NBS TECHNICAL NOTE

Superconductive Materials and Some of Their Properties

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

482

.

UNITED STATES DEPARTMENT OF COMMERCE Maurice H. Stans, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

ISSUED MAY 1969

Nat. Bur. Stand. (U.S.), Tech. Note 482, 129 pages (May 1969) CODEN: NBTNA

Superconductive Materials and Some of Their Properties

B. W. Roberts

General Electric Research and Development Center Schenectady, New York, 12301

A report prepared for the Office of Standard Reference Data Institute for Basic Standards National Bureau of Standards Washington, D.C. 20234

(Supersedes and extends NBS Technical Note 408)

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402 Price \$1.25.

FOREWORD

The NSRDS is a nation-wide program to provide to the U.S. technical community optimum access to the quantitative data of physical science, critically evaluated and compiled for convenience. It was established in 1963 by action of the President's Office of Science and Technology. Responsibility for administering this effort was given to the National Bureau of Standards. The Office of Standard Reference Data was set up within the NBS as the program management and coordinating vehicle. Recently Congress strengthened the program by passing PL90-396, The Standard Reference Data Act, which was signed into law July 11, 1968. The Act states: "It is the policy of the Congress to make critically evaluated data readily available to scientists, engineers, and the general public... The Secretary [of Commerce] is authorized and directed to provide or arrange for the collection, compilation, critical evaluation, publication, and dissemination of standard reference data. "

The System now comprises a complex of data centers and other activities, carried on in Government agencies, academic institutions, and nongovernmental laboratories. The independent operational status of existing critical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. In addition, the centers and projects establish criteria for evaluation and compilation of data and make recommendations on needed modifications or extensions of experimental techniques.

Data publications of the NSRDS take a variety of physical forms, including books, pamphlets, loose-leaf sheets and computer tapes. While most of the compilations have been issued by the Government Printing Office, several have appeared in scientific journals. Under some circumstances, private publishing houses are regarded as appropriate primary dissemination mechanisms.

The technical scope of the NSRDS is indicated by the principal categories of data compilation projects now active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, colloid and surface properties, and mechanical properties.

CONTENTS

INTRODUCTION	 I-1
GENERAL PROPERTIES OF SUPERCONDUCTORS	 II-1
HIGH FIELD SUPERCONDUCTIVITY	 III-1
CRITERIA FOR THE EXISTENCE OF THE SUPERCONDUCTIVE STATE	 IV-1
METALLURGICAL ASPECTS	 V - 1
NOTES CONCERNING DATA IN THE MONOGRAPH	 VI-1
PROPERTIES OF SUPERCONDUCTIVE ELEMENTS	 VII-1
TABULATION OF SUPERCONDUCTIVE MATERIALS	 VIII-1
HIGH MAGNETIC FIELD SUPERCONDUCTIVE MATERIALS AND SOME OF THEIR PROPERTIES	 IX - 1
BIBLIOGRAPHY	 X-1
REVIEW ARTICLES AND BOOKS ON SUPERCONDUCTIVITY	 XI-1
AUTHOR INDEX BY REFERENCE NUMBER	 XII-1

B.W. Roberts

This is a noncritical compilation of data on superconductive materials that has been extracted from a portion of the literature published up to early 1968. The properties concerned are composition, critical temperature, critical magnetic field, crystallographic data, and lowest temperature tested for superconductivity. The compilation also includes, bibliography, general reference review articles and a special tabulation of high magnetic field superconductors.

Key Words: Bibliography, compilation of data, composition, critical field, critical temperature, crystallographic data, low temperature, superconductivity.

INTRODUCTION

This monograph extends the data set on superconductive materials published in Vol. IV of Progress in Cryogenics, 1964, * pages 160-231 (subsequently denoted as PC IV) and includes the information given in the addendum, National Bureau of Standards Technical Note 408 of September 1966. The new material includes a portion of that data that is readily available to the author to early 1968. However, the world activity in the study of superconductive materials has continued at a high rate such that more than 1000 references are in hand and yet to be perused for available data as this Technical Note is assembled. The format of PC IV has been maintained except for minor additions such as thermodynamic data references, namely the electronic specific heats and Debye temperatures.

More than 65 years of research on the phenomena of superconductivity has led to a current world activity aimed at further understanding and exploitation. This effort has produced a technology that is being employed by many industrial concerns. Some of the latest developments include superconductive coils capable of producing magnetic fields approaching 25 Tesla. Superconductive magnets with precise and homogeneous fields and with selective spacial configurations are readily produced including some field gradient patterns that are impossible with normal state conductors. A linear accelerator is under construction with superconductive cavity walls. Large superconductive magnets are under construction for hydrogen bubble chambers with coil diameters on the order of 10 feet and more. Plasma researchers have constructed floating superconductive coils. Also a direct current transformer has recently been discovered utilizing a special arrangement of superconductive thin films for tunneling. However the latter device, long sought in the industrial world, is very small in power capacity and remains a scientific demonstration.

Doubtlessly other applications will be stimulated as the information on superconductivity research and the data produced are disseminated to the scientific and industrial community.

^{*}This data set has also been published in a Soviet book "New Materials and Methods of Investigating Metals and Alloys", edited by Professor I.I. Kornilov of the Baikov Institute of Metallurgy, 1966, Moscow, pp. 1-98.

(II-1)

GENERAL PROPERTIES OF SUPERCONDUCTORS

The historically first observed and most distinctive property of a superconductive body is the near total loss of resistance at a critical temperature T_c characteristic of each material. Figure 1(a) illustrates schematically two types of possible transitions. The sharp vertical discontinuity is indicative of that found for a single crystal of a very pure element or one of a few well annealed alloy compositions. The broad transition, illustrated by broken lines, suggests the transition shape seen for materials that are inhomogeneous and contain unusual strain distributions. Careful testing of the resistivity limits for superconductors shows that it is less than 4×10^{-23} ohm-cm, while the lowest resistivity observed in metals is of the order of 10^{-13} ohm-cm. If one compares the resistivity of a superconductive body to that of copper at room temperature the superconductive body is at least 10^{17} times less resistive.

The temperature interval ΔT_c , over which the transition between the normal and superconductive states takes place, may be of the order of as little as 2×10^{-5} K or several K in width, depending upon the material state. The narrow transition width was attained in 99.9999 pure gallium single crystals.

A Type I superconductive body below T_c , as exemplified by a pure metal, exhibits perfect diamagnetism and excludes a magnetic field up to some critical field H_c , whereupon it reverts to the normal state as shown in the H-T diagram of Figure 1(b).

The difference in entropy near absolute zero between the superconductive and normal states relates directly to the electronic specific heat, γ ;

$$(S_s - S_n)_{T \to 0} = -\gamma T$$

^{*} To convert "cm" to "m", multiply by 10³.

The NBS Office of Standard Reference Data, as administrator of the National Standard Reference Data System, has officially adopted the use of SI units for all NSRDS publications, in accordance with NBS practice. This publication does not use SI units because contractual commitments with the author predate establishment of a firm policy on their use by NBS. Other appropriate conversion factors will be found on pages VII-2 and VIII-5. We urge that specialists and other users of data in this field accustom themselves to SI units as rapidly as possible.

Figure 1. Physical properties of superconductors. (a) Resistivity versus temperature for a pure and perfect lattice (solid line). Impure and/or imperfect lattice (dashed line).(b) Magnetic field-temperature dependence for Type I or "soft" superconductors.(c) Schematic magnetization curve for "hard" or Type II superconductors.

HIGH FIELD SUPERCONDUCTIVITY

The discovery of the large current-carrying capability of Nb₃Sn and other similar alloys has led to an extensive study of the physical properties of these alloys. In brief, a high field superconductor, or Type II superconductor, passes from the perfect diamagnetic state at low magnetic fields to a mixed state and finally to a sheathed state before attaining the normal resistive state of the metal. The magnetization of a typical high field superconductor is shown in Figure 1(c). The magnetic field values separating the four stages are given as H_{c1} , H_{c2} , and H_{c2} . The superconductive state below H_{c1} is perfectly diamagnetic and identical to the state of most pure metals of the "soft" or Type I type. Between Hc1 and Hc2 a "mixed superconductive state" is found in which fluxons (a minimal unit of magnetic flux) create lines of normal superconductor in a superconductive matrix. The volume of the normal state is proportional to $-4\pi M$ in the "mixed state" region. Thus at H_{c2} the fluxon density has become so great as to drive the interior volume of the superconductive body completely normal. Between H_{c_2} and H_{c_3} the superconductor has a sheath of currentcarrying superconductive material at the body surface, and above H_{c3} the normal state exists. With several types of careful measurement, it is possible to determine H_{c1}, H_{c2}, and H_{C3}. Table III contains some of the available data on high field superconductive materials.

High field superconductive phenomena are also related to specimen dimension and configuration. For instance, the Type I superconductor, Hg, has entirely different magnetization behavior in high magnetic fields when contained in the very fine set of filamentary tunnels in an unprocessed Vycor glass. The great majority of superconductive materials are Type II. The elements in very pure form and a very few precisely stoichiometric and well annealed compounds are Type I with the possible exceptions of vanadium and niobium.

CRITERIA FOR THE EXISTENCE OF THE SUPERCONDUCTIVE STATE

Experimental and theoretical attempts to evolve concretely the criteria for superconductivity in elements, alloys and materials still persist. A useful criterion has been found in Matthias' rules. These were developed empirically and then qualitatively shown to be derivable from the electronic properties of the atoms as presented in the periodic table. The primary empiricism of Matthias' rules is the prediction that alloys with average numbers of valence electrons per atom on the low sides of valence 5 and valence 7 will with some probability have high T_c . The average number of valence electrons is taken directly from the periodic table and an example of the validity of the empiricism is shown in Figure 2. Here the critical temperature of the known superconductive compounds having the A15 (β -W) or CrO₃ crystal structure are shown with the critical temperatures plotted versus the mean number of valence electrons per atom. Other parameter considerations such as the atomic volume and the mass of the constituent atoms have been useful but only in comparison within very similar systems.

A new and exciting discovery of a superconductive ternary alloy has been made with a T_c of 20.05 K. This is the first alloy to exceed the Nb₃Sn-base materials with critical temperatures up to about 18.5 K. The alloy follows Matthias' rules by having e/A of 4.55 corresponding to Nb₃Al_{0.8}Ge_{0.2} (see Ref. 704). Subsequent study of the ternary has raised the critical temperature to 20.7 K^{*} with initiation of the transition near 21 K. This is the <u>first</u> known superconductor with a T_c above the boiling point of liquid hydrogen at STP. The e/A ratio is 4.62 (close to the maximum in Fig. 2) and heat treatment temperature as well as the attained state of order appears to be important.

More semiconductive compounds have been found to be superconductive when studied after or during the application of high pressure and strontium titanate has been found superconductive at atmospheric pressure. The very high pressure phases of silicon and germanium have been shown to become superconductive in new dense phases. The additional discoveries of superconductive modifications of antimony, bismuth, cerium and gallium and the discovery of the very low critical temperature of tungsten leads to the repeated prediction that all metals are superconductive even if critical temperatures are currently too low to be measured. Some valid correlations now suggest that the noble metals (see Table I) such as gold and platinum will be superconductive if taken to temperatures of a few times 10^{-4} or 10^{-5} K.

The crystal structure of known superconductors has been a useful guide in discovering others. The classic example is the large number of superconductive Al5 compounds. Other crystal structures such as the Laves phases and the χ -phase of α -Mn structure show a pronounced tendency to be superconductive. It is thought that the crystal structure has a secondary influence on the critical temperature, however, and that the important consideration is the electronic structure which leads to a high density of electron states at the fermi level. Since very few band structures are known for alloys with the structural complexity of the cubic A15 type, little applicable general theory has been achieved to date. Correlations of the electronic specific heat and the Debye θ 's have tended to confirm the BCS (Bardeen-Cooper-Schrieffer) prediction within selected groups of superconductive materials. However there is evidence that precise correlation with the BCS theory is not always possible.

^{*}S. Foner, B.T. Matthias et al. Private communication. To be published in Proceedings of LT11., St. Andrews, Scotland, August 1968.

A continuing factor in the data presented are the newly discovered very low critical temperature superconductive materials and the number of non-superconductive materials studied down to temperatures well below 1 K. The disappointing lack of new superconductive materials with critical temperatures greater than 18.5 K has been overcome in the Nb₃(Al, Ge) ternary system. However, the theoretical problem still exists. Is there a limit to superconductive critical temperatures somewhere in the vicinity of 21 K or are there undiscovered materials with critical temperatures above this? Abrikosov (see Review Article Reference) has suggested from rudimentary theory that the maximum T_c will be about 40 K. He also entertains the possibility that other mechanisms than the Cooper electron pairs may lead to the superconductive state and recent excitement has arisen over the divergence from normal of the isotope coefficient in uranium. The technical desirability of finding superconductors with higher T_c is clear since critical magnetic fields will be proportionately higher.

Figure 2. Critical temperature versus valence electron/atom ratio for " β -W" or Al5 (Cr₃O) - type compounds.

METALLURGICAL ASPECTS

The sensitivity of superconductive properties to the material state is most pronounced and has been used in a reverse sense to study and specify the detailed state of alloys. The mechanical state, the homogeneity, and the presence of impurity atoms and other electron scattering centers are all capable of controlling the critical temperature and the currentcarrying capabilities in high magnetic fields. Well annealed specimens tend to show sharper transitions than those that are strained or inhomogeneous. This sensitivity to mechanical state underlines a general problem in the tabulation of properties for superconductive materials. The occasional divergent values of the critical temperature and of the critical fields quoted for a Type II superconductor may lie in the variation in sample preparation. Critical temperatures of materials studied early in the history of superconductivity must be evaluated in light of the probable metallurgical state of the material as well as the availability of less pure starting elements. It has been noted that recent work has given extended consideration to the metallurgical aspects of sample preparation.

NOTES CONCERNING DATA IN THE MONOGRAPH

Table 1 lists the elements and some of their superconductive properties. The data have been selected generally from recent studies in which sample purity and perfection appear to have been seriously considered.

Table 2 contains superconductive materials reported during the period (including the information presented in Technical Note 408) plus all materials that have been reported to be tested specifically for a superconducting transition down to some temperature T_n without discovery of a transition. All compositions are denoted on an atomic basis, i.e. AB, AB2 or AB₃ for compounds, unless noted. Solid solutions or odd compositions may be denoted as $A_z B_{1-z}$, or $A_z B$. A series of three or more alloys is indicated as $A_x B_y$ or by actual indication of the atomic fraction range such as A0-0.6B1-0.4. The critical temperature of such a series of alloys is denoted by a range of values or possibly the maximum value. In many cases several references will be found for the same alloy. This usually denotes a separate measurement by each source, and in a few cases may even indicate a disagreement over the superconductive properties. In view of the previous discussions concerning the variability of the superconductive properties as a function of purity and other metallurgical aspects, it is recommended that the appropriate literature be checked to determine the most probable critical temperature or critical field of a given alloy. Another point of difficulty lies in the selection of the critical temperature from a transition observed in the effective permeability or the change in resistance, or possibly the incremental changes observed in frequency observed by certain techniques. Most authors choose the mid-point of such curves as the probable critical temperature of the idealized material, and others will choose the highest temperature at which a deviation from the normal state property is observed. Often the choice is not specified.

Table 3 lists high magnetic field superconductors.

Review articles concerned primarily with the experimental and material aspects of superconductivity are appended as well as a complete alphabetical cross-reference to authors by reference number.

Acknowledgments

Preprints and courtesy copies of reports on superconductive materials have been kindly sent by many researchers in the field and found most useful and are gratefully acknowledged. Special appreciation is extended to G.V. Samsonov of Kiev for an extended collection of data on nitrides, carbides and borides and to N.E. Alekseevskii of Moscow for information. The expert recording, collation, checking and typing assistance of Mrs. Joan Wolfe, Miss Mary Beth Marquis and Miss Claudia Gnoinski have contributed greatly to the monograph. The thorough coverage of the scientific literature is due to the library staff's fine efforts in seeking pertinent articles under the direction of Miss Vera O. Chase.

 $(mJ mole^{-1} deg. K^{-2})$ Т_(К) Ho(oersteds) θ_D(K) Cal. Mag. Element Cal. (See tbelow) (See # below) Mag. A1 1.183 1.196 104 99 420 1.36 Cd0.54,0.518 0.56 29.6 30 209 0.688 Ga 1.087,1.078 1,091 59.4, 58.9 51 317, 324.7 0.601, 0.596 Ga (β) 6.2 Ga (y) 7.62 HF* Hg (a) 4.16 4.154 380 410.9 87, 71.9 1.81 Hg (B) 3.949 339 93 1.37 1n 3.407 3.4035 282.7 293 109 1.66 1r 0.14 19 420 3.2 La (α) 4.80 4.9 142 10.0 La (β) 5.91 6.06 1,600 132 6.7 Mo 0.915-0.918 0.92 95 98 460 1.83 Nb 9.17 9.26 1,944 1,980, 277 7.79 HF* Os 0.655 65 500 2.35 Pa 1.4 \mathbf{Pb} 7.23 7.193 803, HF* 96.3 3.0 Pt <0.001 Re 1.699 1.698 188 198 415 2.35 Rh <0.001 500 4.7 Ru 0.49 66 550 3.0 \mathbf{Sb} 2.6-2.7 HF≭ Sn 3,722 3.722 303 305.50 195 1.74 Та 4.39 4.483 780 830, HF* 258 6.0 Tc 8.22, 7.92 Th 1.368 131162 168 4.65 Τi 0.42 0.39 56 100, HF* 425 3.32 T12.38 2.39 176.5 171 78.5 1.47 U (α) 0.68,0.23 206 12.2 U (pseudo- γ) 1.80 (extrapolated value) V 5.37 5.30 1,310 1,020, HF* 399 9.8 W 0.012 1.07 550 3.0 Zn 0.852 0.875 51.8 53 309 0.66 Zr 0.546 47 290 2.78 Zr (11) 0.65

 Table 1. Properties of Superconductive Elements (References given in Table 2, as well as Crystal Structure Data and Information on Non-superconductive Elements)

(V	I	I۰	• 2)
---	---	---	----	-----	---

	Т _с (К)	H _o (oersteds) ¹	$\theta_{\rm D}$ (K) (mJ mole ⁻¹ deg. K	⁻²)
Element	Cal. Mag.	Cal. Mag.	(See t below) (See t below)	
	Thin	films formed at various temperate	ires	
Al	1,3-3,7			
Ве	~6, ~8.4	H _{c2} ≫11,000		
Bi	~6.0			
Ga	8.4, 7.2			
In	3.95-4.25, 3.7			
La	5.00-6.74			
Мо	~5			
Re	~7			
Sn	4.6-4.7, 4.1			
ті	1.3M			
W	1.7-4.1			
		Under high pressure		
Bi II	3.916 3.90 3.86		Pressure 2 25,000 atm 25,200 atm 26,800 atm	
Bi III	7.25	HF*	27,000-28,400 atm	
Ce	1.7		50 kbar	
Ge	4.85-5.4		~120 kbar	
Se II	6.75, 6.95		~130 kbar	
Si	7.1		120-130 kbar	
Те	~3.3	HF*	~56,000 atm	
T1 (FCC)	1.45		35 kbar	
Tl (HCP)	1.95		35 kbar	

† For another data set see Mendelssohn, K., Cryophysics, p. 178 (Interscience, New York, 1960).

* Parkinson, D.H., Rep. progr. Phys. 21, 226 (1958). Also see Reference 572.

HF* See Table 3 for additional data on H_{C1}, H_{C2} and H_{C3}. M equals maximum. FCC is face-centered cubic. HCP is hexagonal close-packed.

¹ To convert "oersteds" to ampere/meters, multiply by 7.957 x 10³. ² To convert "atm" to "newton/meter²", multiply by 1.013 x 10⁵.

(VIII-1)

Table 2. Tabulation of Superconductive Materials (including Proven Non-superconductors) with Critical Temperatures and Fields, Crystal Structure Data where determined, and References.

Symbols used:

- * Eutectic alloy.
- Δ Uncertain composition.
- R Resistance measurements.
- M Denotes maximum T_c in series of specimens or compositions.
- ** T_n is the lowest temperature at which a material has been checked for a superconductive transition.
- HF In H_o column indicates that some information is available in Table 3 on high field magnetic properties.
- On material or reference indicates a thin film study.
- ∞ All cell edges are intended to be quoted in Angström units.
- T_{c}^{1} (----) Denotes incremental changes in T_{c} from T_{c} of pure metal.
- o Impure material.
- C Calorimetric determination.
- VA Valence electron/atom.
- SS Solid solution.
- n Number of carriers in superconductive semiconductive materials.
- # Electronic specific heat (γ) and/or Debye θ data given.

(Some of the above symbols may be found only in PROGRESS IN CRYOGENICS article - PC IV).

"Struckturbericht" Type*	Example	Class
A1	Cu	Cubic, f.c.
A2	W	Cubic, b.c.
A3	Mg	Hexagonal, close packed
A4	Diamond	Cubic, f.c.
A5	White Sn	Tetragonal, b.c.
A6	In	Tetragonal, b.c. (f.c. cell usually used)
A7	As	Rhombohedral
A8	Se	Trigonal
A10	Hg	Rhombohedral
A12	∝- Mn	Cubic, b.c.
A13	β-Mn	Cubic
A15	β-W	Cubic
B1	NaCl	Cubic, f.c.
B2	CsCl	Cubic
B3	ZnS	Cubic
B4	ZnS	Hexagonal
B81	NiAs	Hexagonal
B82	Ni ₂ In	Hexagonal
B10	PbO	Tetragonal
B11	γ-CuTi	Tetragonal
B17	PtS	Tetragonal
B18	CuS	Hexagonal
B20	FeSi	Cubic
B27	FeB	Ortho-rhombic
B31	MnP	Ortho-rhombic
B32	NaT1	Cubic, f.c.
B34	PdS	Tetragonal

KEY TO CRYSTAL STRUCTURE TYPES FOUND IN TABLE 2

*See W.B. Pearson, Handbook of Lattice Spacing and Structures of Metals (Pergamon, New York, 1958), p. 79, also Vol. II (Pergamon, New York, 1967), p. 3.

"Struckturbericht" Type*	Example	Class
B_{f}	δ-CrB	Ortho-rhombic
Bg	MoB	Tetragonal, b.c.
B _h	WC	Hexagonal
В _і	γ΄-MoC	Hexagonal
C1	CaF_2	Cubic, f.c.
C1 _b	MgAgAs	Cubic, f.c.
C2	FeS_2	Cubic
C6	CdI_2	Trigonal
C11b	$MoSi_2$	Tetragonal, b.c.
C12	$CaSi_2$	Rhombohedral
C14	$MgZn_2$	Hexagonal
C15	Cu ₂ Mg	Cubic, f.c.
C15 _b	$AuBe_5$	Cubic
C16	CuAl ₂	Tetragonal, b.c.
C18	FeS_2	Ortho-rhombic
C22	Fe ₂ P	Trigonal
C23	$PbCl_2$	Ortho-rhombic
C32	AlB ₂	Hexagonal
C36	$MgNi_2$	Hexagonal
C37	Co ₂ Si	Ortho-rhombic
C49	$ZrSi_2$	Ortho-rhombic
C54	TiSi ₂	Ortho-rhombic
C _c	$\rm Si_2Th$	Tetragonal, b.c.
$D0_3$	BiF_3	Cubic, f.c.
D0 ₁₁	Fe_3C	Ortho-rhombic
D0 ₁₈	Na ₃ As	Hexagonal
D0 ₁₉	Ni ₃ Sn	Hexagonal
D0 ₂₀	NiAl ₃	Ortho-rhombic
D0 ₂₂	$TiAl_3$	Tetragonal
D0 _e	Ni_3P	Tetragonal, b.c.

"Struckturbericht" Type*	Example	Class
D1 ₃	Al ₄ Ba	Tetragonal, b.c.
D1 _c	$PtSn_4$	Ortho-rhombic
$D2_1$	CaB_6	Cubic
D2 _c	MnU_6	Tetragonal, b.c.
D2 _d	$CaZn_5$	Hexagonal
$D5_2$	La_2O_3	Trigonal
$D5_8$	$\mathrm{Sb}_2\mathrm{S}_3$	Ortho-rhombic
$D7_3$	$\mathrm{Th}_{3}\mathrm{P}_{4}$	Cubic, b.c.
D7 _b	Ta_3B_4	Ortho-rhombic
$D8_1$	$\mathrm{Fe}_{3}\mathrm{Zn}_{10}$	Cubic, b.c.
$D8_2$	Cu ₅ Zn ₈	Cubic, b.c.
$D8_3$	Cu ₉ Al ₄	Cubic
$D8_8$	Mn_5Si_3	Hexagonal
D8 _b	CrFe	Tetragonal
D8 _i	Mo_2B_5	Rhombohedral
D10 ₂	${\rm Fe_3Th_7}$	Hexagonal
$E2_1$	$CaTiO_3$	Cubic
E93	$\mathrm{Fe_{3}W_{3}C}$	Cubic, f.c.
L1 ₀	CuAu	Tetragonal
$L1_2$	Cu ₃ Au	Cubic
L_{2b}'	ThH_2	Tetragonal, b.c.
L'_3	Fe ₂ N	Hexagonal

(VIII-5)

Material	Т _с (К)	H _o (oersteds) ¹	T_**	Crystal Structure ∞	Ref.
Ag _{3.3} A1			0.34	like A13, a=6.92	486
Ag _x A1 _y Zn _{1-x-y}	0.5-0.845				624
Ag7 ^{BF} 4 ⁰ 8	0.15			Cubic, a=9.942	605
Ag ₅ Ba			0.34	D2 _d , a=5.71, c=4.64	486
AgBi2	3.0-2.78				606
^{Ag} 7 ^F 0.25 ^N 0.75 ^O 10.25	0.85-0.90				605
Ag7 ^{F0} 8	0.3			Cubic, a=9.833	605
Ag2 ^F	0.066	2.5			651 <i>#</i>
^{Ag} 0.3-0.02 ^{Ga} 0.7-0.98			1.4		533,585
Ag _{0.95-0.81} Ga _{0.05-0.19}			1.4		533
Ag0.80-0.30 ^{Ga} 0.20-0.70	6.5-8				533
Ag _x Ga _y In _{0.10}	6.5-8				533,585
Ag _x Ga _y Sn _{0.10}	4.2				533,585
Ag _x Ga _y Zn _{0.10}	6.5-8				533,585
Ag ₄ Ge	0.85			Hex., h.c.p.	487
^{Ag} 0.438 ^{Hg} 0.562	0.64			D8 _{1,2,3} "gamma brass", complex b.c.c.	489,511
Ag ₃ In			1.4		533,585
Ag _{0.1} In _{0.9} Te (n=1.40 x 1	0 ²²)*** 1.20-1.89			Bl, a=6.12	470
Ag _{0.2} In _{0.8} Te (n=1.07 x 1	0 ²²) 0.77-1.00			B1, a=6.08	470
AgLa	0.92-0.96				697

Table 2. Tabulation of Superconductive Materials (including Proven Non-superconductors) with Critical Temperatures and Fields, Crystal Structure Data where determined, and References.

*** n = number of normal carriers per cubic centimeter for semiconductor superconductors.

 1 To convert "oersteds" to ampere/meters, multiply by 7.957 \times $10^3.$

(VIII-6)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
AgLa (9.5 kbar)	1.2			B2	697
AgLu			0.33	B2	658
Ag7 ^{NO} 11	1.04	57		Cubic, a=9.893	605
Ag0-1.00 ^{Pd} 1.00-0				A1	572 #
AgSi ₂			1.4		533,58
Ag ₅ Sn			0.34	A3, a=2.94, c=4.77	486
^{Ag} 1-0.92 ^{Sn} 0-0.08					63 0 <i>#</i>
Ag _x Sn _{1-x} ⊽	2.0-3.8				693 [⊽]
Ag ₃ Sn [⊽]					693 [⊽]
Ag ₅ Sr			0.34	D2 _d , a=5.68, c=4.62	486
AgTe ₃	2.6			Cubic, primitive	487
AgY			0.33	B2	658
Ag _x ^{Zn} 1-x	0.5-0.845				624
Ag0-0.0566 ^{Zr} 1-0.9434				A3	572#
Al _{0.1} (with 3d metals)				A2, b.c.c.	572#
Al _{0.2} (with 3d metals)				A2, b.c.c.	572 #
A1 [♥]	2.13-2.31				595
A1 [▽]	1.5-3.7				596 [▽]
Al [♥]	1.3-2.25				619 [∇]
Al (1 to 21 katm)	1.170-0.687			A1	639
Al ₂ Au			0.34	C1, a=6.01	486
AlAu ₄	0.4-0.7			Like A13, a=6.92	486
A14C3			1.38		558

(VIII-7)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure ∞	Ref.
Alccr2			1.1	Hex., "H-phase"	632
Al ₂ CCr ₃			4.2	Hex., "H-phase," A=2.47, c=7.39	496,497,638
A12 ^{CMo} 3	9.8-10.2	1700		Al3 + trace 2nd phase	571
A12 ^{CMo} 3	10.0			Al3, a=6.867	496,497,632
A1CNb2			4.2	Hex.	497
A12 ^{CNb} 3			4.2	Hex., "H - phase," a=2.67, c=8.02	496,497,638
Al ₂ CTa ₃			4.2	Hex., "H-phase," a=2.68, c=7.97	496,497,638
A12 ^{CT1} 3			4.2	Hex., "H-phase," a=2.63, c=7.87	496,497,638
ALCV2			1.1	Hex., "H-phase"	632
A12 ^{CV} 3			4.2	Hex., "H-phase," a=2.52, c=7.52	496,497,638
Al ₂ Ce			0.34	C15	655
Al ₂ Ce			0.34		655
^{A1} 0.107 ^{Co} 0.088 ^{Fe} 0.805			1.4	Cub ic	514#
^{A1} 0.107 ^{C0} 0.176 ^{Fe} 0.717			1.4	Cubic	514#
^{A1} 0.107 ^{C0} 0.259 ^{Fe} 0.634			1.4	Cubic	514#
^{A1} 0.118 ^{Co} 0.446 ^{Fe} 0.436			1.4	Cubic	514#
^{Al} 0.118 ^{Co} 0.523 ^{Fe} 0.359			1.4	Cubic	514#
^{A1} 0.119 ^{Co} 0.352 ^{Fe} 0.529			1.4	Cubic	514#
^{A1} 0.119 ^{Co} 0.610 ^{Fe} 0.271			1.4	Cubic	514#
A10.049 ^{Cr} 0.951			1.4	A2	514#
A10.10 ^{Cr} 0.90			1.4	Cubic	514#

(VIII-8)

Material	т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
Al _{0.146} Cr _{0.854}			1.4	Cubic	514#
A10.20 ^{Cr} 0.80			1.4	Cubic	514#
A10.250 ^{Cr} 0.750			1.4	Cubic	514#
A10.30 ^{Cr} 0.70			1.4	Cubic	514#
A10-0.30 ^{Cr} 1-0.70				A2	572#
AlCr0-0.0016	T' _c (-0.33)				598
Al _{1-x} Cr _x	T' deducible				673
^{A1} 0.089 ^{Cr} 0.544 ^{Fe} 0.367			1.4	Cubic	514#
Al0.09 ^{Cr} 0.046 ^{Fe} 0.866			1.4	Cubic	514#
A10.09 ^{Cr} 0.228 ^{Fe} 0.682			1.4	Cubic	514#
A10.091 ^{Cr} 0.817 ^{Fe} 0.092			1.4	Cubic	514#
A10.095 ^{Cr} 0.453 ^{Fe} 0.452			1.4	Cubic	514#
A10.096 ^{Cr} 0.679 ^{Fe} 0.225			1.4	Cubic	514#
^{A1} 0.097 ^{Cr} 0.726 ^{Fe} 0.177			1.4	Cubic	514#
Al _{0.100} Cr _{0.632} Fe _{0.268}			1.4	Cubic	514#
^{A1} 0.104 ^{Cr} 0.849 ^{Fe} 0.047			1.4	Cubic	514#
^{A1} 0.105 ^{Cr} 0.753 ^{Fe} 0.142			1.4	Cubic	514#
A10.10 ^{Cr} 0.63 ^V 0.27			1.4	Cubic	514#
A10.111 ^{Cr} 0.801 ^V 0.089			1.4	Cubic	514#
A10.114 ^{Cr} 0.267 ^V 0.618			1.4	Cubic	514#
^{A1} 0.115 ^{Cr} 0.708 ^V 0.177			1.4	Cubic	514#
A10.115 ^{Cr} 0.839 ^V 0.045			1.4	Cubic	514#
A1 0,122 Cr 0,458 V 0,042			1.4	Cubic	514#

(VIII-9)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure 👓	Ref.
A1 _{0.131} Cr _{0.088} V _{0.781}	1.46			Cubic	514#
^{A1} 0-0.50 ^{Fe} 1-0.50				A2	572#
^{A1} 0.01-0.02 ^{Fe} 0.99-0.98					572 #
A1Fe0-0.0002	T' (-0.04)				598
Al _{1-v} Fe _v	T' deducible				673
A1 0.8 Ge 0.2 Nb 3	20.05			A1 5	704
AlLa ₃	5.57			D0 ₁₉	658
Al ₂ La	3.23			C15, a=8.13	486,658
AlLa			0.33		658
Al ₂ Lu			1.02	C15	658
AlLu ₃			1.1		659
A1Mn0-0.0018	т <u>'</u> (-0.68)				598
Al _{1-x} ^{Mn} x	T' deducible				673
AlN	1.55			B4, Hex., a=3.104, c=4.965	558
A12NNb3	1.3			A1 3	632
A1 0.33 ^{Nb} 0.66	8.5-13.5			D8 _b	557
A10.10-0.30 ^{Nb} 0.81-0.70 (As cast)	17.3M				479
^{A1} 0.19-0.30 ^{Nb} 0.81-0.70 (Annealed)	18.3M				479
A1 _x Nb _{1-x}	6-9			Cubic	497
Al _x Nb _{1-x}	<4.2-13.5			D8, a=9.318, c=4.813 to a=9.295, c=4.819	497
A1xNb1-x	12-17.5			A15	513

(VIII-10)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
Al _x Nb _{1-x}	12			A15, a=5.196	513
Alx ^{Nb} 1-x	17.5			A15, a=5.185	513
AlNb3	12.5-17.5			A15	497
A1 _{0.27} Nb _{0.73}	17.5			A15, a=5.185	497
A10.27 ^{Nb} 0.73-0.48 ^V 0-0.25	14.5-17.5			A15, a=5.136-5.185	497
A10.27 ^{Nb} 0-0.50 ^V 0.73-0.23			4.2	Cubic, a=3.055-3.18	497
AlNb V y	<4.2-13.5				497
A10.10 ^{Ni} 0.90				Al, f.c.c.	572#
Al Ni AlPb ^y (Superimposed films) AlPt	T' deducible 1.2-7		0.34	Cubic, a=4.85	673 512 ⁷ 486
Al ₂ Pt	0.48-0.55			Cl, a=5.92	486
A15 ^{Re} 24	3.35			A12	557
Al ₂ Sc			1.02	C15	658
AlSc ₃			1.1		659
Al _{1-x} Ti _x	T' deducible				673
A10.10 ^{T1} 0.63 ^V 0.27	3.62			Cubic	514#
^{A1} 0.11 ^{T1} 0.149 ^V 0.741	2.05			Cubic	514#
A1 _{0.120} ^{Ti} 0.328 ^V 0.552	2.70			Cubic	514#
A10.125 ^{T1} 0.520 ^V 0.355	3.44			Cubic	514#
A10.127 ^{Ti} 0.693 ^V 0.180	3.52			Cubic	514#
$^{A1}0.15^{Ti}0.595^{V}0.255$	2.36			Cubic	514#
A1 _{0.25} ^{Ti} 0.525 ^V 0.255			1.4	Cubic	514#
$^{A1}_{0,30}^{Ti}_{0,49}^{V}_{0,21}$			1.4	Cubic	514#

(VIII-11)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure 👓	Ref.
^{A1} 0.108 ^V 0.892	1.82			Cubic	514#
A1 _{0.188} V _{0.812}			1.4	Cubic	514#
A10.27 ^V 0.73			4.2	Cubic, a=3.055	497
A10.308 ^V 0.692			1.4	Cubic	514#
A10.402 ^V 0.598			1.4	Cubic	514#
^{A1} 0.01-0.40 ^V 0.90-0.60				A2	572#
All-x ^V x	T' deducible				673
Aly ₃			1.1		659
A12Y			0.34	C15, a=7.86	486,658
Al _x ^{Zn} 1-x	T'c (-0.03,0.0 +	·)			598
Al _x Zn _{1-x}	0.5-0.845				624
$As_{0.33}$ InTe _{0.67} (n=1.24x10 ²²)	0.85-1.15			B1, a=5.98	470
$As_{0.5}InTe_{0.5}$ (n=0.97 x 10 ²²)	0.44-0.62			B1, a=5.91	470
AsIr			0.35		491
AsIr ₂			0.35		491
AsPd ₂ (low temperature)	0.60			Hex., a=9.79,c=6.62	491
AsPd ₂ (high temperature)	1.70			C22, a=6.65, c=3.58	491
AsPd ₂ (quenched)	1.71			C22, a=6.65, c=3.57	530
AsPd ₂ (annealed)	0,6			Hex., a=9.79,c=6.61	530
AsPd ₃			0.35	DO _e , a=9.986,c=4.830	491
AsPd ₃			0.3	DO _e , a=9.98, c=4.83	530
AsPd ₇			1.1		530
As ₂ Pd			1.1		530

(VIII-12)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
As2Pd5	0.46			Complex	491
As 2Pd 5	U.43-0.50				530
As ₂ Pt			0.35		491
As ₃ Pt ₂			0.35		491
AsRh	0.58			B31, a=5.65, b=3.58, c=6.00	491
AsRh1.4-1.6	<0.03-0.56			Hex.	491
AsRh _{1.4}				Hex., a=9.15, c=3.53 + weak a=9.15,c=5.19	491
AsRh1.6				Hex., a=9.32, c=3.67	491
AsRh _{1.7} (Quenched)				Ortho. Rh2 ^{As + Rh} 1.6 ^{As} phase	491
AsRu			0.35		491
AsRu2			0.35		491
AsSn (n = 2.14 x 10^{22})	3.41-3.65			B1, a=5.72	470
^{As} ~2 ^{Sn} ~3	3.5-3.6, 1.21 - 1.17				470
As_3Sn_4 (n = 0.56 x 10 ²²)	1.16-1.19			Rhomb., a=12.23, ∝= 19.23	470
Au (rapid quench)			0.32	Al, f.c.c.	487
Au ₅ Ba	0.4-0.7			D2 _d , a=5.69, c=4.54	486
Au ₅ Ca	0.34-0.38			C15 _b , a=7.747	486,535
AuGa	1.2			B31, a=6.40, b=6.27, c=3.42	486
AuGa2			0.34	Cl, a=6.07	486
Au _{0.30} Ge _{0.70}			0.32	h.c.p. + Ge	487
^{Au} 0.33 ^{Ge} 0.67			0.32	weak complex + h.c.p. + Ge	487

(VIII-13)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
^{Au} 0.40 ^{Ge} 0.60	1.63			h.c.p. + Ge + weak complex	487
^{Au} 0.47 ^{Ge} 0.53	1.63			complex + weak Ge	487
Au0.50 ^{Ge} 0.50	1.63			complex + weak Ge	487
^{Au} 0.54 ^{Ge} 0.46	1.50			complex	487
Au0.61 ^{Ge} 0.39	1.31			complex	487
^{Au} 0.70 ^{Ge} 0.30	1.09			complex	487
^{Au} 0.725 ^{Ge} 0.275	0.99			complex + weak h.c.p.	487
^{Au} 0.75 ^{Ge} 0.25	Trace @ 0.5		0.32	Hex., h.c.p. + weak complex	487
^{Au} 0.775 ^{Ge} 0.225	Trace @ 0.5		0.32	Hex., h.c.p. weak + complex + f.c.c.	487
^{Au} 0.90 ^{Ge} 0.10 ^{& Au} 0.92 ^{Ge} 0.08	Trace @ 0.9		0.32	Cubic, f.c.c.	487
^{Au} 0.80 ^{Hg} 0.20			0.32		489
^{Au} 0.85 ^{Hg} 0.15			0.32		489
AuIn	0.4-0.6			Complex	486
AuIn2			0.34	C1, a=6.51	486
Au ₅ K			0.34	D2 _d ,a=5.64, c=4.48	486
AuLa			0.33		658
AuLu	<0.35			B2	658
^{Au} 0.50 ^{Mn} 0.50				Tet., Distorted CsCl	572#
Au2Na			0.34	C15, a=7.81	486
AuNb ₃	1.2			A2, a=3.29	568
Au0-0.3 ^{Nb} 1-0.7	1.1-11.0			A2 & A15	568
AuNb ₃	11.5, 11.0			A15, a=5.2027	492,568, 572#

(VIII-14)

Material	т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
Au _{0.02} Nb ₃ Rh _{0.98}	2.53			Al5, a=5.133	492
Au0.05 ^{Nb} 3 ^{Rh} 0.95	2.52			A15, a=5.137	492
Au0.10 ^{Nb} 3 ^{Rh} 0.90	2.70			A15, a=5.1412	492
^{Au} 0.30 ^{Nb} 3 ^{Rh} 0.70	4.6			A15, a=5.1573	492
Au0.50 ^{Nb} 3 ^{Rh} 0.50	6.6			A15, a=5.1688	492
Au _{0.70} Nb ₃ Rh _{0.30}	9.5			Al5, a=5.1827	492
Au0.90 ^{Nb} 3 ^{Rh} 0.10	10.8			A15, a=5.1960	492
Au _{0.95} Nb ₃ Rh _{0.05}	11.0			A15, a=5.200	492
Au0.98 ^{Nb} 3 ^{Rh} 0.02	10.9			A15, a=5.203	492
Au0.25 ^{Nb} 0.075 ^V 0.675				A15	572 #
Au0.25 ^{Nb} .1875 ^V .5625				A15	572#
Au _{0.25} Nb.375 ^V .375				A15	572#
Au _{0.25} Nb.5625 ^V .1875				A15	572#
Au _{0.25} Nb.675 ^V 0.075				A15	5 7 2#
$AuNb_{3(1-x)}V_{3x}$	1.5-11.0			A15, a=4.88-5.22	568
Au ₂ Pb 1.1	8, 7.12-5.98			C15, a=7.94	486,640
AuPb ₂	3.15				475,521
AuPb2 [∇]	4.3				521 [▽]
AuPb ₃	4.40				475,521
AuPb ₂ [∇]	4.25				521 [▽]
Au ₀₋₀ 0/ ^{Pt} 1-0.96				Al	5 72 #
Au 1 00 ^{Pt} 1 00 0				Al	572#
Au_Rb			0.34	D2 ₄ , a=5.6, c=4.4	486

(V	I	I	I	-	1	5)	
---	---	---	---	---	---	---	---	---	--

Material	Т _с (К)	H _o (oersteds)	T_** n	Crystal Structure -	Ref.
AuSn	1.25			B8 ₁ , a=4.32, c=5.52	486
Au ₅ Sn	0.7-1.1			A3, a=2.92, c=4.77	486
AuSn ₂ [♥]					577⊽
$Au_x Sn_{1-x}^{\nabla}$	2.0-3.8				577⊽
AuSn ₄ ∇					577⊽
Au 3 ^{Te} 5	1.62			Primitive cubic	487
AuTi ₃				A15, a=5.094	522
Au _{0.25} V _{0.75}				A15	572 ≇
Au _x Zn _{1-x}	0.5-0.845				624
^B 0.03 ^C 0.51 ^{Mo} 0.47	12.5			≪- ^{MoC} 1-x ⁺	573
(Hot pressed & quenched from 2650°C)				η- _{Mo3} c ₂	
BCMo2	5.4, 5.3 -7 0			Ortho-rhombic	497,635
${}^{B}{}_{x}{}^{C}{}_{1-x}$ ^{Mo} (quenched)	14.2 (broad 17.5 - 12.2)		Cubic + some Hex.	497
BMo	0.5 (extrapolated)				497
₿ ₆ Ca			1.28	D2 ₁ , Cubic CaB ₆ , a=4.145	558
B ₆ Ce	Paramagnetic			D2 ₁ , Cubic CaB ₆ , a=4.141	558
^B 6 ^{Ce}	Antiferro.		0.35		705
B ₆ Dy	Antiferro.		0.35		705
B ₁₂ Er	Antiferro.		0.35		705
B ₆ Eu	Paramagnetic			D2 ₁ , Cubic CaB ₆ , a=4.175	558
^B 6 ^{Eu}	Ferro.		0.35		705

(VIII-16)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
B ₆ Gd	Paramagnetic			D2 ₁ , Cubic CaB ₆ a=4.112	558
B ₆ Gd	Antiferro.		0.35		705
BHf	3.1			Cubic + extra lines	558
^B 6 ^{Ho}	Antiferro.		0.35		705
^B 12 ^{Ho}	Antiferro.		0.35		705
B ₆ La			1.30	D2 ₁ , Cubic CaB ₆ a=4.156	558
B ₆ La	5.7				705
B ₁₂ Lu	0.48				705
^B 0.67 ^{Nb} 0.33					572#
^B 6 Nd	Paramagnetic			D2 ₁ , Cubic CaB ₆ , a=4.128	558
B6Nd	Antiferro.		0.35		705
^B 6 ^{Pr}	Paramagnetic			$D2_1$, Cubic CaB ₆ =4.130	558
^B 6 ^{Pr}	Antiferro.		0.35		705
^B 0.33 ^{Re} 0.67					572 #
^B 2 ^{Sc}			1.30	C32 Hex. AlB ₂ , a=3.15, c=3.52	558
B ₄ Sc			1.34		558
B ₁₂ Sc	0.39				705
^B 6 Sm			1.28	$D2_1$, Cubic CaB ₆ , a=4.133	558
BTa	4.0			B _f Ortho.	558
^B 6 ^{Tb}			1.28	$D2_1$, Cubic CaB ₆ , a=4.102	558
вбтр	Antiferro.		0.35		705

(VIII-17)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure ∞	Ref.
B ₆ Th			1.28	D21, Cubic CaB6,	558
B ₆ Th	0.74			a=4.113	705
BTI				B27, a=6.12, b=3.06, c=4.56	522
B ₂ Ti				C32, a=3.030,c=3.227	522
^B 12 Tm	Antiferro.		0.35		705
^{BW} 2	3.1				474
^B 6 ^Y			1.30	D2 ₁ , Cubic CaB ₆ , a=4.113	558
в ₆ ч	6.5-7.1				705 #
^B 12 ^Y	4.7				705
^B 6 ^{Yb}			1.28	D2 ₁ , Cubic CaB ₆ , a=4.144	558
BZr	3.4			Cubic + extra lines	558
B ₁₂ Zr	5.82				7 05 #
^{Ba} x ⁰ 3 ^{Sr} 1-x ^{Ti*}	<0.1-0.55	HF			611
^{Ba} 0.13 ⁰ 3 ^W	1.9			Tet. I Phase, a=12.16, c=3.84	575
^{Ba} ~0.13 ⁰ 3 ^W	1.9			Tet., a=12.16, c=3.84	674
^{Ba} 0.14 ⁰ 3 ^W	<1.25-2.2			Hex., a=7.307, c=7.426	644
Be⊽	~6.5	HF			550⊽,580
Be ₂₂ Mo (Isotope Study)	2.485-2.529			Cubic, Be ₂₂ Re type	566
Be ₂₂ Mo	2.51			Cubic, Be ₂₂ Re type	566
Be _{0.98} ^{Re} 0.02 (Quenched)	9.75			Cubic, a=11.56 Like Be ₂₂ Re	578
* $n = 4.2 - 11 \times 10^{19}$					

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure ∞	Ref.
^{Be} 1-0.92 ^{Re} 0-0.08 (quenched)	8.9-9.75				578
^{Be} 0.98-0.92 ^{Re} 0.02-0.08	9.5-9.7				578
Be0.957 ^{Re} 0.043 (Quenched)	9.62			Cubic, a=11.56, like ^{Be} 22 ^{Re}	578 #
^{Be} 0.957 ^{Re} 0.043 (Annealed)	9.67			Cubic, a=11.56, like ^{Be} 22 ^{Re}	57 8#
Be ₂₂ Re	9.65			Cubic, Be ₂₂ Re type	566
^{Be} 0.98 ^{Re} 0.02 (Quenched)	9.75			Cubic, Be ₂₂ Re type a=11.56	567
^{Be} 0.995-0.92 ^{Re} 0.005-0.08 (Quenched)	8.9-9.75				567
^{Be} 0.98-0.92 ^{Re} 0.02-0.08 (Annealed)	9.5-9.65				567 #
ВеТс	5.21			Cubic	566
Be ₂₂ W	4.12			Cubic, Be ₂₂ Re type	566
BiII		HF			437
BiIII		HF			437
Bi⊽					602 [▽]
BiC			0.3		606
BiCo	0.49-0.42				606
BiCr			0.3		606
Bi _x Cu _{1-x} (Electrodeposited)	2.2				590
BiCu	1.40-1.33				606
BiFe			0.3		606
^{Bi} 0.05 ^{In} 0.95	4.65			\prec - phase	634
^{Bi} 0.10 ^{In} 0.90	5.05			≪ - phase	634
^{Bi} 0.15-0.30 ^{In} 0.85-0.70	5.3-5.4			∝& _β phases	634
BiIn ₂	5.65			β - phase	634

(VIII-19)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure ∞	Ref.
Bi ₃ In ₅	4.1				634
^{Bi} 0.34-0.48 ^{In} 0.66-0.52	4.0-4.1				634
BiIn			0.5	%- phase	634
^{Bi} 0.01 ^{In} 0.99		HF			666
^{Bi} 0.02 ^{In} 0.98		HF			666
^{Bi} 0.019 ^{In} 0.981	3.86				544
BiIr			0.35		491
BiIr ₂			0.35		491
Bi ₂ Ir	~2.3-1.7				606
Bi ₂ Ir (Quenched)	3.96-3.0				606
Bi ₄₋₉ ^{Mg}	~1.0-0.70				606
BiMn			0.3		606
Bi ₃ Mo	3.7-3.0				606
BiNb3			2.25	Cubic, a=3.327	508
BiNb ₃ (High pressure and temperature)	3.05			A15, a=5.320	508
BiOs			0.3		606
^{Bi} 0.95 ^{Pb} 0.05 [∇]			1.03		484 [▽]
^{Bi} 0.99 ^{Pb} 0.01 [▽]			1.03		484 [▽]
Bi ₁₋₀ Pb ₀₋₁	7.25-8.67				484 [♥]
^{Bi} 1-0 ^{Pb} 0-1	7.26-9.14				83
^{Bi} 0.05-0.40 ^{Pb} 0.95-0.60	7.35-8.4	HF		HCP to e-phase	677
Bi7.5 ^{Pb} 92.5 (w/o)		HF			685
(VIII-20)

Material	т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
BiRe ₂	2.20-1.9				606
BiRu			0.35		491
BiRu ₂			0.35		491
BiRu	5.7, 4.12-3.31				606
BiRu (Quenched)	2.7- <2				606
BiS			0.3		606
BiSc			0.3		606
Bi ₃ Sn	3.77-3.72, 3.67-3.63				606
Bi ₃ Te	~ 1.0-0.75				606
^{Bi} 0-0.002 ^{T1}	$T'_{c} = (+0.01)$				591
BiW			0.3		606
Bi ₃ Zn	0.87-0.80, 0.80-0.77				606
BiZr ₃	2.84-2.35				606
BiZr ₃ (Annealed)	3.4-0.4				606
C (pyrolytic graphite)			0.011		494
CCdTi ₂			1.1	Hex., H-Phase	632
CCr ₂ Ga			1.1	Hex., H-Phase	632
CCsx	0.020-0.135			Hex.	494
C ₈ Cs (gold)	0.020-0.135				494
C ₁₆ Cs (blue)			0.011		494
CGaMo2	4.1-3.7			Hex., H-Phase	635

(VIII-21)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
C _{0.985} Hf	· · · · · · · · · · · · · · · · · · ·		1.28	B1, a=4.63	559,560,558
CHf ₂ In			1.1	Hex., H-Phase	632
^{CHf} 0.9 ^{Mo} 0.1			1.38	B1	559 , 560,558
CHf0.8 ^{Mo} 0.2			1.38	B1	559,560,558
^{CHf} 0.85 ^{Mo} 0.15			1. 3 8	B1	559,560,558
^{CHf} 0.75 ^{Mo} 0.25			1.4	B1	559,560,558
^{CHf} 0.5 ^{Mo} 0.5	3.4			B1, a=4.450	559,560,558
^{CHf} 0.3 ^{Mo} 0.7	5.5			B1	559,560,558
^{CHf} 0.25 ^{Mo} 0.75	6.6			B1	559,560,558
CHf0.2 ^{Mo} 0.8	8.0			Bl, a=4.337	559,560,558
^{CHf} 0.17 ^{Mo} 0.83	8.7			B1	559,560,558
^{CHf} 0.15 ^{Mo} 0.85	9.0			Bl, a=4.310	559,560,558
^{CHf} 0.07 ^{Mo} 0.93	8.2			B1	559,560,558
^C 0.75 ^{Hf} 0.05 ^{Mo} 0.95	14.2			B1	650
^{CHf} 0.9 ^{Nb} 0.1			4.2	B1	559,560,558
CHf0.8 ^{Nb} 0.2	5.4			B1	559,560,558
CHf0.7 ^{Nb} 0.3	6.1			B1	559,560,558
CHf0.6 ^{Nb} 0.4	4.5			B1	559,560,558
CHf0.5 ^{Nb} 0.5	4.8			B1, a=4.55	559,560,558
CHf0.4 ^{Nb} 0.6	5.6			B1	559,560,558
CHf0.25 ^{Nb} 0.75	7.0			B1	559,560,558
CHf0.2 ^{Nb} 0.8	7.8			B1	559,560,558

(VIII-22)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
CHf _{0.9} Ta _{0.1}	5.0			B1	559,560,558
CHf _{0.8} Ta _{0.2}	5.4			B1	559,560,558
CHf _{0.7} Ta _{0.3}	5.1			B1, a=4.56	559,560,558
CHf _{0.6} Ta _{0.4}	5.2			B1	559,560,558
CHf _{0.5} Ta _{0.5}	5.5			B1	559,560,558
^{CHf} 0.4 ^{Ta} 0.6	6.1			B1	559,560,558
CHf _{0.3} Ta _{0.7}	7.9			B1	559,560,558
CHf _{0.2} Ta _{0.8}	8.7			B1	559,560,558
CHf _{0.1} ^{Ta} 0.9	9.0			B1	559,560,558
^{CHf} 0.6 ^{Zr} 0.4			1.28	B1	558
CInNb ₂			1.1	Hex., H-Phase	632
CInZr ₂			1.1	Hex., H-Phase	632
CK _x	0.55M				494
CK (Excess K)	0.55	HF		Hex.	494
с ₈ к	0.39	HF		Hex.	494
C ₈ K (gold)	up to 0.55	HF			494
C ₁₆ K (blue)			0.011	Hex.	494
$-C_{1-x}$ Mo _x (quenched)	14.2			Cubic + some Hex.	497
$C_{1-x}Mo_x$ (quenched)	8.8			Hex., n ^{Mo} 3 ^C 2	497
$C_{1-x}Mo_x$ (quenched)	9.4-11.7			⊓Mo ₃ C ₂ + partial ≪-MoC ₁ -x	497
C _{0.40} ^{Mo} 0.60 (quenched)	11.7			Some B1	497
CMo _{0.83} Ti _{0.17}	10.2			B1, a=4.290	522

(V	Π	I	-	2	3)
---	---	---	---	---	---	---	---

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
^C 0.42 ^{Mo} 0.58 (Hot pressed & quenched from 1650°C)	9.0			Hex., n - Mo ₃ C ₂	573
C _{0.41} Mo _{0.59} (Hot pressed & quenched from 2200°C)	9.6			Hex., n - Mo ₃ C ₂	573
<pre>C0.40^{Mo}0.60 (Hot pressed & quenched from 2200°C)</pre>	11.0			$\eta = Mo_3C_2 + \propto - MoC_{1-x}$	573
C0.40 ^{Mo} 0.60 (Hot pressed & quenched from 1650°C)	9.0			n - Mo ₃ C ₂ + trace Mo ₂ C	c 573
<pre>C0.42^{Mo}0.58 (Hot pressed & quenched from 2200°C)</pre>	9.5			Hex., n - Mo ₃ C ₂	573
<pre>C0.41^{Mo}0.59 (Hot pressed & quenched from 2320°C)</pre>	12.0			\propto - MoC _{1-x} + trace n - Mo ₃ C ₂	573
C _{0.44} ^{Mo} 0.56 (Hot pressed & quenched)	13.0			∞ - MoC _{1-x} + trace n - Mo ₃ C ₂	573
<pre>C0.40^{Mo}0.60 (Hot pressed & quenched from 2650°C)</pre>	12.2			\sim - MoC _{1-x} + n - Mo ₃ C ₂	573
CMo (quenched, 2200°C)	12.5-13.5			Cubic + Hex.	571
^C 0.44 ^{Mo} 0.56	12.5-13.5	1300, HF		Cubic + Hex	571
^C 0.40 ^{Mo} 0.60 (+2% VC)	11.2-13.2				571
СМо	6.5			Hex.	558,559,560
CMo2	12.2			Ortho.	650
C _{1-x} ^{Mo} 2	10.8, 8.1			Ortho.	650

(VIII -24)

Material	т _с (К)	H _o (oersteds) T _n **	Crystal Structure∞	Ref.
^C 0.40 ^{Mo} 0.60	9.0		Hex.	691
^C 0.44 ^{Mo} 0.56	1.30		B1	691
^C 0.6 ^{Mo} 4.8 ^{Si} 3	7.6		D888	650
^{CMo} 0.2 ^{Ta} 0.8	7.5		B1, a=4.432	559,560,558
^{CMo} 0.5 ^{Ta} 0.5	7.7		B1, a=4.400	559,560,558
^{CMo} 0.75 ^{Ta} 0.25	8.5		B1, a=4.326	559,560,558
^{CMo} 0.8 ^{Ta} 0.2	8.7		B1, a=4.310	559,560,558
^{CMo} 0.85 ^{Ta} 0.15	8.9		B1	559,560,558
^C 0.15 ^N 0.35 ^{Nb} 0.50				572 #
^C x ^N 1-x ^{Nb}	8.5-17.3	HF		582
^C 0.9 ^N 0.1 ^{Nb}	10.5		B1	559,561,558
^C 0.8 ^N 0.2 ^{Nb}	12.4		B1	559,561,558
^C 0.7 ^N 0.3 ^{Nb}	13.8		B1	559,561,558
^C 0.6 ^N 0.4 ^{Nb}	14.7		B1	559,561,558
^C 0.5 ^N 0.5 ^{Nb}	16.1		B1	559,561,558
^C 0.4 ^N 0.6 ^{Nb}	17.4		B1	559,561,558
^C 0.35 ^N 0.65 ^{Nb}	17.8		B1	559,561,558
^С 0.3 ^N 0.7 ^{Nb}	17.5		B1	559,561,558
^C 0.28 ^N 0.72 ^{Nb}	17.9		B1	559,561,558
^C 0.26 ^N 0.74 ^{Nb}	17.8		B1	559,561,558
^C 0.24 ^N 0.76 ^{Nb}	17.6		B1	559,561,558
^C 0.22 ^N 0.78 ^{Nb}	17.8		B1	559,561,558

(VIII-25)

Material	т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
^C 0.2 ^N 0.8 ^{Nb}	17.6	. <u></u>		B1	559,561,558
^C 0.1 ^N 0.9 ^{Nb}	16.7			B1	559,561,558
^C 0-0.38 ^N 1-0.62 ^{Ta}	10.0-11.3				691
^C 0.35-0.50 ^{Nb} 0.65-0.50				B1	572#
^C 0.428 ^{Nb} 0.572					572 #
^C 0.487 ^{Nb} 0.513					57 2#
^C 0.495 ^{Nb} 0.505					572 #
CNb (Whiskers)	7.5-10.5	HF			582
СИЪ	8-10	800, HF		Cubic	571
^C 0.984 ^{Nb}	9.8			B1, a=4.47	559,560,558
CNb ₂	9.1				474
^C ~0.7-1.0 ^{Nb} ~0.3-~0	6 - 11			B1	497
CNb ₂ Sn			1.1	Hex., H-Phase	632
CNb _x Ta _{1-x}	8.2-13.9				628
^{CNb} 0.4 ^{Ta} 0.6	10-13.6	990, HF		Cubic	571
^{CNb} 0.8 ^{Ta} 0.2	9.7			B1	559,560,558
^{CNb} 0.5 ^{Ta} 0.5	9.6			B1	559,560,558
CNb0.2 ^{Ta} 0.8	9.4			B1	559,560,558
CNb0.1 ^{Ti} 0.9			4.2	B1	559,560,558
CNb0.2 ^{Ti} 0.8	4.4			B1	559,560,558
CNb0.3 ^{Ti} 0.7	5.0			B1	559,560,558
^{CNb} 0.4 ^{Ti} 0.6	5.0			B1	559,560,558

(VIII-26)

Material	Т _с (К)	H _o (oersteds)	T_** n	Crystal Structure ∞	Ref.
^{CNb} 0.5 ^{Ti} 0.5	4.6			B1	559,560,558
CNb0.6 ^{Ti} 0.4	4.8			B1	559,560,558
CNb0.7 ^{Ti} 0.3	5.8			B1, a=4.37	559,560,558
CNb0.8 ^{Ti} 0.2	7.0			B1	559,560,558
CNb0.9 ^{Ti} 0.1	8.8			B1	559,558,560
^{CNb} 0.6 ^W 0.4	12.5			Bl, diffuse lines	558
^{CNb} 0.8 ^W 0.2	12.7			B1, a=4.425	558
^{CNb} 0.9 ^W 0.1	11.6			B1	558
^{CNb} 0.1 ^{Zr} 0.9	4.2			B1	559,560,558
CNb _{0.2} Zr _{0.8}	6.4			B1	559,560,558
CNb0.3 ^{Zr} 0.7	6.2			B1	559,560,558
CNb0.4 ^{Zr} 0.6	4.8			В1	559,560,558
^{CNb} 0.5 ^{Zr} 0.5	4.9			B1	559,560,558
^{CNb} 0.6 ^{Zr} 0.4	5.6			В1	559,560,558
CNb0.7 ^{Zr} 0.3	6.0			Bl, a=4.55	559,560,558
CNb _{0.8} Zr _{0.2}	7.5			В1	559,560,558
^{CNb} 0.9 ^{Zr} 0.1	8.4			В1	559,560,558
CPbTi ₂			1.1	Hex., H-Phase	632
CRb _x	0.023-0.151			Hex.	494
C ₈ Rb (gold)	0.023-0.151				494
C ₁₆ Rb (blue)			0.011		494
CRe0.01 ^W	2.6	HF			603
CRe0.02W	3.7	HF			603

(VIII-27)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure ∞	Ref.
CRe _{0.4} W	4.3	HF			603
CRe0.06 ^W	5.0	HF			603
CRe0.08 ^W	1.3				603
^C 0.96 ^{Sc}			1.38	B1, a=4.54	558
СТа	9-11.4	810, HF		Cubic	571
^C 0.984 ^{Ta}	9.2			Bl, a=4.45	559,560,558
^C 0.962 ^{Ta}	7.4			B1	559,560,558
CTa^{∇} (sputtered)	5.09			B1	505 [▽]
CTa2	3.2				474
CTi				B1, a=4.329	522
^{CTa} 0.4 ^{Ti} 0.6	4.8			B1	558
^{CTa} 1-0.40 ^W 0-0.60	8.5-10			B1, a=4.454-4.345	694
$CTa_{0.50}$ ^W 0.50	1.01				494
CTa _{0.2} Zr _{0.8}			4.2	B1	559,560,558
CTa _{0.3} Zr _{0.7}	5.1			B1	559,560,558
CTa _{0.4} Zr _{0.6}	4.9			Bl, a=4.57	559,560,558
CTa _{0.5} Zr _{0.5}	4.6			В1	559,560,558
^{CTa} 0.6 ^{Zr} 0.4	4.7			В1	559,560,558
CTa _{0.7} Zr _{0.3}	6.0			B1	559,560,558
CTa _{0.8} Zr _{0.2}	7.7			B1	559,560,558
CTa _{0.9} Zr _{0.1}	8.3			B1	559,560,558
CTc (Excess C)	3.85			Cubic, a=3.985	633
^C 0.986 ^{Ti}			1.28	B1, a=4.32	559,560,558

(VIII-28)

Material	Т _с (К)	H _o (oersteds)	T **	Crystal Structure ∞	Ref.
CTi _{0.5} W _{0.5}	6.7			B1	558
CT10.6 ^W 0.4	4.4			Bl, a=4.31	558
CTi0.7 ^W 0.3	2.1			B1	558
CTi0.8 ^W 0.2			1.38	B1	558
CTi _{0.8} Zr _{0.2}			1.28	B1	558
CTi _{0.6} Zr _{0.4}			1.28	B1	558
^C 0.50 ^V 0.50					572 #
^c _{0.922} ^v			1.28	Bl, a=4.18	559,560,558
c _{<1} v			1.17	B1, a=4.169	694
CV _{0.4} Zr _{0.6}			4.2	B1	558
CW	1.0				603
^C 0.92 ^Y			1.38	B1, a=4.68	559,558,560
^C 0.992 ^{Zr}			1.28	Bl, a=4.68	559,558,560
CaCu ₅			0.34	D2 _d , a=5.09, c=4.09	486
CaZn ₅			0.34	D2 _d , a=5.42, c=4.19	486
^{Ca} x ⁰ 3 ^{Sr} 1-x ^{Ti*}	<0.1-0.55	HF			611
^{Ca} 0.10 ^O 3 ^W	1.4-3.4			Hex., a=7.397,c=7.569	644
Cd	0.518	29.6, HF			537
Cd (isotopes)					546
^{Cd} 0.02 ^{Hg} 0.98		HF			666
^{Cd} 0.0075-0.05 ^{In} 1-x	3.24-3.36			Tet., SS	670
$* n = 3.7 - 11.0 \times 10^{19}$					

1

(VIII-29)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure 👓	Ref.
Cd _{0-0.012} ^{T1}	T' _c (-0.010)	<u>,</u>			591
^{Cd} 0-0.0815 ^{Zr} 1-0.9185				A3	572 #
Ce (at 10 kbar)			0.04	A1	656
Ce (at 50 kbar)	1.7				618
Ce (0-10,000 atm.)			1.25	≪- Ce,dense f.c.c.	542
CeCo ₂	0.84			C15	655
CeCo1.67 ^{Ni} 0.33	0.46			C15	655
CeCo _{1.33} Ni _{0.67}			0.33	C15	655
CeCo _{1.33} Rh0.67			0.33	C15	655
CeCo _{1.67} ^{Rh} 0.33	0.47			C15	655
CeIr ₃	3.34				469
CeIr ₅	1.82				469
CeIr _{1.8}			0.32	Cl5, a=7.581	469
^{Ce} 0.005 ^{La} 0.995	4.6				608
^{Ce} 0.01 ^{La} 0.99	3.9				608
^{Ce} 0.013 ^{La} 0.987	3.3				608
CeNi ₂			0.015	C15	655
CePt ₂			0.32	Cl5, a=7.730	469
CePt ₃			0.32	Cl5, a=7.640	469
CePt ₅			0.32	D2 _d , a=5.369,c=4.385	469
^{Ce} 0.20-0.173 ^{Pt} 0.80-0.826	1.26-0.70, 1.55M (portion only)				469
CeRu ₂	6.0			C15	657

(VIII-30)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
Ce ₂ S ₃	Paramagnetic			Cubic, b.c. Ce ₂ S ₃ a=8.618	558
Co					572 ∦
^{Co} 0-0.75 ^{Fe} 1.00-0.25				A2	572 ∦
^{Co} 0-0.04 ^{Fe} 1-0.96					572 #
^{Co} 0.93 ^{Fe} 0.07				A1	572 #
^{Co} 0-0.587 ^{Fe} 1-0.413				A2	572 ∦
^{Co} 0.915 ^{Fe} 0.085				A1	572 #
^{Co} 0.30 ^{Fe} 0.70				A2	572 #
Co Fe Ti				B2	572 / #
CoLa ₃	4.28			DO ₁₁	658
CoLa3	4.01			DO _{20,} a=7.279, b=10.088, c=6.578	469
CoLu ₃	0.35 ⁺⁺⁺ (portion only)				469
Co ₂ Lu			0.32	C15, a=7.123	469
^{Co} 0.02 ^{Nb} 3 ^{Rh} 0.98	2.28			A15, a=5.132	492
^{Co} 0.05 ^{Nb} 3 ^{Rh} 0.95	1.96			A15, a=5.135	492
^{Co} 0.10 ^{Nb} 3 ^{Rh} 0.90	1.90			A15, a=5.1347	492
^{Co} 0.70 ^{Ni} 0.30-1				A1	57 2 #
^{Co} 0.60 ^{Ni} 0.40				A1	572 #
^{Co} 0.16 ^{Ni} 0.64 ^P			0.99		601
^{Co} 0.39 ^{Ni} 0.40 ^P			0.99		601
^{Co} 0.52 ^{Ni} 0.26 ^P			0.99		601

+++ Beginning of transition

(VIII-31)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
^{Co} 0.64 ^{Ni} 0.15 ^P			0.99		601
Co_Ni_Ti				B2	572#
Co ₂ P			0.97	C23	601
^{Co} 0.95-0.005 ^{Pd} 0.05-0.995					572#
^{Co} ~0.001 ^{Pd} ~0.999				A1	572#
^{Co} 0.035-0.01 ^{Pt} 0.965-0.99					57 2#
CoSc3			0.32		658
CoSc ₂			0.32	Cl6, a=6.374, c=5.616	469
CoSc 3			0.32		469
^{Co} 0.28-0.32 ^{Sc} 0.72-0.68	0.35 ⁺⁺⁺ (portion only)				469
Co ₅ Th			0.32	D2 _d , a=5.005, c=3.987	469
Co _x Ti _y				_	522
^{Co} 0.50 ^{Ti} 0.50				B2, CsCl, ord.	572#
^{Co} 0.28 ^Y 0.72	0.34				469
CoY2			0.32		469
CoY3	0.34 ⁺⁺⁺ (portion only)				469
^{Co} (0-150 ppm at.) ^{Zn}	T' _c (-0.075)				598
Cr	Antiferro.		1.4	A2	5 <u>1</u> 4#,572#
Cr⊽			0.3		503⊽,615⊽
^{Cr} 0.98-0 ^{Fe} 0.02-1				A2	572#
Cr _{0.441} Fe _{0.559}				A2	572#
Cr _{0.441} ^{Fe} 0.559				D8 _b	572#
Destantes of toront					

+++ Beginning of transition

(VIII-32)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
^{Cr} 0.02-0.005 ^{Fe} 0.98-0.995		•			572#
^{Cr} 0.90 ^{Mn} 0.10				A2	572#
^{Cr} 0.80 ^{Mn} 0.20				A2	572 #
^{Cr} 0.69 ^{Mn} 0.31				A2	572#
^{Cr} 0.61 ^{Mn} 0.39				A2	572 #
^{Cr} 0.50 ^{Mn} 0.50				A2	572 #
^{Cr} 0.92-0 ^{Mo} 0.08-1				A2	572#
Cr _{0.01-0.03} ^{NNb}					572#
^{Cr} 1-0.98 ^{Nb} 0-0.02				A2	572#
^{Cr} 0.80 ^{Os} 0.20	2.5			Cubic, b.c. a=2.925	556#
^{Cr} 0.60 ^{Os} 0.40			1.40	d8 _b	557
^{Cr} 0.95-0.80 ^{Os} 0.05-0.20				A2	572 #
CrOsV					572#
Cr ₃ P			1.01	DOe	601
CrP			1.01	B31	601
^{Cr} 0.005 ^{Pt} 0.995				A1	572 #
Cr _{0.40} ^{Re} 0.60	2.15			D8 _b	557 <i>‡</i>
Cr _{1-0.62} ^{Re} 0-0.38				A2	572 #
^{Cr} 0.40 ^{Re} 0.60				D8 _b	572#
CrReV					572#
^{Cr} 0.93-0.86 ^{Re} 0.07-0.14				A2	572 #
$Cr_{1-0.99}Ta_{0-0.01}$				A2	572#

(VIII-33)

Material	т _с (К)	H _o (oersteds)	T ** n	Crystal Structure 👓	Ref.
^{Cr} 0.025 ^{Ti} 0.975				A3	572#
^{Cr} 0.025 ^{Ti} 0.975	3.5			+ w?	477#
Cr_Ti_v (quenched)			1.1		523
Cr _x Ti _y					522
^{Cr} 0.011 ^{Ti} 0.967 ^V 0.022	3.6			+ w?	477#
^{Cr} 0.10 ^{Ti} 0.30 ^V 0.60	5.6	1360, HF			584
^{Cr} 0.10 ^{Ti} 0.30 ^V 0.60	>4.2	HF			616
^{Cr} 0.0175 ^U 0.9825	0.75			β-phase	700
^{Cr} 0.23-0.95 ^V 0.77-0.05				A2	572 #
^{Cr} 0.95-0.99 ^V 0.05-0.01				A2	572#
^{Cr} 0.9890 ^W 0.0210				A2	572 #
^{Cr} 0.84 ^W 0.16					572 #
Cr(0-13 ppm at.) ^{Zn}	T'c (-0.25)				598
Cs			0.011		494
^{Cs} 0.32 ⁰ 3 ^W	1.12			Hex., a=7.4, c=7.6	500
Cu					5 37 #
Cu				A1	572 #
Cu ₃ Ga			1.4		585
Cu ₃ Ga			1.4		533
CuLa	5.85				658
^{Cu} 0.03 ^{Mn} 0.97				A1	572 #
^{Cu} 0.05 ^{Mn} 0.95				Al	572 #
^{Cu} 0.09 ^{Mn} 0.91				Al	572#

(V	II	I-	3	4)	
---	---	----	----	---	----	--

Material	т _с (К)	H _o (oersteds) T	** n	Crystal Structure ∞	Ref.
^{Cu} 0.18 ^{Mn} 0.82				Al	572 #
^{Cu} 0.27 ^{Mn} 0.73				Al	572#
^{Cu} 0.27 ^{Mn} 0.73				Al	572#
^{Cu} 0.42 ^{Mn} 0.58				Al	572 #
^{Cu} 0.57 ^{Mn} 0.43				A1	57 2 #
^{Cu} 0.76 ^{Mn} 0.24				A1	572 #
^{Cu} 0.87 ^{Mn} 0.13					572 #
Cu ₃ N		1	. 38		558
^{Cu} 0.01 ^{Ni} 0.99				A1	572#
^{Cu} 0.10-0.55 ^{Ni} 0.90-0.45				Al	572 #
^{Cu} 0.18-0.78 ^{Ni} 0.82-0.22				Al	572#
^{Cu} 0.57 ^{Ni} 0.43					57 2 #
^{Cu} 0.58 ^{Ni} 0.42				A1	57 2 #
^{Cu} 0.63 ^{Ni} 0.37				A1	57 2 #
^{Cu} 0.69 ^{Ni} 0.31				A1	572 #
^{Cu} 0.73 ^{Ni} 0.27				A1	572#
^{Cu} 0.89 ^{Ni} 0.11				Al	572 #
^{Cu} 0.94 ^{Ni} 0.03 ^{Zn} 0.03				A1	57 2 #
^{Cu} 0.84 ^{Ni} 0.08 ^{Zn} 0.08				A1	572 #
Cu0.50 ^{Pt} 0.50				Rhomb.	572#
CuS ₂	1.48-1.53			C18, a=5.790	643
CuSSe	1.5-2.0			C18, a=5.923	643

(VIII-35)

Material	т _с (К)	H _o (oersteds)	T ** n	Crystal Structure ∞	Ref.
CuSe ₂	2.30-2.43			C18, a=6.123	643
CuSeTe	1.6-2.0			C18, a=6.302	643
CuTe2	<1.25 - 1.3			C18, a=6.600	6 43
CuTi				B11, a=3.108, c=5.887	522
CuY			0.33	B2	658
^{Cu} x ^{Zn} 1-x	0.5-0.845				624
Fe					57 2 #
^{Fe} 0.96-0.88 ^{Ge} 0.04-0.12				A2	572 #
^{Fe} 0.939-0.910 ^{Ir} 0.061-0.090					572#
^{Fe} 0.05-0.01 ^{Ir} 0.95-0.99					57 2 #
^{Fe} 0.01 ^{Ir} 0.985 ^Y 0.005					563
^{Fe} 0.01 ^{Ir} 0.99 ^Y 0.0005					563
^{Fe} 0.01 ^{La} 0.01 ^{Rh} 0.98	~0.75				563
^{Fe} 0.01 ^{La} 0.001 ^{Rh} 0.99	~0.75				563
^{Fe} 0.53 ^{Mn} 0.47				A1	572#
^{Fe} 0.55 ^{Mn} 0.45				A1	572#
^{Fe} 0.66 ^{Mn} 0.34				Al	572 #
^{Fe} 0.76 ^{Mn} 0.24				Al	5 7 2#
Fe0.84 ^{Mn} 0.16				Al	572#
^{Fe} 0.89 ^{Mn} 0.11				Al	57 2 #
^{Fe} 0.98-0.995 ^{Mn} 0.02-0.005					572 #
Fe0.60 ^{Mn} 0.25 ^{Ni} 0.15				Al	572#
^{Fe} 0.45 ^{Mn} 0.25 ^{Ni} 0.30				Al	572#

(VIII-36)

Material	Т _с (К)	H _o (oersteds) T _n **	Crystal Structure∞	Ref.
^{Fe} 0.30 ^{Mn} 0.25 ^{Ni} 0.45		and the second se	Al	572 #
^{Fe} 0.15 ^{Mn} 0.25 ^{Ni} 0.60			A1	572 #
^{Fe} 1-0.98 ^{Mo} 0-0.02				572#
^{Fe} 1-0.99 ^{Nb} 0-0.01				57 2 #
^{Fe} 1-0.96 ^{Ni} 0-0.04				572#
^{Fe} 0.72 ^{Ni} 0.28			Al	572#
^{Fe} 0.647 ^{Ni} 0.353				57 2 #
^{Fe} 0.63 ^{Ni} 0.37			Al	572 #
^{Fe} 0.60 ^{Ni} 0.40			Al	572 #
^{Fe} 0.55 ^{Ni} 0.45			Al	57 2 #
^{Fe} 0.52 ^{Ni} 0.48			Al	572 #
^{Fe} 0.45 ^{Ni} 0.55			Al	572#
^{Fe} 0.42 ^{Ni} 0.58			Al	57 [°] 2 #
^{Fe} 0.20 ^{Ni} 0.80			Al	572#
^{Fe} 0.16 ^{Ni} 0.84			Al	57 2 #
^{Fe} 0.05 ^{N1} 0.95			Al	572 #
^{Fe} 0.03 ^{Ni} 0.97			Al	572#
^{Fe} 0.01 ^{Ni} 0.99			Al	572#
^{Fe} 0.19 ^{Ni} 0.60 ^P		0.99		601
^{Fe} 0.26 ^{Ni} 0.52 ^P		0.99		601
^{Fe} 0.31 ^{Ni} 0.48 ^P		0.99		601
^{Fe} 0.9925 ^{Os} 0.0075				57 2#

(VIII-37)

Material	т _с (К)	H _o (oersteds) T _n **	Crystal Structure∞	Ref.
Fe ₂ P		0.97	C22	601
FeP		0.97	B31	601
^{Fe} 0.5 ^{PPd} 3		0.35		491
^{Fe} 0.0152-0 ^{Pd} 0.9848-1			A1	572 #
^{Fe} 0.9679 ^{Pt} 0.0321				572 #
^{Fe} 0.005 ^{Pt} 0.995			A1	572#
^{Fe} 0.9985 ^{Re} 0.0015				572#
^{Fe} 0.90 ^{Re} 0.10			A2	572 #
^{Fe} 0.01 ^{Rh} 0.99				572 #
^{Fe} 0.50 ^{Ru} 0.50			A3	572 #
^{Fe} 0.25 ^{Ru} 0.75			A3	572#
^{Fe} 0.946 ^{Sb} 0.054			A2	572#
^{Fe} 0.99-0.98 ^{Si} 0.01-0.02				572#
^{Fe} 0.96-0.75 ^{Si} 0.04-0.25			A2	572 #
^{Fe} 0.96-0.92 ^{Sn} 0.04-0.08			A2	572#
^{Fe} 0-0.015 ^{Ti} y				554#
^{Fe} 0.010 ^{Ti} 0.990			A3	572 #
^{Fe} 0.015 ^{Ti} 0.985			A3	572#
^{Fe} 0.08 ^{Ti} 0.92			A2	572 #
^{Fe} 0.50 ^{Ti} 0.50			B2	572#
^{Fe} 0.98-0.995 ^{Ti} 0.02-0.005				572 #
^{Fe} 0.01 ^{Ti} 0.99	2.3			477#

(VIII-38)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure 🛥	Ref.
^{Fe} 0.015 ^{T1} 0.985	2.8				477#
^{Fe} 0.08 ^{Ti} 0.92 ^{Fe} x ^{Ti} y Fe ₄ TiZr				A2	477# 522 572#
^{Fe} 0.044 ^V 0.956				A2	572 #
^{Fe} 0.138 ^V 0.862				A2	572 #
^{Fe} 0.08-0.67 ^V 0.92-0.33				A2	572 #
^{Fe} 0.22 ^V 0.78					572#
^{Fe} 0.26 ^V 0.74				A2	572 #
^{Fe} 0.31 ^V 0.69				A2	572 #
^{Fe} 0.67 ^V 0.33				A2	572 #
Ve0.90 ^V 0.10				A2	572#
^{Fe} 0.98-0.995 ^V 0.02-0.005					572 #
^{Fe} 1-0.99 ^W 0-0.01					572#
^{Fe} (0-~200ppm at.) ^{Zn}	t' _c (-~0.25)				598
Ga⊽	7.2				596⊽
Ga	6.2			R-phase	642
Ga	7.62	HF		Y-phase	642
Ga	1.078	58.9			537#,580
GaLa ₃	5.84				658
GaLu ₃			1.1		659
GaN (Black)	5.85			B4, Hex., a=3.182 c=5.173	433,558
GaN			~2.		528

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
GaN _x 0 _{1-x} (Brown)			1.38		433,558
Ga _x ^{Nb} 1-x		HF			583
GaP			1.68	B3, Cubic ZnS, a=5.436	558
GaPt			0.34	B20, a=4.91	486
Ga ₂ Pt	1.7-1.9				486
GaSb (120 kbar, 77°K, Annealed)	4.24	HF		A5	695
GaSb (Unannealed)	~5.9				695
GaSc 3			1.1		659
^{Ga} 0-0.05 ^{Sn} 1-0.95	3.703-3.938				576
Ga ₀₋₁ Sn ₁₋₀ (Quenched)	3.47-4.18				576
Ga ₀₋₁ Sn ₁₋₀ (Annealed)	2.6-3.85				576
GaV ₃	14.2-14.6				645
GaV2.1-3.5	6.3-14.45	HF		A15, a=4.813-4.829	646
GaV~3	14.45			A15, a=4.818	646
GaV3		HF			564
^{Ga} 0.25 ^V 0.75				A15	572 #
Ga5V2			2.1	Tet., a=8.9723, c=2.6895, Hg ₅ ^{Mn} 2 type	661
Ga_0.46 ^V _0.54			2.1	Hex., a=8.496, c=5.174	661
GaV3	14.47	HF		A15	684

(VIII	-40)
-------	------

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
GaV4.5	9.15	HF			684
^{Ga} 0.23-0.26 ^V 0.77-0.74 (Annealed)	14.3M				479
Ga _{0.23-0.26} V _{0.77-0.74} (Annealed)	14.5R				479
GaY ₃			1.1		659
^{Gd} 0-0.02 ^{La} 1-0.98					572 #
Gd Lal-x	<1.0-5.5				608
^{Gd} 0.008 ^{La} 0.992					61 3 #
Ge0.0036-0.0085 ^{Pd} 0.9964- 0.9915					572#
^{Gd} 0.005 ^{Pt} 0.995			A1		572 #
^{Ge} 0-0.06 ^Y 1-0.94					572#
^{Gd} 1-0.7 ^Y 0-0.3			4.2		663
Ge (~120 kbar pressure)	4.85-5.4				540
Ge7Ir3	0.87 (portion only)				491
^{Ge} 0.667 ^{La} 0.333				Tet., b.c.	572 #
Ge ₂ La	2.2				676#
GeMo 3	1.4				474
Ge ₃ N ₄			1.38		558
GeNb ₃ (quenched)	176. + some below 4.			A15	498
^{Ge} 0.25-0.29 ^{Nb} 0.75-0.71	6.			A15	498

(VIII-41)

Material	т _с (К)	H _o (oersteds)	T_**	Crystal Structure 🛥	Ref.
^{GE} 0.29 ^{Nb} 0.71	6.			Al5, a=5.149	498
GePd2			0.35		491
Ge1.5 ^{Pd}	Trace				491
Ge2Pd5			0.35		491
GeTe (Ag doped)(n=27x10 ²⁰)	0.21				481
GeTe (Ag doped)(n=64x10 ²⁰)	0.41				481
$Ge_{1-x}Te_x$ (n=9-16x10 ²⁰)	0.07-0.31			B1	482
Ge _{0.937} Te (n=14.3x10 ²⁰)	0.30				501
Ge _{0.950} Te (n=11.8x10 ²⁰)	0.24				501
Ge _{0.963} Te (n=9.3x10 ²⁰)	0.17				501
$Ge_{0.976}Te (n=8.5x10^{20})$	0.07				501
^{Ge} 1.006 ^{Te} (n≈7.5x10 ²⁰)			0.02		501
Ge ₃ Te ₄ (n=1.06x10 ²²)	1.55-1.80			Rhomb. a=13.11, ∝=17.93	470
$Ge_{3}Te_{4}$ (n=1.06x10 ²²)	1.80-1.55			Rhomb. a=13.11, ∝=17.93	622
^{Ge} 0.950 ^{Te}	0.17-0.27				623#
Ge ₂ Ti				C54, a=8.594,b=5.030, c=8.864	522
Ge ₃ Ti ₅				D8 ₈ , a=7.552,c=5.234	522
GeV3	6.0,6.1				474,645
^{Ge} 0.25 ^V 0.75				A15	572#
^{Ge} 0.618 ^Y 0.382				Tet., b.c.	572 #

(VIII-42)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
^{Ge} 1.62 ^Y	2.4				676#
H _{1.8} La (with free La)			1.1		488
^H 1.96 ^{La}			0.33		488
^H 2.03 ^{La}			1.1		488
^H 2.11 ^{La}			1.1		488
^H 2.15 ^{La}			1.1		488
^H 2.36 ^{La}			1.1		488
^H >0.41 ^{Nb}		HF	1.8	Ortho.	631
^H 0.36-0.47 ^{Pd} 0.64-0.53					572#
Hf					572#
Hf ₂ InN			1.1	Hex., H-Phase	632
^{NfN} 0.989	6.6			B1, a=4.50	559,558
^{Hf} 0.75 ^{Nb} 0.25 (Arc Cast)	>4.2	HF			616
Hf _{0.75} Nb _{0.25} (Cold rolled)	>4.2	HF			616
^{Hf} 0.30 ^{Ta} 0.70				A2	572#
^{Hf} 0.50 ^{Ti} 0.50				A3	572#
HfV ₂	9.57-8.9			C15	640
^{Hf} 0.50 ^{Zr} 0.50				A3	572#
Hg	4.154	410.88			579#∙
Нg	4.16	380			527#

(VIII-43)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure -	Ref.
Hg ₅ Mn ₂			2.1		661
^{Hg} 0.80 ^{Pt} 0.20			0.32		489
^{Hg} 0-0.012 ^{T1}	$T_{c} = (-0.13)$				591
In	3.407	282.66			579#
In (Particles)	3.396				604
In⊽	3.7				532⊽,596⊽,602
InLa ₃	9.83			^{L1} 2	658
InLa ₃ (0-35 kbar)	9.75-10.55				658
In _{1-x} ^{Mn} x	T _c (-0.28)				598
In _{1-x} ^{Mn} x ^{Pb}	T _c (-0.016)				598
InN	3.38?			B4, hex., ZnS, a=3.540, c=5.706	558
InNTi ₂			1.1	Hex., H-Phase	632
InNb ₃			2.25	Cubic, a=3.326	508
InNb ₃ (high pressure & temperature)	4-8			A15, a=5.303	508
^{In} 0.11 ⁰ 3 ^W	<1.25-2.8			Hex., a=7.407, c=7.545	644
In _{1-x} Pb _x					609
^{In} 0.17 ^{Pb} 0.83		HF			627
^{In} 0.98 ^{Pb} 0.02	3.45	310, HF			662
^{In} 0.96 ^{Pb} 0.04	3.68	348, HF			662
^{In} 0.94 ^{Pb} 0.06	3.90	385, HF			662
^{In} 0.913 ^{Pb} 0.087	4.2	HF			665
^{In} 0.30 ^{Pb} 0.70		HF			683

(VIII-44)

Material	т (к)	H (oersteds)	т **	Crystal Structure m	Ref
	1c(11)		'n		
In _{1-0.90} Pb _{0-0.10}	0.7-1.1	HF			480 #
InPd	0.7			B2	489
InRh			0.32	B2	489
InSb	2.1	1100			471
InSb (Metallic)	1.6-2.1			6-Sn structure; a=5.72, b=3.18	502
InSb (Quenched)	2.1			Tet., a=5.79, c=3.15	539
InSb (From 170 kbar in Liq. N ₂)	4.8			Like A5	681
InSb (30 ~170 kbar, 77 ~523 K)	1.6-5.1			Like A5	689
InSbSn _{0.02} -0.80 (Quenched)	4.0-4.4				539
InSbSn _{0.05-0.80} (Heat treated, quenched)	3.8-4.6				539
InSbSn _{0.05} -0.90 (Heat treated, quenched)	3.8-5.1				539
In _x Sn _{1-x} (Single Crystals)	T' _c (-0.10)				562
In _{1-x} ^{Sn} x					609
In _{0.04} Sn _{0.96}		HF			666
InTe			1.5	Tet., a=6.06, c=6.55 II Phase	696
$In_{1-x}Te_{x}$ (n=0.8-1.71x10 ²²)	1.0-3.45			B1	622
InTe (n=1.71 x 10 ²²)	3.45-3.20			Bl, a=6.18	622
In _{0.82} Te (n=0.83x10 ²²)	1.02-1.06			Bl, a=6.052	506,515
In _{0.83} Te (n=0.88x10 ²²)	1.09-1.15			B1, a=6.055	506,515

(VIII-45)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
In _{0.87} Te (n=1.09x10 ²²)	1.40-1.55			Bl, a=6.081	506,515
In _{0.91} Te (n=1.28x10 ²²)	1.87-2.04			Bl, a=6.110	506,515
In _{0.95} Te (n=1.47x10 ²²)	2.5-2.7			B1, a=6.14	506,515
InTe (n=1.71x10 ²²)	3.2-3.45			B1, a=6.16	506
InTe (n=1.71x10 ²²)	3.20-3.45			B1, a=6.177	470,515
InTe			1.6	InTe (I)	507
In _{1.015} Te (n=1.67x10 ²²)	3.25-3.51			B1, a=6.178	515
In _{1.05} Te (n=1.58x10 ²²)	2.95-3.41			B1, a=6.181	515
In _{1.10} Te (n=1.45x10 ²²)	2.55-2.80			B1, a=6.182	515
In _{1.15} Te (n=1.34x10 ²²)	2.35-2.60			B1, a=6.179	515
In ₂ Te ₃			1.0		515
In ₃ Te ₄ (n=0.47x10 ²²)	1.15-1.25			Rhomb., a=13.75, ∝=17.80	470,515,622
In1.000 ^{Te} 1.002 ^{II}	3.5-3.7	HF		B1, a=6.154	507
^{In} 0.62 ^{T1} 0.38	2.760	HF			664
^{In} 0.78-0.69 ^{T1} 0.22-0.31	3.18-3.32			Tet.	692
^{In} 0.69-0.62 ^{T1} 0.31-0.38	2.98-3.3			Cubic, f.c.	692
^{In} 0-0.1126 ^{Zr} 1-0.8874				A3	572#
Ir					572 #
Ir⊽			0.3		503⊽,615⊽
Ir2La	0.48++			C15, a=7.686	469
Ir ₃ La	2.46, 2.32			dio ₂	469,658

++ Powder transition

(VIII-46)

Material	т _с (К)	H _o (oersteds)	T ** n	Crystal Structure 🛥	Ref.
Ir ₃ La ₇	2.24			D10 ₂ , a=10.235, c=6.473	469
Ir5La	2.13				469
IrLu			0.32	B2, a=3.330	469
IrLu ₂	0.84 (portion only)				469
IrLu ₃			0.32		469
Ir ₂ Lu	2.47			C15, a=7.443	469
Ir3Lu7	2.89			C15, a=7.434	469
Ir ₃ Lu	0.78 (portion only)				469
¹ r0.25 ^{Mo} 0.75				A15	572#
Ir0.37 ^{Nb} 0.63	2.32			D8 _b	557#
Ir _{0.37} Nb _{0.63}				D8 _b	572#
IrNb ₃			1.7	A15, a=5.1356	492
^{Ir} 0.02 ^{Nb} 3 ^{Rh} 0.98	2.43			A15, a=5.131	492
Ir _{0.05} Nb ₃ Rh _{0.95}	2.38			A15, a=5.132	492
Ir _{0.10} Nb ₃ Rh _{0.90}			1.7	A15, a=5.1329	492
Ir _{0.30} Nb ₃ Rh _{0.70}			1.7	A15, a=5.1340	492
Ir _{0.50} Nb ₃ Rh _{0.50}			1.7	A15, a=5.1349	492
Ir _{0.70} Nb ₃ Rh _{0.30}			1.7	A15, a=5.1349	492
Ir _{0.90} Nb3 ^{Rh} 0.10			1.7	A15, a=5.1345	492
IrOs					574,699
$Ir_{0.65-1}os_{0.35-0}$				Al	572#

(VII	I-47)
------	-------

Material	Т _с (К)	H _o (oersteds)	T **	Crystal Structure •	Ref.
Ir _{0.7} 0s _{0.3} Rh	· · · · · · · · · · · · · · · · · · ·				574
Ir _{0.5} 0sRh _{0.5}					574
IrOsRh					699
IrP			0.35		491
Ir ₂ P			0.35		491
IrPd					574,699
IrPt					574,699
^{Ir} 0.10-0 ^{Pt} 0.90-1				Al	572 #
IrReRh		·			699
Ir _{0.8} ^{Re} 0.2 ^{Rh}					574
IrRh					574,699
IrRu					574,699
IrS			0.32		552
IrS _{2.6}			0.32		552
IrSb			0.35		491
Ir ₂ Sb			0.35		491
IrSc			0.32	B2, a=3.205	469
Ir _{0.32} Sc _{0.68}			0.32		469
IrSc ₃			0.32		469
Ir ₂ Sc	2.07			C15, a=7.347	469
Ir _{2.5} Sc	2.46			C15, a=7.343	469
Ir _{2.5} Sc	0.42 ⁺ (portion only)				469

+ Beginning of transition of powdered sample

(VIII-48)

Material	Т _с (К)	H _o (oersteds)	т_**	Crystal Structure∞	Ref.
Ir _{2.5} Sc	2.13++				469
Ir ₃ Sc			0.32		469
IrSe ₂			0.32	Ortho-rhombic, a=20.94, b=5.93, c=3.74	552
IrSe _{2.9}			0.32		552
IrSn ₂	0.65-0.78			C1, a=6.34	486
Ir _{0.5} Te _{0.5}	3.0+++				552
IrTe ₂			0.32	C6, a=3.930, c=5.393	552
IrTe ₃	1.18			C2, a=6.413	552
IrTh	0.37+			B _f , a=3.894, b=11.13, c=4.266	469
Ir ₃ Th	4.71				469
Ir ₅ Th	3.93			D2 _d , a=5.315, c=4.288	469
^{Ir} 0.69-0.67 Th 0.31-0.33				Cubic	572 #
IrV ₃			0.35	A1 5	498
Ir _{0.33} V _{2.67}	1.39			A15	498
^{Ir} 0.28 ^W 0.72	4.49			d8 _b	557 #
^{Ir} 0.28 ^W 0.72				d8 _b	572#
IrY ₄			0.32		469
^{Ir} 0.01 ^Y 0.99	0.35 (portion only)				469
^{Ir} 0.0175 ^Y 0.9825	0.49 ⁺⁺⁺ (portion only)				469

++ Powder transition

+++ Beginning of transition

(VIII-49)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
^{Ir} 0.65 ^Y 0.35	1.38	· · · · · · · · · · · · · · · · · · ·		C15, a=7.525	469
^{Ir} 0.69 ^Y 0.31	1.98			C15, a=7.501	469
^{Ir} 0.69 ^Y 0.31	1.44++			C15, a=7.501	469
^{Ir} 0.70 ^Y 0.30	2.16 ⁺⁺			C15, a=7.501-7.512	469
Ir ₂ Y	1.09			C15, a=7.518	469
Ir ₂ Y	2.18, 0.88			C15, a=7.500-7.520	469
Ir ₂ Y ₃	1.61				469
Ir _{3 or 4} Y	3.50				469
К			0.011		494,618
^K 0.27-0.31 ^O 3 ^W	0.50			Hex., a=7.4, c=7.6	500
^K 0.40-0.57 ⁰ 3 ^W	1.5			Tet., a=12.3, c=3.8	500
6-La	6.06			Al, a=5.29 (95% Al)	536
La [▽] (<1000A)			1.2		607 [▽]
La [∀] (1000-18,000A)	5.00-6.74				607 [♥] ,572
La	4.9				676#
LaMg2	1.05			C15	658
LaMg			0.33		658
^{LaN} 0.98			1.38	B1, a=4.44	558,559
LaN	1.35	HF			668
LaP			1.68	B1, a=6.013	558
LaPd ₃			0.32	^{L1} 2, a=4.233	469

++ Powder transition

(VIII-50)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
La _{1-x} ^{Pr} x	Range				608
LaPt ₂	0.46			C15, a=7.776	469
La _{0.28} ^{Pt} 0.72	0.54			C15, a=7.722	469
LaPt ₅			0.32	D2 _d , a=5.386, c=4.376	469
LaRh ₂			0.32	C15, a=7.646	469
LaRh ₃	2.60				469
LaRh ₅	1.62				469
La7 ^{Rh} 3	2.58			D10 ₂ , a=10.145, c=6.434	469
La0.001-0.01 ^{Rh} 0.999-0.99	1.6				563
La7Rh3	2.58			D10 ₂	658
LaS			1.25		617
La ₃ S ₄	6.5	HF		Cubic, a=8.73, Th ₃ P ₄ type	617
La ₂ S ₃			1.25	Cubic, b.c. Ce ₂ S type, a=8.723	558,617
La ₃ S ₄ + additional compositions	6.5	HF		D7 ₃ , a=8.73	534
LaSe			1.25		534,617
La2Se3			1.25		534,617
La ₃ Se ₄ + additional compositions	8.6	HF		D7 ₃ , a=9.05	534
La ₃ Se ₄	8.6	HF		Cubic, a=9.05, Th ₃ P ₄ type	617
La _{0.333} Si _{0.667}				Tet., b.c.	572#
LaSi ₂	2.3				676#
La _{0.15} Y _{0.85}				A3	572#

(VIII-51)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
La _{0.35} Y _{0.65}				A3	572 #
La _{0.48} Y _{0.52}				Hex., Sm type	572#
^{La} 0.60 ^Y 0.40				Hex., La type	572 #
^{La} 0.75 ^Y 0.25				Hex., La type	572 #
^{La} 0.85 ^Y 0.15				Hex., La type	57 2#
La _{1-x} Yb _x	Range				608
LaZn	1.04			B2	658
Lu			0.03		660
LuRh			0.32	B2, a=3.334	469
LuRh ₂			0.32	C15, a=7.404	469
^{Lu} 0.275 ^{Rh} 0.725	1.27			C15, a=7.355	469
LuRh ₅	0.49				469
Lu2 ^{Rh}			0.32		469
Lu ₃ Rh			0.32		469
^{Mg} 24 ^Y 5			1.30	A12	557
МgY			0.33	B2	658
Mn (~)				A12	572#
Mn (A)				A13	572#
Mn (γ)				۲- form	572#
Mn (j)				J - form	572#
^{Mn} 0.63 ^{Mo} 0.37			1.30	D8 _b	557
^{Mn} 0.73 ^{Mo} 0.27			1.30	D8 _b	557

(V	I	I	I -	52)
---	---	---	---	-----	----	---

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
^{Mn} 0.75 ^{Ni} 0.25				Al	572 #
^{Mn} 0.60 ^{Ni} 0.40				Al	572#
^{Mn} 0.40 ^{Ni} 0.60				A1	572 #
^{Mn} 0.30 ^{Ni} 0.70				A1	572#
^{Mn} 0.25 ^{Ni} 0.75				Cubic	572#
^{Mn} 0.25 ^{Ni} 0.75				A1	572#
^{Mn} 0.25 ^{Ni} 0.75				A1	572 #
^{Mn} 0.20 ^{Ni} 0.80				A1	572 #
MnP			0.01	B31	601
^{Mn} 0.005 ^{Pt} 0.995				A1	572#
^{Mn} x ^{Sn} 1-x	T' _c (≈0)				598
^{Mn} .0017017 ^{Ti} .9983983				A3	572 #
^{Mn} .020 ^{Ti} .980				A3	572 #
^{Mn} 0.14 ^{Ti} 0.86				A2	572#
Mn0.0028 ^{Ti} 0.9972 (quenched)	2.6R				523
^{Mn} 0.0028-0.04 ^{T1} 0.9972-0.96 (quenched from 1000°C)			1.1		523
^{Mn} 0.0028-0.04 ^{Ti} 0.9972-0.96 (quenched from 690°C)	~3.0R			pure∝+ pure β	523
^{Mn} 0.01 ^{Ti} 0.99	1.2				490
Mn 0.01-0.14 ^{Ti} 0.99-0.86 (guenched from 1000°C)	<1.4				523

(VIII-53)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure 👓	Ref.
^{Mn} 0.02 ^{Ti} 0.98	1.7				477
Mn0.02 ^{Ti} 0.98 (quenched)	1.9				523
^{Mn} 0-0.0065 ^{Ti} y			0.06		490
^{Mn} x ^{Ti} y	0.2-0.4				490
Mn _x Ti _y					522
^{Mn} 0.002 ^{Ti} 0.499 ^{Zr} 0.499				A3	572 #
^{Mn} (0-14 ppm at.) ^{Zn}	T' _c (-0.46)				598
Mo (Isotopes)	0.886-0.912				566
Мо	0.915-0.918	95			543#,572#
Мо⊽	~5			A2 + extra lines	503⊽,615⊽
^{Mo} 0-1.00 ^{Nb} 1.00-0				A2	572 #
^{Mo} 0-1.00 ^{Nb} 1.00-0				A2	572#
^{Mo} 0.15 ^{Nb} 0.85				A2	572#
^{Mo} 0.62 ^{Os} 0.38	5.60			D8 _b	557#,572#
Mo ₃ P	5.31			DOe	601
МоР			1.01	^B b	601
^{Mo} 0.60 ^{Pd} 0.40					572#
^{Mo} 0.50 ^{Pd} 0.50					572#
^{Mo} 0.40 ^{Pd} 0.60					572#
^{Mo} 0.57 ^{Re} 0.43	14.0				592

(VIII	-54)
-------	------

Material	Т _с (К)	H _o (oersteds)	T **	Crystal Structure ∞	Ref.
^{Mo} 0.42 ^{Re} 0.58	6.35			D8b	557#
^{Mo} 0.23 ^{Re} 0.77	9.25			A12	557 #
^{Mo} 0.52 ^{Re} 0.48 (Cold worked)	11.1	HF			555
^{Mo} 0.52 ^{Re} 0.48 (Cold worked)	11.1	HF		· ·	555
Mo _{0.52} Re _{0.48} (Annealed 1250°C, slow cooled)	11.1	HF			555
^{Mo} 0.52 ^{Re} 0.48 (Annealed 1250°C + slow cooled)	11.1	HF			555
Mo _{0.52} Re _{0.48} (Annealed 1250°C + quenched)	11.1	HF			555
Mo _{0.52} Re _{0.48} (Annealed 2000°C + slow cooled)	11.1	HF			555
^{Mo} 0.60 ±0.05 ^{Re} 0.395 (Cold worked)	10.6	HF			555
<pre>Mo 0.60 ±0.05^{Re 0.395 (Annealed 1 hr. 1100°C, slow cooled)}</pre>	10.6	HF			555
^{Mo} 0.60 ±0.05 ^{Re} 0.395 (Annealed 19 hr. 1100°C, slow cooled)	10.6	HF			555
^{Mo} 1-0.50 ^{Re} 0-0.50				A2	572#
^{Mo} 0.42 ^{Re} 0.58				D8 _b	572#
^{Mo} 0.23 ^{Re} 0.77				A12	572 #
^{Mo} 0.61 ^{Ru} 0.39	7.18			D8 _b	557#

(VIII-55)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
^{Mo} 0.95 ^{Ru} 0.05				A2	572#
^{Mo} 0.70 ^{Ru} 0.30				A2	572#
^{Mo} 0.61 ^{Ru} 0.39				D8 _b	572#
^{Mo} 0.333 ^S 0.667					572#
Mo ₃ Si	1.3				474
Mo ₃ Sn			1.0	Cubic, a=3.165	509
Mo ₃ Sn (high pressure and temperature)			, 0.35	Al5, a=5.094	509
^{Mo} 0.50 ^{Tc} 0.50				A2	572 1 /
^{Mo} 0.16 ^{Ti} 0.84	4.18	<985, HF			584
^{Mo} 0.913 ^{Ti} 0.087	2.95	HF			600
^{Mo} 0.16 ^{Ti} 0.84	4.18	HF			616
^{Mo} 0.16 ^{Ti} 0.84	4.246	HF			565#
^{Mo} 0.086 ^{Ti} 0.914				A2	572#
^{Mo} 0.075 ^{Ti} 0.925				A2	572#
^{Mo} 0.065 ^{Ti} 0.935				A2	572 #
^{Mo} 0.063 ^{Ti} 0.937				A2	572#
^{Mo} 0.025 ^{Ti} 0.975	1.8			A3	477#,572#
^{Mo} 0.04 ^{T1} 0.96	2.0			b.c.c., w + h.c.p.	477
Mo _x Ti _y					522
^{Mo} 0.296 ^U 0.704				A2	572 #
(VIII-56)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
^{Mo} 0.253 ^U 0.747			<u></u>	A2	572 #
^{Mo} 0.216 ^U 0.784				A2	572 #
^{Mo} 0.118 ^U 0.882				A2	572 #
^{Mo} 0.137 ^U 0.863				A2	572#
Mo ₂ Zr	4.75-4.27			C15	640
^N 0.456 ^{Nb} 0.544					572#
^N 0.476 ^{Nb} 0.524					572#
NNb (Whiskers)	10-14.5	HF			582
^N x ^{Nb} 1-x	Range				588
NNb (Diffusion wires)	16.10	HF			553
^N 0.988 ^{Nb}	14.9			B1; a=4.39	559,558
^N 0.952 ^{Nb}	15.3			B1	559,558
^N 0.920 ^{Nb}	14.7			B1	559,558
^N 0.900 ^{Nb}	15.2			B1, a=4.38	559,558
^N 0.868 ^{Nb}	14.8			B1	559,558
^N 0.824 ^{Nb}	14.4			B1	559,558
^N 0.795 ^{Nb}	12.9			Cubic & Tet.	559,558
^N 0.752 ^{Nb}	12.6			Cubic & Tet.	559,558
^N 0.700 ^{Nb}	11.3			Cubic & Tet.	559,558
NNbx				B1	483

(VIII-57)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure •	Ref.
NNb [∇] (sputtered)	6-9			B1	505 [▽]
NNb _x O _y	13.5-17.0	HF		B1	483
^N 100-42 w/o ^{Nb} 0-58 w/o ^{Ti}	15-16.8				588
^N 100-75 w/o ^{Nb} 0-25 w/o ^{Zr}	12.5-16.35				588
NNb _{1-0.75} ^{Zr} 0-0.25 (wires)		HF			553
NNb _x Zr _{1-x}	9.8-13.8	HF		B1, a=4.38-4.56	652
^N 0.93 ^{Nb} 0.85 ^{Zr} 0.15	13.8	HF		B1, a=4.42	652
N Nb Zrz		HF			517
^N 0.98 ^{Pr}			1.38	Bl, a=5.16	559,558
^N 0.97 ^{Sc}			1.38	Bl, a=4.44	559,558
NTa	12-14 (Extrapolated)			B1	691
NTa^{∇} (sputtered)	4.84			B1	505⊽
NTa_2^{∇} (sputtered)			1.2	Hex.	505 [⊽]
^N 0.987 ^{Ti}	5.8			B1, a=4.20	559,558
^N 0.99-0.60 ^{Ti}	<1.17-4.35			B1, a=4.243-4.238	694
^N 0.8-0.6 ^T i			1.17		694
^N 0.99 ^{Ti}	4.35				694
N _{0.84} Ti	1.2				694
^N 0.898 ^V	5.9			B1, a=4.13	559,558
^N 0.99-0.785 ^V	2-8			B1, a=4.132-4.084	694

(VIII-58)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
^N 0.99 ^V	7.9		· .		694
^N 0.9 ^V	4.8				694
^N 0.82 ^V	2.9				694
^N 0.97 ^W			1.38	B1	559,558
NY			1.4	B1, a=4.895	694
^N 0.984 ^{Zr}	9.5			B1	559,558
^N 0.971 ^{Zr}	8.8			B1	559,558
^N 0.965 ^{Zr}	6.3	,		B1	559,558
^N 0.958 ^{Zr}	5.6			B1	559,558
^N 0.932 ^{Zr}	3.0			B1	559,558
^N 0.906 ^{Zr}			1.38	B1	559,558
NZr	9.8			B1, a=4.56	652
^{Na} 0.3 ⁰ 3 ^W			0.3	Perovskite	575
Na0.403W			0.3	Perovskite	575
^{Na} 0.8 ⁰ 3 ^W			0.3	Perovskite	575
^{Na} 0.28-0.35 ⁰ 3 ^W	0.56			Tet., a=12.1, c=3.75	625
^{Na} 0.3 ⁰ 3 ^W			0.3	E21	674
^{Na} 0.4 ⁰ 3 ^W			0.3	E21	674
^{Na} 0.8 ⁰ 3 ^W			0.3	E21	674
Na _{0.2} 03 ^W	0.55			Tet., a=12.1,c=3.7	500

(VIII-59)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure .	Ref.
^{Na} 0.28-0.35 ⁰ 3 ^W	0.56			Tet., a=12.1, c=3.75	472
^{Na} 0.10 ⁰ 3 ^W			0.040	Tet. II, a=5.2,c=3.9	500
Na _x 0 ₃ W			0.011	Perovskite, a=3.8	500
NB		HF			538,679#
NB	9.22 + 9.25*	HF			544,505, 525#, 531#
Nb [∇]		HF			518 [∇]
Nb⊽ (2000-20000Å)	6.5-9.4				529 [▽]
Nb [∇] (420-6000Å)	6.70-9.11				505 [▽]
NB [▽]	<bulk< td=""><td></td><td></td><td></td><td>503[▽]</td></bulk<>				503 [▽]
Nb	9.26				620#,572#
NЪO	1.25				481
Nb ₃ Os			1.7	A15, a=5.1359	492
^{Nb} 0.60 ^{Os} 0.40	1.89			D8 _b	557 # ,572#
^{Nb} 3 ^{Os} 0.02 ^{Rh} 0.98	2.42			Al5, a=5.134	492
^{Nb} 3 ^{Os} 0.05 ^{Rh} 0.95	2.39			A15, a=5.132	492
^{Nb} 3 ^{Os} 0.10 ^{Rh} 0.90	2.30			A15, a=5.1302	492
^{Nb} 3 ^{Os} 0.30 ^{Rh} 0.70			1.7	A15, a=5.1315	492
^{Nb} 3 ^{Os} 0.50 ^{Rh} 0.50			1.7	A15, a=5.1334	492
^{Nb} 3 ^{Os} 0.70 ^{Rh} 0.30			1.7	Al5, a=5.1345	492
^{Nb} 3 ^{Os} 0.90 ^{Rh} 0.10			1.7	Al5, a=5.1354	492
* Residual Resistivi	ty Ratio = ~500				

(VIII-60)

Material	Т _с (К)	H _o (oersteds) T _n **	Crystal Structure 👓	Ref.
^{Nb} 0.60 ^{Pd} 4.40	1.60		D8 _f & Cubic	557#
^{Nb} 0.60 ^{Pd} 0.40			d8 _b	572#
^{Nb} 3 ^{Pd} 0.02 ^{Rh} 0.98	2.50		Al5, a=5.133	492
^{Nb} 3 ^{Pd} 0.05 ^{Rh} 0.95	2.49		A15, a=5.134	492
^{Nb} 3 ^{Pd} 0.10 ^{Rh} 0.90	2.55		A15, a=5.1345	492
Nb3Pt	10.9		A15, a=5.1547	492
^{Nb} 0.62 ^{Pt} 0.38	4.21		D8 _b	557#,572#
Nb3 ^{Pt} 0.02 ^{Rh} 0.98	2.52		A15, a=5.132	492
Nb3 ^{Pt} 0.05 ^{Rh} 0.95	2.53		A15, a=5.133	492
^{Nb} 3 ^{Pt} 0.10 ^{Rh} 0.90	2.8		A15, a=5.1336	492
^{Nb} 3 ^{Pt} 0.30 ^{Rh} 0.70	5.1		A15, a=5.1395	492
Nb3 ^{Pt} 0.50 ^{Rh} 0.50	6.25		A15, a=5.1450	492
Nb3 ^{Pt} 0.70 ^{Rh} 0.30	7.4		A15, a=5.1487	492
Nb3Pt0.90Rh0.10	7.9		A15, a=5.1534	492
Nb3 ^{Pt} 0.95 ^{Rh} 0.05	8.9		A15, a=5.160	492
Nb3Pt0.98 ^{Rh} 0.02	9.6		A15, a=5.157	492
Nb _{0 38} ^{Re} 0 62	2.43		A1 2	557#
Nb _{0 29} ^{Re} 0 71	5.60		A1 2	557 <i>‡</i>
^{Nb} 0.20 ^{Re} 0.80	8.83		A12	557#

(VIII-61)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
^{Nb} 0.38 ^{Re} 0.62				A12	572#
^{Nb} 0.29 ^{Re} 0.71				A12	572 #
^{Nb} 0.20 ^{Re} 0.80				A12	572 #
Nb ₃ Rh	2.64			Al5, a=5.1317	492
^{Nb} 0.60 ^{Rh} 0.40	4.21			D8 _b + ?	557 <i>‡</i>
^{Nb} 0.60 ^{Rh} 0.40				D8 _b	572 #
^{Nb} 3 ^{Rh} 0.90 ^{Ru} 0.10	2.44			Al5, a=5.1346	492
^{Nb} 3 ^{Rh} 0.95 ^{Ru} 0.05	2.42			A15, a=5.135	492
^{Nb} 3 ^{Rh} 0.98 ^{Ru} 0.02	2.42			A15, a=5.132	492
^{Nb} 0.90-0.62 ^{Ru} 0.10-0.38				A2	572 #
^{Nb} 0.33 ^S 0.67					572 #
NbS ₂	6.1-6.3			Hex., 2 layer NbSe ₂ type	675
NbS2	5.0-5.5			Hex., 3 layer type	675
NbSe2	5.15-5.62			Hex., NbS ₂ type, a=3.44, c=12.54	636
NbSe1.9-2.25	>4.2				636
NbSe ₂	7.0			Hex.	647
^{Nb} 1.05 ^{Se} 2	2.2				647
^{Nb} 1-1.05 ^{Se} 2	2.2-7.0			Hex., NbS ₂ type, a=3.45, c=12.54	647

(VIII-62)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
^{Nb} ~0.96-1.06 ^{Se} 2	5.9-6.3			Hex., a=3.44, c=25.24	647
^{Nb} 1.05 ^{Se} 2	2.2	HF			654
^{Nb} 0.8 ^{Sn} 0.2 (950°C @ 72 hrs., 1550°C @ 3 hrs.)	7.5			Al5, a=5.284	593
^{Nb} 0.8 ^{Sn} 0.2 (1550°C - 4 hrs.)	5.5			Al5, a=5.283	593
^{Nb} 0.85 ^{Sn} 0.15 (950°C - 72 hrs., 1550°C - 3 hrs.)	4.8			Al5, a=5.282	593
Nb ₃ Sn (Various heat treatments)	6.2-17.5			Al5, a=5.282-5.289	593
Nb ₃ Sn	18.0			Al5, a=5.289	473,572#
Nb ₃ Sn (quenched)	4-16.7			A15	498
Nb ₃ Sn (sintered)		HF			485,564#
^{Nb} 0.5-0.83 ^{Sn} 0.5-0.17 (as cast)	17.6M				479
^{Nb} 0.5-0.83 ^{Sn} 0.5-0.17 (annealed)	1 7. 95M				479
NbSnTa ₂	10.8			Al5, a=5.280	473
Nb ₂ SnTa	16.4			A15, a=5.289	473
Nb2.5 ^{SnTa} 0.5	17.6			A15	473
^{Nb} 2.75 ^{SnTa} 0.25	17.8			A15	473
NbSnTaV	6.2			A15, a=5.175	473

Material	т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
Nb2 ^{SnTa} 0.5 ^V 0.5	12.2	<u> </u>		A15	473
NbSnV ₂	5.5			A15, a=5.115	473
Nb2 ^{SnV}	9.8		•	A15, a=5.171	473
^{Nb} 2.5 ^{SnV} 0.5	14.2			A15	473
^{Nb} 0.10 ^{Ta} 0.90		HF			478
^{Nb} 0.5 ^{Ta} 0.5	6.25				544
NbTe2			, 1.0	Like CdCl ₂	675
^{Nb} 0.6 ^{Ti} 0.4	9.8				592
Nb32 w10 ^{Ti} 68 w10		HF			682
^{Nb} 0.025 ^{Ti} 0.975	1.5			Hex.	499
^{Nb} 0.04 ^{Ti} 0.96				A3	477#,554# 572#
Nb _x Ti _y					522
^{Nb} 0.259 ^U 0.741				A2	572#
^{Nb} 0.88 ^V 0.12	5.7			A2	572#
^{Nb} 0.75 ^{Zr} 0.25		HF			597
^{Nb} 0.66 ^{Zr} 0.33		HF			597
^{Nb} 0.40 ^{Zr} 0.60				A2	572 #
^{Nb} 0.50 ^{Zr} 0.50				A2	572 ∦
^{Nb} 0.75 ^{Zr} 0.25				A2	572#

(V	II	I-	6	4)
---	---	----	----	---	----

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
^{Nb} 0.75 ^{Zr} 0.25				A2	572 ∦
^{Nb} 0.90 ^{Zr} 0.10				A2	572 #
^{Nb} 0.15-0.90 ^{Zr} 0.85-0.10		HF			686
^{Nb} 0.75 ^{Zr} 0.25		HF			690
Nd2 ^S 3			1.68	Cubic, b.c. Ce ₂ S ₃ type, a=8.699	558
Ni			0.35		270,572#
Ni ₃ P			1.01	DOe	601
Ni ₂ P			1.01	C22	601
^{Ni} 0.80-0 ^{Pd} 0.20-1				Al	572#
Ni0.005 ^{Pt} 0.995				Al	572#
^{Ni} 0.96-0.92 ^{Sb} 0.04-0.08				A1	572 #
^{Ni} 0.96-0.92 ^{Si} 0.04-0.08				Al	572#
^{Ni} 0-0.08 ^V 1-0.92				A2	572#
^{N1} 0.60 ^V 0.40				Al	572#
^{N1} 0.65 ^V 0.35				A1	572 #
^{Ni} 0.72 ^V 0.28				A1	572 #
^{Ni} 0.82 ^V 0.18				A1	572#
^{Ni} 0.91 ^V 0.09				Al	572#
Ni _{0,91-0,74} $Zn_{0,09-0,26}$				Al	572#

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
^{Ni} (0-~400 ppm at.) ^{Zn}	T'c (-~0.1)				598
Np			0.41		495
⁰ 3 ^{Rb} 0.27-0.29 ^W	1.98			Hex., a=7.4, c=7.6	500
0_{3} SrTi (n = 10 ²⁰)	0.43	HF			5 94 #
0 ₃ SrTi (n = 10 ²⁰)	0.33	HF			594#
0_{3} SrTi (n = 3.3x10 ¹⁹)	~0.28				610
0_{3} SrTi (n = 2.5x10 ²⁰)	~0.25				610
0_3 SrTi (n = 2.6x10 ¹⁹)		0.4			610
0 ₃ SrTi (n=1.7 - 12.0x10 ¹⁹)	0.12-0.37	HF			611
0 ₃ SrTi (n=10 ¹⁸ -10 ²¹)	0.05-0.47				621
0_{3} SrTi (n = ~10 ²⁰)	0.47				621
⁰ 3 ^{Sr} 0.08 ^W	2.0-4.0			Hex., a=7.414,c=7.569	644
OTi	0.58				581
⁰ 3 ^{T1} 0.30 ^W	2.00-2.14			Hex., a=7.344,c=7.482	644
o ₃ w			0.3		575
°2 ^w			0.3		575
ow ₃ [♥]		(0.012		615 [▽]
ow ₃ [▽]	3.35, 1.1			A15	615 [⊽]
°2 ^w			0.3		674

(VIII-66)

Material	т _с (К)	H _o (oersteds)	т ** n	Crystal Structure∞	Ref.
o ₃ w			0.3		674
Os (Pressure to 30 katm)	0.65				569
0s					572 #
^{Os} 0.30 ^{Re} 0.70				A3	572 #
^{Os} 0.70 ^{Re} 0.30				A3	572#
^{Os} 0.33-1 ^{Ru} 0.67-1				A3	572 / #
^{0s} 0.67 Th 0.33				Cubic	572#
PPd _{3.0-3.2}	<0.35-0.7			D0 ₁₁	491
^{PPd} 3.0				DO ₁₁ , a=5.18, b=6.00, c=7.46	491
^P 2 ^{Pd}				Monoclinic, a=6.20, b=5.857, c=5.874, P=111.80°	491
P ₃ Pd ₇ (high temperature)	1.00			Rhombohedral, $a=7.28$, $\propto = 110.12^{\circ}$	491
P ₃ Pd ₇ (low temperature)	0.70			Complex	491
P ₇ Pt ₂₀			0.35		491
PRh ₂	1.3			Cl, a=5.516	491
PRu			0.35		491
PRu2			0.35		491
PV			1.01	B31	601
PW			1.01	B31	601

(VIII-67)

Material	т _с (К)	H _o (oersteds)	T_** n	Crystal Structure∞	Ref.
PW3	2.26			DO _e , a=9.890,c=4.808	601
Pa	1.4			Tet., a=3.925,c=3.238	504
Pa	1.4			Tet., a=3.925,c=3.238	614
РЪ		HF, Type I			586
Pb [∇] (With Hg, Sn, In, Tl, Al, Zn, Cd, Cu, Fe films)					598 [⊽]
РЪ⊽					602 [∇]
РЪ	7.16	800			653
РЪ		HF			666
Pb [∇]		HF			672 [⊽]
РЪ	7.19				476 <i>‡</i>
PbRh ₂			0.32		489
PbSb _{1 w10} (quenched)		HF			589
PbSb _{1 w/o} (annealed)		HF			589
PbSb _{2.8 w10} (quenched)		HF			589
PbSb _{2.8 w1o} (annealed)		HF			589
PbTe (+<0.1 w/o Pb)	5.3-5.34	HF			669
PbTe (+0.1 w/o Pb)	5.19				669
PbTe (+0.1 w/o T1)	5.24-5.27				669
PbT12.9 w/o		HF			586
PbT14.87 w/o		HF			586
PbT1 10.1 w/o		HF			586

Material	Т _с (К)	H _o (oersteds)	T _n **	Crystal Structure∞	Ref.
PbT119.9 w/o		HF			586
PbT1 29.9 w/o		HF			586
PbT1 1.06 w/o		Туре І			586
PbT10.27	6.43	756, HF			653#
PbT10.17	6.73	796, HF			653#
PbT10.12	6.88	849, HF			653#
PbT10.075	6.98	880, HF			653#
PbT10.04	7.06	864, HF			653#
^{Pb} 1-0.26 ^{T1} 0-0.74	7.20-3.68	HF			649
Pb1-0 ^{T1} 0-1	7.26-2.38				83
^{Pb} 0.97 ^{T1} 0.03		HF			666
^{Pb} 0.99 ^{T1} 0.01		HF			666
Pd					637,572#
^{Pd} 0-1.00 ^{Rh} 1.00-0				A1	572 #
PdS			0.35		491
Pd _{2.2} S (quenched)	1.63			Cubic, a=8.93	491
Pd2.8 ^S			0.35		491
Pd ₄ S			0.32	Tet., a=5.1147, c=5.5903	552
PdSb ₂			0.35		491

(VIII-69)

Material	Т _с (К)	H _o (oersteds)	T_** n	Crystal Structure ∞	Ref.
Pd _{0.63} Sb _{0.37} (quenched)			0.35		491
PdSc ₂			0.32	E9 ₃ , a=12.442	469
PdSe			0.32	B34, a=6.727, c=6.912	552
Pd ₄ Se	0.42			Tet., a=5.2324, c=5.6470	552
Pd _{6 or 7} Se	0.66			Similar to Pd ₄ Te compound	552
Pd ₁₇ Se ₁₅			0.32	Cubic, a=10.606	552
PdSn	0.41			B31, a=3.87, b=6.13, c=6.32	491
Pd ₂ Sn	0.41			C37, a=8.12, b=5.65, c=4.31	491
Pd ₃ Sn ₂	0.47-0.64			^{B8} 2, a=4.399, c=5.666	491
PdTe	3.85			^{B8} 1, a=4.152, c=5.670	552 #
PdTe _{1.02}	2.56			B8 ₁ , a=4.144, c=5.661	552
PdTe1.04	2.11			B8 ₁ , a=4.143, c=5.659	552#
PdTe1.06	2.11			B8 ₁ , a=4.138, c=5.652	552
PdTe1.08	1.88			B8 ₁ , a=4.135, c=5.647	552
PdTe2	1.69			C6, a=4.036, c=5.132	552
PdTe2.1	1.89			C6, a=4.037, c=5.128	552
PdTe2.3	1.85			C6, a=4.037, c=5.127	552
Pd _{1.1} Te	4.07			^{B8} 1, a.4.152, c=5.671	552

(VIII-70)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
^{Pd} 0.71 ^{Te} 0.29	0.40			X-ray evidence of Pd ₃ Te, Pd _{2.5} Te and Pd ₂ Te	552
Pd ₃ Te	0.76			X-ray evidence of ^{Pd} 3 ^{Te, Pd} 2.5 ^{Te} and Pd ₂ Te	552
Pd ₄ Te			0.32	Cubic, a=12.674	552
^{Pd} 0.50 ^{Te} 0.50				Hex.	57 2 #
^{Pd} 0.49 ^{Te} 0.51				Hex.	572 #
^{Pd} 0.99 Th 0.01				A1	572#
^{Pd} 0.98 Th 0.02				A1	572#
^{Pd} 0.95 Th 0.05				A1	572 #
^{Pd} 0.90 Th 0.10				Al	572#
PdTh ₂	0.85			C16, a=7.33, c=5.93	469
Pd5Th			0.32		469
Pd ₃ Y			0.32	Ll ₂ , a=4.076	469
Pr ₂ S ₃			1.68	Cubic, b.c. Ce ₂ S ₃ type, a=8.611	558
Pt					637
Pt	<0.001 (Extrapolation)				699,572#
Pt [♥]			0.3		503⊽,615 [°]
Pt _{0.87} S _{0.13}				Bl7-type + Pt	552

(VIII-71)

Material	Т _с (К)	H _o (oersteds)	T_** n	Crystal Structure ∞	Ref.
PtSc			0.32	B2, a=3.268	469
PtSc ₄			0.32		469
Pt ₃ Sc			0.32	Ll ₂ , a=3.958	469
^{Pt} 0.87 ^{Se} 0.13				Monoclinic PtSe _{0.80} + Pt	552
PtSn	0.37			B8 ₁ , a=4.11, c=5.44	486
PtSn ₂			0.34	Cl, a=6.42	486
PtTe	0.59			Ortho-rhombic, a=6.6144, b=5.6360, c=11.865	552
PtTh	0.44			B _f , a=3.900, b=11.09, c=4.454	469
Pt ₃ Th ₇	0.98			D10 ₂ , a=10.126, c=6.346	469
Pt ₂ Th			0.32		469
Pt ₃ Th			0.32		469
Pt ₄ Th			0.32		469
Pt ₅ Th	3.13				469
^{Pt} 0.02 ^U 0.98	0.87			°-phase	698
^{Pt} 0.02 ^U 0.98 ^(9.5 kbar)			1.2		698
^{Ft} 0.0175 ^U 0.9825	0.85			°-phase	700
PtV3	2.87-3.20				645
^{PtV} 2.5	1.36			A15	498
PtV ₃	2.83			A15	498

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
PtV3.5	1.26			A15	498
Pt0.91 ^W 0.09				A1	572#
Pt0.42 ^Y 0.58	0.76*, 0.33 ⁺⁺⁺				469
Pt0.77 ^Y 0.23	1.80 (portion only)				469
^{Pt} 0.80 ^Y 0.20	1.96 (portion only)				469
Pt0.77-0.80 ^Y 0.23-0.20	1.6-2.0 (portion only)				469
PtY			0.32		469
Pt ₂ Y ₃	0.90				469
Pt _{2.2} Y	1.70			C15, a=7.576	469
Pt ₃ Y			0.32	Ll ₂ , a=4.075	469
Pt ₃ Y ₇	0.82			D10 ₂ , a=9.864, c=6.299	469
Pt ₅ Y			0.32		469
Pu			0.50		495
Rb			0.011		494,618
Re [▽]	1.9-~7				503 ⁷ ,615 ⁷
Re					572#
Re	1.70				680
* Probably associated	with Y3Pt2				

.

÷

+++ Beginning of transition

(VIII-73)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure ∞	Ref.
Re _x Ti _y					522
^{Re} 0.76 ^V 0.24	4.52			D8 _b	557
^{Re} 0.92 ^V 0.08	6.8			A3	572 #
^{Re} 0.50 ^W 0.50	5.12			D8 _b	557#
^{Re} 0-0.25 ^W 1-0.75				A2	572 #
^{Re} 0.50 ^W 0.50				D8 _b	572 #
^{Re} 0.88 ^W 0.12				A3	572 #
Rh					637,572#
Rh [∀]			0.3		615 [▽]
Rh	<0.001 (Extrapolation)				699
Rh [▽]			0.3		503⊽
RhSc ₄			0.32		469
^{Rh} 0.24 ^{Sc} 0.76	0.92 (portion only)				469
^{Rh} 0.25 ^{Sc} 0.75	0.88 (portion only)				469
^{Rh} 0.32 ^{Sc} 0.68			0.32		469
Rh ₃ Sc			0.32	Ll ₂ , a=3.898	469
^{Rh} 0.67 ^{Te} 0.33	0.49				552
RhTh	0.36			^B f, a=3.866, b=11.24, c=4.22	469

٩.

(VIII-74)

Material	т _с (К)	H _o (oersteds)	T ** n	Crystal Structure ∞	Ref.
Rh ₂ Th			0.32		469
Rh ₃ Th			0.32	L12	469
Rh ₅ Th	1.07				469
^{Rh} x ^{Ti} y					522
^{Rh} 0.02 ^U 0.98	0.96				698
Rh ₃ Y ₇			0.32	D10 ₂	658
RhY			0.32	B2, a=3.410	469
RhY ₂			0.32		469
RhY ₃	0.65				469
Rh ₂ Y			0.32	C15, a=7.489	469
Rh ₂ Y ₃	1.48				469
Rh ₃ Y	1.07			C15, a=7.424	469
Rh ₃ Y ₇			0.32	D10 ₂ , a=9.793, c=6.196	469
Rh ₅ Y	0.56				469
^{Rh} 0-0.08 ^{Zr} 1-0.92					572#
RhZr ₂	10.8			C16, a=6.4937, c=5.6058	648
^{Rh} 0.10-0.45 ^{Zr} 0.90-0.55	~10.8			Two phase	648
RhZr			1.7		648
^{Rh} 0.001-0.01 ^{Zr}	2.1-4.3			∝'-phase	648

.

(VIII-75)

Material	Т _с (К)	H _o (oersteds)	T_** n	Crystal Structure∞	Ref.
^{Rh} 0.02-0.04 ^{Zr} 0.098-0.096	2.7-3.9			Hex., a=5.055, c=3.103, w-phase	648
^{Rh} 0.05-0.09 ^{Zr} 0.95-0.91	5.7-6.3			Cubic, a=3.55, B-phase	648
Rh0.005-0.07 ^{Zr} (Annealed)	7.8-10.4				648
^{Rh} 0.001-0.003 ^{Zr} (Annealed)			1.7		648
^{Rh} 0.005 ^{Zr} (Annealed)	5.8				648
Ru	0.48			5	69,572 #
RuS ₂			0.32	C2, a=5.609	552
RuSb			0.35	•	491
Ru ₂ Sb			0.35		491
RuSe ₂			0.32	C2, a=5.934	552
RuTe2			0.32	C2, a=6.391	552
^{Ru} 0.67 Th 0.33				Cubic	572 #
Ru _x Ti _y					522
^{Ru} 0.45 ^V 0.55	4.0			B2	572#
^{Ru} 0.35 ^V 0.65				B2	572#
^{Ru} 0.25 ^V 0.75				A2	572#
^{Ru} 0.15 ^V 0.85				A2	572#

(VIII-76)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure ∞	Ref.
^S 3 Sm 2	Paramagnetic			Cubic, b.c. Ce ₂ S type, a=8.465	558
S ₂ Ta			1.0	Cd (OH) ₂ type	675
Sb*	2.6-2.7	HF			520
SbSn	1.30-1.42, 1.42-2.37			Bl or distorted Bl	470
SbSn	1.42-1.30, 2.37-1.42			B1, Two phase	622
^{Sb} 0-0.004 ^{T1}	∆ ^T c (-0.02 +0.015)				591
^{Sb} 0.01-0.03 ^V 0.99-0.97				A2	572 #
^{Sb} 0.01 ^V 0.99	3.76			A2	514#
^{Sb} 0.02 ^V 0.98	3.29			A2	514#
^{Sb} 0.03 ^V 0.97	2.63			A2	514#
^{Sb} 0-0.0185 ^{Zr} 1-0.9815				A3	572 #
Sc			0.03		660,572#
^{Sc} 0.90 ^{Ti} 0.10				A3	572#
^{Sc} 0.80 ^{Zr} 0.20					572#
^{Sc} 0.50 ^{Zr} 0.50					572#
^{Sc} 0.25 ^{Zr} 0.75					572#
Sc _{0.10} Zr _{0.90}					572#

* Formed at 120 kbar, pressure removed at 77°K

(VIII-77)

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure ∞	Ref.
^{Sc} 0.05 ^{Zr} 0.95					5 7 2#
Se (~130 kbar)	6.75 + 6.95			Se II (unknown)	547
Se ₂ V			1.0	Like Cd(OH) ₂	675
Si ("120-130 kbar)	7.1				540
Si ₂ Th	3.2			X- form	474
Si ₂ Th	2.4			β- form	474
Si2 ^{Ti}				C54, a=8.252, b=4.783 c=8.540	, 522
Si ₃ Ti ₅				D8 ₈ , a=7.475, c=5.162	522
siv ₃	17.1				474
^{Si} 0.1-0.38 ^V 0.99-0.52 (as cast)	16.7M				479
^{Si} 0.1-0.38 ^V 0.99-0.62 (annealed)	16.95M				479
SiV ₃	16.38-16.95			A15	645,626
^{Si} 0.25 ^V 0.75				A15	57 2#
Si ₂ W ₃	2.8				474
^{Si} 0.655 ^Y 0.345				Tet., b.c.	572 #
Si _{1.90} Y					676#
Sn	3.722	305.50			579#,580#
Sn [∇]	4.1				596 [⊽] ,602 [⊽]

(VIII-78)

Material	т _с (К)	H _o (oersteds)	T ** n	Crystal Structure∞	Ref.
Sn (quenched)	3.7			Tet., a=5.819, c=3.175 β-form	, 539
Sn [∇]					516 [♥] ,532 [♥]
SnTa ₃	6.4			A15, a=5.278	473
^{Sn} 0.174-0.104 ^{Ta} 0.826-0.896	6.5 - <4.2			A15, a=5.279-5.278	581
SnTa ₃ (high state of order)	8.35	HF		A15, a=5.280	581
SnTa ₃ (low state of order)	6.2	HF		A15, a=5.277	581
^{Sn} 0.26-0.10 ^{Ta} 0.74-0.90	7.2-<4.2				581
SnTaV ₂	2.8			A15, a=5.041	473
SnTa ₂ V	3.7			A15, a=5.174	473
$Sn_{x}Te_{y}$ (n=10.5-20x10 ²⁰)	0.07-0.22			B1	482
SnTe $(n=10.5 \times 10^{20} \text{ to} n=20 \times 10^{20})$		HF			687
^{Sn} 0.02-0.06 ^V 0.98-0.94				A2	572 #
^{Sn} 0.02 ^V 0.98	2.87			A2	514#
^{Sn} 0.04 ^V 0.96	1.86			A2	514#
^{Sn} 0.057 ^V 0.943	~1.6			A2	514#
SnV ₃	3.8			A15, a=4.96	473
^{Sn} 0-0.0906 ^{Zr} 1-0.9094				A3	572#
Та	4.48				505,572#

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure 👓	Ref.
Ta		HF			519
Та					525
Ta [∇] (1100-<5000Å)	3.25-4.30				505 [⊽] ,529 [⊽]
Ta [▽]	<bulk< td=""><td></td><td></td><td></td><td>503[⊽]</td></bulk<>				503 [⊽]
^{Ta} 0.5 ^{Nb} 0.5		HF			627
TaTe ₂			1.0	Like CdCl ₂	675
^{Ta} 0.025 ^{Ti} 0.975	1.3			Hex.	499
^{Ta} 0.05 ^{Ti} 0.95	2.9			Hex.	499
Ta _x Ti					522
^{Ta} 0.05 ^V 0.95	4.30			A2	58 7 #,572#
^{Ta} 0.25 ^V 0.75	2.80			A2, a=3.111	572 #
^{Ta} 0.50 ^V 0.50	2.35			A2, a=3.182	572 #
^{Ta} 0.75 ^V 0.25	2.65			A2, a=3.254	572 #
^{Ta} 0.84-0 ^W 0.16-1				A2	572 #
Тс	7.92			A3, a=2.740, c=4.399	633
Тс	7.79				566
^{Tc} 0.05 ^W 0.95			~0.8	Cubic, a=3.1617	524
^{Tc} 0.10 ^W 0.90	1.25			Cubic, a=3.1553	524
^{Tc} 0.20 ^W 0.80	3.85			Cubic, a=3.147	524

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
Tc0.30 ^W 0.70	5.75	HF		Cubic, a=3.134	524
^{Tc} 0.40 ^W 0.60	7.18	HF		Cubic, a=3.126	524
^{Tc} 0.50 ^W 0.50	7.52	HF		\varkappa + trace σ , a=3.117	524
^{Tc} 0.60 ^W 0.40	7.88	HF		Trace≪+ σ,≪-a=3.117 σ-a=9.520, c=5.003	, 524
Te (~56,000 atm.)	~3.3	HF			510,667
Te ₂ V			1.0	Like Cd(OH) ₂	675
Th	1.4				504,614
Ti	0.14				523
Ti	0.42	56			490#
Ti					477#
Ti [∇]	1.3M				619 [⊽] ,572# 554#
Ti		HF			688
TiU ₂				C32, a=4.82, c=2.84	522
^{T1} 0.70 ^V 0.30	6.14			Cubic	514#
^{Ti} 0.96 ^V 0.04	2.7				477#
^{Ti} 0.975 ^V 0.025	1.4			Hex.	499
TiV					522
^{Ti} 0.775 ^V 0.225	4.7	<1100, HF			584
$T_{0,75}^{V_{0,25}}$	5.3	<1940, HF			584

(VIII-81)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
^{Ti} 0.615 ^V 0.385	7.07	HF			600
^{Ti} 0.516 ^V 0.484	7.20	HF			600
^{Ti} 0.415 ^V 0.585	7.49	HF			600
^{Ti} 0.775 ^V 0.225 ^(arc cast)		HF			616
Ti _{0.75} V _{0.25} (arc cast)		HF			616
Ti _{0.75} V _{0.25} (cold rolled)		HF			616
^{Ti} 0.96 ^V 0.04					554#
^{Ti} 0.96 ^V 0.04			A3		572 #
^{Ti} 0.80-0 ^V 0.20-1.00			A2		572 #
^{Ti} 0.12 ^V 0.88		HF			688
^{Ti} 0.09 ^V 0.91		HF			688
^{Ti} 0.06 ^V 0.94		HF			688
^{Ti} 0.03 ^V 0.97		HF			688
^{Ti} 0.75 ^{Zr} 0.25			A3		572 #
^{Ti} 0.25 ^{Zr} 0.75			A3		572#
Ti _{0.5} Zr _{0.5} (annealed)	1.23				477
Ti _{0.5} Zr _{0.5} (quenched)	2.0				477
Tl	2.38	176.5			527#
Tl (35 kbar)	1.95		A3		641#

(VIII-82)

Material	Т _с (К)	H _o (oersteds)	T_**	Crystal Structure∞	Ref.
Tl (35 kbar)	1.45			Al	641 <i>‡</i>
Tl (25-48 kbar)	1.38-1.5			A1	641
υ	0.21-0.25			A20	698
υ	1.8				614,629#
u ²³⁸			0.17		701
υ	1.8			Cubic	504,702, 703
v	5.31*	HF			548
v					525
v	5.37				572
v	4.59				572#
v		~1500, HF			548
^V 0.26 ^{Zr} 0.74	≈5.9	HF			678
w⊽	~3				615 [⊽]
w					572 #
₩ [▽] (~2000A)	1.7-4.1	HF			671 [▽]
W	0.012	1.070			493, 612 <i>#</i>
W	0.005-0.011	~1			526
W [∇] (various films)	0.4-3.35		0.012	Al5 (when supercon- ductive)	503 [⊽]

*Residual Resistivity Ratio = 27

Material	Т _с (К)	H _o (oersteds)	T ** n	Crystal Structure 🛥	Ref.
w [∇] (~20-310Å)	4.1M				541 [▽]
Y					570,572# 676#
Y			0.03		660
YZn			0.33	B2	658
Zr (Isotope Study)	0.49				570
Zr	0.65			Hex., w=Zr, a=5.03, c=3.12	549
Zr (annealed)	0.6		1	w-Zr converted to ≪-Zr	549
Zr	0.70 + 0.73			≈-Zr	549,572#
Zr (annealed)	~0.46				551

Table 3. High Magnetic Field Superconductive Materials and Some of Their Properties

(NOTE: All fields are quoted in kilo-oersteds. T_{obs} indicates temperature of measurement in degrees Kelvin. See text for discussion of field nomenclature. H_p is paramagnetic critical field).

Material	Tc	H _{c1}	H _{c2}	H _{c3}	Tobs	Ref.
A12 ^{CMo} 3	9.8-10.2	0.091	156	(H _p =181)	1.2	571
^{Ba} x ⁰ 3 ^{Sr} 1-x ^{Ti}	<0.1 - 0.55	0.0039M	ſ			611
Be [∇] Bi II, Bi III ^{Bi} 0.01 ^{In} 0.99	~6.5	(High fi (H _{c3} /H _c	≫11 eld data given va	a given) s.t)		550 [⊽] 437 666
^{Bi} 0.02 ^{In} 0.98		(H _{c3} /H _c	given vs	s.t)		666
Bi0.05-0.40 ^{Pb} 0.95-0.	60 ^{7.35-8.4}	0.122	~30		4.2	677
^{Bi} 7.5 w/o ^{Pb} 92.5 w/o			2.32			685
CK (Excess K)	0.55		0.160	(нГс)		494
CK (Excess K)	0.55		0.730	(н с)		494
C ₈ K (Excess K)	0.55		0.160 0.730	(H⊥C) (H∥C)	0.32 0.32	494 494
C ₈ K (Stoichiometric)	0.39 0.39		0.025 0.250	(H⊥C) (H C)	0.32 0.32	494 494
^C 0.44 ^{Mo} 0.56	12.5-13.5	0.087	98.5	(H _p =238)	1.2	571
C _x N _{1-x} Nb	8.5-17.3	≤0.1	~110		4.2	582
CNb (Whiskers)	7.5-10.5					582
СИР	8-10	0.12	16.9	(H _p =130)	4.2	571
^{CNb} 0.4 ^{Ta} 0.6	10-13.6	0.19	14.1	$(H_{p}=214)$	1.2	571
CRe0.01W	2.6					603
CRe0.02W	3.7					603

(IX-2)

Material	Tc	Hcl	Hc2	^H c3	Tobs	Ref.
CRe0.04 ^W	4.3					603
CRe0.06 ^W	5.0					603
CTa	9-11.4	0.22	4.6 (H	I_=185)	1.2	571
Cax ⁰ 3 ^{Sr} 1-x ^{Ti}	<0.1-0.55	0.00215	,			611
^{Cd} 0.02 ^{Hg} 0.98		(H _{c3} /H _c	given vs.	t)		666
Cr _{0.10} Ti _{0.30} V _{0.60}	5.6	0.071	84.4		(0)	584
Cr _{0.10} Ti _{0.30} V _{0.60}	>4.2		>27		4.2	616
Ga (ð)	7.62		>3			642
Ga _x ^{Nb} 1-x			>28		4.2	583
GaSb (Annealed)	4.24		2.64		3.5	695
GaV2.1-3.5	6.3-14.45		230-300 (Linear) Extrap.)		646
GaV3			(Critical	. currents	given)	564
GaV3	14.17		96		4.2	684
GaV ₃	14.17		208 (Ext	rap.)	(0)	684
GaV _{4.5} (Wires)	9.15		94		4.2	684
GaV _{4.5}	9.15		121 (Ext	rap.)	(0)	684
H_>0.41 ^{Nb}						631
Hf0.75 ^{Nb} 0.25 (Arc cast)	>4.2		>26		4.2	616
Hf _{0.75^{Nb}0.25 (Cold rolled)}	>4.2		>28		4.2	616
In _{0.17} Pb _{0.83}			2.8	5.5	4.2	627
In _{0.98} Pb _{0.02}	3.45	0.1		0.12	2.76	662

Material	т _с	H _{c1}	H _{c2}	H _{c3}	^T obs	Ref.
In _{0.96} ^{Pb} 0.04	3.68	0.1	0.12	0.25	2.94	662
In _{0.94} Pb _{0.06}	3.90	0.095	0.18	0.35	3.12	662
^{In} 0.913 ^{Pb} 0.087	4.2	~0.17	0.55	2.65		665
^{In} 0.30 ^{Pb} 0.70			3.9		4.2	683
In1-0.90 ^{Pb} 0-0.1	0.7-1.1	(H _{c2,3} ra	easured butio form	ut quoted)	in	480
^{In} 0.04 ^{Sn} 0.96			(H _{c3} /H _c	given vs	.t)	666
^{In} 0.02 ^{Sn} 0.98			(H _{c3} /H _c	given vs	.t)	666
In _{1.000} Te _{1.002} II	3.5-3.7		1.2		(0)	50 7
In _{0.62} Ti _{0.38}	2.760					664
LaN	1.35	0.45			0.76	668
La3S4	6.5	≈0.15	>25			617
La3S4	6.5	0.15	>25		1.3	534
La3Se4	8.6	0.2	>25		1.25	534
La ₃ Se ₄	8.6	≈0.2	>25			617
Mo _{0.52} Re _{0.48} (Cold worked)	11.1		21.3	33	4.2	555
Mo _{0.52} Re _{0.48} (Cold worked)	11.1		27.9	42.8	1.3	555
Mo _{0.52} Re _{0.48} (Annealed & Slow cooled)	11.1		14.4	22.2	4.2	555
Mo _{0.52} Re _{0.48} (Annealed 1250°C slow cooled)	11.1		17.8		1.3	555
Mo _{0.52} Re _{0.48} (Annealed 1250°C,q	11.1 uenched)		14.6	23.8	4.2	555

(IX-4)

Material	T _c	H _{c1}	H _{c2}	H _{c3}	Tobs	Ref.
Mo _{0.52} Re _{0.48} (Annealed 1250°C Quenched)	11.1		19.2		1.3	555
<pre>Mo 0.52^{Re 0.48 (Annealed 2000°C slow cooled)}</pre>	11.1		14.8	27.3	4.2	555
^{Mo} 0.52 ^{Re} 0.48 (Annealed 2000°C slow cooled)	11.1		18.3	37.5	1.3	555
^{Mo} 0.60 <u>+</u> .05 ^{Re} 0.395 (Cold worked)	10.6		19	28.3	4.2	555
^{Mo} 0.60 <u>+</u> .05 ^{Re} 0.395 (Cold worked)	10.6		25.5	37.3	1.3	555
<pre>Mo 0.60 ± .05^{Re 0.395 (Annealed 1 hr., 1100°C, slow cooled}</pre>	10.6)		14.5	19.6	4.2	555
^{Mo} 0.60 <u>+</u> .05 ^{Re} 0.395 (Annealed 1 hr., 1100°C, slow cooled	10.6)		19	26.2	1.3	555
Mo0.60 <u>+</u> .05 ^{Re} 0.395 (Annealed 19 hr. 1100°C, slow cooled	10.6)		14.3		4.2	555
^{Mo} 0.60 <u>+</u> .05 ^{Re} 0.395 (Annealed 19 hr., 1100°C, slow cooled	10.6)		20.1		1.3	555
^{Mo} 0.16 ^{Ti} 0.84	4.18	0.028	98.7		(0)	584
^{Mo} 0.913 ^{Ti} 0.087	2.95	0.060	~15		4.2	600
^{Mo} 0.16 ^{Ti} 0.84	4.18		38		3.0	616
^{Mo} 0.16 ^{Ti} 0.84	4.246		36		3.0	565

(IX-5

Material	т _с	H _{c1}	Hc2	H _{c3}	T _{obs}	Ref.
NNb (Whiskers)	10-14.5					582
NNb (Wires)	16.10		132		4.2	553
NNb (Wires)	16.10		153 <u>+</u> 3		(0)	553
NNb (Wires)	16.10		95		8	553
NNb (Wires)	16.10		53		12	553
NNb _x O _y	13.5 - 17.0	(H _{c2} -some	samples	<38 kgaus	s)	483
$\sum_{x}^{Nb} y^{Zr} z$			>130		4.2	517
NNb _{1-0.75} ^{Zr} 0-0.25 (Wires)			>100 -12 0		4.2	553
NNb _x Zr _{1-x}	9.8 - 13.8		4 -> 130			652
^N 0.93 ^{Nb} 0.85 ^{Zr} 0.15	13.8		>130			652
Nb	9.15		1.710		4.2	531, 679
	9.15		2.020		1.4	531
Nb (unstrained)	1.1-1.8		3.40	6.0-9.1	4.2	538
Nb (strained)	1.25-1.92		3.44	6.0-8.7	4.2	538
Nb (cold drawn wire)	2.48		4.10	≈10	4.2	538
Nb [▽]			>25		4.2	518 [∇]
^{Nb} 1.05 ^{Se} 2	2.2					654
Nb ₃ Sn		(Critical	currents	given)	564
Nb ₃ Sn (sintered)		(Criti fiel	cal curre ds quotec	ent densit 1)	У	485
^{Nb} 0.10 ^{Ta} 0.90		0.084	0.154		4.195	478
Nb 32 w10 ^{Ti} 68 w10						682

(IX-6)

Material	т _с	H _{c1}	Hc2	H _{c3}	Tobs	Ref.
^{Nb} 0.75 ^{Zr} 0.25						597
Nb0.66 ^{Zr} 0.33						597
^{Nb} 0.15-0.90 ^{Zr} 0.85	-0.10		44-123 (M at~N	b.,)	(0)	686
^{Nb} 0.75 ^{Zr} 0.25				0.4		690
0 ₃ SrTi	0.43	0.0049	0.504	Calcula-	(0)	594
⁰ 3 ^{SrTi}	0.43	0.0044	0.300	tou	0.15	594
0 ₃ SrTi	0.43	0.0036	0.300		0.25	594
0 ₃ SrTi	0.43	0.0027	0.200		0.32	594
0 ₃ SrTi	0.43	0.0013	0.070		0.39	594
⁰ 3 ^{SrTi}	0.33	0.00195	0.420	Calcula- ted	(0)	594
0 ₃ SrTi	0.33	0.00135	0.180		0.13	594
0 ₃ SrTi	0.33	0.0015	0.220		0.14	594
0 ₃ SrTi	0.33	0.0012	0.180		0.19	594
0 ₃ SrTi	0.33	0.001	0.160		0.246	594
0 ₃ SrTi	0.33	0.00075	0.100		0.273	594
0 ₃ SrTi	0.33	0.00045	0.004		0.315	611
0 ₃ SrTi	0.12-0.37	0.0027, 0.00275				611
РЪ				0.591	4.2	586
РЪ		(H _{c3} /H _c	given vs.	t)		666
Pb [▽]						672 [▽]
PbSb ₁ w/o (Quenched)			>1.5		4.2	589
(Quenched)						

(IX-	7)
------	----

Material	Tc	H _{c1}	Hc2	H _{c3}	Tobs	Ref.
PbSb ₁ w1o (Annealed)			>0.7		4.2	589
PbSb 2.8 w/o (Quenched)			>2.3		4.2	589
PbSb _{2.8 w} /o (Annealed)			>0.7		4.2	589
PbTe(+<0.1 w/o Pb)	5.3 . 5.34	~0.85			2.465	669
PbTe(+<0.1 w/o Pb)	5.3-5.34	~0.8			3.79	669
PbTe(+<0.1 w/o Pb)	5.3-5.34	~0.6			4.2	669
PbTe(+<0.1 w/o Pb)	5.3-5.34	~0.91			2.15	669
PbT1 1.06 w/o				0.906	4.2	586
PbT12.9 w/o				1.415	4.2	586
PbT14.87 w/o			1.048	1.844	4.2	586
PbT1 10.1 w/o			1.691	2.974	4.2	586
PbT1 19.9 w/o			2.580	4.404	4.2	586
PbT1 29.9 w/o			2.927	4.751	4.2	586
PbT10.27	6.43					653
PbT10.17	6.73	(4.5 (Extrap.)			653
PbT10.12	6.88					653
PbT10.075	6.98					653
PbT10.04	7.06					653
^{Pb} 1-0.26 ^{T1} 0-0.74	7.20-3.68		2-6.96		(0)	649
Pb _{0.97} T1 _{0.03} (H _{c3} /H _c given vs.t)						666
Pb _{0.99} T1 _{0.01} (H _{c3} /H _c given vs.t)						666

(IX-8)

Material	т _с	H _{c1}	Hc2	H _{c3}	T _{obs}	Ref.
Sb*	2.6-2.7		4.4		1.55	520
SnTa ₃ (High order	c) 8.35		72.5		4.2	581
SnTa3(Low order)) 6.2		15.5			581
SnTe(n = 10.5 x)	10 ²⁰)	0.00045			0.012	687
SnTe(n = 10.5 x)	10 ²⁰)		0.0052		0.015	687
SnTe(n = 12.5 x)	10 ²⁰)	0.00043	0.005		0.068	687
SnTe(n = 16.5 x)	10 ²⁰)	0.00236			0.020	687
SnTe(n = 16.5 x)	10 ²⁰)		0.052		0.063	687
$SnTe(n = 20 \times 10)$) ²⁰)	0.00168			0.043	687
$SnTe(n = 20 \times 10)$) ²⁰)		0.0775	j.	0.079	687
Ta (99.95%)		0.090	0.375		3.72	519
		0.275	1.175		2.66	519
		0.325	1.425		2.27	519
		0.425	1.850		1.30	519
^{Ta} 0.5 ^{Nb} 0.5			3.55		4.2	627
Tc _{0.30} ^W 0.70	5.75		7.5		4.2	524
^{Tc} 0.40 ^W 0.60	7.18		19.0		4.2	524
^{Tc} 0.50 ^W 0.50	7.52		29.0		4.2	524
^{Tc} 0.60 ^W 0.40	7.88		43.5		4.2	524
Те	~3.3	0.25 <u>+</u> 0.0	05		(0)	667
Ti				2.7	4.2	688
^{Ti} 0.775 ^V 0.225	4.7	0.024	172 ($H_{p} = 86.5)$	(0)	584
^{Ti} 0.75 ^V 0.25	5.3	0.029	199 ($H_{p} = 97.5)$	(0)	584
^{Ti} 0.615 ^V 0.385	7.07	0.050	~34	·	4.2	600

* Formed at 120 kbar, pressure removed at 77°K.
| Material | Tc | H _{c1} | H _{c2} | H _{c3} | Tobs | Ref. |
|---|---------|-----------------|-----------------|-----------------|------|------------------|
| ^{Ti} 0.516 ^V 0.484 | 7.20 | 0.062 | ~28 | | 4.2 | 600 |
| ^{Ti} 0.415 ^V 0.585 | 7.49 | 0.078 | ~25 | | 4.2 | 600 |
| ^{Ti} 0.775 ^V 0.225
(Arc cast) | | | ≈22 | | 4.2 | 616 |
| ^{Ti} 0.75 ^V 0.25
(Arc cast) | | | ≈34 | | 4.2 | 616 |
| ^{Ti} 0.75 ^V 0.25
(Cold rolled) | | | ≈36 | | 4.2 | 616 |
| ^{Ti} 0.12 ^V 0.88 | | | 17.3 | 28.1 | 4.2 | 688 |
| ^{Ti} 0.09 ^V 0.91 | | | 14.3 | 16.4 | 4.2 | 688 |
| ^{Ti} 0.06 ^V 0.94 | | | 8.2 | 12.7 | 4.2 | 688 |
| ^{Ti} 0.03 ^V 0.97 | | | 3.8 | 6.8 | 4.2 | 688 |
| v | | 0.8 | 3.3 | | 1.6 | 548 |
| v | 5.31 | ~0.80 | ~3.40 | | 1.79 | 548 |
| | 5.31 | ~0.75 | ~3.15 | | 2. | 548 |
| | 5.31 | ~0.45 | ~2.20 | | 3. | 548 |
| | 5.31 | ~0.30 | ~1.20 | | 4. | 548 |
| V _{0.26} Zr _{0.74} | ≈5.9 | 0.165 | | | 3.5 | 678 |
| V _{0.26} ^{Zr} 0.74 | ≈5.9 | 0.185 | | | 3.04 | 678 |
| V. 26 ^{Zr} 0 7/ | ≈5.9 | 0.227 | | | 1.78 | 678 |
| V _{0.26} ^{Zr} 0.74 | ≈5.9 | 0.238 | | | 1.05 | 678 |
| w▽ | 1.7-4.1 | | >34 | | 1 | 671 [▽] |

(X-1)

BIBLIOGRAPHY

- 467. Lange, F.K., J. Exp. Theor. Phys. 42, 42 (1962); Soviet Phys. JETP 15, 29 (1962).
- 468. Taylor, A., Kagle, B.J., and Doyle, N.J., J. Less Common Metals 5, 26 (1963).
- 469. Geballe, T.H., Matthias, B.T., Compton, V.B., Corenzwit, E., Hull, G.W. Jr., and Longinotti, L.D., Phys. Rev. <u>137</u>, A119-27 (1965).
- 470. Geller, S., and Hull, G.W. Jr., Phys. Rev. Letters <u>13</u>, 127-9 (1964).
- 471. Geller, S., McWhan, D.B., and Hull, G.W. Jr., Science 140, 62-3 (1963).
- 472. Raub, C.J., Sweedler, A.R., Jensen, M.A., Broadston, S., and Matthias, B.T., Phys. Rev. Letters 13, 746-7 (1964).
- 473. Cody, G.D., Hanak, J.J., McConville, G.T., and Rosi, F.D., RCA Rev. <u>25</u>, 338-41 (1964).
- 474. Hulm, J.K., and Hardy, G., Third Internat. Conf. on Low Temp. Phys. and Chem., Houston, Texas, Dec. 1953 (MIT Library).
- 475. Caswell, H.L., Solid State Comm. 2, 323-4 (1964).
- 476. Neighbor, J.E., Cochran, J.F., and Shiffman, C.A., Proc. 9th Int. Conf. on Low Temp. Physics, 479-81 (1965). (ed. J.G. Daunt, D.O. Edwards, F.J. Milford, M. Yaqub).
- 477. Bucher, E., Heininger, F., and Muller, J., See Ref. 476, p. 482-6.
- 478. French, R.A., Lowell, J., and Mendelssohn, K., See Ref. 476, p. 540-3.
- 479. Kunz, W., and Saur, E., See Ref. 476, p. 481-3.
- 480. Gygax, S., Olsen, J.L., and Kropschot, R.H., See Ref. 476, p. 587-90.
- 481. Hulm, J.K., Jones, C.K., Mazelsky, R., Miller, R.C., Hein, R.A., and Gibson, J.W., See Ref. 476, p. 600-3.
- 482. Hein, R.A., Gibson, J.W., Allgaier, R.S., Houston, B.B. Jr., Mazelsky, R., and Miller, R.C., See Ref. 476, 604-6.
- 483. Gaule, G.K., Breslin, J.T., Ross, R.L., Pastore, J.R., and Shappirio, J.R., See Ref. 476, p. 612-5.
- 484.7 Adler, J.G., and Ng, S.C., Canad. J. Phys. 43, 594-604 (1965).
- 485. Coles, G.W., Corsan, J. M., Buxton, A., and Lewis, B., J. Less Common Metals <u>8</u>, 402 (1965).
- 486. Hamilton, D.C., Raub, C.J., Matthias, B.T., Corenzwit, E., and Hull, G.W. Jr., J. Phys. Chem. Solids (GB) <u>26</u>, 665-7 (1965).
- 487. Luo, H.L., Merriam, M.F., and Hamilton, D.C., Science 145, 581-3 (1964).
- 488. Merriam, M.F., and Schreiber, D.S., J. Phys. Chem. Solids 24, 1375-7 (1963).
- 489. Merriam, M.F., Sweedler, A.R., and Hamilton, D.C., Bull. APS 9, 268 (1964).
- 490. Falge, R.L. Jr., Phys. Rev. Letters 11, 248-50 (1963).
- 491. Raub, C.J., Zachariasen, W.H., Geballe, T.H., and Matthias, B.T., J. Phys. Chem. Solids <u>24</u>, 1093-1100 (1963).
- 492. Zegler, S.T., Phys. Rev. 137, A1438-40 (1965).
- 493. Johnson, R.T., Vilches, O.E., Wheatley, J.C., and Gygax, S., Phys. Rev. Letters <u>16</u>, 101-4 (1966).

- 494. Hannay, N.B., Geballe, T.H., Matthias, B.T., Andres, K., Schmidt, P., and Macnair, D., Phys. Rev. Letters 14, 225-6 (1965).
- 495. Meaden, G.T., and Shigi, T., Cryogenics <u>4</u>, 90-2 (1964); also Meaden, G.T., Cryogenics <u>4</u>, 105-7 (1964).
- 496. Johnston, J., Toth, L., Kennedy, K., and Parker, E.R., Solid State Comm. 2, 123 (1964).
- 497. Johnston, J., U. of Cal. Berkeley, Lawrence Rad. Lab. UCRL-11390 (1964).
- 498. Matthias, B.T., Geballe, T.H., Willens, R.H., Corenzwit, E., and Hull, G.W. Jr., Phys. Rev. <u>139</u>, A1501 (1965).
- 499. Raub, C.J., and Zwicker, U., Phys. Rev. 137, A142-3 (1965).
- 500. Sweedler, A. R., Raub, C. J., and Matthias, B. T., Phys. Letters 15, 108-9 (1965).
- 501. Hein, R.A., Gibson, J.W., Mazelsky, R., Miller, R.C., and Hulm, J.K., Phys. Rev. Letters <u>12</u>, 320-2 (1964).
- 502. Bommel, H.E., Darnell, A.J., Libby, W.F., and Tittman, B.R., Science <u>139</u>, 1301-2 (1963).
- 503. Bond, W. L., Cooper, A. S., Andres, K., Hull, G. W., Geballe, T. H., and Matthias, B. T., Phys. Rev. Letters <u>15</u>, 260-1 (1965).
- 504. Fowler, R.D., Matthias, B.T., Asprey, L.B., Hill, H.H., Lindsay, J.D.G., Olsen, C.E., and White, R.W., Phys. Rev. Letters <u>15</u>, 860-2 (1965).
- 505.7 Gerstenberg, D., and Hall, P. M., J. Electrochem. Soc. 111, 936-42 (1964).
- 506. Geller, S., Jayaraman, A., and Hull, G.W. Jr., Appl. Phys. Letters <u>4</u>, 35-7 (1964).
- 507. Banus, M.D., Hanneman, R.E., Strongin, M., and Gooen, K., Science <u>142</u>, 662-3 (1963).
- 508. Killpatrick, D.H., J. Phys. Chem. Solids 25, 1213-6 (1964).
- 509. Killpatrick, D. H., J. Phys. Chem. Solids 25, 1499-500 (1964).
- 510. Matthias, B.T., and Olsen, J.L., Phys. Letters 13, 201-2 (1964).
- 511. Merriam, M.F., Phys. Letters 9, 100-1 (1964).
- 512. Hauser, J.J., and Theuerer, H.C., Phys. Letters 14, 270-1 (1965).
- 513. Johnston, J., Toth, L., and Parker, E.R., UCRL-11317, p. 133-7.
- 514. Pessall, N., Gupta, K. P., Cheng, C. H., and Beck, P. A., J. Phys. Chem. Solids <u>25</u>, 993-1003 (1964).
- 515. Geller, S., Jayaraman, A., and Hull, G.W. Jr., J. Phys. Chem. Solids <u>26</u>, 353-61 (1965).
- 516. Alekseevskii, N.E., and Mikheeva, M.N., Z. Eksper. i. Teoret. Fiz. <u>38</u>, 292-3 (1960).
- 517. Anderson, D. E., Toth, L. E., Rosner, L.G., and Yen, C. M., Appl. Phys. Letters <u>7</u>, 90-2 (1965).
- 518. D'Yakov, I.G., Lazarev, B.G., Matsakova, A.A., and Ovcharenko, G.N., Z. Eksper. i. Teoret. Fiz. <u>46</u>, 831-2 (1964); Soviet Phys. JETP <u>19</u>, 568-9 (1964).

- 519. Bots, G.J.C., Pals, J.A., Blaisse, B.S., DeJong, L.N.J., and Van-Engelen, P.P.J., Physica <u>31</u>, 1113-23 (1965).
- 520. McDonald, T. R. R., Gregory, E., Barberich, G. S., McWhan, D. B., Geballe, T. H., and Hull, G. W. Jr., Phys. Letters <u>14</u>, 16-7 (1965).
- 521. Caswell, H.L., Phys. Letters 10, 44-5 (1964).
- 522. Zwicker, U., Z. Metallkde, Dtsch. 54, 477 (1963).
- 523. Cape, J.A., Phys. Rev. <u>132</u>, A1486-92 (1963).
- 524. Autler, S.H., Hulm, J.K., and Kemper, R.S., Phys. Rev. <u>140</u>, A1177-80 (1965).
- 525. Yun Lung Shen, L., Senozan, N. M., and Phillips, N. E., Phys. Rev. Letters <u>14</u>, 1025-7 (1965).
- 526. Gibson, J.W., and Hein, R.A., Phys. Rev. Letters 12, 688 (1964).
- 527. van der Hoeven, B.J.C. Jr., and Keesom, P.H., Phys. Rev. 135, A631-7 (1964).
- 528. Rabenau, A., and Berben, T.J., Phys. Letters <u>12</u>, 167 (1964).
- 529. Rairden, J. R., and Neugebauer, C. A., Proc. IEEE 52, 1234-7 (1964).
- 530. Raub, C.J., and Webb, G.W., J. Less Common Metals 5, 271-7 (1963).
- 531. Weber, R., Phys. Rev. <u>133</u>, A1487-92 (1964).
- 532. V Artemenko, I.A., and Mikhailov, G.O., Ukr. Fiz. Zh. 9, 1369-71 (1964).
- 533. Alekseevskii, N. E., Z. Eksper. i. Teoret. Fiz. <u>49</u>, 159-62 (1965); Soviet Phys. JETP <u>22</u>, 114-6 (1966).
- 534. Bozorth, R. M., Holtzberg, F., and Methfessel, S., Phys. Rev. Letters <u>14</u>, 952-3 (1965).
- 535. Raub, C.J., and Hamilton, D.C., J. Less Common Metals 6, 486-8 (1964).
- 536. Leslie, J. D., Cappelletti, R. L., and Ginsberg, D. M., Phys. Rev. <u>134</u>, A309 (1964).
- 537. Phillips, N.E., Phys. Rev. 134, A385 (1964).
- 538. Catterall, J.A., Williams, I., and Duke, J.F., Brit. J. Appl. Phys. <u>15</u>, 1369-75 (1964).
- 539. Banus, M.D., Vernon, S.N., and Gatos, H.C., J. Appl. Phys. 36, 864 (1965).
- 540. Buckel, W., and Wittig, J., Phys. Letters <u>17</u>, 187-8 (1965).
- 541. V Strongin, M., Phys. Letters 17, 224-5 (1965).
- 542. Smith, T.F., Phys. Rev. 137, A1435-7 (1965).
- 543. Rorer, D.C., Onn, D.G., and Meyer, H., Phys. Rev. 138, A1661 (1965).
- 544. McConville, T., and Serin, B., Phys. Rev. Letters 13, 365-7 (1964).
- 545. Batterman, B.W., and Barrett, C.S., Phys. Rev. Letters 13, 390-2 (1964).
- 546. Olsen, J.L., Cryogenics 2, 356-8 (1962).
- 547. Wittig, J., Phys. Rev. Letters 15, 159 (1965).
- 548. Martin, R. B., and Rose-Innes, A. C., Phys. Letters 19, 467-9 (1965).
- 549. Tittman, B., Hamilton, D., and Jayaraman, A., J. Appl. Phys. 35, 732-3 (1964).

- 550.⊽ Lazarev, B.G., Semenenko, E.E., and Sudovtsov, A.I., Z. Eksper. i. Teoret. Fiz. 45, 391-2 (1963); Soviet Phys. JETP 18, 270-1 (1964).
- 551. Brandt, N.B., and Ginzberg, N.I., Z. Eksper. i. Teoret. Fiz. <u>46</u>, 1216-9 (1964); Soviet Phys. JETP <u>19</u>, 823-5 (1964).
- 552. Raub, C.J., Compton, V.B., Geballe, T.H., Matthias, B.T., Maita, J.P., and Hull, G.W. Jr., J. Phys. Chem. Solids <u>26</u>, 2051-7 (1965).
- 553. Hechler, K., Saur, E., Wizgall, H., Zeitschrift für Physik 205, 400-8 (1967).
- 554. Heiniger, F., Muller, J., Phys. Rev. 134 (1964).
- 555. Lerner, E., and Daunt, J.G., Phys. Rev. 142, No. 1, (1966).
- 556. Heiniger, F., Phys. kondens. Materie 5, 285-301 (1966).
- 557. Bucher, E., Heiniger, F., Muller, J., Physik der kondensierten Materie 2 (3), 210-40 (1964).
- 558. Shulishova, O. I., Institut Metallofiziki AN USSR, Kiev, (1966g).
- 559. Shulishova, O. I., Khimicheskaya Svyazb V Poluprovodnikakh i Termodinamika, Minsk, 299-316 (1966).
- 560. Alekseevskii, N. E., Samsonov, G. V., Shulishova, O. I. Neorganicheskie Materialy 3:1, 61-66 (1967).
- 561. Shulishova, O. I., Neorganicheskie Materialy No. 8, 1434 (1966).
- 562. Takafumi, Aomine, Hironobu, A., Shibuyo, Y., J. Phys. Soc. Japan 20: 282 (1965).
- 563. Arrhenius, G., Fitzgerald, R., Hamilton, D. C., Holm, B. A., Matthias, B. T., Corenzwit, E., Geballe, T. H., Hull, G. W., Jr., J. Appl. Phys., U. S. A. <u>35</u>, No. 12, 2487-90 (1964).
- 564. Babiskin, J., Siebenmann, P.G., Otto, G., and Saur, E., Leitz. fur Physik <u>180</u>, 483-488 (1964).
- 565. Barnes, L.J. & Hake, R.R., Phys. Rev. 153, 435 (1967).
- 566. Bucher, E. & Palmy, C., Phys. Letters 24A, 340 (1967).
- 567. Bucher, E., Heiniger, F., Muller, J. & Spitzli, P., Phys. Letters 19, 263(1965).
- 568. Bucher, E., Laves, F., Muller, J. and von Philipsborn, H., Phys. Letters 8, 27 (1964).
- 569. Bucher, E., Muller, J., Olsen, J. L. & Palmy, C., Cryogenics 5, 283 (1965).
- 570. Bucher, E. & Muller, J., Phys. Letters 15, 303 (1965).
- 571. Fink, H.J. Thorsen, A.C., Parker, E., Zackay, V.F. & Toth, L., Phys. Rev. 138A, 1170 (1965).
- 572. Heininger, F., Bucher, E., & Muller, J., Phys. kond. Materie 5, 243 (1966).
- 573. Toth, L.E., Rudy, E., Johnston, J. & Parker, E.R., J. Phys. Chem. Solids <u>26</u>, 517 (1965).
- 574. Jensen, M. A., Matthias, B. T. & Andres, K., Science 150, 1448 (1965).
- 575. Sweedler, A. R., Hulm, J. K., Geballe, T. H. & Matthias, B. T., Phys. Letters <u>19</u>, 82 (1965).

(X-5)

- 576. Knapp, G. & Merriam, M. F., Phys. Rev. 140A, 528 (1965).
- 577. Klokholm, E. & Chiou, C., Acta Met. 14, 565 (1966).
- 578. Bucher, E., Heiniger, F., Muller, J. & Spitzli, P., Phys. Letters Netherl. 19, 263 (1965).
- 579. Finnemore, D. K. & Mapother, D. E., Phys. Rev. 140A, 507 (1965).
- 580. Reich, R., Thesis, University of Paris, (1965).
- 581. Courtney, T.H., Pearsall, G.W., Wulff, J., J. Appl. Phys. 36 (10), 3256 (1965).
- 582. Darnell, F. J., Bierstedt, P. E., Forshey, W. O., Waring, R. K., Jr., Phys. Rev. Letters Abstracts 15 (14), A4 (1965), Phys. Rev. 140, A1581 (1965).
- 583. Gutz, Z. A., Krivko, N. I., Morozova, V. K., Sidorova, T. A., Fogel, A. A., Sov. Phys. Tech. Phys. 10, 1295-6 (1966), Zhur. Tech. Fiz. 35 (9), 1675 (1965).
- 584. Hake, R. R., Phys. Rev. 158 (2), 356-76 (1967).
- 585. Alekseevskii, N. E., Zh Eks Teor Fiz <u>49</u> (1), 159-62 (1965), JETP <u>22</u>(1), 114-116 (1966).
- 586. Hart, H. R., Jr., Swartz, P. S., Phys. Letters, Netherl. 10, 40-1 (1964).
- 587. Hake, R. R., Brammer, W. G., Phys. Rev. 133, A719 (1964).
- 588. Hechler, K., Saur, E., Zeitschrift fur Physik, 205, 392-9 (1967).
- 589. Chang, Chi-Jui, Ts'ao, Hsiao-Wen, Kuan, Wei-Yen, Sci. Sinica, (Peking) <u>14</u> (2), 306-9 (1965), Acta. Physica <u>20</u>, (6) 568-70, (1964).
- 590. Alekseevskii, N. E., Bondar', V. V. and Polukarov, Yu. M., Inst. of Phys. Prob., Acad. of Sciences, U. S. S. R., JETP (Oct. 9, 1959), J. Exptl. Theoret. Phys. (USSR) 38, 294-295 (Jan. 1960).
- 591. Lazarev, B.G., Lazareva, L.S., Makarov, V.I., Ignat'eva, T.A., Sov. Phys. JETP <u>19</u>, No. 3, p. 566-567 (Sept. 1964).
- 592. DeSorbo, W., Phys. Rev. A, 140, (3), 914 (1965).
- 593. Courtney, T. H., Pearsall, G. W. and Wulff, J., Trans. AIME 233, No. 1, p. 212-18 (1965).
- 594. Ambler, E., Colwell, J. H., Hosler, W. R., and Schooley, J. F., Phys. Rev. (USA) <u>148</u>, No. 1, 280-6 (1966).
- 595. Abeles, B., Cohen, R.W., Stowell, W.R., Phys. Rev. Letters 18: 21, 992-5 (1922).
- 596. Abeles, B., Cohen, R. W., Cullen, G. W., Phys. Rev. Letters <u>17</u>, No. 12, p. 632-34 (1966).
- 597. Benz, H., Fischer, E., Z. angew. Math. Phys., Schweiz 15, No. 6, 659-60 (1964).
- 598. Boato, G., Gallinaro, G., and Rizzuot, C., Phys. Rev. 148, No. 1, 353-61 (1966).
- 599. Bergmann, G., Z. Physik 187, (4), 395-410 (1965).
- 600. Blaugher, R. D., Phys. Letters 14, No. 3, 181 (1965).
- 601. Blaugher, R. D., Hulm, J. K. and Yocom, P. N., J. Phys. Chem. Sol. <u>26</u>, 2037 (1965).
- 602. Bergmann, G., Hilsch, R. and Minnigerode, G. v., Z. Naturforsch, <u>19a</u>, 580-6 (1964).

- 603. Neshpor, V.S., Novikov, V.I., Noskin, V.A. and Shalyt, S.S., JETP 54, 26 (1968).
- 604. Feder, J., Kiser, S.R., Rothwarf, F., Phys. Rev. Letters 17, (2), 87-89 (1966).
- 605. Robin, M. B., Andres, K., Geballe, T. H. Kuebler, N. A., McWhan, D. B. Phys. Rev. Letters <u>17</u>, No. 17, 917 (1966).
- 606. Matthias, B.T., Jayaroman, A., Geballe, T.H., Phys. Rev. Ltrs., <u>17</u>, No. 12, 640-643 (1966).
- 607. Hauser, J.J., Phys. Rev. Letters 17, No. 17, 921-22, (1966).
- 608. Smith, T. F., Phys. Rev. Letters 17, No. 7, 386-90 (1966).
- 609. Merriam, M. F., Phys. Rev. Letters 11, 321 (1963).
- 610. Schooley, J. F., Hosler, W. R. and Cohen, M. L., Phys. Rev. Letters <u>12</u>, No. 17, 474-5 (1964).
- 611. Frederikse, H. P. R., et al, Phys. Rev. Letters 16, 579-81 (1966).
- 612. Johnson, R. T., Vilches, O. E., Wheatley, J. C. and Gygax, S., Phys. Rev. Letters <u>16</u>, 101-4 (1966).
- 613. Finnemore, D. K., Hopkins, D. C. and Palmer, P. E., Phys. Rev. Letters <u>15</u>, 891 (1965).
- 614. Fowler, R. D., Matthias, B. T., Asprey, L. B. and Hill, H. H. et al, Phys. Rev. Letters 15, No. 22, 860-2 (1965).
- 615. Bond, W. L., Cooper, A. S., Andres, K., Hull, G. W., Geballe, T. H. and Matthias, B. T., Phys. Rev. Letters 15, 260-1 (1965).
- 616. Hake, R. R., Phys. Rev. Letters 15, 865 (1965).
- 617. Bozorth, R. M., Holtzberg, F., Methfessel, S., Phys. Rev. Letters 14, 952-3 (1965).
- 618. Wittig, J. Phys. Rev. Letters 21, 1250 (1968).
- 619. Strongin, M., Krammerer, O. F., Paskin, A., Phys. Rev. Letters 14, 949 (1965), Proc. Int. Symp. Grundprobleme der Physik dunner Schichten Gottingen, 505-510 (1966).
- 620. Shen, L. Y. L., Senozan, N. M. and Phillips, N. E., Phys. Rev. Letters <u>14</u>, 1025-6 (1965).
- 621. Schooley, J. F., Hosler, W. R., Ambler, E., Becker, J. H., Cohen, M. and Koonce, C.S., Phys. Rev. Letters 14, 305-7 (1965).
- 622. Geller, S. and Hull, G. W., Jr., Phys. Rev. Letters 13, 127-9 (1964).
- 623. Finegold, L., Phys. Rev. Letters 13, No. 7, 233-4 (1964).
- 624. Farrell, D., Park, J.G. and Coles, B.R., Phys. Rev. Letters 13, 328 (1964).
- 625. Raub, Ch. J, Sweedler, A. R., Jensen, M. A., Broadston, S. & Matthias, B. T., Phys. Rev. Letters <u>13</u>, 746 (1964).
- 626. Farrell, D., Park, J.G. & Coles, B.R., Phys. Rev. Letters 13, 328 (1964).
- 627. Hempstead, C. F. & Kim, U. B., Phys. Rev. Letters 12, 145 (1964).
- 628. Wells, M., Pickus, M., Kennedy, K. & Zackay, V., Phys. Rev. Letters <u>12</u>, 536 (1964).
- 629. Ho. J. C., Phillips, N. E. & Smith, T. F., Phys. Rev. Letters 17, 694 (1966).

(X-7)

- 630. Green, B. A., Jr. & Culbert, H. V., Phys. Rev. 137A, 1168 (1965).
- 631. Rauch, G.C., Rose, R. M. & Wulff, J., J. Less Common Metals 8, 99 (1965).
- 632. Toth, L. E., Jeitschko, W. & Yen, C. M., J. Less Common Metals 10, 29 (1966).
- 633. Giorgi, A. L. & Sklarz, E. G., J. Less Common Metals 11, 455 (1966).
- 634. Hutcherson, J. V., Guay, R. L. & Herold, J. S., J. Less Common Metals <u>11</u>, 296 (1966).
- 635. Toth, L. E., J. Less Common Metals 13, 129 (1967).
- 636. Revolinsky, E., Lautenschlager, E. P. & Armitage, C. H., Solid State Commun. 1, 59 (1963).
- 637. Ulmer, K., Solid State Commun. 2, 327 (1964).
- 638. Johnston, J., Toth, L., Kennedy, K. & Parker, E., Solid State Commun. 2, 123 (1964).
- 639. Levy, M. & Olsen, J. L., Solid State Commun. 2, 137 (1964).
- 640. Sadogopan, V., Pollard, E. & Gatos, H. C., Solid State Commun. 3, 97 (1965).
- 641. Gey, W., Solid State Commun. 4, 403 (1966).
- 642. Feder, J., Kiser, S.R., Rothwarf, F., Burger, J.P. & Valette, C., Solid State Commun. <u>4</u>, 611 (1966).
- 643. Bither, T. A., Prewitt, C. T., Gillson, J. L., Bierstedt, P. E., Flippen, R. B. and Young, H. S., Solid State Comm. <u>4</u>, 533 (1966).
- 644. Bierstedt, P. E., Bither, T. A. and Darnell, F. J., Solid State Commun. 4, 25 (1966).
- 645. Greytak, T. J. and Wernick, J. H., J. Phys. Chem. Solid 25, 535, (1964).
- 646. Levinstein, H. J., and Wernick, J. H., J. Phys. Chem. Solids 26, 1111 (1965).
- 647. Revolinsky, E., Spiering, G.A. and Beerntsen, D.J., J. Phys. & Chemistry of Solids, 26, 1029 (1965).
- 648. Zegler, S. T., J. Phys. Chem. Solids 26, 1347 (1965).
- 649. Bon Mardion, G., Goodman, B. B. and Lacaze, A., J. Phys. Chem. Solids 26, 1143 (1965).
- 650. Sadagopan, V. and Gatos, H.C., J. Phys. Chem. Solids 27, 235 (1966).
- 651. Andres, K., Kuebler, N.A., Robin, M.B., J. Phys. Chem. Solids 27, 1747 (1966).
- 652. Toth, L. E., Yen, C. M., Rosner, L. G. and Anderson, D. E., J. Phys. Chem. Solids <u>27</u>, 1815 (1966).
- 653. Sekula, S. T. and Kernohan, R. H., J. Phys. & Chem. Solids 27, 1863 (1966).
- 654. Spiering, G. A., Revolinsky, E. and Beerntsen, D. J., J. Phys. Chem. Solids 27, 535 (1966).
- 655. Smith, T. F. and Harris, I. R., J. Phys. Chem. Solids 28, 1846 (1967).
- 656. Ho, J.C., Phillips, N.E. and Smith, T.F. (Unpublished) Quoted in Ref. 655.
- 657. Smith, T. F. (Unpublished) Quoted in Ref. 655.
- 658. Smith, T. F. and Luo, H. L., J. Phys. Chem. Solids 28, 569 (1967).

- 659. Matthias, B. T. Private communication. Quoted in Ref. 658.
- 660. Jensen, M. A., Ph. D. Thesis, University of California, San Diego, La Jolla (1965).
- 661. Van Vucht, J. H. N., Bruning, H. A. C. M. and Donkersloot, H. C., Phys. Letters 7, 297 (1963).
- 662. Gygax, S., Olsen, J. L. and Kropschot, R. H. Phys. Letters Nethrl. 8, 228 (1964).
- 663. Hennephof, J., Phys. Letters 11, 273 (1964).
- 664. Doidge, P. R. & Kwan, S., Phys. Letters, Netherl. 12, 82 (1964).
- 665. Druyvesteyn, W. F., Phys. Letters 13, 195 (1964).
- 666. Rosenblum, B. & Cordona, M., Phys. Letters, Netherl. 13, 33 (1964).
- 667. Matthias, B. T. & Olsen, J. L., Phys. Letters 13, 202 (1964).
- 668. Veyssie, J. J., Brochier, D., Nemoz, A. & Blanc, J., Phys. Letters Netherl. <u>14</u>, 261 (1965).
- 669. Lalevic, B., Phys. Letters 17, 16 (1965).
- 670. Merriam, M. F., Phys. Letters 17, 224 (1965).
- 671. Kammerer, O. F. & Strongin, M., Phys. Letters 17, 224 (1965).
- 672. Seidel, T. & Meissner, H., Phys. Letters 17, 100 (1965).
- 673. Aoki, R. & Ohtsuka, T., Phys. Lett. Netherl. 19, 456 (1965).
- 674. Sweedler, A. R., Hulm, J. K., Matthias, B. T. & Geballe, T. H., Phys. Letters <u>19</u>, 82 (1965).
- 675. Van Maaren, M. H. & Schaeffer, G. M., Phys. Lett. 20, 131 (1966).
- 676. Satoh, T. & Ohtsuka, T., Phys. Lett. 20, 565 (1966).
- 677. King, H. W., Russell, C. M. & Hulbert, J. A., Phys. Letters 20, 600 (1966).
- 678. Kramer, L., Phys. Letters 20, 619 (1966).
- 679. Ferreira Da Silva, J., Van Duykeren, N. W. J., Dokoupil, Z., Phys. Letters 20, 448 (1966).
- 680. Jones, C. K. & Rayne, J. A., Phys. Letters 21, 510 (1966).
- 681. Minomura, S., Okai, B., Nagasaki, H. & Tanuma, S., Phys. Lett. 21, 272 (1966).
- 682. Sutton, J. & Baker, C., Phys. Lett., Netherl. 21, 601 (1966).
- 683. Druyvesteyn, W. F., Niessen, A. K. & Staas, F. A., Phys. Lett. Netherl. <u>22</u>, 127 (1966).
- 684. Montgomery, D. B. & Wizgall, H., Phys. Lett. Netherl. 22, 48 (1966).
- 685. Malseed, C. F. S., Nethercott, R. B. & Rachinger, W. A., Phys. Lett. Netherl. 22, 551 (1966.
- 686. Williamson, S.J., Phys. Letters 23, 629 (1966).
- 687. Hein, R. A., Phys. Lett. 23, 435 (1966).
- 688. Kwasnitza, K. & Rupp, G., Phys. Letters 23, 40 (1966).
- 689. Minomura, S., Okai, B., Onoda, Y. & Tanuma, S., Phys. Lett. 23, 641 (1966).

- 690. Ralls, K. M., Phys. Letters 23, 29 (1966).
- 691. Toth, L. E., Zackay, V. F., Wells, M., Olson, J. & Parker, E. R., Acta Met. 13, 379 (1965).
- 692. Luo, K. H. L., Hagen, J. & Merriam, M. F., Acta Met 13, 1012 (1965).
- 693. Chiou, C. & Klokholm, E., Acta Met. 12, 883 (1964).
- 694. Toth, L. E., Wang, C. P. & Yen, C. M., Acta Met. 14, 1403 (1966).
- 695. McWhan, D. B., Hull, G. N., Jr., McDonald, T. R. R. & Gregory, E., Science 147, 1441 (1965).
- 696. Sclar, C.B., Carrison, L.C. & Schwartz, C.M., Science 147, 1569, (1965).
- 697. Chao, C. M., Luo, H. L. & Smith, T. F., J. Phys. Chem. Solids 27, 1555 (1966).
- 698. Geballe, T. H., Matthias, B. T., Andres, K., Fisher, E. S., Smith, T. F. & Zachariasen, W. H., Science 152, 755 (1966).
- 699. Jensen, M.A., Matthias, B.T. & Andres, K., Science 150, 1448 (1965).
- 700. Matthias, B. T., Geballe, T. H., Corenzwit, E., Andres, K., Hull, G. W., Jr., Ho, J. C., Phillips, N. E. & Wohlleben, D. K., Science 151, 985 (1966).
- 701 Dempesy, C. W., Gordon, J. E. & Romer, R. H., Phys. Rev. Letters 11, 547 (1963).
- 702. Howlett, B. W., Science 154, 542 (1966).
- 703. Matthias, B.T., Science 154, 543 (1966).
- 704. Matthias, B. T., Geballe, T. H., Longinotti, L. D., Corenzwit, E., Hull, G. W., Willens, R. H. & Maita, J. P., Science 156, 645 (1967).
- 705. Matthias, B. T., Geballe, T. H., Andres, K., Corenzwit, E., Hull, G. W. & Maita, J. P., Science 159, 530 (1968).
- 706. Wittig, J., Phys. Rev. Letters 21, 1250 (1968).

REVIEW ARTICLES AND BOOKS ON SUPERCONDUCTIVITY

- Onnes, H. Kamerlingh, Commun. Kamerlingh Onnes Lab. 13, Supplement 34b (1913-14).
- Crommelin, C.A., Physik. Zeitschr. 21, 274, 300, 331 (1920).
- Meissner, W., Metallwirtschaft 15, 289 (1930).
- Schulze, A., Z. Ver. duet. Ing. 74, 149-52 (1930).
- Bates, L. F., Science Progress 24, 565-72 (1930).
- Meissner, W., Metallwirtschaft 10, 289, 310 (1931).
- DeHaas, W.J., and Voogd, J., Commun. Kamerlingh Onnes Lab. 20, Supplement 73a (1932).
- Clusius, K., Zeits. Elektrochem. 38, 312-26 (1932).
- Meissner, W., Erg. Der Exakt. Naturw. 11, 219 (1932).
- McLennan, J.C., Nature 130, 879 (1932).
- McLennan, J. C., Pharm. J. 128, 470 (1932).
- Kikoin, I., and Lazarev, B., J. Tech. Phys. (USSR) 3, 237-54 (1933).
- Meissner, W., Physik. Zeitschr. 35, 931 (1934).
- Tammann, G., Z. Metallkunde 26, 61 (1934).
- Burton, E. F. (Ed.), "The Phenomenon of Superconductivity," Univ. of Toronto Press, Toronto (1934).
- McLennan, J.C., Reports on Prog. in Physics 1, 206 (1934).
- McLennan, J.C., Roy. Soc. Proc. 152A, 1-46 (1935).
- Meissner, W., "Handbuch der Experimental Physik XI", Part 2, 204-262 (1935).
- Smith, H.G., and Whilhelm, J.O., Rev. Mod. P^Hys. 7, 237 (1935).
- Darrow, K. K., Rev. Sci. Instr. 7, 124 (1936).
- Ruhemann, M., and Ruhemann, B., "Low Temperature Physics," Cambridge Univ. Press (1937).
- Steiner, K., and Grassmann, P., "Supraleitung," Vieweg und Sohn, Brunswick (1937).
- Silsbee, F.B., J. Wash. Acad. Sci. 27, 225-44 (1937).
- Shoenberg, D., "Superconductivity," Cambridge Univ. Press (1938).
- Shoenberg, D., Uspekhi Fiz. Nauk. 19, 448-91; 20, 1-28 (1938).
- Jackson, L.C., Reports on Prog. in Physics 5, 335-44 (1939).
- Burton, E. F., Grayson Smith, H., and Whilhelm, J.O., "Phenomena at the Temperature of Liquid Helium," Reinhold Publishing Corp., New York, pp. 87-123 (1940).
- Casimir, H. B. G., Nederland. Tijdschr. Natuurkunde 8, 113-23 (1941).
- Laue, M. Von, Ber. 75B, 1427-32 (1942).
- Laue, M. Von, Physik. Z. 43, 274-84 (1942).
- Mendelssohn, K., Reports on Prog. in Physics 10, 358-77 (1944-45).
- Itterbeek, A. van, Soc. Roy. belge ing. ind., Mem. Ser B 1, 47-51 (1945).

- Justi, E., Naturwiss. 33, 292-7, 329-33 (1946).
- Ginsburg, V. L., "Superconductivity," Academy of Science USSR, Moscow, Leningrad (1946).
- Hewlett, C. W., G. E. Rev. 49, 19-25 (1946).
- Andronikashvili, E. L., and Tumanov, K. A., Uspekhi Fiz. Nauk. 33, 469-532 (1947).
- Justi, E., "Leitfahigkeit und Leitungsmechanismus fester Stoffe," Gottingen, Vandenhoeck and Ruprecht, pp. 187-270 (1948).
- Laue, M. Von, Ann. Physik. 3, 40-2 (1948).
- Meissner, W., and Schubert, G.V., Fiat Rev. German Science (1939-46); Physics of Solids Pt. II, 143-62 (1948).
- Gorter, C.J., Physica 15, 55-64 (1949).
- Mendelssohn, K., Reports on Prog. in Physics 12, 270-290 (1948-49).
- Vick, F.A., Science Progress 37, 268-74 (1949).
- Wexler, A., Research, Lond. 3, 534 (1950).
- Shoenberg, D., Nuovo Cimento 10, Ser. IX, 459-89 (1953).
- Unknown, Physica 19, 745-54 (1953).
- Eisenstein, J., Rev. Mod. Phys. 26, 277 (1954).
- Buckel, W., Naturwiss. 42, 451 (1955).
- Serin, B., Handbuch Der Physik, Band XV Kältephysik II, Springer-Verlag, Berlin, pp. 210-73 (1956).
- Zavaritskii, N.V., Priroda 45, 37-44 (1956).
- Wexler, A., Metal. Progr. 69, 89 (1956).
- Abrikosov, A. A., Vestnik Akademii Nauk SSSR #4, 30-36 (1958).
- Boorse, H. A., Amer. Jour. of Physics 27, 47 (1959).
- Buckel. W., Metall. 13, 814 (1959).
- Cooper, L. N., Amer. Jour. of Physics 28, 91 (1960).
- Schoenberg, D., "Superconductivity," (2nd Ed., 1960 Printing), Cambridge Univ. Press (1960); (1st Ed., 1938; 2nd Ed., 1952).
- Bardeen, J., and Schrieffer, J.R., Prog. in Low Temp. Phys. Vol. III.
- Kropschot, R. H., and Arp, V., Cryogenics 2, 1 (1961).
- Jones, W. H., Milford, F. J., and Fawcett, S. L., J. of Metals <u>14</u>, 836 (1962); Also Battelle Technical Review, (Sept. 1962).
- Tanenbaum, M., and Wright, W. V. (Ed.), "Superconductors," John Wiley & Sons, New York (1962).
- Bardeen, J., "Critical Fields and Currents in Superconductors", Rev. Modern Phys. <u>34</u>, 667 (1962).
- Bowen, D. H., "Effects of Pressure" in High Pressure Physics and Chemistry Vol. I, R. S. Bradley (Ed.), Academic Press, London, New York, pp. 355-73 (1963).

- Bardeen, J., "Superconductivity" in Advances in Materials Research in the NATO Nations, MacMillan, New York, pp. 281-90 (1963).
- Matthias, B. T., Geballe, T. H. and Compton, V. B. "Superconductivity (Compounds)". Rev. Mod. Phys. 35, 1 (1963).
- Anderson, D. E., "Superconductivity" in Magnetic Materials Digest 1964, M. W. Lads, Philadelphia, pp. 196-217 (1964).
- "Proc. Inter. Conf. on Science of Superconductivity, Hamilton, N.Y., Aug. 1963", Rev. Mod. Phys. 36 (1964).
- Gaballe, T. H., and Matthias, B. T., "Superconductivity" in <u>Annual Review of Physical</u> Chemistry Vol. 14, pp. 141-160 (1964).
- Lynton, E. A., "Superconductivity," Metheun & Co., London; John Wiley & Sons, New York (1964).
- Yasukochi, K. and Ogasawara, T., Metal Physics (Tokyo) 10, 137, 197 (1964).
- Livingston, J.D. and Schadler, H.W., "The Effect of Metallurgical Variables on Superconducting Properties." Progress in Materials Science 12, 183-287 (1964).
- Klose, von W., "Harte Supraleiter", Natur wissenschaften 51, 180-186 (1964).
- Abrikosov, A. A., "The Present State of the Theory of Superconductivity", Usp. Fiz. Nauk 87, 125-42 (1965); Soviet Physics Uspekhi 8, 710 (1966).
- F. Block, "Some Remarks on the Theory of Superconductivity", Physics Today 19, 27 (May) (1966).
- deGennes, P.G., "Superconductivity of Metals and Alloys" (Theory), Frontiers in Physics, Benjamin, New York (1966).
- Ralls, K. M. and Wulff, J., "The Electronic Structure of Transition Metal-Interstitial Atom Alloy Superconductors", J. Less Common Metals 11, 127-34 (1966).
- Roberts, B. W., "Superconductive Properties" in Intermetallic Compounds, Edited by J. H. Westbrook, John Wiley and Sons, New York, pp. 581-613 (1967).

(XII-1)

AUTHOR INDEX BY REFERENCE NUMBER Abe, H., 562 Abeles, B., 595, 596 Adler, J.G., 484 Adlhart, O., 444 Alekseevskii, N. E., 2-8, 56, 59, 60, 103, 153, 154, 158, 197, 269, 323, 326, 394, 427, 433, 516, 533, 560, 585, 590 Allen, J.F., 86, 88, 99, 109, 111, 112 Allgaier, R.S., 482 Ambler, E., 594, 621 Anderson, D. E., 517, 652 Anderson, G.S., 22, 227 Andres, K., 494, 503, 574, 605, 615, 651, 698, 699, 700, 705 Andrews, D. H., 49, 243 Androes, G. M., 205 Andronikashvili, E. L., 105 Aoki, R., 673 Aomine, T., 562 Armitage, C. H., 636 Aron, P.R., 321, 368 Arp, W.D., 189 Arrhenius, G. O. S., 255, 449, 563 Artemenko, I. A., 532 Aschermann, G., 161, 306 Asprey, L. B., 504, 614 Atoji, M., 100 Autler, S. H., 334, 524 Babiskin, J., 564 Baker, C., 682 Bala, V.B., 128 Banus, M. D., 277, 507, 539 Barnes, L. J., 565 Barberich, G.S., 520

Baron, V.V., 323 Barrett, C.S., 545 Barth, N., 78, 354 Batterman, B.W., 545 Bayles, B., 419 Bean, C. P., 331 Beck, P.A., 195, 330, 514 Becker, J.H., 621 Beenakker, J. J. M., 297 Beerntsen, D. J., 647, 654 Bender, D., 417 Benesovsky, F., 447 Benz, H., 597 Berben, T.J., 528 Bergeron, C.J., 429 Berghout, C.W., 358 Bergmann, G., 599, 602 Berlincourt, T.G., 126, 157, 194, 218, 252, 268, 290, 349, 399, 466 Berman, A., 92 Betz, C., 288 Bierstedt, P.E., 582, 643, 644 Binkert, T., 415 Bither, T.A., 643, 644 Blaisse, B.S., 519 Blanc, J., 668 Blanpain, R., 162 Blaugher, R. D., 181, 182, 207, 216, 217, 253, 266, 275, 300, 327, 369, 432, 452, 453, 464, 600, 601 Blumberg, R. H., 332, 367 Boato, G., 436, 598 Bohm, H.V., 250 Boller, H., 370 Bommel, H. E., 424, 442, 502

Bond, W. L., 503, 615 Bondar, V.V., 197, 394, 590 Bon Mardion, G., 356, 649 Boom, R.W., 429 Boorse, H. A., 92, 231, 343, 344 Bots, G.J.C., 519 Bowman, A. L., 271, 397 Bozorth, R. M., 174, 186, 187, 247, 534, 617 Brammer, W.G., 587 Brandt, N. B., 8, 203, 437, 551 Breslin, J. T., 483 Broadston, S., 472,625 Brochier, D., 668 Brucksch, W. F., Jr., 49 Bruning, H. A. C. M., 661 Bryant, C. A., 206, 389 Bucher, E., 130, 274, 275, 293, 295, 415, 417, 418, 448, 477, 557, 566, 567, 568, 569, 570, 572, 578 Buckel, W., 77, 95, 152, 183, 213, 214, 353, 438, 459, 540 Budnick, J.I., 188, 209, 375 Buehler, E., 365, 384 Bülow, H., 213 Bundy, F. P., 304 Burger, J. P., 642 Burns, M. J., 450 Busch, G., 121, 130, 366 Buxton, A., 485 Callen, E., 338 Calverley, A., 170, 244 Cape, J.A., 523 Cappelletti, R. L., 536 Carpenter, J.H., 312 Carrison, L.C., 696 Carruthers, J.A., 132

Casimer-Jonker, J. M., 74 Caswell, H. L., 378, 379, 475, 521 Catterall, J.A., 538 Chandrasekhar, B.S., 21, 134, 275, 455 Chang, Chi-Jui, 589 Chanin, G., 319 Chao, C.C., 697 Cheng, C. H., 195, 330, 514 Chester, P. F., 199 Chiou, C., 320, 577, 693 Chotkevich, I.D., 106 Chotkewitsch, W. I., 80 Chou, C., 232, 233 Clogston, A. M., 364 Clusius, K., 85 Cobble, J.W., 163 Cohen, M. L., 610, 621 Cohen, R. W., 595, 596 Cochran, J. F., 148, 193, 371, 476 Cody, G.D., 185, 298, 473 Coles, B. R., 256, 257, 265, 456, 624, 626 Coles, G.W., 485 Colwell, J.H., 594 Compton, V. B., 41, 93, 127, 142, 173, 202, 212, 224, 239, 270, 279, 454, 469, 552 Connel, R. A., 342 Connolly, A., 132 Cook, D. B., 343, 344 Cooper, A.S., 503, 615 Cooper, J.L., 298 Corak, W. W., 16 Cordona, M., 666 Corenzwit, E., 25, 28, 32, 34, 35, 93, 115, 116, 125, 128, 142, 172, 173, 184, 196, 200, 201, 202, 211, 223, 223, 239, 247.275, 283, 352, 264, 454, 469, 486, 498, 563, 700, 704, 705

Corsan, J. M., 485 Courtney, T. H., 581, 593 Croft, A.J., 374 Culbert, H.V., 630 Cullen, G. W., 596 Curry. M. A., 339 Dabbs, J. W. I., 47 Darby, J. B., Jr., 64, 102, 408 Darnell, F.J., 582, 644 Darnell, A. J., 424, 442, 502 Daunt, J. G., 45, 163, 166, 168, 555 Davis, D. D., 174, 186, 187, 247 DeBoer, J., 73 Debruyn Ouboter, R., 297 Decker, D. L., 159 DeHaas, W.J., 15, 70, 71, 72, 73, 74, 87, 90, 281, 381, 402, 403 DeJong, L. N. J., 519 Dempesy, C. W., 701 DeSorbo, W., 190, 248, 441, 592 Devlin, G. E., 196 D'Heurle, F. M., 430 Dickson, C. C., 370 Dillinger, J.R., 192 Doidge, P.R., 309, 664 Dokoupil, Z., 679 Donkersloot, H.C., 661 Dorsi, D., 310 Douglass, D. H., 332 Doulat, J., 382 Downey, J.W., 102 Doyle, M.V., 331 Doyle, N. J., 468 Druyvesteyn, W. F., 357, 407, 665, 683 Duke, J. F., 538

Dummer, G., 438, 459 Dunaev, J.A., 307 D'Yakov, I.G., 518 Efimov, Yu. V., 323 Eisenstein, J., 1 Fairbank, H.A., 179 Falge, R. L., 172, 363, 490 Farrell, D., 624, 626 Feder, J., 604, 642 Ferreira DeSilva, J., 679 Finegold, L., 623 Fink, H. J., 571 Finnemore, D. K., 249, 579, 613 Fischer, E., 597 Fisher, E.S., 698 Fisk, Z., 256 Fitzgerald, R., 563 Flippen, R. B., 643 Floyd, R., 9 Fogel, A. A., 583 Forshey, W.D., 582 Fortmann, J., 353 Fowler, R. D., 504, 614 Franck, J. P., 380 Franz, H., 20, 69, 83, 84, 89, 123 Frederikse, H. P. R., 611 French, R.A., 478 Friederich, E., 306 Fukuroi, T., 462 Gager, J.G., 166 Gaidukov, Yu. P., 60 Glasso, F., 409, 419, 420 Gallinaro, G., 436, 598 Galkin, A., 405

Gatos, H. C., 277, 311, 355, 539, 640, 650 Gaule', G.K., 444, 483 Gayley, R. I., Jr., 341 Geballe, T.H., 34, 184, 207, 211, 223, 224, 236. 259, 270, 283, 292, 454, 469, 491, 494, 498, 503, 520, 552, 563, 575, 605, 606, 615, 674, 698, 700, 704, 705 Geiser, R., 435 Geller, S., 34, 54, 58, 124, 140, 141, 238, 285, 470, 471, 506, 515, 622 Gendron, M. F., 229 Gerber, J. F., 313 Gerstenberg, D., 505 Gey, W., 440, 459,641 Gibson, J. W., 223, 369, 431, 432, 446, 452, 464, 481, 482, 501, 526 Gillson, J.L., 643 Ginsberg, D. M., 536 Ginzberg, N. I., 203, 392, 437, 551 Giorgi, A. L., 271, 278, 284, 397, 633 Glagoleva, V. P., 55, 61, 62 Goldstein, R., 124 Golik, V.R., 346 Gomes De Mesquita, A. H., 461 Goodman, B. B., 23, 29, 177, 356, 372, 382, 390, 435, 649 Gooen, K. H., 334, 507 Gordon, J. E., 701 Grassman, P., 348 Green, B. A., Jr., 630 Gregory, E., 520, 695 Greytak, T.J., 645 Gschneider, K.A., Jr., 234 Guay, R. L., 634 Guénault, A. M., 361 Guggenheim, J., 301

Gupta, K. P., 330, 514 Guts, Z.A., 583 Guttman, L., 13, 44, 51, 92 Gygax, G., 118 Gygax, S., 480, 493, 612, 662 Hagen, J., 692 Hagner, R., 299, 315 Hake, R. R., 126, 178, 194, 218, 252, 268, 289, 335, 399, 466, 565, 584, 587, 616 Haley, F.C., 243 Hall, P. M. 505 Hamilton, D. C., 449, 486, 487, 489, 535, 549, 563 Hanak, J. J., 185, 298, 473 Hannay, N. B., 494 Hanneman, R. E., 507 Hardy, G. F., 10, 42, 474 Harris, I.R., 655 Hart, H. R., Jr., 303, 434, 586 Hatton, J., 64, 65 Hauser, J. J., 317, 512, 607 Heaton, J. W., 428 Heckler, K., 553, 588 Hein, R. A., 27, 30, 31, 135, 151, 167, 172, 223, 228, 300, 363, 369, 431, 432, 446, 452, 464, 481, 482, 501, 526, 687 Heiniger, F., 276, 295, 415, 448, 477, 554, 556, 557, 567, 572, 578 Heller, W.R., 430 Hempstead, C. F., 627 Hennephof, J., 663 Hennig, G., 46 Henry, W. E., 27,288 Herold, J.S., 634 Herbstein, F.H., 241 Hernandez, H. P., 321

Hill, H. H., 504, 614 Hillairet, J., 177 Hilsch, R., 77, 183, 213, 215, 296, 602 Hinrichs, C.H., 324 Hirshfeld, A.T., 231 Hitchcock, H.C., 368 Ho, J.C., 629, 656, 700 Holleck, H., 447 Holm, BA., 563 Holtzberg, F., 534, 617 Hopkins, D. C., 180, 219, 613 Horn, F. H., 49, 97 Horwitz, N. H., 250 Hosler, W. R., 594, 610, 611, 621 Housto, B. B., Jr., 482 Howlett, L. E., 113, 702 Hsu, F.S.L., 310, 365, 384 Hudson, R. P., 423 Hylbert, J.A., 677 Hull, G. W., Jr., 184, 211, 224, 239, 283, 454, 469, 470, 471, 486, 498, 503, 506, 515, 520, 552, 563, 615, 622, 695, 700, 704, 705 Hulliger, F., 301, 413, 414 Hulm, J. K., 10, 11, 21, 29, 42, 43, 48, 134, 136, 182, 207, 216, 217, 221, 253, 266, 275, 300, 327, 431, 455, 474, 481, 501, 524, 575, 601, 674 Hutcherson, J.W., 634 Ignat'eva, T.A., 591 Ittner, W.B., Jr., 122 Jacobs, I.S., 434 Jansen, H. G., 139,242 Jayaraman, A., 506, 515, 549, 606 Jeitschko, W., 632 Jennings, L.D., 325 Jensen, M.A., 257, 472, 574, 625, 660, 699 Johnson, R. T., 493, 612

Johnston, H. L., 232, 233 Johnston, J., 496, 497, 513, 573, 638 Joiner, W. C. H., 453 Jones, C. K., 455, 481, 680 Jones, G.O., 199 Jones, R. E., 122, 229 Jurriaanse, T., 281, 282 Justi, E., 66, 119, 161, 245, 306, 451 Kagle, B.J., 468 Kammerer, O. F., 619, 671 Kasper, J.S., 304, 305 Keesom, P.H., 24, 206, 272, 389, 527 Kemper, R.S., 524 Kennedy, K., 496, 628, 638 Kertes, L., 51 Kernohan, R. H., 653 Khotkevich, V.I., 346, 401 Khukhareva, I.S., 387 Killpatrick, D. H., 508, 509 Kim, Y.B., 627 King, H. W., 677 Kiser, S. R., 604, 642 Klokholm, E., 577, 693 Knapp, G., 576 Knight, W. D., 205 Koch, D., 460 Kolbe, C. L., 434 Koonce, C.S., 621 Kostina, T.I., 8 Kramer, L., 678 Kramer, J., 306 Krivko, N. I., 583 Kropschot, R. H., 189, 480, 662 Kuan, Wei-Yen, 589 Kuebler, N.A., 605, 651 Kunz, W., 479

Kunzler, J. E., 310, 365, 383, 384 Kurti, N., 12 Kushmin, R. N., 198 Kuz'min, R. N., 155, 237, 286, 287 Kwan, S., 664 Kwasnitza, K., 688 Lacaze, A., 356, 649 Le Fleur, W. J., 311 Lalevic, B., 669 Lam, D. J., 102 Lane, C. T., 14 Lange, F., 147 Langereis, C., 461 Lautenschlager, E. P., 636 Lautz, Von G., 96, 263, 264 Laves, F., 568 Lawrence, P.E., 434 Lazarev, B. G., 81, 101. 144, 346, 395, 405, 518, 550, 591 Lazareva, L.S., 591 LeBlanc, M. A. R., 400 Leenhouts, J.I., 461 Legvold, S., 22, 227, 339 Lerner, E., 555 Leslie, D. H., 126, 194, 268, 289, 399 Leslie, J. D., 536 Leupold, H.A., 231 Levinstein, H.J., 646 Levy, M., 639 Lewis, B., 485 Libby, W. F., 424, 442, 502 Lifanov, L. I., 6, 56 Lindsay, J. D. G., 504, 614 Little, W.A., 400 Livingston, J.D., 322, 457, 458 Lock, J. M., 235

Longinotti, L. D., 469, 704 Lounasmaa, O.V., 291 Love, W. F., 36, 189, 338 Lowell, J., 478 Luo, H. L., 487, 658, 692, 697 Lutes, D.S., 160 Lynton, E. A., 318, 319, 340, 341, 345 Macnair, D., 494 Maita, J. P., 202, 310, 465, 552, 704, 705 Makarov, V.I., 591 Malseed, C. F. S., 685 Mapother, D. E., 148, 159, 180, 193, 219, 249, 267, 329, 336, 337, 579 Marchand, J.F., 393 Martienssen, W., 215 Martin, D. L., 380, 421 Martin, R. B., 548 Matsakova, A. A., 518 Matthias, B. T., 11, 19, 25, 28, 32, 33, 34, 35, 37, 38, 39, 43, 48, 54, 93, 94, 115, 116. 117, 124, 127, 128, 137, 138, 140, 142, 146, 171, 172, 173, 184, 186, 200, 201, 202, 204, 207, 211, 212, 216, 223, 224, 234, 236, 239, 240, 246, 247, 270, 271, 275, 280, 283, 292, 352, 364, 422, 449, 454, 469, 472, 486, 491, 494, 498, 500, 503, 504, 510, 552, 563, 574, 575, 606, 614, 615, 625, 659, 667, 674, 698, 699, 700, 703, 704, 705 Maxwell, E., 160 Mazelsky, R., 481, 482, 501 McConville, G. T., 185, 473, 544 McDonald, T. R. R., 520, 695 McLachlan, D., 340 McLennan, J.C., 86, 99, 109, 111-13, 308 McWhan, D. B., 471, 520, 605, 695 Meaden, G. T., 226, 495 Meissner, H., 26, 294, 672 Meissner, W., 20, 69, 75, 76, 83, 84, 89, 123, 273, 404

Mendelssohn, K., 98, 170, 360, 478 Mendoza, E., 17, 390 Merriam, M. F., 255, 256, 257, 258, 260, 261, 445, 487, 488, 489, 511, 576, 609. 670, 692 Methfessel, S., 534, 617 Meyer, H., 543 Meyer, L., 46 Michailov, N. N., 326, 427 Migunov, L., 103 Mikhailov, G.O., 532 Mikhailov, Yu. G., 131 Mikheeva, M. N., 516 Miller, C.E., 35 Miller, R. C., 431, 481, 482, 501 Milne, J.G.C., 175 Mingazin, T.A., 53 Minnigerode, Von G., 183, 191, 296, 602 Minomura, S., 681, 689 Montgomery, D.B., 684 Moore, J.R., 98 Morin, F.J., 202, 310, 465 Morozova, V.K., 583 Mould, R. E., 337 Muheim, J., 293, 448 Muir, H., 288 Müller, C., 359 Muller, J., 121, 130, 274, 276, 293, 295, 301, 314, 328, 366, 412, 413, 414-418, 448, 477, 554, 557, 567, 568, 569, 570, 572, 578 Nagasaki, H., 681 Nakhutin, I. E., 81 Neighbor, J.E., 476 Nemoz, A., 668 Neshpor, V.S. 603 Nethercott, R.B., 685

Netzel, R.G., 192 Neugebauer, C.A., 529 Ng, S.C., 484 Nichols, G. E., 190, 248 Niessen, A.K., 683 Nikulin, E.I., 131 Niven, C. D., 308 Nix, F.C., 338 Norman, M., 135 Norton, L. J., 102 Noskin, V.A., 603 Novick, D. T., 375 Novikov, V. I., 603 Nowotny, H., 447 Ohtsuka, T., 673,676 Ohtsuka, Y., 462 Okai, B., 681, 689 Olsen, C. E., 504, 614 Olsen, J. L., 480, 510, 546, 569, 639, 662, 667, 691 Onn, D.G., 543 Onnes, K., 91 Onoda, Y., 689 Opitz, W., 351 Otter, F.A., 336 Otto, G., 460, 564 Ovcharenko, G. N., 518 Pablo, M.R., 464 Palmer, P. E., 613 Palmy, C., 566, 569 Pals, J.A., 519 Park, J.G., 624, 626 Parker, E.R., 496, 513, 571, 573, 638, 691 Parthe', E., 370 Paskin, A., 619 Pastore, J.R., 483

Pearsall, G. W., 581, 593 Pearson, W.B., 108 Pessall, N., 514 Peter, M., 364 Pfeiffer, E., 611 Phelan, R., 189 Phillips, N. E., 156, 422, 525, 537, 620, 629, 656,700 Picklesimer, M. L., 230 Pickus, M., 628 Pincus, A.G., 331 Pollard, E., 640 Polukarov, P. M., 197, 394, 590 Prewitt, C. T., 643 Pyle, J., 409 Quinn, D.J., 209, 320 Rabenau, A., 528 Rachinger, W.A., 685 Raetz, K., 254 Rairden, J.R., 529 Ralls, K. M., 690 Raub, C. J., 259, 260, 262, 449, 472, 486, 491, 499, 500, 530, 535, 552, 625 Rauch, G.C., 631 Rayl, M., 298 Rayne, J.A., 300, 680 Reeber, M.D., 143 Reed, T.B., 277, 311, 355 Reick, R., 580 Reif, F., 251 Reinmann, R., 416 Reinov, H. M., 131 Renard, M., 362, 382 Revolinsky, E., 636, 647, 654 Reynolds, J.M., 14 Rhoderick, E.H., 347

Rinderer, L., 348 Risi, M., 328 Rizzuto, C., 436, 598 Rjabinin, J. N., 80, 82, 106, 401 Roberts, B.W., 303 Roberts, L.D., 47 Robin, M. B., 605, 651 Roddy, J.T., 311 Rogener, H., 63 Rollin, B. V., 64, 65 Romer, R. H., 701 Rorer, D.C., 543 Rose, R. M., 225, 631 Rose-Innes, A. C., 244, 410, 428, 548 Rosenblum, B., 666 Rosenblum, E.S., 334 Rosi, F. D., 185, 473 Rosler, U., 222, 398 Rosner, L.G., 517, 652 Ross, R. L., 444, 483 Rothwarf, F., 370, 604, 642 Rowell, P. M., 170 Rudy, E., 573 Rühl, W., 376 Rupp, G., 688 Russell, C. M., 677 Sadagopan, V., 640, 650 Samsonov, G.V., 333, 433, 560 Satoh, T., 676 Saur, E. J., 139, 254, 299, 315, 359, 386, 460, 479, 553, 564, 588 Savitskii, E. M., 323 Schepelev, J.D., 80, 401 Schaeffer, G. M., 675 Schirber, J. E., 100, 114, 176 Schmidt, P., 494

Schneider, D., 263, 264 Schooley, J.F., 594, 610, 611, 621 Schreiber, D.S., 488 Schroder, E., 96, 110 Schubert, K., 222, 398 Schubnikow, L. W., 80, 82 Schwartz, C. M., 696 Sclar, C.B., 696 Schulitsova, O.I., 433 Schult, P., 386 Schwidtal, K., 296, 377, 463 Scott, R. B., 391 Seidel, G., 24 Seidel, T., 672 Sekula, S. T., 230, 429, 653 Sellmaier, A., 79 Semenenko, E. E., 144, 395, 550 Senozan, N. M., 525, 620 Seraphim, D. P., 169, 320, 342, 367, 375, 430 Serin, B., 318, 319, 341, 345, 544 Sevastyanov, B. K., 373 Seymour, E. F. W., 65 Shalnikov, A.I., 392 Shalyt, S.S., 603 Shappirio, J.R., 483 Sharvin, G., 104 Shaw, R. W., 159, 180 Shen, L.Y.L., 620 Sherwood, R.C., 364 Shibuya, Y., 462, 562 Shiffman, C.A., 360, 476 Shigi, T., 495 Shimashek, E., 385 Shoenberg, D., 120, 164, 165 Shubnikov, L.V., 106, 401

Shuliskova, O. I., 558, 559, 560, 561 Sidirova, T.A., 583 Siebenmann, P.G., 564 Simon, F., 12 Sklarz, E.G., 633 Smirnov, A. P., 101, 131 Smirnova, E. M., 396, 411 Smith, T. F., 542, 608, 629, 655, 656, 657, 658, 697, 698 Smith, T.S., 45, 166, 168 Snider, J.W., 208 Soehle, S., 419 Soklakov, A. I., 155 Spedding, F.H., 22, 227, 339 Spiering, G.A., 647, 654 Spitzli, P., 567, 568 Spry, R. J., 208 Staas, F.A., 683 Steele, M.G., 30, 167 Stepanova, A. A., 129 Storms, E. K., 271, 397 Stout, J. W., 13, 44 Stowell, W. R., 595 Strongin, M., 179, 507, 541, 619, 671 Sudovtsov, A. I., 101, 144, 395, 550 Suhl, H., 93, 115, 116, 200, 201, 247 Suits, J.C., 443 Sutton, J., 682 Swartz, P.S., 316, 586 Sweedler, A. R., 472, 489, 500, 575, 625, 674 Swenson, C. A., 100, 114, 176, 324, 325 Szklarz, E.G., 271, 278, 284, 397 Taconis, K.W., 297 Tanuma, S., 681, 689 Taylor, A., 266, 468 Templeton, L. M., 150

Theuerer, H.C., 512 Weber, R., 531 Thomas, J.G., 17 Wei, C. T., 195 Thompson, C.T., 313 Weill, L., 177, 382 Thomson, J., 456 Wells, M., 628, 691 Thorsen, A.C., 571 Wentorf, R. H., 305 Thurber, W.R., 611 Wernick, J.H., 204, 310, 365, 406, 645, 646 Tittman, B.R., 424, 442, 502, 549 Westerhoff, H., 20, 83, 84, 89 Toth, L., 496, 513, 517, 571, 573, 632, 635, Wexler, A., 16 638, 652, 691, 694 Wheatley, J.C., 493, 612 Toxen, A. M., 210, 450 White, D., 232, 233 Tsao-Hsiao-Wen, 589 White, G.K., 133 Ulmer, K., 637 White, P.R., 384 Valette, C., 642 White, R. W., 504, 614 VanAlphen, P. M., 72 Whitehead, C.S., 350 VanAubel, E., 15, 70, 71, 87, 381 Wiedemann, W., 149 VanBeelen, H., 297 Wiederhold, E.W., 208 Van der Hoeven, B. J. C., Jr., 527 Wilhelm, J.O., 86, 109, 111-113, 308 VanDuykeren, N. W. J., 679 Willens, R. H., 498, 704 Van-Engelen, P. P. J., 519 Williams, A.J., 174, 187 VanMaaren, M.H., 675 Williams, H.J., 364 VanOoijen, D. J., 357, 407 Williams, I., 538 VanReuth, E.C., 330 Williamson, S. J., 686 VanVucht, J. H. N., 407, 661 Wilson, J.H., 189 Veal, B.W., 300 Wittig, J., 540, 547, 706 Venema, A., 393 Wizgall, H., 553, 684 Vernon, S. N., 539 Wohlleben, D. K., 700 Veyssie', J.J., 177, 668 Wolcott, N. M., 27, 135, 151, 302 Vieweg, G., 66 Wolgast, R.C., 321 Vilches, O. E., 493, 612 Wood, E.A., 41, 128, 137, 142 Voigt, B., 273 Woods, S.B., 133 VonHerzen, M., 261 Woolf, M. A., 251 VonPhilipsborn, H., 568 Wulff, J., 225, 581, 593, 631 Voogd, J., 15, 70, 71, 87, 90, 381, 402, 403 Yasukochi, K., 426 Wang, C. P., 694 Yen, C. M., 517, 632, 652, 694 Waring, R. K., Jr., 582 Yencha, A.J., 442 Webb, G.W., 530

(XII-11)

Yocom, P. N., 601
Young, H. S., 643
Young, R. A., 9, 18, 40, 67
Yung Lung Shen, L., 525
Zachariasen, W. H., 25, 146, 491, 698
Zackay, V. F., 571, 628, 691
Zavaritskii, N. V., 220, 388
Zegler, S. T., 408, 492, 648
Zemansky, M. W., 92, 343, 344
Zhdanov, G. S., 53, 55, 57, 59, 61, 62, 107, 145, 153, 155, 158, 198, 237, 286, 287, 396
Zhuravlev, N. N., 6, 50, 51, 52, 53, 57, 59, 107, 129, 145, 153, 155, 158, 198, 396, 411, 425
Ziegler, W. T., 9, 18, 40, 49, 67, 68, 97
Zucker, M., 318
Zwicker, U., 499, 522
Zyvzin, N. I., 129

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

• Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$6.00; foreign, \$7:25*.

• Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$2.25; foreign, \$2.75*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$2.75; foreign, \$3.50*

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

Order NBS publications from:

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Governmentgenerated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

> Clearinghouse U.S. Department of Commerce Springfield, Virginia 22151

Superintendent of Documents Government Printing Office Washington, D.C. 20402

^{*}Difference in price is due to extra cost of foreign mailing.

U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE