NBS
 TECHNICAL NOTE

Edpac:

Utility Programs for
Computer-Assisted Editing,
Copy-Production, and Data Retrieval

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards² was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in three broad program areas and provides central national services in a fourth. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.
The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, and the Center for Radiation Research.
THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Standard Reference Data and a group of divisions organized by the following areas of science and engineering:

Applied Mathematics-Electricity-Metrology-Mechanics-Heat-Atomic Phys-ics-Cryogenics ${ }^{2}$-Radio Physics ${ }^{2}$-Radio Engineering2-Astrophysics ${ }^{2}$-Time and Frequency. ${ }^{2}$
THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to methods, standards of measurement, and data needed by industry, commerce, educational institutions, and government. The Institute also provides advisory and research services to other government agencies. The Institute consists of an Office of Standard Reference Materials and a group of divisions organized by the following areas of materials research:

Analytical Chemistry-Polymers-Metallurgy - Inorganic Materials - Physical Chemistry.
THE INSTITUTE FOR APPLIED TECHNOLOGY provides for the creation of appropriate opportunities for the use and application of technology within the Federal Government and within the civilian sector of American industry. The primary functions of the Institute may be broadly classified as programs relating to technological measurements and standards and techniques for the transfer of technology. The Institute consists of a Clearinghouse for Scientific and Technical Information, ${ }^{3}$ a Center for Computer Sciences and Technology, and a group of technical divisions and offices organized by the following fields of technology:

Building Research-Electronic Instrumentation - Technical Analysis - Product Evaluation-Invention and Innovation-Weights and Measures - Engineering Standards-Vehicle Systems Research.
THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center for Radiation Research consists of the following divisions:

Reactor Radiation-Linac Radiation-Applied Radiation-Nuclear Radiation.

[^0]UNITED STATES DEPARTMENT OF COMMERCE
C. R. Smith, Secretary
NATIONAL BUREAU OF STANDARDS - A. V. Astin, Director

ISSUED JANUARY 1969

Edpac: Utility Programs
 for
 Computer-Assisted Editing, Copy-Production, and Data Retrieval

Carla G. Messina
and Joseph Hilsenrath

Office of Standard Reference Data Institute for Basic Standards
National Bureau of Standards
Washington, D.C. 20234

Abstract

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

FOREWORD

This report describes one of a series of computer programs being developed by the Data Systems Design Group of the NBS Office of Standard Reference Data to assist the Data Centers affiliated with the National Standard Reference Data System. The text of this report was reproduced from a typescript prepared on a typewriter terminal connected to a time-shared computer system. The program listing was produced on a phototypesetting machine at the Government Printing Office from a magnetic tape produced at NBS.

TABLE OF CONTENTS

1. Introduction 1
2. Characteristics of the Program SCRAMBLE 3
2.1 The Control Cards for SCRAMBLE 3
3. Characteristics of the Program SUBSTITUTE 6
3.1 The Control Cards for SUBSTITUTE. 6
3.2 The Subroutine SUBSTITUTE 8
4. Characteristics of the Programs SEARCH and BLOCKSEARCH. 12
4.1 The Control Cards for SEARCH 12
4.2 The Operation of BLOCKSEARCH 13
5. Preparation and Editing of Manuscripts 20
5.1 Characteristics of JUSTIFY 21
5.2 The Control Cards for JUSTIFY 21
5.3 The Format Control Symbols 24
5.4 Two Applications of JUSTIFY 28
APPENDIX
Program Listings 35
Scramble 36
Substitute 37
Subroutine Substitute 45
Search 52
Block Search 56
Justify 61

ABSTRACT

A description and listings are given of EDPAC, a package of five related utility computer programs: SCRAMBLE, SUBSTITUTE, SEARCH, BLOCKSEARCH, JUSTIFY, and their subroutines. These programs perform transformations on alphanumeric data. The programs have been written in FORTRAN, with care taken to make them as system and machine-independent as possible, permitting their use on many different computers.

SCRAMBLE scans an input file for specified characters, which it replaces by different characters. SUBSTITUTE similarly replaces strings of characters by other strings. SEARCH and BLOCKSEARCH scan for the occurrence of certain strings and list the lines or blocks, respectively, in which they occur. JUSTIFY produces text, for printing on a card-controlled typewriter or on an extended character printer, which has been left and right-justified between specified margins.

Some applications of the EDPAC programs are discussed. Emphasis is placed on computerassisted text preparation.

Key words: alphanumeric data files, computer assisted text preparation, data retrieval, FORTRAN programs, free field text files, mechanized text editing

An important ingredient, even a necessity, for an effective solution to problems of providing critical correlations of standard reference data is the application of computers to as many facets of the problem as possible.

Computers have been applied to a wide variety of computational jobs, to many bibliographic problems, and to automatic printing of data tapes. In each of these areas, however, the existing programs require their own specialized input formats. Most of the time the form of these instructions or data formats are dictated by considerations other than those of simplicity of operation or of universal application. Indeed, the two objectives often seem contradictory.

Such attempts as we have seen in formatting data for computer input have suffered from one or more serious drawbacks. The most serious of these has been the inability of even comprehensive systems to cope with the general case. It is our view that the more profitable line of attack on the problem of compatibility and interchangeability, of data cards or data tapes is to provide a series of utility programs which will transform, translate, transpose, and transcribe information from one format to another.

The feasibility of handling free-field input of numerical data was demonstrated a number of years ago in a general-purpose computer program developed at NBS.* In that program, a versatile subroutine for scanning a card was written in machine language. Now the facility for reading freefield numerical data is provided in the compilers for FORTRAN IV. The extension of the free-field capability to the letters and characters employed in English language text poses a variety of problems which cannot be solved in a single scanning package. Here it seems more natural to provide a facility for translation, and transformation of characters or character strings.

To put the matter bluntly, we deem it less profitable to promulgate rigid rules on punching formats for data or text, and more profitable to devise flexible but easily used utility programs for handling mixed input or for recasting the input when other means fail.

This report describes five utility programs: SCRAMBLE, SUBSTITUTION, SEARCH, BLOCKSEARCH, and JUSTIFY. The five perform non-trivial transformations on alphanumeric data punched on cards or stored as records on a magnetic tape.

The programs have been written in a limited subset of FORTRAN IV. Particular care was taken to make them machine independent with respect to internal bit configuration and system independent with respect to input and output, and to minimize the modifications required in conversion to other FORTRAN dialects. Although the programs are all independent and perform very specific tasks, they can be used sequentially to carry out a series of operations in which the results of one code are used as input for the next. Furthermore, under a suitable operating system, it is possible to carry out a series of operations in a single run.

[^1]An important application of such utility programs arises in the preparation of manuscripts and reports, especially where it is important to produce right-hand justified copy (flush right-hand margins). Furthermore, the programs allow for a variety of precedence characters (used for shifting from lower to upper case of a card-controlled typewriter or with an extended character printer on a computer). The combination provides reproduction copy suitable for publication. Where graphic arts quality is needed, the programs can be used to insert instructions for font changes on a photocomposing machine.

When text is to be prepared for photoreproduction on a card-controlled typewriter, it is useful to provide simple instructions for such things as: case shift, tab stops, and card eject with and without a line-feed. These are achieved by assigning a symbol for each function. As choice of symbols depends somewhat on the text, it is important for the system to allow for their specification in a simple manner with a control card.

Dreface to the Second Edition

That the stock of the first orinting of this Handbook should have been exhausted almost coincident with the anpearance
of the reviews of it, points up the keen interest in user-or iented
systems for problem solving on modern computers. Equally gratifying is the recognition by the designers of more conventional computer languages of the need to free programmers from many of the tedious, annoying and error-generating rules and restrictions of early versions of FORTRAN restrictions which are largely absent in OMNITAB.

Dreface to the Second Edition

That the stock of the first printing of this Handbook should have been exhausted almost coincident with the appearance of the reviews of it, points up the keen interest in user-oriented systems for problem solving on modern computers. Equally gratifying is the recognition by the designers of more conventional computer languages of the need to free programmers from many of the tedious, annoying, and error-generating rules and restrictions of early versions of FORTRAN restrictions which are largely absent in OMNITAB.

This edition differs from the first in the following ways a number of typographical errors have

Figure la. The upper portion shows the condition of lines of text after editorial changes were made. Each line is punched on a separate card. The lower figure shows the same text after being processed by one of the Edpac programs. The copy was produced on a card controlled typewriter.

Numerous situations arise in data manipulation where it is necessary to .eplace one character by another. A common example is the canversion of data from single precision to double precision format where every E must be changed to a D. An example at the other end of the application spectrum is the encoding of straight text via a substitution cipher. The SCRAMBLE program handles both of these problems with equal facility. The substitution is achieved by having two sets of symbols punched in one-to-one correspondence in corresponding fields of the first two control cards. In this way, the symbols on the second card always replace the symbols in corresponding positions on the first. It is possible, for example, to replace all vowels by a single letter or by a special symbol. If the nowels are replaced by a blank and words are otherwise separated, one has a useful tool for computerized exercises in linguistics. The code will perform as many as 80 single character substitutions in a single pass through the machine.

2.1 The Control Cards for SCRAMBLE.

The first control card contains those characters for which substitutions are to be made in accordance with corresponding instructions punched on the second card.

The second card contains those characters to be substituted for the characters in the corresponding fields of the first control card.

The third card contains four switches in FORMAT (3I2,1I4).
a. Switch one should be a 1 (one) when a special output unit is to be written and a zero if not. The special output unit is specified by switch number 3 (see paragraph c. below).
b. The second switch is the unit from which to read the input file. (If the switch is zero, the program sets the input to unit 5 for the card reader.) The first three control cards are always read from unit 5 but the choice of a unit for the input file is left up to the user.
c. The third switch is the unit, separate from the printer, on which to write the output files. When this switch is zero tne unir is set to 3 (the card punch).
d. The fourth switch contains the width (number of characters) of the text of the input file. SCRAMBLE assumes a width of 80 if "width" is less than one or greater to 132.

The program will come to a normal stop if it encounters an input record containing a duplicate of the first 26 columns of the first control card, otherwise it will read input records until it runs out of records to read. The program will terminate at once if the first two control cards are identical in all 80 positions.

Figure 2a. An application of SCRAMBLE to modification of a computer program wherein every X was replaced by $a y$ and vice versa. The old program is on the left, the transformed version is on the right. Note the simplicity of the three control cards on the left. The zero designates no special card or tape output. . On the computer used at NBS, a blank is read as a zero.

Figure 2b. In this application to a COBOL program, the six symbols +()$=1\rangle\langle$ are changed to $\langle[]\rangle: \backslash)$ respectively.

PAGE NUMRER:
 41

```
ABCDEFGHI JKLMNOHQRSTUVWXYZ0123456789
ZABCDEFGHI UKLMNUPQRSTUVWXYYU12345678
    15 8%
3. S'GONQUSHHZK 'K'NKHC 'KOSZSD OOGXKHAR'O')
!*!.!K!. IO!USUQRNNM
B
1
```

' W DRULQOG NE OTUQDMS HMSOQDRS HM KNKHC KSZSD OGXRHBR HMBKTCDR) CUUDKNOLDMS ZMC ZOOKHBZSHINM NL INNMKHMIZQ SNZMRONQS SGONQX OWSDMRHNMR NE) SGU DEEDHSHUD EHDKC SGONQHIH NE LTFMOSHRL, ZMC HMUDRSHFZSHNMR NE RDUDQZK) ZKODBSK NE ROHN QDK $\angle B S H N M, ~ O Z Q S H B T K Z O K X ~ M D Z Q ~ S Q Z M R H S H N M ~ S D L O D Q Z S T Q D R) ~.(~) ~$

```
4. 'T.MHSZQX 'L'TSUHW 'E:HUKC IS'GDNQX'0!)
'U'. 'F'. 'INGMRNMI' I'Q.)
    )
-(N'DRUZQGG HK TMCDQVZX SN CDSDQLHMU HE SGHR SGUNQX'4'R MNMKHMDZQ) DHTZSHINM GZK SGU DKLLOMSZQX OZQSHRKO ROOBSQZ, HM OZQSHBTKZQ, SGD ) DKDHSQNM. 'R'TQQNMS RSZSTR NE SGI VNQU HR SGU EHMCHMF NE Z BNMSHMTTL) NL \(144^{\circ F Q U U ~ O Z Q S H R K U: 44: ~ R N K T S H N M R: ~ Z L N V F ~ V G H B G ~ Z Q D ~ S G D ~ M O T S Q H M N R . ~) ~}\) -S GU UNNAKDL \(2 S\) OULRUMS HR SN RDKDHS EQNL SGHR BNMSHMTTL SGDI RNK TSHINMR VGHOG ZOU RSZAKD TMCDQ SGU HMSUQZBSHNM NE SGO OZQSHEKO VHSG HSR) DNUHQNIMLOMS. 'S'GO UQHLI IEENQS HMUNKUDC HK SQXHMF SN CN SGD MTLDQHBZK) ZINZKXKHR NNV SGD BNLUTSDQ RNMRHRSZNSKX RN SGZS SGD MTLDQHBZK RGDBJR)


\section*{PAGE NUMBEK: \\ 43}

AOCDEFGHI JKLMNOHQRST UVWXYZO123456789
BUDEFGHI JKLNNOPQRSTUVWXYZA 1234567890
U 8
4. TTHEOKLTICAL V.SULID ISTATE PPHYSICS.1")
-K'. 'L'. •P'ETERSOIV)
1
' \({ }^{\prime}\) SEAKCH OF CURRENT INTEKEST IN SOLID STATE PHYSICS INCLUDFS ) DEVELUHMENT ANU APPLICATION OF NONLINEAR TRANSPORT THEORY EXTENSIONS OF) THE EFFFCTIVF FIELI THEORIFS OF MAGNETISM, AND INVESTIGATIONS OF SEVERAL) ASPECTS OF SPIN FELACTION, PARTICULARLY NEAR TRANSITION TEMPERATURES.) )
5. U'NITAKY MMATKIX 'F IELD 'T•HEORY'1:)
- R'ESEARCH IS UNUERWAY TO DETERMINE IF THIS THEORY'5•S NONLINEARI EUUATIUN HAS THE ELEMENTAKY PARTICLE SPECTRA. IN PARTICULAR. THE ) ELECTKUN. 'C'URRFNI STATUS OF THF WORK IS THE FINOING OF A CONTINUUM) OF' 5 S'FREE PARTICLE'55' SOLUTIONS. AMONG WHICH ARE THE NEUTRINOS. ) 'T THE PROHLEM AT PKESENT IS TO SELECT FROM THIS CONTINUUM THE) SULUTIUNS WHICH ARE STABLE UNUEK THE INTERACTION OF THE PARTICLE WITH ITS ENVIRONMENT. T'HF HRIME EFFORT INVOLVED IS TKYING TO DO THE NUMERICAL)

Figure 2c. The top portion is the result of a linear substitution of characters. The bottom portion results from a restoration of the original characters. The figures 1,5 , and 8 on the third control card set input to read from the card reader (unit 5) and output to be placed on unit 8 . On the lower portion, no cards are punched and the input is from unit 8 .

The program SUBSTITUTE is a more versatile version of SCRAMBLE and is therefore more complex. It has a provision for replacing any character string by any other character string regardless of where it occurs in the text.

Among the diverse jobs this program can do are the following:
a. Convert text punched on cards in BCD format (all capital letters) to upper and lower case, such as initial capitalization of the start of each sentence, or names and initials of authors.
b. Replace any arbitrary set of symbols by corresponding instructions for a phototypesetting machine.
c. Recognize typesetting instructions in a text and either delete them or replace them with other codes.
d. Anglicize text written by Americans, and the reverse.
e. Replace journal abbreviations by their five letter CODEN designations or vice versa, or by the full title.
f. Replace citation numbers in the body of a paper by new ones resulting from insertion of new references.
g. Insert complex mathematical expressions when they occur frequently in a text, thereby avoiding needless retyping and subsequent proofreading.
h. Insert typesetting instructions in place of code words for special symbols not available on the input device but available on a phototypesetting device.
i. Screen for and correct automatically inconsistent use of abbreviations or symbols.
j. Change variable names in a computer program to avoid conflicts when incorporating other programmers' work or to recover from the incompatability of various FORTRAN dialects.

SUBSTITUTE is presented in two forms: as a stand-alone main program, and as a subroutine suitable for incorporation into another main program.

\subsection*{3.1 The Control Cards for SUBSTITUTE}

The first control card serves to define the punch configuration for the characters in the text as well as the control characters upon which the operations depend. The presence of the characters on the first card obviates the need to define them explicitly in the program. This simple device makes the program independent of a variety of incompatabilities which are such a source of trouble in adapting programs to different computers.

The program logic uses the disposition of the characters on the first control card in such a way as to avoid entirely the need to know how a particular machine recognizes a character on a card, what the internal bit representation of that character is, and where that character is placed in a machine word. In this way the program is independent of whether the particular machine stores away 3 characters per machine word, or 6 , or even 7. Nor is it dependent on whether a single character is stored leftadjusted, right-adjusted or any other way. The alphabet is punched in order into the first 26 card columns hereinafter referred to as cc, and the digits \(0,1, \ldots ., 9\) follow.in cc27 through 36. The character to be used to delineate the strings in the output of this program is designated in cc38; while cc47 must be left blank in this program and in all programs in this series.

The second card contains three switches in FORMAT (3I2). They serve exactly the same purpose as the first three switches of the third control card for the SCRAMBLE program.

The third and fourth control cards in FORMAT (A1, I3, 2A1, I2), respectively specify the format of the input and output records. The five items on each card perform the following tasks:
a. The first tells which symbol is used to designate a continuation when the line is longer than the designated record length.
b. The second item defines the length (in character) of a record.
c. The next two items designate the characters used for case-shift lock and case-shift unlock. Their use is required only under circumstances described below.
d. The fifth item instructs the program to insert on input and delete on output, the case-shift symbols designated in item \(c\). If this number is set to zero, the option is bypassed, in which case the third and fourth items discussed in \(c\) above may be left blank. If this item is a non-zero integer, it distributes, when present on the third control card, and deletes, if present on the fourth control card, the shift case symbols indicated by the two previous items on the control card. See Figure 4 a for applications of this feature of program.

Immediately following the fourth control card is a deck of cards containing the instructions for the string substitutions. In this version of the program, each card carries two strings--the original one and its substitute. The length of the strings this program handles is limited to a total of 76 for the string and its substitute. Thus a "long" string can be replaced by a "short" one and vice versa.

Each of the strings is delimited by a balanced character which is read from the first column of the substitution card. In this way each card can have its own string delimiter. The only requirement is that the delimiter character must not be one which is in the string it delimits. See Figure 3d for a sample set of control cards for this program.

The substitution table must be followed by a card with the word FINIS starting in ccl. It may be followed by the text to be manipulated if the input is from a card reader.

A number of text editing systems reserve one character as a precedence symbol to indicate an upper case letter. Thus if we punch *VASHINGTON we would expect a suitable printer to print out Washington. A single symbol could be used to print the word in all caps if one were prepared to type \({ }^{*} W^{*} A^{*} S^{*} H^{*} I^{*} N^{*} G^{*} T^{*} O^{*} N\). This is obviously too time consuming as well as wasteful of valuable computer space. The problem is easily solved by reserving another symbol such as an apostrophe to indicate shift lock and shift unlock. In that case our test word would be keyboarded as follows: 'WASHINGTON'.

Subsequent transformation of these symbols as would be required in going to automatic typesetting or converting from the BCD representation to EBDIC would have to treat the character following the \(W\) differently in the strings 'WASHINGTON' and *WASHINGTON. This problem is solved by this program in the following way. When instructed to do so via the third control card, the program changes 'WASHINGTON' to 'W'A'S'H'I'N'G'T'O'N. If instructed to do so via the fourth control card and after carrying out the substitution, the interior shift symbols are deleted and the word is imbedded between the shift and lock symbol.

Since one often replaces a short string by a larger one, some provision must be made for spilling text over to the next record or line. Care is taken not to split words in the process.

\subsection*{3.2 The Subroutine SUBSTITUTE}

The substitution capability has been incorporated into a subroutine whose name is SUBST. It can be called from a main program by using the words CALL SUBST (IB, IW, ITYPE). It must be called once to read in the control cards and the substitution table for which purpose ITYPE is set to zero and IB, and IW are ignored. It must be called again for each line to be processed with ITYPE equal to 1 . At this time the variable IB denotes a singly dimensioned array on which the program is to operate. IW is the number of characters in the vector \(I B\).

On return from this subroutine, \(I B\) contains the altered line which the main program handles in whatever manner is desired. IW contains the length of the altered line. On the first call of SUBST (when ITYPE is zero) the control cards are identical to those described for the program SUBSTITUTE.

In the interest of clarity the control cards for the subroutine SUBST have been kept identical with those for program SUBSTITUTE even though certain parameters required for the program are not needed for the subroutine. They may be left blank without disturbing the operation of the subroutine on those machines that equate a blank to a zero. Otherwise all integer switches that are not needed musl be set to zero.
\[
\begin{aligned}
& \text { = }{ }^{\prime} H^{\prime} \cdot H^{\prime} \text {. 'H'ENKEL, '55E'QUATION OF 'S'TATE AND THE 'T'HERMAL 'D'EPENDE }
\end{aligned}
\]
\[
\begin{aligned}
& \text { = }{ }^{\circ} \text { 'LASTIC 'C'OEFFICIENTS OF 'C'RYSTALLINE 'A'RGON, 55' JJ'. 'C'HEM. } \\
& \text { ='ELASTIC 'COEFFICIENTS OF 'CRYSTALLINE AARGON,'5'5 'J. 'CHEM. 'PHYS } \\
& \text { 'E'LTIC 'C'OEFFICIENTS OF 'C'RYSTALLINE ALPHARGON, } 55 \text { ' J'OURNAL OF }
\end{aligned}
\]

Figure 3a. A printout of a problem to test the "lock" and "unlock" features of SUBSTITUTE. The first line shows what was read from the input unit. The second line shows the transformation required in order to recognize strings of characters such as THERMAL. The third line shows the result after substitution and restoration of the shift and lock mode. The final transformation (the 3 rd and 6 th lines) were achieved via the following substíution table.
\[
\begin{aligned}
& \text { /'J. 'CHEM/ /'JOURNAL OF 'CHEMISTRY/ } \\
& \text { /'A/ /ALPHA/ } \\
& \text { *THE * *2* } \\
& \text { 'THERMAL' '3' } \\
& \text { :LAST: :LT: } \\
& :=:: ~
\end{aligned}
\]

The last line of the substitute table replaces the \(=\operatorname{sign}\) by a null string.
-POSTIIVF AINC NEGATIVE IONS ARE PRODUCFN IN THIS FASHION DEPENDING URON CERTAIN SURFACE AND FRFE ATOM PROPERTIFS. 'E'XPERIMENTS HAVE BEEN CARRIEU OUT WITH THE SURFACE IUNIZATION UF FOREIGN ATOMS IMPINGING UPOIV A TRANSITIUN METAL SURFACE ('I.E.. ALKALI ATOMS OIN TUNGSTENT AS WFLL AS THE SELFE , 0 T SURFACE IONIZATION OF SUHSTRATF ATOMS • (•1.E.. TIJNGSTEN. NIOHIUM. AND RHENIIJMI. 'TIHE ARPLICARILITY OF THE ENUTLIGRIUM 'S AHAL'0.] T'ANGMUIR EQUATION IS BEING STUDIEU FOK A WIUE SPFCTRUM OF MATERIALS.


-PPROCESSES OCCURHING WHEN GAS GFNERATED FREE RADICALS RFACT WITH SOLIDS RELOW \(100: 0^{\circ}\) ' ARE HEING STIUIEIO 'R'FACTIONS OF 'H', 'U'. 'T'. AND 'U' WITH CONNENSEU OLFFINS PEKMIT DETAII.ED OBSERVATIONS UN DIFFUSIUN IN THE COLIに. PRECISE RELATIVE RATES OF CUMPETITIVE RLALTIONS. OUANTUM MECHANICAL TUNNELING. THE NATURE OF IISPROPOKTIONATIUN AND COMBINATION REACTIONS: ANN THE EFFECT OF STKIICTIJRE UN RFACTIVITY.

Figure 3b. This text was punched on cards for a card-controlled typewriter. The first and subsequent odd apostrophies shift and lock the carriage while the second and succeeding even ones unshift the carriage (restores to lower case). The transformation of this text stream to produce the results in Figure \(3 c\) was achieved via the SUBSTITUTE program and the control cards in Figure 3d.

PUSITIVF AINU INEGATIVE IONS ARE PROINCEG IN THIS FASHION DEPENDING UPON LFRTAIN SIJFFACE AND FRFE ATUM FRUPERTIES. DEXPERIMENTS HAVE BEEN (ARRIEI) OUT WIIH THE SURFACE IUNITATION OF FOREIGN ATOMS IMPINGING UNON A TKANSITIOÑ NETAL SUBFACE >G<I.E.. ALKALI ATOMS ON TUNGSTEN>O< AS WLLL AS THE SELF- SURFACE IONIZATION OF SURSTKATE ATOMS >Cく1.E.. TUNGGSTEN. NIUHIUM, AND RHENIUM>O<., >T<HF AHPLICARILITY OF THE EOUILIHRLINM \(>5 \angle A H A->L \angle A N G M U I R ~ E O U A T I O N ~\)
IS REING STUIIFL FUK A WIDE SPFCTRUM UF MATERIALS.
[>C:I<HFMICAL >K<FLLTIONS IN THE >C<RYOGENIC >R<EGION: >! < [ \(>M<\). \(>n<\). \(>S<C+H E F H\) AND \(>R<\). \(>K<L F I N\)
- LLDPKKUCESSES OCCITRIING WHEN GAS GENFRATEI FREE RAUICALS REACT WITH SOLTUS RELUW \(1 \cup O\) >K गU<. >T<, ANI) >U< NATH CONDENSED DLFFINS PEKMIT UFTAILED OUSFRVATIUINS LIN DIFFUSION TN THE GOLII, PRFCISE RFLATIVE RATES OF CUMPE ITIVE REACTIONS, DUANTUIM MECHANICAL TUNNELING. THE NATURE OF DISPROROKTIONATIUN AND COMEINATION REACTIONS. AND THE EFFECT of Strictide un rfactivity.

Figure 3c. This text stream was produced by SUBSTITUTE from the text shown above. The control cards to achieve this transformation are shown in the next figure. The ATS System uses two tabs to achieve an indented line at the start of each paragraph. The tabs are actuated by a square bracket ([). SUESTITUTE must therefore replace the four blanks by two square brackets. This is achieved in this problem by 26 control cards which change each capital letter of the alphabet that is preceded by four blanks to that same letter preceded by two tab symbols ([[). One control card would have been sufficient here if we were certain that the text did not contain four or more consecutive blanks in the interior of a paragraph.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{ABCDEF GHIJKLMINOPQRS IUVWXYZ0123456789,} \\
\hline \multicolumn{4}{|l|}{\$ 80.1} \\
\hline \multicolumn{4}{|l|}{] 73>< 1} \\
\hline 1 'A/ & \multicolumn{3}{|l|}{/re>A/} \\
\hline \(1{ }^{1 / \mathrm{cI}}\) & \multicolumn{3}{|l|}{/[[>B/ \(1[3]\)} \\
\hline \(1{ }^{1} \mathrm{C} /\) & \multicolumn{2}{|l|}{/[c>C/ /L4]/} & /41 \\
\hline 1 '0/ & \multicolumn{2}{|l|}{/T[>D/ - 5 ST} & 151 \\
\hline 1 'E/ & \multicolumn{2}{|l|}{/[[ >E/} & 161 \\
\hline 1 'F/ & \multicolumn{2}{|l|}{/[C>F/} & 171 \\
\hline 1 'G/ & \multicolumn{2}{|l|}{/[[>G/} & 181 \\
\hline 1 1+1/ & \multicolumn{2}{|l|}{/[[>H/} & 191 \\
\hline 1 1/ & \multicolumn{2}{|l|}{} & 101 \\
\hline 1 •נ1 & \multicolumn{2}{|l|}{/[ए>J/ /J-E/} & 1-1 \\
\hline 1 -k/ & \multicolumn{2}{|l|}{\(/[\mathrm{c}>\mathrm{K} / \mathrm{l}\)} & \(1 /\) \\
\hline \(/\) 'L/ & \multicolumn{2}{|l|}{/[E>L/ VcT} & 11 \\
\hline \(1{ }^{1}+\mathrm{M}_{1}\) & \multicolumn{2}{|l|}{\(/[\mathrm{C}>\mathrm{M} / \mathrm{l}\)} & 11 \\
\hline 1 'N/ & \multicolumn{2}{|l|}{/[L>N/ \(\quad 17 \pi\)} & 71 \\
\hline 1.01 & \multicolumn{2}{|l|}{\[
\begin{array}{ll}
1[r>0 / \\
\hline
\end{array}
\]} & 1>-1 \\
\hline 1 1P/ & \multicolumn{2}{|l|}{/T[>P/ 111} & 11 \\
\hline 1 / \(1 /\) & \multicolumn{2}{|l|}{} & 1791 \\
\hline \(1 \cdot \mathrm{k} /\) & \multicolumn{2}{|l|}{T[E>RI} & 11 \\
\hline 1 151 & \multicolumn{2}{|l|}{\(/ \Gamma[>S /\)} & \(1=1\) \\
\hline 17 & \multicolumn{2}{|l|}{} & 711 \\
\hline 1 \% \(1 /\) & \multicolumn{2}{|l|}{\[
1 r c>0 /
\]} & \(1>01\) \\
\hline 1 'v/ & \multicolumn{2}{|l|}{/[โ>V/} & 1311 \\
\hline 1 'w/ & \multicolumn{2}{|l|}{rrc>w/} & \(1 /\) \\
\hline 1 'x/ & \multicolumn{2}{|l|}{T[E>X/ T.97} & 1751 \\
\hline 1 'r1 & \multicolumn{2}{|l|}{} & \\
\hline \% \(1 / 11\) & \multicolumn{2}{|l|}{/[L>2]} & 7741 \\
\hline /15.5/ & \multicolumn{2}{|l|}{ハフ11} & 1>!1 \\
\hline /1.0]/ & 1al & 1*1 & 71 \\
\hline 11:1/1 & 1>1: > ! & 1', 1 & 1.1 \\
\hline 7 TIT & 711 & /'1/ & 1791 \\
\hline / 125/ & 121 & 111 & 11 \\
\hline \(1135 /\) & \multirow[t]{2}{*}{\[
131
\]} & 7:1 & ! \\
\hline / 145 / & & \(11 /\) & \(1>1\) \\
\hline \(715[7\) & 141 & 701 & / 1 \\
\hline /]65/ & 151 & 181 & 13 \\
\hline 7171 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \frac{171}{171}
\end{aligned}
\]} & \(1 /\) & 1701 \\
\hline / \(18 \mathrm{C} /\) & & 1*/ & 1781 \\
\hline /19[/ & 191 & 17 & 71 \\
\hline \(1 \mathrm{joc} /\) & 101 & 1+1 & 1>+1 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { L1] } / \\
& /[2] /
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 111 \\
& 121
\end{aligned}
\]} & / \(1 /\) & 11 \\
\hline & & / 1 & 11 \\
\hline & & FINIS & / \\
\hline
\end{tabular}

Figure 3d. These are the control cards and substitution table required to transform the text in the previous figures for loading on the ATS System. The solidus (/) at the end of the first control card defines the string delimiter to be used in the output. On the next card; the 1 signals the use of a special output unit; the 7 tells the unit from which to read the input text; and the 3 indicates the special output unit. On the third control card: the \(\$\) is the continuation symbol used on the input records which contain 80 ćharacters each; next follow the shift-lock and the shift-unlock symbols; and the 1, switches on the "unlock" feature of the program. On the fourth control card the square bracket (]) is the continuation symbol used to extend to the next card a record which is longer than the 73 positions designated; next follow the ATS shift-lock and shift-unlock symbols; and the 1 restores the "lock" feature required by the ATS System.


Figure 3 e ．A partial listing of a substitution table which tranforms the character stream produced on the ATS System to the character stream required by another program for processing the text for a photo－typesetting machine． Although the first string must start in cc l，the position of the string to be substituted is not fixed on tne cara．
```

/ $M=* /$ / $M=$ AiNY/
/ $M=1$, $M=$,
/ M= */ / ME ANr/
/ $M=/$ / $M=$ /
/ M=*/ / M= ANY/
/ $2 \mathrm{OH} /$ / UH + OH/
/ $\mathrm{LH} /$ / $\mathrm{H}+\mathrm{H} /$
/ $2 N / / N+N /$
/ L/ / E[-J/
/.1 / /
/=と・/ / \# c [-] /
/-t / / = t t[-]/
/二くん/ /二」 $\mathrm{H}+\mathrm{H} /$
/二>/ /二>1
ノ=1 / => /
/+2OH/ /OH + UH /
1+ M/ /+ m/
/+2H/ /+ H + H/
/+E/ / EL-J/
/+ヒ/ / E[-]/
/+M/ / + Fil/
/+/ / + /
/ $\mathrm{CHO} /$ / LHO + LHO/
/ $\mathrm{CBH} 2 /$ /HHC + bith2/
/ $\angle \mathrm{BF} 2 / / \mathrm{HFC}+\mathrm{bF} 2 /$
/<L2H/ /C己H + しくん/
/ CH CH / / $/ \mathrm{CH}$ + $\mathrm{Ch} 2 /$
$/ \mathrm{CH} 2 \mathrm{O} / \mathrm{HCO}+\mathrm{HCO} /$

```
```

/<CO/ /CO + Cu/
/\angleCO/ /CO + CO/
/<C2/ ハC2 + C</
/<NH/ /NH +.NH//
/LNV// NU + NO/
/<CH/ /CH+CH/
/ch/ /H + H/
/aLHO/ /ALOH/
/uFO/ /hut/
/lLNA/ /NACL/
ルLLI/ /LICL/
/lLNA/ /IvaCl/
/LHO./ /CHU /
/LLH/ /HCL/
/LLK/ /KCL/
/LHO/ /CHU/
/LOH/ /CHU/
/HLI/ /LIr/
/FBO/ /BUF/
/rivA/ /NAF/
/FK/ /KF/
/ro/ /bト/
/FK/ /KF/
/rH/ /HiF/
/HUNA/ /NaUH/
/H2CO/ /CHzO/
/HUH/ /HZU/

```

Figure \(3 f\) ．A portion of a substitute table for editing equations representing chemical reactions．

SEARCH and BLOCKSEARCH are useful for data retrieval. The first program searches a card image of a single line of text for the presence of any or all of a group of words or strings or fragments; it prints out the line or punches out a card when such items are located.

BLOCKSEARCH is able to scan an entire block of lines, making it generally more useful in data retrieval. This search is made not on a single line but on a suitably delineated block, such as a paragraph, a page, a full bibliographic citation, or an abstract. On a successful match the entire block is printed or punched.

An important feature of these searching programs is the ability to handle fragments such as prefixes or suffixes or even fragments in the interior of words. Ordinarily the scanning is anchored to the beginning of the word. For example, asking for the word "thermo" would produce lines with thermodynamics, Thermodynamics, thermo-chemistry, and Thermochemistry. If the program is set to the unanchored mode, it will locate the word Aerothermodynamics as well. In this search mode, imbedding a blank (represented here by a \({ }^{\circ}\) ) at the end of a string restricts the search to endings or suffixes Thus, when asked to locate FLEX \({ }^{\circ}\), the program will find CELLUFLEX, but not FLEXIBLE. Set to locate all lines containing both of the strings \({ }^{\circ}\) CEL and LEX \({ }^{\circ}\), this program would locate all words beginning with CEL and/or ending with LEX, such as \({ }^{\circ}\) CELLUFLEX \({ }^{\circ}\) or COMPLEX CELLS.

A feature of both the SEARCH and BLOCKSEARCH programs is the ability to identify fragments of words as easily as entire words or phrases. Another interesting and important feature of these programs is their ability to recognize word fragments in the interior of words as well as at the ends. Since recognition of interior fragments requires more machine time, a switch has been provided to designate whether the search is to be "anchored" at the beginning of a word or allowed to proceed into the interior of a word. The combination of spaces ( \({ }^{\circ}\) ) and anchor switch setting provide for the following search strategies.

ASKING FOR
ION
ION \(^{\circ}\)
ION
ION
ION

WITH MODE
anchored ION
unanchored ION anchored IONIZED unanchored ACTION unanchored MENTIONED

Note that asking for \(I O N\) in the unanchored mode will find lines conraining prefixes and suffixes as well as interior fragments.

\subsection*{4.1 The Control Cards for SEARCH}

The first control card is the same as the first card of the program SUBSTITUTE. It performs the same functions here. Here again cc47 is left blank but cc50 is now used to designate which character is used to terminate the search strings. If the strings are single words, a space will suffice; but if phrases are to be allowed the space cannot be used to terminate strings. In this, a period or any other symbol not appearing in the search text can be used.

The second card contains four switches in FORMAT (4I2).
a. This switch should be a non-zero number if a permanent file of the selected cards is desired either on cards or tape in addition to the normal printed output. In this case the unit on which the copy is made is designated by the fourth switch (see d. below). If this switch is zero, results appear only on the printer.
b. The second switch should be set to zero for searching in the anchored mode and non-zero for an unanchored search.
c. This switch instructs the machine to read the original data file from the specified unit. The unit is set to 5 if this switch is 0 .
d. This switch instructs the machine on which unit to write the copy of the abridged file. The unit is set to 3 if this switch is 0.

The third control card carries either the word AND or OR. If the card carries the word OR, a line will be printed out if it contains any one of the designated words or fragments. The use of the word AND imposes the condition that all of the words must be found on a single card image for successful selection. The order in which they appear is immaterial.

The control cards which follow contain the words, phrases or fragments for which the file is to be searched. The search strings must start in ccl and must be terminated by the character designated in cc50 of the first control card. The entire list is terminated on a card carrying the word FINIS, starting in column 1 and terminated by the designated string terminator. This last seemingly unnecessary requirement permits one to include in the search such words as FINISHING which would otherwise terminate the search list.

Here again, when the program encounters any card which matches the first control card (a card with the normal alphabet punched in the first 26 columns), it comes to a normal machine halt.

\subsection*{4.2 The Operation of BLOCKSEARCH}

As presently constituted, this program recognizes any fixed block separators (delimiters) starting in the first character of a record. The length of the block delimiter is optimal as is also its content. Thus if one wished to delimit blocks by identifying each block with the word BLOCK followed by a sequence of numbers, the string BLOCK nnn could be the first few characters in a paragraph.

A more natural delimiter for paragraphs would be the three or more spaces a typist normally uses to indent the first line of a paragiaph: or a dank line which is often used in text having blocked paragraphs or more generally in separating items in a bibliography etc.

What is more important in this connection is the fact that many systematically structured books, reports or documents contain useable flags or separators which are part of the normal text. In these circumstances it is not necessary to include artifical block separators. This makes it possible to apply this program to many existing data files without special restructuring.

Blocks may be as small as one record (one line) or as large as the space reserved in the program in the dimension statement governing the size of the block. If a block is larger than the number of characters set aside in the program, the search is performed first on the front portion: independent of the remainder, and then independently on the remaining portions. The lines


Figure 4a. A portion of a file of references on data of state used to illustrate the operation of the program SEARCH. See the following figures for results.


Figure 4 b . A portion of the output from the search of the file shown in the previous figure. The second control card instructs the program to read from unit 5 and write the output on unit 7. The zero denotes an "anchored" search. In this case the search is made for 193 as we wished to extract all papers published in the 1930's. While the AND in the third control card seems superfluous, it, or the word \(O R\), is required. In this case either word would do equally well.
at which the blocks were broken in this instance, are printed out preceded by the statement:

BLOCK IS TOO LONG. BLOCK IS CONSIDERED TERMINATED WITH THE FOLLOWING CARD.
In order to operate successfully in the anchored mode, it is necessary to insure the existence of a space ( \({ }^{\circ}\) ) between the first character of a line and the line before it. This is handled automatically by the program which inserts a blank space before each line when the block is read in. This provision allows for carrying sequence numbers extending to column 80 of a card or the last character of the record. Thus, if a card or line ends in 1798 and the word "JONES" appears in the next line, the string to be searched reads \(1798^{\circ}\) JONES rather than 1798 JONES . In the former, a search on JONES in the anchored mode would be successful; in the latter case, it would not.

The first control card is identical with the first control card for SEARCH.

The second control card contains 6 switches \(a, b, c, d, e\) and \(f\) in FORMAT (5I2, IT4).
a. This switch, when non-zero, causes a magnetic tape to be written on the unit specified by switch e.
b. This switch should be set to zero for an anchored search. Any nonzero number causes the search to be carried out in the unanchored mode.
c. This switch tells how many characters to expect on the next control card which carries the block separator (flag). If this number is not an integer between 1 and 80 , the program sets it to 80 automatically.
d. This switch gives the unit number from which to read the data file to be searched.
e. This switch is the unit on which to write the selected blocks.
f. This switch tells the length of the records which comprise the file to be searched. If this switch is not between 1 and 132 it is automatically set to 80 characters. It is also useful in limiting the reading of cards to 72 or less columns to ignore identification or sequence numbers which are normally punched at the extreme right of a card. In this way when the sequence numbers carry no pertinent information, they are ignored in the search and deleted on the output. If, on the other hand, they carry useful information, this switch permits them to be included both in the search and on the final output.

The third control card contains the block separator starting in ccl and having a length specified by switch c of the previous card. If c were 5 and this card were blank, the normal paragraph indention would serve to delimit paragraphs in straight text. If c were set to 80 and this card were left entirely blank, a blank line of \(80^{-}\)characters could serve as a block separator.

The control cards which follow contain the AND or OR switch and the search list terminated by the word FINIS exactly as in the program SEARCH (see Section 4.1).
```

ABCDEFGHI JKLMNOPQRSTUVWXYZO123456789

```
1073
OR
THE PROGRAM IS SEARCHING FOR LINES CONTAINING ANY OF THE WORDS GIVEN BELOW.
JAC
JCP
JRS


ABCOEFGHI JKLMNOP QRSTUVWXYZO123456789

Figure 4c. The results of a pass through the abridged file shown in the previous figure to extract all references appearing in the journals whose designations are JAC, JCP, and JRS. Note here that the second control card instructs the program to read from unit 7, which contained the abridged file stored by the previous pass (see Figure 4b). This problem illustrates how sequential applications of the simple SEARCH program can result in more sophisticated search strategies than have been explicitly provided. Note that in the first line the JAC in JACKSON also provides a hit. In a production search this can, be avoided by attaching a blank space ( \(\mathrm{JAC}^{\circ}\) ).
```

ABCDEFGHIJKLHNOPQRSTUVWXYZO123456789
O 1 3 5-3
CA
THE PROGRAM IS SEARCHING IN LINES OF LENGTH \&O CONTAINING ANY OF THE WO
RAM-
NITRO*
EINIS:

	$\begin{array}{r} 063000 E 0 \\ 06300050 \end{array}$
DINITROPROPANE.	063000E0
BUCZKOWSKI. 2	063000E0
URBANSKI, T	063000E0
SPECTROCHIM. ACTA $22,-227-33$ [1966]	06.30008 E
MICRO	063000E0
Spac	063000E0
1966	063000E0
185	O63000E0
- $\mathrm{V}_{1} \mathrm{~B}$	06300050
2,2-DINITROPROPANE	06300000
CA 64009089 HLII	06300050
VIGRATIONAL SPECTRA OF TRIMETHYLAMINE OXIDE DIhYorate.	06300050
-KUROLIA, Y	063000E0
KgMURA, M	Q63000E0
SPECTROCHIM. AGTA 22, 47-56-[1966]	-063000E0
MICRO	063000E0
SPAC	06-3000E0
1966	063000 E
185	06300060
[FAM]	06300000
V18	O63000E0
TRIMETHYLENE OXIDE	06300080
ABCOEFGMLJKLMNOPORS IUVWXY 20123456789	

```

Figure 4d. Results from a run in BLOCKSEARCH for either \({ }^{\bullet}\) RAM \(^{\circ}\) or NITRO. As the search was made in the unanchored mode, we picked up the word GEMDINITROPARAFFINS, as was intended. Note here that the characters \(C A^{\circ}\) were used as the block delimitor. The last card containing the alphabet is the last card of the data file. It is used instead of an "end of file" mark to signal the end of data because an end of file mark in some machines stops the operation dead.

\section*{ABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789 \\ 01353 \\ )}

THE PROGRAM IS SEARCHING IN LINES OF LENGTH
80 CONTAINING ANY OF THE WORDS GIVE
```

'01205 'T'ILFORD, 'S'.'G'.' 'V'ANDERSLICE, 'J'.'T'. AND 'W'ILKINSON,)
01205 'P;'G!, +'HIGH.RESOLUTION VACUUM ULTRAVIOLET ABSORPTION')
01205 (SPECTRUM OF THE E'1 PPI ... X SIGMA + TRANSITION IN CO'+,)
01205 'CTAN. 'J'. 'PPHYS. 43. 450(1965'(1)
)
01209 'N'AMIOKA. 'T'.. +'ABSORPTION SPECTRA OF H2 IN THE VACUUM')
U1209 'ULTKAVIOLET REGION'. 'II'. TTHE B'(PRIME'(.X', 'B'+'.X',)
01209 'D.X'. 'AND D'(PRIME'(.X BANDS'+, 'J'. 'C'HEM. 'P'HYS. 41,)
01209 2141(1904'(1)
01212 'J'ORISOV, 'Y'.'A'..'G'USAROV. 'A'.'V'. AND 'G'OROKHOV.) 1640201
01212 'L'. 'N'.. +'MASS (SPECTROMETER) INVESTIGATION OF THE')
01212 'EVAPORATION OF CESIUM PEROXIDE'+' 'H'IGH 'T'EMPERATURE 2,) 3640201
01212 440(1964'(')
01217 'H'UBER' 'K'.'P'.. +'UIE RYDBERG.SERIEN IM ABSORPTIONSSPEKTRUM
01217 'DES NO.MOLEKULS'+, 'H'ELV. 'P'HYS. 'A'CTA 34. 929(1961'TM
)
01218 'G'LADUSHCHAK. 'V'.'I'. AND 'S'HREIDER' 'E'.'Y'A.' +'THE')
01218 'MEASUREMENT,OF ABSOLUTE INTENSITIES IN THE VACUUM REGION') 2640101
01218 IOF THE SPECTRUM/ + 'O'PTICS AND 'S'PECTROSCOPY UUSSR 17, 75) 3640101
01218 (1904'('
)
CA 640090850LIT 063000E07320
VIBRATIONAL SPECTRA OF GEM-DINITROPARAFFINS. I. 2.2- 063000E07321 1
UINITROPROPANE. 063000E07321
BUCZKOWSKI: Z
OREANSKIE I S ACTA 22, 227-33 [1966]
MICRO
SPAC
1966
IRS
RAM
VIB
2,2-UINITROPROPAIVE
)
CA 64009085GLIT
THE ELECTRONIC EMISSION SPECTRUM)AND MOLECULAR CONSTANTS OF
IODINE MONOFLUORIDE.
UURIE, R A
CAIN. J. PHYS. 44, 337-52 [1906]
MICRO

```

```

 063000E07322
 063000E07322
 063000E07323
 063000E07324
 063000E07325
 063000E07325
 063000E07325
 063000E07325
 063000E07325
 063000E07325 1
 0630000E07330
 1
 063000E07331
 063000E07331
 063000E07332
 063000E07333 1
 063000E07334 1
 1

```

Figure 4 e. Result of an unanchored block search in a mixed data file. The search was for the fragments SPECT or SPEKT in order to retrieve titles in English and German related to spectroscopy. Note that the only format that the two data files have in common is that each.uses the right parenthesis in column 1 as a block separator.

Preparation of manuscripts and other material which requires numerous or periodic revision ordinarily entails repeated retyping and, consequently, needs repeated proofreading. If such material is prepared originally on punched cards, much of the retyping and subsequent proofreading can be avoided. Even without a computer, the use of punched cards represents considerable advantage. Until recently, however, punched card techniques did not permit the production of text with upper and lower case, thus limiting the sphere of application. Now a number of manufacturers offer line-printers with extended character sets. It is therefore now possible to prepare camera-ready copies from a line printer via punched-card input which has upper and lower case letters with subscripts and superscripts and greek letters. Where graphic art quality is desired, the same tape can be processed by an edit-insertion program now available commercially.

The computer programs discussed here have been developed in the course of the last three years to assist in the preparation of a number of documents on an 870 Document Writer (a card-controlled typewriter) for reports not requiring typesetting.

Any editing system which permits the deletion or addition of substantial segments of text must have some provision for rearranging the words into lines of specified length. JUSTIFY is a text formatting program which provides this facility with or without justified right-hand margins. It can center lines of text, indent, and perform other features useful in preparing camera-ready copy. When line justification is called for, the extra spaces are placed first after each period in the line and then between the words, starting from the left in one line and from the right in the next. Because simplicity of use is an important factor in the design of these programs, the rules are kept as conventional as possible. For example, the start of a paragraph is ordinarily signaled by leaving at least one blank space at the beginning of the line -- just as a typist might indent when starting a new paragraph -- or by inserting a blank card which is equivalent to leaving a blank line when the first line of a paragraph is not indented.

An example of the application of JUSTIFY to change the line length of text is afforded by Figures \(5 j\) and 5 k . In this instance new lines were created with a maximum of 65 characters so as to produce one line per card without continuation cards. In this option the new text was not justified and words are separated by a single space, even though the original text contained extra blanks. This feature of the program permits the reworking of text which had previously been justified by this program.

The reader's attention is directed to the fact that the JUSTIFY program does not have a provision for hyphenating words. Hyphenation becomes important only when one uses a double column spread or a narrow newspaper column width. Figures 5 a . et seq. show portions of a number of publications produced from the output of this program. We leave it to the reader to decide whether the lack of hyphenation effects the readability.

It should be noted that where an exceptionally long word falls just short of fitting at the end of a line and the space between words is therefore excessive, it is possible to hyphenate the word at a suitable point and rejustify the paragraph.

Special instructions to the JUSTIFY program can be given on the input control cards. The presence of certain characters in card column 72 of any text card will cause the JUSTIFY program to take special action. Any symbols or characters except those stated below will be treated as ordinary text when appearing in cc 72 of any text card. Since cc 72 is used for sensing control characters and since these characters may normally appear in straight text, it is unwise to punch text beyond cc 71. The last paragraph on any run should be followed by several blank cards.

Text prepared on a card usually has a number of precedence characters for case shift, for card eject (either with or without carriage return), for tabulation, and for half-line platen shift symbols. The JÜSTIFY program recognizes specific special control symbols wherever they occur on the text card.

JUSTIFY operates on a "paragraph" at a time. A "paragraph" is considered started when:
a. the first card of input is encountered.
b. or a blank occurs in cc 1 of any text card.
c. or the previous card contained a special control character in cc 72 (the control field).
d. or the previous card contained only a card ejection symbol (the symbol appearing in cc 39 of the first control card).
e. or the previous card was totally blank.

A "paragraph" is considered terminated when:
a. the card immediately following contains a blank in cc 1.
b. or the following text card contains a control character in cc 72. The only exception is when cc 72 carries the ignore character.
c. or the following card contains only a card ejection symbol.
d. or the following card is totally blank.

\subsection*{5.2 The Control Cards for JUSTIFY}

All control characters and control symbols are indicated on the first input control Gard.

The function of the first control card is described in Section 3.1. As with the other programs in this package, card columns 38-80 of this card are reserved for symbols which have meaning specific to the particular program. They perform the following functions:
a. The symbol placed in cc 38 indicates the sentence terminator normally a period.
b. The symbol placed in cc 39 indicates the card eject symbol. Cards are not read beyond that point.
c. Card columns 40-44 are not used in this program.
d. The symbol placed in cc 45 indicates the continuation flag. It signals that the line of text is continued on another card. Although originally implemented to provide card eject without carriage return or line feed on a card-controlled typewriter, it is also useful in continuing on another card a string of characters which must be produced in the "as is" form rather than in the justified mode.
e. The symbol in cc 46 is a nonprint control character used to indicate a case shift on a typewriter. It is sensed and used by the subroutines, LOCK and UNLOCK.
- a d y symbols except those stated above will be treated as ordinant TEXT WHEN APPEARING IN CARD COLUMN 72.,
-SIINCE COLUMN 72 IS USED FOR SENSING THE ABOVE CONTROL CHÁRACTERS ! AND SINCE THESE CHARACTERS MAY NORMALLY APPEAR IN STRAIGHT•TEXT, , IT IS UNWISE TO PUNCH TEXT BEYOND COLUMN 71. ,
- T'HE SPECIAL SYMBOLS WILL BE IDENTIFIED BY THEIR POSITION, ON THE INPUT CONTROL CARD II SEE IFIIGURE 1l. 'OUUR CURRENT CONVENTION 1 USES THE SYMBOLS ' 1 ', '5', BLANK, '4'. AMD 'O' IN THE LOCATIONS, DESIGNATED BELOW• (1)

Figure 5a. A listing of cards punched.for a card controlled typewriter with control symbols in cc 72 which are recognized by the JUSTIFY program. The right parenthesis produces a carriage return and line feed on the typewriter, consequently the control symbols in cc72 are not typed on the typewriter copy (See Figure 5c.).
```

 1
 'A'NY SYMBOLS EXCEPT THOSE STATED ABOVE WILL BE TREATED)
 AS ORDINARY TEXT WHEN APPEARING IN CARD COLUMN 72.!
'S'INCE COLUMN }72\mathrm{ IS USED FOR SENSING THE ABOVE CONTROL'I
CHARACTERS AND SINCE THESE CHARACTERS MAY NORMALLY APPEAR INI
STRAIGHT TEXT, IT IS UNWISE TO PUNCH TEXT BEYOND COLUMN 71.)
l
'TABLE' 2. IC
'S'PECIFICATIONS OF IS'PECIAL 'S'YMBOLS. IC
-TOHE SPECIAL SYMBOLS WILL BE IDENTIFIED BY THEIRI
POSITION ON THE INPUT CONTROL CARD '('SEE 'FIIGURE II. 'O.UR)
CURRENT CONVENTION USES THE SYMBOLS '10, '5', BLANR, 14', AND '0' IN)
THE LOCATIONS DESIGNATED BELOW.I
.Al.391 I5 1
IC
-A(.391 TERMINATES THE READING OF A CARD. 'A'NYTHING PUNCHED IN)
FURTHER FIELDS OF THE CARD WIILL BE IGNORED.I
'I'F IT IS THE FIRST NON-BLANK CHARACTER ENCOUNTERED WHILEI
READING A TEXT CARD, THE PREVIOUS PARAGRAPH IS CONSIDERED AT,
AN END. 'T'HE CARD ITSELF IS REPRODUCED AS-IS IN THE OUTPUT.'
'I'T IS THE LAST CHARACTER ON ANY TEXT OUTPUT CARD.'
I

```

Figure 5b. A listing of the cards produced by the program JUSTIFY from the cards listed in Figure 5a. The ragged appearance of the lines results from the varying numbers of shift symbols from line to line.

Any symbols except those stated above will be treated as ordinary text when appearing in card column 72 .

Since column 72 is used for sensing the above control characters and since these characters may normally appear in straight text, it is unwise to punch text beyond column 71 .

TABLE \(2 \cdot\)

\section*{Specifications of Special Symbols.}

The special symbols will be identified by their position on the input control card (see Figure 1) - Our current convention uses the symbols (, ', blank, \(=\), and _ in the Jocations designated below.

Figure 5c. Copy produced on a card-controlled typewriter from the cards listed in Figure 5a. The ragged lines results from editorial changes or numerous shift symbols which take up space on the card but do not produce characters on the line.

Any symbols except those stated above will be treated as ordinary text when appearing in card column \(72^{\circ}\)

Since column 72 is used for sensing the above control characters and since these characters may normally appear in straight text, it is unwise to punch text beyond column 71 .

TABLE 2.
Specifications of Special Symbols.
The special symbols will be identified by their position on the input control card (see Figure 1). Our current convention uses the symbols (, ', blank, \(=\), and _ in the locations designated below.
\[
A(39) \text { is })
\]

A(39) terminates the reading of a card. Anything punched in further fields of the card will be ignored.
If it is the first non-blank character encountered while reading a text card, the previous paragraph is considered at an end. The card itself is reproduced as-is in the output.
It is the last character on any text output card.

Figure 5d. The typewriter output of the justified text produced from the cards listed in Figure 5b.
f. The symbol in cc 47 must be a blank. It indicates that a blank is the character at which lines will be broken. The reason the program removes excess blanks between words is that cc 47 was left blank. If cc 47 contained any other symbol, it would be the multiple contiguous occurrences of that symbol that would be squeezed out.
g. The symbol in cc 48 is a tab indicator. This symbol is treated as a single blank when it is encountered in the input text except that it does not, therefore, start a new paragraph when it happens to fall in cc 1.
h. Card columns 49-59 are not used by this program.
i. |The number in cc 60 indicates how many symbols should be considered as having no widtn in the linc justification process. This number is used to clarify how many of the subsequent card columns are to be scanned for the specific "no count" symbols.
\(j\). The symbols to be ignored in counting the characters for line justification are punched into card columns 61 et seq as required.

The second control card contains seven switches in FORMAT (7I3).
a. This switch sets the maximum line length (the number of characters per line). The symbols discussed in item \(j\) above are not counted when formatting a line of output. Switch a must be between 20 and 120 .
b. Here any non-zero entry produces lines with flush right hand margins (justified).
c. If this switch is non - zero. ard images are written on the unit specified by switch f below. The program provides for continuation cards when the line is longer than 80 characters. Even a line shorter than 80 characters will often be carried over to the next card because of the space taken up by the precedence symbols. When a line is broken between two or more cards, care is taken never to split words. The symbol which appears in cc 45 of the first control card is punched as the continuation symbol.
d. This switcn. if non-zero, calls the subroutines LOCK and UNLOCK. For all application except cards intended for the 870 Document Writer, this switch should be set to zero.
e. This switch tells from which unit to read the input data.
f. This switch tells on which unit to write the card images or punch the cards.
g. If this switch is zero, the program gives priority to the insertion of a second space at the end of each sentence before distributing the necessary spaces between the words. The extra space is inserted automatically when the lines are not justified.

\subsection*{5.3 The Format Control Symbols}

The program has provision for line justification in accord with a specified line width. Practical formatting often requires exempting certain lines from the justification process. Such exemptions are signaled by the characters C, D, I, N, and R when they appear in cc 72.

A letter \(C\) in card column 72 causes the information in the previous columns of that card to be centered on the line. The letter D in cc 72 causes the line to be printed exactly as it is punched on the card. The letter \(N\) in cc 72 sets a switch to indent the subsequent text lines. The first non-blank characters on the " \(N\) " card signals the new width. Another "N" card carrying the original width is required to restore the lines to the normal width. The previously defined tab symbol is automatically inserted at
the beginning of each line of the indented text.
Some data and text files contain lines of information which have a specific use in the present format but must be ignored when the file is reformatted. A letter I in cc 72 causes that line to be ignored completely by this program.

An \(R\) in cc 72 generates a box of depth equal to the number which appears on the "R" card. This is used to reserve a space for inserting illustrations. The "R" card is converted to a "D" without further modification, and positioned as the center line of the box. Thus the "R" card can be used to indicate which figure is to be placed in the box.
1. It is hard to overemphasize the importance and usefulness of self-teaching, described in section 4.6 . One can learn the basic rules of OMNITAB very quickly, say within two hours, and then proceed on his own. This is very valuable for those of us who have difficulty reading manuals carefully.

Many times little programs have been added (at virtually no cost) at the end of a program to clarify a particular instruction. For example, it is not completely clear whether the command RMS described on page 38 stores
\[
\sqrt{\Sigma x_{i}^{2} / n}, \sqrt{\Sigma\left(x_{i}-\bar{x}\right)^{2} / n} \text { or } \sqrt{\Sigma\left(x_{i}-\bar{x}\right)^{2} /(n-1)} .
\]

However, the question is readily answered by using the following instructions:

OMNITAB
GENERATE 1. (1.) 5. STORE 1
RUS 1 STORE 2
PRINT 12
STOP
(Note, \(\Sigma x_{i}{ }^{2}\) for integers is easily obtained from the formula \(1^{1}+2^{2}+\cdots+n^{2}=n(n+1)(2 n+1) / 6\) so that \(\sum x_{i}{ }^{2} / n=\) ( \(n+1\) ) ( \(2 n+1\) )/6.) It would be easy to write many programs like this in a short period of time and very quickly become an ''expert"' user. The ease with which this can be done is sometimes overlooked or unappreciated. The technique of self-teaching has been used effectively in class instruction.
2. An obstacle faced by non-programmers is that with some languages, such as FORTRAN, it is almost necessary to be an expert programmer to do even the simplest calculation. To do anything in FORTRAN, it is necessary to understand some of the most troublesome statements of the language such as FORMAT, DIMENSION and WRITE. An OMNITAB user with no computing experience can being writing programs to perform non-trivial computations with less than two hours' study. By self-teaching he can proceed at his own speed to become an ''expert.''
3. The very nature of OMNITAB is such as to make logical branching unnecessary in most instances. In others it may be possible with a little ingenuity. For example, the following instructions provide for replacing \(\log _{10}\left(a_{i} / b_{i}\right)\) by the constant c whenever \(a_{i} \leq 0\). Capital letters A, B, D, and \(F\) represent column numbers; corresponding lower case letters represent elements in the columns. We assume \(b_{i}>0\).

Figure 5e. A page of a mechanized text produced on a modified cardcontrolled typewriter. See the next figure for a listing of the cards that produced this page.
```

1.:::'I'T IS HARD TO OVEREMPHASIZE THE IMPORTANCE AND USEFULNESS OF)
SELF[.0!]TEACHING, DESCRIBED IN SECTION 4.6. (O'NE CAN LEARN THE \$)
BASIC)
RULES OF 'OMNITAB' VERY QUICKLY, SAY WITHIN TWO HOURS. AND THEN)
PROCEED OiN HIS OWN. 'T'HIS IS VERY VALUABLE FOR THOSE OF US WHO)
HAVE DIFFICULTY READING MANUALS CAREFULLY.)
)
'M'ANY TIMES LITTLE PROGRAMS HAVE BEEN ADDED '(*AT VIRTUALLY NO)
COST(AT THE END OF A PROGRAM TO CLARIFY A PARTICULAR)
INSTRUCTIUN. 'F'OR EXAMPLE, IT IS NOT COMPLETELY CLEAR WHETHER THE)
COMMAND 'RMS. DESCRIEED ON PAGE 38 STORES)
)
\DeltaX]I[[2]/N , A'('X]I[['0']X([2]/N OR A'('X]I[['O']X([2]/'('NS) D
[.0.]1(.) I
'H'OWEVER, THE QUESTION IS READILY ANSWERED BY USING THE FOLLOWING)
INSTRUCTIONS'1')
)
'OMNITAE')
'GENERATE' 1. '('1.(5. 'STORE' 1)
'RMS' 1 'STORE' 2)
'PRINT' 1 2)
'STOP')
)
((NOOTE, :\triangleX]I[[2] FOR INTEGERS IS EASILY OBTAINED FROM THE FORMULA.)
[)
1[1] + 2[2]:+ ..+ + N[2]:'4' N'('N+1('(12N+1(/6 SO THAT \$)
:\DeltaX]I[[2]/N:(4')
[)
'('N+1('('2N+1(/O.('I'T WOULD BE EASY TO WRITE MANY PROGRAMS LIKE \$)
THIS)
IN A SHORT PERIOD OF TIME AND VERY QUICKLY BECOME AN '55'EXPERT'55')
USER. 'TIHE EASE WITH WHICH THIS CAN BE DONE IS SOMETIMES)
OVERLOOKED OR UNAPPRECIATED. 'T'HE TECHNIQUE OF SELF['O']TEACHING \$)
HAS)
BEEN USED EFFECTIVELY IN CLASS INSTRUCTION.)
)
2.:::'A'N OBSTACLE FACED BY NON['O']PROGRAMMERS IS THAT WITH \$)
SOME)
LANGUAGES, SUCH AS 'FORTRAN', IT IS ALMOST NECESSARY TO BE AN)
EXPERT PROGRAMMER TO DO EVEN THE SIMPLEST CALCULATION. 'T'O DO)
ANYTHING IN 'FORTRAN', IT IS NECESSARY TO UNDERSTAND SOME OF THE)
MOST TROU_LESOME STATEMENTS OF THE LANGUAGE SUCH AS 'FORMAT','
'DIMENSION' AND 'WRITE'. 'A'N 'OMNITAB' USER WITH NO COMPUTING \$)
EXPERIENCE)
CAN BEING WRITING PROGRAMS TO PERFORM NON['O']TRIVIAL COMPUTATIONS)
WITH LESS THAN TWO HOURS'5' STUDY. 'B'Y SELF['O']TEACHING HE CAN PROCEED)
AT HIS OWIN SPEED TO BECOME AN '55'EXPERT.'55')
)
3.:::'T'HE VERY NATURE OF 'OMNITAB' IS SUCH AS TO MAKE LOGICAL)
BKANCHING UNNECESSARY IN MOST INSTANCES. 'I'N OTHERS IT MAY BE)
POSSIBLE WITH A LITTLE INGENUITY. 'FIOR EXAMPLE, THE FOLLOWING)
INSTRUCTIONS PROVIDE FOR REPLACING LOG]IO[:'('A]I[/B]I[(BY THE \$)
CONSTANT)
[)
C WHENEVEK AJI[:'8'\triangle:0. 'C'APITAL LETTERS 'A', 'B', 'D', AND \$)
'F' REPRESENT)

```

Figure 5 f . A listing of cards produced by JUSTIFY to prepare the text in the previous figure. See Section 5.4 for a discussion of this application.

In this section we describe briefly two applications which motivated the development and influenced the design of the programs JUSTIFY and SUBSTITUTE. Both of these resulted in publications produced from camera-ready copy on a modified 870 Document Writer (a card-controlled typewriter). Figure 5 e shows a page from NBS Handbook 101 (loc. cit.). The subscripts and superscripts were obtained by automatic platen rotation signaled by two special multipunches. As with shift symbols, the program recognizes them as being characters of zero width for line justification. The program has room for as many as nine such special symbols.

The listing in Figure 5 f shows the character stream produced by JUSTIFY to generate the contents of Figure 5 c on a modified card-controlled typewriter. Among the features to be noted in Figure 5 e are these:
a. the colon (:) designates a special blank which is treated like any other character to retain the spacing in the first line of each of the numbered paragraphs.
b. the square brackets cause fractional platen rotation, are ignored in the character count, and do not appear in the typed copy.
c. the delta is a stop code to permit the insertion of characters not present on the typewriter.
d. when the line contains a large number of shift symbols, it is continued on the next card and the \(\$\) sign signals the typewriter to eject the card without returning the carriage. Note that the JUSTIFY program does not break words.
e. the " \(D\) " in cc 72 signifies a line that was reproduced as is - without justification.
f. the lines with a "I" in the control field (cc72) were inserted by hand to produce a half-line space before lines with superscripts and after lines with subscripts. Because of the "I" in cc72, these lines will be ignored on any subsequent pass through. JUSTIFY.

An important motivation in the development of the general purpose programs discussed here has been our desire to be able to reformat and recast data and text files at will. The typset page from the NBS Postdoctoral Research Associateships announcement booklet for 1968-1969 shown in Figure 5g affords a good example of the utility of the EDPAC programs. The 94 page booklet of which Figure 5 g is an sample was typset automatically from cards punched in previous, years to drive a card-controlled typewriter. In order to achieve the typsetting without rekeyboarding, it was necessary to transform the information to conform to the punching convention used by the Administrative Terminal System (ATS) on a 1440 computer, from which system the material went forward for typsetting. Figures \(5 \mathrm{j}, 5 \mathrm{k}, 3 \mathrm{~b}\) and 3 c show how existing cards from the earlier publication were transformed to produce the typset version in Figure 5 g . A page from this publication for the previous year produced on a card-controlled typewriter with the help of JUSTIFY is shown in Figure 5 h . Prior to the development of JUSTIFY the same material appeared with ragged right hand margins as can be seen from Figure \(5 i\).

The circled characters in Figure 5 k were inserted by an ad hoc modification of JUSTIFY as they were required by the typsetting system on which the 1968-1969 version of the Postdoctorial booklet was produced. The = sign instructs the ATS to produce a new line positioned at the left margin (quad left). The sequence; / was inserted after the first character and the last character of a title (a card with a "D" in cc72) in order to set the title in boldface type. Since the ATS has its own justification program which does not remove extra blanks, the chore of justification was delegated to the ATS. JUSTIFY in Figure \(5 k\) produced unjustified lines by removing the extra spaces which were present in the existing cards.

\section*{Hydraulics and Hydrodynamics}

\section*{G. Kulin}

Research is currently centered on water surface waves (with emphasis on various phenomena affecting wave damping) and internal waves in densitystratified water (with emphasis on wave generation by motion of submerged objects). There is opportunity for theoretical as well as experimental work in these areas. Facilities are also available for open- channel flow and sedimenttransport research.

Dynamic Measurement of Properties of Solids and Liquids at Very High Temperatures
C. W. Beckett and A. Cezairliyan

Current research includes the investigation of thermodynamic and related properties of solids and liquids at high temperatures by dynamic experimental techniques, such as, pulse calorimetry, exploding wires, electrical discharges, etc. Advanced measurement techniques for obtaining both microscopic and macroscopic properties are being explored. The equipment includes pulse calorimeters of millisecond and microsecond time resolution, high-speed photoelectric pyrometers, and ultra high-speed framing camera, a high-speed digital recording system and other auxiliary dynamic and steady-state measurement instruments.

\section*{Combustion and Reaction Calorimetry}

\section*{G. T. Armstrong}

Relationships between binding energy and structure are being investigated among organic and inorganic compounds. Recent emphasis has been on fluorine compounds, nitro compounds, and compounds of biological interest. A rotating bomb calorimeter, facilities for bomb or flow colorimetry with fluorine, and other calorimetric facilities are available for high precision measurements. The calorimetric process, reference materials for reaction calorimetry, and new forms for correlating calorimetric measurments may also be investigated.

\section*{Production and Measurement of Very High Temperatures}

John B. Shumaker
A program of research in the measurement of temperatures above \(10,000^{\circ} \mathrm{C}\) is being conducted in the High Temperature Measurements Laboratory. Current interests include the detailed investigation of stable high current density arcs and plasma jets and the measurement of their temperatures and related physical parameters by a variety of spectroscopic techniques.

Figure 5g. A typical page from the NBS Postdoctoral Research Associateships announcement booklet which was typset from cards transformed by JUSTIFY and SUBSTITUTE. See Figure 5 h for the same section for the year 1967-1968.

Research is currently centered on water surface waves (with emphasis on verious phenomena affecting wave damping) and internal waves in densitystratified water (with emphasis on wave generation by motion of submerged objects). There is opportunity for theoretical as well as experimental work in these areas. Facilities are also available for open- channel flow and sedimenttransport research.

Dynamic Measurement of Properties of Gases, Liquids, and Solids at Very High Temperatures:

\author{
C. W. Beckett
}

Current research includes the investigation of thermodynamic and related properties of gases, liquids, and solids at high temperatures by dynamic experimental techniques, such as shock tubes, exploding wires, and electrical
discharges. Advanced measurement techniques for obtaining both microscopic and macroscopic properties are being explored. The equipment includes an ultra-high speed framing camera, a time-resolved spectrometer, and high-speed photoelectric pyrometers.

Molecular Spectra and Energy Levels:

\author{
M. Bass
}

Studies of energy levels and structures of diatomic and small polyatomic molecules as determined from the analysis of spectroscopic data. Facilities include spectroscopic instrumentation permitting observations from \(500 \AA\) in the vacuum ultraviolet to 53 microns in the infrared. A 21-foot focal length vacuum spectrograph provides the capability for obtaining highresolution spectra. Also available are various sources for exciting spectra, including electric discharges, flames, flash photolysis and flash heating. The program also includes studies of transient species stabilized by condensation in low-temperature inert matrices.

Microwave Spectra of Gaseous Radicals:
H. E. Radford

Experiments are performed to determine the hyperfine structure, Zeeman effect and lambdatype doubling of simple diatomic radicals produced in gas mixtures by electric discharges, chemical reactions, triggered explosions, and photolysis. The paramagnetic resonance technique is used mainly, and spectrometers of various types are available for work at \(3 \mathrm{Gc}, 9 \mathrm{Gc}\) and 24 Gc in magnetic field strengths up to 24 Kg . Optical and radiofrequency apparatus is also available for radio-optical resonance experiments on diatomie molecules, and for measurements of radio spectra in molecular excited states. Recent successful experiments in these two fields of study have been performed on the paramagnetic resonance spectra of OH and SH , and on the rotational perturbation microwave spectrum of excited \(C N\). Other experiments are in progress on the kinetics of radical reactions, using paramagnetic resonance detection methods.

Production and Measurement of Very High Temperatures:
John B. Shumaker
A program of research in the measurement of temperatures above \(10,000^{\circ} \mathrm{C}\) is being conducted in the High Temperature Measurements Laboratory. current interests include the detailed investigation of stable high current density arcs and plasma jets and the measurement of their temperatures and related physical parameters by a variety of spectroscopic techniques.

Figure 5h. A page from the NBS Postdoctoral Rescarch Associateships announcement booklet produced via the cardcontrolled typewriter from cards processed by JUSTIFY. The cards that produced this page were rearranged and edited where necessary prior to the transformation described in Section 5.4.

Dynamic Measurement of Properties of Gases at Very High remperatures:

\section*{C. W. Beckett}

Current research includes the investigation of thermodynamic and related properties of gases at high temperatures by dynamic experimental techniques, such as shock tubes, exploding wires, and electrical discharges. Advanced measurement techniques for obtaining both microscopic and macroscopic properties are being explored. The equipment includes an ultra high speed framing camera and a time-resolved spectrometer.

Molecular Energy Levels and Intensities:

\section*{A. M. Bass}

Studies of energy levels of diatomic and small polyatomic molecules as determined from the analysis of spectroscopic data. Facilities include spectroscopic instrumentation permitting observations from 500 A in the vacuum ultraviolet to 50 microns in the infrared. Also available are various sources for exciting spectra, including electric discharges, flames, flash photolysis and flash heating. The observation of radicals and transient molecules produced in low-temperature matrices and the investigation of matrix effects on molecular energy levels is also of interest.

Microwave Spectra of Gaseous Radicals:
H. E. Radford

Experiments are performed to determine the hyperfine structure, Zeeman effect and lambdatype doubling of simple diatomic radicals produced in gas mixtures by electric discharges, chemical reactions, triggered explosions, and photolysis. The paramagnetic resonance technique is used mainly, and spectrometers of various types are available for work at \(3 \mathrm{Gc}, 9 \mathrm{Gc}\) and 24 Gc in magnetic field strengths up to 24 Kg . Optical and radiofrequency apparatus is also available for radio-optical resonance experiments on diatomic molecules, and for measurements of radio spectra in molecular excited states. Recent successful experiments in these two fields of study have been performed on the paramagnetic resonance spectra of OH and SH , and on the rotational perturbation microwave spectrum of excited \(C N\). Other experiments are in progress on the kinetics of radical reactions, using paramagnetic resonance detection methods.
plasma Physics:
C. K. McLane

An experimental and theoretical study of transport processes in the plasma state has as its object a fundamental understanding of the contribution of collective interactions. Facilities available include a magnetically confined arc discharge apparatus for study of the steady state magneto-plasma in fields up to 7000 gauss, and the usual electronic and optical spectroscopic equipment for plasma diagnostics. Equipment for the study of the transient plasma by capacitor discharge techniques is also available.

Production and Measurement of Very High Temperatures: John B. Shumaker
A program of research in the measurement of temperatures above \(10,000^{\circ} \mathrm{C}\) is being conducted in the High Temperature Measurements Laboratory. Current interests include the detailed investigation of stable high current density arcs and plasma jets and the measurement of their temperatures and related physical parameters by a variety of spectroscopic techniques.

Figure 5i. A page from an earlier issje of the NBS Postdoctoral Research Associateships announcement booklet produced prior to the development of JUSTIFY. Note the ragged right hand margins.
```

'D'YNAMIC 'M'EASUREMENT OF 'P'ROPERTIES OF 'S'OLIDS AND 'L'IQUIDS AT) D
`V'ERY 'H'IGH 'T'EMPERATURES) 'C'. 'W'. 'B'ECKETT AND 'A'. 'C'EZAIRLIYAN) C OC'URRENT RESEARCH INCLUDES THE INVESTIGATION OF THERMODYNAMIC) ANO RELATED PROPERTIES OF SOLIDS AND LIQUIDS AT HIGH TEMPERATURES BY) DYNAMIC EXPERIMENTAL TECHNIQUES, SUCH AS, PULSE CALORIMETRY,) EXPLODING WIRES, ELECTRICAL DISCHARGES, ETC. 'A.DVANCED MEASUREMENT) TECHNIQUES FOR OBTAINING BOTH MICROSCOPIC AND MACROSCOPIC PROPERTIES) ARE BEING EXPLORED. 'T'HE EQUIPMENT INCLUDES PULSE CALORIMETERS OF) MILLISECOIND AND MICROSECOND TIME RESOLUTION, HIGH['O:]SPEED) PHOTOELECTRIC PYROMETERS, AND ULTRA HIGH['O`]SPEED FRAMING CAMERA. A)
HIGH['O']SPEED DIGITAL RECORDING SYSTEM AND OTHER AUXILIARY DYNAMIC)
MEASURMENT INSTRUNENTS.)
)
'C`OMBUSTION AND `R'EACTION 'C`ALORIMETRY) 'G|. 'T'. 'A!RMSTRONG) -R'ELATIONSHIPS BETWEEN BINDING ENERGY AND STRUCTURE ARE BEING) INVESTIGAIED AMONG ORGANIC AND INORGANIC COMPOUNDS. 'R'ECENT EMPHASIS) HAS BEEN ON FLUORINE COMPOUNDS. NITRO COMPOUNDS. AND COMPOUNDS OF) BIOLOGICAL INTEREST. 'A' ROTATING BOME CALORIMETER, FACILITIES FOR) BOMB OR FLOW COLORIMETRY WITH FLUORINE, AND OTHER CALORIMETRIC) FACILITIES ARE AVAILASLE FOR HIGH PRECISION MEASUREMENTS. 'TPHE) CALORIMETRIC PROCESS, REFERENCE MATERIALS FOR REACTION CALORIMETRY,) AND NEW FURMS FOR CORRELATING CALORIMETRIC MEASURMENTS MAY ALSO) BE INVESTIGATED.)) 'P`ROUUCTION AND 'M`EASUREMENT OF 'V'ERY 'H'IGH 'T`EMPERATURES'I') D
'J'OHN 'B'. 'S'HUMAKER)
)C
)
'A' PROGRAM OF RESEARCH IN THE MEASUREMENT OF TEMPERATURES ABOVE \$
10.000'/C, IS)
BEING COINDUCTED IN THE 'H'IGH 'T'EMPERATURE 'M'EASUREMENTS \$
'L'ABORATORY. CURRENT)
INTERESTS INCLUDE THE DETAILED INVESTIGATION OF STABLE HIGH CURRENT \$
DENSITY ARCS)
AND PLASMA JETS AND THE MEASUREMENT OF THEIR TEMPERATURES AND RELATED \$
PHYSICAL)
PARAMETERS BY A VARIETY OF SPECTROSCOPIC TECHNIQUES.) RES AND RELATE S
)

```

Figure \(5 j\). The text shown above represents cditorial changes in existing cards prior to conversion via JUSTIFY to produce the character stram shown in the next figure.
```

ABCREFGHIJKLMNOPQNSTUVWXYZ0123456789+.)\$*/.(%' =
GADVANCEN MEASURFMENT TECHINIOIES FOR OBTAINING BOTH MICROSCOPIC
AIVD MACROSCOPIC PROFERTIES ARE BEING EXPLORED. TTHE EQUIPMENT
INCLUDES PULSE CALOKIMETEKS OF MILLISFCOND ANL MICROSFCOND TIME
KrSOLUTION, HIGH[' 0^{\prime} ']SPFEU HHOTOELECTRIC PYROMETERS. AND ULTRA
HIGH[TO TSPEED FRAMING CAMFRA. A HIGHE O' ISPEED DIGITAL RECORDING
SYSTEM AND OTHEK AUXILIARY GYNAMIC MEASURMENT INSTRUMFNTS.
CD'OMRUSTION ANO IR'FACTION 'C•ALORIMETRY?1/
E'GTT. A'RMSTRUNG
)
BE ING INVESTIGATEO HMONG ORGANIC AND INORGANIC COMPOUNDS.
TRTECENT EMPHASIS HAS RFEIN ON FLUORINE COMPOUNDS. NITRO
CUMPOUNDS. ANU COMPUUNDS OF BIOLOGICAL INTEREST. 'A' ROTATING
RONR CALORIMETFR. FAC IL ITIFS FOR ROMR OR FLOW COLORIMFTRY WITH
FLIJORINF, AND OTHFK CALORIMETKIC FACILITIFS ARE AVAILAHLE FOR
HIGH PRFCISION MEASUREMENTS. T THE CALORIMETRIC PROCFSS.
REFFRENCF MATERIALS FOR REACTION CALORIMETRY, ANO NEW FORMS FOR
CORRELATING CALORTMETRIC MFASURTVENTS MAY ALSO RE INVESTIGATEN.

JOHN 'H'. 'S'HIJMAKER
- A. PRUGRAM OF RESEARCH IN THF MEASUREMENT OF TEMPERATURES
ABOVE $10.000^{\prime /} / C^{\circ}$ IS HEING CONUUCTFD IN THF 'H IGH. T'FMPERATURE
-M'EASURFMENTS 'L'AGORATOKY. CURRENT INTFRESTS INCLUNE THE
DETAILEN INVESTIGATION OF STABLE HIGH CURRENT DENSITY゙ ARCS AND
PLASMA JFTS AND THE MEASUREMENT OF THFIR TEMPERATURES AND RELATFD
PHYSICAL PARAMETERS BY A VARIETY OF SPECTROSCOPIC TECHNIQUES.
E'LOTOW TIEMPERATURE C'ALORIMETRYI ?
G'G'. 'T'. 'F'UKUKAWA
'CIURRENT KESEAKCH INTERESTS INCLUUE THE INVESTIGATIONS OF
HEAT CAPACITY.VAPOR PRESSURE. HEATS OF FUSION AND TRANSITION.
HEAT OF VAHOR」ZATION. CHEMICAL PURITY. AND PHASE FQUILIBRIA OF
SELECTEN COMPOIINDS OF FLIJORINE. HYITRGEN AND OTHER [IGHT

Figure 5k. Results from a pass through a slightly modified ad hoc version of JUSTIFY preparatory to the production of the typset page shown in Figure 5 g . See Section 5.4 for a discussion of the circled characters.

APPENDIX

PROGRAM LISTINGS

The program listings which follow were produced on a photocomposing machine at the Government Printing Office from a magnetic tape produced at NBS by a Fortran program called TYPSET. That program accepts a symbolic program deck as input data and produces a magnetic tape formatted to be processed by an Autoset Composition Program or the Master Typography Program at the Government Printing Office.

The listings were reduced 10% from paper positives set in 10 point type with 12 point leading in the Clarinda typeface.

A magnetic tape containing card images of the programs in this appendix will be prepared for sale by the Clearinghouse for Federal Scientific and Technical Information if the demand warrants it. A self-addressed card is provided for this purpose at the back of this report.
C ITAPE - THE NORMAL SYSTEM INPUT TAPE.
SCRA0020
SCRA0030
C IOTAPE - THE NORMAL SYSTEM OUTPUT TAPE.
SCRA0040
C IRTAPE - A SPECIAL INPUT TAPE. IF ONE INPUT TAPE WILL DO, SET IRTAPE SCRA0050
C
C IPTAPE - A SPECIAL OUTPUT TAPE. IT CAN BE USED AS AN INPUT TO OTHER
C
C
C
C THE FIRST CARD CONTAINS THOSE CHARACTERS FOR WHICH SUBSTITUTIONS ARE
C TO BE MADE. THE SECOND CARD CONTAINS THE CHARACTERS TO BE SUBSTITUTED
C FOR THE CHARACTERS IN THE CORRESPONDING FIELDS OF FIRST CONTROL CARD.
C THE THIRD CONTROL CARD CONTAINS IN I2 FORMAT THE PUNCH SWITCH ITEST
C WHICH IS NONZERO TO PUNCH AND IRTAPE AND IPTAPE
C
CODE BY MRS CARLA G. MESSIN
NSRDS - NBS
1967
DIMENSION ICOL(140), IA(80), IB(80),IS(80)
ITAPE=5
IOTAPE=6
FORMAT (132A1)
READ (ITAPE, 10) (IA (J), J=l, 80)
WRITE (IOTAPE, 75) (IA(J), J=1, 80)
READ (ITAPE, 10) (IB (J), J=1, 80)
WRITE (IOTAPE,75) (IB(J), J=1, 80)
READ (ITAPE,20) ITEST,IRTAPE,IPTAPE,IWIDE1
20 FORMAT (3I2,1I4)
IF (IWIDEl) 21,21,22
21 IWIDEl=80
22 IF (IWIDEl-132) 23,23,21
23 IF (IRTAPE) 11,11,12
11 IRTAPE $=5$
GO TO 14
12 IF (IRTAPE -6) $14,14,13$
13 REWIND IRTAPE
14 IF (IPTAPE) $15,15,16$
15 IPTAPE $=3$
GO TO 18
16 IF (IPTAPE - 6) $18,18,17$
17 REWIND IPTAPE
18 WRITE (IOTAPE,39) ITEST, IRTAPE, IPTAPE
39 FORMAT (1X,3I2)
DO $40 \mathrm{I}=1,80$
IF (IA(I) - IB(I)) 25,30,25
IS (I) = I
GO TO 40
IS (I) =0
CONTINUE
DO $60 \mathrm{I}=1,80$
$\mathrm{M}=\mathrm{I}$
IF (IS (I)) $90,60,90$
60 CONTINUE
IF (M-80) $90,70,70$

SCRA0060
SCRA0070
SCRA0080
SCRA0090
SCRA0100
SCRAO110
SCRA0120
SCRAO 130
SCRAO 140
SCRAO150
SCRA0155
SCRAM160
SCRA0165
SCRAM170
SCRAM180
SCRAM190
SCRAM200
SCRAM210
SCRAM220
SCRAM230
SCRAM240
SCRAM250
SCRAM260
SCRAM261
SCRAM262
SCRAM263
SCRAM270
SCRAM280
SCRAM290
SCRAM300
SCRAM310
SCRAM320
SCRAM330
SCRAM340
SCRA0350
SCRA0360
SCRA0370
SCRA0380
SCRA0390
SCRA0400
SCRA0410
SCRA0420
SCRA0430
SCRA0440
SCRA0450
SCRA0460
SCRA0470
SCRA0480
SCRA0490
$\operatorname{ICOL}(\mathrm{I})=I B(J)$
CONTINUE
WRITE (IOTAPE,75) (ICOL(J),J=l,IWIDE1)
IF (ITEST) $160,50,160$
WRITE (IPTAPE, 10) (ICOL(J),J=1,IWIDEl)
GO TO 50
END
WRITE (IOTAPE,75) (IA(J), J=1,80)
WRITE (IOTAPE,75) (IB(J), J=1, 80)
FORMAT ($1 \mathrm{X}, 131 \mathrm{Al})$
WRITE (IOTAPE,8)

STOP

DO $100 \mathrm{I}=1,80$
$\mathrm{N}=81-\mathrm{I}$
IF (IS(N)) 50,100,50 CONTINUE
READ (IRTAPE, 10) (ICOL(J), J=1, IWIDE1)
CALL CHECK(IA,ICOL,K,ITEST,IPTAPE,IOTAPE)
IF (K) 1111,110,1111
DO 150 I=1,IWIDE1
DO $130 \mathrm{~J}=\mathrm{M}, \mathrm{N}$
IF (IS(J)) 120,130,120
IF (ICOL(I) - IA(J)) 130,140,130
CONTINUE

SUBROUTINE CHECK(IA,II,K,ITEST,IPTAPE,IOTAPE)
DIMENSION IA(80),II(140)
DO $10 \mathrm{I}=1,26$
IF (IA(I) - II(I)) $50,10,50$
CONTINUE
$\mathrm{K}=1$
WRITE (IOTAPE,19) (IA(I), I=1,80)
IF (ITEST) 20,60,20
WRITE (IPTAPE, 29) (IA(I), I=1,80)
IF (IPTAPE -6) 60,60,30
END FILE IPTAPE
GO TO 60
$\mathrm{K}=0$
RETURN
FORMAT (1X,80A1)
FORMAT (80A1)
END

SUBSTITUTE

TO, IBM 870 DOCUMENT-WRITER DRIVER RECORDS.

SCRA0500
SCRA0510
SCRA0520
SCRA0530
FORMAT (72HOTHE ABOVE CARDS ARE IDENTICAL AND THEREFORE NO SUBSTITUSCRAO540
ITION IS NEEDED.) SCRA0550
SCRA0560
SCRA0570
SCRA0580
SCRA0590
SCRA0600
SCRA0610
SCRA0620
SCRA0630
SCRA0640
SCRA0650
SCRA0660
SCRA0670
SCRA0680
SCRA0690
SCRA0700
SCRA0710
SCRA0720
SCRA0730
SCRA0740
SCRA0750
SCRA0760
SCCKOO10
SCCKOO2O
SCCK0030
SCCK0040
SCCK0050
SCCK0060
SCCK0070
SCCK0080
SCCK0090
SCCKO100
SCCKOllo
SCCKO120
SCCKO130
SCCKO140
SCCKO150
SCCK0160
SCCK0170

SUB
10
SUB 20
TEXTUAL SUBSTITUTION PROGRAM WRITTEN BY C. MESSINA FOR IBM 7094 SUB 30
RECOMPILED NOV 1966 FOR USE ON CDC 3100, MAY 1967 FOR UNIVAC 1108 SUB 40
THE PROGRAM SUBSTITUTES AN ITEM OF TEXT WHENEVER IT OCCURS IN SUB 50
THE SET OF RECORDS IN THE LIBRARY, PUTTING IN A NEW PRESCRIBED SUB 60
ITEM. THE PROGRAM IS DESIGNED TO HANDLE, BUT IS NOT LIMITED SUB 70

THE INPUT DECK AT OBJECT TIME IS THE FOLLOWING SET OF CARDS
SUB
90 THE FIRST CARD IS A DICTIONARY OF THE ALPHABET STARTING WITH THE SUB 100 LETTER A IN CARD COL ONE, A LETTER B IN COL 2 AND SO FORTH. THE NOSUB 110 FOLLOW THE ALPHABET STARTING WITH ZERO. COL 38 CONTAINS THE PRINTSUB 120 OUT STRING DELIMITER. COL 47 CONTAINS A BLANK. SUB 130 THE SECOND CARD HAS A ZERO IN COL TWO IF NO CARDS ARE TO BE PUNCHESUB 140 1 IF THE PUNCH TAPE IS TO BE WRITTEN. THE NEXT $2 I 2$ FIELDS ON THIS SUB 150 CARD IF NON BLANK CONTAIN THE IRTAPE NUMBER AND THE IPTAPE NO. SUB 160 IF IRTAPE OR IPTAPE ARE GREATER THAN 6 THEY WILL REWIND AT START SUB 170 OF RUN. UNLESS CHANGED ON THE SECOND CARD IRTAPE=5 AND IPTAPE=3 SUB 180 THE THIRD AND FOURTH CARDS, BOTH IN Al,I3,2A1,I2 FORMATS CONTROL ISUB 190 AND OUTPUT RECORD FORMATS RESPECTIVELY. THE FIRST ITEM IS THE SUB 200 CONTINUATION CARD SYMBOL, THE SECOND IS THE RECORD LENGTH, THE SUB 210 THIRD IS THE SHIFT TO UPPER CASE SYMBOL, THE FOURTH IS THE SHIFT SUB 220 TO LOWER CASE SYMBOL, AND THE FIFTH IS THE SHIFT AND LOCK SWITCH SUB 230 THAT IS 0 IF THE MODE IS NOT SHIFT AND LOCK AND 1 IF IT IS. SUB 240 CARDS FIVE ET SEQ CONTAIN THE LIST OF STRINGS TO BE EXCHANGED. SUB 250 ON EACH CARD THE OLD RECORD OR STRING APPEARS ON THE LEFT SIDE ANDSUB 260 THE NEW STRING ON THE RIGHT. THE CHARACTER WHICH APPEARS IN CARD SUB 270 COLUMN 1 IS THE STRING DELIMITER WHICH REMAINS IN FORCE FOR THAT SUB 280 CARD. IT MAY, HOWEVER, CHANGE FROM CARD TO CARD. SUB 290 THE FORMAT IS PRESCRIBED. A CHARACTER IN COL 1 DEFINES THE STARTSUB 300 OF A STRING. THE SAME CHARACTER MUST APPEAR AFTER THE END SUB 310 OF THE STRING. THE THIRD APPEARANCE OF THE COLUMN 1 CHARACTER ON SUB 320 THE CARD STARTS THE 2ND STRING AND THE FOURTH APPEARANCE ENDS IT. SUB 330

EXAMPLE /REAL/ /TRUE/
SUB 340
SUB 350
SUB 360
AFTER THE SUBSTITUTION LIST MUST COME A CARD WITH THE WORD FINIS SUB 370
STARTING IN CARD COLUMN ONE. SUB 380
AT THIS POINT THE PROGRAM STARTS TO READ THE LIBRARY RECORD'S FROM SUB 390
THE UNIT CALLED IRTAPE. THE OTHER UNITS ARE INPUT DECK SUB 400
AND SEARCH LIST FROM UNIT ITAPE, PRINTER OUTPUT TO UNIT IOTAPE ANDSUB 410
PUNCH TO UNIT IPTAPE. IPTAPE CONTAINS THE SAME INFORMATION AS SUB 420
UNIT IOTAPE EXCLUDING PROGRAM MESSAGES, I.E. ONLY TEXT. SUB 430
INPUT AND OUTPUT RECORD LENGTHS MUST BE AT LEAST 1 CHARACTER LONG SUB 440
NO MORE THAN 132 CHARACTERS LONG. SUB 450
DIMENSION IA(86),N(400),IC(8000),IB(361)
COMMON ITAPE,IOTAPE,IRTAPE, IPTAPE,IWIDE1,IWIDE2,IA,IW,N,IC,IB
ITAPE=5
IOTAPE=6
IEND=0
READ (ITAPE, 1060) (IA(J), J=1, 80)
WRITE (IOTAPE,lll0) (IA(J), J=1,80)
READ (ITAPE,1070) ITEST, IRTAPE, IPTAPE
IF (IRTAPE) 20,20,30
IRTAPE=5
GO TO 50
IF (IRTAPE-6) 50,50,40
REWIND IRTAPE
IF (IPTAPE) 60,60,70
IPTAPE=3
GO TO 90
IF (IPTAPE-6) $90,90,80$

SUB 470
SUB 480
SUB 490
SUB 500
SUB 510
SUB 520
SUB 530
SUB 540
SUB 550
SUB 560
SUB 570
SUB 580
SUB 590
SUB 600
SUB 610
SUB 620
SUB 630

80	REWIND IPTAPE	SUB 640
90	WRITE (IOTAPE,1150) ITEST, IRTAPE, IPTAPE	SUB 650
	READ (ITAPE, 1080) IA (81), IWIDEl, IA (83), IA (85), LOCKl	SUB 660
	WRITE (IOTAPE,1140) IA (81), IWIDEl, IA (83),IA (85), LOCKl	SUB 670
	READ (ITAPE, 1080) IA (82), IWIDE2,IA(84), IA (86), L0CK2	SUB 680
	WRITE (IOTAPE,1140) IA (82), IWIDE2, IA (84), IA (86),LOCK2	SUB 690
	IF (IWIDE1-1) 100,110,110	SUB 700
100	WRITE (IOTAPE, 1090)	SUB 710
	GO TO 1050	SUB 720
110	IF (IWIDE1-132) 120,120,100	SUB 730
120	IF (IWIDE2-1) $100,130,130$	SUB 740
130	IF (IWIDE2-132) 140,140,100	SUB 750
140	$\mathrm{Nl}=0$	SUB 760
	N3=1	SUB 770
C	START OF READING IN SUBSTITUTE LISTS	SUB 780
150	READ (ITAPE, 1060) (IB (J), J=1, 80)	SUB 790
	N2=0	SUB 800
	N22=0	SUB 810
	IF (IB (1)-IA (6)) 200,160,200	SUB 820
160	IF (IB (2)-IA (9)) 200,170,200	SUB 830
170	IF (IB (3)-IA (14)) 200,180,200	SUB 840
180	IF (IB (4)-IA (9)) 200,190,200	SUB 850
190	IF (IB (5)-IA (19)) 200,430, 200	SUB 860
200	D0 $220 \mathrm{I}=2,78$	SUB 870
	IF (IB (I)-IB(1)) 220,210,220	SUB 880
210	IF (N2) 150,150,230	SUB 890
220	$\mathrm{N} 2=\mathrm{I}-1$	SUB 900
230	$\mathrm{J}=\mathrm{N} 2+3$	SUB 910
	IF (J-79) 250,240,240	SUB 920
240	WRITE (IOTAPE, 1120) IB(l), (IB(I), $\mathrm{I}=1,80$)	SUB 930
	G0 TO 1050	SUB 940
250	$\mathrm{K}=\mathrm{J}+1$	SUB 950
	D0 260 I=J,79	SUB 960
	IF (IB (I)-IB(1)) 260,270,260	SUB 970
260	$\mathrm{K}=\mathrm{I}+2$	SUB 980
	G0 TO 240	SUB 990
270	D0 280 I=K, 80	SUB1000
	IF (IB(I)-IB(1)) $280,290,280$	SUB1010
280	$\mathrm{N} 22=\mathrm{I}-\mathrm{K}+1$	SUB1020
	GO TO 240	SUB1030
290	$\mathrm{Nl}=\mathrm{Nl}+2$	SUB1040
	$\mathrm{N}(\mathrm{Nl}-1)=\mathrm{N} 2$	SUB1050
	$\mathrm{N}(\mathrm{N} 1)=\mathrm{N} 22$	SUB1060
	N4=N3+N2-1	SUB1070
	IF (N4-7920) 310,310,300	SUB1080
300	WRITE (ICTAPE,ll00) N4, N1	SUB1090
	G0 TO 1050	SUB1100
310	IF (N1-400) 320,320,300	SUBl110
320	$\mathrm{J}=2$	SUB1120
	DO $330 \mathrm{I}=\mathrm{N} 3, \mathrm{~N} 4$	SUB1130
	$\mathrm{IC}(\mathrm{I})=\mathrm{IB}(\mathrm{J})$	SUB1140
330	$\mathrm{J}=\mathrm{J}+\mathrm{l}$	SUBl150
	N3 $=$ N3 + N2	SUB1160
	IF (N22) $360,360,340$	SUB1170
340	N4 $=\mathrm{N} 3+\mathrm{N} 22-1$	SUB1180

	$\mathrm{J}=\mathrm{K}$	SUB1190
	DO $350 \mathrm{I}=\mathrm{N} 3$, N4	SUB1200
	$\mathrm{IC}(\mathrm{I})=\mathrm{IB}(\mathrm{J})$	SUB1210
350	$\mathrm{J}=\mathrm{J}+1$	SUB1220
360	IF (N2-38) $370,370,380$	SUB1230
370	$\mathrm{K}=42$	SUB1240
380	$\mathrm{Kl}=\mathrm{K}+\mathrm{N} 22-1$	SUB1250
	$\mathrm{J}=\mathrm{N} 2+3$	SUB1260
	D0 390 L=J, 80	SUB1270
390	$I B(L)=I A(47)$	SUB1280
	$\mathrm{IB}(1)=I A(38)$	SUB1290
	$\operatorname{IB}(\mathrm{N} 2+2)=\mathrm{IA}(38)$	SUB1300
	IB $(\mathrm{K}-1)=\mathrm{IA}$ (38)	SUB1310
	$\mathrm{IB}(\mathrm{Kl}+1)=\mathrm{IA}(38)$	SUB1320
	IF (N22) 420,420,400	SUB1330
400	DO $410 \mathrm{I}=\mathrm{N} 3$, N4	SUB1340
	IB (K) $=\mathrm{IC}$ (I)	SUB1350
410	$\mathrm{K}=\mathrm{K}+1$	SUB1360
	$\mathrm{N} 3=\mathrm{N} 3+\mathrm{N} 22$	SUB1370
420	WRITE (IOTAPE, lll0) (IB (J), J=1,80)	SUB1380
	GO TO 150	SUB1390
430	N44=N4	SUB1400
	IF (N1-4) 540,440,440	SUB1410
440	$\mathrm{N} 7=\mathrm{N} 1+2$	SUB1420
450	N3=1	SUB1430
	$\mathrm{Kl}=0$	SUBl440
	$\mathrm{N} 7=\mathrm{N} 7-2$	SUB1450
	IF (N'7-4) 460,470,470	SUB1460
460	$\mathrm{N} 7=\mathrm{N} 7+2$	SUB1470
470	DO $530 \mathrm{I}=4, \mathrm{~N} 7,2$	SUB1480
	$\mathrm{N} 2=\mathrm{N}(\mathrm{I}-3)+\mathrm{N}(\mathrm{I}-2)$	SUB1490
	$\mathrm{N} 22=\mathrm{N}(\mathrm{I}-1)+\mathrm{N}(\mathrm{I})$	SUB1500
	IF (N(I-3)-N(I-1)) 490,480,480	SUB1510
480	$\mathrm{N} 3=\mathrm{N} 3+\mathrm{N} 2$	SUB1520
	GO TO 530	SUB1530
490	$\mathrm{N} 4=\mathrm{N}(\mathrm{I}-3)$	SUB1540
	$N(\mathrm{I}-3)=\mathrm{N}(\mathrm{I}-1)$	SUB1550
	$\mathrm{N}(\mathrm{I}-\mathrm{l})=\mathrm{N} 4$	SUB1560
	N4=N(I)	SUB1570
	$\mathrm{N}(\mathrm{I})=\mathrm{N}(\mathrm{I}-2)$	SUB1580
	$\mathrm{N}(\mathrm{I}-2)=\mathrm{N} 4$	SUB1590
	$\mathrm{Kl}=\mathrm{Kl}+1$	SUB1600
	N4 $=$ N3 + N2-1	SUB1610
	$\mathrm{K}=0$	SUB1620
	DO $500 \mathrm{~J}=\mathrm{N} 3, \mathrm{~N} 4$	SUB1630
	$K=K+1$	SUB1640
500	$I B(K)=I C(J)$	SUB1650
	DO $510 \mathrm{~J}=1, \mathrm{~N} 22$	SUB1660
	$\mathrm{K}=\mathrm{N} 3+\mathrm{J}-1$	SUB1670
	N6=N4+J	SUB1680
510	$\mathrm{IC}(\mathrm{K})=\mathrm{IC}(\mathrm{N} 6)$	SUB1690
	N3=N3+N22	SUB1700
	DO $520 \mathrm{~J}=1$, N2	SUB1710
	K=N3+J-1	SUB1720
520	$\mathrm{IC}(\mathrm{K})=\mathrm{IB}(\mathrm{J})$	SUB1730

 READ (IRTAPE,1060) (IB(J), J=1,IWIDE1)
 SUB1800
570 CALL CHECK2 (IEND,ITEST,l)
DO 600 I=1,IWIDE1
IF (IA(81)-IB(I)) 600,630,600
600 CONTINUE
I=IWIDE1
IF (IB(IWIDE1)-IA(47)) 700,610,700
610 DO 620 J=l,IWIDE1
IF (IB(I)-IA(47)) 690,620,690
SUB1850
SUB1860
SUB1870
SUB1880
GO TO 690
SUB1920
SUB1930
630 J=I+IWIDEl-1
SUB1940
IF (J-360) 640,640,700
SUB1950
640 K=I
READ (IRTAPE,1060) (IB(I), I=K,J)
IEND=2
CALL CHECK2 (IEND,ITEST,K)
IF (IEND) 650,660,650
$\mathrm{I}=\mathrm{K}-1$
G0 T0 700
660 DO $670 \mathrm{I}=\mathrm{K}, \mathrm{J}$
IF (IA(81)-IB(I)) 670,630,670
SUB1960
SUB1970
SUB1980
SUB1990
SUB2000
SUB2030
CONTINUE
SUB2040
$\mathrm{I}=\mathrm{J}$
DO 680 L=K,J
SUB2060
SUB2070
IF (IB(I)-IA(47)) 700,680,700
680 I=I-1
SUB2080
690 I=I+l
700 IW=I
$\operatorname{IB}(I W+1)=I A(47)$
IF (LOCK1) 710,720,710
710 CALL SUNLOK
ILK=0
N7=0
DO $760 \mathrm{~K}=\mathrm{K} 2$, IW
N3=1
DO $750 \mathrm{I}=2, \mathrm{Nl}, 2$
N2=N(I-1)
$\mathrm{N} 22=\mathrm{N}$ (I)
$\mathrm{Kl}=\mathrm{K}$
$\mathrm{N} 4=\mathrm{N} 3+\mathrm{N} 2-1$
$\mathrm{Kl}=\mathrm{Kl}+1$
SUB2090
SUB2100
SUB2110
SUB2120

N7=0
SUB2200
SUB2210
SUB2220
SUB2230
SUB2240

	IF (IW-Kl-1) 940,940,970	SUB2840
970	$\mathrm{J}=\mathrm{Kl}$	SUB2850
	DO 980 I=K,Kl	SUB2860
	IF (IB (J)-IA (47)) 980,1010,980	SUB2870
980	$J=J-1$	SUB2880
990	WRITE (IOTAPE, lll0) (IB(J), J=K, Kl), IA (82)	SUB2890
	IF (ITEST) 1000,960,1000	SUB2900
1000	WRITE (IPTAPE,1060) (IB(J), J=K, Kl), IA (82)	SUB2910
	GO TO 960	SUB2920
1010	Kl=J	SUB2930
	IF (IB (Kl+1)-IA (47)) 990,1020,990	SUB2940
1020	DO $1030 \mathrm{I}=\mathrm{K}, \mathrm{Kl}$	SUB2950
	IF (IB J$)-\mathrm{IA}(47)) 1040,1030,1040$	SUB2960
1030	$J=J-1$	SUB2970
	GO TO 990	SUB2980
1040	$\mathrm{Kl}=\mathrm{J}$	SUB2990
	GO TO 970	SUB3000
1050	STOP	SUB3010
C		SUB3020
1060	FORMAT (132Al)	SUB3030
1070	FORMAT (40I2)	SUB3040
1080	FORMAT (lAl,lI3,2Al,lI2)	SUB3050
1090	FORMAT (70H INPUT OR OUTPUT IMAGE WIDTH CANNOT BE LESS THAT 1 OR G	GSUB3060
	IREATER THAN 132/6H STOP.)	SUB3070
1100	FORMAT (33H LIST OF REPLACEMENTS IS TOO LONG/67H MAXIMUM CHARACTER	RSUB3080
	1 LENGTH IS 8000, MAXIMUM NUMBER OF PHRASES IS 400/20H CURRENT VALU	USUB3090
	2ES ARE, 2I6,6H STOP.)	SUB3100
1110	FORMAT (1X,131Al)	SUB3110
1120	FORMAT (16H THE CHARACTER , lAl, 48H DID NOT APPEAR 4 TIMES ON THE	SUB3120
	lCARD BELOW. STOP./lX, 80Al)	SUB3130
1130	FORMAT (86HOTHE LINE FOLLOWING WOULD HAVE EXCEEDED 360 CHARACTERS	SUB3140
	IIF SUBSTITUTION HAD CONTINUED.)	SUB3150
1140	FORMAT (1X,1A1,1I3,2Al,1I2)	SUB3160
1150	FORMAT (1X,50I2)	SUB3170
	END	SUB3180-
C		
C	SUBROUTINE SUNLOK	SULK 10
	DIMENSION IA (86), $\mathrm{N}(400), \mathrm{IC}(8000), \mathrm{IB}(361)$	SULK 20
	COMMON ITAPE, IOTAPE, IRTAPE, IPTAPE, IWIDEl, IWIDE2,IA, IW, N,IC,IB	SULK 30
	L=0	SULK 40
	$\mathrm{J}=0$	SULK 50
	K=0	SULK 60
	DO $60 \mathrm{I}=1$, IW	SULK 70
	IF (IB (I)-IA (83)) 40,20,40	SULK 80
20	L=L+1	SULK 90
	IF (L-J-l) 30,60,30	SULK100
30	$\mathrm{K}=1$	SULK110
	GO TO 60	SULK120
40	IF (IB (I)-IA(85)) 60,50,60	SULK130
50	$\mathrm{J}=\mathrm{J}+1$	SULK140
	IF (L-J) 30,60,30	SULK150
60	CONTINUE	SULK160
	IF (L-J) 80,70,90	SULK170
70	IF. (K) $80,120,80$	SULK180

```
80 WRITE (IOTAPE,280)
    GO TO 150
90 IF (IA(83)-IA(85)) 80,100,80
100 K=2*(L/2)-L
    IF (K) 110,120,110
110 IW=IW+1
    IB(IW)=IA(85)
120 J=1
130 IF (IB(J)-IA(83)) 140,160,140
140 J=J+1
    IF (J-(IW+l)) 130,150,150
150 RETURN
160 IF (IB(J+1)-IA(85)) 190,170,190
170 J=J+2
    DO 180 I=J,IW
180 IB(I-1)=IB (I)
    GO TO 220
190 IF (IB(J+2)-IA(85)) 230,200,230
200 J=J+3
    DO 210 I=J,IW
210 IB(I-1)=IB (I)
220 IW=IW-1
    IB(IW+1)=IA (47)
    J=J-l
    GO TO 130
230 IF ((IW+1)-360) 250,250,240
240 WRITE (IOTAPE,270)
    GO TO 150
250 IW=IW+1
    J=J+3
    K=IW
    DO 260 L=J,IW
    IB(K)=IB(K-1)
    K=K-1
    J=J-1
        B(R)=A(3)
    GO TO 160
C
    FORMAT (ll6HOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEFORESULK57O
    l THE 360 CHARACTER LINE LIMIT WAS EXCEEDED IN SHIFT AND UNLOCK) SULK580
    FORMAT (69HOTHE FOLLOWING LINE DID NOT CONTAIN A BALANCED SET OF SSULK590
        lHIFT SYMBOLS.)
    END
C
    SUBROUTINE SLOCK
    DIMENSION IA(86), N(400), IC(8000), IB(361)
    COMMON ITAPE,IOTAPE,IRTAPE,IPTAPE,IWIDE1,IWIDE2,IA,IW,N,IC,IB
    J=1
    IF (IB(J)-IA(84)) 30,60,30
    IF (J-(IW+1)) 20,20,50
40 WRITE (IOTAPE,140)
5 0 ~ R E T U R N
60 J=J+2
70 IF (IB(J)-IA(84)) 110,80,110
```

SULK600
SULK610-

SUUC 10
SUUC 20
SUUC 30
SUUC 40
SUUC 50
SUUC 60
SUUC 70
SUUC 80
SUUC 90
SUUC100
SUUC110

80	$I W=I W-1$	SUUC120
	DO $90 \mathrm{~K}=\mathrm{J}, \mathrm{IW}$	SUUC130
90	$I B(K)=I B(K+1)$	SUUC140
	$\mathrm{IB}(\mathrm{IW}+1)=\mathrm{IA}(47)$	SUUC150
	$\mathrm{J}=\mathrm{J}+1$	SUUC160
	IF (J-IW) 70,70,100	SUUC170
100	$I W=I W+1$	SUUC180
	$I B(I W)=I A(86)$	SUUC190
	GO TO 50	SUUC200
110	IF (IW-360) 120,100,40	SUUC210
120	$I W=I W+1$	SUUC220
	$\mathrm{J}=\mathrm{J}+1$	SUUC230
	$\mathrm{K}=\mathrm{IW}$	SUUC240
	DO $130 \mathrm{~L}=\mathrm{J}, \mathrm{IW}$	SUUC250
	$I B(K)=I B(K-1)$	SUUC260
130	$\mathrm{K}=\mathrm{K}-1$	SUUC270
	$\operatorname{IB}(\mathrm{J}-1)=I A(86)$	SUUC280
	GO TO 20	SUUC290
C		SUUC300
140	FORMAT (116HOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEF	SUUC310
	1 THE 360 CHARACTER LINE LIMIT WAS EXCEEDED IN SHIFT AND LOCK)	SUUC320
	END	SUUC330-
C		
	SUBROUTINE CHECK2 (K,ITEST, J)	SUCK 10
	DIMENSION IA $(86), \mathrm{N}(400), \mathrm{IC}(8000), \mathrm{IB}(361)$	SUCK 20
	COMMON ITAPE, IOTAPE, IRT'APE, IPTAPE, IWIDE1, IWIDE2,IA, IW, N, IC,IB	SUCK 30
	IF (K-1) $20,40,20$	SUCK 40
20	L=J-1	SUCK 50
	DO $30 \mathrm{I}=1,26$	SUCK 60
	$\mathrm{L}=\mathrm{L}+1$	SUCK 70
	IF (IA (I)-IB(L)) 70,30,70	SUCK 80
30	CONTINUE	SUCK 90
	IF (K-2) 40,90,90	SUCK100
40	$\mathrm{K}=1$	SUCKl10
	WRITE (IOTAPE, 100) (IA(I), $\mathrm{I}=1,80$)	SUCK120
	IF (ITEST) 50,80,50	SUCK130
50	WRITE (IPTAPE,110) (IA (I), $\mathrm{I}=1,80$)	SUCK140
	IF (IPTAPE-6) $80,80,60$	SUCK150
60	END FILE IPTAPE	SUCK160
	GO TO 80	SUCK170
70	$\mathrm{K}=0$	SUCK180
80	RETURN	SUCK190
90	$\mathrm{K}=1$	SUCK200
	GO TO 80	SUCK210
C		SUCK220
100	FORMAT (1X, 80A1)	SUCK230
110	FORMAT (80Al)	SUCK240
	END	SUCK250
C		
	SUBROUTINE SUBST (IB,IW,ITYPE)	SUBS 1
C		SUBS 2
C	SUBSTITUTE SUBROUTINE	SUBS 3
C		SUBS 4
C	TEXTUAL SUBSTITUTION PROGRAM WRITTEN BY C. MESSINA NSRDS-NBS	SUBS 40
C	IB(999) IS THE STRING TO BE PROCESSED. ON RETURN FROM SUBST, IB	SUBS 41

CONTAINS THE REMADE LINE.
SUBS
42
IW IS THE LENGTH OF THE INPUT STRING IN IB. ON RETURN FROM SUBST, SUBS
SUBS

```
ITYPE \(=0\) WHEN THE SUBSTITUTION TABLE IS READ IN AND ITYPE \(=1\) SUBS
```5
WHEN THE SUBSTITUTION IS TO TAKE PLACE.

SUBS 6
THE INPUT DECK AT OBJECT TIME IS THE FOLLOWING SET OF CARDS SUBS 8
THE FIRST CARD IS A DICTIONARY OF THE ALPHABET STARTING WITH THE SUBS 9
LETTER A IN CARD COL ONE, A LETTER B IN COL 2 AND SO FORTH. THE SUBS 10
NUMBERS FOLLOW THE ALPHABET STARTING WITH ZERO. COL 38 CONTAINS SUBS 11
THE PRINT OUT STRING DELIMITER. COL 47 CONTAINS A BLANK. SUBS 12
THE SECOND CARD HAS A ZERO IN COL 2 IF NO CARDS ARE TO BE PUNCHED SUBS 13 1 IF THE PUNCH TAPE IS TO BE WRITTEN. THE NEXT \(2 I 2\) FIELDS ON THIS SUBS 14 CARD, IF POSITIVE NON ZERO INTEGERS, CONTAIN THE IRTAPE NUMBER SUBS 15 AND IPTAPE NUMBER, OTHERWISE THEY ARE SET TO IRTAPE=5 AND IPTAPE=3SUBS 16 T'HE THIRD AND FOURTH CARDS ARE BOTH IN A1,I3,2A1,I2 FORMATS. SUBS 18 THE FIRST TWO FIELDS ARE IGNORED ON BOTH CARDS IN THIS VERSION. SUBS 19 THE 3RD FIELD IS THE SHIFT TO UPPER CASE SYMBOL, THE 4TH IS SHIFT SUBS 21 TO LOWER CASE SYMBOL, AND THE FIFTH IS THE SHIFT AND LOCK SWITCH SUBS 22 THAT IS 0 IF THE MODE IS NOT SHIFT AND LOCK AND 1 IF IT IS. SUBS 23 CARDS FIVE ET SEQ CONTAIN THE LIST OF STRINGS TO BE EXCHANGED. SUBS 24 ON EACH CARD THE OLD RECORD OR STRING APPEARS ON THE LEFT SIDE ANDSUBS 25 THE NEW STRING ON THE RIGHT. THE CHARACTER WHICH APPEARS IN CARD SUBS 26 COLUMN 1 IS THE STRING DELIMITER WHICH REMAINS IN FORCE FOR THAT SUBS 27 CARD. IT MAY, HOWEVER, CHANGE FROM CARD TO CARD. SUBS 28 THE FORMAT IS PRESCRIBED. A CHARACTER IN COL 1 DEFINES THE STARTSUBS 29 OF A STRING. THE SAME CHARACTER MUST APPEAR AFTER THE END SUBS 30 OF THE STRING. THE THIRD APPEARANCE OF THE COLUMN 1 CHARACTER ON SUBS 31 THE CARD STARTS THE 2ND STRING AND THE FOURTH APPEARANCE ENDS IT. SUBS 32 EXAMPLE

SUBS 33
/REAL/ /TRUE/ SUBS 34
AFTER THE SUBSTITUTION LIST MUST COME A CARD WITH THE WORD FINIS SUBS 36 STARTING IN CARD COLUMN ONE.

SUBS 37
SUBS 38
DIMENSION IA (86),N(1000), IC (8000), IB(999) SUBS 39
ITAPE=5
SUBS 40
IOTAPE=6
IEND=0
MAXIW=998
IF (ITYPE) 20,20,560
SUBS 41
SUBS 42

READ (ITAPE, 840) (IA(J), J=1,80)
WRITE (IOTAPE, 890) (IA (J) , J=1, 80)
READ (ITAPE, 850) ITEST, IRTAPE, IPTAPE
IF (IRTAPE) \(30,30,60\)
SUBS 43

IRTAPE=5
IF (IPTAPE) 70,70,100
IPTAPE=3
WRITE (IOTAPE,930) ITEST, IRTAPE, IPTAPE
READ (ITAPE, 860) IA(81), IWIDE1, IA (83), IA (85), LOCK1
SUBS 44

WRITE (IOTAPE, 920) IA (81), IWIDE1,IA(83),IA(85), LOCK1
READ (ITAPE, 860) IA(82), IWIDE2,IA(84),IA(86), LOCK2
WRITE (IOTAPE,920) IA(82), IWIDE2,IA(84),IA(86), LOCK2
SUBS 45
SUBS 46
SUBS 47
SUBS 48
SUBS 49
SUBS 53
\(\mathrm{Nl}=0\)
SUBS 54

N3=1
SUBS 58
SUBS 59
SUBS 60
SUBS 61
SUBS 62
SUBS 69
SUBS 70
C START OF READING IN SUBSTITUTE LISTS
\begin{tabular}{|c|c|c|}
\hline 160 & READ (ITAPE, 840) (IB (J), \(\mathrm{J}=1,80\)) & SUBS 72 \\
\hline & N2=0 & SUBS 73 \\
\hline & N22=0 & SUBS 74 \\
\hline & IF (IB(1)-IA (6)) \(210,170,210\) & SUBS 75 \\
\hline 170 & IF (IB(2)-IA (9)) 210,180,210 & SUBS 76 \\
\hline 180 & IF (IB(3)-IA(14)) \(210,190,210\) & SUBS 77 \\
\hline 190 & IF (IB(4)-IA (9)) 210,200,210 & SUBS 78 \\
\hline 200 & IF (IB(5)-IA(19)) \(210,440,210\) & SUBS 79 \\
\hline 210 & DO \(230 \mathrm{I}=2,78\) & SUBS 80 \\
\hline & IF (IB(I)-IB(1)) 230,220,230 & SUBS 81 \\
\hline 220 & IF (N2) 160,160,240 & SUBS 82 \\
\hline 230 & N2=I-1 & SUBS 83 \\
\hline 240 & \(\mathrm{J}=\mathrm{N} 2+3\) & SUBS 84 \\
\hline & IF (J-79) 260,250,250 & SUBS 85 \\
\hline 250 & WRITE (IOTAPE,900) \(\operatorname{IB}(1),(\operatorname{lB}(\mathrm{I}), \mathrm{I}=1,80)\) & SUBS 86 \\
\hline & GO TO 830 & SUBS 87 \\
\hline 260 & K=J +1 & SUBS 88 \\
\hline & D0 \(270 \mathrm{I}=\mathrm{J}, 79\) & SUBS 89 \\
\hline & IF (IB(I)-IB(1)) \(270,280,270\) & SUBS 90 \\
\hline 270 & \(\mathrm{K}=\mathrm{I}+2\) & SUBS 91 \\
\hline & G0 T0 250 & SUBS 92 \\
\hline 280 & D0 \(290 \mathrm{I}=\mathrm{K}, 80\) & SUBS 93 \\
\hline & IF (IB(I)-IB(1)) 290,300,290 & SUBS 94 \\
\hline 290 & N22 \(=1-\mathrm{K}+1\) & SUBS 95 \\
\hline & GO TO 250 & SUBS 96 \\
\hline 300 & \(\mathrm{Nl}=\mathrm{Nl}+2\) & SUBS 97 \\
\hline & \(\mathrm{N}(\mathrm{N} 1-1)=\mathrm{N} 2\) & SUBS 98 \\
\hline & \(\mathrm{N}(\mathrm{N} 1)=\mathrm{N} 22\) & SUBS 99 \\
\hline & N4=N3+N2-1 & SUBS100 \\
\hline & IF (N4-7920) 320,320,310 & SUBS101 \\
\hline 310 & WRITE (IOTAPE,880) N4,N1 & SUBS102 \\
\hline & GO TO 830 & SUBS103 \\
\hline 320 & IF (N1-1000) 330,330,310 & SUBS104 \\
\hline 330 & \(\mathrm{J}=2\) & SUBS105 \\
\hline & D \(340 \mathrm{I}=\mathrm{N} 3, \mathrm{~N} 4\) & SUBS106 \\
\hline & \(\mathrm{IC}(\mathrm{I})=\mathrm{IB}(\mathrm{J})\) & SUBS107 \\
\hline 340 & \(\mathrm{J}=\mathrm{J}+1\) & SUBS108 \\
\hline & \(\mathrm{N} 3=\mathrm{N} 3+\mathrm{N} 2\) & SUBS109 \\
\hline & IF (N22) 370,370,350 & SUBS110 \\
\hline 350 & N4 4 N3+N22-1 & SUBSIll \\
\hline & \(\mathrm{J}=\mathrm{K}\) & SUBS112 \\
\hline & DO \(360 \mathrm{I}=\mathrm{N} 3, \mathrm{~N} 4\) & SUBS113 \\
\hline & \(\mathrm{IC}(\mathrm{I})=\mathrm{IB}(\mathrm{J})\) & SUBSI14 \\
\hline 360 & \(\mathrm{J}=\mathrm{J}+1\) & SUBS115 \\
\hline 370 & IF (N2-38) 380,380,390 & SUBS116 \\
\hline 380 & \(\mathrm{K}=42\) & SUBS117 \\
\hline 390 & \(\mathrm{Kl}=\mathrm{K}+\mathrm{N} 22-1\) & SUBS118 \\
\hline & \(\mathrm{J}=\mathrm{N} 2+3\) & SUBS119 \\
\hline & D0 \(400 \mathrm{~L}=\mathrm{J}, 80\) & SUBS120 \\
\hline 400 & \(\operatorname{IB}(\mathrm{L})=\mathrm{IA}(47)\) & SUBS121 \\
\hline & \(\operatorname{IB}(1)=\operatorname{IA}(38)\) & SUBS122 \\
\hline & \(I B(N 2+2)=I A(38)\) & SUBS123 \\
\hline & \(\operatorname{IB}(\mathrm{K}-1)=\mathrm{IA}(38)\) & SUBS124 \\
\hline & \(\mathrm{IB}(\mathrm{Kl}+1)=\mathrm{IA}(38)\) & SUBS125 \\
\hline & IF (N22) 430,430,410 & SUBS126 \\
\hline
\end{tabular}

IF (N7-4) 470,480,480
 \(\mathrm{N} 2=\mathrm{N}(\mathrm{I}-3)+\mathrm{N}(\mathrm{I}-2)\)
SUBS141
 \(\mathrm{N} 22=\mathrm{N}(\mathrm{I}-1)+\mathrm{N}(\mathrm{I})\)
SUBS142
 IF (N(I-3)-N(I-1)) 500,490,490
\(\mathrm{N} 3=\mathrm{N} 3+\mathrm{N} 2\)
\(\mathrm{N}(\mathrm{I}-\mathrm{l})=\mathrm{N} 4\)
N4=N(I)
\(N(I)=N(I-2)\)
\(\mathrm{N}(\mathrm{I}-2)=\mathrm{N} 4\)
\(\mathrm{Kl}=\mathrm{Kl}+\mathrm{l}\)
\(\mathrm{N} 4=\mathrm{N} 3+\mathrm{N} 2-1\)
K=0
DO \(510 \mathrm{~J}=\mathrm{N} 3, \mathrm{~N} 4\)
\(\mathrm{K}=\mathrm{K}+\mathrm{l}\)
SUBSI52
SUBSI53
SUBS154 SUBS155 SUBSI556
\(510 \quad \mathrm{IB}(\mathrm{K})=\mathrm{IC}(\mathrm{J})\)
DO \(520 \mathrm{~J}=1\), N22
K=N3+J-1
N6=N4+J
\(520 \quad \mathrm{IC}(\mathrm{K})=\mathrm{IC}(\mathrm{N} 6)\)
N3 \(=\) N3 \(3+N 22\)
DO \(530 \mathrm{~J}=1, \mathrm{~N} 2\)
K=N3+J-1
\(530 \quad \mathrm{IC}(\mathrm{K})=\mathrm{IB}(\mathrm{J})\)
540 CONTINUE
IF (Kl) \(550,550,460\)
550 WRITE (IOTAPE, 890) IA(6),IA(9),IA(14),IA(9),IA(19)
GO TO 820
C START OF SUBSTITUTION
560 IF (IW-MAXIW) 580,580,570
570 WRITE (IOTAPE,940) IW,MAXIW,(IB(I), I=l,IW)
GO TO 830
580 CALL CHECKI (IA,IB,ITEST,IOTAPE, IPTAPE,IEND,1)
IF (IEND) 830.590,830
SUBS157
SUBS158
SUBS159
SUBS160
SUBS161
SUBSI62
SUBS163
SUBSI64
SUBS165
SUBS166
SUBS167
SUBSI68
SUBS169
SUBS170
SUBSI71
SUBS172
SUBSI73

590 N3=1
SUBS174
SUBS175
SUBSI76
IB (\(\mathrm{IW}+1\)) \(=\mathrm{IA}(47\))
SUBS177
IF (LOCKl) 600,610,600
SUBS178
600 CALL SUNLK (IA,IB,IW,IOTAPE)
SUBS179
610 K2=1
SUBS180
ILK=0
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{8}{*}{620} & N6=0 & SUBS182 \\
\hline & N7=0 & SUBS183 \\
\hline & DO \(650 \mathrm{~K}=\mathrm{K} 2\), IW & SUBS184 \\
\hline & N3=1 & SUBS185 \\
\hline & DO \(640 \mathrm{I}=2, \mathrm{Nl}, 2\) & SUBS186 \\
\hline & \(\mathrm{N} 2=\mathrm{N}(\mathrm{I}-1)\) & SUBS187 \\
\hline & \(\mathrm{N} 22=\mathrm{N}(\mathrm{I})\) & SUBS188 \\
\hline & \(\mathrm{Kl}=\mathrm{K}\) & SUBS189 \\
\hline \multirow{8}{*}{630} & N4 \(=\) N3 + N2-1 & SUBS190 \\
\hline & DO 630 J=N3,N4 & SUBS191 \\
\hline & IF (IB(KI)-IC(J)) 640,630,640 & SUBS192 \\
\hline & \(\mathrm{Kl}=\mathrm{Kl}+1\) & SUBS193 \\
\hline & \(\mathrm{Kl}=\mathrm{Kl}-1\) & SUBS194 \\
\hline & N7=I & SUBS195 \\
\hline & N6=N3 & SUBS196 \\
\hline & GO TO 660 & SUBS197 \\
\hline 640 & N3 \(=\mathrm{N} 3+\mathrm{N} 2+\mathrm{N} 22\) & SUBS198 \\
\hline \multirow[t]{2}{*}{650} & CONTINUE & SUBS199 \\
\hline & GO TO 800 & SUBS200 \\
\hline 660 & IF (Kl-IW) 680,680,670 & SUBS201 \\
\hline \multirow[t]{3}{*}{670} & IW=K1 & SUBS202 \\
\hline & ILK=1 & SUBS203 \\
\hline & IF (IW-MAXIW) 680,680,790 & SUBS204 \\
\hline \multirow[t]{7}{*}{680} & \(\mathrm{Kl}=\mathrm{K}\) & SUBS205 \\
\hline & \(\mathrm{N} 2=\mathrm{N}(\mathrm{N} 7-1)\) & SUBS206 \\
\hline & \(\mathrm{N} 22=\mathrm{N}\) (N 7) & SUBS207 \\
\hline & \(\mathrm{N} 3=\mathrm{N} 6+\mathrm{N} 2\) & SUBS208 \\
\hline & N4=N3+N22-1 & SUBS209 \\
\hline & N5=N22-N2 & SUBS210 \\
\hline & IF (N5) 760,690,730 & SUBS211 \\
\hline \multirow[t]{2}{*}{690} & D0 \(700 \mathrm{~J}=\mathrm{N} 3, \mathrm{~N} 4\) & SUBS212 \\
\hline & IB (KI) \(=\mathrm{IC}(\mathrm{J})\) & SUBS213 \\
\hline 700 & \(\mathrm{Kl}=\mathrm{Kl}+1\) & SUBS214 \\
\hline 710 & IF (ILK) 720,720,800 & SUBS215 \\
\hline \multirow[t]{2}{*}{720} & \(\mathrm{K} 2=\mathrm{K} 1\) & SUBS216 \\
\hline & GO TO 620 & SUBS217 \\
\hline 730 & IF (IW+N5-MAXIW) 740,740,790 & SUBS218 \\
\hline \multirow[t]{5}{*}{740} & \(I W=I W+N 5\) & SUBS219 \\
\hline & \(K 2=I W\) & SUBS220 \\
\hline & DO \(750 \mathrm{~J}=\mathrm{Kl}\), IW & SUBS221 \\
\hline & K9=K2-N5 & SUBS222 \\
\hline & \(\mathrm{IB}(\mathrm{K} 2)=\mathrm{IB}(\mathrm{K} 9)\) & SUBS223 \\
\hline \multirow[t]{2}{*}{750} & K2=K2-1 & SUBS224 \\
\hline & GO T0 690 & SUBS225 \\
\hline \multirow[t]{2}{*}{760} & DO \(770 \mathrm{~J}=\mathrm{Kl}\), IW & SUBS226 \\
\hline & K9=J-N5 & SUBS227 \\
\hline \multirow[t]{3}{*}{770} & \(\operatorname{IB}(\mathrm{J})=\mathrm{IB}\) (K 9) & SUBS228 \\
\hline & K9 \(=1 W+N 5+1\) & SUBS229 \\
\hline & D0 \(780 \mathrm{~J}=\mathrm{K} 9\), IW & SUBS230 \\
\hline \multirow[t]{3}{*}{780} & \(\mathrm{IB}(\mathrm{J})=\mathrm{IA}\) (47) & SUBS231 \\
\hline & IW=IW+N5 & SUBS232 \\
\hline & IF (N22) 710,710,690 & SUBS233 \\
\hline 790 & WRITE (IOTAPE,910) MAXIW & SUBS234 \\
\hline 800 & IF (LOCK2) \(810,820,810\) & SUBS235 \\
\hline 810 & CALL SULOCK (IA,IB,IW,IOTAPE) & SUBS236 \\
\hline
\end{tabular}
SUBS238
FORMAT (132Al)
SUBS240
850 FORMAT (40I2)
SUBS241
860 FORMAT (1Al,1I3,2A1,1I2)
SUBS242
 FORMAT (33H LIST OF REPLACEMENTS IS TOO LONG/67H MAXIMUM CHARACTERSUBS245
 l LENGTH IS 8000, MAXIMUM NUMBER OF PHRASES IS 400/20H CURRENT VALUSUBS246
 2ES ARE ,2I6,6H STOP.)
 SUBS247
890 FORMAT (1X,131Al) SUBS248
900 FORMAT (l6H THE CHARACTER ,lAl,48H DID NOT APPEAR 4 TIMES ON THE SUBS249
 lCARD BELOW. STOP./lX,80Al) SUBS250
910 FORMAT (40HOTHE LINE FOLLOWING WOULD HAVE EXCEEDED ,1I6,43H CHARACSUBS251
 lTERS IS SUBSTITUTION HAD CONTINUED. SUBS252
920 FORMAT (lX,lAl,1I3,2Al,1I2) SUBS253
930 FORMAT (1X,50I2) SUBS254
940 FORMAT (19H STRING OF LENGTH =,1I6,43H IS TOO LONG FOR SUBROUTINE SUBS255
 1SUBST. LENGTH =,1I6,6H STOP./,1X,120Al) SUBS256
 END
SUBS257-
C
C
 SUBROUTINE SUNLK(IA,IB,IW,IOTAPE)
 DIMENSION IA(86),IB(999)
 MAXIW=998
 L=0
 J=0
 K=0
 DO 60 I=l,IW
 IF (IB(I)-IA(83)) 40,20,40
 L=L+l
 IF (L-J-1) 30,60,30
30 K=l
 GO TO 60
40 IF (IB(I)-IA(85)) 60,50,60
50 J=J+1
 IF (L-J) 30,60,30
60 CONTINUE
 IF (L-J) 80,70,90
 IF (K) 80,120,80
80 WRITE (I0TAPE,280)
 GO TO 150
90 IF (IA(83)-IA(85)) 80,100,80
100 K=2*(L/2)-L
 IF (K) 110,120,110
110 IW=IW+l
 IB(IW)=IA(85)
120 J=l
130 IF (IB(J)-IA(83)) 140,160,140
l40 J=J+l
 IF (J-(IW+l)) 130,150,150
150 RETURN
160 IF (IB(J+l)-IA(85)) 190,170,190
170 J=J+2
 DO 180 I=J,IWA
180 IB(I-1)=IB (I)
 GO TO 220
```

        IF (IB(J+2)-IA(85)) 230,200,230
        J=J+3
        DO 210 I=J,IW
    210 IB (I-1)=IB (I)
    220 IW=IW-1
IB(IW+1)=IA (47)
J=J-1
GO TO 130
IF ((IW+l)-MAXIW) 250,250,240
240 WRITE (IOTAPE,270)
GO TO 150
IW=IW+l
J=J+3
K=IW
DO 260 L=J,IW
IB (K) = IB (K-1)
K=K-l
J=J-1
IB(J)=IA(83)
GO TO 160
FORMAT (ll6HOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEFORE
l THE MAXIMUM CHARACTER LINE LIMIT WAS EXCEEDED IN SUNLK )
280 FORMAT (69HOTHE FOLLOWING LINE DID NOT CONTAIN A BALANCED SET OF S
lHIFT SYMBOLS. )
END
C
C
IF (IB(J)-IA(84)) 30,60,30
J=J+l
IF (J-(IW+l)) 20,20,50
WRITE (IOTAPE,l40)
RETURN
J=J+2
IF (IB(J)-IA(84)) 110,80,110
IW=IW-1
DO 90 K=`,IW
IB (K)=IB(K+1)
IB ( IW+1)=IA (47)
J=J+1
IF (J-IW) 70,70,100
IW=IW+1
IB (IW)=IA (86)
GO TO 50
IF (IW-MAXIW) 120,100,40
IW=IW+1
J=J+1
K=IW
DO 130 L=J,IW
IB (K)=IB(K-1)
130 K=K-l
IB(J-1)=IA(86)

```

140 FORMAT (ll6HOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEFORV 1 THE MAXIMUM CHARACTER LINE LIMIT WAS EXCEEDED IN SULOCK ; END
C
C
SUBROUTINE CHECKI(IA,IB,ITEST,IOTAPE,IPTAPE,K,J)
DIMENSION IA (86), IB(999)
IF (K-1) 20,40,20
20 L=J-1
DO \(30 \mathrm{I}=1,26\)
L=L+1
IF (IA(I)-IB(L)) 70,30,70
30 CONTINUE
IF (K-2) 40,90,90.
40 K=1
WRITE (IOTAPE,100) (IA(I), I=1,80)
IF (ITEST) 50,80,50
50 WRITE (IPTAPE, l10) (IA(I), I=1,80)
IF (IPTAPE-6) 80,80,60
60 END FILE IPTAPE GO TO 80
70 K=0
80 RETURN
90 K=l
GO TO 80
100 FORMAT (1X,80A1)
110 FORMAT (80A1)
END
C
C
C
C SEARCH SEAROO10

C SEAROO2O
C THIS CODE WAS WRITTEN IN FOUR SECTIONS DESIGNED TO WORK INDEPENDENTLY SEAROO3O
C INPUT SEARO040

C THE FIRST CARD FOLLOWING \$DATA CONTAINS THE SPECIAL SEARCH CHARACTER
C IA(47) CONTAINS THE THE CHARACTER PRECEDING THE START OF A WORD SEAROO60
C 'NORMALLY A BLANK SEAROO70

C IA(50) CONTAINS THE CHARACTER SIGNALING THE END OF A SEARCH WORDSEARO080
C OR PHRASE , NORMALLY A BLANK OR A PERIOD. SEAROO90
C THE SUGGESTED FORMAT FOR THE FIRST CARD IS GIVEN BELOW WHERE CARD SEAROIOO
C COLUMN ONE IS FOUND IN 11,2 IN 12 , AND SO FORTH
C ABCDEFGHIJKLMNOPQRSTUVWXYZO123456789+.)\$*/,(=' - SEARO120
C THE SECOND CARD CONTAINS FOUR SWITCHES IN I2 FORMAT SEARO130
C ITEST IS ONE WHEN THE CHOSEN LINES ARE TO BE WRITTEN AS CARD SEARO140
C IMAGES ON IPTAPE. ITEST \(=0\) WHEN NO CARDS ARE TO BE MADE.SEARO150
C INSIDE IS O IN THE ANCHORED MODE WHEN THE PROGRAM IS LOOKING SEAROI60
C AT THE START OF ANY WORD IN THE CARD IMAGE. INSIDE IS
C \(\quad 1\) IN THE UNANCHORED MODE WHEN THE SEARCH PHRASE IS TO BE LOCATED ANYWHERE ON THE CARD IMAGE.

SEARO170

C
C IRTAPE - A SPECIAL INPUT TAPE. IF ONE INPUT TAPE WILL DO,SET IRTAPE
C EQUAL TO ITAPE SEARO210
SEAR0180
SEAR0190

C IPTAPE - A SPECIAL OUTPUT TAPE. IT CAN BE USED AS AN INPUT TO OTHER SEARO22O

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{N3=1} & SEAR0760 \\
\hline 6 & READ (ITAPE, 1) (IB (J), J=1,80) & & SEAR0770 \\
\hline \multirow[t]{3}{*}{7} & N2=0 & & SEAR0780 \\
\hline & \(\mathrm{J}=1\) & & SEAR0790 \\
\hline & IF (IB(1) - IA (6)) 8,72,8 & & SEAR0800 \\
\hline 72 & IF (IB(2) - IA (9)) 8,73,8 & & SEAR0810 \\
\hline 73 & IF (IB 3) - IA (14)) 8,74,8 & & SEAR0820 \\
\hline 74 & IF (IB(4)-IA(9)) 8,75,8 & & SEAR0830 \\
\hline 75 & IF (IB 5) - IA (19)) 8,76,8 & & SEAR0840 \\
\hline 76 & IF (IB \((6)-\operatorname{IA}(50)) 8,17,8\) & & SEAR0850 \\
\hline \multirow[t]{2}{*}{8} & D0 \(9 \mathrm{I}=1,80\) & & SEAR0860 \\
\hline & IF (IB I\()-\mathrm{IA}(50)) 9,10,9\) & & SEAR0870 \\
\hline 9 & \(\mathrm{N} 2=\mathrm{I}\) & & SEAR0880 \\
\hline 10 & IF (N2) 6,6,11 & & SEAR0890 \\
\hline \multirow[t]{4}{*}{11} & \(\mathrm{Nl}=\mathrm{Nl}+1\) & & SEAR0900 \\
\hline & \(\mathrm{N}(\mathrm{Nl})=\mathrm{N} 2\) & & SEAR0910 \\
\hline & N4=N3+N2-1 & & SEAR0920 \\
\hline & IF (N4-8000) 14,14,12 & & SEAR0930 \\
\hline 12 & WRITE (IOTAPE, 13) N4, N1 & & SEAR0940 \\
\hline \multirow[t]{3}{*}{13} & FORMAT (47HOLIST OF SEARCH WORDS TOO LONG & PLEASE SHORTEN. & , /68HOSEAR0950 \\
\hline & IMAXIMUM CHARACTER LENGTH IS 8000 MAXIMUM & NUMBER OF PHRASES & IS 200SEAR0960 \\
\hline & \(2 / 21 \mathrm{H}\) CURRENT VALUES ARE , 2I6) & & SEAR0970 \\
\hline 999 & STOP & & SEAR0980 \\
\hline 14 & IF (N1-200) 15,15,12 & & SEAR0990 \\
\hline \multirow[t]{3}{*}{15} & \(\mathrm{J}=1\) & & SEAR1000 \\
\hline & DO \(16 \mathrm{I}=\mathrm{N} 3, \mathrm{~N} 4\) & & SEAR1010 \\
\hline & \(I C(I)=I B(J)\) & & SEAR1020 \\
\hline \multirow[t]{4}{*}{16} & \(J=J+1\) & & SEAR1030 \\
\hline & N3 \(=\) N3 + N2 & & SEAR1040 \\
\hline & WRITE (IOTAPE, 2) (IB \((\mathrm{J}), \mathrm{J}=1, \mathrm{~N} 2)\) & & SEAR1050 \\
\hline & GO TO 6 . & & SEAR1060 \\
\hline \multirow[t]{5}{*}{17} & ICOL (1) \(=\) IA (47) & & SEAR1070 \\
\hline & WRITE (IOTAPE, 2) IA (47) & & SEAR1080 \\
\hline & WRITE (IOTAPE, 2) IA (47) & & SEAR1090 \\
\hline & WRITE (IOTAPE, 2) IA (47) & & SEAR1100 \\
\hline & IF (IAND) \(40,18,40\) & & SEARIllo \\
\hline 18 & IF (INSIDE) 19,30,19 & & SEARI120 \\
\hline \multirow[t]{3}{*}{19} & READ (IRTAPE, 1) (ICOL (J), J=2,81) & & SEAR1130 \\
\hline & CALL CHECKl (IA, ICOL, K, ITEST, IPTAPE, IOTAPE) & & SEAR1140 \\
\hline & IF (K) 999,190,999 & & SEARI150 \\
\hline \multirow[t]{10}{*}{190} & N3=1 & & SEAR1160 \\
\hline & DO \(24 \mathrm{Kl}=1, \mathrm{Nl}\) & & SEAR1170 \\
\hline & N2 \(=\mathrm{N}(\mathrm{Kl})\) & & SEARI180 \\
\hline & N4 \(=\) N3+N2-1 & & SEAR1190 \\
\hline & \(\mathrm{I} 2=82-\mathrm{N} 2\) & & SEAR1200 \\
\hline & DO \(22 \mathrm{I}=2, \mathrm{I} 2\) & & SEAR1210 \\
\hline & \(\mathrm{Jl}=1\) & & SEAR1220 \\
\hline & DO \(20 \mathrm{~J}=\mathrm{N} 3\), N4 & & SEAR1230 \\
\hline & \(K=I+J 1-1\) & & SEAR1240 \\
\hline & IF (ICOL (K) - IC (J)) 22,20,22 & & SEAR1250 \\
\hline \multirow[t]{2}{*}{20} & \(\mathrm{Jl}=\mathrm{Jl+1}\) & & SEAR1260 \\
\hline & GO TO 26 & & SEAR1270 \\
\hline 22 & CONTINUE & & SEAR1280 \\
\hline \multirow[t]{2}{*}{24} & \(\mathrm{N} 3=\mathrm{N} 3+\mathrm{N} 2\) & & SEAR1290 \\
\hline & GO TO 19 & & SEAR1300 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 26 & WRITE (IOTAPE, 2) (\(\operatorname{ICOL}(\mathrm{J}), \mathrm{J}=2,81)\) & SEAR1310 \\
\hline & IF (ITEST) 28,19,28 & SEAR1320 \\
\hline 28 & WRITE (IPTAPE, 1) (\(\operatorname{ICOL}(\mathrm{J}), \mathrm{J}=2,81)\) & SEAR1330 \\
\hline & GO TO 19 & SEAR1340 \\
\hline 30 & READ (IRTAPE, 1) (ICOL (J), J=2,81) & SEAR1350 \\
\hline & CALL CHECKI (IA, ICOL, K, ITEST, IPTAPE, IOTAPE) & SEAR1360 \\
\hline & IF (K) 999,300,999 & SEAR1370 \\
\hline 300 & N3=1 & SEAR1380 \\
\hline & DO \(36 \mathrm{Kl}=1, \mathrm{Nl}\) & SEAR1390 \\
\hline & \(\mathrm{N} 2=\mathrm{N}\) (Kl) & SEAR1400 \\
\hline & \(\mathrm{N} 4=\mathrm{N} 3+\mathrm{N} 2-1\) & SEAR1410 \\
\hline & \(\mathrm{I} 2=82-\mathrm{N} 2\) & SEAR1420 \\
\hline & DO \(34 \mathrm{I}=2, \mathrm{I} 2\) & SEAR1430 \\
\hline & IF (ICOL(I) - IA (47)) 77,34,77 & SEAR1440 \\
\hline 77 & IF (ICOL(I-1) - IA (47)) 34,78,34 & SEAR1450 \\
\hline 78 & Jl=1 & SEAR1460 \\
\hline & DO \(32 \mathrm{~J}=\mathrm{N} 3, \mathrm{~N} 4\) & SEAR1470 \\
\hline & K=I \(+\mathrm{Jl}-1\) & SEAR1480 \\
\hline & IF (ICOL (K) - IC (J)) 34,32,34 & SEAR1490 \\
\hline 32 & \(\mathrm{Jl}=\mathrm{Jl}+1\) & SEAR1500 \\
\hline & G0 T0 38 & SEAR1510 \\
\hline 34 & CONTINUE & SEAR1520 \\
\hline 36 & N3 \(=\) N3+N2 & SEAR1530 \\
\hline & GO TO 30 & SEAR1540 \\
\hline 38 & WRITE (IOTAPE, 2) (\(\operatorname{ICOL}(\mathrm{J}), \mathrm{J}=2,81)\) & SEARI550 \\
\hline & IF (ITEST) 39,30,39 & SEAR1560 \\
\hline 39 & WRITE (IPTAPE, 1) (\(\operatorname{ICOL}(\mathrm{J}), \mathrm{J}=2,81)\) & SEAR1570 \\
\hline & GO T0 30 & SEAR1580 \\
\hline 40 & IF (INSIDE) 42,50,42 & SEAR1590 \\
\hline 42 & READ (IRTAPE, 1) (\(\operatorname{ICOL}(\mathrm{J}), \mathrm{J}=2,81)\) & SEAR1600 \\
\hline & CALL CHECK1 (IA, ICOL, K, ITEST, IPTAPE, IOTAPE) & SEAR1610 \\
\hline & IF (K) 999,420,999 & SEAR1620 \\
\hline 420 & N3 \(=1\) & SEAR1630 \\
\hline & DO \(48 \mathrm{Kl}=1, \mathrm{Nl}\) & SEAR1640 \\
\hline & \(\mathrm{N} 2=\mathrm{N}\) (Kl) & SEAR1650 \\
\hline & N4=N3+N2-1 & SEAR1660 \\
\hline & I2=82-N2 & SEAR1670 \\
\hline & D0 \(46 \mathrm{I}=2, \mathrm{I} 2\) & SEAR1680 \\
\hline & Jl=1 & SEAR1690 \\
\hline & D0 \(44 \mathrm{~J}=\mathrm{N} 3\), N 4 & SEAR1700 \\
\hline & K=I+Jl-1 & SEAR1710 \\
\hline & IF (ICOL (K) - IC (J)) 46,44,46 & SEAR1720 \\
\hline 44 & \(\mathrm{Jl}=\mathrm{Jl}+1\) & SEAR1730 \\
\hline & GO TO 48 & SEAR1740 \\
\hline 46 & CONTINUE & SEAR1750 \\
\hline & GO T0 42 & SEAR1760 \\
\hline 48 & \(\mathrm{N} 3=\mathrm{N} 3+\mathrm{N} 2\) & SEAR1770 \\
\hline & WRITE (IOTAPE,2) (\(\operatorname{ICOL}(\mathrm{J}), \mathrm{J}=2,81)\) & SEAR1780 \\
\hline & IF (ITEST) 49,42,49 & SEAR1790 \\
\hline 49 & WRITE (IPTAPE, 1) (\(\operatorname{ICOL}(\mathrm{J}), \mathrm{J}=2,81)\) & SEAR1800 \\
\hline & GO T0 42 & SEAR1810 \\
\hline 50 & READ (IRTAPE, 1) (ICOL (J), J=2,81) & SEAR1820 \\
\hline & CALL CHECKI(IA,ICOL, K, ITEST, IPTAPE, IOTAPE) & SEAR1830 \\
\hline & IF (K) 999,500,999 & SEAR1840 \\
\hline 500 & \(N 3=1\) & SEAR1850 \\
\hline
\end{tabular}
```

    DO 58 Kl=l,Nl SEAR1860
    N2=N(Kl) SEAR1870
    N4=N3+N2-1 SEAR1880
    I2=82-N2
    DO 56 I=2,I2
    IF (ICOL(I) - IA(47)) 79,56,79
    IF (ICOL(I-1) - IA(47)) 56,80,56
    Jl=1
    DO 54 J=N3,N4
    K=I+Jl-l
    IF (ICOL(K) - IC(J)) 56,54,56
    Jl=Jl+l
    GO T0 58
    CONTINUE
    GO TO 50
    N3=N3+N2
    WRITE (IOTAPE,2) (ICOL(J),J=2,81)
    IF (ITEST) 59,50,59
    WRITE (IPTAPE,1) (ICOL(J),J=2,81)
    GO TO 50
    END
    SEAR1890
    SEAR1900
    SEAR1910
    7 9
    SUBROUTINE CHECKI(IA,II,K,ITEST,IPTAPE,IOTAPE)
    DIMENSION IA(81),II(82),IJ(82) SECK0020
    DO 40 I = 2, 81 SECK0030
    IJ(I-l) =II(I)
    DO 10 I=1,26
    IF (IA(I)-IJ(I)) 50,10,50
    CONTINUE
    K=1
    WRITE (IOTTAPE,19) (IA(I), Iml,80)
    IF (ITEST) 20,60,20
    WRITE (IPTAPE,29) (IA(I),I=1,80)
    IF (IPTAPE -6) 60,60,30
    END FILE IPTAPE
    GO TO 60
    K=0
    RETURN
    FORMAT (1X,80Al)
    FORMAT (80'Al)
    END
    SECK0010
    SECK0040
    SECK0050
    SECK0060
    SECK0070
    SECK0080
    SECK0090
    SECK0100
    SECKOllO
    SECKO120
    SECK0130
    SECKO140
    SECKO150
    SECK0160
    SECK0170
    SECKO180
    SECKO190
        BLOCK SEARCH BSEAOOOI
    BSEA0002
    THIS PROGRAM PERFORMS A SEARCH IN A FILE MADE UP OF VARIABLE BSEAO004
    LENGTH BLOCKS, SUITABLY DELIMITED, FOR THE OCCURANCE OF ONE OR MORE BSEAOOO6
SPECIFIED STRINGS OF CHARACTERS. THE BLOCK IS SELECTED FOR OUTPUT BSEA0008
IF THE DESIRED STRING OR STRINGS ARE FOUND WITHIN IT. THE BLOCK BSEAOOIO
DELIMITER, SEARCH STRATEGIES AND DESIRED STRINGS ARE INPUT PARAMETERS.BSEA0012
C
BSEA0020
THE FIRST CARD FOLLOWING THE XQT CONTAINS THE SPECIAL SEARCH CHARACTERBSEAOO3O
A(47) CONTAINS THE THE CHARACTER PRECEDING THE START OF A WORD BSEA0040
C NORMALLY A BLANK BSEA0050
C A(50) CONTAINS THE CHARACTER SIGNALING THE END OF A SEARCH WORDBSEAOO6O

```

\begin{tabular}{|c|c|c|}
\hline 35 & REWIND IPTAPE & BSEA0590 \\
\hline 36 & IF (IFLAG) \(50,50,40\) & BSEA0600 \\
\hline 40 & IF (IFLAG-80) 60,60,50 & BSEA0610 \\
\hline 50 & IFLAG \(=80\) & BSEA0620 \\
\hline 60 & WRITE (IOTAPE,39) ITEST, INSIDE, IFLAG, IRTAPE, IPTAPE & 3SEA0630 \\
\hline & IF (J-1) 63,61,62 & BSEA0640 \\
\hline 61 & IWIDEl= IWIDE1 + 100 & BSEA0650 \\
\hline & IF (IWIDE1 - 132) 63,63,62 & BSEA0660 \\
\hline 62 & \(\mathrm{J}=0\) & BSEA0670 \\
\hline & IWIDE1 \(=80\) & BSEA0680 \\
\hline & G0 T0 \({ }^{\text {d }} 64\) & BSEA0690 \\
\hline 63 & IF (IWIDE1) 62,62,64 & BSEA0700 \\
\hline 64 & READ (ITAPE, 9) (IFLAGS (J), J=1, IFLAG) & BSEA0710 \\
\hline & WRITE (IOTAPE, 19) (IFLAGS (J), J=1, IFLAG) & BSEA0720 \\
\hline & IF (IPTAPE-6) 66,66,65 & BSEA0730 \\
\hline 65 & IWIDE3=IWIDE1+1 & BSEA0740 \\
\hline 66 & READ (ITAPE, 9) (IB (J) , J=1, 80) & BSEA0750 \\
\hline & IF (IB(1) - IA (1)) 90,70,90 & BSEA0760 \\
\hline 70 & IF (IB(2) - IA (14)) 90,80,90 & BSEA0770 \\
\hline 80 & \(\mathrm{IF}(\mathrm{IB}(3)-\operatorname{IA}(4)) 90,85,90\) & BSEA0780 \\
\hline 85 & IAND \(=1\) & BSEA0790 \\
\hline & WRITE (IOTAPE,49) IWIDEl,IA(1),IA(12), IA (12) & BSEA0800 \\
\hline & GO TO 100 & BSEA0810 \\
\hline 90 & IAND \(=0\) & BSEA0820 \\
\hline & WRITE (IOTAPE,49) IWIDE1,IA(1),IA(14),IA(25) & BSEA0830 \\
\hline 100 & \(\mathrm{N}=0\) & BSEA0840 \\
\hline & N3=1 & BSEA0850 \\
\hline & L4=0 & BSEA0860 \\
\hline 110 & READ (ITAPE, 9) (\(\mathrm{IB}(\mathrm{J}\)) , \(\mathrm{J}=1,80\)) & BSEA0870 \\
\hline & WRITE (IOTAPE, 19) (\(\mathrm{IB}(\mathrm{J}\)) , J=1, 80) & BSEA0880 \\
\hline & N2=0 * & BSEA0890 \\
\hline & IF (IB(1) - IA (6)) \(170,120,170\) & BSEA0900 \\
\hline 120 & IF (IB(2) - IA (9)) 170,130,170 & BSEA0910 \\
\hline 130 & IF (IB(3) - IA (14)) 170,140,170 & BSEA0920 \\
\hline 140 & IF (IB(4) - IA (9)) 170,150,170 & BSEA0930 \\
\hline 150 & IF (IB(5) - IA (19)) 170,160,170 & BSEA0940 \\
\hline 160 & IF (IB(6) - IA (50)) 170,260,170 & BSEA0950 \\
\hline 170 & D0 \(180 \mathrm{I}=1,80\) & BSEA0960 \\
\hline & IF (IB (I) - IA (50)) 180,190,180 & BSEA0970 \\
\hline 180 & \(\mathrm{N} 2=\mathrm{I}\) & BSEA0980 \\
\hline 190 & IF (N2) 110,110,200 & BSEA0990 \\
\hline 200 & \(\mathrm{Nl}=\mathrm{Nl}+1\) & BSEA1000 \\
\hline & \(\mathrm{N}(\mathrm{N} 1)=\mathrm{N} 2\) & BSEA1010 \\
\hline & N4=N3+N2-1 & BSEA1020 \\
\hline & IF (N4-8000) 220,220,210 & BSEA1030 \\
\hline 210 & WRITE (IOTAPE,59) N4, N1 & BSEA1040 \\
\hline 9999 & STOP & BSEA1050 \\
\hline 220 & IF (N1-200) 230,230,210 & BSEA1060 \\
\hline 230 & \(\mathrm{J}=1\) & BSEA1070 \\
\hline & D0 \(240 \mathrm{I}=\mathrm{N} 3, \mathrm{~N} 4\) & BSEA1080 \\
\hline & \(\operatorname{IC}(\mathrm{I})=\mathrm{IB}(\mathrm{J})\) & BSEA1090 \\
\hline 240 & \(\mathrm{J}=\mathrm{J}+1\) & BSEAl100 \\
\hline & N3=N3+N2 & BSEAlll0 \\
\hline & G0 TO 110 & BSEAl120 \\
\hline 260 & WRITE (IOTAPE, 19) IA (47) & BSEAl130 \\
\hline
\end{tabular}

GO TO 630
BSEA1690
440
N3=1 BSEA1700
DO \(480 \mathrm{Kl}=1, \mathrm{Nl}\)
BSEA1710
\(\mathrm{N} 2=\mathrm{N}(\mathrm{Kl})\)
BSEA1720
\(\mathrm{N} 4=\mathrm{N} 3+\mathrm{N} 2-1\)
BSEA1730
\(\mathrm{I} 2=\mathrm{L} 2-\mathrm{N} 2+1\)
BSEA1740
D0 470 I=2,I2
BSEA1750
IF (ICOL(I) - IA(47)) 450,470,450
BSEA1760
IF (ICOL(I-1) - IA(47)) 470,455,470 BSEA1770
Jl=1
DO \(460 \mathrm{~J}=\mathrm{N} 3, \mathrm{~N} 4\)
BSEA1780
K=I \(+\mathrm{Jl}-1\)
IF (ICOL(K) - IC(J)) 470,460,470 BSEA1790 BSEA1800 BSEA1810
\(\mathrm{Jl}=\mathrm{Jl}+1\)
GO TO 590
470 CONTINUE
BSEA1840
480 N3=N3+N2
GO TO 630
490 IF (INSIDE) 500,540,500
BSEA1850
BSEA1860
BSEA1870
500 N3=1
DO \(530 \mathrm{Kl}=1, \mathrm{Nl}\)
\(\mathrm{N} 2=\mathrm{N}\) (K1)
N4=N3+N2-1
BSEA1880
BSEA1890
BSEA1900
BSEA1910
\(\mathrm{I} 2=\mathrm{L} 2-\mathrm{N} 2+1\)
BSEA1920
D0 \(520 \mathrm{I}=2, \mathrm{I} 2\)
BSEA1930
Jl=1
DO \(510 \mathrm{~J}=\mathrm{N} 3, \mathrm{~N} 4\)
BSEA1940
K=I \(+\mathrm{Jl}-1\)
BSEA1950
IF (ICOL(K) - IC(J)) 520,510,520
\(\mathrm{Jl}=\mathrm{Jl}+1\)
GO TO 530
520 CONTINUE
GO TO 630
530 N3=N3+N2
GO TO 590
540 N3=1
DO \(580 \mathrm{Kl}=1, \mathrm{Nl}\)
\(\mathrm{N} 2=\mathrm{N}(\mathrm{Kl})\)
N4 \(=\) N3 + N2-1
\(\mathrm{I} 2=\mathrm{L} 2-\mathrm{N} 2+1\)
DO 560 I=2,I2
IF (ICOL(I) - IA(47)) 545,570,545
545 IF (ICOL(I-1) - IA(47)) 570,550,570
BSEA1960
BSEA1970
BSEA1980
BSEA1990
BSEA2000
BSEA2010
BSEA2020
BSEA2030
BSEA2040
BSEA2050
BSEA2060
BSEA2070
BSEA2080
BSEA2090
BSEA2100
BSEA2110
550 Jl=1
BSEA2120
DO \(560 \mathrm{~J}=\mathrm{N} 3, \mathrm{~N} 4\)
BSEA2130
K=I \(+\mathrm{Jl}-1\)
BSEA2140
IF (ICOL(K) - IC(J)) 570,560,570
BSEA2150
\(560 \mathrm{Jl}=\mathrm{Jl}+1\)
GO TO 580
BSEA2160
BSEA2170
570 CONTINUE
GO TO 630
BSEA2180
BSEA2190
580 N3 \(=\mathrm{N} 3+\mathrm{N} 2\)
BSEA2200
590
DO 600 I=1,L2,IWIDE2
BSEA2210
L5=I+IWIDE1
BSEA2220
600 WRITE (IOTAPE, 19) (ICOL(J), J=I,L5)
\begin{tabular}{|c|c|c|}
\hline & IF (ITEST) 610,630,610 & BSEA2240 \\
\hline \multirow[t]{2}{*}{610} & DO \(620 \mathrm{I}=1, \mathrm{~L} 2\), IWIDE3 & BSEA2250 \\
\hline & L5=I + IWIDE3-1 & BSEA2260 \\
\hline 620 & WRITE (IPTAPE, 9) (ICOL (J), J=L4, L5) & BSEA2270 \\
\hline \multirow[t]{2}{*}{630} & CALL CHECK4 (0, IEND) & BSEA2280 \\
\hline & IF (IEND) 640,9999,640 & BSEA2290 \\
\hline 640 & IF (L4) 280,280,650 & BSEA2300 \\
\hline \multirow[t]{7}{*}{650} & L4=0 & BSEA2310 \\
\hline & \(\mathrm{L} 3=1\) & BSEA2320 \\
\hline & L2=IWIDE1+1 & BSEA2330 \\
\hline & \(\mathrm{Ll}=2\) & BSEA2340 \\
\hline & \(\mathrm{J}=1\) & BSEA2350 \\
\hline & DO 660 I=L1,L2 & BSEA2360 \\
\hline & \(\operatorname{ICOL}(\mathrm{I})=\mathrm{ID}(\mathrm{J})\) & BSEA2370 \\
\hline \multirow[t]{2}{*}{660} & \(\mathrm{J}=\mathrm{J}+1\) & BSEA2380 \\
\hline & GO TO 310 & BSEA2390 \\
\hline 9 & FORMAT (132Al) & BSEA2400 \\
\hline 19 & FORMAT (1X,131A1) & BSEA2410 \\
\hline 29 & FORMAT (40I2) & BSEA2420 \\
\hline 39 & FORMAT (1X,40I2) & BSEA2430 \\
\hline \multirow[t]{2}{*}{49} & FORMAT (46HOTHE PROGRAM IS SEARCHING IN LINES OF LENGTH , 1I4, & BSEA2440 \\
\hline & 112 H CONTAINING , 3Al, 26 H OF THE WORDS GIVEN BELOW. //) & BSEA2450 \\
\hline \multirow[t]{3}{*}{59} & FORMAT (47HOLIST OF SEARCH WORDS TOO LONG. PLEASE SHORTEN. ,/68HOBS & BSEA2460 \\
\hline & IMAXIMUM CHARACTER LENGTH IS 8000. MAXIMUM NUMBER OF PHRASES IS 2001 & BSEA2470 \\
\hline & \(2 / 21 \mathrm{H}\) CURRENT VALUES ARE ,2I6) & BSEA2480 \\
\hline \multirow[t]{3}{*}{69} & FORMAT (74HOBLOCK IS TOO LONG. BLOCK IS CONSIDERED TERMINATED WITHBS & BSEA2490 \\
\hline & 1 THE FOLLOWING CARD ,//1X,131A1//) & BSEA2500 \\
\hline & END & BSEA2510 \\
\hline \multicolumn{3}{|l|}{C} \\
\hline & SUBROUTINE CHECK4(IT, K) & BSCKOO10 \\
\hline & DIMENSION IA (81), IB (81), IC (8080), ID (140), IFLAGS (80), \(\mathrm{N}(200)\) & BSCK0020 \\
\hline & DIMENSION ICOL(8300) & BSCK0030 \\
\hline & COMMON ITEST, ITAPE, IOTAPE, IRTAPE, IPTAPE, IA, IB, IC, ID, IFLAGS, \(\mathrm{N}, \mathrm{ICOL}\) & BSCK0040 \\
\hline & IF (IT) 10,60,10 & BSCK0050 \\
\hline \multirow[t]{2}{*}{10} & DO \(20 \mathrm{I}=1,26\) & BSCK0060 \\
\hline & IF (IA(I)-ID(I)) 40,20,40 & BSCK0070 \\
\hline \multirow[t]{3}{*}{20} & CONTINUE & BSCK0080 \\
\hline & K=0 & BSCK0090 \\
\hline & GO TO 50 & BSCK0100 \\
\hline \multirow[t]{2}{*}{30} & ENDFILE IPTAPE & BSCK0110 \\
\hline & GO TO 50 & BSCKO120 \\
\hline 40 & K=1 & BSCK0130 \\
\hline 50 & RETURN & BSCK0140 \\
\hline 60 & IF (K) 50,70,50 & BSCK0150 \\
\hline \multirow[t]{2}{*}{70} & WRITE (IOTAPE, 9) (IA (J), J=1,80) & BSCK0160 \\
\hline & IF (ITEST) \(80,50,80\) & BSCK0 170 \\
\hline \multirow[t]{2}{*}{80} & WRITE (IPTAPE, 19)(IA (J), J=1,80) & BSCK0180 \\
\hline & IF (IPTAPE-6) 50,50,30 & BSCK0190 \\
\hline 9 & FORMAT (1X,131A1) & BSCKO200 \\
\hline \multirow[t]{2}{*}{19} & FORMAT (13241) & BSCK0210 \\
\hline & END & BSCK0220 \\
\hline \multicolumn{3}{|l|}{C} \\
\hline \multicolumn{3}{|l|}{C} \\
\hline C & JUSTIFY & JUAT 1 \\
\hline C & & JUAT 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline JUSTIFY PRODUCES RIGHT-HAND JUSTIFIED TEXT WHILE RECOGNIZING & JUAT 3 \\
\hline THE START OF A NEW PARAGRAPH BY LEADING BLANKS AND RECOGNIZING & JUAT \\
\hline SYMBOLS IN CONTROL FIELD 72 OF THE CARD FOR INDENTING (N), FOR & JUAT 5 \\
\hline CENTERING LINES (C), FOR IGNORING LINES (I), FOR LEAVING LINES & JUAT . 6 \\
\hline UNALTERED (D), AND FOR CREATING RUNAROUNDS (R) & JUAT 7 \\
\hline JUSTIFY REFORMATS PARAGRAPHS BY FIRST REMOVING ALL EXTRANEOUS & JUAT 8 \\
\hline BLANKS AND THEN REMAKES THE PARAGRAPH INTO LINES OF THE SPECIFIED & JUAT 9 \\
\hline WIDTH WITHOUT HYPENATING WORDS. TO MAKE RIGHT HAND JUSTIFIED LIN & NJUAT 10 \\
\hline EXTRA SPACES ARE REINSERTED AS NECESSARY & JUAT 11 \\
\hline & JUAT 12 \\
\hline THE FIRST INPUT DATA CARD, STORED IN THE DIMENSIONED ARRAY A (80), & JUAT 13 \\
\hline CONTAINS CONTROL LETTERS AND SYMBOLS. THE CARD FIELDS ARE TREATEDJ & JUUAT 14 \\
\hline FOLLOWS. & JUAT 15 \\
\hline & JUAT 16 \\
\hline A(1) TO A 26) CONTAINS THE ALPHABET & JUAT 17 \\
\hline THEREFORE A(3) IS ASSUMED TO BE C, A (4) TO BE D, ETC & JUAT 18 \\
\hline A(27) TO A 36\()\) CON巳AINS THE INTEGERS STARTING WITH ZERO & JUAT 19 \\
\hline A 38) CONTAINS A PERIOD OR END OF SENTENCE SYMBOL & JUAT 20 \\
\hline A (39) TERMINATES THE READING OF A CARD. ANYTHING & JUAT 21 \\
\hline FOUND IN FURTHER FIELDS OF THE CARD WILL BE IGNORED & JUAT 22 \\
\hline EXCEPT CONTROL LETTERS IN CARD FIELD 72. & JUAT 23 \\
\hline A(45) IS USED TO INDICATE THAT THE OUTPUT LINE IS & JUAT 24 \\
\hline CONTINUED ONTO THE NEXT CARD. & JUAT 25 \\
\hline A (46) SHIFT SYMBOL USED IN LOCK AND UNLOCK & JUAT 26 \\
\hline A (47) NORMALLY A BLANK, IS THE CHARACTER WHICH & JUAT 27 \\
\hline SEPARATES WORDS. IT IS, THEREFORE, THE ONLY VALID & JUAT 28 \\
\hline CHARACTER AT WHICH TO BREAK A LINE. NOTE THAT THIS & JUAT 29 \\
\hline PROGRAM REMOVES ALL EXTRA SPACES BETWEEN WORDS. IF & JUAT 30 \\
\hline RESERVED SPACES ARE DESIRED A SPECIAL CHARACTER OTHERJ & JJUAT 31 \\
\hline THAN A(47) MUST BE USED. & JUAT 32 \\
\hline A(48) IS A TAB INDICATOR. THIS SYMBOL IS TREATED & JUAT 33 \\
\hline AN A(47) WHEN ENCOUNTERED IN THE INPUT TEXT EXCEPT & JUAT 34 \\
\hline THAT IT WILL NOT START A NEW PARAGRAPH IF ENCOUNTEREDJ & JUAT 35 \\
\hline IN CARD COLUMN ONE. & JUAT 36 \\
\hline A(60) CONTAINS AN INTEGER COUNT OF THE NUMBER OF & JUAT 37 \\
\hline FIGURING THE LENGTH OF THE OUTPUT LINE, ALL OTHER & JUAT 39 \\
\hline CHARACTERS AND SYMBOLS HAVE A WIDTH OF ONE. THESE NO & JUAT 40 \\
\hline COUNT SYMBOLS ARE PUNCHED STARTING IN A(61). & JUAT 41 \\
\hline & JUAT 42 \\
\hline THE SECOND INPUT CARD CONTAINS CONTROL SWITCHES IN (I3) FORMAT. J & JUAT 43 \\
\hline & JUAT 44 \\
\hline FIELD USE J & JUAT 45 \\
\hline & JUAT 46 \\
\hline 1 WIDTH OF OUTPUT RECORDS & JUAT 47 \\
\hline 2 NONZERO INSERTS SPACES TO RIGHT JUSTIFY LINES. J & JUAT 48 \\
\hline A ZERO FORMATS LINES WITHOUT EXTRA SPACES INSERTED. J & JUAT 49 \\
\hline 3 NONZERO WRITES A PUNCH TAPE, ZERO SUPRESSES PUNCH. J & JUAT 50 \\
\hline NONZERO CALLS SUBROUTINES LOCK AND UNLOCK. JUA & JUAT 51 \\
\hline 5 UNIT NO. OF READ TAPE(SET TO 5 IS ZERO) J & JUAT 52 \\
\hline 6 UNIT NO. OF PUNCH TAPE (SET TO 3 IF ZERO) J & JUAT 53 \\
\hline 7 ZERO INSERTS ONE EXTRA SPACE AFTER A PERIOD A (38) J & JUAT 54 \\
\hline WHEN POSSIBLE. JUA & JUAT 55 \\
\hline & JUAT 56 \\
\hline A ''PARAGRAPH'' IS CONSIDERED ENDED BY ONE OR MORE BLANKS AT THE J & JUAT 57 \\
\hline BEGINNING OF A NEW LINE, A CARD CONTAINING ALL BLANKS, A CARD J & JUAT 58 \\
\hline
\end{tabular}
\(\operatorname{SWITCH}(\mathrm{J})=0.0\)
\(\operatorname{SWITCH}(1)=1\).
\(\mathrm{K}=1\)
D0 \(120 \mathrm{~J}=2,21\)
IF (ISWIT(J)) 120,120,110
\(\mathrm{K}=\mathrm{J}\)
SWITCH (J) =ISWIT (J)
CONTINUE
WRITE (IOTAPE, 700) IW,IJUST,ITEST, (ISWIT(J), J=1,K)
IF (ISWIT(1)) \(130,140,130\)
SWITCH (3) =ISWIT (1)
140 WRITE (IOTAPE,730) IW
DO \(150 \mathrm{I}=1,8002\)
\(\operatorname{IC}(\mathrm{I})=\mathrm{IA}(47)\)
IF (IW-20) 480,470,470
READ (IRTAPE, 670) (ICOL(J), J=1, 80)
CALL CHECK3 (K)
IF (K) 170,180,170
STOP
180 IF (ICOL(72)-IA(4)) 500,590,500
190 IF (NOPAR) 200,210,200
200 NOPAR=0
CALL OUTPUT
G0 TO \((540,550,560,570)\), IS

JUAT 60 JUAT 61 JUAT 62 JUAT 63 JUAT 64 JUAT 65 JUAT 66 JUAT 67 JUAT 68 JUAT 69 JUAT 70 JUAT 71 JUAT 72 JUAT 73 JUAT 74 JUAT 75 JUAT 76 JUAT 77 JUAT 78 JUAT 79 JUAT 80 JUAT 81 JUAT 82 JUAT 83 JUAT 84 JUAT 85 JUAT 86 JUAT 87 JUAT 88 JUAT 89 JUAT 90 JUAT 91 JUAT 92 JUAT 93 JUAT 94 JUAT 95 JUAT 96 JUAT 97 JUAT 98 JUAT 99 JUAT100 JUAT101
JUAT102
JUAT103
JUAT104
JUAT105
JUAT106
JUAT107
JUAT108
JUAT109
JUATIIO
JUAT111
JUAT112
JUATII3
\(\mathrm{N} 2=0\)
IF (ICOL(1)-IA(47)) 230,260,230
JUAT114
\[
\text { IF (ICOL(1)-IA(39)) } 250,590,250
\]

JUAT115
\(240 \quad \mathrm{~N} 1=0\)
\(\mathrm{N}=0\)
NOPAR=1
GO TO 330
IF (NOPAR) 330,240,330
260 IF (NOPAR) 270,280,270
270 CALL OUTPUT
NOPAR=0
280 DO \(290 \mathrm{~J}=1,80\)
\(\mathrm{Nl}=\mathrm{J}\)
IF (ICOL(J)-IA(47)) 300,290,300 JUAT116 JUATll7 JUATII8 JUAT119 JUAT120 JUATI21 JUAT122 JUAT123 JUATI24 JUAT125 JUAT126 JUAT127 JUAT128 JUAT129
300 IF (ICOL(N1)-IA(39)) 310,590,310
310 N2=N1
NOPAR=1
\(\mathrm{N}=\mathrm{Nl}\)
\(\mathrm{Nl}=\mathrm{Nl}-\mathrm{l}\)
DO \(320 \mathrm{~J}=1, \mathrm{~N}\)
\(\operatorname{IC}(\mathrm{J})=\operatorname{ICOL}(\mathrm{J})\)
\(\mathrm{N}=\mathrm{N}+1\)
IF (N-7999) 350,340,350
JUAT130
JUAT131
JUAT132 JUAT133 JUAT134 JUAT135 JUAT136 JUAT137 JUAT138 JUAT139 JUAT140 JUAT141 JUAT142 JUAT143 JUAT144 JUAT145 JUAT146 JUAT147 JUAT148 JUAT149 JUAT150 JUAT151 JUAT152 JUAT153 JUAT154 JUAT155 JUAT156 JUAT157
\(450 \quad \mathrm{~N}=\mathrm{N}+1\)
460 N2 \(=\mathrm{N} 2+1\)
IF (N2-80) 360,360,400
470 IF (IW-120) 640,640,480
480 NRITE (IOTAPE,720) IW
STOP
\(\mathrm{N}=\mathrm{N}-1\)
GO TO 160
500 IF (ICOL(72)-IA(9)) 510,160,510
510 IF (ICOL(72)-IA(18)) 520,600,520
JUAT158
JUAT159
JUAT160
JUAT161
JUAT162
JUAT163
JUAT164
JUAT165
JUAT166
JUAT167
JUAT168

\begin{tabular}{|c|c|c|}
\hline 60 & IW2 \(=\) N & JOAT 16 \\
\hline & D0 \(70 \mathrm{I}=1\), IW2 & JOAT 17 \\
\hline 70 & \(\operatorname{ICP}(\mathrm{I})=\operatorname{IC}(\mathrm{I})\) & JOAT 18 \\
\hline & CALL PRINTP & JOAT 19 \\
\hline 80 & RETURN & JOAT 20 \\
\hline 90 & \(\mathrm{J}=0\) & JOAT 21 \\
\hline & \(\mathrm{I}=0\) & JOAT 22 \\
\hline & \(11=1\) & JOAT 23 \\
\hline & \(\mathrm{K}=0\) & JOAT 24 \\
\hline & \(\mathrm{Kl}=0\) & JOAT 25 \\
\hline & K2 \(=0\) & JOAT 26 \\
\hline 100 & CALL COWNIT (IC(Il), IT) & JOAT 27 \\
\hline & IF (IT) 110,120,110 & JOAT 28 \\
\hline 110 & \(\mathrm{I}=\mathrm{I}+1\) & JOAT 29 \\
\hline & G0 TO 130 & JOAT 30 \\
\hline 120 & \(\mathrm{J}=\mathrm{J}+1\) & JOAT 31 \\
\hline 130 & \(\mathrm{Il}=\mathrm{Il}+1\) & JOAT 32 \\
\hline & IF (\(\mathrm{Il}-(\mathrm{N}+1)\)) 140,240,240 & JOAT 33 \\
\hline 140 & IF (I-IW) 100,150,150 & JOAT 34 \\
\hline 150 & K=Kl +1 & JOAT 35 \\
\hline & CALL COWNIT (IC(Il), IT) & JOAT 36 \\
\hline & IF (IT) 170,160,170 & JOAT 37 \\
\hline 160 & \(\mathrm{J}=\mathrm{J}+1\) & JOAT 38 \\
\hline & \(\mathrm{I}=\mathrm{I}-1\) & JOAT 39 \\
\hline 170 & IF (IC(Il)-IA (47)) \(180,250,180\) & JOAT 40 \\
\hline 180 & \(\mathrm{Il}=11-1\) & JOAT 41 \\
\hline & CALL COWNIT (\(\mathrm{IC}(\mathrm{Il}+1)\), IT) & JOAT 42 \\
\hline & IF (IT) 190,200,190 & JOAT 43 \\
\hline 190 & \(\mathrm{I}=\mathrm{I}-1\) & JOAT 44 \\
\hline & G0 TO 210 & JOAT 45 \\
\hline 200 & \(\mathrm{J}=\mathrm{J}-1\) & JOAT 46 \\
\hline 210 & IF (Il) 220,220,170 & JOAT 47 \\
\hline 220 & WRITE (IOTAPE,880) & JOAT 48 \\
\hline 230 & STOP & JOAT 49 \\
\hline 240 & \(\mathrm{K}=\mathrm{Kl}+1\) & JOAT 50 \\
\hline 250 & \(\mathrm{Ml}=1\) & JOAT 51 \\
\hline & \(\mathrm{Kl}=\mathrm{Il}\) & JOAT 52 \\
\hline & DO 260 I2=K, Kl & JOAT 53 \\
\hline & ICP (M1) \(=1 \mathrm{C}\) (I 2) & JOAT 54 \\
\hline 260 & \(\mathrm{Ml}=\mathrm{Ml}+1\) & JOAT 55 \\
\hline & \(\mathrm{M}=\mathrm{Kl}-1\) & JOAT 56 \\
\hline & IW \(2=\mathrm{M}-\mathrm{K}+1\) & JOAT 57 \\
\hline & IF (Il-N) 270,620,620 & JOAT 58 \\
\hline 270 & IF (IJUST) 290,620,290 & JOAT 59 \\
\hline 280 & CALL PRINTP & JOAT 60 \\
\hline & \(\mathrm{J}=0\) & Joat 61 \\
\hline & \(\mathrm{I}=0\) & JOAT 62 \\
\hline & \(\mathrm{Il}=\mathrm{Il}+1\) & JOAT 63 \\
\hline & IF (Il-(N+1)) 100,80,80 & JOAT 64 \\
\hline 290 & IF (IW-I) 300,280,310 & JoAT 65 \\
\hline 300 & WRITE (IOTAPE,890) & Joat 66 \\
\hline & G0 TO 230 & JOAT 67 \\
\hline 310 & I2=IW-I & JOAT 68 \\
\hline & K2 \(=\mathrm{K} 2+1\) & JOAT 69 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \(\mathrm{K} 4=0\) & JOAT 70 \\
\hline & \(\mathrm{IT}=2^{*}(\mathrm{~K} 2 / 2)-\mathrm{K} 2\) & JOAT 71 \\
\hline & IF (IT) 320,350,320 & JOAT 72 \\
\hline \multirow[t]{3}{*}{320} & \(\mathrm{Ml}=\mathrm{IW} 2\) & JOAT 73 \\
\hline & D0 330 I3=1, IW2 & JOAT 74 \\
\hline & ICT (I3) = ICP (M1) & JOAT 75 \\
\hline \multirow[t]{2}{*}{330} & M1 \(=\) M1-1 & JOAT 76 \\
\hline & D0 340 I3=1, IW2 & JOAT 77 \\
\hline 340 & \(\mathrm{ICP}(\mathrm{I} 3)=\mathrm{ICT}(\mathrm{I} 3)\) & JOAT 78 \\
\hline 350 & IF (K2-1) 300,370,360 & JOAT 79 \\
\hline \multirow[t]{2}{*}{360} & \(\mathrm{K} 3=1\) & JOAT 80 \\
\hline & G0 T0 こ30 & JOAT 81 \\
\hline 370 & \(\mathrm{K} 3=\mathrm{N} 1+1\) & JOAT 82 \\
\hline 380 & I3 \(=1\) & JOAT 83 \\
\hline 390 & IF (ICP (I3)-IA (47)) 410,400,410 & JOAT 84 \\
\hline 400 & \(\mathrm{K} 4=\mathrm{K} 4+1\) & JOAT 85 \\
\hline 410 & IF (I3-IW2+K3-1) 420,430,430 & JOAT 86 \\
\hline \multirow[t]{2}{*}{420} & I3 \(=13+1\) & JOAT 87 \\
\hline & G0 T0 390 & JOAT 88 \\
\hline \multirow[t]{3}{*}{430} & \(\mathrm{M}=12\) & JOAT 89 \\
\hline & \(\mathrm{IT}=\mathrm{K} 4^{*}(\mathrm{I} 2 / \mathrm{K} 4)-\mathrm{I} 2\) & JOAT 90 \\
\hline & IF (IT) 450,440,450 & JOAT 91 \\
\hline \multirow[t]{2}{*}{440} & K5=I2/K4 & JOAT 92 \\
\hline & GO TO 460 & JOAT 93 \\
\hline \multirow[t]{2}{*}{450} & \(\mathrm{K} 5=\mathrm{I} 2 / \mathrm{K} 4+1\) & JOAT 94 \\
\hline & IF (K5-1) 710,710,460 & JOAT 95 \\
\hline \multirow[t]{2}{*}{460} & I \(4=0\) & JOAT 96 \\
\hline & \(13=1\) & JOAT 97 \\
\hline \multirow[t]{3}{*}{470} & \(\mathrm{Ml}=\mathrm{I} 3+\mathrm{I} 4\) & JOAT 98 \\
\hline & ICT (M1) \(=1 \mathrm{CP}\) (I 3) & JOAT 99 \\
\hline & IF (ICP(I3)-IA (47)) 510,480,510 & JOAT100 \\
\hline \multirow[t]{3}{*}{480} & D0 490 I5=1,K5 & J0ATl01 \\
\hline & \(\mathrm{I} 4=\mathrm{I} 4+1\) & J0ATl02 \\
\hline & M1FI3+I4 & J0ATl03 \\
\hline \multirow[t]{4}{*}{490} & \(\mathrm{ICT}(\mathrm{Ml})=\mathrm{IA}(47)\) & J0AT104 \\
\hline & \(\mathrm{M}=\mathrm{M}-1\) & J0AT105 \\
\hline & \(\mathrm{IT}=\mathrm{K} 4 *\) (M/K4)-M & J0AT106 \\
\hline & IF (IT) 510,500,510 & JOAT107 \\
\hline 500 & K5 \(=12 / \mathrm{K} 4\) & J0AT108 \\
\hline 510 & IF (I4-I2) 520,540,540 & J0AT109 \\
\hline 520 & IF (I3-IW2) \(530,560,560\) & JOATll0 \\
\hline \multirow[t]{2}{*}{530} & \(I 3=13+1\) & JOATlll \\
\hline & GO TO 470 & JOAT112 \\
\hline \multirow[t]{3}{*}{540} & \(16=13+1\) & JOATl13 \\
\hline & D0 \(550 \mathrm{Il3}=\mathrm{I} 6\), IW2 & JOATll4 \\
\hline & \(\mathrm{Ml}=\mathrm{Il} 3+\mathrm{I} 4\) & JOATl15 \\
\hline 550 & ICT (M1) = ICP (II3) & JOAT116 \\
\hline 560 & IW2=IW2+I4 & JOATl17 \\
\hline \multirow[t]{2}{*}{570} & \(\mathrm{IT}=2^{*}(\mathrm{~K} 2 / 2)-\mathrm{K} 2\) & JOAT118 \\
\hline & IF (IT) 600,580,600 & J0AT119 \\
\hline 580 & D0 590 I3=1,IW2 & JOAT120 \\
\hline \multirow[t]{2}{*}{590} & ICP (I3) = ICT (I3) & J0AT121 \\
\hline & GO TO 280 & JOATl22 \\
\hline \multirow[t]{2}{*}{600} & D0 610 I3=1, IW2 & JOAT123 \\
\hline & M1=IW2-I3+1 & JOAT124 \\
\hline
\end{tabular}
GO TO 280 JOAT126

C IF SWITCH(4) IS ZERO AN EXTRA BLANK IS INSERTED AFTER A PERIOD(38)JOATI27
620 IF (SWITCH(4)) 280,630,280
J0AT128
630 IF (IW2-2) 280,280,640 J0AT129
640 I3=2
JOAT130
650 IF (I-IW) 660,280,280
JOAT131
660 DO \(680 \mathrm{Ml}=\mathrm{I} 3\), IW2 JOAT132
IF (ICP(M1-1)-IA(38)) 680,670,680
JOAT133
670 IF (ICP(M1)-IA(47)) 680,690,680
JOAT134
680 CONTINUE
GO TO 280
\(690 \quad \mathrm{I} 3=\mathrm{Ml}+1\)
IW2=IW2+1
\(\mathrm{I}=\mathrm{I}+1\)
I13=IW2
DO \(700 \mathrm{Ml}=\mathrm{I} 3\), IW2
\(1 \mathrm{CP}(\mathrm{I} 13)=\operatorname{ICP}(\mathrm{I} 13-1)\)
JOAT135
JOAT136

I13=113-1
GO TO 650
710 DO 720 I3=1, IW2
\(720 \operatorname{ICT}(13)=I C P(I 3)\)
IT=IW2-1
\(113=2\)
730 K7 \(=1\)
DO 760 I3=I13,IT
K9=I3
1F (ICT(I3)-IA(38)) 760,740,760
740 IF (lCT(I3-1)-IA(47)) 750,850,750
750 IF (ICT(I3+1)-IA(47)) 760,840,760
CONTINUE
IF (I13-2) 460,460,770
770 IF (I-IW) 780,570,570
780 DO \(810 \mathrm{Ml}=\mathrm{K7}\), IT
K9=M1
IF (ICT(M1)-IA(47)) 810,790,810
790 IF (ICT (M1+1)-IA(47)) 800,810,800
800 IF (ICT(M1-1)-IA(47)) \(820,810,820\)
810 CONTINUE
GO TO 570
820 K7=1w2
DC 830 I3=K9,IW2
\(1 \mathrm{CT}(\mathrm{K7}+1)=\mathrm{ICT}(\mathrm{K} 7)\)
K7=K7-1
1 W2=IW2+1
\(1 \mathrm{~T}=\mathrm{IT}+1\)
\(\mathrm{I}=\mathrm{I}+1\)
\(\mathrm{K} 7=\mathrm{K} 9+2\)
GO T0 770
\(840 \quad \mathrm{~K} 8=\mathrm{K} 9+1\)
I \(13=K 9+1\)
GO TO 860
K8=K9-1
\(860 \quad K 7=I W 2\)
I13=K9+2
```

        DO }870\mathrm{ I3=K8,IW2
        JOAT180
        ICT (K7+1)=ICT (K7)
    K7=K7-1
    IW2=IW2+1
    IT=IT+1
    I=I+1
    IF (I-IW) 730,570,570
    C
880
890
FORMAT (21HlKl HAS BECOME ZERO. )
FORMAT (26HIIW CANNOT BE LESS THAN I )
END
J0AT181

```
 IF (SWITCH(2) -.9999) 3,3,1 JCIT0050
 DO 2 I=l,N3
 IF (ICHAR - IA(I+60)) 2,4,2
JCIT0060
 JCIT0070
 CONTINUE
 JCIT0090
 IT = l
 GO TO 5
 IT = 0
5 \text { RETURN}
 END
 SUBROUTINE IOSAME
 JSAM0010
 COMMON ITAPE,IRTAPE,IOTAPE,IPTAPE JSAMOO2O
 COMMON SWITCH,N,N1,N2,NOPAR,IW2,ITEST,IJUST,IW,IA,ICOL,ICP,ICT,IC JSAMO030
 DIMENSION ICOL(80),ICP(360),ICT(360),IC(8002),IA(80),SWITCH(100) JSAMO040
 N=0
JSAM0050
 Nl=0
 N2=0
 NOPAR=0
 IF (ITEST) 2,3,2
l FORMAT (80A1)
2 WRITE (IPTAPE,l) (ICOL(J),J=1,80)
3
4
WRITE (IOTAPE,4) (ICOL(J),J=1,80)
 FORMAT (1X,80Al)
 RETURN
 END
C
 SUBROUTINE IOCENT
JCENOO1O
COMMON ITAPE,IRTAPE,IPTAPE,IOTAPE
JCENOO2O
COMMON SWITCH,N,N1,N2,NOPAR,IW2,ITEST,IJUST,IW,IA,ICOL,ICP,ICT,IC JCENOO3O
 DIMENSION ICOL(80),ICP(360),ICT(360),IC(8002),IA(80),SWITCH(100) JCENO040
DO l I=1,70 JCENOO5O
1 ICP(I)=IA(47)
 DO 2 I=1,70
 IF (ICOL(I) - IA(47)) 5,2,5
 CONTINUE
 CALL IOSAME
 RETURN
JCEN0060
JCEN007O
4
J0AT187
C
JCITO100
JCITO110
JCITO120
```

JSAM0060
JSAM0070
JSAM0080
JSAM0090
JSAMO100
JSAMO110
JSAMO120
JSAMO130
JSANO
JSAMOl50
SUBROUTINE IOCENT
JCENOO10
COMMON ITAPE, IRTAPE, IPTAPE,IOTAPE
JCENOO2O
COMMON SWITCH,N,N1,N2,NOPAR,IW2,ITEST,IJUST,IW,IA,ICOL,ICP,ICT,IC JCENOO30 DIMENSION $\operatorname{ICOL}(80), \operatorname{ICP}(360), \operatorname{ICT}(360), \operatorname{IC}(8002), \operatorname{IA}(80), \operatorname{SWITCH}(100)$ JCENO040
JCENO100
JCENO11O

```

GO TO 3
JCENO180
\(8 \quad \mathrm{M}=\mathrm{M} 2-\mathrm{Ml}+1\)
JCENO190
\(I 2=(I W-M) / 2\)
IF (I2) 9,9,10
JCENO200
M3=1
GO TO 12
IF (70-I2-M) 11,11,16
JCENO210
JCENO220
JCENO230
\(\begin{array}{ll}10 & \text { IF (70- } \\ 11 & \text { M3 }=71-\mathrm{M}\end{array}\) JCENO240 JCEN0250
12 Do \(13 \mathrm{I}=\mathrm{M} 1, \mathrm{M} 2\)
\(\operatorname{ICP}(\mathrm{M} 3)=\operatorname{ICOL}(\mathrm{I})\) JCENO260
\(13 \quad \mathrm{M} 3=\mathrm{M} 3+1\)
JCENO270
JCENO280
\(\operatorname{ICP}(\mathrm{M} 3)=\operatorname{IA}(39) \quad\) JCENO290
\(\operatorname{ICP}(71)=\operatorname{IA}(39)\) JCENO300
\(\operatorname{ICP}(72)=\operatorname{IA}(3)\) JCENO310
DO \(15 \mathrm{I}=1,72\) JCENO320
14 DO 15 I=1,72
JCENOZ30
\(\begin{array}{ll}\text { GO TO } 3 & \text { JCENO340 }\end{array}\)
Jl=0 JCENO350
DO \(18 \mathrm{I}=\mathrm{M1}, \mathrm{M2}\) JCENO360
CALL COWNIT(ICOL(I), J) JCENO370
IF (J) \(18,17,18\) JCENO380
\(\mathrm{Jl}=\mathrm{Jl}+1\)
JCENO390
CONTINUE
IF (Jl) 19,19,20
JCENO410
M3 \(=12+1\)
GO TO 12
\(20 \quad \mathrm{M} 3=\mathrm{I} 2+(\mathrm{J} / 2)+1\)
IF (70-M3-M) 11,11,12
END
JCENO420
JCENO430
JCENO440
JCENO450
JCEN0460
JCENO 470
SUBROUTINE INDENT
JIND0010
COMMON ITAPE, IRTAPE,IOTAPE,IPTAPE
JIND0020
COMMON SWITCH,N,N1,N2,NOPAR,IW2,ITEST,IJUST,IW,IA,ICOL, ICP,ICT,IC JIND0030
DIMENSION ICOL(80),ICP(360),ICT(360),IC(8002),IA(80),SWITCH(100) JINDO040
\(\operatorname{SWITCH}(1)=-1 .{ }^{*}\) SWITCH(1) JIND0050
DO \(1 \mathrm{Ml}=1,71\)
JIND0060
IF (ICOL(M1) - IA(47)) 6,1,6 JIND0070
CONTINUE
\(I W=J\)
\(\mathrm{N}=0\)
\(\mathrm{Nl}=0\)
N2=0
JIND0080
JIND0090
JINDO 100
JIND0110
JINDO120
NOPAR=0
JIND0130
RETURN
JIND0140
WRITE (IOTAPE,5) (ICOL(I), I=1,80),(ICOL(I), I=M1,M2) JIND0150
FORMAT (1H0,80Al,/53H THE ABOVE CARD CONTAINS AN INDENT OF ILLEGALJINDO160
1 SIZE \(=\), 80Al//)
JIND0170
SWITCH(1) \(=-1 .{ }^{*}\) SWITCH(1)
JIND0180
GO TO 16
JIND0190
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{6} & \(\mathrm{M} 2=\mathrm{Ml}+2\) & JIND0200 \\
\hline & \(\mathrm{J}=0\) & JIND0210 \\
\hline & IF (ICOL(M2) - IA (47)) 7,9,7 & JIND0220 \\
\hline 7 & IF (ICOL(M1) - IA (28)) 4,8,4 & JIND0230 \\
\hline \multirow[t]{3}{*}{8} & \(\mathrm{J}=100\) & JIND0240 \\
\hline & \(\mathrm{Ml}=\mathrm{Ml}+1\) & JIND0250 \\
\hline & GO TO 10 & JIND0260 \\
\hline 9 & \(\mathrm{M} 2=\mathrm{Ml}+1\) & JIND0270 \\
\hline \multirow[t]{2}{*}{10} & DO \(11 \mathrm{I}=27,36\) & JIND0280 \\
\hline & IF (ICOL(M2) - IA (I)) 11,12,11 & JIND0290 \\
\hline \multirow[t]{2}{*}{11} & CONTINUE & JIND0300 \\
\hline & GO TO 4 & JIND0310 \\
\hline \multirow[t]{3}{*}{12} & \(\mathrm{J}=\mathrm{J}+\mathrm{I}-27\) & JIND0320 \\
\hline & DO \(13 \mathrm{I}=27,36\) & J IND0330 \\
\hline & IF (\(\mathrm{ICOL}(\mathrm{Ml})-\mathrm{IA}(\mathrm{I})\)) \(13,14,13\) & J IND0340 \\
\hline \multirow[t]{2}{*}{13} & CONTINUE & J IND0350 \\
\hline & GO TO 4 & J IND0360 \\
\hline \multirow[t]{2}{*}{14} & \(\mathrm{J}=10^{*}(\mathrm{I}-27)+\mathrm{J}\) & J IND0370 \\
\hline & IF (J-120) \(15,15,4\) & J IND0380 \\
\hline \multirow[t]{2}{*}{15} & IF (J-20) 4, 3, 3 & J IND0390 \\
\hline & END & JIND0400 \\
\hline \multicolumn{3}{|l|}{C} \\
\hline & SUBROUTINE RABOUT & JRAB0010 \\
\hline & COMMON ITAPE, IRTAPE, IOTAPE, IPTAPE & JRAB0020 \\
\hline & COMMON SWITCH, N, N1, N2, NOPAR, IW2, ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC & JRAB0030 \\
\hline & DIMENSION ICOL (80), ICP(360), ICT (360), IC (8002), IA (80), SWITCH(100) & JRAB0040 \\
\hline & DO \(1 \mathrm{Ml}=1,71\) & JRAB0050 \\
\hline & IF (ICOL(M1) - IA (47)) 4,1,4 & JRAB0060 \\
\hline 1 & CONTINUE & JRAB0070 \\
\hline 2 & CALL IOSAME & JRAB0080 \\
\hline \multirow[t]{5}{*}{3} & \(\mathrm{N}=0\) & JRAB0090 \\
\hline & \(\mathrm{Nl}=0\) & JRAB0100 \\
\hline & N2=0 & JRAB0110 \\
\hline & NOPAR=0 & JRAB0120 \\
\hline & RETURN & JRAB0130 \\
\hline 8 & WRITE (IOTAPE, 17) (\(\operatorname{ICOL}(\mathrm{I}), \mathrm{I}=1,80),(\operatorname{ICOL}(\mathrm{I}), \mathrm{I}=\mathrm{Ml}, \mathrm{M} 2)\) & JRAB0140 \\
\hline \multirow[t]{3}{*}{9} & FORMAT (1H0, 80Al, /67H JUSTIFY WILL NOT ALLOW A RUN AROUND FROM THE & JRAB0150 \\
\hline & 1 ABOVE CARD OF SIZE = , 80Al//) & JRAB0155 \\
\hline & GO TO 3 & JRAB0160 \\
\hline \multirow[t]{3}{*}{4} & \(\mathrm{M2}=\mathrm{Ml}+1\) & JRAB0170 \\
\hline & \(\mathrm{M}=2\) & JRAB0180 \\
\hline & IF (ICOL(M2) - IA (47)) \(11,5,11\) & JRAB0190 \\
\hline \multirow[t]{2}{*}{5} & \(\mathrm{M}=1\) & JRAB0200 \\
\hline & M2 \(=\) M1 & JRAB0210 \\
\hline \multirow[t]{2}{*}{11} & DO \(12 \mathrm{I}=27,36\) & JRAB0220 \\
\hline & IF (ICOL(M2) - IA (I)) \(12,13,12\) & JRAB0230 \\
\hline \multirow[t]{2}{*}{12} & CONTINUE & JRAB0240 \\
\hline & GO TO 8 & JRAB0250 \\
\hline \multirow[t]{2}{*}{13} & \(\mathrm{J}=\mathrm{I}-27\) & JRAB0260 \\
\hline & IF (M-1) 3,2,14 & JRAB0270 \\
\hline 14 & DO \(15 \mathrm{I}=27,36\) & JRAB0280 \\
\hline \multirow[t]{2}{*}{} & IF (ICOL(M1) - IA (I)) 15,16,15 & JRAB0290 \\
\hline & CONTINUE & JRAB0300 \\
\hline & GO TO 8 & JRAB0310 \\
\hline 16 & \(\mathrm{J}=10^{*}(\mathrm{I}-27)+\mathrm{J}\) & JRAB0320 \\
\hline
\end{tabular}
 DO 9 I=J,N

WRITE (IOTAPE, 17) IA(39)
WRITE (IOTAPE,17) IA(39)
FORMAT (1X,80A1)
WRITE (IOTAPE,18)
FORMAT (51H * * *
IF(J-2) 8,22,22
M=J/2
Do \(19 \mathrm{I}=1, \mathrm{M}\)
WRITE (IOTAPE,17) IA(39)
\(\operatorname{ICOL}(72)=I A(4)\)
\(\operatorname{ICOL}(71)=\operatorname{IA}(39)\)
\(\mathrm{M}=\mathrm{M}+2\)
DO \(21 \mathrm{I}=\mathrm{M}, \mathrm{J}\)
WRITE (IOTAPE,17) IA(39)
WRITE (IOTAPE,18)
WRITE (IOTAPE,17) IA(39)
WRITE (IOTAPE,17) IA(39)
IF (ITEST) \(25,3,25\)
(F) (ITEST) 25,3,25
\(M=M-2\)
WRITE (IPTAPE,17) IA(39)
WRITE (IPTAPE,17) IA(39)
WRITE (IPTAPE, 18)
DO \(26 \mathrm{I}=1, \mathrm{M}\)
WRITE (IPTAPE,17) IA(39)
WRITE (IPTAPE, 30) (ICOL(I), I=1,72)
FORMAT (80Al)
\(\mathrm{M}=\mathrm{M}+2\)
DO 27 I=M,J
WRITE (IPTAPE,17) IA(39)
WRITE (IPTAPE,18)
WRITE (IPTAPE,17) IA(39)
WRITE (IPTAPE,17) IA(39)
GO TO 3
END

\section*{SUBROUTINE UNLOCK}

COMMON ITAPE,IRTAPE,IOTAPE,IPTAPE
\(\mathrm{J}=1\)
IF (IC(J)-IA(46)) 2,4,2
\(\mathrm{J}=\mathrm{J}+1\)
IF (\(\mathrm{J}-(\mathrm{N}+1)\)) \(1,3,3\)
RETURN
IF (IC(J+1)-IA(46)) 7,5,7
J=J +2
DO \(6 \mathrm{I}=\mathrm{J}, \mathrm{N}\)
\(\operatorname{IC}(\mathrm{I}-1)=\mathrm{IC}(\mathrm{I})\)
GO TO 10

DO 9 I=J,N

JRAB0330
JRAB0340
JRAB0350
JRAB0360
JRAB0370
JRAB0380
JRAB0390
JRAB0400
JRAB0410
JRAB0420
JRAB0430
WRITE (IOTAPE,17) (ICOL(I), I=1,72) JRAB0440
JRAB0450
JRAB0460
JRAB0470
JRAB0480
JRAB0490
JRAB0500
JRAB0510
JRAB0520
JRAB0530
JRAB0540
JRAB0550
JRAB0560
JRAB0570
JRAB0580
JRAB0590
JRAB0600
JRAB0610
JRAB0620
JRAB0630
JRAB0640
JRAB0650
JRAB0660
JRAB0670

JULK0010
JULK0020
COMMON SWITCH,N,N1,N2,NOPAR,IW2,ITEST,IJUST,IW,IA,ICOL,ICP,ICT,IC JULKOO30
DIMENSION \(\operatorname{ICOL}(80), \operatorname{ICP}(360), \operatorname{ICT}(360), \operatorname{IC}(8002), \operatorname{IA}(80), \operatorname{SWITCH}(100)\)
JULK0040 JULK0050 JULK0060
JULK0070
JULK0080
JULK0090
JULKO100
JULKO110
JULKO120
JULK0130
JULK0140
JULK0150
JULK0160
JULK0170
JULK0180
 \(\operatorname{IC}(\mathrm{N}+1)=\mathrm{IA}(47)\)
 \(\mathrm{J}=\mathrm{J}-1\)
 JULK0200
 JULK0210
 GO TO l
 JULK0220
11 IF (N -7999) 13,13,12
JULK0230
12 WRITE (IOTAPE,1001) (IC(K), K=1,119)
JULK0240
1001 FORMAT (1X,119A1,/94H THE ABOVE LINE BEING CHANGED FROM SHIFT AND LJULKO250
 10CK HAS EXCEEDED THE 8000 CHARACTERS LINE LIMIT. \(/ 37 \mathrm{H}\) WORK WAS HALTJULK0260
 2ED AT 8000 CHARACTERS.) JULK0270
 GO TO 3
 JULK0280
\(13 \mathrm{~N}=\mathrm{N}+1\)
JULK0290
 \(\mathrm{J}=\mathrm{J}+3\) JULK0300
 K=N JULK0310
 DO \(14 \mathrm{~L}=\mathrm{J}, \mathrm{N}\)
 \(\operatorname{IC}(\mathrm{K})=\mathrm{IC}(\mathrm{K}-\mathrm{I})\)
\(14 \mathrm{~K}=\mathrm{K}-1\)
 \(\mathrm{J}=\mathrm{J}-\mathrm{l}\)
 \(\operatorname{IC}(\mathrm{J})=\mathrm{IA}(46)\)
 GO TO 4
 END
JULK0320
C
 SUBROUTINE LOCK
 JLOK0010
 COMMON ITAPE, IRTAPE,IOTAPE, IPTAPE
 JLOK0020
 COMMON SWITCH,N,N1,N2,NOPAR,IW2,ITEST,IJUST,IW,IA,ICOL,ICP,ICT,IC JLOKOO30
 DIMENSION ICOL(80), ICP(360), ICT(360),IC(8002),IA(80),SWITCH(100) JLOK0040
 \(\mathrm{J}=1 \mathrm{ICl}\)
\(1 \quad \operatorname{IF}(I C(J)-I A(46)) 2,5,2\)
\(2 \mathrm{~J}=\mathrm{J}+1\)
 IF (J-(N +1)) 1,1,4
3 WRITE (TOTAR,1へ01) (IC(K), K=1,119)
JLOK0050
JLOK0060
JLOK0070
JLOK0080
1001 FURMAT (\(1 \mathrm{X}, 119 \mathrm{Al}, / 9^{r} / \mathrm{H}\) THE ABOVE PARAGRAPH BEING CHANGED TO SHIFT AJLOKO100
 IND LOCK HAS EXCEEDED THE 8000 CHARACTERS LINE LIMIT. /37H WORK WASJLOKO110
 2 HALTED AT 8000 CHARACTERS.) JLOKO120
 RETURN JLOKO130
4 RETURN
\(5 \quad \mathrm{~J}=\mathrm{J}+2\)
JLOKO140
 IF (IC(J)-IA(46)) \(10,7,10\)
\(7 \quad \operatorname{IF}(\mathrm{IC}(\mathrm{J}+1)-\mathrm{IA}(47)) 75,70,75\)
JLOKO150
JLOKO160
\(70 \mathrm{~J}=\mathrm{J}+1\)
 GO TO 1
\(75 \quad \mathrm{~N}=\mathrm{N}-1\)
 DO \(8 \mathrm{~K}=\mathrm{J}, \mathrm{N}\)
JLOKO170
JLOK0180
JLOKO190
\(8 \quad \operatorname{IC}(K)=I C(K+1)\)
JLOK0200
JLOK0210
 \(\operatorname{IC}(\mathrm{N}+1)=\mathrm{IA}(47)\)
JLOK0220
 \(\mathrm{J}=\mathrm{J}+1\)
 IF (\(\mathrm{J}-\mathrm{N}\)) \(6,6,9\)
JLOK0230
\(9 \quad \mathrm{~N}=\mathrm{N}+1\)
JLOK0240
JLOK0250
 \(\operatorname{IC}(\mathrm{N} \quad)=I \mathrm{~A}(46)\)
JLOK0260
 GO TO 4 JLOK0270
\(10 \quad \operatorname{IF}(\mathrm{~N}-7999) \quad 11,9,3\)
JLOK0280
\(11 \quad \mathrm{~N}=\mathrm{N}+1\)
JLOK0290
 \(\mathrm{J}=\mathrm{J}+1\)
 \(\mathrm{K}=\mathrm{N}\)
JLOK0300
 DO \(12 \mathrm{~L}=\mathrm{J}, \mathrm{N}\)
JLOK0310
 \(\operatorname{IC}(\mathrm{K})=\mathrm{IC}(\mathrm{K}-\mathrm{l})\)
JLOK0320
JL0K0330
 \(12 \mathrm{~K}=\mathrm{K}-1\)
JLOK0340
\(\operatorname{IC}(\mathrm{J}-1)=\mathrm{IA}(46)\)
JLOK0350
GO TO 1
JLOK0360
END
JLOK0370

SUBROUTINE PRINTP
JPRIO010
COMMON ITAPE, IRTAPE, IOTAPE, IPTAPE
JPRIOO20
COMMON SWITCH,N,N1,N2,NOPAR, IW2, ITEST, IJUST,IW,IA, ICOL, ICP, ICT,IC JPRIOO30
DIMENSION ICOL(80), ICP(360), ICT(360), IC(8002);IA(80), SWITCH(100) JPRIO040
IF (SWITCH(1)) 1,1,3 JPRIO050
CALL PRINT2 JPRI0060
RETURN
JPRI0070
CALL PRINTI JPRI0080
GO TO 2 JPRI0090
END

\section*{SUBROUTINE PRINT1}

JPR10010
COMMON ITAPE, IRTAPE,IOTAPE,IPTAPE
JPR10020
COMMON SWITCH,N,N1, N2, NOPAR, IW2, ITEST, IJUST,IW,IA, ICOL, ICP, ICT,IC JPR10030
DIMENSION ICOL (80), ICP(360), ICT(360), IC(8002),IA(80), SWITCH(100) JPR10040
FORMAT (1X,119A1)
FORMAT (l20Al)
K=1
\(\mathrm{Kl}=118\)
IF (IW2-Kl-1) 10,10,30
JPR10050
JPR10060
JPR10070
JPR10080
WRITE (IOTAPE,1) (ICP(J), J=K, IW2)
JPR10090
IF (ITEST) 80,20,80
JPR10100
RETURN
JPR10110
J=Kl
DO \(40 \mathrm{I}=\mathrm{K}, \mathrm{Kl}\)
IF (ICP(J) \(-\operatorname{IA}(47)) 40,50,40\)
J=J-1
GO TO 60
\(\mathrm{Kl}=\mathrm{J}\)
60 WRITE (IOTAPE,l) (ICP(J),J=K,Kl)
JPR10120
\(\mathrm{K}=\mathrm{Kl}+1\)
\(\mathrm{Kl}=\mathrm{Kl}+118\)
IF (IW2-Kl-1) 10,10,30
JPR10130
JPR10140
JPR10150
JPR10160
JPR10170
JPR10180
\(\mathrm{K}=1\)
JPR10190

Kl=69
IF (IW2-Kl-1) 90,90,100
JPR10200
JPR10210
JPR10220
JPR10230
JPR10240
90 WRITE (IPTAPE,2) (ICP(J), J=K, IW2), IA (39)
GO TO 20
JPR10250

J=Kl
IF (ICP(K1) - IA(47)) 105,150,105
DO \(110 \mathrm{I}=\mathrm{K}, \mathrm{Kl}\)
IF (ICP(J) - IA(47)) 110,120,110
JPR10260
JPR10270

J=J-1
GO TO 130
JPR10280
JPR10290
JPR10300
JPR10310

Kl=J
130 WRITE (IPTAPE,2) (ICP(J), J=K,K1),IA(45),IA(39)
JPR10320
JPR10330
JPR10340
\(140 \mathrm{~K}=\mathrm{Kl}+1\)
\(\mathrm{Kl}=\mathrm{Kl}+69\)
JPR10350
JPR10360
IF (IW2-Kl-1) 90,90,100
JPR10370
IF (ICP(Kl+1) - IA(47)) 130,151,130
JPR10380
JPR10390
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{151} & DO \(160 \mathrm{I}=\mathrm{K}, \mathrm{Kl}\) & JPR10400 \\
\hline & IF (\(\operatorname{ICP}(\mathrm{J})-\operatorname{IA}(47)) 170,160,170\) & JPR10410 \\
\hline \multirow[t]{2}{*}{160} & \(\mathrm{J}=\mathrm{J}-1\) & JPR10420 \\
\hline & G0 T0 130 & JPR10430 \\
\hline \multirow[t]{3}{*}{170} & \(\mathrm{Kl}=\mathrm{J}\) & JPR10440 \\
\hline & GO TO 105 & JPR10450 \\
\hline & END & JPR10460 \\
\hline \multicolumn{3}{|l|}{C} \\
\hline & SUBROUTINE PRINT2 & JPR20010 \\
\hline & COMMON ITAPE, IRTAPE, IOTAPE, IPTAPE & JPR20020 \\
\hline & COMMON SWITCH,N,N1,N2,NOPAR, IW , ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC & JPR20030 \\
\hline & DIMENSION ICOL (80), ICP(360), ICT(360), IC (8002), IA (80), SWITCH(100) & JPR20040 \\
\hline 1 & FORMAT (1X,119A1) & JPR20050 \\
\hline \multirow[t]{4}{*}{2} & FORMAT (120Al) & JPR20060 \\
\hline & \(\mathrm{K}=1\) & JPR20070 \\
\hline & \(\mathrm{Kl}=117\) & JPR20080 \\
\hline & IF (IW2-K1-1) 10,10,30 & JPR20090 \\
\hline 10 & IF (K-1) \(20,14,16\) & JPR20100 \\
\hline \multirow[t]{2}{*}{14} & WRITE (IOTAPE, 1) IA (48), (ICP(J), J=K, IW2) & JPR20110 \\
\hline & GO T0 18 & JPR20120 \\
\hline 16 & WRITE (IOTAPE, 1) (ICP (J), J=K, IW2) & JPR20130 \\
\hline 18 & IF (ITEST) \(80,20,80\) & JPR20140 \\
\hline 20 & RETURN & JPR20150 \\
\hline \multirow[t]{3}{*}{30} & J=Kl & JPR20160 \\
\hline & DO \(40 \mathrm{I}=\mathrm{K}, \mathrm{Kl}\) & JPR20170 \\
\hline & IF (ICP(J) - IA (47)) \(40,50,40\) & JPR20180 \\
\hline \multirow[t]{2}{*}{40} & \(\mathrm{J}=\mathrm{J}-1\) & JPR20190 \\
\hline & G0 TO 60 & JPR20200 \\
\hline 50 & \(\mathrm{Kl}=\mathrm{J}\) & JPR20210 \\
\hline 60 & IF (K-1) 20,64,66 & JPR20220 \\
\hline \multirow[t]{2}{*}{64} & WRITE (IOTAPE, 1) IA (48), (\(\operatorname{ICP}(\mathrm{J}), \mathrm{J}=\mathrm{K}, \mathrm{Kl})\) & JPR20230 \\
\hline & GO TO 70 & JPR20240 \\
\hline 66 & WRITE (IOTAPE, 1) (ICP(J), J=K, Kl) & JPR20250 \\
\hline \multirow[t]{3}{*}{70} & \(\mathrm{K}=\mathrm{Kl}+1\) & JPR20260 \\
\hline & \(\mathrm{Kl}=\mathrm{Kl}+117\) & JPR20270 \\
\hline & IF (IW2-K1-1) 16,16,30 & JPR20280 \\
\hline \multirow[t]{3}{*}{80} & \(\mathrm{K}=1\) & JPR20290 \\
\hline & \(\mathrm{Kl}=68\) & JPR20300 \\
\hline & IF (IW2-K1-1) 90,90,100 & JPR20310 \\
\hline 90 & IF (K-1) \(20,92,94\) & JPR20320 \\
\hline \multirow[t]{2}{*}{92} & WRITE (IPTAPE, 2) IA(48), (ICP(J), J=K, IW2), IA (39) & JPR20330 \\
\hline & GO TO 20 & JPR20340 \\
\hline \multirow[t]{2}{*}{94} & WRITE (IPTAPE, 2) (ICP(J), J=K, IW2), IA (39) & JPR20350 \\
\hline & GO TO 20 & JPR20360 \\
\hline \multirow[t]{2}{*}{100} & \(\mathrm{J}=\mathrm{Kl}\) & JPR20370 \\
\hline & IF (ICP(K1) - IA (47)) 105,150,105 & JPR20380 \\
\hline \multirow[t]{2}{*}{105} & D0 \(110 \mathrm{I}=\mathrm{K}, \mathrm{Kl}\) & JPR20390 \\
\hline & IF (ICP(J) - IA (47)) 110,120,110 & JPR20400 \\
\hline \multirow[t]{2}{*}{110} & \(\mathrm{J}=\mathrm{J}-1\) & JPR20410 \\
\hline & G0 TO 130 & JPR20420 \\
\hline 120 & \(\mathrm{Kl}=\mathrm{J}\) & JPR20430 \\
\hline 130 & IF (K-1) \(20,132,134\) & JPR20440 \\
\hline \multirow[t]{2}{*}{132} & WRITE (IPTAPE,2) IA (48), (ICP(J), J=K, K1), IA (45), IA (39) & JPR20450 \\
\hline & GO TO 140 & JPR20460 \\
\hline 134 & WRITE (IPTAPE, 2) (ICP(J), J=K, Kl), IA (45), IA (39) & JPR20470 \\
\hline
\end{tabular}
 END
 JPR20580

CONTINUE
\(\mathrm{K}=1\)
 WRITE (IOTAPE, 19) (IA(I), I=1, 80)
 JCHK0080
 JCHK0090
 IF (ITEST) 20,50,20
 WRITE (IPTAPE,29) (IA(I), I=1,80)
 IF (IPTAPE - 6) 50,50,30
30 END FILE IPTAPE
 GO TO 50
40
 \(\mathrm{K}=0\)
50 RETURN
19 FORMAT (1X,80A1)
29 FORMAT (80AI)
 END
JCHKO100
JCHKOl10
JCHKO120
JCHKO130
JCHKO140
JCHKO150
JCHKO160
JCHKO170
JCHKO180
JСНKO190
C
C

\section*{NBS TECHNICAL PUBLICATIONS}

\section*{PERIODICALS}

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

\section*{- Physics and Chemistry}

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \(\$ 6.00\); foreign, \(\$ 7.25^{*}\).

\section*{- Mathematical Sciences}

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$2.25; foreign, \$2.75*.

\section*{- Engineering and Instrumentation}

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \(\$ 2.75\); foreign, \(\$ 3.50^{*}\).

\section*{TECHNICAL NEWS BULLETIN}

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology-for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \(\$ 3.00\); foreign, \(\$ 4.00^{*}\).
-Difference in price is due to extra cost of foreign mailing.
Order NBS publications from:
Superintendent of Documents
Government Printing Office
Washington, D.C. \(20+02\)

Applied Mathematics Series. Mathematical tables, manuals, and studies.
Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.
Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.
Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.
Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.
Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.
Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.

\section*{CLEARINGHOUSE}

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Governmentgenerated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse
U.S. Department of Commerce Springfield, Virginia 22151

\section*{U.S. DEPARTMENT OF COMMERCE} WASHINGTON, D.C. 20230

OFFICIAL BUSINESS```

[^0]: Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted ; mailing address Washington, D. C. 20234.
 ${ }^{2}$ Incated at Boulder, Colorado 80302.
 ${ }^{3}$ Located at 5285 Port, Royal Road, Springfield, Virginia 22151.

[^1]: *Hilsenrath; J., Ziegler, G.G., Messina, C.G., Walsh, P.J., Herbold, R.J., OMNITAB: A Computer Program for Statistical and Numerical. Analysi.s, National Bureau of Standards Handbook 101, Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402 (March 4, 1966).

