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Considerations in Computing the Useful Frequency Range

of Piezoelectric Accelerometers

Nathan Newman

This paper analyzes two lumped-parameter models for
computing the usable frequency range of piezoelectric ac-

celerometers. The analyses indicate why application of an

electrical excitation to the piezoelectric element of a

mounted pickup does not, in general, give the same result as

application of a mechanical acceleration to the structure on

which the pickup is mounted. Tabular results of the compu-
tations for various sets of parameters indicate those cases
for which the electrical drive will give resonant frequency
values within 2% of those for the pickup mounted on a vi-
brating structure. For these parameter sets, the electrical
drive can be used as a reliable substitute.

Key words: Electrical excitation; lowest resonant

frequency; mechanical excitation; piezoelectric

accelerometer ; usable frequency range.

1 . Introduction

Piezoelectric accelerometers are often favored for measuring struc-
tural vibration because of their small size and mass, independence of
external bias or excitation, and wide range of usable frequencies. Fig-
ure 1 shows a typical configuration, mounted on an aircraft panel. The
small size generally means that the effect of the accelerometer on the
structure's vibrational characteristics will be minimal. On the other
hand, as will be shown, the structure very often does affect the vibra-
tional characteristics of the attached accelerometer.

The sensitivity of an accelerometer (often called a pickup) is de-
fined as the ratio of the output signal (voltage in this paper) to the

acceleration of its base. The major resonant frequency of the acceler-
ometer is the lowest frequency for which the sensitivity has a maximum.
The usable frequency range of the accelerometer is generally taken as

that region in which the sensitivity does not change significantly
(viz. 5%) from the value found near 100 Hz when calibrated on a con-

ventional shaker table. However, the upper limit of the range for which
a particular accelerometer is usable when mounted on a particular
structure is lower than that determined by the resonance of the



accelerometer alone, when the mass of the accelerometer affects the

motion of the structure. The properties of principal interest are the

stiffness of attachment to, and the effective mass of the structure.

For most applications, an accelerometer is not usable if the motion of
the structure with the pickup attached is significantly different from
the motion it would have without the pickup.

This paper analyzes two lumped-parameter models which represent ex-

perimental techniques often used to determine the resonant frequency of

an accelerometer. The two experimental techniques analyzed are: the

application of a sinusoidal acceleration of constant amplitude to the

structure on which the pickup is mounted, and the application of a sinus-

oidal voltage of constant amplitude to the piezoelectric element. The

results of the two techniques differ, because when a constant voltage is

applied to the piezoelectric element, the motions of all the other ele-

ments of the mechanical system are determined by the mechanical param-
eters of the system, whereas application of a constant acceleration to

the mounting structure imposes an overriding influence from outside the

pickup which limits, to the other elements, the effect of these pa-
rameters. In both cases, the upper limit on the usable range of the

pickup is set by the lowest resonance of the "pickup-structure" system
under the driving conditions imposed.

2. Computations for Resonant Frequencies

The method of computation used to find the resonant frequencies is

very considerably simplified by the use of lumped-constant models. The

distributed masses are treated as though concentrated at single points
and are designated mi, m 2 , and m 3 in Figure 2. Their interconnections
are assumed to be massless and are represented by the spring constants
k and k . The accelerometer is represented by a "seismic mass", mi,
linked to its base, m 2 , by a spring, k a . The accelerometer is attached
to the test structure, 1113, by a spring, k

s .

2.1. Mechanical Drive

Suppose a sinusoidally varying mechanical force, F cos cot, is im-

posed on m3, from outside the system (Figure 3), so that its position,
X3, is A3 cos cot. The resultant motions of mi and m 2 (i.e. x x and x 2 )

are now considered as the frequency of the drive force is varied. After
transient effects die away, the equations describing the motion of mi
and m 2 under the dynamic forces are:

mi xi + ka (xi - x 2 ) =0 (1)

m 2 x 2 + ka (x 2 - xi) + k
s
(x 2 - x 3 ) = (2)

The resonance sought is the lowest value of co at which a maximum of
(xi - x 2 ) occurs. When the system is in dynamic equilibrium and reso-
nance is approached from below, the motions will be at the drive fre-
quency and in phase.



Xj = Ai cos o)t (3)

X2 = A 2 cos cot (4)

xi = - Aiw cos cot (3a)

x
-

2 = - A200
2 cos cot (4a)

By sutstitution in (1) and (2) , we obtain

(k - mico
2
) Ai - k_ A 2 = (5)

- ka A x + (k s + ka - m 2 co
2
) A 2 = k s A 3 (6)

Resonance occurs when Ai - A 2 (and therefore Ai and A 2 individually)
has a maximum value. There is no problem due to phase considerations
because resonance is approached from below and, with no damping, Xi and
x 2 can be considered to be in phase with the motion of the driving ele-
ment i.e. with X3. The solution for Ai and A 2 each has the determinant
of its coefficients in the denominator. Thus maximum values of k\ and
A 2 [and consequently (xi - x 2 )] occur when this determinant vanishes.
An equation in the resonant frequency co (explicitly in co

2
) results:

(k a
- m x co

2
) (k

a
+ k

s
- m 2 co

2
) - ka

= (7)

,2Rewritten as a quadratic in co ,

k k

w" - [k„ (~ + —) + k s —] oo
2

+ -2-5. = (8)

At this point, calculations are simplified by introducing non-dimen-
sional parameters a, b, and r where

a = m 2 /mi

b = m3/mi (b is not used in this
section)

r = k s /k a

In addition, if we use

? - 1
co
Q
= k

a/mi (or co = /k a/mi)

we obtain equations (8a) and (8b)

:

A ri ! . *\ ,.2 ,,2 ,
r u

co
H

- (1 + - + -) co; co
z

+ - co^ = (8a)
a a a *

C^ 2
- (1 -!• Ir^T + T-O (8b)

2 a a 2 a

% w
o

3



Note that the use of the non-dimensional relative frequency , oo/oo , as

well as the non-dimensional parameters a and r, make Equation (8b) non-

dimensional. Conforming with the verbal description of co/oo , a and b

may be referred to as relative masses and r, as a relative spring
constant .

The relative resonant frequency is given by:

o£ _ [i + -kci +
,

r)i V [1 + t (1 + r)]2

%
a

v

_

J

I
L a v V1 a (9)

Although the solution (9) is explicitly for oo
2
/u)q, it will be referred

to as the solution for the relative resonance, uyco , as well without
specifically stating, each time, that the square root process is in-

volved. Only the negative sign is used for the radical because the
lower resonance is sought. Since the motion of the structure m

3
is

forced, the value of m
3
does not affect the resonance and thus b does

not appear in (9)

.

Earli er in this section coQ
was introduced as an abbreviated symbol

for /k /m . The choice of this symbol was not fortuitous. The

quantity v
/ k& /m

1
is generally accepted as the undamped natural frequency

for a single mass driven by a single spring whose other end attaches to

a relatively very large mass. Throughout the paper, u) , is used as a

reference frequency so that division of co by co
Q

gives the non-
dimensional quantity, relative resonant frequency.

The use of relative parameters has a twofold purpose. The initial
benefit is the simplification of the mathematical manipulations in the
solution of a differential equation. However, its more significant
worth perhaps lies in the potential of scaling one set of solutions of
co/(jOq into many. An example of the scaling procedure is given in the
section on "limiting and special cases".

2.2. Electrical Drive

The case of electrical drive is shown in Figure 4, with the applied
force and displacements indicated. A sinusoidal voltage applied to the
piezoelectric element of the pickup generates a force, F cos cot, across
k a . The equations of motion expressing forces acting on the three
masses are:

m
i

x
i

+ ^a (x i
" x 2)

= F cos wt CIO)

m
2

x
2

+
^a *-

x
2 " x i)

+
^s (

x
2 ~ X 3^

= ~ F cos cot t 11 )

m
3

x
3

+ k
s

(x
3

- x
2 ) = (12)



At dynamic equilibrium below resonance the motions and accelerations
are:

Xi = Bi cos cot (13)

x 2 = B2 cos cot (14)

x 3 = B3 cos cot (15)

and

Xi = -Bico cos cot (13a)

x 2 = -B2W 2 cos cot (14a)

x 3 = -B3C0
2 cos cot (15a)

By substitution in the equations of motion,

(k - mico
2
) Bi - k B 2 = F (16)

ci 3.

k Bi + (k + k - m 2 co
2

) B 2 - k B 3 = -F (17)
a a s ^ ; ^ s

c v. ,

k B 2 + (k - m 3 co
2
) B 3 = (18)

and resonances occur when the determinant of the coefficients vanishes

Setting the determinant equal to zero, we get:

(k - mico
2
) (k + k - m 2 co

2
) (k - m 3 co

2
) - k

2
(k - m 3 co

2
)d do o do

- k
2

(k - mi co
2
) = (19)

o d

Performing the indicated multiplication, and removing the factor co
2

which corresponds to non-oscillatory motion

co
1

* - [k (— + —)+ k (—+—)] co
2

+ k k (—— + —— + ——

)

L a 'mi m 2 s m 2 m 3
^ J a s

vmim 2 m 2m 3 m 3mi

= (20)

Converting to relative parameters, as was done in equation (8) and
solving:

n 1,;' -; r, / ri l, n , r,
2 4r 4r,, 1.

[1 t ¥(^r) + g] -y [1 + -CUT) + F] - - - ^-(1+-)

This is a general solution for co
2
/cOq and includes the previous solution,

equation (9), as a special case for which b is very large, (i.e.

m 3 » mi)

.



3. Resonant Frequency Solutions for Mechanical vs.

Electrical Drive

The equations (9) and (21) lead to solutions for co
2/Wq (and there-

from oo/o) ) which are in general different, but not necessarily signifi-
cantly so. The relative resonant frequency co/u) , directly converts to
the resonant frequency, go, for any given co = /k /mi

.

In order to distinguish between the values of co/co , they will be
identified by co(a,r)/co , the relative resonant frequency for the mechan-
ical drive and by co(a,b,r)/co

Q , the relative resonant frequency for the
electrical drive. Abbreviated descriptive designations are RRF-MD and
RRF-ED, respectively. The latter, which is a function of "b", as well
as of "a" and M r", indicates the presence of a structure which responds
to the electrical drive rather than to other forces imposed on it.

Ultimately, we would like to express the departure of the RRF-ED
from the RRF-MD as a percentage of the RRF-MD. This is the percent de-

viation of the relative resonant frequency using the electrical rather
than the mechanical drive. This is designated in Table 2 of PD of RF,

(see Equation 23) . In terms of the two values of U)/a) ,

w(a,b,r)/oo - oo(a,r)/u)

(jo(a,r)/a)

Since oo is constant for any particular set (a,r) , it follows that

PD of RRF = - r-7 100% (22)
0)(a,r)/o)

PD of RRF = ^Cajb.r) - o)(a,r)
% = pD f Rp ^

co(a,r)

The expression in the middle is thus the percent deviation of the reso-
nant frequency , of electrical relative to mechanical drive.

Table 1 applies to the case of mechanical drive, as computed from
Equation (9). It lists co(a,r)/co for a number of representative pairs
of values (a,r). It will be found that the value of r = °° makes w/oo = \
whatever the value of a. This corresponds to the accelerometer base ni2

rigidly attached to a very large mass 1113, so that mi and k a are the only
resonance-determining parameters.

The relative resonant frequency for an electrical drive, co(a,b,r)/oo

is given in Table 2, as determined by calculations using Equation (21).
Because of the additional parameter, b, Table 2 is much larger than Table
1 and is presented in four parts. The final column, headed PD of RF,

gives a numerical indication of how far apart the results of the two
computations are, for any particular parameter set, (a,b,r).

The parameter sets, (a,b,r), for which results are given in Table 2,

correspond to a rather wide range of mass and spring constant ratios.



However, the PD of RF do not fall into a readily predictable pattern, and
from Table 2 it is not easy to determine the resonant frequencies and
parameters (a,b,r) that combine to give a particular value of PD of RF.

Table 3 attempts to partially fill this gap. Two levels of PD (percent
deviation) were arbitrarily selected; the one 2% (or less), tolerable,
the other 10% (or more), intolerable. Herein, "tolerable" means that
results could be accepted without any resonant frequency correction being
required; "intolerable" means that results (PD of RF) point to a signifi-
cant difference between co(a,b,r) and co(a,r). Thus the electrical drive
can make the accelerometer appear to have a higher resonant frequency.

4. Some Limiting or Special Cases

Equation (21) provides the general solution for the relative reso-
nant frequency, co/co . Unless 1113 >> mi, co = co(a,b,r); if 1113 is infinite,
co = co(a,r). Some interesting examples arise for certain specific values
of one or more of the parameters.

If k
s

= 0, there is no attachment to the structure and we have the

familiar case of the unmounted accelerometer. If the base is driven
mechanical ly, co = co

Q
or co/con = 1 . If the drive is electrical Cu(a) =

co /l + 1/a or co(a)/co = /l + 1/a. In terms of the fundamental masses,
co(a)/coQ

= /l + mi/m2. The percent deviation of resonant frequency (PD of
RF) is to a first approximation (l/2a) 100% [using the equivalent of
Equations (22) and (23)].

In a similar manner, if the accelerometer base is rigidly fastened
to a structure, 1112 and 1113 combine and co/co = 1 for the mechanical drive
and co(a,b)/co = /l + l/(a+b). In terms of the fundamental masses,
co(a,b)/co = /l + mi/(m2 + ma). Again to a first approximation PD of RF

is [1/2 (a+b)] 100%. If the mass ratio, "a" or "b", (or "a" for the un-

mounted accelerometer) is large (i.e. >> 1), then the PD of RF becomes
small and both test methods give essentially the same results. Of
course, if "a" or "a+b" for the respective examples are sufficiently
small, the arbitrary limit of 10% for PD of RF will be exceeded and the

resonant frequency difference will be "intolerable".

An illustrative example, sometimes used in texts, considers three
equal masses (a = b = 1) interconnected by two like springs (r = 1)

.

Treating this problem by the two methods, we find that direct substitu-
tion in Equation (9) results in co

2
(a,r)/coQ = (3-/~5)/2 so that co(a,r)/co =

(/5-l)/2 (or 0.618). Substitution in Equation (21) gives co
2
(a,b,r)/coQ = 1

so that co(a,b,r)/w = 1. PD of RF = [(1-. 618)/. 618] 100% or 61.8%, which
is quite "intolerable". However, these relative parameters are not like-
ly to be encountered in practical situations, and the example is merely
intended to show how large a spread of resonant frequency determinations
one might find (without an unreasonable search for wild parameter
values) . This particular example corresponds to the first row in Table
2 and uses the first row in Table 1.



Scaling is a procedure by which one solution set, co(a,b,r)/co
, can

be cascaded into many. Although oo/oo remains fixed during the process,
oo itself can change.

Let a and g be two non-zero but not necessarily unequal constants.
Now let

m' = a m

m' = a m
2 2

m 1 = a m (24)
3 3

v J

k
;

- B \
k
s = 6 k

s

Note that the system constants (m[, m^ , m'
3 , k^, k' ) , leave the parameter

set, (a,b,r), unchanged. Accordingly, oo/oo is unchanged even though the
specific system constants were changed, allowing that both a and 6 were
not unity. If 3 and a are equal, neither oo/co nor oo is changed. How-
ever, if 6 is different from a, then go , and therefore oo, are each
changed by the factor /3/ou

5. Summary and Conclusion

Laboratory experience has demonstrated that the lowest resonant
frequency of a mounted accelerometer, as found by applying a sinusoidal
acceleration to the structure on which it is mounted, often differs from
the resonance found by applying a sinusoidal voltage to its piezoelectric
element. Significant differences do exist, and the test method used ap-
pears to be responsible. Magnitudes of differences are tabulated in

terms of the system parameters. Lumped constant models, while not exact
representations of the physical system, do permit an approximate solution
of the problem.

Two specific physical models (mechanical and electrical drive) have
general solutions given in Equations (9) and (21), respectively. Using
various parameter sets (m 2 /m 1

and k
g
/k ) , Equation (9) gives the rela-

tive resonant frequency for the mechanical drive. Equation (21) does

the same for the electrical drive. Results for the former are given in

Table 1; those for the latter in Table 2. Table 2 also shows (in the

last column) the important quantity, PD of RF. This column, in essence,

summarizes the tolerability of substituting the electrical for the me-

chanical drive method.

The solutions to Equations (9) and (21) give relative resonant fre-

quency rather than resonant frequency itself. The conversion to co in-

volves only direct multiplication by/ka/m 1
. It is most fortunate that

the percent deviation is the same for the resonant frequency as for the
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relative resonant frequency and the "PD of RF" is used as the column
loading in Tables 2 and 3.

Table 3 selects values of PD of RF from Table 2 and regroups them.

A 2% (or less) PD of RF is listed as "tolerable" and a 10% (or more) PD
of RF is listed as "intolerable" and must not be ignored.

Analysis indicates that for the mechanical drive (except for
k
s

>> k &) for which co = co
Q ) co < a> . The situation is different for the

electrical drive. It develops that for

k
s
/k a < m

3
/m

1
w < w ;

k
s
/k

&
= m

3
/m

1
co = co

Q ;

k-s/ k a
> m 3/m i

w =
°°o

•

All three relationships apply regardless of the value of mj/mj. It is

interesting to note that when k
g
/k = m

3
/m

1
, co = co no matter what the

value of m 2 /m 1
.

In using the tables, the uncertainty of both oo/oo and PD of RF as

computed depends on the adequacy of the lumped parameter representation
and on the accuracy with which the values of the parameters can be as-

signed. However, the analysis and tabulations in this paper will permit
for improved confidence in the resonant frequency found by the use of an

electrical drive.

Grateful acknowledgment is tendered to Seymour Edelman for his

constructive and clarifying suggestions during the preparation of this

paper.



Table 1 - Lowest Relative Resonant Frequency,* oj/oj ,

for Mechanical Drive

1

1

1

1

1

2

2

2

2

2

4

4

4

4

16

16

16

16

16 °° 1.000

(see Fig. 3 for configuration)

= k
s /

k a
co/w

1 .618

2 .765

4 .874

16 .968
oo 1.000

1 .541

2 .707

4 .848

8 .929
00 1.000

1 .437

2 .600

4 .781

16 .962
00 1.000

1 .243

4 .481

16 .877

64 .925

*The lowest resonant frequency, co, is equal to con
• — . Since

u)Q
= /k /m 1} its value is not specified,

oo,

10



Table 2.1 - Lowest Relative Resonant Frequency, co/oo , and the

Percent Deviation of the Resonant Frequency, PD of RF,

for Electrical Drive

(see Fig. 4 for configuration)

b = m
3
/m

1
a = nu/mj

1 1

2

4

8

16

2

4

8

16

1

2

4

8

16

1

4

16

64

1 1

r = k
s
/k a co/u) pd of :

1 1.000 61.8'

.848 37.2

.745 20.5

.683 10.5

.648 4.8

.618 0.0

2 1.126 47.2
1.000 30.7
.902 17.9

.837 9.4

.840 5.1

.765 0.0

4 1.179 34.9
1.083 23.9
1.000 14.4

.944 8.0

.908 3.9

.874 0.0

16 1.214 25.4

1.078 11.4

1.000 3.3

.976 0.8

.968 0.0

oo 1.224 22.4

1.154 15.4

1.095 9.5

1.054 5.4

1.000 0.0

any 1.414

11



Table 2.2 - Lowest Relative Resonant Frequency, oo/coQ , and the

Percent Deviation of the Resonant Frequency, PD of RF,

for Electrical Drive

b = nig/mj a = n^/mj

2 2

4

2

4

8

16

2

4

8

16

= V k
a

co/go PD of RF

1 .833 54.0%
.707 30.7
.631 16.7
.541 0.0

2 1.000 41.4
.890 25.8
.811 14.7
.707 0.0

4 1.073 26.5

1.000 17.9

.939 10.7

.848 0.0

8 1.098 18.2
1.045 11.5

1.000 7.6

.969 4.3

.929 0.0

00 1.118 11.8
1.080 8.0

1.049 4.9
1.022 2.2

1.000 0.0

any 1.224
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Table 2.3 - Lowest Relative Resonant Frequency, co/co , and the

Percent Deviation of the Resonant Frequency, PD of RF,

for Electrical Drive

b = mg/mj a = m
2
/m

1

4 4

8

16

4

8

16

16

80

4

8

16

96

= Vk
a

w/co PD of RF

1 .651 49.0%
.555 27.1

.437 0.0

2 .931 55.2
.753 25.5
.682 13.7

.600 0.0

4 1.000 28.1

.927 18.2

.866 10.9

.781 0.0

16 1.033 7.4

1.012 5.2

1.000 4.0
.970 0.8
.962 0.0

00 1.061 6.1

1.041 4.1

1.025 2.5

1.005 0.5

1.000 0.0

any 1.11;
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Table 2.4 - Lowest Relative Resonant Frequency, w/o) , and the
Percent Deviation of the Resonant Frequency, PD of RF,

for Electrical Drive

b = m /nij a = m
2
/m

1

16 16

32

64

16 16

64

16 16

64

16 16

64

16 16

64

r = k
s
/ka 00/O)o

PD of RF

1 .347 42.9%
.300 23.5
.272 12.0
.243 0.0

4 .688 43.0
.521 8.3

.481 0.0

16 1.000 14.0
.943 7.5

.877 0.0

64 1.082 17.0

1.000 8.1

.925 0.0

oo 1.015 1.5

1.006 0.6
1.000 0.0

16 any 1.031
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Table 3 - Parameter Sets, (a,b,r), Corresponding to 2% and 10%
Levels of Percent Deviation of Resonant Frequency, PD of RF

PD of RF = 2% PD of RF = 10%

r = k
s
/k a a = n^/nij b = nig/n^ r = k

sAa a = n^/nij b = m
3
/m

1

16 16 375 1616 375
12 130

8 64

4 36
2 30

1 26

16 420
8 225

4 125

2 75

1 50

16 34

12 9

10 4

8 3

4 3.4
2 3.7
1 4.6

16 80

8 43

4 24

2 14

1 9

16 425 1 16 81
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Figure 1: A Typical Configuration of a Piezoelectric Accelerometer
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Figure 2: Lumped Parameter Model of a Mounted Accelerometer
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