS NEGATIVE
С
                                                                           NPRI 100
      FOR PRINTING, ZERO FOR PRINTING AND WRITING TAPE AND POSTIVE FOR
С
                                                                           NPRI 110
С
      WRITING TAPE. IOTAPE IS THE SYSTEM PRINTER. IPTAPE IS THE TAPE.
                                                                           NPRI 120
      DIMENSION IC(4100)
                                                                           NPRI 130
      NCOUT=132
                                                                           NPRI 140
10
      IF (K) 20,20,80
                                                                           NPRI 150
      IF (IEND) 70,70,40
20
                                                                           NPRI 160
40
      IF (ITEST) 60,50,50
                                                                           NPRI 170
50
      ENDFILE IPTAPE
                                                                           NPRI 180
60
      WRITE (IOTAPE, 19) (IC(I), I=1, NCOUT)
                                                                           NPRI 190
      WRITE (IOTAPE,9)
                                                                           NPRI 200
70
                                                                           NPRI 210
      RETURN
80
      IF (IEND) 90,110,90
                                                                           NPRI 220
90
      IF (NCOUT*(K/NCOUT)-K) 100,110,100
                                                                           NPRI 230
100
                                                                           NPRI 240
      K = NCOUT*((K/NCOUT) + 1)
110
      IF (K-NCOUT) 20,160,160
                                                                           NPRI 250
160
      N=N+1
                                                                           NPRI 260
      IF (ITEST) 170,170,180
                                                                           NPRI 270
170
      WRITE (IOTAPE, 19) (IC(I), I=1, NCOUT)
                                                                           NPRI 280
      WRITE (IOTAPE, 59) N, NCOUT
                                                                           NPRI 290
180
      IF (ITEST) 210,200,200
                                                                           NPRI 300
200
      WRITE (IPTAPE, 39) (IC(I), I=1, NCOUT)
                                                                           NPRI 310
210
      IF (K - NCOUT) 10,220,240
                                                                           NPRI 320
220
      K=0
                                                                           NPRI 330
      D0 230 I=1, NCOUT
                                                                           NPRI 340
230
      IC(I)=IBLANK
                                                                           NPRI 350
      GO TO 10
                                                                           NPRI 360
240
      J=K
                                                                           NPRI 370
      K=0
                                                                           NPRI 380
      K1=NCOUT+1
                                                                           NPRI 390
      D0 250 I=K1,J
                                                                           NPRI 400
      K=K+1
                                                                           NPRI 410
250
      IC(K) = IC(I)
                                                                           NPRI 420
      Kl=K+l
                                                                           NPRI 430
      D0 260 I=K1.J
                                                                           NPRI 440
260
      IC(I)=IBLANK
                                                                           NPRI 450
      GO TO 110
                                                                           NPRI 460
9
      FORMAT (45HO****** THE ABOVE IS THE LAST RECORD WRITTEN
                                                                  )
                                                                           NPRI 470
19
      FORMAT (1X,100A1)
                                                                           NPRI 480
      FORMAT (132A1)
39
                                                                           NPRI 490
      FORMAT ( 27HO****** ABOVE IS RECORD NO ,116,7H IT IS 116,
59
                                                                           NPRI 500
     1 7H LONG.
                   - / )
                                                                           NPRI 510
      END
                                                                           NPRI 520
```



# APPENDIX II

This Appendix shows how the programs in Appendix I were modified for the NBS UNIVAC 1108 in order to take full advantage of buffered tape read, buffered tape write, and labeled common. These changes should serve also as a guide for optimizing the programs when run under other systems.

	SUBROUTINE NPRINT(K, ITEST, IC, IBLANK, IOTAPE, IPTAPE, IEND)	NTPR	10	4
С	THIS VERSION OF NPRINT IS A BUFFERED WRITE USING NTRAN AT NBS.	NTPR	15	
С	SUBROUTINE NPRINT NTRAN PRINT- PRINTS OUT RECORDS OF LENGTH	NTPR	20	
С	NCOUT FROM THE STRING IC -1A1 FORMAT- THE CURRENT LENGTH OF	NTPR	30	
С	CHARACTERS IN IC IS K. IF K IS LESS THAN NCOUT NOTHING IS DONE	NTPR	40	
С	UNLESS THE LAST RECORD IS TO BE WRITTEN INDICATED BY IEND=1	NTPR	-	
С	WHEN IEND=-1 THE ENTIRE CONTENTS OF IC IS WRITTEN OUT BUT THE TAP	ENTPR	60	
С	IS NOT ENDFILED AND EACH RECORD IS NCOUT CHARACTERS LONG	NTPR	70	
С	WHEN IEND=1 THE LAST RECORD IS FILLED WITH IBLANKS FROM K+1 TO	NTPR	80	
С	NCOUT AND AN END OF FILE IS PLACED ON IPTAPE. ITEST IS NEGATIVE	NTPR	90	
С	FOR PRINTING, ZERO FOR PRINTING AND WRITING TAPE AND POSTIVE FOR	NTPR	100	
С	WRITING TAPE. IOTAPE IS THE SYSTEM PRINTER. IPTAPE IS THE TAPE.	NTPR	110	
	DIMENSION IC(4100), IWORDS(500)	NTPR		
	NCOUT = 300	NTPR		
10	IF (K) 20,20,80	NTPR		
20	IF (IEND) 70,70,30	NTPR		
30	IF (L+1) 190,30,40	NTPR		
40	IF (ITEST) 60,50,50	NTPR		
50	CALL NTRAN (IPTAPE,9)	NTPR		
60	WRITE (IOTAPE, 39) (IWORDS(I), I=1, NWOUT)	NTPR		
	WRITE (IOTAPE,9)	NTPR		
70	RETURN	NTPR	210	
80	IF (IEND) 90,110,90	NTPR	220	
90	IF (NCOUT*(K/NCOUT)-K) 100,110,100	NTPR	230	
100	K = NCOUT*((K/NCOUT) + 1)	NTPR	240	
110	IF (K-NCOUT) 20,160,160	NTPR	250	
160	IF (ITEST) 170,170,180	NTPR	260	
170	WRITE (IOTAPE, 19) (IC(I), I=1, NCOUT)	NTPR		
110	N = N+1	NTPR		
	WRITE (IOTAPE,59) N,NCOUT,L	NTPR		
	IF (ITEST) 210,180,180	NTPR		
180		NTPR		
	IF (L+1) 190,180,200			
190	WRITE (IOTAPE, 29) L	NTPR		
	CALL NTRAN (IPTAPE, 22)	NTPR		
	CALL NTRAN (IPTAPE,9)	NTPR		
	WRITE (IOTAPE, 39) (IWORDS(I), I=1, NWOUT)	NTPR		
	WRITE (IOTAPE,49)	NTPR		
	STOP	NTPR		
200	CALL PACK (NCOUT, NWOUT, IWORDS, IC, IBLANK)	NTPR	380	•
	CALL NTRAN (IPTAPE, 1, NWOUT, IWORDS, L)	NTPR	390	
210	IF (K - NCOUT) 10,220,240	NTPR	400	
220	К=0	NTPR	410	
	D0 230 I=1,NCOUT	NTPR	420	
230	IC(I)=IBLANK	NTPR	430	
	GO TO 10	NTPR		
240	J=K	NTPR		
~ • •	K=0	NTPR		
	K1=NCOUT+1	NTPR		
	D0 250 I=K1, J	NTPR		
	K=K+1	NTPR		
	12-11 - 4		100	

```
NTPR 500
      IC(K) = IC(I)
250
                                                                          NTPR 510
      Kl = K + l
                                                                          NTPR 520
      DO 260 I=K1,J
                                                                          NTPR 530
      IC(I)=IBLANK
260
                                                                          NTPR 540
      GO TO 110
      FORMAT (45HO****** THE ABOVE IS THE LAST RECORD WRITTEN )
                                                                          NTPR 550
9
                                                                          NTPR 560
19
      FORMAT (1X,100A1)
      FORMAT(35HO****** NTRAN WRITE ERROR, STATUS= 116,7H ****** ///)
                                                                          NTPR 570
29
                                                                          NTPR 580
      FORMAT (1X,20A6)
39
      FORMAT(//51H ****** ABOVE RECORD NOT WRITTEN DUE TO NTRAN ERROR )NTPR 590
49
      FORMAT ( 27HO****** ABOVE IS RECORD NO ,116,7H IT IS 116,
                                                                          NTPR 600
59
                                                                          NTPR 610
     123H LONG. STATUS WORD IS 116 /)
                                                                          NTPR 620
      END
      SUBROUTINE PACK (ICHAR, IWOUT, IWORDS, ISTRIN, IBLANK)
                                                                          PACK
                                                                                10 • Y
C THIS SUBROUTINE CHANGES INFORMATION STORED IN (A1) FORMAT INTO WORDS PACK
                                                                                20
C PACKED SIX CHARACTERS PER WORD ON A UNIVAC 1108.
                                                                          PACK
                                                                                30
  ICHAR IS THE NUMBER OF BCD CHARACTERS TO BE PACKED.
                                                                          PACK
                                                                                40
С
 IWOUT IS THE NUMBER OF WORDS CONTAINING THE PACKED INFORMATION
                                                                          PACK
                                                                                50
С
C IWORDS(500) CONTAINS THE PACKED INFORMATION . IF ICHAR IS NOT A
                                                                          PACK 60
C MULTIPLE OF SIX THE LAST WORD IS FILLED OUT WITH BLANKS.
                                                                          PACK
                                                                                70
C ISTRIN(4000) CONTAINS THE UNPACKED INFORMATION
                                                                          PACK 80
   IBLANK CONTAINS AN UNPACKED BLANK CHARACTER
                                                                          PACK 90
С
      DIMENSION IWORDS(500), ISTRIN(4100), IX(6)
                                                                          PACK 100
                                                                          PACK 110
      IW=ICHAR
                                                                          PACK 120
      IF (ICHAR-6*(ICHAR/6)) 10,30,10
      IW=6*(ICHAR/6)+6
                                                                          PACK 130
10
      L=ICHAR+1
                                                                          PACK 140
      K=0
                                                                          PACK 150
      DO 20 I=L,IW
                                                                          PACK 160
      K=K+1
                                                                          PACK 170
      IX(K)=ISTRIN(I)
                                                                          PACK 180
20
                                                                          PACK 190
      ISTRIN(I)=IBLANK
                                                                          PACK 200
30
      IWOUT=IW/6
      I=0
                                                                          PACK 210
      DO 40 IZ=1.IWOUT
                                                                          PACK 220
                                                                          PACK 230
      I=I+1
      FLD (0, 6, IWORDS(IZ)) = FLD(0, 6, ISTRIN(I))
                                                                          PACK 240
                                                                          PACK 250
      I=I+1
      FLD (6,6, IWORDS(IZ)) = FLD(0,6, ISTRIN(I))
                                                                          PACK 260
      I=I+1
                                                                          PACK 270
      FLD (12,6,IWORDS(IZ))=FLD(0,6,ISTRIN(I))
                                                                          PACK 280
      I=I+1
                                                                          PACK 290
      FLD (18,6,IWORDS(IZ))=FLD(0,6,ISTRIN(I))
                                                                          PACK 300
                                                                          PACK 310
      I=I+1
      FLD (24,6,IWORDS(IZ))=FLD(0,6,ISTRIN(I))
                                                                          PACK 320
                                                                          PACK 330
      I=I+1
      FLD (30,6,IWORDS(IZ))=FLD(0,6,ISTRIN(I))
                                                                          PACK 340
40
      CONTINUE
                                                                          PACK 350
      IF (ICHAR-6*(ICHAR/6)) 50,70,50
                                                                          PACK 360
50
      K=0
                                                                          PACK 370
      DO 60 I=L,IW
                                                                          PACK 380
      K=K+1
                                                                          PACK 390
60
      ISTRIN(I)=IX(K)
                                                                          PACK 400
70
      RETURN
                                                                          PACK 410
      END
                                                                          PACK 420
```

C C

	SUBROUTINE TPNRD	NRD	10
	DIMENSION IA(84), IB(136)	NRD	15
	COMMON /A/ ITEST, ITAPE, IOTAPE, IRTAPE, IPTAPE, ITYPE, IA	NRD	20
	COMMON /B/ LENTH	NRD	25
	COMMON /E/ IRD	NRD	30
	COMMON /IID/ IB	NRD	35
~	DIMENSION IREC(100)	NRD	40
С	THIS PROGRAM USES NTRAN TO READ A RECORD FROM IRTAPE INTO IREC.		50
С	IT THEN UNPACKS THE RECORD TO AL FORMAT PLACING IT INTO IB.	NRD	60
	ILEN = 100	NRD	70
	JEND = 1	NRD	72
	JE = 0	NRD	74
10	ICHK = 0	NRD NRD	76 80
10 20	IF (IRD) 20,70,100 IF (IRD+1) 30,10,10	NRD	90
30	IF (IRD+2) 80,40,80		100
40	JE=JE+1		110
-40	WRITE (IOTAPE, 190) JE		120
	IF (JEND-JE) 50,50,60		130
50	RETURN		140
60	CALL NTRAN (IRTAPE,22)		150
70	CALL NTRAN (IRTAPE, 2, ILEN, IREC, IRD)		160
10	GO TO 10		170
С	READ ERROR		180
80	WRITE (IOTAPE, 200) IRTAPE, IRD		190
	CALL NTRAN (IRTAPE, 22)		200
	IERR=IERR+1		210
	CALL NTRAN (IRTAPE,7,1)		220
	IF (IERR-10) 70,90,90		230
90	WRITE (IOTAPE, 210)		240
	STOP	NRD	250
100	IW=6*IRD	NRD	260
	IF (ICHK-2) 140,130,110	NRD	270
110	IRI=IRD+19	NRD	280
	D0 120 JI1=1,IRI,21	NRD	290
	JI2=JI1+20	NRD	300
120	WRITE (IOTAPE, 220) (IREC(J), J=JI1, JI2)	NRD	310
130	WRITE (6,230) IRD, ITAPE, IOTAPE, IRTAPE, IPTAPE, IW		320
	CALL CLOCK		330
140	J = 136		340
	D0 150 I=1,J		350
150	IB(I) = IA(47)		360
	D0 160 I = 1, LENTH		370
	J=I-((I-1)/6)*6		380
	IZ=(I-1)/6+1		390
160	FLD(0,6,IB(I))=FLD(6*(J-1),6,IREC(IZ))		400
	DO 170 J = 1, LENTH		410
	K = LENTH-J+1		420
100	IF (IB(K)) 180,170,180		430
170	IB(K) = IA(47)		440
	WRITE (IOTAPE, 240)		450
	IERR=IERR+1		460
100	IF (IERR-10) 70,70,90		470
180	IW=K		480 490
	CALL NTRAN (IRTAPE,2,ILEN,IREC,IRD)		500
С	RETURN		510
190	FORMAT (13H END OF FILE ,114)		520
200	FORMAT (15H END OF FILE ,114) FORMAT (25H INPUT/OUTPUT ERROR UNIT ,113,8H STATUS ,113)		530
210	FORMAT (25H INFOLYOUTFOL ERROR UNIT ,113,5H STATUS ,113) FORMAT (39H NTRAN READ ERRORS REACHED LIMIT. STOP.)		540
220	FORMAT (1394 NIKAN KEAD ERRORS REACHED LIMIT. STOP.) FORMAT (1X,21A6)		550
230	FORMAT (IX, 13I10)		560
~00	· ····································	IIII	000
240	FORMAT (23H RECORD WAS ALL BLANKS.)	NRD	570
	END	NRD	

C	PATCHES TO SE	TLST		
С	COMMON /A/ ITEST, ITAPE, IOTAPE, COMMON /B/ LENGTH, MATCH COMMON /C/ K COMMON /D/ KI, IEND, IBLANK COMMON /E/ IRD COMMON /IIB/ IB COMMON /IIC/ IC COMMON /IID/ ID	IRTAPE,IPTAPE,ITYPE,IA	TYST641TYST642TYST643TYST644TYST645TYST646TYST647TYST648	a
201	ITYPE=0 IEND=0 IBLANK=IA(47) CALL AMATCH CALL SUBST ITYPE=1		TYST146 TYST1461 TYST1462 TYST1463 TYST1464 TYST147	b
405 410	IF (IRTAPE-5) 196,410,405 CALL TPNRD IF (IRD+1) 900,395,395 READ (IRTAPE,9,END=900,ERR=900 CALL AMATCH	)(ID(I),I=1,LENGTH)	TYST157 TYST1571 TYST1572 TYST158 TYST159	C
	CALL SUBST		түзт187 ]	<u>d</u>
807	CALL NPRINT		түзт194 ]	e
	IEND=1 CALL NPRINT		TYST211 TYST212	f
С	PATCHES TO KW	IND		
С	COMMON /A/ ITEST, ITAPE, IOTAPE, T COMMON /B/ LENGTH, MATCH COMMON /C/ K COMMON /D/ K1, IEND, IBLANK COMMON /E/ IRD COMMON /IIB/ IB COMMON /IIC/ IC COMMON /IID/ ID	IRTAPE,IPTAPE,ITYPE,IA	KWIC002 KWIC003 KWIC004 KWIC005 KWIC006 KWIC007 KWIC008 KWIC009	g
	ITYPE=0 IEND=0 IBLANK=IA(47) CALL AMATCH CALL SUBST ITYPE=1		KWIC0827 KWIC0828 KWIC0829 KWIC0830 KWIC0831 KWIC0832	h
200 202 203 201	IF (IRTAPE-5) 9999,203,202 CALL TPNRD IF (IRD+1) 900,201,201 READ (IRTAPE,9,END=900,ERR=900) N1=N(1) N2=N(2) CALL AMATCH	) (ID(I),I=1,LENGTH)	KWIC0850 KWIC0851 KWIC0852 KWIC0860 KWIC0870 KWIC0871 KWIC0880	i

CALL SUBST

KWIC2032] j

	CALL NPRINT	KWIC2050]
	IEND=1 CALL NPRINT	KWIC2200 ] ] KWIC2210 ] ]
C C	PATCHES TO SUBST	
C	SUBROUTINE SUBST COMMON /A/ ITEST,ITAPE,IOTAPE,IRTAPE,IPTAPE,ITYPE,IA COMMON /C/ IW COMMON /IIC/ IB	SUBST 10 SUBS 11 SUBS 12 SUBS 13
С С С С	READ (ITAPE,850) ITES,IRTAP,IPTAP WRITE (IOTAPE,930) ITES,IRTAP,IPTAP	SUBS 47 SUBS 48 SUBS 49 SUBS 53 SUBS 54 SUBS 58
C 580	CONTINUE	SUBS174 SUBS175
600	CALL SUNLK	SUBS179 ]
810	CALL SULOCK	SUBS236 ]
C C	PATCHES TO SUNLK	
	SUBROUTINE SUNLK COMMON /A/ ITEST,ITAPE,IOTAPE,IRTAPE,IPTAPE,ITYPE,IA COMMON /C/ IW COMMON /IIC/ IB	SSUK 10 SSUK 11 SSUK 12 SSUK 13
C C	PATCHES TO SULOCK	
C	SUBROUTINE SULOCK COMMON /A/ ITEST,ITAPE,IOTAPE,IRTAPE,IPTAPE,ITYPE,IA COMMON /C/ IW COMMON /IIC/ IB	SSLK 10 SSLK 11 SSLK 12 SSLK 13
С	PATCHES TO AMATCH	
c c	SUBROUTINE AMATCH	AMAT 10]
C	COMMON /A/ ITEST,ITAPE,IOTAPE,IRTAPE,IPTAPE,ITYPE,IA COMMON /B/ LENGTH,MATCH COMMON /IID/ ID	AMAT 291 AMAT 292 AMAT 293
С	PATCHES TO NPRINT WITH FORTRAN WRITE	
С	SUBROUTINE NPRINT COMMON /A/ ITEST,ITAPE,IOTAPE,IRTAPE,IPTAPE,ITYPE,IA COMMON /D/ K,IEND,IBLANK COMMON /F/ NCOUT,NWOUT,IWORDS COMMON /IIB/ IC	NPRI 10 NPRI 11 NPRI 12 NPRI 13 NPRI 14

and the second	SUBROUTINE NPRINT COMMON /A/ ITEST,ITAPE,IOTAPE,IRTAPE,IPTAPE,ITYPE,IA COMMON /D/ K,IEND,IBLANK COMMON /F/ NCOUT,NWOUT,IWORDS COMMON /IIB/ IC	NTPR NTPR NTPR NTPR NTPR	10 11 12 13 14	w
ÌC	D CALL PACK	NTPR	380]	x
	PATCHES TO PACK			

SUBROUTINE PACK P.	ACK	10	
COMMON /D/ Kl,IEND,IBLANK P.	ACK ACK	11	v
COMMON /F/ ICHAR, IWOUT, IWORDS P.	ACK	12	2
COMMON /IIB/ ISTRIN P.	ACK	13	



# NBS TECHNICAL PUBLICATIONS

## PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

## Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$9.50; foreign, \$11.75*.

## • Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

#### • Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

## **TECHNICAL NEWS BULLETIN**

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

## NONPERIODICALS

**Applied Mathematics Series.** Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

**Special Publications.** Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

**Monographs.** Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitive data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

**Product Standards.** Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

**Technical Notes.** This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

## CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

> Clearinghouse U.S. Department of Commerce Springfield, Virginia 22151

* Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

Superintendent of Documents Government Printing Office Washington, D.C. 20402

# U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

-



POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE