THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards\(^1\) provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services:

THE INSTITUTE FOR BASIC STANDARDS . . . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area:

THE INSTITUTE FOR MATERIALS RESEARCH . . . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of materials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce. This Institute is organized primarily by technical fields:

THE INSTITUTE FOR APPLIED TECHNOLOGY . . . provides technical services to promote the use of available technology and to facilitate technological innovation in industry and government. The principal elements of this Institute are:

\(^1\) Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C., 20234.

\(^2\) Located at Boulder, Colorado, 80302.

\(^3\) Located at 5285 Port Royal Road, Springfield, Virginia 22151.

Harry A. Schafft and Susan Gayle Needham

Electronic Instrumentation Division
Institute for Applied Technology
National Bureau of Standards
Washington, D.C. 20234

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. ORGANIZATION AND USE OF THE BIBLIOGRAPHY</td>
<td>3</td>
</tr>
<tr>
<td>3. INDEX ACCORDING TO KEY WORDS</td>
<td>6</td>
</tr>
<tr>
<td>4. INDEX TO AUTHORS</td>
<td>11</td>
</tr>
<tr>
<td>5. INDEX ACCORDING TO METHODS OR EFFECTS USED TO DETECT INHOMOGENEITIES</td>
<td>15</td>
</tr>
<tr>
<td>6. BIBLIOGRAPHY</td>
<td>20</td>
</tr>
</tbody>
</table>
A BIBLIOGRAPHY ON METHODS FOR THE MEASUREMENT OF INHOMOGENEITIES IN SEMICONDUCTORS (1953-1967)

Harry A. Schafft
Susan Gayle Needham

About 130 papers which deal with the measurement techniques useful in detecting the type and location of various inhomogeneities, primarily in germanium and silicon, are listed with key words. The types of inhomogeneities considered are those in impurity concentration, resistivity, mobility, diffusion length, lifetime, surface conditions, crystal perfection, and p-n junctions. Some of the twenty-two effects or methods used to detect these inhomogeneities are: photovoltaic, electron-voltaic, photoconductivity, one-, two- and four-point probe, spreading resistance, and voltage breakdown. There are three indexes: a reference tabulation according to key words, a reference tabulation according to methods or effects used to detect an inhomogeneity, and an author index.

Key Words: bibliography; semiconductor material inhomogeneities; measurement methods: photovoltaic, electron voltaic, photoconductivity, point potential probe, spreading resistance, voltage breakdown.

1. INTRODUCTION

Inhomogeneities in semiconductors cause many diverse problems in the measurement of transport properties and in the fabrication, operation, and reliability of semiconductor devices. Troublesome inhomogeneities include variations in the distribution of impurities; clusters of impurities, voids, second phase precipitates, and clusters of crystal defects such as dislocations, lineage, or strain fields.

Among the transport properties affected are the resistivity, lifetime, and mobility. These appear to be most affected by nonuniform impurity distributions, including clusters. In fabrication, both solid-state diffusion and alloying steps are affected by the presence of voids or clusters of crystal defects. As a result, poor junction geometry and nonuniform current distributions frequently appear in devices fabricated from inhomogeneous material. These faults often lead to such causes of failure as hot spots, thermal runaway, and second breakdown. Anomalous diffusion of impurities along crystal defects may also occur during operation of devices at high power. In addition, gross variations in properties over a slice often causes wide variations in device characteristics and poor yields. This problem is particularly serious in large area power devices and large scale integrated circuits.
One crucial aspect of the general problem of inhomogeneities in semiconductors is the detection and location of these inhomogeneities. This is the subject of the bibliography, which is the result of a literature survey of measurement techniques useful in detecting the type and location of various inhomogeneities, primarily in germanium and silicon. The sources used in this survey were: personal files, subject indexes of Science Abstracts since 1960, literature citations in papers collected, and journal issues not yet abstracted. To keep within the bounds of manageability without sacrificing utility, the size of the bibliography was limited by applying three sets of boundary conditions. These boundary conditions determined the kinds of inhomogeneities considered, the kinds of measurement techniques described, and the intent of the paper.

The following types of crystal inhomogeneities were selected because of their relevance to the electrical properties of semiconductor devices:

1. Resistivity
2. Impurity concentration
3. Diffusion length
4. Lifetime
5. Surface recombination velocity
6. Surface conditions (inversion layers, surface states, etc.)
7. Mobility
8. Crystal perfection
9. Junction conditions (doping profile, physical location or extent).

The 22 techniques listed below are included in the bibliography. The first 16 of these, which involve electrical and optical interactions, are emphasized. An effort was made to obtain complete coverage of the literature dealing with these techniques. A few representative papers describing the remaining techniques are also included.

1. Photovoltaic
2. Surface photovoltage
3. Electron-voltaic
4. Photoconductivity
5. Two- and one-point probe
6. Four-point probe
7. Spreading resistance
8. Voltage breakdown
9. Internal injection-extraction
10. Capacitance vs voltage
11. Impedance
12. Reflectivity (plasma edge)
13. Absorption
14. Refractive index
15. Birefringence
16. Microwave diode
17. Neutron activation
18. Radioactive tracer
19. Electron microprobe analysis
20. Light microprobe analysis
21. X-ray topography
22. Electrochemical analysis (etching and electroplating).

With regard to the intent of the paper, only those papers were included which dealt directly with one of the listed measurement techniques even though the use of the technique may not have been the major subject of the paper. Those papers which describe results of measurements that can be affected by inhomogeneities were usually excluded.

2. ORGANIZATION AND USE OF THE BIBLIOGRAPHY

Each paper has been given an identification code which consists of a sequence of two digits, a letter, and another digit. The first two digits indicate the year of publication and the letter is the initial of the first author's surname. The last digit is used to distinguish those papers which would otherwise have the same code. No rule was used in the assignment of the last digit.

Five major topic headings, each divided into sub-topics and assigned key words, are used to indicate the contents and the approach of each paper. The major topic headings are: (1) the type of inhomogeneity considered, (2) the material examined, (3) the method used or effect measured to detect the inhomogeneity, (4) the special techniques used, and (5) the type of paper. These topics and key words (in capital letters) are listed in the Index According to Key Words. Also included is a tabulation of codes by the appropriate key words.

The papers in the bibliography are arranged according to their codes. The codes are grouped first by year, then in alphabetical order by letter, and then in numerical order by the last digit. Appropriate key words of each topic are arranged in a column just below each reference in order of their listing in the first index.
Of the papers which deal with a given measurement technique to detect a particular type of inhomogeneity, there are some which are sufficiently important that they should be given special attention. The key word for the measurement technique in each of these papers has been bracketed in the bibliography. The codes for these papers have also been underlined in the Index According to Methods or Effects Used to Detect Inhomogeneities.

Each reference citation in the bibliography is followed by an abstract identification code, in parenthesis, if one was available. The code begins with either PA, EA, or CA to indicate that the abstract may be found in Series A, Physics, of Science Abstracts, Series B, Electrical and Electronics (formerly Electrical Engineering) of Science Abstracts, or Chemical Abstracts, respectively. Following these letters are two digits which indicate the year the paper was abstracted if it appears in Science Abstracts or the volume in which the abstract may be found in Chemical Abstracts. The remaining code is the one assigned by the abstracting journal.

If the reference citation is followed by a number preceded by the letters AD then the paper may be obtained from the Clearinghouse for Federal Scientific and Technical Information, Department of Commerce, Sills Building, 5285 Port Royal Road, Springfield, Virginia 22151, by using the AD number.

Journal abbreviations follow those of Science Abstracts. One exception was made in the case of publications of the Institute of Electrical and Electronics Engineers, which is abbreviated IEEE. For those publications which are not listed no abbreviations were made where confusion might arise.
ACKNOWLEDGMENT

The authors wish to thank Dr. W. Murray Bullis for his generous encouragement and valuable guidance throughout the preparation of the bibliography and for the use of his extensive personal files of papers. The personal files of papers on X-ray topography techniques and on electron microprobe analysis techniques which Dr. Richard Deslattes and Dr. Kurt Heinrich, respectively, made available were very useful. The secretarial assistance of Miss Juanita Seal was of considerable help in the final stages of the preparation of the bibliography. The final draft was expeditiously typed by Mrs. Gail Crum.

This work was supported by the Rome Air Development Center, U. S. Air Force, under contract F30602-67-C-0105.
3. INDEX ACCORDING TO KEY WORDS

I. Type of Inhomogeneity

1. RESISTIVITY
 55T1, 56F1, 56H1, 56T1, 57T1, 58B1, 58R1, 58S1, 59D1, 5901, 59Z1, 60B1, 60B2, 60C1, 60H3, 60L1, 60O1, 60S1, 61B2, 61K1, 61S1, 61T1, 61V1, 62B1, 62K1, 63C1, 63G1, 63H1, 63K2, 63L2, 63P1, 63S2, 63T1, 64A1, 64B1, 64B2, 64D1, 64I1, 64L2, 64S1, 64S2, 65B1, 65G2, 65I1, 65M1, 65M2, 65M3, 65M4, 65M5, 65P1, 65S2, 65W2, 65W3, 66A2, 66B1, 66G1, 66M1, 66M2, 66M3, 66M4, 66S1, 66Z2, 67A3, 67D1, 67H1, 67L1, 67M1

2. IMPURITY CONCENTRATION
 53B1, 60H1, 61A1, 61B1, 61T1, 62E1, 62H1, 62I1, 62P1, 62T1, 63K1, 64K1, 65A1, 65G3, 65Z1, 66A2, 66D1, 66L1, 66N1, 66W1, 67C2, 67D3, 67F1

3. DIFFUSION LENGTH
 61G1, 63S1, 64M4, 66C2

4. LIFETIME
 54A1, 56H1, 60S1, 61R1, 62T2, 63W1, 64B1, 66B1, 67E1

5. SURFACE RECOMBINATION VELOCITY
 60S1

6. SURFACE (inversion layers, surface states, etc.)
 63L1, 65H1, 65W1, 66E1, 66N1, 66Z1, 67H2, 67P1, 67T1, 67T2

7. MOBILITY
 54A1

8. CRYSTAL PERFECTION
 53B1, 59L1, 59L2, 62H1, 62I1, 62P1, 62W1, 63L1, 64B2, 64F1, 64L1, 64M1, 65C1, 65G3, 65S1, 66C1, 66C2, 66O1, 66H1, 66J1, 66L1, 66L2, 66N1, 67A1, 67A2, 67B1, 67C1, 67D2, 67J1

9. JUNCTION (doping profile, physical location or extent)
 60H2, 61B1, 62H1, 62I1, 62P1, 62S1, 63K2, 63M1, 65G1, 65G3, 66A1, 66E1, 66M4, 66N1, 67D3, 67F1, 67L1

6
II. Material

1. Ge

53B1, 54A1, 55T1, 56F1, 56H1, 56T1, 57T1, 58B1, 58R1, 59D1, 59L1, 59O1, 60B1, 60C1, 60H1, 60H2, 60O1, 60S1, 61B2, 61R1, 61S1, 62B1, 62H1, 62K1, 62P1, 62S1, 62T2, 63H1, 63L2, 63M1, 63S1, 63W1, 64I1, 64L1, 65B1, 65G3, 65I1, 65M1, 65M2, 65M3, 65M4, 66A2, 66B1, 66C1, 66M1, 66M2, 66M3, 67E1, 67H1

2. Si

54A1, 56H1, 58R1, 59L1, 59L2, 60L1, 61K1, 61S1, 61T1, 62H1, 62P1, 62S1, 62T1, 63G1, 63G2, 63K2, 63L1, 63M1, 63S1, 63S2, 63T1, 63W1, 64B1, 64D1, 64F1, 64K1, 64L1, 64M1, 64S1, 65A1, 65B1, 65C1, 65G1, 65G2, 65H1, 65I1, 65M5, 65S1, 65S2, 65W1, 65W2, 66A1, 66A2, 66B1, 66C1, 66C2, 66E1, 66G1, 66J1, 66L1, 66L2, 66M4, 66N1, 66Z1, 67C1, 67D3, 67D2, 67E1, 67H2, 67J1, 67M1, 67P1, 67T1, 67T2

3. GaAs

61G1, 62H1, 63K1, 65G3, 65Z1, 66D1, 66H1, 66L2, 66W1, 67C2, 67D1, 67F1, 67L1

4. InSb

61A1, 62H1, 64B2, 65G3

5. InAs

62E1, 62H1

6. GaP

66C2, 66H1

7. GaAs-InAs, Ge-Si

66H1

III. Method or Effect Used

1. PHOTOVOLTAIC

55T1, 56F1, 56T1, 57T1, 59O1, 59Z1, 60B5, 60C1, 60O1, 60S1, 61S1, 62K1, 63P1, 63S1, 64B2, 65M4, 65P1, 66B1, 66S1, 67E1

2. SURFACE PHOTOVOLTAGE

61G1

3. ELECTRON-VOLTAIC

65M2, 65M3, 66M1, 66M2
4. PHOTOCONDUCTIVITY
 56H1, 60B2, 61R1, 62T2, 63S1, 63W1, 64B2, 65M1, 66B1, 66G1

5. TWO-POINT (probe and one-point probe)
 58B1, 58R1, 60L1, 61B2, 63L2, 64I1, 65I1, 67A3, 67D1, 67L1

6. FOUR-POINT (probe)
 58R1, 58S1, 59D1, 60B1, 60H3, 60L1, 61K1, 61T1, 61V1, 63C1,
 63H1, 63S2, 63T1, 64A1, 64D1, 64S1, 64S2, 65S2, 65W2, 66Z2,
 67A3

7. SPREADING RESISTANCE
 62B1, 63G1, 63S2, 66M4, 67F1, 67M1

8. VOLTAGE BREAKDOWN
 63G1, 63S2, 64B1, 64D1, 65G2, 66A2

9. INTERNAL INJECTION-EXTRACTION
 60H1

10. C VS V (capacitance vs voltage)
 60H2, 61B1, 62T1, 63M1, 64K1, 65G1, 65W1, 66A1, 66Z1, 67D3

11. IMPEDANCE
 56H1, 59R1, 64L2, 65B1, 67H1

12. REFLECTIVITY (plasma edge)
 62E1, 63K1

13. ABSORPTION
 60H1, 65M5, 65Z1

14. REFRACTIVE INDEX
 66D1

15. BIREFRINGENCE
 59L2
16. MICROWAVE DIODE
 63K2

17. NEUTRON ACTIVATION
 61T1, 65A1

18. RADIOACTIVE TRACER
 53B1, 61A1

19. ELECTRON MICROPROBE (analysis)
 62S1, 63L1, 65C1, 65W3, 66C1, 66C2, 66E1, 66L1, 66M3, 66N1, 66W1, 67C2, 67T1

20. LIGHT MICROPROBE (analysis)
 54A1, 65H1, 67H2, 67P1, 67T2

21. X-RAY TOPOGRAPHY
 59L1, 62W1, 64F1, 64L1, 64M1, 65S1, 66H1, 66J1, 66L1, 66L2, 67A1, 67A2, 67B1, 67C1, 67D2, 67J1

22. ELECTROCHEMICAL (etching, electroplating)
 62H1, 62I1, 62P1, 63L2, 65G3

IV. Techniques

1. SURFACE PREPARATION
 60L1, 64M1, 65G3, 65W2, 66L1

2. CONTACTS
 64K1, 67F1

3. APPARATUS
 54A1, 56F1, 56H1, 58R1, 59D1, 59L2, 60B1, 60C1, 60D1, 61G1, 61S1, 62K1, 63M1, 63T2, 63W1, 64F2, 64D1, 64F1, 64I1, 64K1, 64M1, 64S1, 65B1, 65G2, 65H1, 65I1, 65M4, 65S1, 65S2, 65W3, 66B1, 66D1, 66E1, 66L1, 66L2, 66M4, 66Z1, 66Z2, 67C1, 67C2, 67D1, 67H1, 67H2, 67L1, 67P1, 67T2

4. FABRICATION
 62T1, 64K1
5. GENERAL PROCEDURES

61T1, 62H1, 67A2, 67A3

V. Type of Paper

1. THEORETICAL

55T1, 58S1, 59Z1, 60C1, 60H3, 60L1, 61B1, 61V1, 63C1, 63H1,
63P1, 64A1, 64L2, 64S2, 66M2, 66S1

2. EXPERIMENTAL

53B1, 56H1, 56T1, 59D1, 59L2, 5901, 60B1, 60Q1, 61A1, 61G1,
62B1, 62K1, 62S1, 63K1, 63K2, 63L1, 63L2, 64B2, 64D1, 64F1,
64I1, 64K1, 64M1, 65A1, 65B1, 65C1, 6511, 65M2, 65M3, 65M4,
65M5, 65Z1, 66C1, 66E1, 66H1, 66J1, 66L1, 66L2, 66M1, 66M4,
66N1, 66Z1, 66Z2, 67C1, 67D1, 67D2, 67H1, 67H2, 67L1, 67M1,
67P1, 67T1, 67T2

3. EXPERIMENTAL ANALYSIS

54A1, 56F1, 58B1, 58R1, 59L1, 60B2, 60H1, 60H2, 60S1, 61B2,
61K1, 61R1, 61S1, 61T1, 62E1, 62T1, 62T2, 63G1, 63M1, 63S1,
63S2, 63T1, 63W1, 64B1, 64S1, 65G1, 65G2, 65H1, 65M1, 65P1,
65S1, 65S2, 65W1, 65W2, 65W3, 66A1, 66A2, 66B1, 66C2, 66D1,
66G1, 66M3, 66W1, 67A3, 67C2, 67D3, 67E1, 67F1, 67J1

4. REVIEW

57T1, 62H1, 62I1, 62P1, 62W1, 64L1, 65G3, 67A1, 67A2, 67B1
4. INDEX TO AUTHORS

A
Abe, T., 65A1
Adam, G., 54A1
Adler, R. B., 65G1
Albert, M. P., 6eCl, 64A1
Allen, C. C., 66A2
Allred, W. P., 61A1
Antonov, A. S., 66A1
American Society for Testing and Materials, 67A2
Austerman, S. B., 67A3
Authier, A., 67A1
Azim, S. A., 67F1

B
Baev, I. A., 64B2, 66B1
Baranskii, P. I., 58B1, 60B2, 61B2
Bate, R. T., 61A1
Berglund, C. N., 66B2
Berkova, A. V., 65M5
Biard, J. R., 62B1
Biet, J. P., 61B1
Bonse, U. K., 67B1
Brice, J. C., 60B1
Brock, G. E., 59D1
Brownson, J., 64B1
Bryant, C. A., 65B1
Buck, T. M., 63L1
Burton, J. A., 53B1
Bush, H. D., 66Z2

C
Carron, G. J., 67C1
Casey, H. C. Jr., 67C2
Chernopisskii, V. U., 64I1
Clevenger, L. H., 66A2
Combs, J. F., 63C1, 64A1
Cox, C. D., 60C1
Czaja, W., 65C1, 66C1, 66C2

D
Decker, D. R., 67D3
Deslattes, R. D., 66L2
Dew-Hughes, D., 59D1
Dickey, D. H., 66M4
Dilatush, E., 67D1
Dionne, G., 67D2
Dobbs, P. J. H., 64D1
Dobrott, R. D., 66H1
Drougard, M. E., 66D1

E
Edwards, D. F., 62E1
Epstein, A. S., 64K1
Esposito, R. M., 67E1
Everhart, T. E., 66E1

F
Fassett, J. R., 66Z2
Fiermans, L., 64F1
Flicker, H., 67E1
Frank, H., 56F1, 67F1
Hughes, K. A., 67T1
Iglitsyn, M. I., 64I1, 65I1
Irving, B. A., 62I1
Ivanov, A. V., 65I1
Jones, A. H., 59D1
Juleff, E. M., 66J1, 67J1
Kahng, D., 62T1
Kaiser, R. H., 67C2
Karagioz, O. V., 65I1
Klein, M. A., 63K2
Kokorev, D. T., 62K1
Kolb, E. D., 53B1
Komukhaev, E. I., 58B1
Kopestansky, J., 66G1
Kovacs, F. S., 64D1, 64K1
Kovtonyuk, N. F., 62K1
Kressel, H., 63K2
Ksoll, G., 61K1
Kudman, I., 63K1
Kyslik, V., 66G1
Laakso, C. W., 66N1
Lamorte, M. F., 60L1
Lander, J. J., 63L1
Lang, A. R., 59L1, 64L1
Lapierre, III, A. G., 66J1, 67J1
Lavine, M. C., 65G3
Layer, H. P., 66L2
Lederhandler, S. R., 59L2
Lehner, H. H., 67L1
Levinson, D. I., 64I1
Levinzon, D. I., 65I1
Locherer, K.-H., 64L2
Loferski, J. J., 67E1
Lorinczy, A., 63L2
Lublin, P., 66L1

Ma, C. H., 64M1
Maker, P. D., 62E1
Makris, J. S., 64M1
Malyutenko, V. K., 65M1
Many, A., 5901, 6001
Manz, R. C., 62T1
Markowska, E., 65M4
Mathews, J. R., 63L1
Mazur, R. G., 66M4, 67M1
Meier, A. A., 65I1
Meyer, N. I., 63M1
Millward, C., 67T1
Mil'vidskii, M. G., 65M5
Munakata, C., 65M2, 65M3, 65W3, 66M1, 66M2, 66M3

Nealey, C. C., 66N1
Nemeth, T., 63L2
Newkirk, J. B., 67A3, 67B1

Oi, N., 65A1
Oroshnik, J., 5901, 6001

P
Pankove, J. I., 62P1
Pasztor, G., 67T2
Pataki, G., 63P1
Patel, J. R., 65C1
Pereverzev, N. A., 62S1
Piotrowski, K., 65P1
Potter, C. N., 67P1

R
Rashba, E. I., 61R1
Romanov, V. A., 61R1
Romanov, V. O., 65M1
Rudenberg, H. G., 58R1
Runyan, W. R., 65W2

S
Saparin, G. V., 62S1
Sato, K., 65A1
Sawyer, D. E., 67P1
Schreiber, H. Jr., 63L1
Schroen, W., 65H1
Schumann, P. A. Jr., 63G1, 63S2, 64S1, 65G2, 65S2
Schwuttke, G. H., 65S1
Sheiner, L. S., 64S1
Sikorski, S., 66S1
Slichter, W. P., 53B1
Smits, F. M., 58S1
Spivak, G. V., 62S1
Stride, A. A., 60B1
Struthers, J. D., 53B1
Sulway, D. V., 67T1
Sutkowski, W. J., 66L1
Swartzendruber, L. J., 64S2
Swiderski, J., 60S1, 61S1, 63S1, 65M4, 65P1
Szebeni, P., 63L2

T
Tannenbaum, E., 61T1
Tarui, Y., 63T1
Tauc, J., 55T1, 57T1
Thiessen, K., 62T2
Thomas, C. O., 62T1
Thornton, P. R., 67T1
Tihanyi, J., 67T2
Trousil, Z., 56T1

V
Valyashko, E. G., 64B2, 66B1
Vaughan, D. E., 61V1

W
Wackwitz, R. C., 65W2
Wang Shou-wu, 63W1
Watanabe, H., 65W3, 66M3
Watelski, S. B., 62B1, 65W2
Webb, W. W., 62W1
Whelan, M. V., 65W1
Winstel, G., 59Z1
Witrty, D. B., 66W1
Wolfson, R. G., 67J1
5. INDEX ACCORDING TO METHODS OR EFFECTS USED TO DETECT INHOMOGENEITIES

1. RESISTIVITY

PHOTOVOLTAIC
55T1, 56F1, 56T1, 57T1, 59O1, 59Z1, 60B5, 60C1, 6001, 60S1, 61S1, 62K1, 63P1, 64B2, 65M4, 65P1, 66B1, 66S1

ELECTRON-VOLTAIC
65M2, 65M3, 66M1, 66M2

PHOTOCONDUCTIVITY
60B2, 65M1, 66G1

TWO-POINT PROBE
58B1, 59R1, 60L1, 61B2, 62G1, 63L2, 64l1, 65I1, 67A1, 67D1, 67L1

FOUR-POINT PROBE
58S1, 59D1, 59R1, 60B1, 60H3, 60L1, 61K1, 61T1, 61V1, 63C1, 63H1, 63S2, 63T1, 64A1, 64D1, 64S1, 64S2, 65S2, 65W2, 66Z2, 67A1

SPREADING RESISTANCE
62B1, 63G1, 63S2, 65B2, 66M4, 67M1

VOLTAGE BREAKDOWN
63G1, 63S2, 64B1, 64D1, 65G2, 66A2

IMPEDANCE
56H1, 59R1, 64L2, 65B1, 67H1

ABSORPTION
65M5

MICROWAVE DIODE
63K2
2. IMPURITY CONCENTRATION
VOLTAGE BREAKDOWN
66A2, 67F1
INTERNAL INJECTION-EXTRACTION
60H1
C VS V
61B1, 62T1, 64K1, 67D3
REFLECTIVITY
62E1, 63K1
ABSORPTION
60H1
REFRACTIVE INDEX
66D1
NEUTRON ACTIVATION
53B1, 61T1, 65H1
RADIOACTIVE TRACER
61A1
ELECTRON MICROPROBE
66L1, 66N1, 66W1, 67C2
ELECTROCHEMICAL
62H1, 62I1, 62P1, 63L2, 65G3

3. DIFFUSION LENGTH
PHOTOVOLTAIC
63S1, 65M4
SURFACE PHOTOVOLTAGE
 61G1

PHOTOCONDUCTIVITY
 63S1

ELECTRON MICROPROBE
 66C2

4. LIFETIME

PHOTOVOLTAIC
 60S1, 63S1, 67E1

PHOTOCONDUCTIVITY
 56H1, 61R1, 62T2, 63S1, 63W1, 64B1, 66B1

ELECTRON MICROPROBE
 66C2

LIGHT MICROPROBE
 54A1

5. SURFACE RECOMBINATION VELOCITY

PHOTOVOLTAIC
 60S1

6. SURFACE

C VS V
 65W1, 66B2, 66Z1

ELECTRON MICROPROBE
 63L1, 66E1, 66N1, 67T1

LIGHT MICROPROBE
 65H1, 67H2, 67P1, 67T2
7. MOBILITY
 LIGHT MICROPROBE
 54A1

8. CRYSTAL PERFECTION
 PHOTOVOLTAIC
 64B2
 REFRACTIVE INDEX
 66D1
 BIREFRINGENCE
 59L2
 ELECTRON MICROPROBE
 63L1, 65C1, 66C1, 66C2, 66N1
 X-RAY TOPOGRAPHY
 59L1, 62W1, 64F1, 64L1, 64M1, 65S1, 66H1, 66J1, 66L2,
 67A1, 67A2, 67A3, 67B1, 67C1, 67D2, 67J1
 ELECTROCHEMICAL
 62H1, 62I1, 62P1, 65G3

9. JUNCTION
 TWO-POINT
 67D1, 67L1
 SPREADING RESISTANCE
 66M4
 C VS V
 60H2, 61B1, 63M1, 65G1, 66A1, 67D3
 MICROWAVE DIODE
 63K2
ELECTRON MICROPROBE
62S1, 66E1, 66N1

ELECTROCHEMICAL
62H1, 62I1, 62P1, 65G3
6. BIBLIOGRAPHY
1953 -- 1958

53B1 Burton, J. A., E. D. Kolb, W. P. Slichter, and J. D. Struthers
DISTRIBUTION OF SOLUTE IN CRYSTALS FROM THE MELT. PART II.
EXPERIMENTAL
(CA:48-1762d)
IMPURITY CONCENTRATION, CRYSTAL PERFECTION
Ge
RADIOACTIVE TRACER
EXPERIMENTAL

54A1 Adam, G.
A FLYING LIGHT SPOT METHOD FOR SIMULTANEOUS DETERMINATION
OF LIFETIME AND MOBILITY OF INJECTED CURRENT CARRIERS
(PA:55-3733)
LIFETIME, MOBILITY
Ge, Si
LIGHT MICROPROBE
APPARATUS
EXPERIMENTAL ANALYSIS

55T1 Tauc, J.
THE THEORY OF A BULK PHOTO-VOLTAIC PHENOMENON IN
SEMICONDUCTORS
(PA:55-7970)
RESISTIVITY
Ge
PHOTOVOLTAIC
THEORETICAL

56F1 Frank, H.
PHOTOELECTRIC MEASUREMENT OF INTERNAL ELECTRIC FIELD IN
INHOMOGENEOUS SEMICONDUCTORS
Czech. J. Phys., vol. 6, pp. 433-442, October 1956 (in
German). (PA:57-7904)
RESISTIVITY
Ge
PHOTOVOLTAIC
APPARATUS
EXPERIMENTAL ANALYSIS

56H1 Henisch, H. K., and J. Zucker
CONTACTLESS METHOD FOR THE ESTIMATION OF RESISTIVITY
AND LIFETIME OF SEMICONDUCTORS
(CA:51-12639c)
RESISTIVITY, LIFETIME
Ge, Si
PHOTOCONDUCTIVITY, IMPEDANCE
APPARATUS
EXPERIMENTAL
56T1 Troušil, Z.
BULK PHOTO-VOLTAIC PHENOMENON
(PA:57-396)

RESISTIVITY
Ge
PHOTOVOLTAIC
EXPERIMENTAL

57T1 Tauc, J.
GENERATION OF AN EMF IN SEMICONDUCTORS WITH NONEQUILIBRIUM
CURRENT CARRIER CONCENTRATIONS
(PA:58-3097)

RESISTIVITY
Ge
[PHOTOVOLTAIC]
REVIEW

58B1 Baranskii, P. I., and E. I. Komukhaev
BULK-GRADIENT EMF IN THE PRESENCE OF CURRENT IN GERMANIUM
1958. (PA:59-4588)

RESISTIVITY
Ge
TWO-POINT PROBE
EXPERIMENTAL ANALYSIS

58R1 Rudenberg, H. G.
RESISTIVITY MEASURING TECHNIQUES IN SEMICONDUCTORS
(EA:59-4652) Also Semiconductor Products, vol. 2,
pp. 28-34, September 1959.

RESISTIVITY
Ge, Si
TWO-POINT, FOUR-POINT, IMPEDANCE
APPARATUS
EXPERIMENTAL ANALYSIS

58S1 Smits, F. M.
MEASUREMENT OF SHEET RESISTIVITIES WITH THE FOUR-POINT
PROBE
(EA:58-4029)

RESISTIVITY
FOUR-POINT
THEORETICAL
59D1 Dew-Hughes, D., A. H. Jones, and G. E. Brock
IMPROVED AUTOMATIC FOUR-POINT RESISTIVITY PROBE
(PA:60-2856)
RESISTIVITY
Ge
FOUR-POINT
APPARATUS
EXPERIMENTAL

59L1 Lang, A. R.
STUDIES OF INDIVIDUAL DISLOCATIONS IN CRYSTALS BY X-RAY
DIFFRACTION MICRORADIOGRAPHY
(PA:60-1587)
CRYSTAL PERFECTION
Ge, Si
X-RAY TOPOGRAPHY
EXPERIMENTAL ANALYSIS

59L2 Lederhandler, S. R.
INFRARED STUDIES OF BIREFRINGENCE IN SILICON
(PA:60-1723)
CRYSTAL PERFECTION
Si
BIREFRINGENCE
APPARATUS
EXPERIMENTAL

59O1 Oroshnik, J., and A. Many
EVALUATION OF THE HOMOGENEITY OF GERMANIUM SINGLE CRYSTALS
BY PHOTOVOLTAIC SCANNING
(CA:53-10985d)
RESISTIVITY
Ge
PHOTOVOLTAIC
EXPERIMENTAL

59Z1 Zerbst, M., and G. Winstel
DETERMINATION OF DOPING GRADIENTS FROM PHOTO-EMF AND
PHOTOCONDUCTIVITY IN SEMICONDUCTORS
Z. Naturforsch., vol. 14a, pp. 754-755, August 1959 (in
German). (PA:59-13285)
RESISTIVITY
PHOTOVOLTAIC
THEORETICAL
60B1 Brice, J. C., and A. A. Stride
A CONTINUOUS-READING FOUR-POINT RESISTIVITY PROBE
(PA:62-11581)
RESISTIVITY
Ge
FOUR-POINT
APPARATUS
EXPERIMENTAL

60B2 Baranskii, P. I.
THE VOLUME-GRADIENT EFFECTS IN SEMICONDUCTORS
Proceedings of the International Conference on
Semiconductor Physics, Prague, 1960, Academic Press,
RESISTIVITY
PHOTOVOLTAIC
APPARATUS
THEORETICAL

60C1 Cox, C. D.
BULK PHOTOEFFECTS IN INHOMOGENEOUS SEMICONDUCTORS
(PA:60-18059)
RESISTIVITY
Ge
PHOTOVOLTAIC
APPARATUS
THEORETICAL

60H1 Harrick, N. J.
SEMICONDUCTOR TYPE AND LOCAL DOPING DETERMINED THROUGH
THE USE OF INFRARED RADIATION
(PA:62-8312)
IMPURITY CONCENTRATION
Ge
ABSORPTION, INTERNAL INJECTION-EXTRACTION
APPARATUS
EXPERIMENTAL ANALYSIS

60H2 Hilibrand, J., and R. D. Gold
DETERMINATION OF THE IMPURITY DISTRIBUTION IN JUNCTION
DIODES FROM CAPACITANCE - VOLTAGE MEASUREMENTS
(PA:60-15972)
JUNCTION
Ge
C VS V
EXPERIMENTAL ANALYSIS
On the Influence of Shape and Variations in Conductivity of the Sample on Four-Point Measurements
Hansen, E. B.
(PA:60-7045)

Resistivity
Four-Point
Theoretical

Calculation of Concentration Profiles and Surface Concentration from Sheet-Conductance Measurements of Diffused Layers
Lamorte, M. F.
(PA:62-8279)

Resistivity
Si
Two-Point, Four-Point
Surface Preparation
Theoretical

Quantitative Photovoltaic Evaluation of the Resistivity Homogeneity of Germanium Single Crystals
Oroshnik, J., and A. Many
(PA:61-14514)

Resistivity
Ge
[Photovoltaic]
Apparatus
Experimental

New Applications of Bulk Photovoltaic Effect Measurements on Germanium
Swiderski, J.

Resistivity, Lifetime, Surface Recombination Velocity
Ge
Photovoltaic
Experimental Analysis

- 1961 -

Anisotropic Segregation in InSb
Allred, W. P., and R. T. Bate
(CA:55-11100a)

Impurity Concentration
InSb
Radioactive Tracer
Experimental
61B1 Biet, J. P.
DETERMINATION OF DOPING PROFILE OF IMPURITIES OF A TRANSISTOR FOR MEASUREMENT OF CERTAIN ELECTRICAL CHARACTERISTICS
IMPURITY CONCENTRATION, JUNCTION C VS V THEORETICAL

61B2 Baranskii, P. I.
VOLUME-GRADIENT PHENOMENA AND LIMITS OF APPLICABILITY OF THE POTENTIOMETRIC PROBE METHOD OF MEASURING THE ELECTRICAL CONDUCTIVITY OF SEMICONDUCTORS
RESISTIVITY Ge [TWO-POINT] EXPERIMENTAL ANALYSIS

61G1 Goodman, A. M.
A METHOD FOR THE MEASUREMENT OF SHORT MINORITY CARRIER DIFFUSION LENGTHS IN SEMICONDUCTORS
DIFFUSION LENGTH GaAs SURFACE PHOTOVOLTAGE APPARATUS EXPERIMENTAL

61K1 Ksoll, G.
ON THE DETERMINATION OF THE CONCENTRATION PROFILE OF DIFFUSION LAYERS IN SILICON FROM LAYER CONDUCTIVITY MEASUREMENTS
RESISTIVITY Si FOUR-POINT EXPERIMENTAL ANALYSIS

61R1 Rashba, E. I., and V. A. Romanov
A PHOTOELECTRIC METHOD OF OBSERVING INHOMOGENEITY WITH DEPTH IN SEMICONDUCTORS
LIFETIME Ge PHOTOCONDUCTIVITY EXPERIMENTAL ANALYSIS

25
61S1 Swiderski, J.
APPLICATION OF THE PHOTOVOLTAIC EFFECT IN THE STUDY OF
THE HOMOGENEITY OF GERMANIUM
(PA:62-12510)

RESISTIVITY
Ge, Si
[PHOTOVOLTAIC]
APPARATUS
EXPERIMENTAL ANALYSIS

61T1 Tannenbaum, E.
DETAILED ANALYSIS OF THIN PHOSPHORUS-DIFFUSED LAYERS IN
P-TYPE SILICON
(EA:61-4004)

RESISTIVITY, IMPURITY CONCENTRATION
Si
FOUR-POINT, NEUTRON ACTIVATION
GENERAL PROCEDURES
EXPERIMENTAL ANALYSIS

61V1 Vaughan, D. E.
FOUR-POINT RESISTIVITY MEASUREMENTS ON SMALL CIRCULAR
SPECIMENS
(PA:61-16203)

RESISTIVITY
FOUR-POINT
THERORETICAL

- 1962 -

62B1 Biard, J. R., and S. B. Watelski
EVALUATION OF GERMANIUM EPITAXIAL FILMS
(PA:63-2889)

RESISTIVITY
Ge
SPREADING RESISTANCE
EXPERIMENTAL

62E1 Edwards, D. F., and P. D. Maker
QUANTITATIVE MEASUREMENT OF SEMICONDUCTOR HOMOGENEITY
FROM PLASMA EDGE
(PA:62-16686)

IMPURITY CONCENTRATION
InAs
REFLECTIVITY
EXPERIMENTAL ANALYSIS
62G1 Gergely, Gy., and O. Hantay
ON THE MEASUREMENT OF CROSS-SECTIONAL RESISTIVITY
VARIATION ON SEMICONDUCTOR CRYSTALS
Solid-State Electronics, vol. 5, pp. 416-417, November -
December 1962. (PA:63-17844)

RESISTIVITY
Ge, Si
TWO-POINT
EXPERIMENTAL

62H1 Holmes, P. J.
PRACTICAL APPLICATIONS OF CHEMICAL ETCHING
The Electrochemistry of Semiconductors, P. J. Holmes, Ed.,

IMPURITY CONCENTRATION, CRYSTAL PERFECTION, JUNCTION
Ge, Si, GaAs, InSb, InAs
[ELECTROCHEMICAL]
GENERAL PROCEDURES
REVIEW

62I1 Irving, B. A.
CHEMICAL ETCHING OF SEMICONDUCTORS
The Electrochemistry of Semiconductors, P. J. Holmes, Ed.,

IMPURITY CONCENTRATION, CRYSTAL PERFECTION, JUNCTION
ELECTROCHEMICAL
REVIEW

62K1 Kokorev, D. T., and N. F. Kovtonyuk
ANALYSIS OF THE HOMOGENEITY OF SEMICONDUCTOR MATERIALS BY
USING THE METHOD OF THE VOLUME PHOTO - EMF
(PA:63-15567)

RESISTIVITY
Ge
PHOTOVOLTAIC
APPARATUS
EXPERIMENTAL

62P1 Pankove, J. I.
PRACTICAL APPLICATIONS OF ELECTROLYTIC TREATMENTS TO
SEMICONDUCTORS
The Electrochemistry of Semiconductors, P. J. Holmes, Ed.,

IMPURITY CONCENTRATION, CRYSTAL PERFECTION, JUNCTION
Ge, Si
ELECTROCHEMICAL
REVIEW

62S1 Spivak, G. V., G. V. Saparin, and N. A. Pereverzev
POTENTIAL DISTRIBUTION IN A P-N JUNCTION AS OBSERVED BY
ELECTRON-OPTICAL SCANNING
Bull. Acad. Sci. USSR, Phys. Ser., vol. 26, pp. 1362-1365,
November 1962. (PA:64-10074)

JUNCTION
Ge, Si
ELECTRON MICROPROBE
EXPERIMENTAL
IMPURITY DISTRIBUTION IN EPITAXIAL SILICON FILMS

IMPURITY CONCENTRATION
Si
C VS V
FABRICATION
EXPERIMENTAL ANALYSIS

MEASUREMENT OF INHOMOGENEOUS DISTRIBUTION OF RECOMBINATION CENTERS IN GERMANIUM BY MEANS OF PHOTOCONDUCTIVE AND PHOTOMAGNETOELECTRIC EFFECTS

LIFETIME
Ge
PHOTOCONDUCTIVITY
EXPERIMENTAL ANALYSIS

X-RAY DIFFRACTION TOPOGRAPHY

CRYSTAL PERFECTION
[X-RAY TOPOGRAPHY]
REVIEW

- 1963 -

DIAMETER CORRECTION FACTORS FOR THE RESISTIVITY MEASUREMENT OF SEMICONDUCTOR SLICES

RESISTIVITY
FOUR-POINT
THEORETICAL

COMPARISON OF RESISTIVITY MEASUREMENT TECHNIQUES ON EPITAXIAL SILICON

Solid-State Electronics, vol. 6, pp. 311-313, May - June 1963. (PA:64-6989)

RESISTIVITY
Si
SPREADING RESISTANCE, VOLTAGE BREAKDOWN
EXPERIMENTAL ANALYSIS
Hora, H.
ON THE MEASUREMENT OF SEMICONDUCTOR LAYERS ON DIFFERENT CONDUCTIVITY SUBSTRATES WITH A FIVE-PROBE METHOD

RESISTIVITY
Ge
FOUR-POINT
THEORETICAL

Kudman, I.
A NONDESTRUCTIVE MEASUREMENT OF CARRIER CONCENTRATION IN HEAVILY DOPED SEMICONDUCTING MATERIALS AND ITS APPLICATION TO THIN SURFACE LAYERS
(PA:63-17878)

IMPURITY CONCENTRATION
GaAs
REFLECTIVITY
EXPERIMENTAL

Kressel, H., and M. A. Klein
DETERMINATION OF EPITAXIAL-LAYER IMPURITY PROFILES BY MEANS OF MICROWAVE - DIODE MEASUREMENTS

RESISTIVITY, JUNCTION
Si
MICROWAVE DIODE
EXPERIMENTAL

Lander, J. J., H. Schreiber, Jr., T. M. Buck, and J. R. Mathews
MICROSCOPY OF INTERNAL CRYSTAL IMPERFECTIONS IN Si P-N JUNCTION DIODES BY USE OF ELECTRON BEAMS

CRYSTAL PERFECTION, SURFACE
Si
ELECTRON MICROPROBE
EXPERIMENTAL

Lorinczy, A., T. Nemeth, and P. Szebeni
MICRO-INHOMOGENEITIES IN Ge SINGLE CRYSTALS

RESISTIVITY
Ge
TWO-POINT, ELECTROCHEMICAL
EXPERIMENTAL
63M1 Meyer, N. I., and T. Gulbrandsen
METHOD FOR MEASURING IMPURITY DISTRIBUTIONS IN SEMICONDUCTOR CRYSTALS
(PA:64-15530)

JUNCTION
Ge, Si
C VS V
APPARATUS
EXPERIMENTAL ANALYSIS

63P1 Pataki, G.
REMARK ON THE THEORY OF THE BULK PHOTOEFFECT IN INHOMOGENEOUS SEMICONDUCTORS
(PA:63-20395)

RESISTIVITY
PHOTOVOLTAIC
THEORETICAL

63S1 Swiderski, J.
MEASUREMENTS OF DIFFUSION LENGTH OF MINORITY CARRIERS IN AN INHOMOGENEOUS SEMICONDUCTOR

DIFFUSION LENGTH
Ge, Si
PHOTOVOLTAIC, PHOTOCONDUCTIVITY
EXPERIMENTAL ANALYSIS

63S2 Schumann, P. A. Jr., and J. F. Hallenback, Jr.
A NOVEL FOUR-POINT PROBE FOR EPITAXIAL AND BULK SEMICONDUCTOR RESISTIVITY MEASUREMENTS
(PA:63-25341)

RESISTIVITY
Si
FOUR-POINT, SPREADING RESISTANCE, VOLTAGE BREAKDOWN
EXPERIMENTAL ANALYSIS

63T1 Tarui, Y.
METHOD FOR MEASURING THE RESISTIVITY OF HIGH-PURITY SILICON

RESISTIVITY
Si
FOUR-POINT
APPARATUS
EXPERIMENTAL ANALYSIS
63W1 Wang Shou-wu
MEASUREMENT OF THE LIFETIME OF MINORITY CURRENT CARRIERS
IN SEMICONDUCTORS BY OBSERVING THE PHOTOCONDUCTIVE DECAY
OF THE SPREADING RESISTANCE UNDER A POINT CONTACT
Chinese). (PA:64-1582) Translation available in AD 631119.

LIFETIME
Ge, Si
PHOTOCONDUCTIVITY
APPARATUS
EXPERIMENTAL ANALYSIS

- 1964 -

64A1 Albert, M. P., and J. F. Combs
CORRECTION FACTORS FOR RADIAL RESISTIVITY GRADIENT
EVALUATION OF SEMICONDUCTOR SLICES
April 1964. (PA:64-20350)

RESISTIVITY
FOUR-POINT
THEORETICAL

64B1 Brownson, J.
A THREE-POINT PROBE METHOD FOR ELECTRICAL CHARACTERIZATION
OF EPITAXIAL FILMS
(PA:64-28569)

RESISTIVITY
Si
VOLTAGE BREAKDOWN
APPARATUS
EXPERIMENTAL ANALYSIS

64B2 Baev, I. A., and E. G. VaIyashko
STUDY OF THE HOMOGENEITY OF SEMICONDUCTOR CRYSTALS WITH
THE USE OF A MOVING LIGHT PROBE
1964. (PA:65-12706)

RESISTIVITY, CRYSTAL PERFECTION, LIFETIME
Ge, InSb
PHOTOVOLTAIC, PHOTOCONDUCTIVITY
APPARATUS
EXPERIMENTAL

64D1 Dobbs, P. J. H., and F. S. Kovacs
MEASUREMENT OF THE RESISTIVITY OF SILICON EPITAXIAL
WAFERS
Semiconductor Prod. Solid State Technol., vol. 7,

RESISTIVITY
Si
FOUR-POINT, VOLTAGE BREAKDOWN
APPARATUS
EXPERIMENTAL

31
64F1 Fiermans, L.
DIRECT OBSERVATION OF DISLOCATIONS IN SILICON SINGLE CRYSTALS USING A WHITE X-RAY RADIATION TECHNIQUE
(PA:64-25945)
CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
APPARATUS
EXPERIMENTAL

64I1 Iglitsyn, M. I., D. I. Levinson, and V. U. Chernopisskii
CHECKING THE UNIFORMITY OF MONOCRISTALLINE GERMANIUM BY THE SINGLE PROBE METHOD
(CA:60-11471c)
RESISTIVITY
Ge
TWO-POINT
APPARATUS
EXPERIMENTAL

64K1 Kovacs, F. S., and A. S. Epstein
DETERMINATION OF IMPURITY DISTRIBUTION PROFILES IN SILICON EPITAXIAL WAFERS
IMPURITY CONCENTRATION
Si
C VS V
CONTACTS, APPARATUS, FABRICATION
EXPERIMENTAL

64L1 Lang, A. R.
CRYSTAL GROWTH AND CRYSTAL PERFECTION: X-RAY TOPOGRAPHIC STUDIES
(PA:66-1853)
CRYSTAL PERFECTION
Ge, Si
X-RAY TOPOGRAPHY
REVIEW

64L2 Locherer, K.-H.
THEORIES OF THE CAPACITIVE MEASUREMENT OF THE CONDUCTIVITY OF SEMICONDUCTOR SPECIMENS
RESISTIVITY
IMPEDANCE
THEORETICAL
64M1 Makris, J. S., and C. H. Ma
A MODIFIED X-RAY DIFFRACTION MICROSCOPE TECHNIQUE FOR
STUDY OF DISLOCATIONS IN CRYSTALS
1964. (PA:64-30568)
CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
APPARATUS, SURFACE PREPARATION
EXPERIMENTAL

64S1 Schumann, P. A. Jr., and L. S. Sheiner
PRECISION OVER-UNDER FOUR-POINT PROBE WITH A SMALL
PROBE SPACING
(PA:64-26025)
RESISTIVITY
Si
FOUR-POINT
APPARATUS
EXPERIMENTAL ANALYSIS

64S2 Swartzendruber, L. J.
FOUR-POINT PROBE MEASUREMENT OF NON-UNIFORMITIES IN
SEMICONDUCTOR SHEET RESISTIVITY
(PA:64-22697)
RESISTIVITY
[FOUR-POINT]
THEORETICAL

- 1965 -

65A1 Abe, T., K. Sato, and N. Oi
DETERMINATION OF EPITAXIAL-LAYER IMPURITY DISTRIBUTION
BY NEUTRON ACTIVATION METHOD
(PA:65-12365)
IMPURITY CONCENTRATION
Si
NEUTRON ACTIVATION
EXPERIMENTAL

65B1 Bryant, C. A., and J. B. Gunn
NONCONTACT TECHNIQUE FOR THE LOCAL MEASUREMENT OF
SEMICONDUCTOR RESISTIVITY
(PA:66-2322)
RESISTIVITY
Ge, Si
IMPEDEANCE
APPARATUS
EXPERIMENTAL
65C1 Czaja, W., and J. R. Patel
OBSERVATIONS OF INDIVIDUAL DISLOCATIONS AND OXYGEN
PRECIPITATES IN SILICON WITH A SCANNING ELECTRON BEAM
METHOD
(PA:65-17657)
CRYSTAL PERFECTION
Si
[ELECTRON MICROPROBE]
APPARATUS
EXPERIMENTAL

65G1 Gray, P. E., and R. B. Adler
A SIMPLE METHOD FOR DETERMINING THE IMPURITY DISTRIBUTION
NEAR A P-N JUNCTION
August 1965. (PA:66-8559)
JUNCTION
Si
C VS V
APPARATUS
EXPERIMENTAL ANALYSIS

MEASUREMENT OF RESISTIVITY OF SILICON EPITAXIAL LAYERS BY
THE THREE-POINT PROBE TECHNIQUE
Solid-State Electronics, vol. 8, pp. 165-174, February
1965. (PA:65-12707)
RESISTIVITY
Si
[VOLTAGE BREAKDOWN]
APPARATUS
EXPERIMENTAL ANALYSIS

65G3 Gatos, H. C., and M. C. Lavine
CHEMICAL BEHAVIOR OF SEMICONDUCTORS: ETCHING
CHARACTERISTICS
Progress in Semiconductors, vol. 9, Heywood Book, Temple
IMPURITY CONCENTRATION, CRYSTAL PERFECTION, JUNCTION
Ge, Si, GaAs, InSb
ELECTROCHEMICAL
SURFACE PREPARATION
REVIEW

65H1 Hooper, W. W., and W. Schroen
INVESTIGATION OF SURFACE BREAKDOWN BY LIGHT SCANNING
Physics of Failure in Electronics, vol. 3, RADC Series
in Reliability, M. F. Goldberg and J. Vaccaro, Eds., 1965,
pp. 433-451. AD 617715
SURFACE
Si
LIGHT MICROPROBE
APPARATUS
EXPERIMENTAL ANALYSIS
65I1 Iglitsyn, M. I., A. A. Meier, O. V. Karagioz, D. I. Levinzon, and A. V. Ivanov
A SINGLE-PROBE METHOD OF MEASURING THE RESISTIVITY OF SEMICONDUCTORS WITH ALTERNATING CURRENT

RESISTIVITY
Ge, Si
TWO-POINT
APPARATUS
EXPERIMENTAL

65M1 Malyutenko, V. K., and V. O. Romanov
SOME PECULIARITIES OF PHOTOCONDUCTIVITY KINETICS IN NONHOMOGENEOUS SEMICONDUCTORS

RESISTIVITY
Ge
PHOTOCONDUCTIVITY
EXPERIMENTAL ANALYSIS

65M2 Munakata, C.
BULK ELECTRON VOLTAIC EFFECT

RESISTIVITY
Ge
ELECTRON-VOLTAIC
EXPERIMENTAL

65M3 Munakata, C.
MEASUREMENT OF THE HOMOGENEITY OF A SEMICONDUCTOR WITH AN ELECTRON BEAM

RESISTIVITY
Ge
ELECTRON-VOLTAIC
EXPERIMENTAL

65M4 Markowska, E., and J. Swiderski
APPLICATION OF LASER TO MEASUREMENTS OF HOMOGENEITY AND DIFFUSION LENGTH OF MINORITY CARRIERS IN SEMICONDUCTORS

RESISTIVITY, DIFFUSION LENGTH
Ge
PHOTOVOLTAIC
APPARATUS
EXPERIMENTAL
65M5 Mil'vidskii, M. G., S. P. Grishina, and A. V. Berkova
DETECTING INHOMOGENEITIES IN SILICON SINGLE CRYSTALS
WITH INFRARED TRANSILLUMINATION
(CA:63-5030d)
RESISTIVITY
Si
ABSORPTION
EXPERIMENTAL

65P1 Piotrowski, K., and J. Swiderski
THE PHOTOVOLTAIC METHOD OF MEASURING THE SPECIFIC
RESISTANCE OF EPITAXIAL LAYERS
(EA:65-12226) Translation available in AD 636678.
RESISTIVITY
PHOTOVOLTAIC EFFECT
EXPERIMENTAL ANALYSIS

65S1 Schwuttke, G. H.
NEW X-RAY DIFFRACTION MICROSCOPY TECHNIQUE FOR THE STUDY
OF IMPERFECTIONS IN SEMICONDUCTOR CRYSTALS
(PA:65-33064)
CRYSTAL PERFECTION
Si
[X-RAY TOPOGRAPHY]
APPARATUS
EXPERIMENTAL ANALYSIS

65S2 Schumann, P. A. Jr., and E. E. Gardner
FOUR-POINT PROBE EVALUATION OF SILICON N/N+ AND P/P+
STRUCTURES
1965. (PA:65-17922)
RESISTIVITY
Si
FOUR-POINT
APPARATUS
EXPERIMENTAL ANALYSIS

65W1 Whelan, M. V.
INFLUENCE OF CHARGE INTERACTIONS ON CAPACITANCE VERSUS
VOLTAGE CURVES IN MOS STRUCTURES
SURFACE
Si
C VS V
EXPERIMENTAL ANALYSIS
65W2 Watelski, S. B., W. R. Runyan, and R. C. Wackwitz
A CONCENTRATION GRADIENT PROFILING METHOD
RESISTIVITY
Si
FOUR-POINT
SURFACE PREPARATION
EXPERIMENTAL ANALYSIS

65W3 Watanabe, H., and C. Munakata
MEASUREMENT OF RESISTANCE BY MEANS OF ELECTRON BEAM - I
RESISTIVITY
ELECTRON MICROPROBE
APPARATUS
EXPERIMENTAL ANALYSIS

65Z1 Ziegler, G., H.-J. Henkel
INHOMOGENEOUS IMPURITY DISTRIBUTION IN GaAs SINGLE CRYSTALS
IMPURITY CONCENTRATION
GaAs
ABSORPTION
EXPERIMENTAL

- 1966 -

66A1 Antonov, A. S.
DISTRIBUTION OF IMPURITIES AND THE VARIATION OF ELECTRIC FIELD IN THE DRIFT REGION OF SILICON P-I-N DETECTORS
JUNCTION
Si
C VS V
EXPERIMENTAL ANALYSIS

66A2 Allen, C. C., L. H. Clevenger, and D. C. Gupta
A POINT CONTACT METHOD OF EVALUATING EPITAXIAL LAYER RESISTIVITY
RESISTIVITY, IMPURITY CONCENTRATION
Ge, Si
BREAKDOWN VOLTAGE
APPARATUS
EXPERIMENTAL ANALYSIS
66B1 Baev, I. A., and E. G. Valyashko
AN INVESTIGATION OF THE DISTRIBUTION OF INHOMOGENEOUS REGIONS IN SEMICONDUCTORS
RESISTIVITY, LIFETIME
Ge, Si
[PHOTOVOLTAIC], PHOTOCONDUCTIVITY
APPARATUS
EXPERIMENTAL ANALYSIS

66B2 Berglund, C. N.
SURFACE STATES AT STEAM-GROWN SILICON-SILICON DIOXIDE INTERFACES
SURFACE
Si
C VS V
EXPERIMENTAL ANALYSIS

66C1 Czaja, W.
DETECTION OF PARTIAL DISLOCATIONS IN SILICON WITH THE SCANNING ELECTRON BEAM TECHNIQUE
CRYSTAL PERFECTION
Si
ELECTRON MICROPROBE
EXPERIMENTAL

66C2 Czaja, W.
RESPONSE OF Si AND GaP P-N JUNCTIONS TO A 5- to 40-KeV ELECTRON BEAM
DIFFUSION LENGTH, CRYSTAL PERFECTION
Si, GaP
ELECTRON MICROPROBE
EXPERIMENTAL ANALYSIS

66D1 Drougard, M. E.
OPTICAL INHOMOGENEITIES IN GALLIUM ARSENIDE
IMPURITY CONCENTRATION, CRYSTAL PERFECTION
GaAs
REFRACTIVE INDEX
APPARATUS
EXPERIMENTAL ANALYSIS
66E1 Everhart, T. E.
CERTAIN SEMICONDUCTOR APPLICATIONS OF THE SCANNING ELECTRON MICROSCOPE
JUNCTION, SURFACE
Si
ELECTRON MICROPROBE
APPARATUS
EXPERIMENTAL

66G1 Gallas, M., J. Kopestansky, and V. Kyslik
THE INVESTIGATION OF INHOMOGENEITIES IN SILICON SINGLE CRYSTALS BY THE METHOD OF PHOTOELECTRIC CONDUCTIVITY
RESISTIVITY
Si
PHOTOCONDUCTIVITY
EXPERIMENTAL ANALYSIS

66H1 Howard, J. K., and R. D. Dobrott
COMPOSITIONAL X-RAY TOPOGRAPHY
CRYSTAL PERFECTION
GaAs, GaP, GaAs-InAs, Ge-Si
X-RAY TOPOGRAPHY
EXPERIMENTAL

66J1 Juleff, E. M., and A. G. Lafierre
PHOTOGRAPHIC EMULSION RELIEF TECHNIQUE FOR SMALL-AREA INTENSITY COMPARISONS
CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
EXPERIMENTAL

66L1 Lublin, P., and W. J. Sutkowski
APPLICATION OF THE ELECTRON PROBE TO ELECTRONIC MATERIALS
IMPURITY CONCENTRATION
GaAs
ELECTRON MICROPROBE
SURFACE PREPARATION
EXPERIMENTAL
66L2 Layer, H. P., and R. D. Deslattes
A SIMPLE NONSCANING CAMERA FOR X-RAY DIFFRACTION CONTRAST
TOPOGRAPHY
(PA:67-1535)

CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
APPARATUS
EXPERIMENTAL

66M1 Munakata, C.
DETECTION OF RESISTIVITY STRIATIONS IN A Ge CRYSTAL WITH
AN ELECTRON BEAM
(PA:66-21392)

RESISTIVITY
Ge
ELECTRON-VOLTAIC
EXPERIMENTAL

66M2 Munakata, C.
ON THE VOLTAGE INDUCED BY AN ELECTRON BEAM IN A BULK
SEMICONDUCTOR CRYSTAL
(PA:67-7929)

RESISTIVITY
Ge
[ELECTRON-VOLTAIC]
THEORETICAL

66M3 Munakata, C., and H. Watanabe
MEASUREMENT OF RESISTANCE BY MEANS OF ELECTRON BEAM - II
(PA:67-14943)

RESISTIVITY
Ge
ELECTRON MICROPROBE
EXPERIMENTAL ANALYSIS

66M4 Mazur, R. G., and D. H. Dickey
A SPREADING RESISTANCE TECHNIQUE FOR RESISTIVITY
MEASUREMENTS ON SILICON
(PA:66-18515)

RESISTIVITY, JUNCTION
Si
[SPREADING RESISTANCE]
APPARATUS
EXPERIMENTAL
66N1 Nealey, C. C., C. W. Laakso, and P. J. Hagon
PLANAR SILICON DEVICE ANALYSES WITH THE ELECTRON PROBE MICROANALYZER
IMPURITY CONCENTRATION, CRYSTAL PERFECTION, SURFACE, JUNCTION Si
[ELECTRON MICROPROBE] EXPERIMENTAL

66S1 Sikorski, S.
DEMBER EFFECT IN AN INHOMOGENEOUS SEMICONDUCTOR AND BULK PHOTOVOLTAIC EFFECT
RESISTIVITY
PHOTOVOLTAIC THEORETICAL

66W1 Wittry, D. B.
CATHODOLUMINESCENCE AND IMPURITY VARIATIONS IN Te-DOPED GaAs
IMPURITY CONCENTRATION
GaAs ELECTRON MICROPROBE EXPERIMENTAL ANALYSIS

66Z1 Zaininger, K. H.
AUTOMATIC DISPLAY OF MIS CAPACITANCE VERSUS BIAS CHARACTERISTICS
SURFACE Si C VS V APPARATUS EXPERIMENTAL

FOUR POINT SHEET RESISTIVITY TECHNIQUE
RESISTIVITY FOUR-POINT APPARATUS EXPERIMENTAL
67A1 Authier, A.
CONTRAST OF DISLOCATION IMAGES IN X-RAY TRANSMISSION TOPOGRAPHY

CRYSTAL PERFECTION
X-RAY TOPOGRAPHY
REVIEW

67A2 American Society for Testing and Materials
TENTATIVE METHODS OF TEST FOR BULK SEMICONDUCTOR RADIAL RESISTIVITY VARIATION

RESISTIVITY
TWO-POINT, FOUR-POINT
GENERAL PROCEDURES
EXPERIMENTAL ANALYSIS

67A3 Austerman, S. B., and J. B. Newkirk
EXPERIMENTAL PROCEDURES IN X-RAY DIFFRACTION TOPOGRAPHY

CRYSTAL PERFECTION
X-RAY TOPOGRAPHY
GENERAL PROCEDURES
REVIEW

67B1 Bonse, U. K., M. Hart, and J. B. Newkirk
X-RAY DIFFRACTION TOPOGRAPHY

CRYSTAL PERFECTION
X-RAY TOPOGRAPHY
REVIEW

67C1 Carron, G. J.
X-RAY TOPOGRAPHIC CAMERA
(PA:67-29341)

CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
APPARATUS
EXPERIMENTAL
Casey, H. C. Jr., and R. H. Kaiser
ANALYSIS OF N-TYPE GaAs WITH ELECTRON-BEAM-EXCITED RADIATIVE RECOMBINATION

IMPURITY CONCENTRATION
GaAs
ELECTRON MICROPROBE APPARATUS
EXPERIMENTAL ANALYSIS

Dilatush, E.
MICROPROBE PROMISES BETTER SEMICONDUCTOR DEVICES

RESISTIVITY, PROFILE
GaAs
TWO-POINT APPARATUS
EXPERIMENTAL ANALYSIS

Dionne, G.
HIGH-RESOLUTION X-RAY - DIFFRACTION TOPOGRAPHY USING K \beta RADIATION

CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
EXPERIMENTAL ANALYSIS

Decker, D. R.
MEASUREMENT OF EPITAXIAL DOPING DENSITY VERSUS DEPTH

IMPURITY CONCENTRATION, JUNCTION
Si
C VS V
EXPERIMENTAL ANALYSIS

Esposito, R. M., J. J. Loferski, and H. Flicker
CONCERNING THE POSSIBILITY OF OBSERVING LIFETIME - GRADIENT AND DEMBER PHOTOVOLTAGES IN SEMICONDUCTORS

LIFETIME
Ge, Si
PHOTOVOLTAIC
EXPERIMENTAL ANALYSIS

Frank, H., and S. A. Azim
MEASUREMENT OF DIFFUSION PROFILE OF Zn IN N-TYPE GaAs BY A SPREADING RESISTANCE TECHNIQUE

CARRIER CONCENTRATION, JUNCTION
GaAs
SPREADING RESISTANCE CONTACTS
EXPERIMENTAL ANALYSIS
67H1 Haisty, R. W.
ELECTRODELESS MEASUREMENT OF RESISTIVITIES OVER A VERY
WIDE RANGE
(EA:67-18679)
RESISTIVITY
Ge
IMPEDEANCE
APPARATUS
EXPERIMENTAL

67H2 Haberer, J. R.
PHOTORESPONSE MAPPING OF SEMICONDUCTORS
Physics of Failure in Electronics, vol. 5, RADC Series in
Reliability, T. S. Shilliday and J. Vaccaro, Ed., 1967,
pp. 51-82. AD 655 397
SURFACE
Si
LIGHT MICROPROBE
APPARATUS
EXPERIMENTAL

THE ANALYSIS OF BERG - BARRETT SKEW REFLECTIONS AND THEIR
APPLICATIONS IN THE OBSERVATION OF PROCESS-INDUCED
IMPERFECTIONS IN (111) SILICON WAFERS
Advances in X-Ray Analysis, vol. 10, J. B. Newkirk and
CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
EXPERIMENTAL ANALYSIS

67L1 Lehner, H. H.
PROBING TECHNIQUE FOR MEASURING THE POTENTIAL DISTRIBUTION
IN SEMICONDUCTORS
(PA:67-29786)
RESISTIVITY, JUNCTION
GaAs
TWO-POINT
APPARATUS
EXPERIMENTAL

67M1 Mazur, R. G.
RESISTIVITY INHOMOGENEITIES IN SILICON CRYSTALS
(EA:67-20978)
RESISTIVITY
Si
SPREADING RESISTANCE
EXPERIMENTAL
Potter, C. N., and D. E. Sawyer
OPTICAL SCANNING TECHNIQUES FOR SEMICONDUCTOR DEVICE
SCREENING AND IDENTIFICATION OF SURFACE AND JUNCTION
PHENOMENA
Physics of Failure in Electronics, vol. 5, RADC Series in
Reliability, T. S. Shilliday and J. Vaccaro, Eds., 1967,
pp. 37-50. AD 655 397

Thornton, P. R., K. A. Hughes, Htin Kyaw, C. Millward,
and D. V. Sulway
FAILURE ANALYSIS OF MICROCIRCUITRY BY SCANNING ELECTRON
MICROSCOPY
Microelectronics and Reliability, vol. 6, pp. 9-16,
February 1967. (EA:67-9145)

Tihanyi, J., and G. Pasztor
OBSERVATION OF SURFACE PHENOMENA ON SEMICONDUCTOR DEVICES
BY A LIGHT SPOT SCANNING METHOD
(PA:67-17994)
Mathematical CLEARINGHOUSE

The best single source of information concerning the Bureau’s research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, $1.50; foreign, $2.25*.

*Difference in price is due to extra cost of foreign mailing.