NBS TECHNICAL NOTE

470

Edpac: Utility Programs for Computer-Assisted Editing, Copy-Production, and Data Retrieval

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in three broad program areas and provides central national services in a fourth. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, and the Center for Radiation Research.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Standard Reference Data and a group of divisions organized by the following areas of science and engineering:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Cryogenics²—Radio Physics²—Radio Engineering²—Astrophysics²—Time and Frequency.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to methods, standards of measurement, and data needed by industry, commerce, educational institutions, and government. The Institute also provides advisory and research services to other government agencies. The Institute consists of an Office of Standard Reference Materials and a group of divisions organized by the following areas of materials research:

Analytical Chemistry—Polymers—Metallurgy — Inorganic Materials — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides for the creation of appropriate opportunities for the use and application of technology within the Federal Government and within the civilian sector of American industry. The primary functions of the Institute may be broadly classified as programs relating to technological measurements and standards and techniques for the transfer of technology. The Institute consists of a Clearinghouse for Scientific and Technical Information,³ a Center for Computer Sciences and Technology, and a group of technical divisions and offices organized by the following fields of technology:

Building Research—Electronic Instrumentation — Technical Analysis — Product Evaluation—Invention and Innovation— Weights and Measures — Engineering Standards—Vehicle Systems Research.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center for Radiation Research consists of the following divisions:

Reactor Radiation-Linac Radiation-Applied Radiation-Nuclear Radiation.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C. 20234. ² Located at Boulder, Colorado 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

UNITED STATES DEPARTMENT OF COMMERCE C. R. Smith, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

Edpac: Utility Programs for Computer-Assisted Editing, Copy-Production, and Data Retrieval

Carla G. Messina and Joseph Hilsenrath

Office of Standard Reference Data Institute for Basic Standards National Bureau of Standards Washington, D.C. 20234

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402 Price 75 cents.

FOREWORD

This report describes one of a series of computer programs being developed by the Data Systems Design Group of the NBS Office of Standard Reference Data to assist the Data Centers affiliated with the National Standard Reference Data System. The text of this report was reproduced from a typescript prepared on a typewriter terminal connected to a time-shared computer system. The program listing was produced on a phototypesetting machine at the Government Printing Office from a magnetic tape produced at NBS.

II

TABLE OF CONTENTS

× s

1.	Introduction1
2.	Characteristics of the Program SCRAMBLE
2.1	The Control Cards for SCRAMBLE
3.	Characteristics of the Program SUBSTITUTE
3.1	The Control Cards for SUBSTITUTE
3.2	The Subroutine SUBSTITUTE
4.	Characteristics of the Programs SEARCH and
	BLOCKSEARCH
4.1	The Control Cards for SEARCH12
4.2	The Operation of BLOCKSEARCH
5.	Preparation and Editing of Manuscripts
5.1	Characteristics of JUSTIFY
5.2	The Control Cards for JUSTIFY
5.3	The Format Control Symbols24
5.4	Two Applications of JUSTIFY

APPENDIX

rogram Listings
cramble
ubstitute
ubroutine Substitute45
earch
lock Search
ustify

ABSTRACT

A description and listings are given of EDPAC, a package of five related utility computer programs: SCRAMBLE, SUBSTITUTE, SEARCH, BLOCKSEARCH, JUSTIFY, and their subroutines. These programs perform transformations on alphanumeric data. The programs have been written in FORTRAN, with care taken to make them as system and machine-independent as possible, permitting their use on many different computers.

SCRAMBLE scans an input file for specified characters, which it replaces by different characters. SUBSTITUTE similarly replaces strings characters by other strings. SEARCH of and BLOCKSEARCH scan for the occurrence of certain list the strings and lines or blocks. respectively, in which they occur. JUSTIFY produces text, for printing on a card-controlled typewriter or on an extended character printer, which has been left and right-justified between specified margins.

Some applications of the EDPAC programs are discussed. Emphasis is placed on computerassisted text preparation.

Key words: alphanumeric data files, computerassisted text preparation, data retrieval, FORTRAN programs, free field text files, mechanized text editing An important ingredient, even a necessity, for an effective solution to problems of providing critical correlations of standard reference data is the application of computers to as many facets of the problem as possible.

Computers have been applied to a wide variety of computational jobs, to many bibliographic problems, and to automatic printing of data tapes. In each of these areas, however, the existing programs require their own specialized input formats. Most of the time the form of these instructions or data formats are dictated by considerations other than those of simplicity of operation or of universal application. Indeed, the two objectives often seem contradictory.

Such attempts as we have seen in formatting data for computer input have suffered from one or more serious drawbacks. The most serious of these has been the inability of even comprehensive systems to cope with the general case. It is our view that the more profitable line of attack on the problem of compatibility and interchangeability of data cards or data tapes is to provide a series of utility programs which will transform, translate, transpose, and transcribe information from one format to another.

The feasibility of handling free-field input of numerical data was demonstrated a number of years ago in a general-purpose computer program developed at NBS.* In that program, a versatile subroutine for scanning a card was written in machine language. Now the facility for reading freefield numerical data is provided in the compilers for FORTRAN IV. The extension of the free-field capability to the letters and characters employed in English language text poses a variety of problems which cannot be solved in a single scanning package. Here it seems more natural to provide a facility for translation, and transformation of characters or character strings.

To put the matter bluntly, we deem it less profitable to promulgate rigid rules on punching formats for data or text, and more profitable to devise flexible but easily used utility programs for handling mixed input or for recasting the input when other means fail.

This report describes five utility programs: SCRAMBLE, SUBSTITUTION, SEARCH, BLOCKSEARCH, and JUSTIFY. The five perform non-trivial transformations on alphanumeric data punched on cards or stored as records on a magnetic tape.

The programs have been written in a limited subset of FORTRAN IV. Particular care was taken to make them machine independent with respect to internal bit configuration and system independent with respect to input and output, and to minimize the modifications required in conversion to other FORTRAN dialects. Although the programs are all independent and perform very specific tasks, they can be used sequentially to carry out a series of operations in which the results of one code are used as input for the next. Furthermore, under a suitable operating system, it is possible to carry out a series of operations in a single run.

*Hilsenrath, J., Ziegler, G.G., Messina, C.G., Walsh, P.J., Herbold, R.J., OMNITAB: A Computer Program for Statistical and Numerical Analysis, National Bureau of Standards Handbook 101, Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402 (March 4, 1966). An important application of such utility programs arises in the preparation of manuscripts and reports, especially where it is important to produce right-hand justified copy (flush right-hand margins). Furthermore, the programs allow for a variety of precedence characters (used for shifting from lower to upper case of a card-controlled typewriter or with an extended character printer on a computer). The combination provides reproduction copy suitable for publication. Where graphic arts quality is needed, the programs can be used to insert instructions for font changes on a photocomposing machine.

When text is to be prepared for photoreproduction on a card-controlled typewriter, it is useful to provide simple instructions for such things as: case shift, tab stops, and card eject with and without a line-feed. These are achieved by assigning a symbol for each function. As choice of symbols depends somewhat on the text, it is important for the system to allow for their specification in a simple manner with a control card.

> Preface to the Second Edition That the stock of the first printing of this Handbook should have been exhausted almost coincident with the appearance of the reviews of it, points up the keen interest in user-oriented systems for problem solving on modern computers. Equally gratifying is the recognition by the designers of more conventional computer languages of the need to free programmers from many of the tedious, annoying and error-generating rules and restrictions of early versions of FORTRAN restrictions which are largely absent in OMNITAB.

Preface to the Second Edition

That the stock of the first printing of this Handbook should have been exhausted almost coincident with the appearance of the reviews of it, points up the keen interest in user-oriented systems for problem solving on modern computers. Equally gratifying is the recognition by the designers of more conventional computer languages of the need to free programmers from many of the tedious, annoying, and error-generating rules and restrictions of early versions of FORTRAN restrictions which are largely absent in OMNITAB.

This edition differs from the first in the following ways a number of typographical errors have

Figure 1a. The upper portion shows the condition of lines of text after editorial changes were made. Each line is punched on a separate card. The lower figure shows the same text after being processed by one of the Edpac programs. The copy was produced on a card controlled typewriter.

2. Characteristics of the Program SCRAMBLE

Numerous situations arise in data manipulation where it is necessary to .splace one character by another. A common example is the conversion of data from single precision to double precision format where every E must be changed to a D. An example at the other end of the application spectrum is the encoding of straight text via a substitution cipher. The SCRAMBLE program handles both of these problems with equal facility. The substitution is achieved by having two sets of symbols punched in one-to-one correspondence in corresponding fields of the first two control cards. In this way, the symbols on the second card always replace the symbols in corresponding positions on the first. It is possible, for example, to replace all vowels by a single letter or by a special symbol. If the vowels are replaced by a blank and words are otherwise separated, one has a useful tool for computerized exercises in linguistics. The code will perform as many as 80 single character substitutions in a single pass through the machine.

2.1 The Control Cards for SCRAMBLE.

The first control card contains those characters for which substitutions are to be made in accordance with corresponding instructions punched on the second card.

The second card contains those characters to be substituted for the characters in the corresponding fields of the first control card.

The third card contains four switches in FORMAT (312,114).

a. Switch one should be a 1 (one) when a special output unit is to be written and a zero if not. The special output unit is specified by switch number 3 (see paragraph c. below).

b. The second switch is the unit from which to read the input file. (If the switch is zero, the program sets the input to unit 5 for the card reader.) The first three control cards are always read from unit 5 but the choice of a unit for the input file is left up to the user.
c. The third switch is the unit, separate from the printer. on which

c. The third switch is the unit, separate from the printer. on which to write the output files. When this switch is zero one unit is set to 3 (the card punch).

d. The fourth switch contains the width (number of characters) of the text of the input file. SCRAMBLE assumes a width of 80 if "width" is less than one or greater to 132.

The program will come to a normal stop if it encounters an input record containing a duplicate of the first 26 columns of the first control card, otherwise it will read input records until it runs out of records to read. The program will terminate at once if the first two control cards are identical in all 80 positions.

XY			
YX			
0.0	O t		
360	Z(I) =BLK	360	Z(I) =BLK
370	DO 700 I=1+51	370	DO 700 I=1,51
375	Z6 = I	375	Z6=I
380	Z7=Y1-(Z6-1.)*Y3	380	Z7=X1-(Z6-1.)*X3
	X8=Z7-Y4		Y8=Z7-X4
	X7=Z7+Y4		Y7=Z7+X4
	M1=(51-I)*2		M1 = (51 - I) * 2
420	IF (Y(M)-X7) 450,430,430	420	IF (X(M)-Y7) 450,430,430
430	M=M+1	430	M=M+1
· ·	GO TO 420		GO TO 420
450	IF (Y(M)-X8) 690,520,520	450	IF (X(M)-Y8) 690,520,520
520	DO 560 I3=1,101	520	DO 560 I3=1,101
	Z3=I3		Z3=I3
	Z4 = X1 + (Z3 - 1) * X3		Z4=Y1+(Z3-1)*Y3
	Z5=Z4+X4		Z5=Z4+Y64
550	IF (X(M)-Z5) 590,590,560	550	IF (Y(M)-Z5) 590,590,560
560	CONTINUE	560	CONTINUE

Figure 2a. An application of SCRAMBLE to modification of a computer program wherein every X was replaced by a Y and vice versa. The old program is on the left, the transformed version is on the right. Note the simplicity of the three control cards on the left. The zero designates no special card or tape output. On the computer used at NBS, a blank is read as a zero.

.00

+() = >< <L 3>"/) 150 000000 IDENTIFICATION DIVISION. ALPHABETIC EMPLOYEE LISTING. 000100 RRUGRAM-1D. 000200 AWHUR. LAZAR. 000300 REMARKS. SEE PAGE 324 OF SYSTEM BOOK. OUU400 DAIE-CUMPILED. 000500 ENVIRONMENT DIVISION. ne / Jo OUUGOU CONFIGURATION " FICTURE XE1001. 000700 SOUPCE FICTURE XXX. OF-LEVEL 0000 PICTURE XE3353. US FILLER PRINT-FILE 003800 FD LADEL RECORDS ARE UMITTED 003900 004000 RECORD CUNTAINS 132 CHARACTERS DATA RECORD IS PRINT-REC. 004100 PRINT-REC PICTURE XE1321. 004200 01 004300 WORKING-STORAGE SECTION. PP-D1 PICTURE 963. 004400 01 PAGE-CT MICTURE 9661 VALUE ZEROES. 004500 01 004600 U1 FERSONMAST PICTURE XE78]. ZLAB PICTURE XEB] VALUE :1HDK X:. 004700 03 FILLER PICTURE XFIAL VALUE SPACES. 004800 03 PILTURE XE24 | VALUE : MASTER PERSONNEL RECORD :. · 004900 03 FILLER 70 1 .. AL 110 cn. 0100000

Figure 2b. In this application to a COBOL program, the six symbols +() = ' > < are changed to $< [] > : \setminus$) respectively.

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789	
ZABCDEFGHIJKLMNUPQRSTUVWXY9012345678	
3. *S'GDNQDSHHZK 'K'NKHC 'R'SZSD 'O'GXRHBR'O')	÷C
101. 1K1. 101USUQRNM)	B
)	
'@'DRD2066 NE DT00DMS HMSD0DRS HM RNKHC RSZSD OGXRHBR HMBKTC CDUDKNOLDMS ZMC Z00KHBZSHNM NE MNMKHMDZQ S0ZMRONQS SGDN0X; DWSDMF SGD DEEDBSHUD EHDKC SGDN0HDR NE LZFMDSHRL; ZMC HMUDRSHFZSHNMR NE ZKODBSR NE ROHM QDK2BSHNM; OZQSHBTKZ0KX MDZQ S0ZMRHSHNM <u>SDL0DQZS</u>)	RHNMR NE) RDUDQZK)
4. TIMHSZQX TETZSQHW TETHUKC TSTGDNQXTOT)	С
U• *F*• *1*NGMRNM# *I*Q•)	В
'0'DRUZQBG HR TMCDQVZX SN CDSDQLHMD HE SGHR SGDNQX'4'R MNMKH DPTZSHNM GZR SGD DKULDMSZQX OZQSHBKD RODBSQZ; HM OZQSHBTKZQ; SGD DKDHSQNM. 'B'TQQDMS RSZSTR NE SGD VNQJ HR SGD EHMCHMF NE Z BNMSH NE '44'FQDD OZQSHHKU'44' RNKTSHNMR; ZLNMF VGHBG ZQD SGD MDTSQHMNF 'S'GD OQNAKDL ZS OQURUMS HR SN RDKDHS EQNL SGHR BNMSHMTTL SGD) RNKTSHNMR VGHBG ZQD RSZAKD TMCDQ SGD HMSDQZBSHNM NE SGD OZQSHBKD DMUHQNMLDMS. 'S'GD VQHLD DEENQS HMUNKUDC HR SQXHMF SN CN SGD MTL ZMZKXRHR NM SGD BNLVTSDQ RNMRHRSZMSKX RN SGZS SGD MTLDQHBZK RGDB ENQ DHFDMUZKTH COMPANY COMPANY COMPANY COMPANY) HMTTL) R.) VHSG_HSR) DQHBZK) JR)
AGE NUMBER: 43 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789	an an an An an
BCDEFGHIJKLMNOPGRSTUVWXYZA1234567890	
U 8 4. 'T'HEORETICAL 'S'OLID 'S'TATE 'P'HYSICS'1') 'R'. 'L'. 'P'ETERSON)	D C
'R'ESEARCH OF CURRENT INTEREST IN SOLID STATE PHYSICS INCLU DEVELOPMENT AND APPLICATION OF NONLINEAR TRANSPORT THEORY, EXTEN THE EFFECTIVE FIELD THEORIES OF MAGNETISM, AND INVESTIGATIONS OF ASPECTS OF SPIN RELACTION, PARTICULARLY NEAR TRANSITION TEMPERAT)	SEVERAL)
5. UNITARY 'M'ATRIX 'F'IELD 'T'HEORY'1')	C
121. 191. 1J10HNSON, 1J1R.)	-
RESEARCH IS UNDERWAY TO DETERMINE IF THIS THEORY 5'S NONL	INEAR)
ENTRY WAS THE STEMENTARY PARTICLE SPECIAL IN PARTICULARY THE	
ELECTRON. 'C'URRENT STATUS OF THE WORK IS THE FINDING OF A GONT	a the man the
TALLE WERE TO CENT TO CELECT EROM THIS LUNITINUUM THE	
	WITH ITS
SOLUTIONS WHICH ARE STABLE UNDER THE INTERACTION OF THE PARTICLE ENVIRONMENT. 'T'HE PRIME EFFORT INVOLVED IS TRYING TO DO THE NUM	MERICAL)

Figure 2c. The top portion is the result of a linear substitution of characters. The bottom portion results from a restoration of the original characters. The figures 1, 5, and 8 on the third control card set input to read from the card reader (unit 5) and output to be placed on unit 8. On the lower portion, no cards are punched and the input is from unit 8.

3. Characteristics of the Program SUBSTITUTE

The program SUBSTITUTE is a more versatile version of SCRAMBLE and is therefore more complex. It has a provision for replacing any character string by any other character string regardless of where it occurs in the text.

Among the diverse jobs this program can do are the following:

a. Convert text punched on cards in BCD format (all capital letters) to upper and lower case, such as initial capitalization of the start of each sentence, or names and initials of authors.

b. Replace any arbitrary set of symbols by corresponding instructions for a phototypesetting machine.

c. Recognize typesetting instructions in a text and either delete them or replace them with other codes.

d. Anglicize text written by Americans, and the reverse.

e. Replace journal abbreviations by their five letter CODEN designations or vice versa, or by the full title.

f. Replace citation numbers in the body of a paper by new ones resulting from insertion of new references.

g. Insert complex mathematical expressions when they occur frequently in a text, thereby avoiding needless retyping and subsequent proofreading.

h. Insert typesetting instructions in place of code words for special symbols not available on the input device but available on a phototypesetting device.

i. Screen for and correct automatically inconsistent use of abbreviations or symbols.

j. Change variable names in a computer program to avoid conflicts when incorporating other programmers' work or to recover from the incompatability of various FORTRAN dialects.

SUBSTITUTE is presented in two forms: as a stand-alone main program, and as a subroutine suitable for incorporation into another main program.

3.1 The Control Cards for SUBSTITUTE

The first control card serves to define the punch configuration for the characters in the text as well as the control characters upon which the operations depend. The presence of the characters on the first card obviates the need to define them explicitly in the program. This simple device makes the program independent of a variety of incompatabilities which are such a source of trouble in adapting programs to different computers.

The program logic uses the disposition of the characters on the first control card in such a way as to avoid entirely the need to know how a particular machine recognizes a character on a card, what the internal bit representation of that character is, and where that character is placed in a machine word. In this way the program is independent of whether the particular machine stores away 3 characters per machine word, or 6, or even 7. Nor is it dependent on whether a single character is stored leftadjusted, right-adjusted or any other way. The alphabet is punched in order into the first 26 card columns hereinafter referred to as cc, and the digits 0,1,..., 9 follow in cc27 through 36. The character to be used to delineate the strings in the output of this program is designated in cc38; while cc47 must be left blank in this program and in all programs in this series. The second card contains three switches in FORMAT (312). They serve exactly the same purpose as the first three switches of the third control card for the SCRAMBLE program.

The third and fourth control cards in FORMAT (A1, I3, 2A1, I2), respectively specify the format of the input and output records. The five items on each card perform the following tasks:

a. The first tells which symbol is used to designate a continuation when the line is longer than the designated record length.

b. The second item defines the length (in character) of a record.

c. The next two items designate the characters used for case-shift lock and case-shift unlock. Their use is required only under circumstances described below.

d. The fifth item instructs the program to insert on input and delete on output, the case-shift symbols designated in item c. If this number is set to zero, the option is bypassed, in which case the third and fourth items discussed in c above may be left blank. If this item is a non-zero integer, it distributes, when present on the third control card, and deletes, if present on the fourth control card, the shift case symbols indicated by the two previous items on the control card. See Figure 4a for applications of this feature of program.

Immediately following the fourth control card is a deck of cards containing the instructions for the string substitutions. In this version of the program, each card carries two strings--the original one and its substitute. The length of the strings this program handles is limited to a total of 76 for the string and its substitute. Thus a "long" string can be replaced by a "short" one and vice versa.

Each of the strings is delimited by a balanced character which is read from the first column of the substitution card. In this way each card can have its own string delimiter. The only requirement is that the delimiter character must not be one which is in the string it delimits. See Figure 3d for a sample set of control cards for this program.

The substitution table must be followed by a card with the word FINIS starting in ccl. It may be followed by the text to be manipulated if the input is from a card reader.

A number of text editing systems reserve one character as a precedence symbol to indicate an upper case letter. Thus if we punch *WASHINGTON we would expect a suitable printer to print out Washington. A single symbol could be used to print the word in all caps if one were prepared to type *W*A*S*H*I*N*G*T*O*N. This is obviously too time consuming as well as wasteful of valuable computer space. The problem is easily solved by reserving another symbol such as an apostrophe to indicate shift lock and shift unlock. In that case our test word would be keyboarded as follows: 'WASHINGTON'.

Subsequent transformation of these symbols as would be required in going to automatic typesetting or converting from the BCD representation to EBDIC would have to treat the character following the W differently in the strings 'WASHINGTON' and *WASHINGTON. This problem is solved by this program in the following way. When instructed to do so via the third control card, the program changes 'WASHINGTON' to 'W'A'S'H'I'N'G'T'O'N. If instructed to do so via the fourth control card and after carrying out the substitution, the interior shift symbols are deleted and the word is imbedded between the shift and lock symbol. Since one often replaces a short string by a larger one, some provision must be made for spilling text over to the next record or line. Care is taken not to split words in the process.

3.2 The Subroutine SUBSTITUTE

The substitution capability has been incorporated into a <u>subroutine</u> whose name is SUBST. It can be called from a main program by using the words CALL SUBST (IB, IW, ITYPE). It must be called once to read in the control cards and the substitution table for which purpose ITYPE is set to zero and IB, and IW are ignored. It must be called again for each line to be processed with ITYPE equal to 1. At this time the variable IB denotes a singly dimensioned array on which the program is to operate. IW is the number of characters in the vector IB.

On return from this subroutine, IB contains the altered line which the main program handles in whatever manner is desired. IW contains the length of the altered line. On the first call of SUBST (when ITYPE is zero) the control cards are identical to those described for the program SUBSTITUTE.

In the interest of clarity the control cards for the <u>subroutine</u> SUBST have been kept identical with those for <u>program</u> SUBSTITUTE even though certain parameters required for the program are not needed for the subroutine. They may be left blank without disturbing the operation of the subroutine on those machines that equate a blank to a zero. Otherwise all integer switches that are not needed must be set to zero.

='H'. 'H'. 'H'ENKEL, '55E'QUATION OF 'S'TATE AND THE 'T'HERMAL 'D'EPENDE ='H. 'H. 'HENKEL, '5'5'EQUATION OF 'STATE AND THE 'THERMAL 'DEPENDENCE 'H'. 'H'. 'H'ENKEL, '55E'QUATION OF 'S'TATE AND 2'3' 'D'EPENDENCE OF 2 ='E'LASTIC 'C'OEFFICIENTS OF 'C'RYSTALLINE 'A'RGON,'55' 'J'. 'C'HEM. ='ELASTIC 'COEFFICIENTS OF 'CRYSTALLINE 'ARGON,'55' 'J. 'C'HEM. 'PHYS 'E'LTIC 'C'OEFFICIENTS OF 'C'RYSTALLINE ALPHARGON,'55' 'J'OURNAL OF

Figure 3a. A printout of a problem to test the "lock" and "unlock" features of SUBSTITUTE. The first line shows what was read from the input unit. The second line shows the transformation required in order to recognize strings of characters such as THERMAL. The third line shows the result after substitution and restoration of the shift and lock mode. The final transformation (the 3rd and 6th lines) were achieved via the following substitution table.

> /'J. 'CHEM/ /'JOURNAL OF 'CHEMISTRY/ /'A/ /ALPHA/ *THE * *2* 'THERMAL' '3' :LAST: :LT: :=: ::

The last line of the substitute table replaces the = sign by a null string.

PUSITIVE AND NEGATIVE IONS ARE PRODUCED IN THIS FASHION DEPENDING UPON CERTAIN SURFACE AND FREE ATOM PROPERTIES. 'E'XPERIMENTS HAVE BEEN CARRIED OUT WITH THE SURFACE IONIZATION OF FOREIGN ATOMS IMPINGING UPON A TRANSITION METAL SURFACE (('I.E., ALKALI ATOMS ON TUNGSTEN(AS WELL AS THE SELFE '0'] SURFACE IONIZATION OF SUBSTRATE ATOMS '('1.E., TUNGSTEN, NIOBIUM, AND RHENIUM(. 'T'HE APPLICABILITY OF THE EQUILIBRIUM 'S'AHAL'O'] 'L'ANGMUIR EQUATION IS BEING STUDIED FOR A WIDE SPECTRUM OF MATERIALS.) ='C;/'HEMICAL 'R'FACTIONS IN THE 'C'RYOGENIC 'R'EGION'1';'/' ='M'. 'D'. 'S'CHEER AND 'R'. 'K'LFIN PIROCESSES OCCURRING WHEN GAS GENERATED FREE RADICALS REACT WITH SOLIDS BELOW 100: K' ARE BEING STUDIED. "R'EACTIONS OF 'H', 'U', 'T', AND 'U' WITH CONDENSED OLEFINS PERMIT DETAILED OBSERVATIONS ON DIFFUSION IN THE SOLID, PRECISE RELATIVE RATES OF COMPETITIVE REACTIONS, QUANTUM MECHANICAL TUNNELING, THE NATURE OF DISPROPORTIONATION AND COMBINATION REACTIONS, AND THE EFFECT OF STRUCTURE ON REACTIVITY.

Figure 3b. This text was punched on cards for a card-controlled typewriter. The first and subsequent odd apostrophies shift and lock the carriage while the second and succeeding even ones unshift the carriage (restores to lower case). The transformation of this text stream to produce the results in Figure 3c was achieved via the SUBSTITUTE program and the control cards in Figure 3d.

PUSITIVE AND NEGATIVE IONS ARE PRODUCED IN THIS FASHION DEPENDING UPON CERTAIN SURFACE AND FREE ATOM PROPERTIES. SECXPERIMENTS HAVE BEEN CARRIED OUT WITH THE SURFACE IONIZATION OF FOREIGN ATOMS IMPINGING UPON A TRANSITION METAL SURFACE SOCIE., ALKALI ATOMS ON TUNGSTENDOC AS WELL AS THE SELF- SURFACE IONIZATION OF SUBSTRATE ATOMS SOCIE., TUNGSTEN, NIOHIUM, AND RHENIUMDOC., STCHE APPLICABILITY OF THE EQUILIBRIUM SSCAHA- SLCANGMUIR EQUATION IS REING STUDIED FOR A WIDE SPECTRUM OF MATERIALS. EXC::CHEFMICAL SKCFACTIONS IN THE SCCRYOGENIC SRCEGION;SIC SUBSTRATE ADD SRC. SKCLEFN ELSPCROCESSES OCCURRING WHEN GAS GENERATED FREE RADICALS REACT WITH SOLIDS RELOW 100 SKC ARE HEING STUDIFD. SRCEACTIONS OF SHC, SUC. STC, AND SOC WITH CONDENSED OLFFINS PERMIT DETAILED OBSERVATIONS ON DIFFUSION IN THE SOLID, PRECISE RELATIVE RATES OF

COMPETITIVE REACTIONS, QUANTUM MECHANICAL TUNNELING, THE NATURE OF DISPROPORTIONATION AND COMBINATION REACTIONS, AND THE EFFECT OF STRUCTURE ON REACTIVITY.

Figure 3c. This text stream was produced by SUBSTITUTE from the text shown above. The control cards to achieve this transformation are shown in the next figure. The ATS System uses two tabs to achieve an indented line at the start of each paragraph. The tabs are actuated by a square bracket ([). SUESTITUTE must therefore replace the four blanks by two square brackets. This is achieved in this problem by 26 control cards which change each capital letter of the alphabet that is preceded by four blanks to that same letter preceded by two tab symbols ([[). One control card would have been sufficient here if we were certain that the text did not contain four or more consecutive blanks in the interior of a paragraph.

173	INOPORSTUVWXYZ01234		
\$ 80 1 1			
73>< 1			
-	/FE>A/		
/ 'A/	/[[>B/	71377	/37
	_	/[4]/	
/ 'C/ / 'D/	/1[)/	/151/	
	/0<33\	/[6]/	
/ 'E/	/[[>E/	/101/	/6/
	/[[>F/	/1/1/	17/
/ '6/	/[[>G/	/181/	/8/
/ 11/	/EC>H/		/9/
/ '1/	/[[]]	/L0]/	/0/
/ 'J/	/[[>J/	/ J-E/	1-1
/ 'K/	/[[>K/	/ D /	11
/ 'L/	/[[>L/	/ C /	11
/ 'M/	/[[>M/	/)C/	11
/ 'N/	/EE>N/	/.)/	77
/ 10/	/[[>0/	/*0/	/>-/
/ 'P/	/[[>P/	/1/	11
/ '0/	/[[>0/	/ 12/	/>9/
/ 'K/	/[[>R/	/13/	11
/ 15/	/[[>S/	/ 4/	/=/
1 17/ 1	/[[>T/	715/	717
/ 10/	/[[>U/	/16/	/>0/
/ • ٧/	/[[>V/	117/	1>11
/ •W/ .	/rc>w/	/18/	11
/ *x/	/[[>X/	•/19/	/>5/
/ 'Y/	/[[>Y/	/11/	11.
1 121	/[[>Z/	/1+/	/>4/
/1515/	1>1/	1.11	/>!/
/['0]/	1-1	/**/	11
/1; 1//	/>I;>!/	1.1	1.1
7JIL7	////	/11/	/>9/
/ 35[/		1.1	11
/]3[/	/2/		
/ 14[/	/3/	11	1>1
/ 15[/	/4/	/=/	/[/
	/5/	/\$/	/1/
/]6[/	/6/	/1/	/>0/
/ 17[/	/7/	/*/	/>8/
\ <u>38L</u> \	/8/	/ 1/	11
/ 395 /	/9/	/+/	/>+/
130[/	/0/	/H/	//
/L1]/	/1/		11
/[2]/	/2/		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		FINIS	

Figure 3d. These are the control cards and substitution table required to transform the text in the previous figures for loading on the ATS System. The solidus (/) at the end of the first control card defines the string delimiter to be used in the output. On the next card: the 1 signals the use of a special output unit; the 7 tells the unit from which to read the input text; and the 3 indicates the special output unit. On the third control card: the \$ is the continuation symbol used on the input records which contain 80 characters each; next follow the shift-lock and the shift-unlock symbols; and the 1, switches on the "unlock" feature of the program. On the fourth control card the square bracket (]) is the continuation symbol used to extend to the next card a record which is longer than the 73 positions designated; next follow the ATS shift-lock and shift-unlock symbols; and the l restores the "lock" feature required by the ATS System.

/>#Δ!Δ!/ /!G5>#!G3/ /#Δ!Δ!/ /!G5#!G3/ /#Δ.Δ./ /!G6#!G3/ />#Δ>./ /!G6>#/ />#Δ>./ /!G6>#/ />#Δ>./ /!G6>#/ />#Δ>./ /!G6>#/ /#Δ>./ /!G6#/
/#Δ.Δ./ /!G6#!G3/ />#>Δ>./ /!G6>#/ />#>Δ>!/ /!G6>#/ />#Δ>./ /!G6>#/ /#>Δ>!/ /!G6#/
/>#>Δ>•/ /!G6>#/ />#>Δ>!/ /!G6>#/ />#Δ>•/ /!G6>#/ /#>Δ>!/ /!G6#/
/>#> <u>\</u> ///!G6>#/ /># <u>\</u> .//!G6>#/ /#> <u>\</u> ///!G6#/
/>#Δ>./ /!G6>#/ /#>Δ>!/ /!G6#/
/#>A>!/ /!G6#/
/>#Δ>"/ /!G6>#/
/#A>1/ /!G6#/
/>#Δ!/ /!G5>#/
/>#Δ./ /!G6>#/
/>#Δ#/ /!G5>#/
/#A.//!G6#/
/#A!/ /!G5#/
/#4,/ /!65#/
/ >!/ / !G4>,!G3/

Figure 3e. A partial listing of a substitution table which tranforms the character stream produced on the ATS System to the character stream required by another program for processing the text for a photo-typesetting machine. Although the first string must start in cc 1, the position of the string to be substituted is not rixed on the cara.

/ M=*/ / IVI= AINY/	/2CO/ /CO + CU/ /2CO/ /CO + CO/
/ M =/ / M= /	
/ M= */ / M= ANY/	/2C2//C2 + C2/
/ M=/ / N= /	72NH/ /NH + NH/
/ M=*/ / M= ANY/	/2NU/ / NU + NU/
/ 20H/ / UH + 0H/	/2CH/ /CH + CH/
/ 2H/ / H + H/	/ch/ /H + H/
/ 2N/ / N + N/	/ALHO/ /ALOH/
/ E/ / E[-]/	/6F0/ /80F/
1.1 / /	/LLNA/ /NALL/
/=L / / => [[-] /	/LLLI/ /LICL/
/-L / / => L[-] /	/LLNA/ /NACL/
/=2H/ /=> h + H/	/LHU,/ /CHU /
/=>/ /=>/	/LLH/ /HCL/
	/LLK/ /KCL/
/+20H/ /0H + QH /	/LHO/ /CHU/
/+ M/ /+ M/	
/+2H/ /+ H + H/	/FLI/ /LIF/
/+E/ / EL=1/	,
	/FB0/ /B0F/
/+E/ / E[ = ]/	/FNA/ /NAF/
/+M/ / + M/	/FK/ /KF/
/+/ / + /	/+3/ /BF/
/2CHU / /CHU + CHO/	/FK/ /KF/
/свн2/ /вн2 + вн2/	/FH/ /HF/
128F2/ 18F2 + 6F2/	/HUNA/ /NAUH/
/2C2H/ /C2H + C2H/	/n2C0/ /CH20/
/2CH2/ /CH2 + Ch2/	/HOH/ /H2U/
12H201 1H20 + H201	

Figure 3f. A portion of a substitute table for editing equations representing chemical reactions.

4. Characteristics of the Programs SEARCH and BLOCKSEARCH

SEARCH and BLOCKSEARCH are useful for data retrieval. The first program searches a card image of a single line of text for the presence of any or all of a group of words or strings or fragments; it prints out the line or punches out a card when such items are located.

BLOCKSEARCH is able to scan an entire block of lines, making it generally more useful in data retrieval. This search is made not on a single line but on a suitably delineated block, such as a paragraph, a page, a full bibliographic citation, or an abstract. On a successful match the entire block is printed or punched.

An important feature of these searching programs is the ability to handle fragments such as prefixes or suffixes or even fragments in the interior of words. Ordinarily the scanning is anchored to the beginning of the word. For example, asking for the word "thermo" would produce lines with thermodynamics, Thermodynamics, thermo-chemistry, and Thermochemistry. If the program is set to the unanchored mode, it will locate the word Aerothermodynamics as well. In this search mode, imbedding a blank (represented here by a °) at the end of a string restricts the search to endings or suffixes Thus, when asked to locate FLEX°, the program will find CELLUFLEX, but not FLEXIBLE. Set to locate all lines containing both of the strings °CEL and LEX°, this program would locate all words beginning with CEL and/or ending with LEX, such as °CELLUFLEX° or COMPLEX <u>CELLS</u>.

A feature of both the SEARCH and BLOCKSEARCH programs is the ability to identify fragments of words as easily as entire words or phrases. Another interesting and important feature of these programs is their ability to recognize word fragments in the interior of words as well as at the ends. Since recognition of interior fragments requires more machine time, a switch has been provided to designate whether the search is to be "anchored" at the beginning of a word or allowed to proceed into the interior of a word. The combination of spaces (°) and anchor switch setting provide for the following search strategies.

ASKING FOR	WITH MODE	GIVES
ION° °ION° ION ION° ION	anchored unanchored anchored unanchored unanchored	ION ION IONIZED ACTION MENTIONED

Note that asking for ION in the unanchored mode will find lines containing prefixes and suffixes as well as interior fragments.

4.1 The Control Cards for SEARCH

The first control card is the same as the first card of the program SUBSTITUTE. It performs the same functions here. Here again cc47 is left blank but cc50 is now used to designate which character is used to terminate the search strings. If the strings are single words, a space will suffice; but if phrases are to be allowed the space cannot be used to terminate strings. In this, a period or any other symbol not appearing in the search text can be used. The second card contains four switches in FORMAT (412).

- a. This switch should be a non-zero number if a permanent file of the selected cards is desired either on cards or tape in addition to the normal printed output. In this case the unit on which the copy is made is designated by the fourth switch (see d. below). If this
- switch is zero, results appear only on the printer. The second switch should be set to zero for searching in the anchored mode and non-zero for an unanchored search. b.
- This switch instructs the machine to read the original data file с.
- from the specified unit. The unit is set to 5 if this switch is 0. This switch instructs the machine on which unit to write the copy of the abridged file. The unit is set to 3 if this switch is 0. d.

The third control card carries either the word AND or OR. If the card carries the word OR, a line will be printed out if it contains any one of the designated words or fragments. The use of the word AND imposes the condition that all of the words must be found on a single card image for successful selection. The order in which they appear is immaterial.

The control cards which follow contain the words, phrases or fragments for which the file is to be searched. The search strings must start in ccl and must be terminated by the character designated in cc50 of the first control card. The entire list is terminated on a card carrying the word FINIS, starting in column 1 and terminated by the designated string terminator. This last seemingly unnecessary requirement permits one to include in the search such words as FINISHING which would otherwise terminate the search list.

Here again, when the program encounters any card which matches the first control card (a card with the normal alphabet punched in the first 26 columns), it comes to a normal machine halt.

#### 4.2 The Operation of BLOCKSEARCH

As presently constituted, this program recognizes any fixed block separators (delimiters) starting in the first character of a record. The length of the block delimiter is optimal as is also its content. Thus if one wished to delimit blocks by identifying each block with the word BLOCK followed by a sequence of numbers, the string BLOCK nnn could be the first few characters in a paragraph.

A more natural delimiter for paragraphs would be the three or more spaces a typist normally uses to indent the first line of a paragraph: or a plank line which is often used in text having blocked paragraphs or more generally in separating items in a bibliography etc.

What is more important in this connection is the fact that many systematically structured books, reports or documents contain useable flags or separators which are part of the normal text. In these circumstances it is not necessary to include artifical block separators. This makes it possible to apply this program to many existing data files without special restructuring.

Blocks may be as small as one record (one line) or as large as the space reserved in the program in the dimension statement governing the size of the block. If a block is larger than the number of characters set aside in the program, the search is performed first on the front portion: independent of the remainder, and then independently on the remaining portions. The lines

MEYER	APK	127	253	1865		
ZOCH	APK	128	497	1866		L .
KUNDT	APK	156	177	1875	WARBURG	
WIEDEMANN	APK	157	1	1876	· · · · · · · · · · · · · · · · · · ·	
VANITTERBEEK	APQ	19	88	1944	VANDONINCK	38700
VASILESCO	APQ	20	137	1945		
VASILESCU	APQ	20	292	1945		38700
REGNAULT	ASP	26	1	1862		
MICHELS	ASR	1	94	1948	DEGROUT	
MICHELS	ASR	1	103	1948	DEGROOT	
MICHELS	ASR	4	52	1954	WASSENAAR	38700
TITANI J	BCS	4	68	1929		38700
ADZUM1	BLS	12	199	1937		
MACCORMACK	CUC	29	699	1951	SCHNEIDER	
WUOLLEY	CUP	31	604	1953		
COOPER	CUR	2	388	1930	MAASS	
СООРЕК	CUR		283	1931	MAASS	
SUTHERLAND	CUR	6	428	1932	MAASS	38700
TAPP	CUR		217	1933	STEACIE MAASS	00100
WINCKLER	CUR	9	613	1933	MAASS	
PITT	CUR	12	686	1935		
DACEY	CUR		206			
MACINTUSH		· _ ·		1939	MACINTOSH MAASS	
	CUR	н 17	241	1939	DACEY MAASS	
CLARK	CJR	18	39	1940	KATZ	
MASON	CUR	H 1H	103	1940	NALDRETT MAASS	
NALURETT	CUR	в 18	118	1940	MAASS	
KATZ	CUR	27	39	1949	LEVERTON WOODS	
MASSUN	CHK	44	464	1857		
LEDUC	CPR	113	166	1891		
AMAGAT	CHR	113	446	1891		
AMAGAT	CPR	114	1093	1892		
JAQUERUD	CPR	139	129	1904	PINTZA	
GERMANN	CPR	157	926	1913		
GOIG	CPR	189	236	1929		
FORTIER	CPR	203	711	1936		
FORTIER	CPR	208	506	1939		
KASSEL	CRV	18	277	1936		
PIRE	EFQ	27	267	1929	MOLES	
GOIG-BOTELLA	EFQ	27	315.	1929		
MOLES	EFQ	ΰŰ	182	1932	SALAZAR	
MOLES	EFQ	32	954	1934	SALAZAR	
MOLES	EFQ	35	42	1937	TORAL	
MOLES	EFQ	35	263	1937	ROQUERO	· · · · · · ·
SACKUR	ETC	20	563	1914		
DAMKOHLER	ETC	48	62	1942		
FRANCK	EIC	55	635	1951		
GOFF	HPC	18	125	1931	GRATCH	
MAJUMUAR	IAS		171	1938		
SWEIGERT	TEC		185	1936	WEBER ALLEN	
PORTER						
PORTER	JAC JAC	48	2059	1926	DAVIS	

Figure 4a. A portion of a file of references on data of state used to illustrate the operation of the program SEARCH. See the following figures for results.

#### ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 1 0 5 7

AND

HE	PROGRAM IS SEA	RCHING F	OR LINE	S CONT	AINING	ALL OF THE WORDS GIVEN BE	LOW.
93							
	ADZUMI	BCS	12	199	1937		
	COOPER	CJR	2	388	1930	MAASS	
	COOPER	CJR	4	283	1931	MAASS	
	SUTHERLAND	CJR	6	428	1932	MAASS	387
	TAPP	CJR	9	217	<u>1933</u>	STEACIE MAASS	
	WINCKLER	CJR	9	613	1933	MAASS	
	PITT	CJR	12	686	1935	JACKSON	
	DACEY	CJR	B 17	206	1939	MACINTOSH MAASS	
	MACINTOSH	CJR	<u>B 17</u>	241	1939	DACEY MAASS	
	FORTIER	CPR	203	711	1936		
	FORTIER	CPR	208	506	1939		
	KASSEL	CRV	18	277	1936		
	MOLES	EFQ	30	182	1932	SALAZAR	
	MOLES	EFQ	32	954	1934	SALAZAR	
	MOLLS	EFQ	35	42	1937	TORAL	
	MOLES	EFQ	35	263	1937	ROQUERO	
	MAJUMDAR	IAS	8	171	1938		
	BARTLETT	JAC	52	1363	1930	HETHERINGTON	
	BARTLETT	JAC	52	1374	1930	HETHERINGTON	
	CLAYTON	JAC	54	2610	1932	GIAUQUE	
	GIAUQUE	JAC	55	4875	1933	CLAYTON	
	ASTON	JAC	57	1642	1935	WILLIHNGANZ	
	BENEDICT	JAC	59	2224	1937		
	BENEDICT	JAC	59	2233	1937		-
	WIEBE	JAC	60	2300	1938	GADDY	
	HODGE	JCP	5	974	1937		387
	HUBBARD	JCP	5	978	1937	HODGE	507
	KISTIAKOWSKY		<u>7</u>	281	1939	RICE	387
	RÔSSINI	JRS	9	733	1932	NICE .	387
	MEYERS	JRS	10	381	1933	VANDUSEN	501
	VARGAFTIK	JTP	8	189	1938	PARFENOV	
	KEESOM	LCS	19	27	1931	VANITTERBEEK NO 216D	
	CROMMELIN	LCS	20	10	1931	BIJLEVELD NO217B	
	KEESOM	LCS	20	1	1931	BIJL NO 245D	
	BOND	NAT	137	1031	1937	DIOF NO 2450	387
	VANITTERBEEK			793	1938	CLAES	301
			142			CLAES	707
	ROEBUCK	PAS	64	287	1930		387

*

Figure 4b. A portion of the output from the search of the file shown in the previous figure. The second control card instructs the program to read from unit 5 and write the output on unit 7. The zero denotes an "anchored" search. In this case the search is made for 193 as we wished to extract all papers published in the 1930's. While the AND in the third control card seems superfluous, it, or the word OR, is required. In this case either word would do equally well.

at which the blocks were broken in this instance, are printed out preceded by the statement:

BLOCK IS TOO LONG. BLOCK IS CONSIDERED TERMINATED WITH THE FOLLOWING CARD.

In order to operate successfully in the anchored mode, it is necessary to insure the existence of a space (°) between the first character of a line and the line before it. This is handled automatically by the program which inserts a blank space before each line when the block is read in. This provision allows for carrying sequence numbers extending to column 80 of a card or the last character of the record. Thus, if a card or line ends in 1798 and the word "JONES" appears in the next line, the string to be searched reads 1798°JONES rather than 1798JONES. In the former, a search on JONES in the anchored mode would be successful; in the latter case, it would not.

The first control card is identical with the first control card for SEARCH.

The second control card contains 6 switches a, b, c, d, e and f in FORMAT (512, 114).

a. This switch, when non-zero, causes a magnetic tape to be written on the unit specified by switch e.

b. This switch should be set to zero for an anchored search. Any nonzero number causes the search to be carried out in the unanchored mode.

c. This switch tells how many characters to expect on the next control card which carries the block separator (flag). If this number is not an integer between 1 and 80, the program sets it to 80 automatically.

d. This switch gives the unit number from which to read the data file to be searched.

e. This switch is the unit on which to write the selected blocks.

f. This switch tells the length of the records which comprise the file to be searched. If this switch is not between 1 and 132 it is automatically set to 80 characters. It is also useful in limiting the reading of cards to 72 or less columns to ignore identification or sequence numbers which are normally punched at the extreme right of a card. In this way when the sequence numbers carry no pertinent information, they are ignored in the search and deleted on the output. If, on the other hand, they carry useful information, this switch permits them to be included both in the search and on the final output.

The third control card contains the block separator starting in ccl and having a length specified by switch c of the previous card. If c were 5 and this card were blank, the normal paragraph indention would serve to delimit paragraphs in straight text. If c were set to 80 and this card were left entirely blank, a blank line of 80 characters could serve as a block separator.

The control cards which follow contain the AND or OR switch and the search list terminated by the word FINIS exactly as in the program SEARCH (see Section 4.1).

ABCDEFGHIJKLMNOPQR	STUVWXYZO	123456	789		*	
1073						
OR						
THE PROGRAM IS SEAN	RCHING FO	R LINE	S CONT.	AINING	ANY OF THE WORDS GIVEN	BELOW.
					•	
JAC						
JCP						
JRS				<u></u>		
				*		
PITT	CJR	12	686	1935	JACKSON	
BARTLETT	JAC	52	1363	1930	HETHERINGTON	till fant aller i sjonen i vierier
BARTLETT	JAC	52	1374	1930	HETHERINGTON	
CLAYTON	JAC	54	2610	1932	GIAUQUE	
GIAUQUE	JAC	55	4875	1933	CLAYTON	
ASTON	JAC	57	1642	1935	WILLIHNGANZ	
BENEDICT	JAC	59	2224	1937		
BENEDICT	JAC	59	2233	1937		
WIEBE	JAC	60	2300	1938	GADDY	
HODGE	JCP	5	974	1937		3870
HUBBARD	JCP	5	978	1937	HODGE	
KISTIAKOWSKY	JCP	7	281	1939	RICE	3870
ROSSINI	JRS	9	733	1932		3870
MEYERS	JRS	10	381	1933	VANDUSEN	
AUCDEFGHIJKLMNOPQR	STUVWXYZO	123456	789		*	

Figure 4c. The results of a pass through the abridged file shown in the previous figure to extract all references appearing in the journals whose designations are JAC, JCP, and JRS. Note here that the second control card instructs the program to read from unit 7, which contained the abridged file stored by the previous pass (see Figure 4b). This problem illustrates how sequential applications of the simple SEARCH program can result in more sophisticated search strategies than have been explicitly provided. Note that in the first line the JAC in JACKSON also provides a hit. In a production search this can be avoided by attaching a blank space (JAC°).

A	
HE PROGRAM IS SEARCHING IN LINES OF LENGTH BD CONTAINING	ANY OF THE
RAM .	
1TRO+	
1115	
4 N 4 J *	
VIBRATIONAL SPECTRA OF GEM-DUNTTROPARAFFINS. 1.2.2.	063000
DINITROPROPANE.	063000
BUCZKOWSKI, Z	063000
URBANSKI, T	063000
SPECTROCHIM. ACTA 22. 227-33 519663	
MICRO	063000
SPAC	
1966	063000
IRS	063000
VIB	063000
2,2-DINITROPROPANE	063000
CA 64009089HL17	063000
VIBRATIONAL SPECTRA OF TRIMETHYLAMINE OXIDE DIHYDRATE.	063000
KURODA, Y	063000
KIMURA, M	063000
SPECTROCHIM. ACTA 22, 47=56 [1966]	063000
MICRO	063000
SPAC	063000
1966	063000
IRS	06300,0
RAM .	063000
VIB TRIMETHYLENE OXIDE	063000

Figure 4d. Results from a run in BLOCKSEARCH for either "RAM" or NITRO. As the search was made in the unanchored mode, we picked up the word GEM-DINITROPARAFFINS, as was intended. Note here that the characters CA" were used as the block delimitor. The last card containing the alphabet is the last card of the data file. It is used instead of an "end of file" mark to signal the end of data because an end of file mark in some machines stops the operation dead.

ABCOEFCHT #/I MNODODSTI M#/YZ20103#54700	
<u>ABCDEFGHIJKLMN0PQRSTUVWXYZ0123456789</u> * 0 1 3 5 3	
)	
THE PROGRAM IS SEARCHING IN LINES OF LENGTH 80 CONTAINING ANY OF THE WOR	DS GIVE
SPECT*	
SPEKT*	
FINIS*	
01205 'T'ILFORD, 'S'.'G'., 'V'ANDERSLICE, 'J'.'T'. AND 'W'ILKINSON,) 1	650101
	650101
	650101
01205 'C'AN. 'J'. 'P'HYS. 43, 450(1965'(')) 4	650101
01209 IN AMIOKA, IT., + ABSORPTION SPECTRA OF H2 IN THE VACUUM!) 1	.64
	64
01209 'D.X', 'AND D'(PRIME'(.X BANDS'+, 'J'. 'C'HEM. 'P'HYS. 41,) 3	64
01209 2141(1964*(*) 4	64
)	
01212 'B'ORISOV, 'Y'.'A'., 'G'USAROV, 'A'.'V'. AND 'G'OROKHOV,) 1	.640201
	2640201
	640201
01212 440(1964'(') 4	640201
	.610101
	2610101
01218 'G'LADUSHCHAK, 'V'.'I'. AND 'S'HREIDER, 'E'.'Y'A., +'THE') 1	640101
01218 'MEASUREMENT.OF ABSOLUTE INTENSITIES IN THE VACUUM REGION') 2	640101
	640101
01218 (1964*(*) 4	640101
	700
VIBRATIONAL SPECTRA OF GEM-DINITROPARAFFINS. I. 2.2- DINITROPROPANE. 063000E07	
BUCZKOWSKI, Z 063000E07	
URBANSKI, T 063000E07	and the second se
SPECTROCHIM.) ACTA 22, 227-33 [1966] 063000E07	
MICRO 063000E07	
SPAC 063000E07	
1966 063000E07	325 1
IRS 063000E07	325 1
RAM 063000E07	325 1
VIB 063000E07	
2,2-DINITROPROPANE 063000E07	325 1
	1770
CA 640090856LIT 063000E07	
THE ELECTRONIC EMISSION (SPECTRUM) AND MOLECULAR CONSTANTS OF 063000E07 TODINE MONOFLUORIDE: 063000E07	ar 14 million
DURIE, R A         063000E07           CAN. J. PHYS. 44, 337-52 [1966]         063000E07	
MICRO 063000E07	
CJPH 063000E07	
000000201	

Figure 4e. Result of an unanchored block search in a mixed data file. The search was for the fragments SPECT or SPEKT in order to retrieve titles in English and German related to spectroscopy. Note that the only format that the two data files have in common is that each uses the right parenthesis in column 1 as a block separator.

#### 5. Preparation and Editing of Manuscripts

Preparation of manuscripts and other material which requires numerous or periodic revision ordinarily entails repeated retyping and, consequently, needs repeated proofreading. If such material is prepared originally on punched cards, much of the retyping and subsequent proofreading can be avoided. Even without a computer, the use of punched cards represents considerable advantage. Until recently, however, punched card techniques did not permit the production of text with upper and lower case, thus limiting the sphere of application. Now a number of manufacturers offer line-printers with extended character sets. It is therefore now possible to prepare camera-ready copies from a line printer via punched-card input which has upper and lower case letters with subscripts and superscripts and greek letters. Where graphic art quality is desired, the same tape can be processed by an edit-insertion program now available commercially.

The computer programs discussed here have been developed in the course of the last three years to assist in the preparation of a number of documents on an 870 Document Writer (a card-controlled typewriter) for reports not requiring typesetting.

Any editing system which permits the deletion or addition of substantial segments of text must have some provision for rearranging the words into lines of specified length. JUSTIFY is a text formatting program which provides this facility with or without justified right-hand margins. It can center lines of text, indent, and perform other features useful in preparing camera-ready copy. When line justification is called for, the extra spaces are placed first after each period in the line and then between the words, starting from the left in one line and from the right in the next. Because simplicity of use is an important factor in the design of these programs, the rules are kept as conventional as possible. For example, the start of a paragraph is ordinarily signaled by leaving at least one blank space at the beginning of the line -- just as a typist might indent when starting a new paragraph -- or by inserting a blank card which is equivalent to leaving a blank line when the first line of a paragraph is not indented.

An example of the application of JUSTIFY to change the line length of text is afforded by Figures 5j and 5k. In this instance new lines were created with a maximum of 65 characters so as to produce one line per card without continuation cards. In this option the new text was not justified and words are separated by a single space, even though the original text contained extra blanks. This feature of the program permits the reworking of text which had previously been justified by this program.

The reader's attention is directed to the fact that the JUSTIFY program does not have a provision for hyphenating words. Hyphenation becomes important only when one uses a double column spread or a narrow newspaper column width. Figures 5a. et seq. show portions of a number of publications produced from the output of this program. We leave it to the reader to decide whether the lack of hyphenation effects the readability.

It should be noted that where an exceptionally long word falls just short of fitting at the end of a line and the space between words is therefore excessive, it is possible to hyphenate the word at a suitable point and rejustify the paragraph.

Special instructions to the JUSTIFY program can be given on the input control cards. The presence of certain characters in card column 72 of any text card will cause the JUSTIFY program to take special action. Any symbols or characters except those stated below will be treated as ordinary text when appearing in cc 72 of any text card. Since cc 72 is used for sensing control characters and since these characters may normally appear in straight text, it is unwise to punch text beyond cc 71. The last paragraph on any run should be followed by several blank cards.

Text prepared on a card usually has a number of precedence characters for case shift, for card eject (either with or without carriage return), for tabulation, and for half-line platen shift symbols. The JUSTIFY program recognizes specific special control symbols wherever they occur on the text card.

JUSTIFY operates on a "paragraph" at a time. A "paragraph" is considered started when:

a. the first card of input is encountered.

b. or a blank occurs in cc 1 of any text card.

c. or the previous card contained a special control character in cc 72 (the control field).

d. or the previous card contained only a card ejection symbol (the symbol appearing in cc 39 of the first control card). e. or the previous card was totally blank.

A "paragraph" is considered terminated when:

a. the card immediately following contains a blank in cc 1.

b. or the following text card contains a control character in cc 72. The only exception is when cc 72 carries the ignore character. c. or the following card contains only a card ejection symbol.

d. or the following card is totally blank.

#### 5.2 The Control Cards for JUSTIFY

All control characters and control symbols are indicated on the first input control card.

The function of the first control card is described in Section 3.1. As with the other programs in this package, card columns 38-80 of this card are reserved for symbols which have meaning specific to the particular program. They perform the following functions:

a. The symbol placed in cc 38 indicates the sentence terminator -

normally a period. b. The symbol placed in cc 39 indicates the card eject symbol. Cards are not read beyond that point.

c. Card columns 40-44 are not used in this program.

d. The symbol placed in cc 45 indicates the continuation flag. Ιt signals that the line of text is continued on another card. Although originally implemented to provide card eject without carriage return or line feed on a card-controlled typewriter, it is also useful in continuing on another card a string of characters which must be produced in the "as is" form rather than in the justified mode. e. The symbol in cc 46 is a nonprint control character used to indicate

a case shift on a typewriter. It is sensed and used by the subroutines, LOCK and UNLOCK.

*A'NY SYMBOLS EXCEPT THOSE STATED ABOVE WILL BE TREATED AS ORDINARY TEXT WHEN APPEARING IN CARD COLUMN 72. )

'S'INCE COLUMN 72 IS USED FOR SENSING THE ABOVE CONTROL CHARACTERS ) AND SINCE THESE CHARACTERS MAY NORMALLY APPEAR IN STRAIGHT TEXT, ) IT IS UNWISE TO PUNCH TEXT BEYOND COLUMN 71. )

С

C

*TABLE* 2. )

'S'PECIFICATIONS OF 'S'PECIAL 'S'YMBOLS. .)

)

'T'HE SPECIAL SYMBOLS WILL BE IDENTIFIED BY THEIR POSITION )
ON THE INPUT CONTROL CARD '('SEE 'F'IGURE 1(. 'O'UR CURRENT CONVENTION )
USES THE SYMBOLS '(', '5', BLANK, '4', AND 'O' IN THE LOCATIONS )
DESIGNATED BELOW. ()

Figure 5a. A listing of cards punched for a card controlled typewriter with control symbols in cc72 which are recognized by the JUSTIFY program. The right parenthesis produces a carriage return and line feed on the typewriter, consequently the control symbols in cc72 are not typed on the typewriter copy (See Figure 5c.).

) A'NY SYMBOLS EXCEPT THOSE STATED ABOVE WILL BE TREATED) AS ORDINARY TEXT WHEN APPEARING IN CARD COLUMN 72.1 STINCE COLUMN 72 IS USED FOR SENSING THE ABOVE CONTROL') CHARACTERS AND SINCE THESE CHARACTERS MAY NORMALLY APPEAR IN) STRAIGHT TEXT, IT IS UNWISE TO PUNCH TEXT BEYOND COLUMN 71.) ) 10 'TABLE' 2. SIPECIFICATIONS OF ISIPECIAL ISIYMBOLS. 10 TTHE SPECIAL SYMBOLS WILL BE IDENTIFIED BY THEIR) INPUT CONTROL CARD "("SEE "F" IGURE 1(. "O"UR) POSITION ON THE CURRENT CONVENTION USES THE SYMBOLS ( 1, 15, BLANK, 14, AND 10 IN) THE LOCATIONS DESIGNATED BELOW .. ) ) 'A1'391 IS 10 C *A(*39( TERMINATES THE READING OF A CARD. *A'NYTHING PUNCHED IN) FURTHER FIELDS OF THE CARD WILL BE IGNORED.) "I'F IT IS THE FIRST NON-BLANK CHARACTER ENCOUNTERED WHILE) READING A TEXT CARD, THE PREVIOUS PARAGRAPH IS CONSIDERED AT.) AN END. 'T'HE CARD ITSELF IS REPRODUCED AS-IS IN THE OUTPUT.) "I'T IS THE LAST CHARACTER ON ANY TEXT OUTPUT CARD.) )

Figure 5b. A listing of the cards produced by the program JUSTIFY from the cards listed in Figure 5a. The ragged appearance of the lines results from the varying numbers of shift symbols from line to line.

Any symbols except those stated above will be treated as ordinary text when appearing in card column  $72 \cdot$ 

Since column 72 is used for sensing the above control characters and since these characters may normally appear in straight text, it is unwise to punch text beyond column  $71 \cdot$ 

#### TABLE 2.

Specifications of Special Symbols.

The special symbols will be identified by their position on the input control card (see Figure 1). Our current convention uses the symbols (, ', blank, =, and _ in the locations designated below.

Figure 5c. Copy produced on a card-controlled typewriter from the cards listed in Figure 5a. The ragged lines results from editorial changes or numerous shift symbols which take up space on the card but do not produce characters on the line.

Any symbols except those stated above will be treated as ordinary text when appearing in card column 72.

Since column 72 is used for sensing the above control characters and since these characters may normally appear in straight text, it is unwise to punch text beyond column 71.

#### TABLE 2.

Specifications of Special Symbols.

The special symbols will be identified by their position on the input control card (see Figure 1)  $\cdot$  Our current convention uses the symbols (, ', blank, =, and _ in the locations designated below.

#### A(39) is )

A(39) terminates the reading of a card. Anything punched in further fields of the card will be ignored. If it is the first non-blank character encountered while reading a text card, the previous paragraph is considered at an end. The card itself is reproduced as-is in the output. It is the last character on any text output card.

Figure 5d. The typewriter output of the justified text produced from the cards listed in Figure 5b.

f. The symbol in cc 47 must be a blank. It indicates that a blank is the character at which lines will be broken. The reason the program removes excess blanks between words is that cc 47 was left blank. If cc 47 contained any other symbol, it would be the multiple contiguous occurrences of that symbol that would be squeezed out.

g. The symbol in cc 48 is a tab indicator. This symbol is treated as a single blank when it is encountered in the input text except that it does not, therefore, start a new paragraph when it happens to fall in cc 1.

h. Card columns 49-59 are not used by this program.

i. The number in cc 60 indicates how many symbols should be considered as having no width in the line justification process. This number is used to clarify how many of the subsequent card columns are to be scanned for the specific "no count" symbols.

j. The symbols to be ignored in counting the characters for line justification are punched into card columns 61 et seq as required.

The second control card contains seven switches in FORMAT (713).

a. This switch sets the maximum line length (the number of characters per line). The symbols discussed in item j above are not counted when formatting a line of output. Switch  $\underline{a}$  must be between 20 and 120.

b. Here any non-zero entry produces lines with flush right hand margins (justified).

c. If this switch is non - zero. card images are written on the unit specified by switch f below. The program provides for continuation cards when the line is longer than 80 characters. Even a line shorter than 80 characters will often be carried over to the next card because of the space taken up by the precedence symbols. When a line is broken between two or more cards, care is taken never to split words. The symbol which appears in cc 45 of the first control card is punched as the continuation symbol.

d. This switch. if non-zero, calls the subroutines LOCK and UNLOCK. For all application except cards intended for the 870 Document Writer, this switch should be set to zero.

e. This switch tells from which unit to read the input data.

f. This switch tells on which unit to write the card images or punch the cards.

g. If this switch is zero, the program gives priority to the insertion of a second space at the end of each sentence before distributing the necessary spaces between the words. The extra space is inserted automatically when the lines are not justified.

#### 5.3 The Format Control Symbols

The program has provision for line justification in accord with a specified line width. Practical formatting often requires exempting certain lines from the justification process. Such exemptions are signaled by the characters C, D, I, N, and R when they appear in cc 72.

A letter C in card column 72 causes the information in the previous columns of that card to be centered on the line. The letter D in cc 72 causes the line to be printed exactly as it is punched on the card. The letter N in cc 72 sets a switch to indent the subsequent text lines. The first non-blank characters on the "N" card signals the new width. Another "N" card carrying the original width is required to restore the lines to the normal width. The previously defined tab symbol is automatically inserted at

the beginning of each line of the indented text.

Some data and text files contain lines of information which have a specific use in the present format but must be ignored when the file is reformatted. A letter I in cc 72 causes that line to be ignored completely by this program.

An R in cc 72 generates a box of depth equal to the number which appears on the "R" card. This is used to reserve a space for inserting illustrations. The "R" card is converted to a "D" without further modification, and positioned as the center line of the box. Thus the "R" card can be used to indicate which figure is to be placed in the box. 1. It is hard to overemphasize the importance and usefulness of self-teaching, described in section 4.6. One can learn the basic rules of OMNITAB very quickly, say within two hours, and then proceed on his own. This is very valuable for those of us who have difficulty reading manuals carefully.

Many times little programs have been added (at virtually no cost) at the end of a program to clarify a particular instruction. For example, it is not completely clear whether the command RMS described on page 38 stores

 $\sqrt{\Sigma x_i^2/n}$ ,  $\sqrt{\Sigma (x_i - \bar{x})^2/n}$  or  $\sqrt{\Sigma (x_i - \bar{x})^2/(n-1)}$ .

However, the question is readily answered by using the following instructions:

```
OMNITAB
GENERATE 1. (1.) 5. STORE 1
RMS 1 STORE 2
PRINT 1 2
STOP
```

(Note,  $\Sigma x_1^2$  for integers is easily obtained from the formula  $1^1 + 2^2 + \ldots + n^2 = n(n+1)(2n+1)/6$  so that  $\Sigma x_1^2/n = (n+1)(2n+1)/6$ .) It would be easy to write many programs like this in a short period of time and very quickly become an ''expert'' user. The ease with which this can be done is sometimes overlooked or unappreciated. The technique of self-teaching has been used effectively in class instruction.

2. An obstacle faced by non-programmers is that with some languages, such as FORTRAN, it is almost necessary to be an expert programmer to do even the simplest calculation. To do anything in FORTRAN, it is necessary to understand some of the most troublesome statements of the language such as FORMAT, DIMENSION and WRITE. An OMNITAB user with no computing experience can being writing programs to perform non-trivial computations with less than two hours' study. By self-teaching he can proceed at his own speed to become an ''expert.''

3. The very nature of OMNITAB is such as to make logical branching unnecessary in most instances. In others it may be possible with a little ingenuity. For example, the following instructions provide for replacing  $\log_{10} (a_i/b_i)$  by the constant c whenever  $a_i \leq 0$ . Capital letters A, B, D, and F represent column numbers; corresponding lower case letters represent elements in the columns. We assume  $b_i > 0$ .

Figure 5e. A page of a mechanized text produced on a modified cardcontrolled typewriter. See the next figure for a listing of the cards that produced this page.

1.:::'I'T IS HARD TO OVEREMPHASIZE THE IMPORTANCE AND USEFULNESS OF) SELFE 10 JTEACHING, DESCRIBED IN SECTION 4.6. 10 NE CAN LEARN THE \$) BASIC) RULES OF 'OMNITAB' VERY QUICKLY, SAY WITHIN TWO HOURS, AND THEN) PROCEED ON HIS OWN. 'T'HIS IS VERY VALUABLE FOR THOSE OF US WHO) HAVE DIFFICULTY READING MANUALS CAREFULLY.) ) 'M'ANY TIMES LITTLE PROGRAMS HAVE BEEN ADDED '('AT VIRTUALLY NO) COST( AT THE END OF A PROGRAM TO CLARIFY A PARTICULAR) INSTRUCTION. 'F'OR EXAMPLE, IT IS NOT COMPLETELY CLEAR WHETHER THE) COMMAND 'RMS' DESCRIBED ON PAGE 38 STORES) ) ΔΧĴΙΕ[2]/N , Δ'('X]ΙΕ['0']X([2]/N OR Δ'('X]ΙΕ['0']X([2]/'('N\$) D E'0'](.) I n ) 'H'OWEVER, THE QUESTION IS READILY ANSWERED BY USING THE FOLLOWING) INSTRUCTIONS(1) ) (OMNITAR) 'GENERATE' 1. '('1.( 5. 'STORE' 1) 'RMS' 1 'STORE' 2) 'PRINT' 1 2) STOP!) ) (NOTE: :AXJIE[2] FOR INTEGERS IS EASILY OBTAINED FROM THE FORMULA.) E ) NE2]:'4' N'('N+1('('2N+1(/6 1[1] + 2[2]:+ ... + S0 THAT \$) : AX ] I [ [ 2 ] / N: 14 ! ) **[**) I '('N+1('('2N+1(/6.( 'I'T WOULD BE EASY TO WRITE MANY PROGRAMS LIKE \$) THIS) SHORT PERIOD OF TIME AND VERY QUICKLY BECOME AN '55'EXPERT'55') IN A 'T'HE EASE WITH WHICH THIS CAN BE DONE IS SOMETIMES) USER. OVERLOOKED OR UNAPPRECIATED. 'T'HE TECHNIQUE OF SELFE '0' JTEACHING \$) HAS) BEEN USED EFFECTIVELY IN CLASS INSTRUCTION.) 2.:::'A'N OBSTACLE FACED BY NONE'O' JPROGRAMMERS IS THAT WITH \$) SOME) LANGUAGES, SUCH AS 'FORTRAN', IT IS ALMOST NECESSARY TO BE AN) EXPERT PROGRAMMER TO DO EVEN THE SIMPLEST CALCULATION. 'T'O DO) ANYTHING IN 'FORTRAN', IT IS NECESSARY TO UNDERSTAND SOME OF THE) MOST TROUBLESOME STATEMENTS OF THE LANGUAGE SUCH AS 'FORMAT',) 'DIMENSION' AND 'WRITE'. 'A'N 'OMNITAB' USER WITH NO COMPUTING \$) EXPERIENCE) CAN BEING WRITING PROGRAMS TO PERFORM NONE *0 * JTRIVIAL COMPUTATIONS) WITH LESS THAN TWO HOURS'5' STUDY. 'B'Y SELFE'0' JTEACHING HE CAN PROCEED) AT HIS OWN SPEED TO BECOME AN '55'EXPERT.'55') ) 3.:::'T'HE VERY NATURE OF 'OMNITAB' IS SUCH AS TO MAKE LOGICAL) BRANCHING UNNECESSARY IN MOST INSTANCES. 'I'N OTHERS IT MAY BE) POSSIBLE WITH A LITTLE INGENUITY. 'F'OR EXAMPLE, THE FOLLOWING) INSTRUCTIONS PROVIDE FOR REPLACING LOGJIOC: ('AJIC/BJIC( BY THE \$) CONSTANT) E) Ι C-WHENEVER AJIC: 18'A:0. 'C'APITAL LETTERS 'A', 'B', 'D', AND \$) 'F' REPRESENT)

Figure 5f. A listing of cards produced by JUSTIFY to prepare the text in the previous figure. See Section 5.4 for a discussion of this application.

#### 5.4 Two Applications of JUSTIFY

In this section we describe briefly two applications which motivated the development and influenced the design of the programs JUSTIFY and SUBSTITUTE. Both of these resulted in publications produced from camera-ready copy on a modified 870 Document Writer (a card-controlled typewriter). Figure 5e shows a page from NBS Handbook 101 (loc. cit.). The subscripts and superscripts were obtained by automatic platen rotation signaled by two special multipunches. As with shift symbols, the program recognizes them as being characters of zero width for line justification. The program has room for as many as nine such special symbols.

The listing in Figure 5f shows the character stream produced by JUSTIFY to generate the contents of Figure 5c on a modified card-controlled typewriter. Among the features to be noted in Figure 5e are these:

- a. the colon (:) designates a special blank which is treated like any other character to retain the spacing in the first line of each of the numbered paragraphs.
- b. the square brackets cause fractional platen rotation, are ignored in the character count, and do not appear in the typed copy.
- c. the delta is a stop code to permit the insertion of characters not present on the typewriter.
- d. when the line contains a large number of shift symbols, it is continued on the next card and the \$ sign signals the typewriter to eject the card without returning the carriage. Note that the JUSTIFY program does not break words.
- e. the "D" in cc72 signifies a line that was reproduced as is without justification.
- f. the lines with a "I" in the control field (cc72) were inserted by hand to produce a half-line space before lines with superscripts and after lines with subscripts. Because of the "I" in cc72, these lines will be ignored on any subsequent pass through JUSTIFY.

An important motivation in the development of the general purpose programs discussed here has been our desire to be able to reformat and recast data and text files at will. The typset page from the NBS Postdoctoral Research Associateships announcement booklet for 1968-1969 shown in Figure 5g affords a good example of the utility of the EDPAC programs. The 94 page booklet of which Figure 5g is an sample was typset automatically from cards punched in previous years to drive a card-controlled typewriter. In order to achieve the typsetting without rekeyboarding, it was necessary to transform the information to conform to the punching convention used by the Administrative Terminal System (ATS) on a 1440 computer, from which system the material went forward for typsetting. Figures 5j, 5k, 3b and 3c show how existing cards from the earlier publication were transformed to produce the typset version in Figure 5g. A page from this publication for the previous year produced on a card-controlled typewriter with the help of JUSTIFY is shown in Figure 5h. Prior to the development of JUSTIFY the same material appeared with ragged right hand margins as can be seen from Figure 5i.

The circled characters in Figure 5k were inserted by an ad hoc modification of JUSTIFY as they were required by the typsetting system on which the 1968-1969 version of the Postdoctorial booklet was produced. The = sign instructs the ATS to produce a new line positioned at the left margin (quad left). The sequence ;/ was inserted after the first character and the last character of a title (a card with a "D" in cc72) in order to set the title in boldface type. Since the ATS has its own justification program which does not remove extra blanks, the chore of justification was delegated to the ATS. JUSTIFY in Figure 5k produced unjustified lines by removing the extra spaces which were present in the existing cards.

#### Hydraulics and Hydrodynamics

#### G. Kulin

Research is currently centered on water surface waves (with emphasis on various phenomena affecting wave damping) and internal waves in densitystratified water (with emphasis on wave generation by motion of submerged objects). There is opportunity for theoretical as well as experimental work in these areas. Facilities are also available for open- channel flow and sediment-transport research.

# Dynamic Measurement of Properties of Solids and Liquids at Very High Temperatures

#### C. W. Beckett and A. Cezairliyan

Current research includes the investigation of thermodynamic and related properties of solids and liquids at high temperatures by dynamic experimental techniques, such as, pulse calorimetry, exploding wires, electrical discharges, etc. Advanced measurement techniques for obtaining both microscopic and macroscopic properties are being explored. The equipment includes pulse calorimeters of millisecond and microsecond time resolution, high-speed photoelectric pyrometers, and ultra high-speed framing camera, a high-speed digital recording system and other auxiliary dynamic and steady-state measurement instruments.

#### **Combustion and Reaction Calorimetry**

G. T. Armstrong

Relationships between binding energy and structure are being investigated among organic and inorganic compounds. Recent emphasis has been on fluorine compounds, nitro compounds, and compounds of biological interest. A rotating bomb calorimeter, facilities for bomb or flow colorimetry with fluorine, and other calorimetric facilities are available for high precision measurements. The calorimetric process, reference materials for reaction calorimetry, and new forms for correlating calorimetric measurements may also be investigated.

#### Production and Measurement of Very High Temperatures

John B. Shumaker

A program of research in the measurement of temperatures above  $10,000^{\circ}$ C is being conducted in the High Temperature Measurements Laboratory. Current interests include the detailed investigation of stable high current density arcs and plasma jets and the measurement of their temperatures and related physical parameters by a variety of spectroscopic techniques.

Figure 5g. A typical page from the NBS Postdoctoral Research Associateships announcement booklet which was typset from cards transformed by JUSTIFY and SUBSTITUTE. See Figure 5h for the same section for the year 1967-1968. Hydraulics and Hydrodynamics:

G. Kulin

Research is currently centered on water surface waves (with emphasis on various phenomena affecting wave damping) and internal waves in densitystratified water (with emphasis on wave generation by motion of submerged objects). There is opportunity for theoretical as well as experimental work in these areas. Facilities are also available for open- channel flow and sedimenttransport research.

Dynamic Measurement of Properties of Gases, Liquids, and Solids at Very High Temperatures: C. W. Beckett

Current research includes the investigation of thermodynamic and related properties of gases, liquids, and solids at high temperatures by dynamic experimental techniques, such as shock tubes, exploding wires, and electrical

discharges. Advanced measurement techniques for obtaining both microscopic and macroscopic properties are being explored. The equipment includes an ultra- high speed framing camera, a time-resolved spectrometer, and high-speed photoelectric pyrometers.

Molecular Spectra and Energy Levels: A. M. Bass

Studies of energy levels and structures of diatomic and small polyatomic molecules as determined from the analysis of spectroscopic data. Facilities include spectroscopic instrumentation permitting observations from 500 Å in the vacuum ultraviolet to 53 microns in the infrared. A 21-foot focal length vacuum spectrograph provides the capability for obtaining high-resolution spectra. Also available are various sources for exciting spectra, including electric discharges, flames, flash photolysis and flash heating. The program also includes studies of transient species stabilized by condensation in low-temperature inert matrices.

## Microwave Spectra of Gaseous Radicals: H. E. Radford

Experiments are performed to determine the hyperfine structure, Zeeman effect and lambdatype doubling of simple diatomic radicals produced in gas mixtures by electric discharges, chemical reactions, triggered explosions, and photolysis. The paramagnetic resonance technique is used mainly, and spectrometers of various types are available for work at 3 Gc, 9 Gc and 24 Gc in magnetic field strengths up to 24 Kg. Optical and radio-frequency apparatus is also available for radio-optical resonance experiments on diatomic molecules, and for measurements of radio spectra in molecular excited states. Recent successful experiments in these two fields of study have been performed on the paramagnetic resonance spectra of OH and SH, and on the rotational perturbation microwave spectrum of excited CN. Other experiments are in progress on the kinetics of radical reactions, using paramagnetic resonance detection methods.

Production and Measurement of Very High Temperatures: John B. Shumaker

A program of research in the measurement of temperatures above 10,000 $^{\circ}$ C is being conducted in the High Temperature Measurements Laboratory. current interests include the detailed investigation of stable high current density arcs and plasma jets and the measurement of their temperatures and related physical parameters by a variety of spectroscopic techniques.

Figure 5h. A page from the NBS Postdoctoral Research Associateships announcement booklet produced via the cardcontrolled typewriter from cards processed by JUSTIFY. The cards that produced this page were rearranged and edited where necessary prior to the transformation described in Section 5.4. Dynamic Measurement of Properties of Gases at Very High Temperatures:

C. W. Beckett

Current research includes the investigation of thermodynamic and related properties of gases at high temperatures by dynamic experimental techniques, such as shock tubes, exploding wires, and electrical discharges. Advanced measurement techniques for obtaining both microscopic and macroscopic properties are being explored. The equipment includes an ultra high speed framing camera and a time-resolved spectrometer.

### Molecular Energy Levels and Intensities:

A. M. Bass

Studies of energy levels of diatomic and small polyatomic molecules as determined from the analysis of spectroscopic data. Facilities include spectroscopic instrumentation permitting observations from 500 Å in the vacuum ultraviolet to 50 microns in the infrared. Also available are various sources for exciting spectra, including electric discharges, flames, flash photolysis and flash heating. The observation of radicals and transient molecules produced in low-temperature matrices and the investigation of matrix effects on molecular energy levels is also of interest.

#### Microwave Spectra of Gaseous Radicals:

H. E. Radford

Experiments are performed to determine the hyperfine structure, Zeeman effect and lambdatype doubling of simple diatomic radicals produced in gas mixtures by electric discharges, chemical reactions, triggered explosions, and photolysis. The paramagnetic resonance technique is used mainly, and spectrometers of various types are available for work at 3 Gc, 9 Gc and 24 Gc in magnetic field strengths up to 24 Kg. Optical and radiofrequency apparatus is also available for radio-optical resonance experiments on diatomic molecules, and for measurements of radio spectra in molecular excited states. Recent successful experiments in these two fields of study have been performed on the paramagnetic resonance spectra of OH and SH, and on the rotational perturbation microwave spectrum of excited CN. Other experiments are in progress on the kinetics of radical reactions, using paramagnetic resonance detection methods.

### Plasma Physics:

C. K. McLane

An experimental and theoretical study of transport processes in the plasma state has as its object a fundamental understanding of the contribution of collective interactions. Facilities available include a magnetically confined arc discharge apparatus for study of the steady state magneto-plasma in fields up to 7000 gauss, and the usual electronic and optical spectroscopic equipment for plasma diagnostics. Equipment for the study of the transient plasma by capacitor discharge techniques is also available.

Production and Measurement of Very High Temperatures; John B. Shumaker

A program of research in the measurement of temperatures above  $10,000^{\circ}C$  is being conducted in the High Temperature Measurements Laboratory. Current interests include the detailed investigation of stable high current density arcs and plasma jets and the measurement of their temperatures and related physical parameters by a variety of spectroscopic techniques.

Figure 5i. A page from an earlier issue of the NBS Postdoctoral Research Associateships announcement booklet produced prior to the development of JUSTIFY. Note the ragged right hand margins.

<pre>'C:OMBUSTION AND 'R'EACTION 'C'ALORIMETRY) D 'G'. 'T'. 'A'RMSTRONG) C 'R'ELATIONSHIPS BETWEEN BINDING ENERGY AND STRUCTURE ARE BEING) 'R'ELATIONSHIPS BETWEEN BINDING ENERGY AND STRUCTURE ARE BEING) INVESTIGATED AMONG ORGANIC AND INORGANIC COMPOUNDS. 'R'ECENT EMPHASIS) HAS BEEN ON FLUORINE COMPOUNDS, NITRO COMPOUNDS, AND COMPOUNDS OF) BIOLOGICAL INTEREST. 'A' ROTATING BOMB CALORIMETER, FACILITIES FOR) BOMB OR FLOW COLORIMETRY WITH FLUORINE, AND OTHER CALORIMETRIC) FACILITIES ARE AVAILABLE FOR HIGH PRECISION MEASUREMENTS. 'T'HE) CALORIMETRIC PROCESS, REFERENCE MATERIALS FOR REACTION CALORIMETRY.) AND NEW FORMS FOR CORRELATING CALORIMETRIC MEASUREMENTS MAY ALSO) BE INVESTIGATED.) ) 'P'RODUCTION AND 'M'EASUREMENT OF 'V'ERY 'H'IGH 'T'EMPERATURES'1' ) D 'J'OHN 'B'. 'S'HUMAKER ) )C ) 'A' PROGRAM OF RESEARCH IN THE MEASUREMENT OF TEMPERATURES ABOVE \$ 10,000'/C' IS) BEING CONDUCTED IN THE 'H'IGH 'T'EMPERATURE 'M'EASUREMENTS \$ 'L'ABORATORY. CURRENT) INTERESTS INCLUDE THE DETAILED INVESTIGATION OF STABLE HIGH CURRENT \$ DENSITY ARCS) AND PLASMA JETS AND THE MEASUREMENT OF THEIR TEMPERATURES AND RELATED \$ PHYSICAL) PARAMETERS BY A VARIETY OF SPECTROSCOPIC TECHNIQUES.) RES AND RELATED \$ PARAMETERS BY A VARIETY OF SPECTROSCOPIC TECHNIQUES.) RES AND RELATE \$ ) }</pre>	<pre>'D'YNAMIC 'M'EASUREMENT OF 'P'ROPERTIES OF 'S'OLIDS AND 'L'IQUIDS AT 'V'ERY 'H'IGH 'T'EMPERATURES) 'C'. 'W'. 'B'ECKETT AND 'A'. 'C'EZAIRLIYAN)</pre>	) D C
<pre>'P'RODUCTION AND 'M'EASUREMENT OF 'V'ERY 'H'IGH 'T'EMPERATURES'1') D 'J'OHN 'B'. 'S'HUMAKER) )C 'A' PROGRAM OF RESEARCH IN THE MEASUREMENT OF TEMPERATURES ABOVE \$ 10,000'/C' IS) BEING CONDUCTED IN THE 'H'IGH 'T'EMPERATURE 'M'EASUREMENTS \$ 'L'ABORATORY. CURRENT) INTERESTS INCLUDE THE DETAILED INVESTIGATION OF STABLE HIGH CURRENT \$ DENSITY ARCS) AND PLASMA JETS AND THE MEASUREMENT OF THEIR TEMPERATURES AND RELATED \$ PHYSICAL)</pre>	<pre>'C'OMBUSTION AND 'R'EACTION 'C'ALORIMETRY) 'G'. 'T'. 'A'RMSTRONG) ) 'R'ELATIONSHIPS BETWEEN BINDING ENERGY AND STRUCTURE ARE BEING) INVESTIGATED AMONG ORGANIC AND INORGANIC COMPOUNDS. 'R'ECENT EMPHASI HAS BEEN ON FLUORINE COMPOUNDS, NITRO COMPOUNDS, AND COMPOUNDS OF) BIOLOGICAL INTEREST. 'A' ROTATING BOMB CALORIMETER, FACILITIES FOR) BOMB OR FLOW COLORIMETRY WITH FLUORINE, AND OTHER CALORIMETRIC) FACILITIES ARE AVAILABLE FOR HIGH PRECISION MEASUREMENTS. 'T'HE) CALORIMETRIC PROCESS, REFERENCE MATERIALS FOR REACTION CALORIMETRY,) AND NEW FORMS FOR CORRELATING CALORIMETRIC MEASURMENTS MAY ALSO) BE INVESTIGATED.)</pre>	С
*A* PROGRAM OF RESEARCH IN THE MEASUREMENT OF TEMPERATURES ABOVE \$ 10,000*/C* IS) BEING CONDUCTED IN THE 'H*IGH 'T*EMPERATURE 'M*EASUREMENTS \$ 'L*ABORATORY. CURRENT) INTERESTS INCLUDE THE DETAILED INVESTIGATION OF STABLE HIGH CURRENT \$ DENSITY ARCS) AND PLASMA JETS AND THE MEASUREMENT OF THEIR TEMPERATURES AND RELATED \$ PHYSICAL)	*P*RODUCTION AND *M*EASUREMENT OF *V*ERY *H*IGH *T*EMPERATURES*1* ) *J*OHN *B*. *S*HUMAKER )	-
•	*A* PROGRAM OF RESEARCH IN THE MEASUREMENT OF TEMPERATURES ABOVE 10,000*/C* IS) BEING CONDUCTED IN THE 'H'IGH 'T'EMPERATURE 'M'EASUREMENTS \$ 'L'ABORATORY. CURRENT) INTERESTS INCLUDE THE DETAILED INVESTIGATION OF STABLE HIGH CURRENT \$ DENSITY ARCS) AND PLASMA JETS AND THE MEASUREMENT OF THEIR TEMPERATURES AND RELATE PHYSICAL)	.D \$

Figure 5j. The text shown above represents editorial changes in existing cards prior to conversion via JUSTIFY to produce the character stream shown in the next figure.

ABCREFGHIJKLMNOPQDSTUVWXYZ0123456789+.)\$*/.(\$' = 1' %);
65 0 1 1 5 7 0
THE WIDTH OF OUTPUT TEXT IS 65
DO YNAMIC 'M'EASUREMENT OF 'P'ROPERTIES OF 'S'OLIDS AND 'L'IQUIDS AT
V'ERY 'H'IGH 'T'FMPERATURFS
E'C'. 'W'. 'B'ECKET' AND 'A'. 'C'FZAIRLIYAN
CURRENT RESEARCH INCLUDES THE INVESTIGATION OF
THERMODYNAMIC AND RELATED PROPERTIES OF SOLIDS AND LIQUIDS AT
1 HIGH TEMPERATURES BY DYNAMIC EXPERIMENTAL TECHNIQUES, SUCH AS,
PULSE CALORIMETRY, EXPLODING WIRES, FLECTRICAL DISCHARGES, ETC.
'A'DVANCED MEASUREMENT TECHNIQUES FOR OBTAINING BOTH MICROSCOPIC
AND MACROSCOPIC PROPERTIES ARE BEING EXPLORED. ITHE EQUIPMENT
INCLUDES PULSE CALORIMETERS OF MILLISECOND AND MICROSECOND TIME
RESOLUTION, HIGHE '0' SPEED PHOTOELECTRIC PYROMETERS, AND ULTRA
HIGHE '0' ISPEED FRAMING CAMERA' A HIGHE '0' ISPEED DIGITAL RECORDING
SYSTEM AND OTHER AUXILIARY DYNAMIC MEASURMENT INSTRUMENTS.
O'CO'OMHUSTION AND 'R'FACTION 'C'ALORIMETRY (1)
G'G'. 'T'. 'A'RMSTRUNG
)
RELATIONSHIPS BETWEEN BINDING ENERGY AND STRUCTURE ARE
BEING INVESTIGATED AMONG ORGANIC AND INORGANIC COMPOUNDS.
'R'ECENT EMPHASIS HAS BEEN ON FLUORINE COMPOUNDS, NITRO
COMPOUNDS, AND COMPOUNDS OF BIOLOGICAL INTEREST. 'A' ROTATING
BOMB CALORIMETER, FACILITIES FOR BOMB OR FLOW COLORIMETRY WITH
FLUORINF, AND OTHER CALORIMETRIC FACILITIES ARE AVAILABLE FOR
HIGH PRECISION MEASUREMENTS. 'T'HE CALORIMETRIC PROCESS,
REFERENCE MATERIALS FOR REACTION CALORIMETRY, AND NEW FORMS FOR
CURRELATING CALORIMETRIC MEASURMENTS MAY ALSO BE INVESTIGATED.
CORODUCTION AND 'M'FASUREMENT OF 'V'ERY 'H'IGH 'T'EMPERATURES'1'
G'J'OHN 'B'. 'S'HUMAKER
A' PROGRAM OF RESEARCH IN THE MEASUREMENT OF TEMPERATURES
ABOVE 10,000'/C' IS BEING CONDUCTED IN THE 'H'IGH 'T'EMPERATURE
'M'EASUREMENTS 'L'ABORATORY. CURRENT INTERESTS INCLUDE THE
DETAILED INVESTIGATION OF STABLE HIGH CURRENT DENSITY ARCS AND
PLASMA JETS AND THE MEASUREMENT OF THEIR TEMPERATURES AND RELATED
PHYSICAL PARAMETERS BY A VARIETY OF SPECTROSCOPIC TECHNIQUES.
ELO OW 'T'EMPERATURE 'C'ALORIMETRY'I'
B'G'. IT'. FURUKAWA
CURRENT RESEARCH INTERESTS INCLUDE THE INVESTIGATIONS OF
HEAT CAPACITY VAPOR PRESSURE, HEATS OF FUSION AND TRANSITION,
HEAT OF VAPORIZATION, CHEMICAL PURITY, AND PHASE EQUILIBRIA OF
SELECTED COMPOUNDS OF FLUORINE, HYDROGEN AND OTHER LIGHT
SELECTED COMPOUNDS OF FLOORING, AND OTHER LIGHT

Figure 5k. Results from a pass through a slightly modified ad hoc version of JUSTIFY preparatory to the production of the typset page shown in Figure 5g. See Section 5.4 for a discussion of the circled characters.



# APPENDIX

## PROGRAM LISTINGS

The program listings which follow were produced on a photocomposing machine at the Government Printing Office from a magnetic tape produced at NBS by a Fortran program called TYPSET. That program accepts a symbolic program deck as input data and produces a magnetic tape formatted to be processed by an Autoset Composition Program or the Master Typography Program at the Government Printing Office.

The listings were reduced 10% from paper positives set in 10 point type with 12 point leading in the Clarinda typeface.

A magnetic tape containing card images of the programs in this appendix will be prepared for sale by the Clearinghouse for Federal Scientific and Technical Information if the demand warrants it. A self-addressed card is provided for this purpose at the back of this report.

С	SCRAMBLE	SCRA0010
С		SCRA0020
-	APE - THE NORMAL SYSTEM INPUT TAPE.	SCRA0030
	APE - THE NORMAL SYSTEM OUTPUT TAPE.	SCRA0040
	APE - A SPECIAL INPUT TAPE. IF ONE INPUT TAPE WILL DO, SET IRTAPE EQUAL TO ITAPE	SCRA0050 SCRA0060
CIPT	APE - A SPECIAL OUTPUT TAPE. IT CAN BE USED AS AN INPUT TO OTHER	SCRA0000
C	PROGRAMS, BUT CANNOT BE EQUATED WITH IOTAPE AS IOTAPE, IN	SCRA0070
c	ADDITION TO NORMAL OUTPUT, CONTAINS OTHER PROGRAM MESSAGES	SCRA0090
c	AND ERROR REMARKS.	SCRA0100
	FIRST CARD CONTAINS THOSE CHARACTERS FOR WHICH SUBSTITUTIONS ARE	SCRA0110
	BE MADE. THE SECOND CARD CONTAINS THE CHARACTERS TO BE SUBSTITUTED	
	THE CHARACTERS IN THE CORRESPONDING FIELDS OF FIRST CONTROL CARD.	
C THE	THIRD CONTROL CARD CONTAINS IN 12 FORMAT THE PUNCH SWITCH ITEST	SCRA0140
C WHI	CH IS NONZERO TO PUNCH AND IRTAPE AND IPTAPE	SCRA0150
С		SCRA0155
C CO	DE BY MRS CARLA G. MESSINA NSRDS - NBS 1967	SCRAM160
С		SCRA0165
	DIMENSION ICOL(140), IA(80), IB(80), IS(80)	SCRAM170
	ITAPE=5	SCRAM180
	IOTAPE=6	SCRAM190
10	FORMAT (132A1)	SCRAM200
	READ $(ITAPE, 10)$ $(IA(J), J=1, 80)$	SCRAM210
	WRITE (IOTAPE,75) (IA(J),J=1,80) READ (ITAPE,10) (IB(J),J=1,80)	SCRAM220 SCRAM230
	WRITE $(IOTAPE, 75)$ $(IB(J), J=1, 80)$	SCRAM230
	READ (ITAPE, 20) ITEST, IRTAPE, IPTAPE, IWIDE1	SCRAM240 SCRAM250
20	FORMAT (312,114)	SCRAM260
~ ~	IF (IWIDE1) 21,21,22	SCRAM261
21	IWIDE1=80	SCRAM262
22	IF (IWIDE1-132) 23,23,21	SCRAM263
23	IF (IRTAPE) 11,11,12	SCRAM270
11	IRTAPE = 5	SCRAM280
	GO TO 14	SCRAM290
12	IF (IRTAPE -6) 14,14,13	SCRAM300
13	REWIND IRTAPE	SCRAM310
14	IF (IPTAPE) 15,15,16	SCRAM320
15	IPTAPE = 3 G0 TO 18	SCRAM330 SCRAM340
16	IF (IPTAPE - 6) 18,18,17	SCRAM340 SCRA0350
17	REWIND IPTAPE	SCRA0350
18	WRITE (IOTAPE, 39) ITEST, IRTAPE, IPTAPE	SCRA0370
39	FORMAT (1X, 3I2)	SCRA0380
	D0 40 I=1,80	SCRA0390
	IF (IA(I) - IB(I)) 25,30,25	SCRA0400
25	IS(I)=1	SCRA0410
	GO TO 40	SCRA0420
30	IS(I)=0	SCRA0430
40	CONTINUE	SCRA0440
	D0 60 I=1,80 M=I	SCRA0450
	M=1 IF (IS(I)) 90,60,90	SCRA0460 SCRA0470
60	CONTINUE	SCRA0470 SCRA0480
00	IF (M-80) 90,70,70	SCRA0480
		201110 100

-			
70	WRITE (IOTAPE,75) (IA(J), J=1,80)		SCRA0500
~-	WRITE (IOTAPE,75) (IB(J),J=1,80)		SCRA0510
75	FORMAT(1X,131A1)		SCRA0520
0	WRITE (IOTAPE,8)	MURDERADE NA GUDO	SCRA0530
8	FORMAT (72HOTHE ABOVE CARDS ARE IDENTICAL AND	THEREFORE NO SUBS	
	ITION IS NEEDED. )		SCRA0550
1111 90			SCRA0560
90	D0 100 I=1,80 N=81-I		SCRA0570
	N=01-1 IF (IS(N)) 50,100,50		SCRA0580
100	CONTINUE		SCRA0590 SCRA0600
50	READ (IRTAPE, 10) (ICOL(J), J=1, IWIDE1)		SCRA0600 SCRA0610
50	CALL CHECK(IA, ICOL, K, ITEST, IPTAPE, IOTAPE)		SCRA0610 SCRA0620
	IF (K) 1111,110 ,1111		SCRA0620 SCRA0630
110	D0 150 $I=1, IWIDE1$		SCRA0640
110	DO 130 $J=M,N$		SCRA0650
	IF(IS(J)) 120,130,120		SCRA0660
120	IF (IS(3)) IZ(3,130,120) IF (ICOL(I) - IA(J)) 130,140,130		SCRA0670
130	CONTINUE		SCRA0680
100	G0 T0 150		SCRA0690
140	ICOL(I) = IB(J)		SCRA0090
150	CONTINUE		SCRA0710
100	WRITE (IOTAPE,75) (ICOL(J),J=1,IWIDE1)		SCRA0720
	IF (ITEST) 160,50,160		SCRA0730
160	WRITE (IPTAPE, 10) (ICOL(J), J=1, IWIDE1)		SCRA0740
	GO TO 50		SCRA0750
	END		SCRA0760
С			
	SUBROUTINE CHECK(IA, II, K, ITEST, IPTAPE, IOTAPE)		SCCKOOIO
	DIMENSION IA(80), II(140)		SCCK0020
	D0 10 I=1,26		SCCK0030
	IF (IA(I) - II(I)) 50, 10, 50		SCCK0040
10	CONTINUE		SCCK0050
	K=1		SCCK0060
	WRITE (IOTAPE,19) (IA(I),I=1,80)		SCCK0070
	IF (ITEST) 20,60,20		SCCK0080
20	WRITE (IPTAPE,29) (IA(I),I=1,80)		SCCK0090
	IF (IPTAPE -6) 60,60,30		SCCK0100
30	END FILE IPTAPE		SCCK0110
	GO TO 60		SCCK0120
50	K=0		SCCK0130
60	RETURN		SCCK0140
19	FORMAT (1X,80A1)		SCCK0150
29	FORMAT (80A1)		SCCK0160
	END		SCCK0170
~			
С	SUBSTITUTE		SUB 10

С	SUBSTITUTE	SUB	10
С		SUB	20
С	TEXTUAL SUBSTITUTION PROGRAM WRITTEN BY C. MESSINA FOR IBM 7094	SUB	30
С	RECOMPILED NOV 1966 FOR USE ON CDC 3100, MAY 1967 FOR UNIVAC 1108	SUB	40
С	THE PROGRAM SUBSTITUTES AN ITEM OF TEXT WHENEVER IT OCCURS IN	SUB	50
С	THE SET OF RECORDS IN THE LIBRARY, PUTTING IN A NEW PRESCRIBED	SUB [.]	60
С	ITEM. THE PROGRAM IS DESIGNED TO HANDLE, BUT IS NOT LIMITED	SUB	70
С	TO, IBM 870 DOCUMENT-WRITER DRIVER RECORDS.	SUB	80

С THE INPUT DECK AT OBJECT TIME IS THE FOLLOWING SET OF CARDS SUB 90 С THE FIRST CARD IS A DICTIONARY OF THE ALPHABET STARTING WITH THE SUB 100 С LETTER A IN CARD COL ONE, A LETTER B IN COL 2 AND SO FORTH. THE NOSUB 110 С FOLLOW THE ALPHABET STARTING WITH ZERO. COL 38 CONTAINS THE PRINTSUB 120 OUT STRING DELIMITER. COL 47 CONTAINS A BLANK. С SUB 130 THE SECOND CARD HAS A ZERO IN COL TWO IF NO CARDS ARE TO BE PUNCHESUB 140 С 1 IF THE PUNCH TAPE IS TO BE WRITTEN. THE NEXT 212 FIELDS ON THIS SUB 150 С CARD IF NON BLANK CONTAIN THE IRTAPE NUMBER AND THE IPTAPE NO. С SUB 160 С IF IRTAPE OR IPTAPE ARE GREATER THAN 6 THEY WILL REWIND AT START SUB 170 С OF RUN. UNLESS CHANGED ON THE SECOND CARD IRTAPE=5 AND IPTAPE=3 SUB 180 С THE THIRD AND FOURTH CARDS, BOTH IN A1, 13, 2A1, 12 FORMATS CONTROL ISUB 190 AND OUTPUT RECORD FORMATS RESPECTIVELY. THE FIRST ITEM IS THE С **SUB 200** CONTINUATION CARD SYMBOL, THE SECOND IS THE RECORD LENGTH, THE С SUB 210 С THIRD IS THE SHIFT TO UPPER CASE SYMBOL. THE FOURTH IS THE SHIFT SUB 220 С TO LOWER CASE SYMBOL, AND THE FIFTH IS THE SHIFT AND LOCK SWITCH SUB 230 С THAT IS 0 IF THE MODE IS NOT SHIFT AND LOCK AND 1 IF IT IS. SUB 240 С CARDS FIVE ET SEQ CONTAIN THE LIST OF STRINGS TO BE EXCHANGED. SUB 250 С ON EACH CARD THE OLD RECORD OR STRING APPEARS ON THE LEFT SIDE ANDSUB 260 С THE NEW STRING ON THE RIGHT. THE CHARACTER WHICH APPEARS IN CARD SUB 270 С COLUMN 1 IS THE STRING DELIMITER WHICH REMAINS IN FORCE FOR THAT SUB 280 С CARD. IT MAY, HOWEVER, CHANGE FROM CARD TO CARD. SUB 290 С THE FORMAT IS PRESCRIBED. A CHARACTER IN COL 1 DEFINES THE STARTSUB 300 С OF A STRING. THE SAME CHARACTER MUST APPEAR AFTER THE END SUB 310 С OF THE STRING. THE THIRD APPEARANCE OF THE COLUMN 1 CHARACTER ON SUB 320 С THE CARD STARTS THE 2ND STRING AND THE FOURTH APPEARANCE ENDS IT. SUB 330 С SUB 340 С /REAL/ /TRUE/ EXAMPLE SUB 350 С SUB 360 С AFTER THE SUBSTITUTION LIST MUST COME A CARD WITH THE WORD FINIS SUB 370 С STARTING IN CARD COLUMN ONE. SUB 380 С AT THIS POINT THE PROGRAM STARTS TO READ THE LIBRARY RECORD'S FROM SUB 390 С THE UNIT CALLED IRTAPE. THE OTHER UNITS ARE INPUT DECK SUB 400 С AND SEARCH LIST FROM UNIT ITAPE, PRINTER OUTPUT TO UNIT IOTAPE ANDSUB 410 С PUNCH TO UNIT IPTAPE. IPTAPE CONTAINS THE SAME INFORMATION AS SUB 420 С UNIT IOTAPE EXCLUDING PROGRAM MESSAGES, I.E. ONLY TEXT. SUB 430 С INPUT AND OUTPUT RECORD LENGTHS MUST BE AT LEAST 1 CHARACTER LONG SUB 440 С NO MORE THAN 132 CHARACTERS LONG. SUB 450 С SUB 460 DIMENSION IA(86), N(400), IC(8000), IB(361) SUB 470 COMMON ITAPE, IOTAPE, IRTAPE, IPTAPE, IWIDE1, IWIDE2, IA, IW, N, IC, IB SUB 480 ITAPE=5 SUB 490 IOTAPE=6 SUB 500 IEND=0 SUB 510 READ (ITAPE, 1060) (IA(J), J=1, 80) SUB 520 WRITE (IOTAPE, 1110) (IA(J), J=1,80) SUB 530 READ (ITAPE, 1070) ITEST, IRTAPE, IPTAPE SUB 540 IF (IRTAPE) 20,20,30 SUB 550 20 IRTAPE=5 SUB 560 GO TO 50 SUB 570 30 IF (IRTAPE-6) 50,50,40 SUB 580 40 REWIND IRTAPE SUB 590 50 IF (IPTAPE) 60,60,70 SUB 600 60 IPTAPE=3 SUB 610 GO TO 90 SUB 620 70 IF (IPTAPE-6) 90,90,80 SUB 630

80	REWIND IPTAPE	SUB 640
90	WRITE (IOTAPE,1150) ITEST, IRTAPE, IPTAPE	SUB 650
	READ (ITAPE, 1080) IA(81), IWIDE1, IA(83), IA(85), LOCK1	SUB 660
	WRITE (IOTAPE, 1140) IA(81), IWIDE1, IA(83), IA(85), LOCK1	SUB 670
	READ (ITAPE, 1080) IA(82), IWIDE2, IA(84), IA(86), LOCK2	SUB 680
	WRITE (IOTAPE, 1140) IA(82), IWIDE2, IA(84), IA(86), LOCK2	
		SUB 690
	IF (IWIDE1-1) 100,110,110	SUB 700
100	WRITE (IOTAPE,1090)	SUB 710
	GO TO 1050	SUB 720
110	IF (IWIDE1-132) 120,120,100	SUB 730
120	IF (IWIDE2-1) 100,130,130	SUB 740
130	IF (IWIDE2-132) 140,140,100	SUB 750
140	N1=0	SUB 760
110	N3=1	SUB 770
С	START OF READING IN SUBSTITUTE LISTS	
		SUB 780
150	READ (ITAPE, 1060) (IB(J), J=1, 80)	SUB 790
	N2=0	SUB 800
	N22=0	SUB 810
	IF (IB(1)-IA(6)) 200,160,200	SUB 820
160	IF (IB(2)-IA(9)) 200,170,200	SUB 830
170	IF (IB(3)-IA(14)) 200,180,200	SUB 840
180	IF (IB(4)-IA(9)) 200,190,200	SUB 850
190	IF (IB(5)–IA(19)) 200,430,200	SUB 860
200	D0 220 I=2,78	SUB 870
200		
010	IF (IB(I)-IB(1)) 220,210,220	SUB 880
210	IF (N2) 150,150,230	SUB 890
220	N2=I-1	SUB 900
230	J=N2+3	SUB 910
	IF (J-79) 250,240,240	SUB 920
240	WRITE (IOTAPE, 1120) IB(1), (IB(I), I=1, 80)	SUB 930
	GO TO 1050	SUB 940
250	K=J+1	SUB 950
	D0 260 I=J,79	SUB 960
	IF (IB(I)-IB(1)) 260,270,260	SUB 970
260	K=I+2	SUB 980
200	G0 T0 240	
070		SUB 990
270	D0 280 I=K,80	SUB1000
	IF (IB(I)-IB(1)) 280,290,280	SUB1010
280	N22=I-K+1	SUB1020
	GO TO 240	SUB1030
290	N1=N1+2	SUB1040
	N(N1-1)=N2	SUB1050
	N(N1) = N22	SUB1060
	N4=N3+N2-1	SUB1070
	IF (N4-7920) 310,310,300	SUB1080
300	WRITE (IOTAPE,1100) N4,N1	SUB1090
000	GO TO 1050	SUB1090 SUB1100
310		
310	IF (N1-400) 320,320,300	SUB1110
320	J=2	SUB1120
	D0 330 I=N3,N4	SUB1130
	IC(I) = IB(J)	SUB1140
330	J=J+1	SUB1150
	N3=N3+N2	SUB1160
	IF (N22) 360,360,340	SUB1170
340	N4=N3+N22-1	SUB1180

		SUBIIO
	J=K	SUB1190
	D0 350 I=N3,N4	SUB1200
	IC(I) = IB(J)	SUB1210
350	J=J+1	SUB1220
360	IF (N2-38) 370,370,380	SUB1230
370	K=42	SUB1240
380	K1=K+N22-1	SUB1250
	J=N2+3	SUB1260
	D0 390 L=J,80	SUB1270
390	IB(L) = IA(47)	SUB1280
	IB(1) = IA(38)	SUB1290
	IB(N2+2) = IA(38)	SUB1300
	IB(K-1)=IA(38)	SUB1310
	IB(K1+1)=IA(38)	SUB1320
	IF (N22) 420,420,400	SUB1330
400	D0 410 I=N3,N4	SUB1340
	IB(K) = IC(I)	SUB1350
410	K=K+1	SUB1360
110	N3=N3+N22	SUB1370
420	WRITE (IOTAPE,1110) (IB(J), J=1,80)	SUB1380
420	GO TO 150	SUB1390
430	N44=N4	SUB1000
450	IF (N1-4) 540,440,440	SUB1410
4.40		SUB1410 SUB1420
440	N7=N1+2	SUB1420 SUB1430
450	N3=1	SUB1430 SUB1440
	K1=0	
	N7=N7-2	SUB1450
100	IF (N7-4) 460,470,470	SUB1460
460	N7=N7+2	SUB1470
470	D0 530 I=4,N7,2	SUB1480
	N2=N(I-3)+N(I-2)	SUB1490
	N22=N(I-1)+N(I)	SUB1500
	IF (N(I-3)-N(I-1)) 490,480,480	SUB1510
480	N3=N3+N2	SUB1520
	GO TO 530	SUB1530
490	N4=N(I-3)	SUB1540
	N(I-3) = N(I-1)	SUB1550
	N(I-1)=N4	SUB1560
	N4=N(I)	SUB1570
	N(I) = N(I-2)	SUB1580
	N(I-2) = N4	SUB1590
	K1=K1+1	SUB1600
	N4=N3+N2-1	SUB1610
	К=0 .	SUB1620
	D0 500 J=N3,N4	SUB1630
	K=K+1	SUB1640
500	IB(K) = IC(J)	SUB1650
	D0 510 J=1,N22	SUB1660
	K=N3+J-1	SUB1670
	N6=N4+J	SUB1680
510	IC(K) = IC(N6)	SUB1690
	N3=N3+N22	SUB1700
	D0 520 J=1,N2	SUB1710
	K=N3+J-1	SUB1720
520	IC(K) = IB(J)	SUB1730

	•	
530	CONTINUE	SUB1740
	IF (K1) 540,540,450	SUB1750
540	WRITE (IOTAPE,1110) IA(6),IA(9),IA(14),IA(9),IA(19)	SUB1760
С	START OF SUBSTITUTION	SUB1770
550	IF (IEND) 570,560,570	SUB1780
560	IB(IWIDE1+1)=IA(47)	SUB1790
	READ (IRTAPE,1060) (IB(J),J=1,IWIDE1)	SUB1800
570	CALL CHECK2 (IEND, ITEST, 1)	SUB1810
	IF (IEND) 580,590,580	SUB1820
580	STOP	SUB1830
590	N3=1	SUB1840
000	DO 600 I=1,IWIDE1	SUB1850
	IF (IA(81)-IB(I)) 600,630,600	SUB1860
600	CONTINUE	SUB1870
000	I=IWIDE1	SUB1870
	IF (IB(IWIDE1)-IA(47)) 700,610,700	
610		SUB1890
610	D0 620 J=1, IWIDE1 $III (III) III (IIII) (III) (IIII) (IIIII) (IIII) (IIIII) (IIII) (IIII) (IIII) (IIIII) (IIIIIII) (IIIIIII) (IIIII) (IIIII) (IIIII) (IIII$	SUB1900
<b>COO</b>	IF (IB(I)-IA(47)) 690,620,690	SUB1910
620		SUB1920
	GO TO 690	SUB1930
630	J=I+IWIDE1-1	SUB1940
	IF (J-360) 640,640,700	SUB1950
640	K=I	SUB1960
	READ $(IRTAPE, 1060)$ $(IB(I), I=K, J)$	SUB1970
	IEND=2	SUB1980
	CALL CHECK2 (IEND, ITEST, K)	SUB1990
	IF (IEND) 650,660,650	SUB2000
650	I=K-1	SUB2010
	GO TO 700	SUB2020
660	D0 670 I=K,J	SUB2030
	IF (IA(81)-IB(I)) 670,630,670	SUB2040
670	CONTINUE	SUB2050
	I=J	SUB2060
	D0 680 L=K,J	SUB2070
	IF (IB(I)-IA(47)) 700,680,700	SUB2080
680	I = I - 1	SUB2090
690	I=I+1 I=I+1	SUB2100
700	IW=I	SUB2110
100	IW = I IB(IW+1)=IA(47)	SUB2110
	IB(1W+1)=IR(47) IF (LOCK1) 710,720,710	
710		SUB2130
710	CALL SUNLOK	SUB2140
720	K2=1	SUB2150
~~~	ILK=0	SUB2160
730	N6=0	SUB2170
	N7=0	SUB2180
	D0 760 K=K2,IW	SUB2190
	N3=1	SUB2200
	D0 750 I=2,N1,2	SUB2210
	N2=N(I-1)	SUB2220
	N22=N(I)	SUB2230
	Kl=K	SUB2240
	N4=N3+N2-1	SUB2250
	D0 740 J=N3, N4	SUB2260
	IF (IB(K1)-IC(J)) 750,740,750	SUB2270
740	Kl=Kl+1	SUB2280

	K1=K1-1	SUB2290
	N7=I	SUB2300
	N6=N3	SUB2310
	GO TO 770	SUB2320
750	N3=N3+N2+N22	SUB2330
		SUB2340
760	CONTINUE	
	GO TO 910	SUB2350
770	IF (K1-IW) 790,790,780	SUB2360
780	IW=K1	SUB2370
	ILK=1	SUB2380
	IF (IW-360) 790,790,900	SUB2390
790	Kl=K	SUB2400
	N2=N(N7-1)	SUB2410
	N22=N(N7)	SUB2420
	N3=N6+N2	SUB2430
	NG=NG+N2 N4=N3+N22-1	SUB2440
	N5=N22-N2	SUB2450
	IF (N5) 870,800,840	SUB2460
800	D0 810 J=N3,N4	SUB2470
	IB(K1) = IC(J)	SUB2480
810	K1=K1+1	SUB2490
820	IF (ILK) 830,830,910	SUB2500
830	K2=K1	SUB2510
	GO TO 730	SUB2520
840	IF (IW+N5-360) 850,850,900	SUB2530
850	IW=IW+N5	SUB2540
000	K2=IW	SUB2550
	D0 860 J=K1, IW	
		SUB2560
	K9=K2-N5	SUB2570
	IB(K2)=IB(K9)	SUB2580
860	K2=K2-1	SUB2590
	GO TO 800	SUB2600
870	DO 880 J=K1,IW	SUB2610
	K9=J-N5	SUB2620
880	IB(J) = IB(K9)	SUB2630
	K9=IW+N5+1	SUB2640
	D0 890 J=K9,IW	SUB2650
890	IB(J) = IA(47)	SUB2660
	IW=IW+N5	SUB2670
	IF (N22) 820,820,800	SUB2680
900	WRITE (IOTAPE, 1130)	
		SUB2690
910	IF (LOCK2) 920,930,920	SUB2700
920	CALL SLOCK	SUB2710
С	PRINT OUT INSTRUCTIONS WITH THE CONDITION THAT WHEN A LINE	
С	BROKEN INTO TWO OR MORE CARDS THE NEW CARD WILL ALWAYS START	WITHSUB2730
С	THE BEGINNING OF A WORD.	SUB2740
930	K=1	SUB2750
	K1=IWIDE2-1	SUB2760
	IF (IW-K1-1) 940,940,970	SUB2770
940	WRITE (IOTAPE,1110).(IB(J),J=K,IW)	SUB2780
	IF (ITEST) 950,550,950	SUB2790
950	WRITE (IPTAPE, 1060) (IB(J), $J=K$, IW)	SUB2800
	GO TO 550	SUB2800
960	K=K1+1	SUB2810
500	K = K1 + I K1 = K1 + IWIDE2 - 1	
		SUB2830

```
IF (IW-K1-1) 940,940,970
                                                                           SUB2840
      J=K1
970
                                                                           SUB2850
      DO 980 I=K.Kl
                                                                           SUB2860
      IF (IB(J)-IA(47)) 980,1010,980
                                                                           SUB2870
980
                                                                           SUB2880
      J=J-1
      WRITE (IOTAPE,1110) (IB(J), J=K, K1), IA(82)
990
                                                                           SUB2890
      IF (ITEST) 1000,960,1000
                                                                           SUB2900
      WRITE (IPTAPE, 1060) (IB(J), J=K, K1), IA(82)
                                                                           SUB2910
1000
      GO TO 960
                                                                           SUB2920
1010
      Kl=J
                                                                           SUB2930
      IF (IB(K1+1)-IA(47)) 990,1020,990
                                                                           SUB2940
1020
      DO 1030 I=K,K1
                                                                           SUB2950
      IF (IB(J)-IA(47)) 1040,1030,1040
                                                                           SUB2960
                                                                           SUB2970
1030
      J=J-1
      GO TO 990
                                                                           SUB2980
1040
      Kl=J
                                                                           SUB2990
      GO TO 970
                                                                           SUB3000
1050
      STOP
                                                                           SUB3010
С
                                                                           SUB3020
1060 FORMAT (132A1)
                                                                           SUB3030
1070 FORMAT (4012)
                                                                           SUB3040
1080 FORMAT (1A1,1I3,2A1,1I2)
                                                                           SUB3050
1090 FORMAT (70H INPUT OR OUTPUT IMAGE WIDTH CANNOT BE LESS THAT 1 OR GSUB3060
     IREATER THAN 132/6H STOP.)
                                                                           SUB3070
1100 FORMAT (33H LIST OF REPLACEMENTS IS TOO LONG/67H MAXIMUM CHARACTERSUB3080
     1 LENGTH IS 8000, MAXIMUM NUMBER OF PHRASES IS 400/20H CURRENT VALUSUB3090
     2ES ARE ,216,6H STOP.)
                                                                           SUB3100
1110 FORMAT (1X,131A1)
                                                                           SUB3110
1120 FORMAT (16H THE CHARACTER ,1A1,48H DID NOT APPEAR 4 TIMES ON THE SUB3120
     1CARD BELOW. STOP./1X,80A1)
                                                                           SUB3130
1130 FORMAT (86HOTHE LINE FOLLOWING WOULD HAVE EXCEEDED 360 CHARACTERS SUB3140
     1IF SUBSTITUTION HAD CONTINUED. )
                                                                           SUB3150
1140 FORMAT (1X,1A1,1I3,2A1,1I2)
                                                                           SUB3160
1150 FORMAT (1X,5012)
                                                                           SUB3170
      END
                                                                           SUB3180-
С
С
                                                                           SULK 10
      SUBROUTINE SUNLOK
      DIMENSION IA(86), N(400), IC(8000), IB(361)
                                                                           SULK 20
      COMMON ITAPE, IOTAPE, IRTAPE, IPTAPE, IWIDE1, IWIDE2, IA, IW, N, IC, IB
                                                                           SULK 30
      L=0
                                                                           SULK 40
      J=0
                                                                           SULK 50
      K=0
                                                                           SULK 60
      DO 60 I=1,IW
                                                                           SULK 70
                                                                           SULK 80
      IF (IB(I)-IA(83)) 40,20,40
                                                                           SULK 90
20
      L=L+1
      IF (L-J-1) 30,60,30
                                                                           SULK100
30
      K=1
                                                                           SULK110
      GO TO 60
                                                                           SULK120
40
                                                                           SULK130
      IF (IB(I)-IA(85)) 60,50,60
50
                                                                           SULK140
      J=J+1
      IF (L-J) 30,60,30
                                                                           SULK150
      CONTINUE
60
                                                                           SULK160
      IF (L-J) 80,70,90
                                                                           SULK170
      IF · (K) 80,120,80
70
                                                                           SULK180
```

80	WRITE (IOTAPE, 280)	SULK190
	GO TO 150	SULK200
90	IF (IA(83)-IA(85)) 80,100,80	SULK210
100	K=2*(L/2)-L	SULK220
	IF (K) 110,120,110	SULK230
110	IW=IW+1	SULK240
	IB(IW) = IA(85)	SULK250
120	J=1	SULK260
130	IF (IB(J)-IA(83)) 140,160,140	SULK270
140	J=J+1	SULK280
	IF (J-(IW+1)) 130,150,150	SULK290
150	RETURN	SULK300
160	IF (IB(J+1)-IA(85)) 190,170,190	SULK310
170	J=J+2	SULK320
	D0 180 I=J,IW	SULK330
180	IB(I-1)=IB(I)	SULK340
	GO TO 220	SULK350
190	IF (IB(J+2)-IA(85)) 230,200,230	SULK360
200	J=J+3	SULK370
	DO 210 I=J,IW	SULK380
210	IB(I-1)=IB(I)	SULK390
220	IW=IW-1	SULK400
	IB(IW+1)=IA(47)	SULK410
	J=J-1	SULK420
	GO TO 130	SULK430
230	IF ((IW+1)-360) 250,250,240	SULK440
240	WRITE (IOTAPE,270)	SULK450
	GO TO 150	SULK460
250	IW=IW+1	SULK470
	J=J+3	SULK480
	K=IW	SULK490
	D0 260 L=J,IW	SULK500
	IB(K) = IB(K-1)	SULK510
260	K=K-1	SULK520
	J=J-1	SULK530
	B(R) = A(3)	SULK540
	GO TO 160	SULK550
С		SULK560
270	FORMAT (116HOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEFO	RESULK570
	1 THE 360 CHARACTER LINE LIMIT WAS EXCEEDED IN SHIFT AND UNLOCK)	SULK580
280	FORMAT (69HOTHE FOLLOWING LINE DID NOT CONTAIN A BALANCED SET OF	SSULK590
	1HIFT SYMBOLS.)	SULK600
	END	SULK610-
С		
	SUBROUTINE SLOCK	SUUC 10
	DIMENSION IA(86), N(400), IC(8000), IB(361)	SUUC 20
	COMMON ITAPE, IOTAPE, IRTAPE, IPTAPE, IWIDE1, IWIDE2, IA, IW, N, IC, IB	SUUC 30
	J=1	SUUC 40
20	IF (IB(J)-IA(84)) 30,60,30	SUUC 50
30	J=J+1	SUUC 60
	IF (J-(IW+1)) 20,20,50	SUUC 70
40	WRITE (IOTAPE, 140)	SUUC 80
50	RETURN	SUUC 90
60	J=J+2	SUUC100
70	IF (IB(J)-IA(84)) 110,80,110	SUUC110

80	IW=IW-1	SUUC120
	DO 90 K=J,IW	SUUC130
90	IB(K) = IB(K+1)	SUUC140
	IB(IW+1)=IA(47)	SUUC150
	J=J+1	SUUC160
	IF (J-IW) 70,70,100	SUUC170
100	IW=IW+1	SUUC180
	IB(IW)=IA(86)	SUUC190
	GO TO 50	SUUC200
110	IF (IW-360) 120,100,40	SUUC210
120	IW=IW+1	SUUC220
	J=J+1	SUUC230
	K=IW	SUUC240
	D0 130 L=J,IW	SUUC250
	IB(K) = IB(K-1)	SUUC260
130	K=K-1	SUUC270
	IB(J-1)=IA(86)	SUUC280
	GO TO 20	SUUC290
С		SUUC300
140	FORMAT (116HOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEFORM	ESUUC310
	1 THE 360 CHARACTER LINE LIMIT WAS EXCEEDED IN SHIFT AND LOCK)	SUUC320
	END	SUUC330-
С		
	SUBROUTINE CHECK2 (K, ITEST, J)	SUCK 10
	DIMENSION IA(86), N(400), IC(8000), IB(361)	SUCK 20
	COMMON ITAPE, IOTAPE, IRTAPE, IPTAPE, IWIDE1, IWIDE2, IA, IW, N, IC, IB	SUCK 30
	IF (K-1) 20,40,20	SUCK 40
20	L=J-1	SUCK 50
	D0 30 I=1,26	SUCK 60
	L=L+1	SUCK 70
	IF (IA(I)-IB(L)) 70,30,70	SUCK 80
30	CONTINUE	SUCK 90
	IF (K-2) 40,90,90	SUCK100
40	K=1	SUCK110
	WRITE (IOTAPE,100) (IA(I),I=1,80)	SUCK120
	IF (ITEST) 50,80,50	SUCK130
50	WRITE (IPTAPE,110) (IA(I),I=1,80)	SUCK140
	IF (IPTAPE-6) 80,80,60	SUCK150
60	END FILE IPTAPE	SUCK160
	GO TO 80	SUCK170
70	K=0	SUCK180
80	RETURN	SUCK190
90	K=1	SUCK200
~	GO TO 80	SUCK210
C		SUCK220
100	FORMAT (1X,80A1)	SUCK230
110	FORMAT (80A1)	SUCK240
0	END	SUCK250
С		CUDC
0	SUBROUTINE SUBST (IB,IW,ITYPE)	SUBS 1
С		SUBS 2
C	SUBSTITUTE SUBROUTINE	SUBS 3
C		SUBS 4
C	TEXTUAL SUBSTITUTION PROGRAM WRITTEN BY C. MESSINA NSRDS-NBS	SUBS 40
С	IB(999) IS THE STRING TO BE PROCESSED. ON RETURN FROM SUBST, IB	SUBS 41

SUBS С CONTAINS THE REMADE LINE. 42 IW IS THE LENGTH OF THE INPUT STRING IN IB. ON RETURN FROM SUBST, SUBS 43 С IW CONTAINS THE NEW LENGTH OF IB. С SUBS 44 ITYPE = 0 WHEN THE SUBSTITUTION TABLE IS READ IN AND ITYPE = 1 SUBS С 5 С WHEN THE SUBSTITUTION IS TO TAKE PLACE. SUBS 6 С SUBS 7 С THE INPUT DECK AT OBJECT TIME IS THE FOLLOWING SET OF CARDS SUBS 8 С THE FIRST CARD IS A DICTIONARY OF THE ALPHABET STARTING WITH THE SUBS 9 С LETTER A IN CARD COL ONE, A LETTER B IN COL 2 AND SO FORTH. THE SUBS 10 NUMBERS FOLLOW THE ALPHABET STARTING WITH ZERO. COL 38 CONTAINS С SUBS 11 С THE PRINT OUT STRING DELIMITER. COL 47 CONTAINS A BLANK. SUBS 12 С THE SECOND CARD HAS A ZERO IN COL 2 IF NO CARDS ARE TO BE PUNCHED SUBS 13 1 IF THE PUNCH TAPE IS TO BE WRITTEN. THE NEXT 212 FIELDS ON THIS SUBS 14 С CARD, IF POSITIVE NON ZERO INTEGERS, CONTAIN THE IRTAPE NUMBER С SUBS 15 С AND IPTAPE NUMBER, OTHERWISE THEY ARE SET TO IRTAPE=5 AND IPTAPE=3SUBS 16 С THE THIRD AND FOURTH CARDS ARE BOTH IN A1, 13, 2A1, 12 FORMATS. SUBS 18 С THE FIRST TWO FIELDS ARE IGNORED ON BOTH CARDS IN THIS VERSION. SUBS 19 С THE 3RD FIELD IS THE SHIFT TO UPPER CASE SYMBOL. THE 4TH IS SHIFT SUBS 21 С TO LOWER CASE SYMBOL, AND THE FIFTH IS THE SHIFT AND LOCK SWITCH SUBS 22 С THAT IS O IF THE MODE IS NOT SHIFT AND LOCK AND 1 IF IT IS. SUBS 23 С CARDS FIVE ET SEQ CONTAIN THE LIST OF STRINGS TO BE EXCHANGED. SUBS 24 С ON EACH CARD THE OLD RECORD OR STRING APPEARS ON THE LEFT SIDE ANDSUBS 25 С THE NEW STRING ON THE RIGHT. THE CHARACTER WHICH APPEARS IN CARD SUBS 26 С COLUMN 1 IS THE STRING DELIMITER WHICH REMAINS IN FORCE FOR THAT SUBS 27 С CARD. IT MAY, HOWEVER, CHANGE FROM CARD TO CARD. SUBS 28 С THE FORMAT IS PRESCRIBED. A CHARACTER IN COL 1 DEFINES THE STARTSUBS 29 С OF A STRING. THE SAME CHARACTER MUST APPEAR AFTER THE END SUBS 30 С OF THE STRING. THE THIRD APPEARANCE OF THE COLUMN 1 CHARACTER ON SUBS 31 С THE CARD STARTS THE 2ND STRING AND THE FOURTH APPEARANCE ENDS IT. SUBS 32 С EXAMPLE SUBS 33 С /REAL/ /TRUE/ SUBS 34 С AFTER THE SUBSTITUTION LIST MUST COME A CARD WITH THE WORD FINIS SUBS 36 С STARTING IN CARD COLUMN ONE. SUBS 37 С SUBS 38 SUBS 39 DIMENSION IA(86), N(1000), IC(8000), IB(999) SUBS 40 ITAPE=5 IOTAPE=6 SUBS 41 IEND=0 SUBS 42 MAXIW=998 SUBS 43 IF (ITYPE) 20,20,560 SUBS 44 20 READ (ITAPE, 840) (IA(J), J=1, 80)SUBS 45 SUBS 46 WRITE (IOTAPE, 890) (IA(J), J=1, 80) READ (ITAPE, 850) ITEST, IRTAPE, IPTAPE SUBS 47 IF (IRTAPE) 30,30,60 SUBS 48 30 IRTAPE=5 SUBS 49 60 IF (IPTAPE) 70,70,100 SUBS 53 70 IPTAPE=3 SUBS 54 100 WRITE (IOTAPE, 930) ITEST, IRTAPE, IPTAPE SUBS 58 READ (ITAPE, 860) IA(81), IWIDE1, IA(83), IA(85), LOCK1 SUBS 59 WRITE (IOTAPE, 920) IA(81), IWIDE1, IA(83), IA(85), LOCK1 SUBS 60 READ (ITAPE, 860) IA(82), IWIDE2, IA(84), IA(86), LOCK2 SUBS 61 WRITE (IOTAPE, 920) IA(82), IWIDE2, IA(84), IA(86), LOCK2 SUBS 62 150 N1=0 SUBS 69 N3=1 SUBS 70 С START OF READING IN SUBSTITUTE LISTS SUBS 71

1.00		
160	READ $(ITAPE, 840)$ $(IB(J), J=1, 80)$	SUBS 72
	N2=0	SUBS 73
	N22=0	SUBS 74
	IF (IB(1)-IA(6)) 210,170,210	SUBS 75
170	IF (IB(2)-IA(9)) 210,180,210	SUBS 76
180	IF (IB(3)-IA(14)) 210,190,210	SUBS 77
190	IF (IB(4)-IA(9)) 210,200,210	SUBS 78
200	IF (IB(5)-IA(19)) 210,440,210	SUBS 79
210	D0 230 I=2,78	SUBS 80
210		
	IF (IB(I)-IB(1)) 230,220,230	SUBS 81
220	IF (N2) 160,160,240	SUBS 82
230	N2=I-1	SUBS 83
240	J=N2+3	SUBS 84
	IF (J-79) 260,250,250	SUBS 85
250	WRITE (IOTAPE,900) IB(1),(IB(I),I=1,80)	SUBS 86
200		
	GO TO 830	SUBS 87
260	K=J+1	SUBS 88
	D0 270 I=J,79	SUBS 89
	IF (IB(I)-IB(1)) 270,280,270	SUBS 90
270	K=I+2	SUBS 91
~10	G0 T0 250	SUBS 92
000		
280	D0 290 I=K,80	SUBS 93
	IF (IB(I)-IB(1)) 290,300,290	SUBS 94
290	N22=I-K+1	SUBS 95
	GO TO 250	SUBS 96
300	N1=N1+2	SUBS 97
000	N(N1-1) = N2	SUBS 98
	N(N1) = N22	SUBS 99
	N4=N3+N2-1	SUBS100
	IF (N4-7920) 320,320,310	SUBS101
310	WRITE (IOTAPE,880) N4,N1	SUBS102
	GO TO 830	SUBS103
320	IF (N1-1000) 330,330,310	SUBS104
330		
550	1-2	
	J=2	SUBS105
	D0 340 I=N3,N4	SUBS105 SUBS106
	D0 340 I=N3,N4 IC(I)=IB(J)	SUBS105
340	D0 340 I=N3,N4	SUBS105 SUBS106
340	D0 340 I=N3,N4 IC(I)=IB(J)	SUBS105 SUBS106 SUBS107
340	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2	SUBS105 SUBS106 SUBS107 SUBS108 SUBS109
	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350	SUBS105 SUBS106 SUBS107 SUBS108 SUBS109 SUBS110
340 350	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1	SUBS105 SUBS106 SUBS107 SUBS108 SUBS109 SUBS110 SUBS111
	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K	SUBS105 SUBS106 SUBS107 SUBS108 SUBS109 SUBS110 SUBS111 SUBS112
	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4	SUBS105 SUBS106 SUBS107 SUBS108 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113
	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K	SUBS105 SUBS106 SUBS107 SUBS108 SUBS109 SUBS110 SUBS111 SUBS112
	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4	SUBS105 SUBS106 SUBS107 SUBS108 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113
350 360	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1	SUBS105 SUBS106 SUBS107 SUBS108 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113 SUBS114
350 360 370	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390	SUBS105 SUBS107 SUBS109 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116
350 360 370 380	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390 K=42	SUBS105 SUBS107 SUBS108 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116 SUBS117
350 360 370	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390 K=42 K1=K+N22-1	SUBS105 SUBS107 SUBS108 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116 SUBS117 SUBS118
350 360 370 380	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390 K=42 K1=K+N22-1 J=N2+3	SUBS105 SUBS107 SUBS108 SUBS109 SUBS100 SUBS110 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116 SUBS117 SUBS118 SUBS119
350 360 370 380 390	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390 K=42 K1=K+N22-1 J=N2+3 D0 400 L=J,80	SUBS105 SUBS107 SUBS108 SUBS109 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116 SUBS117 SUBS118 SUBS119 SUBS120
350 360 370 380	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390 K=42 K1=K+N22-1 J=N2+3	SUBS105 SUBS107 SUBS108 SUBS109 SUBS100 SUBS110 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116 SUBS117 SUBS118 SUBS119
350 360 370 380 390	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390 K=42 K1=K+N22-1 J=N2+3 D0 400 L=J,80	SUBS105 SUBS107 SUBS108 SUBS109 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116 SUBS117 SUBS118 SUBS119 SUBS120
350 360 370 380 390	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390 K=42 K1=K+N22-1 J=N2+3 D0 400 L=J,80 IB(L)=IA(47) IB(1)=IA(38)	SUBS105 SUBS107 SUBS107 SUBS109 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116 SUBS117 SUBS118 SUBS119 SUBS120 SUBS121 SUBS122
350 360 370 380 390	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390 K=42 K1=K+N22-1 J=N2+3 D0 400 L=J,80 IB(L)=IA(47) IB(1)=IA(38) IB(N2+2)=IA(38)	SUBS105 SUBS107 SUBS107 SUBS109 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116 SUBS117 SUBS118 SUBS119 SUBS120 SUBS121 SUBS122 SUBS123
350 360 370 380 390	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390 K=42 K1=K+N22-1 J=N2+3 D0 400 L=J,80 IB(L)=IA(47) IB(1)=IA(38) IB(N2+2)=IA(38) IB(K-1)=IA(38)	SUBS105 SUBS107 SUBS107 SUBS109 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116 SUBS117 SUBS118 SUBS119 SUBS120 SUBS121 SUBS122 SUBS123 SUBS124
350 360 370 380 390	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390 K=42 K1=K+N22-1 J=N2+3 D0 400 L=J,80 IB(L)=IA(47) IB(1)=IA(38) IB(N2+2)=IA(38) IB(K-1)=IA(38) IB(K+1)=IA(38)	SUBS105 SUBS107 SUBS107 SUBS109 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116 SUBS117 SUBS118 SUBS119 SUBS120 SUBS121 SUBS122 SUBS123 SUBS124 SUBS125
350 360 370 380 390	D0 340 I=N3,N4 IC(I)=IB(J) J=J+1 N3=N3+N2 IF (N22) 370,370,350 N4=N3+N22-1 J=K D0 360 I=N3,N4 IC(I)=IB(J) J=J+1 IF (N2-38) 380,380,390 K=42 K1=K+N22-1 J=N2+3 D0 400 L=J,80 IB(L)=IA(47) IB(1)=IA(38) IB(N2+2)=IA(38) IB(K-1)=IA(38)	SUBS105 SUBS107 SUBS107 SUBS109 SUBS109 SUBS110 SUBS111 SUBS112 SUBS113 SUBS114 SUBS115 SUBS116 SUBS117 SUBS118 SUBS119 SUBS120 SUBS121 SUBS122 SUBS123 SUBS124

410	D0 420 I=N3,N4	SUBS127
	IB(K)=IC(I)	SUBS128
420	K=K+1	SUBS129
	N3=N3+N22	SUBS130
430	WRITE $(IOTAPE, 890)$ $(IB(J), J=1, 80)$	SUBS131
	GO TO 160	SUBS132
440	IF (N1-4) 550,450,450	SUBS133
450	N7=N1+2	SUBS134
460	N3=1	SUBS135
	K1=0	SUBS136
	N7=N7-2	SUBS137
	IF (N7-4) 470,480,480	SUBS138
470	N7=N7+2	SUBS139
480	D0 540 I=4, N7, 2	SUBS140
	N2=N(I-3)+N(I-2)	SUBS141
	N22=N(I-1)+N(I)	SUBS142
	IF (N(I-3)-N(I-1)) 500,490,490	SUBS143
490	N3=N3+N2	SUBS144
	GO TO 540	SUBS145
500	N4=N(I-3)	SUBS146
	N(I-3) = N(I-1)	SUBS147
	N(I-1) = N4	SUBS148
	N4=N(I)	SUBS149
	N(I)=N(I-2)	SUBS150
	N(I-2)=N4	SUBS151
	Kl=Kl+l	SUBS152
	N4=N3+N2-1	SUBS153
	к=0	SUBS154
	D0 510 J=N3,N4	SUBS155
- 10		SUBS156
510	IB(K) = IC(J)	SUBS157
	D0 520 J=1, N22	SUBS158
	K=N3+J-1	SUBS159
500	N6=N4+J	SUBS160
520	IC(K) = IC(N6)	SUBS161
	N3=N3+N22	SUBS162
	D0 530 J=1, N2	SUBS163
570	K=N3+J-1	SUBS164
530	IC(K) = IB(J)	SUBS165
540	CONTINUE IF (K1) 550,550,460	SUBS166
550	WRITE (IOTAPE, 890) IA(6), IA(9), IA(14), IA(9), IA(19)	SUBS167
550	$\begin{array}{c} \text{WATTE} (101\text{AFE}, 890) & 1A(8), 1A(9), 1A(14), 1A(9), 1A(19) \\ \text{GO TO 820} \end{array}$	SUBS168 SUBS169
С	START OF SUBSTITUTION	SUBS109 SUBS170
560	IF (IW-MAXIW) 580,580,570	SUBS170 SUBS171
570	WRITE (IOTAPE, 940) IW, MAXIW, (IB(I), I=1, IW)	SUBS171 SUBS172
010	$\begin{array}{c} \text{GO TO 830} \end{array}$	SUBS172 SUBS173
580	CALL CHECKI (IA, IB, ITEST, IOTAPE, IPTAPE, IEND, 1)	SUBS175
000	IF (IEND) 830,590,830	SUBS174 SUBS175
590	N3=1	SUBS175 SUBS176
000	IB(IW+1) = IA(47)	SUBS170 SUBS177
	IF (LOCK1) 600,610,600	SUBS177 SUBS178
600	CALL SUNLK (IA, IB, IW, IOTAPE)	SUBS179
610	K2=1	SUBS180
	ILK=0	SUBS180

620	N6=0	SUBS182
	N7=0	SUBS183
	D0 650 K=K2,IW	SUBS184
	N3=1	SUBS185
	D0 640 I=2,N1,2	SUBS186
	N2=N(I-1)	SUBS180
	N22=N(I)	SUBS188
	Kl=K	SUBS189
	N4=N3+N2-1	SUBS190
	D0 630 J=N3,N4	SUBS191
	IF (IB(K1)-IC(J)) 640,630,640	SUBS192
630	K1=K1+1	SUBS193
	K1=K1-1	SUBS194
	N7=I	SUBS195
	N6=N3	SUBS196
C 40	G0 T0 660	SUBS197
640	N3=N3+N2+N22	SUBS198
650	CONTINUE	SUBS199
	GO TO 800	SUBS200
660	IF (K1–IW) 680,680,670	SUBS201
670	IW=K1	SUBS202
	ILK=1	SUBS203
	IF (IW-MAXIW) 680,680,790	SUBS204
680	K1=K	SUBS205
000	N2=N(N7-1)	SUBS206
	N22=N(N7)	SUBS207
	N3=N6+N2	SUBS208
	N4=N3+N22-1	SUBS209
	N5=N22-N2	SUBS210
	IF (N5) 760,690,730	SUBS211
690	D0 700 J=N3,N4	SUBS212
	IB(K1)=IC(J)	SUBS213
700	K1=K1+1	SUBS214
710	IF (ILK) 720,720,800	SUBS215
720	K2=K1	SUBS216
120		
770	GO TO 620	SUBS217
730	IF (IW+N5-MAXIW) 740,740,790	SUBS218
740	IW=IW+N5	SUBS219
	K2=IW	SUBS220
	D0 750 J=K1,IW	SUBS221
	K9=K2-N5	SUBS222
	IB(K2)=IB(K9)	SUBS223
750	K2=K2-1	SUBS224
	GO TO 690	SUBS225
760	D0 770 J=K1,IW	SUBS226
100	K9=J-N5	SUBS227
770		
770	IB(J) = IB(K9)	SUBS228
	K9=IW+N5+1	SUBS229
	D0 780 J=K9, IW	SUBS230
780	IB(J) = IA(47)	SUBS231
	IW=IW+N5	SUBS232
	IF (N22) 710,710,690	SUBS233
790	WRITE (IOTAPE,910) MAXIW	SUBS234
800	IF (LOCK2) 810,820,810	SUBS235
810	CALL SULOCK (IA, IB, IW, IOTAPE)	SUBS236
010		5025200

```
820
      RETURN
                                                                            SUBS237
830
      STOP
                                                                            SUBS238
840
      FORMAT (132A1)
                                                                            SUBS240
850
      FORMAT (4012)
                                                                            SUBS241
860
      FORMAT (1A1,113,2A1,112)
                                                                            SUBS242
      FORMAT (33H LIST OF REPLACEMENTS IS TOO LONG/67H MAXIMUM CHARACTERSUBS245
880
     1 LENGTH IS 8000, MAXIMUM NUMBER OF PHRASES IS 400/20H CURRENT VALUSUBS246
     2ES ARE ,216,6H STOP.)
                                                                            SUBS247
890
      FORMAT (1X,131A1)
                                                                            SUBS248
900
      FORMAT (16H THE CHARACTER ,1A1,48H DID NOT APPEAR 4 TIMES ON THE SUBS249
     1CARD BELOW. STOP./1X,80A1)
                                                                            SUBS250
910
      FORMAT (40HOTHE LINE FOLLOWING WOULD HAVE EXCEEDED , 116,43H CHARACSUBS251
     ITERS IS SUBSTITUTION HAD CONTINUED.
                                                                            SUBS252
920
      FORMAT (1X, 1A1, 113, 2A1, 112)
                                                                            SUBS253
930
      FORMAT (1X,5012)
                                                                            SUBS254
940
      FORMAT (19H STRING OF LENGTH =, 116, 43H IS TOO LONG FOR SUBROUTINE SUBS255
     1SUBST. LENGTH =, 116, 6H STOP./, 1X, 120A1)
                                                                            SUBS256
      END
                                                                            SUBS257-
С
С
      SUBROUTINE SUNLK(IA, IB, IW, IOTAPE)
      DIMENSION IA (86), IB (999)
      MAXIW=998
      L=0
      J=0
      K=0
      DO 60 I=1,IW
      IF (IB(I)-IA(83)) 40,20,40
20
      L=L+1
      IF (L-J-1) 30,60,30
30
      K=1
      GO TO 60
40
      IF (IB(I)-IA(85)) 60,50,60
50
      J=J+1
      IF (L-J) 30,60,30
60
      CONTINUE
      IF (L-J) 80,70,90
70
      IF (K) 80,120,80
80
      WRITE (IQTAPE, 280)
      GO TO 150
90
      IF (IA(83)-IA(85)) 80,100,80
100
      K=2*(L/2)-L
      IF (K) 110,120,110
110
      IW=IW+1
      IB(IW) = IA(85)
120
      J=1
130
      IF (IB(J)-IA(83)) 140,160,140
140
      J=J+1
      IF (J-(IW+1)) 130,150,150
150
      RETURN
160
      IF (IB(J+1)-IA(85)) 190.170.190
170
      J=J+2
      DO 180 I=J,IWA
180
      IB(I-1)=IB(I)
      GO TO 220
```

190	IF (IB(J+2)-IA(85)) 230,200,230
200	J=J+3 D0 210 I=J,IW
210	IB(I-1) = IB(I)
220	
	IB(IW+1)=IA(47) J=J-1
	G0 T0 130
230	IF ((IW+1)-MAXIW) 250,250,240
240	WRITE (IOTAPE, 270) GO TO 150
250	IW=IW+1
•	J=J+3
	K=IW DO 260 L=J,IW
	IB(K) = IB(K-1)
260	K=K-1
	J=J-1 IB(J)=IA(83)
	GO TO 160
270	FORMAT (116HOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEFORE
280	1 THE MAXIMUM CHARACTER LINE LIMIT WAS EXCEEDED IN SUNLK) FORMAT (69HOTHE FOLLOWING LINE DID NOT CONTAIN A BALANCED SET OF S
	1HIFT SYMBOLS.)
C	END
C C	
	SUBROUTINE SULOCK(IA, IB, IW, IOTAPE)
	DIMENSION IA(86),IB(999) MAXIW=998
	J=1
20	IF (IB(J)-IA(84)) 30,60,30
30	J=J+1 IF (J-(IW+1)) 20,20,50
40	WRITE (IOTAPE,140)
50	RETURN
60 70	J=J+2 IF (IB(J)-IA(84)) 110,80,110
80	IW=IW-1
00	DO 90 K=J,IW
90	IB(K)=IB(K+1) IB(IW+1)=IA(47)
	J=J+1
100	IF (J-IW) 70,70,100
100	IW=IW+1 $IB(IW)=IA(86)$
	GO TO 50
110 120	IF (IW-MAXIW) 120,100,40 IW=IW+1
120	J=J+1
	K=IW
	DO 130 L=J,IW IB(K)=IB(K-1)
130	K = K - 1 IB(J-1)=IA(86)

0	GO TO 20	
G 140	FORMAT (116HOTHE WORK ON THE FOLLOWING LINE WAS HALTED JUST BEFOR 1 THE MAXIMUM CHARACTER LINE LIMIT WAS EXCEEDED IN SULOCK) END	V
С		
С	SUBROUTINE CHECKI(IA,IB,ITEST,IOTAPE,IPTAPE,K,J) DIMENSION IA(86),IB(999) IF (K-1) 20,40,20	
20	$L=J-1 \\ D0 30 I=1,26 \\ L=L+1 \\ L=L+1$	
30	IF (IA(I)-IB(L)) 70,30,70 CONTINUE IF (K-2) 40,90,90	
40	K=1 WRITE (IOTAPE,100) (IA(I),I=1,80)	
50	IF (ITEST) 50,80,50 WRITE (IPTAPE,110) (IA(I),I=1,80)	
	IF (IPTAPE-6) 80,80,60	
60	END FILE IPTAPE GO TO 80	
70	K=0	
80	RETURN	
90	K=1	
100	GO TO 80 FORMAT (1X,80A1)	
110	FORMAT (IX, SOAT) FORMAT (80A1) END	
С		
C C		
C	SEARCH	SEAR0010
С		SEAR0020
	S CODE WAS WRITTEN IN FOUR SECTIONS DESIGNED TO WORK INDEPENDENTLY	
С С ТНЕ	INPUT FIRST CARD FOLLOWING \$DATA CONTAINS THE SPECIAL SEARCH CHARACTER	SEAR0040
C	IA(47) CONTAINS THE THE CHARACTER PRECEDING THE START OF A WORD	
С	NORMALLY A BLANK	SEAR0070
C C	IA(50) CONTAINS THE CHARACTER SIGNALING THE END OF A SEARCH WORL OR PHRASE , NORMALLY A BLANK OR A PERIOD.	SEAR0080
	SUGGESTED FORMAT FOR THE FIRST CARD IS GIVEN BELOW WHERE CARD	SEAR0100
	UMN ONE IS FOUND IN 11,2 IN 12, AND SO FORTH	SEAR0110
C	ABCDEFGHIJKLMNOPQRSTUVWXYZO123456789+.)\$*/, (=' -	SEAR0120
CIHE	SECOND CARD CONTAINS FOUR SWITCHES IN 12 FORMAT ITEST IS ONE WHEN THE CHOSEN LINES ARE TO BE WRITTEN AS CARD	SEAR0130 SEAR0140
С	IMAGES ON IPTAPE. ITEST = 0 WHEN NO CARDS ARE TO BE MADE	
С	INSIDE IS O IN THE ANCHORED MODE WHEN THE PROGRAM IS LOOKING	SEAR0160
C C	AT THE START OF ANY WORD IN THE CARD IMAGE. INSIDE IS	SEAR0170
C	1 IN THE UNANCHORED MODE WHEN THE SEARCH PHRASE IS TO BE LOCATED ANYWHERE ON THE CARD IMAGE.	SEAR0180 SEAR0190
	APE - A SPECIAL INPUT TAPE. IF ONE INPUT TAPE WILL DO,SET IRTAPE	SEAR0200
C	EQUAL TO ITAPE	SEAR0210
C IPT	APE - A SPECIAL OUTPUT TAPE. IT CAN BE USED AS AN INPUT TO OTHER	SEAR0220

С PROGRAMS, BUT CANNOT BE EQUATED WITH IOTAPE AS IOTAPE, IN SEAR0230 ADDITION TO NORMAL OUTPUT, CONTAINS OTHER PROGRAM MESSAGES C. SEAR0240 С AND ERROR REMARKS. SEAR0250 С SEAR0260 C THE THIRD CARD CONTAINS EITHER THE WORD 'AND' OR THE WORD 'OR' SEAR0270 C STARTING IN CARD COLUMN ONE. 'AND' BEING EQUAL TO 1. SEAR0280 С THE 'AND' DEMANDS THAT ALL SEARCH WORDS OR PHRASES MUST SEAR0290 С BE FOUND IN A CARD IMAGE IN ORDER TO BE CHOSEN. SEAR0300 С THE 'OR' REQUIRES ONLY THAT ONE OF THE SEARCH WORDS OR SEAR0310 С PHRASES BE FOUND IN ORDER TO BE CHOSEN. SEAR0320 C NOW FOLLOW THE SEARCH WORDS OR PHRASES . EACH STARTING IN CARD COLUMN SEARO330 С ONE AND ENDING WITH THE SYMBOL STORED IN IA(50) SEAR0340 C THE LAST CARD IS TO CONTAIN THE WORD FINIS STARTING IN CARD COLUMNSEAR0350 C ONE AND ENDING WITH THE SYMBOL IA(50) SEAR0360 С SEAR0370 C TAPES ARE LABELED ACCORDING TO THEIR USE. SEAR0380 C ITAPE - THE NORMAL SYSTEM INPUT TAPE. SEAR0390 C IOTAPE - THE NORMAL SYSTEM OUTPUT TAPE. SEAR0400 С SEAR0404 С CODE WRITTEN BY MRS CARLA G. MESSINA NSRDS NBS 1966 SEAR0406 С SEAR0410 DIMENSION IA(81), IB(81), ICOL(82), N(200), IC(8000) SEAR0420 ITAPE=5 SEAR0430 IOTAPE=6 **SEAR0440** READ (ITAPE, 1) (IA(J), J=1, 80)**SEAR0450** FORMAT(80A1) 1 SEAR0460 WRITE (IOTAPE, 2) (IA(J), J=1, 80)SEAR0470 2 FORMAT(1X,80A1) SEAR0480 READ (ITAPE, 200) ITEST, INSIDE, IRTAPE, IPTAPE SEAR0490 200 FORMAT(4012) SEAR0500 201 FORMAT (1X,4012) SEAR0510 IF (IRTAPE) 61,61,62 SEAR0520 61 IRTAPE=5 SEAR0530 GO TO 64 **SEAR0540** 62 IF (IRTAPE- 6) 64,64,63 SEAR0550 63 REWIND IRTAPE SEAR0560 64 IF (IPTAPE) 65,65,66 SEAR0570 65 IPTAPE = 3SEAR0580 GO TO 68 SEAR0590 66 IF (IPTAPE - 6) 68,68,67 **SEAR0600** 67 SEAR0610 REWIND IPTAPE 68 WRITE (IOTAPE, 201) ITEST, INSIDE, IRTAPE, IPTAPE SEAR0620 READ (ITAPE, 1) (IB(J), J=1, 80)SEAR0630 WRITE (IOTAPE,2) (IB(J), J=1,80) SEAR0640 IF (IB(1) - IA(1)) 4,69,4SEAR0650 IF (IB(2) - IA(14)) 4,70,469 SEAR0660 70 IF (IB(3) - IA(4)) 4,71,4SEAR0670 71 IAND = 1SEAR0680 WRITE (IOTAPE, 3) IA(1), IA(12), IA(12) SEAR0690 FORMAT (47HOTHE PROGRAM IS SEARCHING FOR LINES CONTAINING , 3A1, 26SEAR0700 3 1H OF THE WORDS GIVEN BELOW. //) SEAR0710 GO TO 5 SEAR0720 SEAR0730 4 IAND = 0SEAR0740 WRITE (IOTAPE, 3) IA(1), IA(14), IA(25) 5 N1=0SEAR0750

```
N3=1
                                                                             SEAR0760
6
      READ (ITAPE, 1) (IB(J), J=1, 80)
                                                                             SEAR0770
7
      N2=0
                                                                             SEAR0780
      J=1
                                                                             SEAR0790
      IF (IB(1) - IA(6)) 8,72,8
                                                                             SEAR0800
72
      IF (IB(2) - IA(9)) 8,73,8
                                                                             SEAR0810
73
      IF (IB(3) - IA(14)) 8.74.8
                                                                             SEAR0820
      IF (IB(4) - IA( 9)) 8,75,8
74
                                                                             SEAR0830
      IF (IB(5) - IA(19)) 8,76,8
75
                                                                             SEAR0840
      IF (IB(6) - IA(50)) 8, 17, 8
76
                                                                             SEAR0850
8
      DO 9 I=1,80
                                                                             SEAR0860
      IF (IB(I) - IA(50)) 9, 10, 9
                                                                             SEAR0870
9
      N2=I
                                                                             SEAR0880
10
      IF (N2) 6,6,11
                                                                             SEAR0890
11
      N1=N1+1
                                                                             SEAR0900
      N(N1) = N2
                                                                             SEAR0910
      N4=N3+N2-1
                                                                             SEAR0920
      IF (N4-8000) 14,14,12
                                                                             SEAR0930
12
      WRITE (IOTAPE,13) N4,N1
                                                                             SEAR0940
      FORMAT (47HOLIST OF SEARCH WORDS TOO LONG. PLEASE SHORTEN.
                                                                      ,/68H0SEAR0950
13
     1MAXIMUM CHARACTER LENGTH IS 8000 MAXIMUM NUMBER OF PHRASES IS 200SEAR0960
     2 /21H CURRENT VALUES ARE ,216)
                                                                             SEAR0970
999
      STOP
                                                                             SEAR0980
14
      IF (N1-200) 15,15,12
                                                                             SEAR0990
15
      J=1
                                                                             SEAR1000
      DO 16 I=N3,N4
                                                                             SEAR1010
      IC(I) = IB(J)
                                                                             SEAR1020
16
      J=J+1
                                                                             SEAR1030
      N3=N3+N2
                                                                             SEAR1040
      WRITE (IOTAPE, 2) (IB(J), J=1, N2)
                                                                             SEAR1050
      GO TO 6
                                                                             SEAR1060
      ICOL(1) = IA(47)
17
                                                                             SEAR1070
      WRITE (IOTAPE.2) IA(47)
                                                                             SEAR1080
      WRITE (IOTAPE,2) IA(47)
                                                                             SEAR1090
      WRITE (IOTAPE,2) IA(47)
                                                                            SEAR1100
      IF (IAND) 40,18,40
                                                                            SEAR1110
18
      IF (INSIDE) 19,30,19
                                                                            SEAR1120
19
      READ (IRTAPE, 1) (ICOL(J), J=2, 81)
                                                                            SEAR1130
      CALL CHECK1 (IA, ICOL, K, ITEST, IPTAPE, IOTAPE)
                                                                            SEAR1140
      IF (K) 999,190,999
                                                                            SEAR1150
190
      N3=1
                                                                            SEAR1160
      D0 24 Kl=1,N1
                                                                            SEAR1170
      N2=N(K1)
                                                                            SEAR1180
      N4=N3+N2-1
                                                                            SEAR1190
      I2=82-N2
                                                                            SEAR1200
      D0 22 I=2,I2
                                                                            SEAR1210
       Jl=1
                                                                            SEAR1220
      D0 20 J=N3.N4
                                                                            SEAR1230
      K=I+J1-1
                                                                            SEAR1240
      IF (ICOL(K) - IC(J)) 22,20,22
                                                                            SEAR1250
20
      J1=J1+1
                                                                            SEAR1260
      GO TO 26
                                                                            SEAR1270
22
      CONTINUE
                                                                            SEAR1280
      N3=N3+N2
24
                                                                            SEAR1290
      GO TO 19
                                                                            SEAR1300
```

```
WRITE (IOTAPE,2) (ICOL(J),J=2,81)
26
                                                                              SEAR1310
      IF (ITEST) 28,19,28
                                                                              SEAR1320
      WRITE (IPTAPE,1) (ICOL(J), J=2,81)
                                                                              SEAR1330
28
      GO TO 19
                                                                              SEAR1340
30
      READ (IRTAPE, 1) (ICOL(J), J=2, 81)
                                                                              SEAR1350
      CALL CHECK1 (IA, ICOL, K, ITEST, IPTAPE, IOTAPE)
                                                                              SEAR1360
      IF (K) 999,300,999
                                                                              SEAR1370
300
      N3=1
                                                                              SEAR1380
      DO 36 K1=1,N1
                                                                              SEAR1390
      N2=N(K1)
                                                                              SEAR1400
      N4=N3+N2-1
                                                                              SEAR1410
      I2=82-N2
                                                                              SEAR1420
      D0 34 I=2.I2
                                                                              SEAR1430
      IF (ICOL(I) - IA(47)) 77,34,77
                                                                              SEAR1440
77
      IF (ICOL(I-1) - IA(47)) 34,78,34
                                                                              SEAR1450
78
       J1=1
                                                                              SEAR1460
      DO 32 J=N3.N4
                                                                              SEAR1470
      K=I+J1-1
                                                                              SEAR1480
      IF (ICOL(K) - IC(J)) 34, 32, 34
                                                                              SEAR1490
                                                                              SEAR1500
32
      J1=J1+1
      GO TO 38
                                                                              SEAR1510
34
      CONTINUE
                                                                              SEAR1520
36
      N3=N3+N2
                                                                              SEAR1530
      GO TO 30
                                                                              SEAR1540
38
      WRITE (IOTAPE, 2) (ICOL(J), J=2, 81)
                                                                              SEAR1550
      IF (ITEST) 39,30,39
                                                                              SEAR1560
39
      WRITE (IPTAPE,1) (ICOL(J), J=2,81)
                                                                              SEAR1570
      GO TO 30
                                                                              SEAR1580
40
      IF (INSIDE) 42,50,42
                                                                              SEAR1590
      READ (IRTAPE,1) (ICOL(J), J=2, 81)
42
                                                                              SEAR1600
      CALL CHECK1 (IA, ICOL, K, ITEST, IPTAPE, IOTAPE)
                                                                              SEAR1610
      IF (K) 999,420,999
                                                                              SEAR1620
420
      N3 = 1
                                                                              SEAR1630
      D0 48 Kl=1,Nl
                                                                              SEAR1640
      N2=N(K1)
                                                                              SEAR1650
      N4=N3+N2-1
                                                                              SEAR1660
      I2=82-N2
                                                                              SEAR1670
      D0 46 I=2,I2
                                                                              SEAR1680
       J1=1
                                                                              SEAR1690
      DO 44 J=N3,N4
                                                                              SEAR1700
      K=I+J1-1
                                                                              SEAR1710
      IF (ICOL(K) - IC(J)) 46,44,46
                                                                              SEAR1720
44
      J1=J1+1
                                                                              SEAR1730
      GO TO 48
                                                                              SEAR1740
46
      CONTINUE
                                                                              SEAR1750
      GO TO 42
                                                                              SEAR1760
48
      N3=N3+N2
                                                                              SEAR1770
      WRITE (IOTAPE,2) (ICOL(J), J=2,81)
                                                                              SEAR1780
      IF (ITEST) 49,42,49
                                                                              SEAR1790
                                                                              SEAR1800
49
      WRITE (IPTAPE,1) (ICOL(J),J=2,81)
      GO TO 42
                                                                              SEAR1810
50
      READ (IRTAPE, 1) (ICOL(J), J=2, 81)
                                                                              SEAR1820
      CALL CHECK1 (IA, ICOL, K, ITEST, IPTAPE, IOTAPE)
                                                                              SEAR1830
      IF (K) 999,500,999
                                                                              SEAR1840
500
                                                                              SEAR1850
      N3=1
```

	D0 58 K1=1,N1	SEAR1860
	N2=N(K1)	SEAR1870
	N4=N3+N2-1	SEAR1880
	I2=82-N2	SEAR1890
	D0 56 I=2,I2	SEAR1900
	IF (ICOL(I) - IA(47)) 79,56,79	SEAR1910
79	IF $(ICOL(I-1) - IA(47))$ 56,80,56	SEAR1920
80	J1=1	SEAR1930
	D0 54 J=N3,N4	SEAR1940
	K=I+J1-1	SEAR1950
	IF (ICOL(K) - IC(J)) 56,54,56	SEAR1960
54	J1=J1+1	SEAR1970
Ŭ -	GO TO 58	SEAR1980
56	CONTINUE	SEAR1990
50	GO TO 50	SEAR2000
58	N3=N3+N2	SEAR2010
50	WRITE (IOTAPE,2) (ICOL(J), J=2,81)	SEAR2010 SEAR2020
		SEAR2020 SEAR2030
50	IF (ITEST) 59,50,59	
59	WRITE (IPTAPE,1) (ICOL(J),J=2,81)	SEAR2040
	GO TO 50	SEAR2050
~	END	SEAR2060
С		~~~~~
	SUBROUTINE CHECK1 (IA, II, K, ITEST, IPTAPE, IOTAPE)	SECK0010
	DIMENSION IA(81), II(82), IJ(82)	SECK0020
	D0 40 I = 2, 81	SECK0030
40	IJ(I-1) = II(I)	SECK0040
	D0 10 I=1,26	SECK0050
	IF $(IA(I)-IJ(I))$ 50,10,50	SECK0060
10	CONTINUE	SECK0070
	K=1	SECK0080
	WRITE (IOTAPE,19) (IA(I), I=1,80)	SECK0090
	IF (ITEST) 20,60,20	SECK0100
20	WRITE (IPTAPE,29) (IA(I),I=1,80)	SECK0110
	IF (IPTAPE -6) 60,60,30	SECK0120
30	END FILE IPTAPE	SECK0130
	GO TO 60	SECK0140
50	K=0	SECK0150
60	RETURN	SECK0160
19	FORMAT (1X,80A1)	SECK0170
29	FORMAT (80Å1)	SECK0180
	END	SECK0190
С		
С		
C	BLOCK SEARCH	BSEA0001
C		BSEA0002
C	THIS PROGRAM PERFORMS A SEARCH IN A FILE MADE UP OF VARIABLE	BSEA0004
		BSEA0006
		BSEA0008
	THE DESIRED STRING OR STRINGS ARE FOUND WITHIN IT. THE BLOCK	BSEA0010
	IMITER, SEARCH STRATEGIES AND DESIRED STRINGS ARE INPUT PARAMETERS.	
C		BSEA0020
	FIRST CARD FOLLOWING THE XQT CONTAINS THE SPECIAL SEARCH CHARACTER	
C	A(47) CONTAINS THE THE CHARACTER PRECEDING THE START OF A WORD	
C	NORMALLY A BLANK	BSEA0040 BSEA0050
C	A(50) CONTAINS THE CHARACTER SIGNALING THE END OF A SEARCH WORL	
Ŭ	and a second and an and a second a second work	2.2.2

OR PHRASE , NORMALLY A BLANK OR A PERIOD. С BSEA0070 C THE SUGGESTED FORMAT FOR THE FIRST CARD IS GIVEN BELOW WHERE CARD BSEA0080 C COLUMN 1 IS IN LOCATION 11, 2 IS IN 12 ETC. **BSEA0090** ABCDEFGHIJKLMNOPQRSTUVWXYZO123456789+.)\$*/, (-' = С BSEA0100 C THE SECOND CARD CONTAINS FIVE SWITCHES IN (12) FORMAT BSEA0110 С IS NONZERO WHEN THE CHOSEN ONES ARE TO BE WRITTEN AS CARDBSEA0120 ITEST С IMAGES ON LOGICAL UNIT IPTAPE. ITEST =0 WHEN NO CARDS BSEA0130 С ARE TO BE MADE. **BSEA0140** IS O WHEN THE CODE IS TO LOOK ONLY AT THE START OF ANY BSEA0150 С INSIDE С WORD IN THE CARD IMAGE. INSIDE = 1. WHEN THE SEARCH BSEA0160 С STRING IS SOUGHT ANYWHERE ON THE CARD IMAGE. BSEA0170 С IS THE LENGTH OF THE BLOCK FLAG ON THE FOLLOWING CARD. BSEA0180 IFLAG С IF IFLAG IS LEFT BLANK, THE ENTIRE CARD WILL BE CONDIDEREDBSEA0190 С THE FLAG. BSEA0200 С IS THE LOGICAL UNIT TO READ THE INPUT RECORDS FROM. IF IRTAPE **BSEA0210** С ZERO, IT IS SET TO 5(UNIVAC 1108 CARD READER) BSEA0220 С IPTAPE IS THE LOGICAL UNIT TO WRITE THE OUTPUT RECORDS ON. IF BSEA0230 С ZERO, IT IS SET TO 3(UNIVAC 1108 CARD PUNCH) **BSEA0240** С IWIDE1 IS THE WIDTH OF THE LIBRARY IMAGES ON UNIT IRTAPE. IF BSEA0244 IWIDE1 IS NOT A VALUE BETWEEN 0 AND 132 IT IS SET TO 80 BSEA0246 С C THE THIRD CARD CONTAINS THE BLOCK FLAG STARTING IN CARD COLUMN ONE ANBSEA0250 CONTINUING UP TO CARD COLUMN IFLAG OR 80 С BSEA0260 C THE FOURTH CARD CONTAINS EITHER THE WORD 'AND' OR THE WORD 'OR' BSEA0270 C STARTING IN CARD COLUMN ONE. 'AND' BEING EQUAL TO 1. BSEA0280 THE 'AND' DEMANDS THAT ALL SEARCH WORDS OR PHRASES MUST BSEA0290 С С BE FOUND IN A CARD IMAGE IN ORDER TO BE CHOSEN. BSEA0300 С THE 'OR' REQUIRES ONLY THAT ONE OF THE SEARCH WORDS OR BSEA0310 PHRASES BE FOUND IN ORDER TO BE CHOSEN. С **BSEA0320** C NOW FOLLOW THE SEARCH WORDS OR PHRASES . EACH STARTING IN CARD COLUMN BSEA0330 ONE AND ENDING WITH THE SYMBOL STORED IN A(50) С **BSEA0340** C THE LAST CARD IS TO CONTAIN THE WORD FINIS STARTING IN CARD COLUMN BSEA0350 С ONE. AND ENDING WITH THE SYMBOL A(50). **BSEA0360** C THE CODE NOW STARTS READING THE LIBRARY IMAGES FROM UNIT IRTAPE. **BSEA0370** С **BSEA0375** CODE WRITTEN BY MRS CARLA G. MESSINA NSRDS NBS 1966 С BSEA0380 С BSEA0390 DIMENSION IA(81), IB(81), IC(8080), ID(140), IFLAGS(80), N(200) BSEA0400 DIMENSION ICOL(8300) **BSEA0410** COMMON ITEST, ITAPE, IOTAPE, IRTAPE, IPTAPE, IA, IB, IC, ID, IFLAGS, N, ICOL BSEA0420 ITAPE=5 **BSEA0430** IOTAPE=6 **BSEA0440 BSEA0450** IEND=1 READ (ITAPE,9) (IA(J),J=1,80)**BSEA0460 BSEA0470** WRITE (IOTAPE, 19) (IA(I), I=1,80) READ (ITAPE,29) ITEST, INSIDE, IFLAG, IRTAPE, IPTAPE, J, IWIDE1 BSEA0480 IF (IRTAPE) 10,10,20 **BSEA0490** 10 IRTAPE=5 **BSEA0500** GO TO 30 BSEA0510 20 BSEA0520 IF (IRTAPE - 6) 30,30,25 **BSEA0530** 25 REWIND IRTAPE 30 **BSEA0540** IF (IPTAPE) 32,32,34 32 **BSEA0550** IPTAPE=3 IWIDE3=81 BSEA0560 GO TO 36 **BSEA0570 BSEA0580** 34 IF (IPTAPE - 6) 32,32,35

35	REWIND IPTAPE	BSEA0590
36	IF (IFLAG)50,50,40	BSEA0600
40	IF (IFLAG-80) 60,60,50	BSEA0610
50	IFLAG =80	BSEA0620
60	WRITE (IOTAPE, 39) ITEST, INSIDE, IFLAG, IRTAPE, IPTAPE	3SEA0630
	IF (J-1) 63,61,62	BSEA0640
61	IWIDE1= IWIDE1 + 100	BSEA0650
	IF (IWIDE1 - 132) 63,63,62	BSEA0660
62	J=0	BSEA0670
	IWIDE1 = 80	BSEA0680
	$G0 T0^{1}64$	BSEA0690
63	IF (IWIDE1) 62,62,64	BSEA0700
64	READ (ITAPE,9) (IFLAGS(J), $J=1$, IFLAG)	BSEA0710
04	WRITE $(IOTAPE, 19)$ $(IFLAGS(J), J=1, IFLAG)$	BSEA0720
C.F.	IF (IPTAPE-6) 66,66,65	BSEA0730
65	IWIDE3=IWIDE1+1	BSEA0740
66	READ (ITAPE,9) (IB(J),J=1,80)	BSEA0750
	IF $(IB(1) - IA(1)) 90,70,90$	BSEA0760
70	IF $(IB(2) - IA(14))$ 90,80,90	BSEA0770
80	IF (IB(3) - IA(4)) 90,85,90	BSEA0780
85	IAND =1	BSEA0790
	WRITE (IOTAPE,49) IWIDE1,IA(1),IA(12),IA(12)	BSEA0800
	GO TO 100	BSEA0810
90	IAND = 0	BSEA0820
	WRITE (IOTAPE,49) IWIDE1,IA(1),IA(14),IA(25)	BSEA0830
100	N1=0	BSEA0840
	N3=1	BSEA0850
	L4=0	BSEA0860
110	READ $(ITAPE,9)$ $(IB(J), J=1, 80)$	BSEA0870
	WRITE $(IOTAPE, 19)$ $(IB(J), J=1, 80)$	BSEA0880
	N2=0 ^(10,10,2) , (12,(0), (0,1), (0,0)	BSEA0890
	IF (IB(1) - IA(6)) 170,120,170	BSEA0900
120	IF (IB(2) - IA(9)) 170,130,170	BSEA0910
130	IF (IB(3) - IA(14))170,140,170	BSEA0920
140	IF (IB(3) - IA(14))170,140,170 IF (IB(4) - IA(9))170,150,170	BSEA0930
150	IF $(IB(5) - IA(19))170, 160, 170$	BSEA0940
160	IF (IB(6) - IA(50))170,260,170	BSEA0950
170	D0 180 I=1,80	BSEA0960
	IF (IB(I) - IA(50)) 180,190,180	BSEA0970
180	N2=I ·	BSEA0980
190	IF (N2) 110,110,200	BSEA0990
200	N1=N1+1	BSEA1000
	N(N1)=N2	BSEA1010
	N4=N3+N2-1	BSEA1020
	IF (N4-8000) 220,220,210	BSEA1030
210	WRITE (IOTAPE,59) N4,N1	BSEA1040
9999	STOP	BSEA1050
220	IF (N1-200) 230,230,210	BSEA1060
230	J=1	BSEA1070
	D0 240 I=N3,N4	BSEA1080
	IC(I) = IB(J)	BSEA1090
240	J=J+1	BSEA1100
	N3=N3+N2	BSEA1110
	GO TO 110	BSEA1120
260	WRITE (IOTAPE,19) IA(47)	BSEA1130
	· · · · · · · · · · · · · · · · · · ·	

```
WRITE (IOTAPE, 19) IA(47)
                                                                             BSEA1140
      WRITE (IOTAPE, 19) IA(47)
                                                                             BSEA1150
      IWIDE2= IWIDE1+1
                                                                             BSEA1160
      D0 270 I=1,8250,IWIDE2
                                                                             BSEA1170
270
      ICOL(I) = IA(47)
                                                                             BSEA1180
280
      L1=-IWIDE1+1
                                                                             BSEA1190
      L2=0
                                                                             BSEA1200
      L3=0
                                                                             BSEA1210
      IF (L2-8181) 310,300,300
290
                                                                             BSEA1220
300
      WRITE (IOTAPE,69) (ID(J),J=1,IWIDE1)
                                                                             BSEA1230
      L4=0
                                                                             BSEA1240
      GO TO 380
                                                                             BSEA1250
310
      READ (IRTAPE,9) (ID(J),J=1,IWIDE1)
                                                                             BSEA1260
      CALL CHECK4(1, IEND)
                                                                             BSEA1270
      IF (IEND) 305,325,305
                                                                             BSEA1280
305
      D0 320 I=1, IFLAG
                                                                             BSEA1290
      IF (IFLAGS(I) - ID(I)) 350,320,350
                                                                             BSEA1300
320
      CONTINUE
                                                                             BSEA1310
C THIS CARD SIGNALS THE END OF A BLOCK OF CARDS, IF L3 IS ZERO THE LASTBSEA1320
     CARD WAS ALSO THE END OF A BLOCK.
С
                                                                             BSEA1330
      IF (L3) 330,330,370
                                                                             BSEA1340
325
330
      L4=0
                                                                             BSEA1350
      L3=1
                                                                             BSEA1360
      L2=IWIDE2
                                                                             BSEA1370
                                                                             BSEA1380
      L1=2
      J=1
                                                                            BSEA1390
      DO 340 I=L1,L2
                                                                            BSEA1400
      ICOL(I) = ID(J)
                                                                            BSEA1410
340
      J=J+1
                                                                            BSEA1420
      GO TO 380
                                                                             BSEA1430
350
      L3=L3+1
                                                                            BSEA1440
      L2=L2+IWIDE2
                                                                            BSEA1450
                                                                            BSEA1460
      L1=L1+IWIDE2
                                                                            BSEA1470
      J=1
                                                                            BSEA1480
      D0 360 I=L1,L2
                                                                            BSEA1490
      ICOL(I) = ID(J)
      J=J+1
                                                                            BSEA1500
360
      GO TO 290
                                                                            BSEA1510
                                                                            BSEA1520
370
      L4=1
                                                                            BSEA1530
      IF (IAND), 490, 390, 490
380
390
      IF (INSIDE) 400,440,400
                                                                            BSEA1540
400
      N3=1
                                                                            BSEA1550
      DO 430 K1=1,N1
                                                                            BSEA1560
      N2=N(K1)
                                                                            BSEA1570
                                                                            BSEA1580
      N4=N3+N2-1
                                                                            BSEA1590
      I2=L2-N2+1
                                                                            BSEA1600
      D0 420 I=2,I2
                                                                            BSEA1610
      J1=1
                                                                            BSEA1620
      DO 410 J=N3,N4
                                                                            BSEA1630
      K=I+J1-1
      IF (ICOL(K) - IC(J)) 420,410,420
                                                                            BSEA1640
                                                                            BSEA1650
410
      J1=J1+1
                                                                            BSEA1660
      GO TO 590
420
      CONTINUE
                                                                            BSEA1670
430
      N3=N3+N2
                                                                            BSEA1680
```

	GO TO 630	BSEA1690
440	N3=1	BSEA1700
	D0 480 K1=1,N1	BSEA1710
	N2=N(K1)	BSEA1720
	N4=N3+N2-1	BSEA1730
	12=L2-N2+1	BSEA1740
	D0 470 I=2,I2	BSEA1750
	IF (ICOL(I) - IA(47)) 450,470,450	BSEA1760
450	IF (ICOL(I-1) - IA(47)) 470,455,470 IF (ICOL(I-1) - IA(47)) 470,455,470	
450		BSEA1770
455	J1=1	BSEA1780
	D0 460 J=N3,N4	BSEA1790
	K=I+J1-1	BSEA1800
	IF $(ICOL(K) - IC(J))$ 470,460,470	BSEA1810
460	J1=J1+1	BSEA1820
	GO TO 590	BSEA1830
470	CONTINUE	BSEA1840
480	N3=N3+N2	BSEA1850
	GO TO 630	BSEA1860
490	IF (INSIDE) 500,540,500	BSEA1870
500	N3=1	BSEA1880
-	D0 530 K1=1,N1	BSEA1890
	N2=N(K1)	BSEA1900
	N4=N3+N2-1	BSEA1910
	I2=L2-N2+1	BSEA1920
	D0 520 I=2, I2	BSEA1930
	J1=1	BSEA1930
	D0 510 J=N3,N4	BSEA1950
	K=I+JI-I	BSEA1960
= 1.0	IF $(ICOL(K) - IC(J))$ 520,510,520	BSEA1970
510	J1=J1+1	BSEA1980
	GO TO 530	BSEA1990
520	CONTINUE	BSEA2000
	GO TO 630	BSEA2010
530	N3=N3+N2	BSEA2020
	GO TO 590	BSEA2030
540	N3=1	BSEA2040
	D0 580 K1=1,N1	BSEA2050
	N2=N(K1)	BSEA2060
	N4=N3+N2-1	BSEA2070
	I2=L2-N2+1	BSEA2080
	D0 560 I=2,I2	BSEA2090
	IF (ICOL(I) - IA(47)) 545,570,545	BSEA2100
545	IF $(ICOL(I-1) - IA(47))$ 570,550,570	BSEA2110
550	J1=1	BSEA2120
	D0 560 J=N3,N4	BSEA2130
	K=I+J1-1	BSEA2140
	IF (ICOL(K) - IC(J)) 570,560,570	BSEA2150
560	J1=J1+1	BSEA2160
000	G0 T0 580	BSEA2100
570		
570	CONTINUE	BSEA2180
	CONTINUE GO TO 630	BSEA2180 BSEA2190
580	CONTINUE GO TO 630 N3=N3+N2	BSEA2180 BSEA2190 BSEA2200
	CONTINUE GO TO 630 N3=N3+N2 DO 600 I=1,L2,IWIDE2	BSEA2180 BSEA2190 BSEA2200 BSEA2210
580	CONTINUE GO TO 630 N3=N3+N2	BSEA2180 BSEA2190 BSEA2200

	IF (ITEST) 610,630,610	DCEA0040
610	D0 620 I=1,L2,IWIDE3	BSEA2240 BSEA2250
010	L5=I+IWIDE3-1	
690	WRITE (IPTAPE,9) (ICOL(J), J =L4, L5)	BSEA2260
620		BSEA2270
630	CALL CHECK4(0, IEND)	BSEA2280
	IF (IEND) 640,9999,640	BSEA2290
640	IF (L4) 280,280,650	BSEA2300
650	L4=0	BSEA2310
	L3=1	BSEA2320
	L2=IWIDE1+1	BSEA2330
	L1=2	BSEA2340
	J=1	BSEA2350
	D0 660 I=L1,L2	BSEA2360
	ICOL(I) = ID(J)	BSEA2370
660	J=J+1	BSEA2380
	GO TO 310	BSEA2390
9	FORMAT (132A1)	BSEA2400
19	FORMAT (1X,131A1)	BSEA2410
29	FORMAT (4012)	BSEA2420
39	FORMAT (1X,4012)	BSEA2430
49	FORMAT (46HOTHE PROGRAM IS SEARCHING IN LINES OF LENGTH ,114,	BSEA2440
	112H CONTAINING , 3A1, 26H OF THE WORDS GIVEN BELOW. //)	BSEA2450
59	FORMAT (47HOLIST OF SEARCH WORDS TOO LONG. PLEASE SHORTEN. ,/68HO	BSEA2460
	1MAXIMUM CHARACTER LENGTH IS 8000. MAXIMUM NUMBER OF PHRASES IS 200	
	2 /21H CURRENT VALUES ARE ,216)	BSEA2480
69	FORMAT (74HOBLOCK IS TOO LONG. BLOCK IS CONSIDERED TERMINATED WITH	
00	1 THE FOLLOWING CARD ,//1X,131A1//)	BSEA2500
	END	BSEA2510
С	RVD	DOBACOTO
U	SUBROUTINE CHECK4(IT,K)	BSCK0010
	DIMENSION IA(81), IB(81), IC(8080), ID(140), IFLAGS(80), N(200)	BSCK0020
	DIMENSION ICOL(8300)	BSCK0030
	COMMON ITEST, ITAPE, IOTAPE, IRTAPE, IPTAPE, IA, IB, IC, ID, IFLAGS, N, ICOL	
	IF (IT) 10,60,10	BSCK0050
10	D0 20 $I=1,26$	BSCK0050 BSCK0060
10		BSCK0080 BSCK0070
20	IF $(IA(I)-ID(I))$ 40,20,40	BSCK0070 BSCK0080
20	CONTINUE	
	K=0	BSCK0090
	GO TO 50	BSCK0100
30	ENDFILE IPTAPE	BSCK0110
	GO TO 50	BSCK0120
40	K=1	BSCK0130
50	RETURN	BSCK0140
60	IF (K) 50,70,50	BSCK0150
70	WRITE $(IOTAPE,9)$ $(IA(J), J=1, 80)$	BSCK0160
	IF (ITEST) 80,50,80	BSCK0170
80	WRITE (IPTAPE, 19) (IA(J), J=1, 80)	BSCK0180
	IF (IPTAPE-6) 50,50,30	BSCK0190
9	FORMAT (1X,131A1)	BSCK0200
19	FORMAT (132A1)	BSCK0210
	END	BSCK0220
С		
С		
С	JUSTIFY	JUAT 1
С		JUAT 2

JUSTIFY PRODUCES RIGHT-HAND JUSTIFIED TEXT WHILE RECOGNIZING С JUAT 3 THE START OF A NEW PARAGRAPH BY LEADING BLANKS AND RECOGNIZING С JUAT 4 SYMBOLS IN CONTROL FIELD 72 OF THE CARD FOR INDENTING (N), FOR С JUAT 5 CENTERING LINES (C), FOR IGNORING LINES (I), FOR LEAVING LINES С JUAT •6 С UNALTERED (D), AND FOR CREATING RUNAROUNDS (R). JUAT 7 JUSTIFY REFORMATS PARAGRAPHS BY FIRST REMOVING ALL EXTRANEOUS С JUAT 8 BLANKS AND THEN REMAKES THE PARAGRAPH INTO LINES OF THE SPECIFIED JUAT 9 С WIDTH WITHOUT HYPENATING WORDS. TO MAKE RIGHT HAND JUSTIFIED LINJUAT 10 С С EXTRA SPACES ARE REINSERTED AS NECESSARY. JUAT 11 С JUAT 12 С THE FIRST INPUT DATA CARD, STORED IN THE DIMENSIONED ARRAY A(80), JUAT 13 С CONTAINS CONTROL LETTERS AND SYMBOLS. THE CARD FIELDS ARE TREATEDJUAT 14 С FOLLOWS. JUAT 15 С JUAT 16 С A(1) TO A(26) CONTAINS THE ALPHABET JUAT 17 THEREFORE A(3) IS ASSUMED TO BE C, A(4) TO BE D, ETC JUAT 18 С A(27) TO A(36) CONTAINS THE INTEGERS STARTING WITH ZERO JUAT 19 С С CONTAINS A PERIOD OR END OF SENTENCE SYMBOL.JUAT 20 A(38) TERMINATES THE READING OF A CARD. ANYTHING JUAT 21 С A(39) С FOUND IN FURTHER FIELDS OF THE CARD WILL BE IGNORED JUAT 22 С EXCEPT CONTROL LETTERS IN CARD FIELD 72. JUAT 23 A(45) С IS USED TO INDICATE THAT THE OUTPUT LINE IS JUAT 24 С CONTINUED ONTO THE NEXT CARD. JUAT 25 С SHIFT SYMBOL USED IN LOCK AND UNLOCK A(46) JUAT 26 NORMALLY A BLANK, IS THE CHARACTER WHICH JUAT 27 С A(47) SEPARATES WORDS. IT IS, THEREFORE, THE ONLY VALID С JUAT 28 С CHARACTER AT WHICH TO BREAK A LINE. NOTE THAT THIS JUAT 29 С PROGRAM REMOVES ALL EXTRA SPACES BETWEEN WORDS. IF JUAT 30 С RESERVED SPACES ARE DESIRED A SPECIAL CHARACTER OTHERJUAT 31 С THAN A(47) MUST BE USED. JUAT 32 С A(48) IS A TAB INDICATOR. THIS SYMBOL IS TREATED JUAT 33 AN A(47) WHEN ENCOUNTERED IN THE INPUT TEXT EXCEPT С JUAT 34 С THAT IT WILL NOT START A NEW PARAGRAPH IF ENCOUNTEREDJUAT 35 С IN CARD COLUMN ONE. JUAT 36 С CONTAINS AN INTEGER COUNT OF THE NUMBER OF JUAT 37 A(60) С FIGURING THE LENGTH OF THE OUTPUT LINE, ALL OTHER JUAT 39 С CHARACTERS AND SYMBOLS HAVE A WIDTH OF ONE. THESE NO JUAT 40 С COUNT SYMBOLS ARE PUNCHED STARTING IN A(61). JUAT 41 С JUAT 42 С THE SECOND INPUT CARD CONTAINS CONTROL SWITCHES IN (13) FORMAT. JUAT 43 С JUAT 44 С FIELD USE JUAT 45 С JUAT 46 С WIDTH OF OUTPUT RECORDS JUAT 47 1 NONZERO INSERTS SPACES TO RIGHT JUSTIFY LINES. С 2 JUAT 48 С A ZERO FORMATS LINES WITHOUT EXTRA SPACES INSERTED. JUAT 49 С 3 NONZERO WRITES A PUNCH TAPE, ZERO SUPRESSES PUNCH. JUAT 50 NONZERO CALLS SUBROUTINES LOCK AND UNLOCK. С 4 JUAT 51 JUAT 52 UNIT NO. OF READ TAPE(SET TO 5 IS ZERO) С 5 UNIT NO. OF PUNCH TAPE (SET TO 3 IF ZERO) 6 С JUAT 53 С 7ZERO INSERTS ONE EXTRA SPACE AFTER A PERIOD A(38) JUAT 54 С WHEN POSSIBLE. JUAT 55 С JUAT 56 С A ''PARAGRAPH'' IS CONSIDERED ENDED BY ONE OR MORE BLANKS AT THE JUAT 57 С BEGINNING OF A NEW LINE, A CARD CONTAINING ALL BLANKS, A CARD JUAT 58

С CONTAINING ONLY BLANKS AND A(39)'S, OR A CARD CONTAINING THE SPECJUAT 59 С LETTERS, A(3), A(4), A(14), OR A(18), IN CARD COLUMN 72. JUAT 60 С JUAT 61 С CODE WRITTEN BY MRS. CARLA G. MESSINA OF NSRDS-NBS 1965 JUAT 62 С JUAT 63 JUAT 64 COMMON ITAPE. IRTAPE. IOTAPE, IPTAPE COMMON SWITCH, N, N1, N2, NOPAR, IW2, ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC JUAT 65 CODE BY MRS CARLA G. MESSINA NSRDS - NBS 1967 JUAT 66 С DIMENSION ICOL(80), ICP(360), ICT(360), IC(8002), IA(80), SWITCH(100) JUAT 67 DIMENSION ISWIT(100) JUAT 68 ITAPE=5 JUAT 69 JUAT 70 IOTAPE=6 JUAT 71 N=0JUAT 72 N1=0 JUAT 73 NOPAR=0 JUAT 74 READ (ITAPE, 670). (IA(J), J=1, 80)WRITE (IOTAPE, 680) (IA(J), J=1, 80) JUAT 75 READ (ITAPE, 690) IW, IJUST, ITEST, (ISWIT(J), J=1, 21) JUAT 76 IRTAPE=ISWIT(2) JUAT 77 IPTAPE=ISWIT(3) JUAT 78 IF (IRTAPE) 20,20,30 JUAT 79 JUAT 80 20 IRTAPE=5 JUAT 81 GO TO 50 JUAT 82 IF (IRTAPE-6) 50,50,40 30 JUAT 83 40 REWIND IRTAPE 50 IF (IPTAPE) 60,60,70 JUAT 84 60 IPTAPE=3 JUAT 85 GO TO 90 JUAT 86 70 JUAT 87 IF (IPTAPE-6) 90,90,80 80 REWIND IPTAPE JUAT 88 JUAT 89 90 DO 100 J=1,100 JUAT 90 100 SWITCH(J) = 0.0JUAT 91 SWITCH(1)=1. K=1 JUAT 92 DO 120 J=2,21 JUAT 93 IF (ISWIT(J)) 120,120,110 JUAT 94 110 K=J JUAT 95 SWITCH(J) = ISWIT(J)JUAT 96 JUAT 97 120 CONTINUE JUAT 98 WRITE (IOTAPE,700) IW, IJUST, ITEST, (ISWIT(J), J=1, K) IF (ISWIT(1)) 130,140,130 JUAT 99 130 SWITCH(3)=ISWIT(1) JUAT100 140 WRITE (IOTAPE,730) IW JUAT101 D0 150 I=1,8002 JUAT102 150 IC(I) = IA(47)JUAT103 IF (IW-20) 480,470,470 JUAT104 160 READ (IRTAPE, 670) (ICOL(J), J=1, 80) JUAT105 CALL CHECK3 (K) JUAT106 IF (K) 170,180,170 JUAT107 170 STOP JUAT108 180 IF (ICOL(72)-IA(4)) 500,590,500 JUAT109 190 IF (NOPAR) 200,210,200 JUAT110 200 NOPAR=0 JUAT111 CALL OUTPUT JUAT112 210 GO TO (540,550,560,570), IS JUAT113

220	N2=0	JUAT114
	IF (ICOL(1)-IA(47)) 230,260,230	JUAT115
230	IF (ICOL(1)-IA(39)) 250,590,250	JUAT116
2,40	N1=0	JUAT117
	N=O	JUAT118
	NOPAR=1	JUAT119
	GO TO 330	JUAT120
250	IF (NOPAR) 330,240,330	JUAT121
260	IF (NOPAR) 270,280,270	JUAT122
270	CALL OUTPUT	JUAT123
	NOPAR=0	JUAT124
280	D0 290 J=1,80	JUAT125
	N1=J	JUAT126
	IF (ICOL(J)-IA(47)) 300,290,300	JUAT127
290	CONTINUE	JUAT128
	GO TO 590	JUAT129
300	IF (ICOL(N1)-IA(39)) 310,590,310	JUAT130
310	N2=N1	JUAT131
	NOPAR=1	JUAT132
	N=N1	JUAT133
	N1=N1-1	JUAT134
	D0 320 J=1,N	JUAT135
320	IC(J) = ICOL(J)	JUAT136
330	N=N+1	JUAT137
	IF (N-7999) 350,340,350	JUAT138
340	WRITE (IOTAPE,710)	JUAT139
	GO TO 260	JUAT140
350	ISP=0	JUAT141
	N2=N2+1	JUAT142
	IF (N2-80) 360,360,400	JUAT143
360	IF (ICOL(N2)-IA(47)) 370,430,370	JUAT144
370	IF (ICOL(N2)-IA(48)) 380,620,380	JUAT145
380	IF (ICOL(N2)-IA(39)) 390,400,390	JUAT146
390	IF (ICOL(N2)-IA(45)) 420,400,420	JUAT147
400	IF (ISP) 490,410,490	JUAT148
410	IC(N) = IA(47)	JUAT149
	GO TO 160	JUAT150
420	ISP=0	JUAT151
	IC(N) = ICOL(N2)	JUAT152
	GO TO 450	JUAT153
430	IF (ISP) 460,440,460	JUAT154
440	IC(N) = IA(47)	JUAT155
	ISP=1	JUAT156
450	N=N+1	JUAT157
460	N2=N2+1	JUAT158
	IF (N2-80) 360,360,400	JUAT159
470	IF (IW-120) 640,640,480	JUAT160
480	WRITE (IOTAPE,720) IW	JUAT161
	STOP	JUAT162
490	N=N-1	JUAT163
	GO TO 160	JUAT164
500	IF (ICOL(72)-IA(9)) 510,160,510	JUAT165
510	IF (ICOL(72)-IA(18)) 520,600,520	JUAT166
520	IF (ICOL(72)-IA(3)) 530,610,530	JUAT167
530	IF (ICOL(72)-IA(14)) 220,580,220	JUAT168

540	CALL IOCENT	JUAT169
	GO TO 160	JUAT170
550	CALL RABOUT	JUAT171
5.00	GO TO 160	JUAT172
560	CALL IOSAME	JUAT173
570	GO TO 160	JUAT174
570	CALL INDENT	JUAT175
	WRITE (IOTAPE,730) IW GO TO 160	JUAT176 JUAT177
580	IS=4	JUAT178
500	GO TO 190	JUAT179
590	IS=3	JUAT180
000	G0 T0 190	JUAT181
600	IS=2	JUAT182
	GO TO 190	JUAT183
610	IS=1	JUAT184
	GO TO 190	JUAT185
620	IF (N2-1) 480,630,430	JUAT186
630	ISP=1	JUAT187
	GO TO 430	JUAT188
640	D0 650 I=28,36	JUAT189
	IF (IA(60)-IA(I)) 650,660,650	JUAT190
650	CONTINUE	JUAT191
	SWITCH(2)=0.0	JUAT192
	IA(61) = IA(46)	JUAT193
	GO TO 160	JUAT194
660	SWITCH(2)=I-27	JUAT195
a	GO TO 160	JUAT196
C 670	EODMAE (9041)	JUAT197
680	FORMAT (80A1) FORMAT (1X,80A1)	JUAT198 JUAT199
690	FORMAT (12,30AT)	JUAT200
700	FORMAT (12413)	JUAT201
710	FORMAT (17,2410) FORMAT (62HOONLY 8000 CHARACTERS OF A PARAGRAPH ARE JUSTIFIED AT	
	1 TIME.)	JUAT203
720	FORMAT (50H1THE WIDTH CANNOT BE LESS THAN 20 OR MORE THAN 120,4H	
	1W=, I3)	JUAT205
730	FORMAT (29H THE WIDTH OF OUTPUT TEXT IS , I3///)	JUAT206
	END	JUAT207
С		
С		
	SUBROUTINE OUTPUT	JCAT 1
	COMMON ITAPE,IRTAPE,IOTAPE,IPTAPE	JOAT 2
	COMMON SWITCH, N, N1, N2, NOPAR, IW2, ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC	
	DIMENSION ICOL(80), ICP(360), ICT(360), IC(8002), IA(80), SWITCH(100)	
20	IF (SWITCH(3)) 20,30,20	JOAT 5 JCAT 6
20	CALL UNLOCK	JCAT 6 JCAT 7
30	CALL LOCK N=N-1	JCAT 7
00	IW1=0	JOAT 9
	D0 50 I=1,N	JOAT 10
	CALL COWNIT (IC(I),IT)	JOAT 11
	IF (IT) 40,50,40	JOAT 12
40	IW1=IW1+1	JOAT 13
50	CONTINUE	JOAT 14

	4	
	IF (IW-IW1) 90,60,60	JOAT 15
60	IW2=N	JOAT 16
	D0 70 I=1,IW2	JOAT 17
70		
70	ICP(I) = IC(I)	JOAT 18
	CALL PRINTP	JOAT 19
80	RETURN	JOAT 20
90	J=0	JOAT 21
	I=0	JOAT 22
	I1=1	JOAT 23
	K=0	JOAT 24
	K1=0	JOAT 25
	K2=0	JOAT 26
100	CALL COWNIT (IC(II),IT)	JOAT 27
100	IF (IT) 110,120,110	JOAT 28
110		
110		JOAT 29
	GO TO 130	JOAT 30
120	J=J+1	JOAT 31
130	Il=Il+l	JOAT 32
	IF (I1-(N+1)) 140,240,240	JOAT 33
140	IF (I-IW) 100,150,150	JOAT 34
150	K=K1+1	JOAT 35
	CALL COWNIT (IC(I1),IT)	JOAT 36
	IF (IT) 170,160,170	JOAT 37
160	J=J+1	JOAT 38
160		
		JOAT 39
170	IF (IC(I1)-IA(47)) 180,250,180	JOAT 40
180	Il=Il-1	JOAT 41
	CALL COWNIT (IC(I1+1),IT)	JOAT 42
	IF (IT) 190,200,190	JOAT 43
190	I=I-1	JOAT 44
	GO TO 210	JOAT 45
200	J=J-1	JOAT 46
210	IF (I1) 220,220,170	JOAT 47
220	WRITE (IOTAPE,880)	JOAT 48
230	STOP	JOAT 49
240	K=K1+1	JOAT 50
250	M1=1	JOAT 51
	K1=I1	JOAT 52
	D0 260 I2=K,K1	JOAT 53
	ICP(M1) = IC(I2)	JOAT 54
260	M1=M1+1	JOAT 55
	M=K1-1	JOAT 56
	IW2=M-K+1	JOAT 57
	IF (I1-N) 270,620,620	JOAT 58
270	IF (IJUST) 290,620,290	JOAT 59
280	CALL PRINTP	JOAT 60
200	J=0	JOAT 61
		JOAT 62
		JOAT 63
	IF (I1-(N+1)) 100,80,80	JOAT 64
290	IF (IW-I) 300,280,310	JOAT 65
300	WRITE (IOTAPE,890)	JOAT 66
	GO TO 230	JOAT 67
310	I2=IW-I	JOAT 68
	K2=K2+1	JOAT 69

Ŧ

	K4=0	JOAT 70
	IT=2*(K2/2)-K2	JOAT 71
	IF (IT) 320,350,320	JOAT 72
320	M1=IW2	JOAT 73
	D0 330 I3=1,IW2	JOAT 74
	ICT(I3) = ICP(M1)	JOAT 75
330	M1=M1-1	J0AT 76
	D0 340 I3=1,IW2	JOAT 77
340	ICP(I3)=ICT(I3)	JOAT 78
350	IF (K2–1) 300,370,360	JOAT 79
360	K3=1	JOAT 80
000	G0 T0 J80	JOAT 81
370	K3=N1+1	JOAT 81
380	I3=1	JOAT 83
390	IF (ICP(I3)-IA(47)) 410,400,410	JOAT 84
400	K4=K4+1	JOAT 85
410	IF (I3-IW2+K3-1) 420,430,430	JOAT 86
420	13=13+1	JOAT 87
	GO TO 390	JOAT 88
430	M=I2	JOAT 89
	IT=K4*(I2/K4)-I2	JOAT 90
	IF (IT) 450,440,450	JOAT 91
440	K5=I2/K4	JOAT 92
	GO TO 460	JOAT 93
450	K5=I2/K4+1	JOAT 94
	IF (K5-1) 710,710,460	JOAT 95
460	14=0	JOAT 96
	13=1	JOAT 97
470	M1=I3+I4	JOAT 98
110	ICT (M1)=ICP (I3)	JOAT 99
	IF $(ICP(I3)-IA(47))$ 510,480,510	JOAT100
480	D0 490 I5=1,K5	JOAT101
400	I4=I4+1	J0AT102
400	$M1 \neq I3 + I4$	JOAT103
490	ICT(M1) = IA(47)	JOAT104
		JOAT105
	IT = K4*(M/K4) - M	JOAT106
	IF (IT) 510,500,510	JOAT107
500	K5=I2/K4	JOAT108
510	IF (I4-I2) 520,540,540	JOAT109
520	IF (I3-IW2) 530,560,560	JOAT110
530	13=13+1	JOAT111
	GO TO 470	JOAT112
540	16=13+1	JOAT113
	D0 550 I13=I6,IW2	JOAT114
	M1=I13+I4	JOAT115
550	ICT(M1) = ICP(I13)	J0AT116
560	IW2=IW2+I4	J0AT117
570	$IT = 2^* (K2/2) - K2$	JOAT118
	IF (IT) 600,580,600	J0AT119
580	D0 590 I3=1,IW2	J0AT120
590	ICP(I3) = ICT(I3)	JOAT120
0.50	GO TO 280	JOAT121 JOAT122
600	D0 610 I3=1, IW2	JOAT122 JOAT123
800	M1=IW2-I3+1	
	111-T112-T0-T1	J0AT124

610	ICP(I3)=ICT(M1)	JOAT125
010	GO TO 280	J0AT126
С	IF SWITCH(4) IS ZERO AN EXTRA BLANK IS INSERTED AFTER A PERIOD(38	
620	IF (SWITCH(4)) 280,630,280	JOAT128
630	IF (IW2-2) 280,280,640	JOAT129
640	13=2	JOAT130
650	IF ('I-IW) 660,280,280	JOAT131
660	D0 680 M1=I3,IW2	JOAT132
	IF (ICP(M1-1)-IA(38)) 680,670,680	JOAT133
670	IF (ICP(M1)-IA(47)) 680,690,680	JOAT134
680	CONTINUE	JOAT135
690	GO TO 280 I3=M1+1	JOAT136 JOAT137
690	IV2=IV2+1	JOAT137 JOAT138
	I = I + I	JOAT138
	I13=IW2	J0AT140
	D0 700 M1=I3,IW2	JOAT141
	1CP(II3)=ICP(II3-1)	JOAT142
700	I13=I13-1	JOAT143
	GO TO 650	JOAT144
710	D0 720 I3=1,IW2	JOAT145
720	ICT(13)=ICP(13)	J0AT146
	IT=IW2-1	JOAT147
	113=2	JOAT148
730	K7=1	JOAT149
	D0 760 I3=I13,IT	JOAT150
	K9=13	JOAT151
740	IF (ICT(I3)-IA(38)) 760,740,760 IF (ICT(I3-1)-IA(47)) 750,850,750	JOAT152
740 750	IF (ICT(I3+1)-IA(47)) 750,850,750 IF (ICT(I3+1)-IA(47)) 760,840,760	JOAT153 JOAT154
760	CONTINUE	JOAT154
100	IF (113-2) 460,460,770	J0AT156
770	IF (I-IW) 780,570,570	JOAT157
780	DO 810 M1=K7, IT	JOAT158
	K9=M1	JOAT159
	IF (ICT(M1)-IA(47)) 810,790,810	JOAT160
790	IF (ICT(M1+1)-IA(47)) 800,810,800	JOAT161
800	IF (ICT(M1-1)-IA(47)) 820,810,820	JOAT162
810	CONTINUE	JOAT163
0.00	GO TO 570	JOAT164
820	K7=1W2	JOAT165
	D0 830 $I3=K9, IW2$	JOAT166
830	LCT(K7+1)=ICT(K7) K7=K7-1	JOAT167 JOAT168
850	IW2=IW2+1	JOAT168
	17=17+1	JOAT170
	I=I+1	JOAT171
	K7=K9+2	JOAT172
	GO TO 770	JOAT173
840	K8=K9+1	JOAT174
	I:3=K9+1	JOAT175
	GO TO 860	JOAT176
850	K8=K9-1	JOAT177
860	K7=IW2	JOAT178
	I13=K9+2	JOAT179

870 C 880 890 C	DO 870 I3=K8,IW2 ICT(K7+1)=ICT(K7) K7=K7-1 IW2=IW2+1 IT=IT+1 I=I+1 IF (I-IW) 730,570,570 FORMAT (21H1K1 HAS BECOME ZERO.) FORMAT (26H1IW CANNOT BE LESS THAN I) END	JOAT180 JOAT181 JOAT182 JOAT183 JOAT184 JOAT185 JOAT186 JOAT187 JOAT188 JOAT189 JOAT190-
C 1 2 3 4 5 C	<pre>SUBROUTINE COWNIT(ICHAR.IT) COMMON ITAPE.IRTAPE.IOTAPE.IPTAPE COMMON SWITCH.N.N1.N2.NOPAR.IW2.ITEST.IJUST.IW.IA.ICOL.ICP.ICT.IC DIMENSION ICOL(80).ICP(360).ICT(360).IC(8002).IA(80).SWITCH(100) IF (SWITCH(2)9999) 3.3.1 N3 = SWITCH(2) + 1.E-4 D0 2 I=1.N3 IF (ICHAR - IA(I+60)) 2.4.2 CONTINUE IT = 1 G0 T0 5 IT = 0 RETURN END</pre>	
1 2 3 4 C	<pre>SUBROUTINE IOSAME COMMON ITAPE,IRTAPE,IOTAPE,IPTAPE COMMON SWITCH,N,N1,N2,NOPAR,IW2,ITEST,IJUST,IW,IA,ICOL,ICP,ICT,IC DIMENSION ICOL(80),ICP(360),ICT(360),IC(8002),IA(80),SWITCH(100) N=0 N1=0 N2=0 NOPAR=0 IF (ITEST) 2,3,2 FORMAT (80A1) WRITE (IPTAPE,1) (ICOL(J),J=1,80) WRITE (IOTAPE,4) (ICOL(J),J=1,80) FORMAT (1X,80A1) RETURN END</pre>	
1 2 3 4	<pre>SUBROUTINE IOCENT COMMON ITAPE,IRTAPE,IPTAPE,IOTAPE COMMON SWITCH,N,N1,N2,NOPAR,IW2,ITEST,IJUST,IW,IA,ICOL,ICP,ICT,IC DIMENSION ICOL(80),ICP(360),ICT(360),IC(8002),IA(80),SWITCH(100) D0 1 I=1,70 ICP(I)=IA(47) D0 2 I=1,70 IF (ICOL(I) - IA(47)) 5,2,5 CONTINUE CALL IOSAME RETURN</pre>	

5	Ml=I	JCEN0120
	D0 7 I=1,70	JCEN0130
	M2=71-I	JCEN0140
	IF $(ICOL(M2) - IA(47)) 6,7,6$	JCEN0150
6	IF (ICOL(M2) - IA(39)) 8,7,8	JCEN0160
7	CONTINUE	JCEN0170
	GO TO 3	JCEN0180
8	M= M2-M1+1	JCEN0190
0	12 = (IW - M)/2	JCEN0200
	IF (I2) 9,9,10	JCEN0210
9	M3=1	JCEN0220
5	G0 T0 12	JCEN0220
10		
10	IF (70-I2-M) 11,11,16	JCEN0240
11	M3=71-M	JCEN0250
12	D0 13 I=M1,M2	JCEN0260
	ICP(M3)=ICOL(I)	JCEN0270
13	M3=M3+1	JCEN0280
	ICP(M3)=IA(39)	JCEN0290
	ICP(71) = IA(39)	JCEN0300
	ICP(72)=IA(3)	JCEN0310
14	D0 15 I=1,72	JCEN0320
15	ICOL(I)=ICP(I)	JCEN0330
	GO TO 3	JCEN0340
16	J1=0	JCEN0350
	DO 18 I=M1,M2	JCEN0360
	CALL COWNIT(ICOL(I),J)	JCEN0370
	IF (J) 18,17,18	JCEN0380
17	J1=J1+1	JCEN0390
18	CONTINUE	JCEN0410
10	IF (J1) 19,19,20	JCEN0420
19	M3=I2+1	JCEN0430
15	G0 T0 12	JCEN0440
20	M3=I2+(J1/2) +1	JCEN0440
20	IF (70-M3-M) 11,11,12	JCEN0450
	END	JCEN0400 JCEN0470
С	END	JCEN0470
C		TINDOOLO
	SUBROUTINE INDENT	JIND0010
	COMMON ITAPE, IRTAPE, IOTAPE, IPTAPE	JIND0020
	COMMON SWITCH, N, N1, N2, NOPAR, IW2, ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC	
	DIMENSION ICOL(80), ICP(360), ICT(360), IC(8002), IA(80), SWITCH(100)	
	SWITCH(1) = -1.*SWITCH(1)	JIND0050
	D0 1 M1=1,71	JIND0060
	IF $(ICOL(M1) - IA(47)) 6, 1, 6$	JIND0070
1	CONTINUE	JIND0080
3	IW=J	JIND0090
16	N=0	JIND0100
	N1=0	JIND0110
	N2=0	JIND0120
	NOPAR=0	JIND0130
	RETURN	JIND0140
4	WRITE (IOTAPE,5) (ICOL(I), I=1,80), (ICOL(I), I=M1,M2)	JIND0150
5	FORMAT (1H0,80A1,/53H THE ABOVE CARD CONTAINS AN INDENT OF ILLEGAN	JIND0160
	1 SIZE = ,80A1//)	JIND0170
	SWITCH(1) = -1.*SWITCH(1)	JIND0180
	GO TO 16	JIND0190

6	M2=M1+2	JIND0200
	J=0	JIND0210
	IF $(ICOL(M2) - IA(47))$ 7,9,7	JIND0220
7	IF (ICOL(M1) - IA(28)) 4,8,4	JIND0230
8	J=100	JIND0240
0		JIND0250
	M1=M1+1	
	GO TO 10	JIND0260
9	M2=M1+1	JIND0270
10	D0 11 I=27,36	JIND0280
	IF (ICOL(M2) - IA(I)) 11, 12, 11	JIND0290
11	CONTINUE	JIND0300
	GO TO 4	JIND0310
12	J = J + I - 27	JIND0320
	D0 13 I=27,36	JIND0330
	IF (ICOL(M1) - IA(I)) 13, 14, 13	JIND0340
13	CONTINUE	JIND0350
10	GO TO 4	JIND0360
14	J = 10*(I-27) + J	JIND0370
14		
	IF (J-120) 15,15,4	JIND0380
15	IF (J-20) 4,3,3	JIND0390
~	END	JIND0400
С		
	SUBROUTINE RABOUT	JRAB0010
	COMMON ITAPE, IRTAPE, IOTAPE, IPTAPE	JRAB0020
	COMMON SWITCH, N, N1, N2, NOPAR, IW2, ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC	
	DIMENSION ICOL(80), ICP(360), ICT(360), IC(8002), IA(80), SWITCH(100)	
	D0 1 M1=1,71	JRAB0050
	IF (ICOL(M1) - IA(47)) 4, 1, 4	JRAB0060
1	CONTINUE	JRAB0070
2	CALL IOSAME	JRAB0080
3	N=0	JRAB0090
	N1=0	JRAB0100
	N2=0	JRAB0110
	NOPAR=0	JRAB0120
	RETURN	JRAB0130
8	WRITE (IOTAPE,17) (ICOL(I), I=1,80), (ICOL(I), I=M1,M2)	JRAB0140
9	FORMAT (1H0,80A1,/67H JUSTIFY WILL NOT ALLOW A RUN AROUND FROM THE	JRAB0150
	1 ABOVE CARD OF SIZE = $,80A1//)$	JRAB0155
	GO TO 3	JRAB0160
4	M2= M1+1	JRAB0170
-	M=2	JRAB0180
	IF (ICOL(M2) - IA(47)) 11,5,11	JRAB0190
5	M=1	JRAB0200
Ŭ	M2=M1	JRAB0210
11	D0 12 I=27,36	JRAB0220
	IF (ICOL(M2) - IA(I)) 12,13,12	
10	$\frac{1}{1001} (MZ) = 1A(1) + 12,13,12$ $CONTINUE$	JRAB0230
12		JRAB0240
17	GO TO 8	JRAB0250
13	J = I - 27	JRAB0260
	IF (M-1) 3,2,14	JRAB0270
14	D0 15 I=27,36	JRAB0280
	IF (ICOL(M1) - IA(I)) 15,16,15	JRAB0290
15	CONTINUE	JRAB0300
	GO TO 8	JRAB0310
16	J=10*(I-27) + J	JRAB0320

20	WRITE (IOTAPE,17) IA(39) WRITE (IOTAPE,17) IA(39)		JRAB0330 JRAB0340
17	FORMAT (1X,80A1) WRITE (IOTAPE,18)		JRAB0350 JRAB0360
10		* * * * * * * * * * *	JRAB0370
18	FORMAT(51H * * * * * * * * * *		JRAB0370 JRAB0380
00	IF(J-2) 8,22,22 M=J/2		JRAB0380
22			
10	DO 19 I=1, M WDITE (IOTADE 17) IA(70)		JRAB0400 JRAB0410
19	WRITE (IOTAPE, 17) IA(39)		
	ICOL(72) = IA(4)		JRAB0420
	ICOL(71) = IA(39)	(70)	JRAB0430
	<pre>WRITE (IOTAPE,17) (ICOL(I),I=) M=M+2</pre>	L, (JRAB0440 JRAB0450
			JRAB0450 JRAB0460
0.1	DO 21 $I=M,J$		
21	WRITE (IOTAPE, 17) IA(39)		JRAB0470
	WRITE (IOTAPE, 18)		JRAB0480
	WRITE (IOTAPE, 17) IA(39)		JRAB0490
	WRITE (IOTAPE, 17) IA(39)		JRAB0500
05	IF (ITEST) 25,3,25		JRAB0510
25	M=M-2		JRAB0520
	WRITE (IPTAPE, 17) IA(39)		JRAB0530
	WRITE (IPTAPE, 17) IA(39)		JRAB0540
	WRITE (IPTAPE, 18)		JRAB0550
0.0	DO 26 I=1, M WDITE (IDTADE IT) IA(70)		JRAB0560
26	WRITE (IPTAPE, 17) IA(39)	70)	JRAB0570
70	WRITE (IPTAPE, 30) (ICOL(I), I=]	.,(2)	JRAB0580
30	FORMAT(80A1)		JRAB0590
	M=M+2		JRAB0600
017	DO 27 $I=M,J$		JRAB0610
27	WRITE (IPTAPE, 17) IA(39)		JRAB0620
	WRITE (IPTAPE, 18)		JRAB0630
	WRITE (IPTAPE, 17) IA(39)		JRAB0640
	WRITE (IPTAPE, 17) IA(39)		JRAB0650
	GO TO 3		JRAB0660
C	END		JRAB0670
C C			
C	CURROUMINE UNLOGY		
	SUBROUTINE UNLOCK		JULKOO10
	COMMON ITAPE, IRTAPE, IOTAPE, IPT		JULK0020
		V2, ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC	
		CT(360), IC(8002), IA(80), SWITCH(100)	
1	J=1		JULK0050
2	IF (IC(J)-IA(46)) 2,4,2 J=J+1		JULK0060
L	J = J + I IF $(J = (N + 1))$ 1,3,3		JULK0070
3	RETURN		JULK0080
4	IF (IC(J+1)-IA(46)) 7,5,7		JULK0090 JULK0100
5	J=J+2		JULKO100
0	D0 6 I=J,N		JULK0120
6	IC(I-1) = IC(I)		JULK0120
0	GO TO 10		JULK0130
7	IF $(IC(J+2)-IA(46))$ 11,8,11		JULK0140
8	J=J+3		JULK0160
-	DO 9 I=J,N		JULK0170
9	IC(I-1) = IC(I)		JULK0180

```
10
      N=N-1
                                                                             JULK0190
      IC(N+1)=IA(47)
                                                                             JULK0200
      J=J-1
                                                                             JULK0210
      GO TO 1
                                                                             JULK0220
       IF ( N
                   -7999) 13,13,12
11
                                                                             JULK0230
       WRITE (IOTAPE, 1001) (IC(K), K=1, 119)
12
                                                                             JULK0240
1001 FORMAT(1X,119A1,/94H THE ABOVE LINE BEING CHANGED FROM SHIFT AND LJULK0250
     10CK HAS EXCEEDED THE 8000 CHARACTERS LINE LIMIT. /37H WORK WAS HALTJULK0260
     2ED AT 8000 CHARACTERS.
                                  )
                                                                             JULK0270
      GO TO 3
                                                                             JULK0280
       N=N+1
13
                                                                             JULK0290
      J=J+3
                                                                             JULK0300
      K=N
                                                                             JULK0310
       DO 14 L=J,N
                                                                             JULK0320
      IC(K) = IC(K-1)
                                                                             JULK0330
14
        K=K-1
                                                                             JULK0340
      J=J-1
                                                                             JULK0350
      IC(J) = IA(46)
                                                                             JULK0360
      GO TO 4
                                                                             JULK0370
      END
                                                                             JULK0380
С
       SUBROUTINE LOCK
                                                                             JL0K0010
      COMMON ITAPE, IRTAPE, IOTAPE, IPTAPE
                                                                             JL0K0020
      COMMON SWITCH, N, N1, N2, NOPAR, IW2, ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC JLOK0030
       DIMENSION ICOL(80), ICP(360), ICT(360), IC(8002), IA(80), SWITCH(100) JL0K0040
      J=1
                                                                             JL0K0050
1
      IF (IC(J)-IA(46)) 2,5,2
                                                                             JL0K0060
2
      J=J+1
                                                                             JL0K0070
      IF (J-(N +1)) 1,1,4
                                                                             JL0K0080
      WRITE (TOTAPE, 1901) (IC(K), K=1, 119)
3
                                                                             JL0K0090
      FORMAT (1X,119A1,/97H THE ABOVE PARAGRAPH BEING CHANGED TO SHIFT AJLOKO100
1001
     1ND LOCK HAS EXCEEDED THE 8000 CHARACTERS LINE LIMIT. /37H WORK WASJLOK0110
     2 HALTED AT 8000 CHARACTERS.
                                      )
                                                                             JLOK0120
4
      RETURN
                                                                             JLOK0130
5
      J=J+2
                                                                             JL0K0140
6
      IF (IC(J)-IA(46)) 10,7,10
                                                                             JL0K0150
7
      IF (IC(J+1)-IA(47)) 75,70,75
                                                                             JL0K0160
70
      J=J+1
                                                                             JL0K0170
      GO TO 1
                                                                             JL0K0180
75
      N=N-1
                                                                             JLOK0190
      DO 8 K=J.N
                                                                             JLOK0200
8
      IC(K) = IC(K+1)
                                                                             JL0K0210
      IC(N+1)=IA(47)
                                                                             JL0K0220
      J=J+1
                                                                             JL0K0230
      IF (J-N )6.6.9
                                                                             JL0K0240
9
      N=N+1
                                                                             JL0K0250
      IC(N) = IA(46)
                                                                             JL0K0260
      GO TO 4
                                                                             JL0K0270
10
      IF (N -7999) 11,9,3
                                                                             JL0K0280
11
      N=N+1
                                                                             JL0K0290
      J=J+1
                                                                             JL0K0300
      K=N
                                                                             JL0K0310
      DO 12 L=J,N
                                                                             JL0K0320
      IC(K) = IC(K-1)
                                                                             JL0K0330
12
      K=K-1
                                                                             JL0K0340
```

IC(J-1) = IA(46)JL0K0350 GO TO 1 JL0K0360 END JL0K0370 С С SUBROUTINE PRINTP **JPRI0010** COMMON ITAPE, IRTAPE, IOTAPE, IPTAPE JPR10020 COMMON SWITCH, N, N1, N2, NOPAR, IW2, ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC JPRI0030 DIMENSION ICOL(80), ICP(360), ICT(360), IC(8002), IA(80), SWITCH(100) JPRI0040 IF (SWITCH(1)) 1,1,3 **JPRI0050** CALL PRINT2 1 **JPRI0060** 2 RETURN **JPRI0070** 3 CALL PRINT1 **JPRI0080** GO TO 2 JPRI0090 END **JPRI0100** С SUBROUTINE PRINT1 JPR10010 COMMON ITAPE, IRTAPE, IOTAPE, IPTAPE JPR10020 COMMON SWITCH, N, N1, N2, NOPAR, IW2, ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC JPR10030 DIMENSION ICOL(80), ICP(360), ICT(360), IC(8002), IA(80), SWITCH(100) JPR10040 1 FORMAT (1X,119A1) JPR10050 2 FORMAT (120A1) JPR10060 K=1JPR10070 K1=118 JPR10080 IF (IW2-K1-1) 10,10,30 JPR10090 WRITE (IOTAPE, 1) (ICP(J), J=K, IW2) 10 JPR10100 IF (ITEST) 80,20,80 JPR10110 20 RETURN JPR10120 J=K1 30 JPR10130 DO 40 I=K,K1 JPR10140 IF (ICP(J) - IA(47)) 40,50,40JPR10150 40 J=J-1JPR10160 GO TO 60 JPR10170 50 Kl=J JPR10180 60 WRITE (IOTAPE,1) (ICP(J), J=K, K1) JPR10190 70 K=K1+1JPR10200 K1=K1+118 JPR10210 IF (IW2-K1-1) 10,10,30 JPR10220 80 K=1 JPR10230 K1=69 JPR10240 IF (IW2-K1-1) 90,90,100 JPR10250 90 WRITE (IPTAPE, 2) (ICP(J), J=K, IW2), IA(39)JPR10260 GO TO 20 JPR10270 100 J=K1 JPR10280 IF (ICP(K1) - IA(47)) 105,150,105 JPR10290 105 DO 110 I=K,K1 JPR10300 IF (ICP(J) - IA(47)) 110,120,110 JPR10310 110 J=J-1 JPR10320 GO TO 130 JPR10330 120 K1=J JPR10340 130 WRITE (IPTAPE, 2) (ICP(J), J=K, K1), IA(45), IA(39)JPR10350 140 K=K1+1JPR10360 K1=K1+69 JPR10370 IF (IW2-K1-1) 90,90,100 JPR10380 150 IF (ICP(K1+1) - IA(47)) 130,151,130 JPR10390

151	D0 160 I=K,Kl	JPR10400
	IF $(ICP(J) - IA(47))$ 170,160,170	JPR10410
160	J=J-1	JPR10420
	GO TO 130	JPR10430
170	K1=J	JPR10440
	GO TO 105	JPR10450
	END	JPR10460
С		
	SUBROUTINE PRINT2	JPR20010
	COMMON ITAPE, IRTAPE, IOTAPE, IPTAPE	JPR20020
	COMMON SWITCH, N, N1, N2, NOPAR, IW2, ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC	JPR20030
	DIMENSION ICOL(80), ICP(360), ICT(360), IC(8002), IA(80), SWITCH(100)	
1	FORMAT (1X,119A1)	JPR20050
2	FORMAT (120A1)	JPR20060
	K=1	JPR20070
	K1=117	JPR20080
	IF (IW2-K1-1) 10,10,30	JPR20090
10	IF (K-1) 20,14,16	JPR20100
14	WRITE (IOTAPE,1) IA(48), (ICP(J), J=K, IW2)	JPR20110
	GO TO 18	JPR20120
16	WRITE (IOTAPE,1) (ICP(J),J=K,IW2)	JPR20130
18	IF (ITEST) 80,20,80	JPR20140
20	RETURN	JPR20150
30	J=K1	JPR20160
	D0 40 I=K,Kl	JPR20170
	IF $(ICP(J) - IA(47))$ 40,50,40	JPR20180
40	J=J-1	JPR20190
	GO TO 60	JPR20200
50	K1=J	JPR20210
60	IF (K-1) 20,64,66	JPR20220
64	WRITE (IOTAPE,1) IA(48),(ICP(J),J=K,K1)	JPR20230
-	GO TO 70	JPR20240
66	WRITE (IOTAPE,1) (ICP(J),J=K,K1)	JPR20250
70	K=K1+1	JPR20260
	K1=K1+117	JPR20270
	IF (IW2-K1-1) 16,16,30	JPR20280
80	K=1	JPR20290
	K1=68	JPR20300
	IF (IW2-K1-1) 90,90,100	JPR20310
90	IF (K-1) 20,92,94	JPR20320
92	WRITE (IPTAPE,2) IA(48), (ICP(J), J=K, IW2), IA(39)	JPR20330
	GO TO 20	JPR20340
94	WRITE (IPTAPE,2) (ICP(J), J=K, IW2), IA(39)	JPR20350
	GO TO 20	JPR20360
100	J=K1	JPR20370
	IF (ICP(K1) - IA(47)) 105,150,105	JPR20380
105	D0 110 I=K,K1	JPR20390
	IF (ICP(J) - IA(47)) 110,120,110	JPR20400
110	J=J-1	JPR20410
	GO TO 130	JPR20420
120	K1=J	JPR20430
130	IF (K-1) 20,132,134	JPR20440
132	WRITE (IPTAPE,2) IA(48),(ICP(J),J=K,K1),IA(45),IA(39)	JPR20450
	GO TO 140	JPR20460
134	WRITE (IPTAPE,2) (ICP(J), J=K,K1), IA(45), IA(39)	JPR20470

1 40		10000 (00
140	K=K1+1	JPR20480
	K1=K1+68	JPR20490
	IF (IW2-K1-1) 94,94,100	JPR20500
150	IF (ICP(K1+1) - IA(47)) 130,151,130	JPR20510
151	D0 160 I=K,Kl	JPR20520
	IF $(ICP(J) - IA(47))$ 170,160,170	JPR20530
160	J=J-1	JPR20540
	GO TO 130	JPR20550
170	K1=J	JPR20560
	GO TO 105	JPR20570
	END	JPR20580
С		
С		
	SUBROUTINE CHECK3(K)	JCHK0010
	COMMON ITAPE, IRTAPE, IOTAPE, IPTAPE	JCHK0020
	COMMON SWITCH, N, N1, N2, NOPAR, IW2, ITEST, IJUST, IW, IA, ICOL, ICP, ICT, IC	JCHK0030
	DIMENSION ICOL(80), ICP(360), ICT(360), IC(8002), IA(80), SWITCH(100)	JCHK0040
	D0 10 I=1,26	JCHK0050
	IF (IA(I) - ICOL(I)) 40,10,40	JCHK0060
10	CONTINUE	JCHK0070
	K=1	JCHK0080
	WRITE (IOTAPE, 19) (IA(I), I=1,80)	JCHK0090
	IF (ITEST) 20,50,20	JCHK0100
20	WRITE (IPTAPE, 29) (IA(I), I=1,80)	JCHK0110
	IF (IPTAPE - 6) 50,50,30	JCHK0120
30	END FILE IPTAPE	JCHK0130
	GO TO 50	JCHK0140
40	K=0	JCHK0150
50	RETURN	JCHK0160
19	FORMAT (1X,80A1)	JCHK0170
29	FORMAT (80A1)	JCHK0180
	END	JCHK0190
С		
~		

С

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

• Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$6.00; foreign, \$7.25*.

• Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$2.25; foreign, \$2.75*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$2.75; foreign, \$3.50*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

*Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Governmentgenerated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

> Clearinghouse U.S. Department of Commerce Springfield, Virginia 22151

Superintendent of Documents Government Printing Office Washington, D.C. 20402

U.S. DEPARTMENT OF COMMERCE

WASHINGTON, D.C. 20230

-

POSTAGE AND FEES PAID

OFFICIAL BUSINESS