NBS TECHNICAL NOTE

National Bureau of Standaras Lbrary, E-01 Artmin. Bldg.

Reform:

A General-Purpose Program for Manipulating Formatted Data Files

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ${ }^{1}$ was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in three broad program areas and provides central national services in a fourth. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.
The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, and the Center for Radiation Research.
THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Standard Reference Data and a group of divisions organized by the following areas of science and engineering:

Applied Mathematics-Electricity-Metrology-Mechanics-Heat-Atomic Phys-ics-Cryogenics ${ }^{2}$-Radio Physics ${ }^{2}$-Radio Engineering ${ }^{2}$-Astrophysics ${ }^{2}$-Time and Frequency. ${ }^{2}$
THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to methods, standards of measurement, and data needed by industry, commerce, educational institutions, and government. The Institute also provides advisory and research services to other government agencies. The Institute consists of an Office of Standard Reference Materials and a group of divisions organized by the following areas of materials research:

Analytical Chemistry-Polymers-Metallurgy - Inorganic Materials - Physical Chemistry.
THE INSTITUTE FOR APPLIED TECHNOLOGY provides for the creation of appropriate opportunities for the use and application of technology within the Federal Government and within the civilian sector of American industry. The primary functions of the Institute may be broadly classified as programs relating to technological measurements and standards and techniques for the transfer of technology. The Institute consists of a Clearinghouse for Scientific and Technical Information, ${ }^{3}$ a Center for Computer Sciences and Technology, and a group of technical divisions and offices organized by the following fields of technology:

Building Research-Electronic Instrumentation - Technical Analysis - Product Evaluation-Invention and Innovation-Weights and Measures - Engineering Standards-Vehicle Systems Research.
THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center for Radiation Research consists of the following divisions:

Reactor Radiation-Linac Radiation-Applied Radiation-Nuclear Radiation.

[^0]
UNITED STATES DEPARTMENT OF COMMERCE

C. R. Smith, Secretary

NATIONAL BUREAU OF STANDARDS - A. V. Astin, Director

ISSUED AUGUST 1968

Reform:

A General-Purpose Program for Manipulating Formatted Data Files

Robert C. McClenon and Joseph Hilsenrath
Office of Standard Reference Data Institute for Basic Standards
National Bureau of Standards
Washington, D.C. 20234

Abstract

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

FOREWORD

This report describes one of a series of computer programs being developed by the Data Systems Design Group of the NBS Office of Standard Reference Data to assist the Data Centers affiliated with the National Standard Reference Data System. The text of this report was reproduced from a typescript prepared on a typewriter terminal connected to a time-shared computer system. The program listing was produced on a phototypesetting machine at the Government Printing Office from a magnetic tape produced at NBS.

Edward L. Brady, Chief
Office of Standard Reference Data

Contents

1. Introduction 1
2. Objectives 2
3. Characteristics of REFORM- 3
4. Discussion of the Control Cards 3
5. Allocation of Core Storage 6
6. Applications of REFORM 7
Fortran Listings 20

A General-Purpose Program for Manipulating Formatted Data Files

Robert McClenon and Joseph Hilsenrath

A program listing and description is given of REFORH, an independent program with which it is possible to manipulate and edit files containing as many as nine different fixed-field card formats. It can select or abridge information from any of the cards and print that information, or reformat new cards in any desired order or arrangement. Provision is made for introducing as many as twenty-six arbitrary strings of characters, each of which may be up to seventy-nine characters in length, thereby permitting the insertion of labels, headings, or comments into the file. The program, which operates on the 1108 computer at NBS, is written in ASA FORTRAN, and care has been taken to reduce to a minimum the program changes required to make the program run on other computers.

Key words: File editor; fixed-field file editor; Fortran program; insert program; packing program; reformatting; report generator; unpacking program.

1. Introduction

A large number of data files and bibliographies have been generated in the NSRDS program and elsewhere on punched cards or stored as card images on magnetic tape, or written as fixed length records on magnetic tape. Such files are usually formatted in such a way as to conserve space on the card or on print-line. Thus, labels or other identifiers are a luxury that few programmers indulge in when designing a file. In fact, in many files, the decimal points and blank spaces are omitted from the stored data. These are inserted later during the print-out in accord with specific instructions via format cards. While the insertion of decimal points and spaces between columns of numbers is relatively easy, the insertion of textual material requires considerably more labor.

REFORM is an independent program with which it is possible to manipulate files containing as many as nine different card formats. It can select or abridge information from any of the cards and print that information, or reformat new cards in any desired order or arrangement. Provision is made for introducing as many as twenty-six arbitrary strings of characters, each of which may be up to seventy-nine characters in length, thereby permitting the insertion of labels, headings, or comments into the file.

The program has application in the modification of formatted files of data. Among the applications that are foreseen are:
a. abridgment of complex structured files,
b. selection of isolated items of information,
c. combination of two or more data files into a single file,
d. insertion of new data fields into an existing file,
e. insertion of labels or comments into existing files, either permanently or for printing of reports,
f. insertion of typesetting code instructions for a photocomposition machine,
g. rearrangement of the order of records in a file,
h. packing and unpacking of card images,
i. blocking and unblocking of tables of data.

2. Objectives

Conventional methods for handling the printing of such files -- suitably spaced and with the desired notation -- require that a special computer program be written and assembled. Such programs contain explicit instructions for what is to be printed, and must therefore be rewritten if changes are later desired. Such changes invariably require the services of an experienced programmer.

The program described here is one of a series of general purpose programs for text and data manipulation which permit one to reformat files and print reports without writing a new program for each job. The instructions for fragmenting the records, rearranging the fragments, and inserting any ad hoc character strings between them are given in a series of control cards, which are fed to the machine at run time.

The present version of the program, called REFORM, handles files in fixed-field format. The program can handle three types of files:
a. one in which each record has an identical format,
b. a file with as many as nine different types of records (or cards or lines) all of which must be present and in order within each group,
c. files with as many as nine different card or format types, but not necessarily all present in each group. In this case, each card must carry an identification number whose location is in a fixed column or position in the line.

Each card can be broken into as many as nine fragments. The program assigns names to the designated fragments of the various cards. Thus, the name 31 is assigned automatically by the program to the third piece of the first card, while 43 is assigned to the fourth piece of the third card. Similarly, the names A, B, C, etc., are assigned automatically to a series of ad hoc strings which may be as long as seventy-nine characters. llaving thus defined all of the segments in the existing file as well as the ad hoc strings, it is now possible to put together new cards or records by juxtaposing any desired sequence of names. Thus the sequence A11C31054B would produce a card or line containing: the first ad hoc string, the first piece of card l, the third string, the third piece of card l, followed immediately by the fifth piece of card 4 , and finally, the second string B.

One of the goals in writing REFORil was to make it as machine-independent and system-independent as possible. The program has been written in ASA FORTRAN IV so that it can be used on any computer with a compiler accepting the standard FORTRAN IV instructions.

The logical unit numbers designating the system card reader, printer, and card punch differ not only from machine to machine, but also from installation to installation. Therefore, some changes will be necessary if REFORA is to be used on any machine other than the UNIVAC 1108 at NBS. In order to minimize the changes the input and output instructions reference variables, READX, PRINTX, and PUNCHX, which are defined at the beginning of the program. In the listing of the program accompanying this report they are equated to 5,6 , and 3 - the logical unit numbers for the reader, printer, and punch, respectively, at NBS. The user of REFORM must set them equal to the proper values for his system.

REFORA consists of a main program and two subprograms, COVFL and IFEND, which are compiled separately. In a preliminary version of the program the subroutines were incorporated in the main program. The linkages, however, were of two types which some compilers do not allow. Since it was our aim to make the program system-independent, it was necessary to rewrite the subroutines as separately compiled programs. This may cause a slight increase in compilation and loading time; but execution time should be unaffected. The programmer who is interested in optimization can, if his system allows it, incorporate the subroutines into the main program.

The input for a REFORM run consists of six types of control cards, describing the form of the input and the desired output. These are followed by a data deck. The input medium will normally be punched cards via the system card reader or the peripheral input tape. If it is desired, the control cards can be read from the standard system input unit and the data deck from an alternate input tape. The unit number of the tape must be specified.

There are two output media: the printer or system output tape, and the card punch or punch tape. Typical print output from REFORM is shown in Figure 4. Each line of print produced from the data is also punched onto a card, unless punching is suppressed. Either the print-out or the punch file may be written on a magnetic tape. In this case, an end-of-file will be written on the tape at the end of the run and the tape will be rewound.

4. Discussion of the Control Cards

Card Type 1. is a standard input to define the legal characters. The symbol in card column 80 is used as a string terminator on the type 5 cards. The first twenty-six characters should be the letters of the alphabet.

Card Type 2 contains 5 single digit numbers as follows:
a. The number of different cards in each input group
b. The number of different cards in each reformatted output group
c. Designations of the unit number for the card reader or input tape, printer or output tape, and punch-file. If any of these are blank, default values indicating the standard input and output units for the system will be assigned.

Figure 1. Arrangement of control cards and data deck for a REFORM run. The system control cards have been ommitted.
d. These numbers are followed by a two-digit number indicating the column on each data card which carries a one-digit identification number telling which format the card is in. This is necessary if not every kind of input card is present in each group. If each group includes one card of each format, and there are no identification numbers, the two-digit number should be omitted or set to zero. If the input is from tape, a threedigit number follows specifying the number of characters to a record. If it is omitted, records are assumed to be 80 -character card images. In the example above, column 72 contains an identification number on each card of data. Input is in standard 80 -character records.

Type 3 cards are used to partition each of the different card types in the file. In this example each group is to consist of two cards as is indicated by the first number in the Type 2 card. Hence there are two type three cards. The first number on each tells which kind of input card it applies to. In this case the first Type 3 card describes the first kind of input card, which will be broken into four fields as follows:
a. The first is 10 characters long starting in column 1. The program names this piece 11.
b. The second is 25 characters long starting in column 15. The program names this piece 21.
c. The third is 3 characters long starting in column 46. The program names this piece 31.
d. The fourth is 10 characters long starting in column 59. The program names this piece 41.
The second card is broken into two pieces, the first 40 characters long, and the next 30. Their names are 12 and 22, respectively. These segments will henceforth be called by name. Note that columns 49 through 58 on input card number 1 will be ignored.

Card Type 4 indicates how a new card (or line of print) is to be built up from the existing file. Here again there is one card of instruction for each type of card to be produced. In this case, there is only one card. It is composed of pieces from the existing file and new information, consisting of strings whose names are the letters $A, B, C \ldots X, Y, Z$. In this case, the new card will contain the pieces and strings $A, 11, B, 41, C, 12, D, 31$. The format of this card requires that a single letter alternate with two -digit numbers. Thus, if pieces 11 and 41 must be adjacent, it would be necessary to insert a zero or a blank between them (11041 or 11 41).

Type 5 cards contain the strings of characters to be inserted between the cards (lines) or the segments or both. The strings may be any combination of characters or numbers or punctuation marks or even blanks. The string is terminated by a $\$$ sign in this case, as it is the $\$$ sign which appears as the last character of the Type 1 card. A string insert may be as long as 79 characters. There may be up to 26 strings. The strings are automatically assigned as names the letters of the alphabet in order. Thus the first string is A and the fourth is D.

Card Type 6 contains a $\$$ sign (the terminator) in column 1 to indicate the end of the input strings and signals the beginning of the data deck. If the $\$$ sign is used in the data bank, any other unique unused character can be used in its place. It will be necessary to punch that character in column 80 of the Type 1 card. The data deck will be read from a tape unit if the Type 2 card indicates so.

The repetition of a Type 1 card at the end of the data serves as a flag to tell the program that its work is done.

The present version of REFORM uses 8321 cells of storage in the Univac 1108. In the following paragraphs we describe how this space is allocated and how it may, if necessary, be reduced.

The program itself when fully assembled occupies 3750 cells of core storage. This amount will vary from machine to machine, as it includes the system input-output package and depends on the machine language. The remaining 4571 cells are used by the program variables and data.

In the writing of REFORM we have been quite liberal in the use of core storage. In particular, we have used a full machine word for each alphameric character, rather than conserving memory by packing the possible 6 characters into a 36 -bit word. This non-optimal use of storage was necessary to assure complete machine-independence. To store more than one character to a word would have required a knowledge of the characteristics of alphameric storage on the particular machine and would not have been possible in ASA FORTRAN IV.

Much of the alphameric storage requirements is used by buffers. This includes a temporary input buffer and nine line buffers, one for each kind of input card or record, each consisting of 132 characters, accounting in all for 1320 characters. An output buffer of 80 characters raises the buffer spaces to 1400 cells. If the data file consists of 80 column card images, it is possible to conserve 520 cells of memory by cutting the length of each input buffer to 80 . The 132 character buffers are only necessary if the input is from a tape containing records longer than 80 -character card images.

The largest single component of storage is for the 26 ad hoc strings of 80 characters each. This allocation of 2080 characters is obviously a place where considerable economization of core is possible. If it is necessary to reduce the amount of storage used, one can cut either the maximum length of a string or the number of strings. Since strings can be concatenated, it is better to have provision for 26 strings of length 40 than 13 of length 80. Few applications of REFORM are foreseen which will require 2080 characters of strings. The insertion of the number 10 (the first piece of the zeroth card) between two ad hoc strings concatenates them, as 10 refers to a nonexistent fragment.

Another 839 cells are devoted to storage of the field and string specifications. These specifications, read from the control cards, include 163 cells of input parameters and 676 cells of output parameters.

The 4571 cells of storage include 1487 cells of so-called blank common, accessible to both the main program and the subprograms. The remainder is divided into 3056 cells used by the main program, 9 used by COVFL, and 19 by IFEND. Formats occupy 110 cells of memory. The breakdown of the 4571 cells is as follows: 1400 cells of buffer arrays; 2080 cells of string storage; 110 cells of formats; 839 of input-output specifications; 80 cells containing an image of the first control card; and 62 cells of indexes, counters, switches, and parameters.

The arrays which can be reduced in size are called STRING, in the main program, and KARD and KARDIN, buffers in blank common. The latter two arrays are dimensioned in each subprogram and the main program. It is important that these three declarations of size be identical.

In this example of an abbreviated author index to certain references it is desired to move the second author in a column adjacent to the first; to enclose the journal code in parenthesis and to insert 'VOL.' between the journal code and the volume number.

1st Card.

2nd Card. 3rd Card.

4th Card.

The first card is the standard input card with a $\$$ in column 80 denoting that symbol as the string delimiter in certain of the control cards.

The numbers 5, 6, 3 refer to input and output units.
Tells how card format 1 is to be broken up: 15 characters wide starting in CC7, 15 starting in 52,03 starting in 22 , and 15 starting in 31. Note that the order is immaterial. In fact the pieces can even overlap.

Tells how to put the single output card together. The order is: piece 1 , piece 2, string A, piece 3 , string B, and piece 4. Two strings follow on 2 cards. The first consists of (and the second is) VOL. A control card with $\$$ in column 1 and the control cards and the data deck follows.

Figures 2 and 3 on the following pages show the arrangement of the control cards in the original file as well as the reformatted information.

The authors wish to express their appreciation to a number of persons who contributed toward the preparation of this report: to Wanda Hein who prepared the typescript, and to Carla G. Messina whose program was used to phototypeset the program listing. Special thanks are due Rubin Wagner, Chief of the Electronic Printing Section, who, as editorial reader of this report, tested the program by applying it to a problem of inserting instruction codes for automatic typesetting on the Linofilm phototypesetter. Figures 11, 12, and 13 show the result of that exercise.

```
AECDEFGHI JKLUNOPQRSTUV%XYZO123456789
11563
1 0715 5215 2203 3115
O1IC21A31B41
    ($
, VOL. $
$
\begin{tabular}{|c|c|c|c|c|c|}
\hline MORLEY & \(A C J\) & 17 & 267 & 1895 & \\
\hline AMAGAT & \(A C P\) & 29 & 68 & 1893 & \\
\hline DULONG & \(A C P\) & 41 & 113 & 1829 & \\
\hline CAZIN & ACP & 66 & 206 & 1862 & \\
\hline KENNEDY & AJS & 248 & 540 & 1950 & \\
\hline KENNEDY & AJS & 252 & 225 & 1954 & \\
\hline KELLSTROM & AMA & 27 & 1 & 1941 & \\
\hline TRAUTZ & APK & 2 & 733 & 1929 & BAUMANN \\
\hline TRAUTZ & APK & 2 & 737 & 1929 & STAUF \\
\hline ECKERLEIN & APK & 3 & 120 & 1900 & \\
\hline WULLNER & APK & 3 & 321 & 1878 & \\
\hline TRAUTZ & APK & 3 & 400 & 1929 & LUDEWIGS \\
\hline WULLNER & APK & 4 & 321 & 1878 & \\
\hline SCHULTZE & APK & 5 & 140 & 1901 & \\
\hline TRAUTZ & APK & 5 & 561 & 1730 & BINKELE \\
\hline TRAUTZ & APK & 7 & 409 & 1930 & MELSTER \\
\hline TRAUTZ & APK & 7 & 427 & 1930 & Z INK \\
\hline TRAUTZ & APK & 9 & 981 & 1931 & KURZ \\
\hline TRAUTZ & APK & 10 & 81 & 1931 & SORG \\
\hline TRAUTZ & APK & 10 & 155 & 1931 & HEBERLING \\
\hline MICHELS & APK & 12 & 562 & 1932 & NI JHOFF GERVER \\
\hline HEUSE & APK & 14 & 185 & 1932 & OTTO \\
\hline GRAETZ & APK & 14 & 232 & 1881 & \\
\hline MARKOWSKI & APK & 14 & 742 & 1904 & \\
\hline BESTELMEYER & APK & 15 & 61 & 1904 & VALENTINFR \\
\hline MICHELS & APK & 16 & 745 & 1933 & GERVER \\
\hline TRAUTZ & APK & 20 & 118 & 1934 & HEBERLING \\
\hline HOLBURN & APK & 23 & 809 & 1907 & HENNING \\
\hline KOCH & APK & 27 & 311 & 1908 & \\
\hline NOTHDURF T & APK & 28 & 137 & \(19 ? 7\) & \\
\hline SCHLEIERMACHER & APK & 34 & 623 & 1888 & \\
\hline WINKELMANN & APK & 44 & 429 & 1891 & \\
\hline HOLSURN & APK & 47 & 1089 & 1915 & SCHULTZE \\
\hline SCHWEIKERT & APK & 48 & 593 & 1915 & \\
\hline GILLE & APK & 48 & 799 & 1915 & \\
\hline
\end{tabular}
ABCDEFGHI JKLMNOPQRSTUVWXYZO123456789
```

Figure 2. An arrangement of control cards to reformat an author index. See Figure 4 for an explanation of the control cards.

MORLEY		(ACJ)	VOL.	17	267	1895
AMAGAT		($A C P$)	VOL.	29	68	1893
DULONG		($A C P$)	VOL.	41	113	1829
CAZIN		(ACP)	VOL.	66	206	1862
KENNEDY		(AJS)	VOL.	48	540	1950
KENNEDY		(AJS)	VOL.	52	225	1954
KELLSTROM		(AMA)	VOL.	27	1	1941
TRAUTZ	BAUMANN	(APK)	VOL.	2	733	1929
TRAUTZ	StaUF	(APK)	VOL.	2	737	1929
ECKERLEIN		(APK)	VOL.	3	120	1900
WULLNER		(APK)	VOL.	3	321	1878
TRAUTZ	LUDEWIGS	(APK)	VOL.	3	409	1929
WULLNER		(APK)	VOL.	4	321	1878
SCHULTZE		(APK)	VOL.	5	140	1901
TRAUTZ	EINKELE	(APK)	VOL.	5	561	1930
TRAUTZ	MELSTER	(APK)	VOL.	7	409	1930
TRAUTZ	ZINK	($\triangle P K$)	VOL.	7	427	1930
TRAUTZ	KURZ	(APK)	VOL.	9	981	1931
TRAUTZ	SORG	(APK)	VOL.	10	81	1931
TRAUTZ	HEBERLING	(APK)	VOL.	10	155	1931
MICHELS	NI JHOFF GERVER	(APK)	VOL.	12	562	1932
HEUSE	OTTO	(APK)	VOL.	14	185	1932
GRAETZ		(APK)	VOL.	14	232	1881
MARKOWSKI		(APK)	VOL.	14	742	1904
BESTELMEYER	VALENTINER	(APK)	VOL.	15	61	1904
MICHELS	GERVER	(APK)	VOL.	16	745	1933
TRAUTZ	HEBERLING	(APK)	VOL.	20	118	1934
HOLBURN	HENNING	(APK)	VOL.	23	809	1907
K.OCH		(APK)	VOL.	27	311	1908
NOTHDURFT		(APK)	VOL.	28	137	1937
SCHLEIERMACHER		(APK)	VOL.	34	623	1888
WI NKELMANN		(APK)	VOL.	44	429	1891
HOLBURN	SCHULTZE	(APK)	VOL.	47	1089	1915
SCHWEIKERT		(APK)	VOL.	48	593	1915
GILLE		(APK)	VOL.	48	799	1915

Figure 3. Results of the reformatting run of the deck in Figure 2. Note that the author fields have been moved, the journal coden has been enclosed in parentheses and the abbreviation VOL. now precedes the volume number. See Figure 11 for the result of using REFORM to produce a phototypeset copy of this table.

0

O PAGE：il
－READ UNIT IS 5 PRINT UNIT IS 6 PUNCH UNIT IS 6
ABCDEFGHI JKLMNOPQRSTUVWXYZ1234567890／＊（）！こさっ。
O 1 CARDS ARE TO BE READ ON EACH PASS
1 CARDS ARE TO BE PUNCHED ON EACH PASS
O THE STARTING COLUMNS AND FIELD WIDTHS ARE：
$\begin{array}{llllll}7 & 15 & 52 & 15 & 22 & 3\end{array} 3115$
THE REARRANGEMENT PLAN IS：
O 011021 A31 B41
THERE ARE 2 STRINGS．THEY ARE：
A $=\frac{3 \text { CHARACTERS，}}{}$ CHARACTERS，VOL．
B
0
READ DATA DECK

Figure 4．A portion of the output of REFORM showing how the control cards in Figure 2 were interpreted by the program．

```
32 563 01
1.0209 1102 1407
2 0406 1008
3 0807
    1:A21B31C12D22
El3
            AT.NO.=$
            AT.WI.Es
            MOP0=S
            DEGREES SR.GRO=5
                    HALFOLIFE=S
    5
    1ACTINIUM 89 (227)
    2ACI050 10.07
    3AC227 22 YR
    IALUMINUM 13 26.9815
    2AL660.2 2.6989
    LAMERICJUM95 (243)
    3AM243 8800YR
    IANTIMONY 5! 12!.75
    258630.5 6.691
    IARGON 18 39.948
    2AR=198.2.00173787
    IARSENIC 33-74.9216
    2AS814S 5.727
    IASTATINE 85 (210)
    3AT210 8.3 HR
    1BARJUM 56 137.34
    2BA725 3.5!
    ABCUEFGH!NKLMNOPQRSTUNWXYZO123456789

Figure 5. Control cards for printing a report from a condensed file. Figure 6 shows how the program interpreted the control cards.

READ UNIT IS 5 PRINT UNIT IS 6 PUNCH UNIT IS 3
ABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789
3 CARDS ARE TO BE READ ON EACH PASS
2 CARDS ARE TO BE PUNCHED ON EACH PASS
THE STARTING COLUMNS AND FIELD WIDTHS ARE:
\begin{tabular}{llllll}
2 & 9 & 11 & 2 & 14 & 7 \\
4 & 6 & 10 & 8 & & \\
8 & 7 & &
\end{tabular}

THE REARRANGEMENT PLAN IS:
11 A21 B31 C12 D22
E13
THERE ARE 5 STRINGS. THEY ARE:
A 9 CHARACTERS AT.NO. \(=\)

B 10 CHARACTERS
AT.WT. \(=\)
C 7 CHARACTERS M.P. \(=\)
D 17 CHARACTERS DEGREES SPEGR =
E 30 CHARACTERS

\section*{read data deck}

Figure 6. A portion of the output of REFORM showing how the control cards in Figure 5 were interpreted by the program.
Figure 7. Report generated from data and control cards shown in Figure 5.
```

ABCDEFGHIJKLMNOPQRSTUXWXYZO123456789

```

56563
\begin{tabular}{ll}
1 & 0160 \\
2 & 0160 \\
3 & 0160 \\
4 & 0160 \\
5 & 0160
\end{tabular}
\begin{tabular}{l}
11 \\
12 \\
13 \\
14 \\
15 \\
\hline
\end{tabular}
\$
\(\$\)
\(\begin{array}{lllllllllllll}100 & 00 & 000 & 043 & 087 & 130 & 173 & 217 & 260 & 303 & 346 & 389\end{array}\)
IU!
102
432
475
\(518-561\)
173
860
143 - 101
1144
105
106
107
148
140
110
\(111 \quad 5\)
112
113
114 \(115 \quad 060\)
116
117 - \(819 \quad 8\)
\(\begin{array}{lll}118 & 07 \\ 119 & 5\end{array}\)
\(120 \quad 918 \quad 954 \quad 990 \quad 0027 \quad 1063 \quad 1099 \quad 135\) \(\begin{array}{llllllllllll}121 & 08 & 279 & 314 & 350 & 386 & 422 & 458 & 493 & 529 & 565 & 600\end{array}\) \(\begin{array}{lllllllllll}122 & 636 & 672 & 707 & 743 & 778 & 814 & 849 & 884 & 920 & 955\end{array}\)


ABCDEFGHIJKLMNOPQRSTUVWXYLO123456789

Figure 8. Control cards for inserting a blank line after every fifth line in a table.

PAGE:

READ UNII 155 PRINT UNIT IS 6 PUNCH UNIT IS 3
ABCDEFGHI JKLMNOPQRSTUVWXYZO123456789
5 CARDS ARE TO BE READ ON EACH PASS
6 CARDS ARE TO BE PUNCHED ON EACH PASS
THE STARTING COLUMNS AND FIELD WIDTHS ARE:
160
160
160
160
160

THE REARRANGEMENT PLAN 15 :

11
12
13
14
15
A.

THERE ARE \& STRINGS, THEY ARE:
A - CHARACTERS
READ DATA DECK

Figure 9. A portion of the output of REFORM showing how the control cards in Figure 8 were interpreted by the program.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 100 & 00 & 000 & 043 & 087 & 130 & 173 & 217 & 260 & 303 & 346 & 389 \\
\hline 101 & & 432 & 475 & 518 & 561 & 604 & 647 & 689 & 732 & 775 & 817 \\
\hline 102 & & 860 & 903 & 945 & 988 & \(\times 030\) & \(* 072\) & \(* 115\) & \(\cdots 157\) & \(\times 199\) & \(\times 242\) \\
\hline 103 & 01 & 284 & 326 & 368 & 410 & 452 & 494 & 536 & 578 & 620 & 662 \\
\hline 104 & & 703 & 745 & 787 & 828 & 870 & 912 & 953 & 995 & *036 & * 078 \\
\hline 105 & 02 & 119 & 160 & 202 & 243 & 284 & 325 & 366 & 407 & 449 & 490 \\
\hline 106 & & 531 & 572 & 612 & 653 & 694 & 735 & 776 & 816 & 857 & 898 \\
\hline 107 & & 938 & 979 & \(\because 019\) & *060 & \(\cdots 100\) & \(\cdots 141\) & \(\cdots 181\) & * 222 & *262 & -302 \\
\hline 108 & 03 & 342 & 383 & 423 & 463 & 503 & 543 & 583 & 623 & 663 & 703 \\
\hline 109 & & 743 & 782 & 822 & 862 & 902 & 941 & 981 & \(\cdots 021\) & \% 060 & *100 \\
\hline 110 & 04 & 139 & 179 & 218 & 258 & 297 & 336 & 376 & 415 & 454 & 493 \\
\hline 111 & & 532 & 571 & 610 & 650 & 689 & 727 & 766 & 805 & 844 & 883 \\
\hline 112 & & 922 & 961 & 999 & *038 & \(\cdots 0.77\) & \(\cdots 115\) & *154 & *192 & *231 & *269 \\
\hline 113 & 05 & 308 & 346 & 385 & 423 & 461 & 500 & 538 & 576 & 614 & 552 \\
\hline 114 & & 690 & 729 & 767 & 805 & 843 & 881 & 918 & 956 & 994 & *032 \\
\hline 115 & 06 & 070 & 108 & 145 & 183 & 221 & 258 & 296 & 333 & 371 & 408 \\
\hline 116 & & 446 & 483 & 521 & 558 & 595 & 633 & 670 & 707 & 744 & 781 \\
\hline 117 & & 819 & 856 & 893 & 930 & 967 & *004 & \(\because 041\) & *078 & \(* 115\) & * 151 \\
\hline 118 & 07 & 188 & 225 & 262 & 298 & 335 & 372 & 408 & 445 & 482 & 518 \\
\hline 119 & & 555 & 591 & 628 & 664 & 700 & 737 & 773 & 809 & 846 & 882 \\
\hline 120 & & 918 & 954 & 990 & \(\times 027\) & *063 & \$099 & \(\cdots 135\) & * 171 & *207 & *243 \\
\hline 121 & 08 & 279 & 314 & 350 & 386 & 422 & 458 & 493 & 529 & 565 & 600 \\
\hline 122 & & 636 & 672 & 707 & 743 & 778 & 814 & 849 & 884 & 920 & 955 \\
\hline 123 & & 991 & \(\because 026\) & \(\cdots 061\) & \(\because 096\) & *132 & \(\cdots 167\) & \(\cdots 202\) & *237 & *272 & *307 \\
\hline 124 & 09 & 342 & 377 & 412 & 447 & 482 & 517 & 552 & 587 & 621 & 556 \\
\hline
\end{tabular}

Figure 10. Results of the reformatting operation indicated in Figure 8.




\begin{tabular}{l} 
(ACJ) \\
(ACP) \\
(ACP) \\
(ACP) \\
(AJS) \\
(AJS) \\
(AMA) \\
(APK) \\
\hline (APK) \\
\hline (APK) \\
\hline (APK)
\end{tabular}
BIAUF
BAUMANN
STAUF
LUDEWIGS

BINKELE
MELSTER
ZINK
KURZ
SORG
HEBERLING
NIJHOFF GERVER
OTTO
MORLEY
AMAGAT
DULONG
CAZIN
KENNEDY
KENNEDY
KELLSTROM
TRAUTZ
TRAUTZ
ECKERLEIN
WULLNER
TRAUTZ
WULLNER
SCHULTZE
TRAUTZ
TRAUTZ
TRAUTZ
TRAUTZ
TRAUTZ
TRAUTZ
MICHELS
HEUSE
GRAETZ
MARKOWSKI

Figure 11．Output from a Linofilm phototypesetter machine of a series of the program
子UṬod ZI Y子！


！ 4
Linofilm phototypeset by REFORM． NIJHOFF GERVER
OTTO
ヨTヨYNIG ZINK

READ UNIT IS 5 PRINT UNIT IS 6 PUNCH UNIT IS 7
ABCDEFGHI JKLMNOPQRSTUVWXYZ01234567891(*)/ニ. . \(^{\circ}+\) 1 CARDS ARE TO BE READ ON EACH PASS 1 CaRDS are to be piinched on each pass

THE STARTING COLUMNS AND FIELD WIDTHS ARE:
\begin{tabular}{lllllllllll}
7 & 14 & 52 & 14 & 22 & 3 & 31 & 2 & 35 & 4 & 42
\end{tabular}
the rearrangement plan is:
A11 B21 C31 D41 E51 F61
there are 7 strings. they are:


READ DATA DECK

Figure 12. A summary of the instructions required to produce records shown in Figure 13 from cards containing data shown in Figure 2. The functions of the inserted strings are given in the next figure.

typesetting
 36 unit space \({ }^{\circ} 0^{\circ}\) - " 0
 on a typewriter grid; \(=36\) inserts Figure 13. The string =FA signifies a format
program; \(=\mathrm{L}\) performs the function of a tabkey
the bold face grid; =G3 brings up the italic
between columns; =Gl restores the normal grid.

REFORM
THIS PROGRAM, REFORM, IS A GENERAL-PURPOSE INDEPENDENT PROGRAM FOR REFORMATTING FIXED-FIELD CARDS. UP TO 9 KINDS OF INPUT CARDS MAY BE ACCEPTED AS INPUT TO THIS PROGRAM, AND UP TO 9 KINDS OF OUTPUT CARDS PRODUCED. UP TO 26 STRINGS MAY BE INSERTED AS DESIRED BETWEEN FIELDS OF DATA. EACH KIND OF INPUT CARD MAY BE DIVIDED INTO NOT MORE THAN 9 FIELDS.

THIS PROGRAM WRITTEN BY R. MCCLENON AT THE NATIONAL BUREAU OF STANDARDS JANUARY, 1968.

THE FIRST CONTROL CARD FOR THIS PROGRAM CONTAINS A LIST OF VALID CHARACTERS. THE FIRST 26 COLUMNS CONTAIN THE LETTERS OF THE ALPHABET IN ORDER. THE NEXT 10 COLUMNS (27-36) CONTAIN THE TEN DIGITS IN ORDER, STARTING WITH ZERO. COLUMN 79 MUST BE BLANK, AND COLUMN 80 CONTAINS A CHARACTER USED AS THE STRING TERMINATOR. THE SECOND CARD, IN (2I1,1X,3I1,1X,I2,1X,I3) FORMAT, CONTAINS A LIST OF VARIOUS PROGRAM PARAMETERS. THE FIRST TWO ARE THE NUMBER OF KINDS OF INPUT CARDS TO BE READ AND THE NUMBER OF KINDS OF OUTPUT CARDS TO BE PRODUCED. THE NEXT THREE INTEGERS SPECIFY THE UNIT NUMBERS OF THE READER, PRINTER, AND CARD PUNCH. PUNCHING IS SUPPRESSED IF THESE LAST TWO ARE EQUAL. A TWO-DIGIT INTEGER GIVES THE COLUMN IN EACH INPUT CARD WHICH CONTAINS A LABEL (A ONEDIGIT NUMBER) INDICATING WHICH OF THE UP TO 9 TYPES OF INPUT CARD IT IS. IF THIS FIELD ON THE CONTROL CARD IS BLANK. INPUT CARDS ARE NOT LABELED AS TO TYPE, AND TYPING IS DONE SEQUENTIALLY (THE FIRST CARD IS TYPE 1, THE SECOND CARD TYPE 2). THE LAST FIELD ON THIS CONTROL CARD GIVES THE NUMBER OF CHARACTERS TO A RECORD ON INPUT. IF THE INPUT IS FROM CARDS OR IF THE FIELD IS BLANK STANDARD 80-CHARACTER RECORDS WILL BE ASSUMED. (THIS FIELD IS ONLY NECESSARY IF THE INPUT IS FROM TAPE.)
THE THIRD TYPE OF CONTROL CARDS SPECIFY THE FIELD ARRANGEMENT ON THE INPUT CARDS. THERE MUST BE ONE FOR EACH TYPE OF INPUT CARD. IN (1I,4X,9(2I2,IX)) FORMAT. THE FIRST NUMBER INDICATES TO WHICH TYPE OF INPUT CARD THIS PARAMETER CARD APPLIES. THE REMAINDER OF THE CARD IS OCCUPIED BY PAIRS OF TWO-DIGIT NUMBERS IN WHICH THE FIRST NUMBER OF THE PAIR INDICATES THE STARTING COLUMN OF ONE OF THE FIELDS INTO WHICH THIS TYPE OF INPUT CARD IS DIVIDED, AND THE SECOND NUMBER THE WIDTH OF THE FIELD.
THE FOURTH TYPE OF CONTROL CARD FOR THIS PROGRAM GIVES THE OUTPUT INFORMATION. IT IS IN (24(A1,2I1)) FORMAT, THE LETTER DESIGNATING ONE OF THE AD HOC STRINGS TO BE INSERTED, AND THE TWO DIGITS THE NUMBER OF A FIELD ON AN INPUT CARD AND THE TYPE OF INPUT CARD ON WHICH THIS FIELD IS TO BE FOUND. IT WILL BE SEEN THAT STRINGS AND FIELDS ALTERNATE IN THE OUTPUT, AND THAT A STRING PRECEDS THE FIRST FIELD. IF THE SPACE RESERVED FOR THE STRING LETTER IS BLANK NO STRING WILL BE INSERTED.
EACH OF THE TYPE FIVE CONTROL CARDS CONTAINS ONE AD HOC STRING. A STRING TERMINATOR INDICATES THE END OF THE STRING. THE LAST STRING CARD IS FOLLOWED BY A CARD WITH A STRING TERMINATOR IN COLUMN I. THIS SERVES AS A SIGNAL TO THE PROGRAM THE THE DATA DECK FOLLOWS THIS CARD.
THE END OF THE DATA DECK IS INDICATED BY A DUPLICATE OF THE FIRST CONTROL CARD, THE ONE CONTAINING THE VALID CHARACTERS.

THIS PROGRAM MUST BE LOADED WITH TWO SUBROUTINES, COVFL AND IFEND.

A 10
A 20
A 30
A 40
A 50
A 60
A 70
A 80
A 90
A 100
A 110
A 120
A 130
A 140
A 150
A 160
A 170
A 180
A 190
A 200
A 210
A 230
A 240
A 250
A 260
A 270
A 280
A 290
A 300
A 310
A 320
A 330
A 340
A 350
A 360
A 380
A 390
A 400
A 410
A 420
A 430
A 440
A 450
A 460
A 470
A 480
A 490
A 500
A 510
A 520
A 530
A 540
A 550
A 560
A 570
A 580
A 590
A 600
A 610
    IF (READ.EQ.0) READ=READX
    IF (PRINT.EQ.0) PRINT=PRINTX
    IF (PUNCH.EQ.0) PUNCH=PUNCHX
    IF (IWIDTH.EQ.0.OR.READ.EQ.READX) IWIDTH=80
    WRITE (PRINTX,40) , READ,PRINT,PUNCH
    IF (PRINT.NE.PRINTX) WRITE (PRINT,40) ,READ.PRINT,PUNCH
    COLUMN 80 OF THE FIRST CARD (THE LIST OF VALID CHARACTERS)
    CONTAINS A CHARACTER USED AS A STRING TERMINATOR
    STOP=ALPHB(80)
C COLUMN 79 OF THIS CARD IS BLANK
    SPACE=ALPHB(79)
    WRITE (PRINT,25), (ALPHB(J) \(\mathbf{J}=\mathbf{I}, 80)\)
    WRITE (PRINT,30) ,NCIN

A 630
INTEGER READX.PRINTX,PUNCHX,READ,PRINT.PUNCH.STOP.SPACE,BUFFR
A 640
A 640
DIMENSION FWIDTH(9,9), FSTRT(9,9), FNUMBR(9,24), CNUMBR(9,24) ..... A 650
DIMENSION SNUMBR(9,24), BUFFR(80), ALPHB(80), SLNGTH(26), NFLDS(9) ..... A 660
DIMENSION INFS(9), INFW(9)
**** THE DIMENSIONS BELOW MAY BE REDUCED TO CONSERVE STORAGE **** ..... A 680
DIMENSION KARDIN(132), KARD(9.132), STRING(26.80) ..... A 690
**** THE DIMENSIONS ABOVE MAY BE REDUCED TO CONSERVE STORAGE **** ..... A 700
THE FOLLOWING VARIABLES ARE SHARED WITH THE SUBPROGRAMS ..... A 710
A 720
COMMON BUFFR
THESE ARE THE INPUT FORMATS ..... A 740
FORMAT (80A1) ..... A 750
FORMAT (211,1X,311,1X.I2,1X.I3) ..... A 760
FORMAT (I1.4X.9(2I2.1X)) ..... A 770
FORMAT (24(A1,211)) ..... A 780
THESE ARE THE OUTPUT FORMATS ..... A 790
FORMAT (/1X,80A1) ..... A 800
FORMAT (1X,I1,34H CARDS ARE TO BE READ ON EACH PASS) ..... A 810
FORMAT ( \(1 \mathrm{X}, 11,37 \mathrm{H}\) CARDS ARE TO BE PUNCHED ON EACH PASS) ..... A 820
FORMAT (13H0READ UNIT IS,I2,14H PRINT UNITIS,12,14H PUNCH UNIT IS ..... A 830FORMAT (44H0THE STARTING COLUMNS AND FIELD WIDTHS ARE /)
FORMAT (9(4X,I2,1X,I2))
FORMAT (48H0THE REARRANGEMENT PLAN IS (FIELD,CARD,STRING) /) ..... A 870
FORMAT (24(1X,A1,2I1)) A 880
FORMAT (10H0THERE ARE,I3,2IH STRINGS. THEY ARE /) ..... A 890
FORMAT (1X,AI,2X,I2,13H CHARACTERS ,80A1) ..... A 900
FORMAT (15H0READ DATA DECK/1H1) ..... A 910
READX, PRINTX, PUNCHX ARE DEFAULT VALUES FOR THE INPUT AND OUTPUT ..... A 920READX=5
PRINTX \(=6\)
PUNCHX=3
THE INSTRUCTIONS ABOVE ARE SYSTEM-DEPENDENT ..... A 980
READ A LIST OF VALID CHARACTERS ..... A 990
THE FIRST 26 CHARACTERS IN THIS LIST MUST BE THE ALPHABET IN ORDER A 1000
A1020READ (READX.
NCOUT IS THE NUMBER OF KINDS OF OUTPUT CARDS TO BE PUNCHED ON EACH ..... A1030READ, PRINT, PUNCH ARE THE UNIT NUMBERS FOR THE CARD READER,
PRINTER, AND CARD PUNCH
LCOL IS THE COLUMN IN WHICH THE CARD TYPE LABEL IS PUNCHED ..... A1060
IF IT IS ZERO, TYPING IS DONE BY ORDER OF APPEARANCE (FIRST CARD ..... A 1080
IS TYPE ONE, AND SO ON)
READ (READX,10) ,NCIN.NCOUT,READ,PRINT,PUNCH,LCOL,IWIDTH ..... A1100

A 620A 670A 730A 840
A 850A 860A 930A 940
A 950A 960A 970A1010A1040A 1050A 1090
\begin{tabular}{|c|c|c|}
\hline & WRITE (PRINT,35) .NCOUT & A1260 \\
\hline & WR1TE (PRINT,45) & A 1270 \\
\hline & DO \(90 \mathrm{~J}=1, \mathrm{NCIN}\) & A 1280 \\
\hline C & READ THE SPECIFICATIONS GIVING THE ARRANGEMENT OF THE INPUT CARDS & A1290 \\
\hline C & INCARD SPECIFIES WHICH KIND OF CARD THESE SPEC1F1CAT1ONS APPLY TO & A 1300 \\
\hline C & INFS AND INFW ARE TEMPORARY STORAGE AREAS & A13I0 \\
\hline & READ (READ,15) , INCARD.((INFS(JX),INFW(JX))JX=1.9) & A1320 \\
\hline C & TRANSFER THE TEMPORARY DATA TO FSTRT AND FW1DTH & A1330 \\
\hline & DO \(80 \mathrm{JJ=1,9}\) & A1340 \\
\hline C & FSTRT IS THE STARTING COLUMN OF AN INPUT FIELD ON A GIVEN CARD & A1350 \\
\hline & FSTRT(1NCARDJJ) \(=1 \mathrm{NFS}(\mathrm{JJ}\) ) & A1360 \\
\hline C & FWIDTH IS THE WIDTH OF THE FIELD BEGINNING IN A GIVEN COLUMN & A1370 \\
\hline & FWIDTH(INCARDJJ) \(=1\) INFW(JJ) & A I 380 \\
\hline & 1F (1NFW(JJ).EQ.0) GO TO 85 & A1390 \\
\hline 80 & CONTINUE & A 1400 \\
\hline & NFLDS(J)=9 & A1410 \\
\hline & GO TO 90 & A 1420 \\
\hline 85 & NFLDS \((\mathrm{J})=\mathrm{JJ}-1\) & A1430 \\
\hline 90 & CONTINUE & A 1440 \\
\hline & DO \(95 \mathrm{~J}=1 . \mathrm{NC} 1 \mathrm{~N}\) & A1450 \\
\hline & M=NFLDS(J) & A 1460 \\
\hline 95 & WRITE (PR1NT.50) .((FSTRT(JJX).FWIDTH(JJX)) JX = 1.M) & A 1470 \\
\hline & WRITE (PRINT.55) & A1480 \\
\hline C & READ THE OUTPUT PLAN FOR EACH KIND OF CARD & A1490 \\
\hline & DO IIO J=1,NCOUT & A 1500 \\
\hline C & FNUMBR IS THE NUMBER OF AN INPUT FIELD ON A GIVEN CARD & AI5 10 \\
\hline C & CNUMBR IS THE NUMBER INDICATING ON WH1CH TYPE OF INPUT CARD THE & A1520 \\
\hline C & FIELD IS LOCATED & A1530 \\
\hline C & CNUMBR AND FNUMBR TOGETHER SPECIFY THE INPUT FIELD UNIQUELY & A1540 \\
\hline C & SNUMBR 1S A LETTER SPECIFYING A STRING & A1550 \\
\hline & READ (READ.20) ,((SNUMBR(JJX),FNUMBR(JJX).CNUMBR(JJX)) JX=1,24) & A1560 \\
\hline & DO \(100 \mathrm{JJ}=1,24\) & A1570 \\
\hline & IF (FNUMBR(JJJ).EQ.0) GO TO 105 & A1580 \\
\hline 100 & CONTINUE & A 1590 \\
\hline & NOUTS \(=24\) & A 1600 \\
\hline & GO TO 110 & A1610 \\
\hline 105 & NOUTS \(=\mathrm{JJ}-\mathrm{I}\) & A1620 \\
\hline 110 & WR1TE (PRINT,60) ,((SNUMBR(JJX),FNUMBR(JJX CNUMBR(JJX))JX=1,N & A1630 \\
\hline & 1OUTS) & A 1640 \\
\hline & \(\mathrm{J}=\mathrm{I}\) & A 1650 \\
\hline C & READ A STRING & A1660 \\
\hline 115 & READ (READ.5) ,(STRING(JJJ) \(\mathrm{J}=1.80\) ) & A1670 \\
\hline C & 1F COLUMN 1 CONTAINS A TERMINATOR, NO MORE STRINGS ARE TO BE READ & A1680 \\
\hline & 1 F (STRING(JJ,1).EQ.STOP) GO TO 130 & AI 690 \\
\hline & \(\mathrm{K}=1\) & A1700 \\
\hline 120 & \(\mathrm{K}=\mathrm{K}+1\) & A 1710 \\
\hline C & SCAN THE STRING FOR A TERMINATOR TO DETERMINE ITS LENGTH & A1720 \\
\hline & 1F (STRING(JJ,K).EQ.STOP) GO TO 125 & A1730 \\
\hline & GO TO 120 & A1740 \\
\hline C & SLNGTH 1S THE NUMBER OF CHARACTERS COMPRISING A STRING & A1750 \\
\hline 125 & SLNGTH(JJ) \(=\mathrm{K}-1\) & A1760 \\
\hline & \(\mathrm{J}=\mathrm{JJ}+\mathrm{I}\) & A 1770 \\
\hline C & READ ANOTHER STRING & AI780 \\
\hline & 1F (JJ.LT.27) GO TO 115 & A1790 \\
\hline 130 & NSTRNG=JJ-1 & A1800 \\
\hline & WRITE (PR1NT,65) , NSTRNG & A 1810 \\
\hline C & L1ST THE STRINGS & A1820 \\
\hline & DO \(135 \mathrm{~J}=1, \mathrm{NSTRNG}\) & A1830 \\
\hline & \(\mathrm{M}=\) SLNGTH ) & AI840 \\
\hline 135 & WRITE (PR1NT,70) , ALPHB(J),SLNGTH(J).(STRING(JJX)JX=1.M) & A 1850 \\
\hline C & READ DATA DECK & A1860 \\
\hline & WRITE (PRINT,75) & A 1870 \\
\hline C & SET THE 1NPUT ARRAY TO BLANKS & Al880 \\
\hline & LTYPE=0 & A1890 \\
\hline
\end{tabular}
140 DO \(145 \mathrm{~J}=1, \mathrm{NCIN}\) ..... A1900
DO \(145 \mathrm{JJ}=1, \mathrm{IWIDTH}\)
\(145 \operatorname{KARD}(\mathrm{~J} J \mathrm{~J})=\) SPACE ..... A1920
C READ THE PROPER NUMBER OF INPUT CARDS ..... A1930
IF (LTYPE.NE.0) GO TO 185 ..... A1940
\(\mathrm{KT}=0\)
150 DO \(180 \mathrm{~J}=1, \mathrm{NCIN}\)C KARDIN IS A TEMPORARY INPUT AREAA1960
READ (READ,5) ,(KARDIN(JX) JX=1,IWIDTH)A1980
IF (KARDIN (80).EQ.STOP) CALL IFEND
C IF LCOL IS ZERO, TYPE IS DETEMINED BY ORDER OF APPEARANCEIF (LCOL.EQ.0) GO TO 160A 1990
DO \(155 \mathrm{JJ}=28,36\)
C KTYPE IS THE TYPE OF CARD BEING READKTYPE= \(=\mathbf{J}-27\)
GO TO 165
155 CONTINUEA2080
KTYPE=1 ..... A2090
GO TO 165 ..... A2100
160 KTYPE=J ..... A21 10
C IF THE CARD TYPE NUMBER IS LESS THAN FOR THE LAST CARD. THIS IS A ..... A2 120
A2130
A 2140NEW SET OF DATA
\(\mathrm{KT}=\mathrm{KTYPE}\) ..... A2 150
DO \(170 \mathrm{JJ}=1\),IWIDTH ..... A 2160
C TRANSFER THE INPUT FROM KARDIN TO KARD ..... A2170
C KARD IS THE INPUT ARRAY ..... A 2180
GO TO 180 ..... A2200
\(170 \operatorname{KARD}(\mathrm{KTYPEJJ})=\mathrm{KARDIN}(\mathrm{JJ})\) ..... A2 190
C LTYPE INDICATES WHAT TYPE OF CARD HAS BEEN LEFT IN KARDIN ..... A 2210
175 LTYPE=KTYPE ..... A2220
\(\mathrm{KT}=\mathrm{KTYPE}\) ..... A 2230
GO TO 195 ..... A2240
180 CONTINUE ..... A2250
LTYPE=0 ..... A 2260
GO TO 195 ..... A 2270
185 DO 190 J=1,IWIDTH ..... A2280
\(190 \operatorname{KARD}(\operatorname{LTYPE} \mathrm{~J})=\operatorname{KARDIN}(\mathbf{J})\) ..... A2290
GO TO 150 ..... A 2300
C PRODUCE THE OUTPUT CARDS, ACCORDING TO INSTRUCTIONS ..... A2310
195 DO \(240 \mathrm{KN}=1\),NCOUT ..... A2320
C BUFFR IS THE BUFFER ARRAY USED TO STORE THE OUTPUT UNTIL A CARD IS ..... A2330
C READY TO BE PRODUCED
C KNTR IS THE COLUMN POSITION IN BUFFER ..... 50
\(\mathrm{KNTR}=0\) ..... A 2360
l=1A2370
C FIND THE REQUESTED STRING ..... A 2380
\(200 \mathrm{~N}=\mathrm{SNUMBR}(\mathrm{KN}, \mathrm{I})\) ..... A2390
DO \(205 \mathrm{~J}=1,26\) ..... A2400
C COMPARE STRING LETTER WITH ALPHABET ..... A2410
IF (N.NE.ALPHB(J)) GO TO 205 ..... A2420
\(\mathrm{M}=\mathrm{J}\) ..... A2430
GO TO 210 ..... A2440
205 CONTINUE ..... A2450
C IF NO STRING IS TO BE INSERTED, SKIP NEXT SECTION OF PROGRAM ..... A2460
GO TO 220 ..... A 2470
\(210 \mathrm{~N}=\operatorname{SLNGTH}(\mathrm{M})\) ..... A 2480
C TRANSFER THE STRING TO OUTPUT ..... A2490
DO \(215 \mathrm{~J}=1, \mathrm{~N}\) ..... A 2500
\(\mathrm{KNTR}=\mathrm{KNTR}+1\) ..... A2510
IF (KNTR.GT.80) CALL COVFL ..... A2520
215 BUFFR(KNTR \()=\) STRING(MJ) ..... A2530

ANY MORE FIELDS ARE TO BE FILLED, RECYCLE AND CONTINUE WRITING

C PUNCHING IS SUPPRESSED IF THE SAME UNIT IS SPECIFIED FOR PUNCH AS

C PUNCH THE BUFFER ARRAY ON A CARD
WRITE (PUNCH,5) ,(BUFFR(J) J=1,KNTR)

C MAKE ANOTHER PASS THROUGH THE PROGRAM
\begin{tabular}{|c|c|c|}
\hline & SUBROUTINE COVFL & B 10 \\
\hline C & THE SUBROUTINE COVFL IS CALLED IF KNTR EXCEEDS 80, INDICATING THAT & B 20 \\
\hline \multirow[t]{5}{*}{C} & THE OUTPUT ARRAY BUFFR HAS BEEN FILLED & B 30 \\
\hline & COMMON ALPHB,READX,READ,PRINTX,PRINT,PUNCHX,PUNCH,KARDIN,KNTR,KARD & B 40 \\
\hline & COMMON BUFFR & B 50 \\
\hline & INTEGER PUNCH,PRINT,BUFFR & B 60 \\
\hline & DIMENSION BUFFR(80), ALPHB(80) & B 70 \\
\hline \multirow[t]{2}{*}{C} & **** THE DIMENSIONS BELOW MAY BE REDUCED TO CONSERVE STORAGE **** & B 80 \\
\hline & DIMENSION KARD(9,132), KARDIN(132) & B 90 \\
\hline C & **** THE DIMENSIONS ABOVE MAY BE REDUCED TO CONSERVE STORAGE **** & B 100 \\
\hline 5 & FORMAT (80A1) & B 110 \\
\hline \multirow[t]{2}{*}{10} & FORMAT (/IX,80A1) & B 120 \\
\hline & KNTR=1 & B 130 \\
\hline \multirow[t]{7}{*}{C} & TRANSFER THE ARRAY TO OUTPUT AS SPECIFIED BY THE UNIT NUMBERS & B 140 \\
\hline & WRITE (PRINT, 10) , (BUFFR(JX), \(\mathrm{JX}=1,80\) ) & B 150 \\
\hline & IF (PUNCH.EQ.PRINT) RETURN & B 160 \\
\hline & WRITE (PUNCH,5) , (BUFFR(JX)JX \(=1,80\) ) & B 170 \\
\hline & RETURN & B 180 \\
\hline & END & B 190- \\
\hline & SUBROUTINE IFEND & C 10 \\
\hline C & THE SUBROUTINE IFEND IS CALLED WHEN A STOP CHARACTER IS READ IN & C 20 \\
\hline C & COLUMN 80 OF AN INPUT & C 30 \\
\hline \multirow[t]{4}{*}{C} & IT CHECKS TO SEE WHETHER AN END-OF-DATA CARD HAS BEEN READ & C 40 \\
\hline & COMMON ALPHB,READX,READ,PRINTX,PRINT,PUNCHX,PUNCH,KARDIN,KNTR,KARD & C 50 \\
\hline & COMMON BUFFR & C 60 \\
\hline & DIMENSION BUFFR(80), ALPHB(80) & C 70 \\
\hline C & **** THE DIMENSIONS BELOW MAY BE REDUCED TO CONSERVE STORAGE **** DIMENSION KARD(9.132), KARDIN(132) & C 80 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{C} & **** THE DIMENSIONS ABOVE MAY BE REDUCED TO CONSERVE STORAGE **** & C 100 \\
\hline & INTEGER KARD,BUFFR,READ,PRINT,PUNCH,READX,PRINTX,PUNCHX,ALPHB & C 110 \\
\hline \multirow[t]{2}{*}{5} & FORMAT (22H0END-OF-DATA CARD READ) & C 120 \\
\hline & DO \(10 \mathrm{~J}=1,80\) & C 130 \\
\hline \multirow[t]{2}{*}{C} & COMPARE EACH COLUMN AGAINST THE FIRST CONTROL CARD & C 140 \\
\hline & IF (KARDIN(J).NE.ALPHB(J)) RETURN & C 150 \\
\hline 10 & CONTINUE & C 160 \\
\hline C & THIS IS AN END-OF-DATA CARD & C 170 \\
\hline \multirow[t]{2}{*}{C} & WRITE END-OF-JOB MESSAGE & C 180 \\
\hline & WRITE (PRINTX.5) & C 190 \\
\hline C & WRITE AN END OF FILE ON ANY OUTPUT TAPE UNITS & C 200 \\
\hline \multirow[t]{8}{*}{C} & REWIND ALL TAPE UNITS & C 210 \\
\hline & IF (READ.NE.READX) REWIND READ & C 220 \\
\hline & IF (PRINT.NE.PRINTX) END FILE PRINT & C 230 \\
\hline & IF (PRINT.NE.PRINTX) REWIND PRINT & C 240 \\
\hline & IF (PUNCH.NE.PUNCHX.AND.PUNCH.NE.PRINT) END FILE PUNCH & C 250 \\
\hline & IF (PUNCH.NE.PUNCHX.AND.PUNCH.NE.PRINT) REWIND PUNCH & C 260 \\
\hline & STOP & C 270 \\
\hline & END & C 280 \\
\hline
\end{tabular}

PERIODICALS
JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

\section*{- Physics and Chemistry}

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \(\$ 5.00\); foreign, \$6.00*.

\section*{- Mathematical Sciences}

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \(\$ 2.25\); foreign, \(\$ 2.75 *\).

\section*{- Engineering and Instrumentation}

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in 'physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \(\$ 2.75\); foreign, \(\$ 3.50^{*}\).

\section*{TECHNICAL NEWS BULLETIN}

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology-for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \(\$ 1.50\); foreign, \(\$ 2.25^{*}\).

\section*{NONPERIODICALS}

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

\section*{CLEARINGHOUSE}

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Governmentgenerated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

> Clearinghouse
> U.S. Department of Commerce Springfield, Virginia 22151

Order NBS publications from:
Superintendent of Documents Government Printing Office Washington, D.C. 20402

\section*{U.S. DEPARTMENT OF COMMERCE}

WASHINGTON, D.C. 20230```


[^0]:    I Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C. 20234.
    ${ }^{2}$ Located at Boulder, Colorado 80302.
    ${ }^{3}$ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

