TECHNICAL NOTE

438

Compendium of ab initio Calculations of Molecular Energies and Properties

Telu of Standards

NBS

1966

OCT 4

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services:

THE INSTITUTE FOR BASIC STANDARDS . . . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area:

—Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics²—Radio Standards Laboratory,² which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Reference Data.

THE INSTITUTE FOR MATERIALS RESEARCH . . . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of materials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce. This Institute is organized primarily by technical fields:

—Analytical Chemistry—Metallurgy—Reactor Radiations—Polymers—Inorganic Materials—Cryogenics²—Office of Standard Reference Materials.

THE INSTITUTE FOR APPLIED TECHNOLOGY ... provides technical services to promote the use of available technology and to facilitate technological innovation in industry and government. The principal elements of this Institute are:

-Building Research-Electronic Instrumentation-Technical Analysis-Center for Computer Sciences and Technology-Textile and Apparel Technology Center-Office of Weights and Measures -Office of Engineering Standards Services-Office of Invention and Innovation-Office of Vehicle Systems Research-Clearinghouse for Federal Scientific and Technical Information³-Materials Evaluation Laboratory-NBS/GSA Testing Laboratory.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C., 20234.

² Located at Boulder, Colorado, 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

UNITED STATES DEPARTMENT OF COMMERCE Alexander B. Trowbridge, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

Compendium of ab initio Calculations of Molecular Energies and Properties

Morris Krauss

Physical Chemistry Division Institute for Basic Standards National Bureau of Standards Washington, D.C. 20234

This work was supported by the Advanced Research Projects Agency of the Department of Defense under Project DEFENDER.

> NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

	Abstract	1
Α.	Preface	2
в.	Annotated Bibliography	
	Introduction	5
	Glossary	6
	H ₂	7
	ис. + Нен ⁴	9
	Нен	9
	LiH ⁺ , LiH	10
	BeH ⁺ , BeH	10
	вн ⁺ , вн	11
	сн ⁺ , сн, сн ⁻	11
	NH ⁺ , NH	12
	NH ⁻ , OH ⁺ , OH	12
	он ⁻ , нг ⁺	13
	HF	13
	NeH ⁺ , NaH ⁺ , NaH	14
	MgH ⁺ , MgH, A1H ⁺	14
	A1H, SiH ⁺ , SiH	15
	SiH ⁻ , PH ⁺ , PH	15
	PH ⁻ , SH ⁺ , SH	16
	sh ⁻ , HC1 ⁺	16
	нс1	17
	He ⁺⁺ , He ⁺	17
	He ₂	18
	Li ₂ ² +, Li ₂	18
	Be ₂ , B ₂	19
	C ₂	19
		20
		20
	0 ₂ ⁺ , 0 ₂	20

0 ₂ ⁻ , F ₂ ⁺	21
F_2, F_2^-	21
Ne ₂ ⁺ , Ne ₂	22
Na ₂ , Mg ₂ , Al ₂ , Si ₂	22
P ₂ , s ₂ , c1 ₂ ⁺ , c1 ₂	23
C1 ₂ , Ar ₂ ⁺ , Ar ₂	23
HeLi ⁺ , HeLi, HeO	24
HeF, HeNe ⁺ , HeNe, HeAr	24
LiB, LiC, LiN	25
Li0 ⁺ , Li0, LiF	25
Lif ⁺ , LiNa, LiCl	26
LiBr, Be0 ⁺	26
BeO, BeF ⁺ , BeF, Be Ne	27
BeS, BN ⁺ , BN	27
B0 ⁺ , B0, B0 ⁻	28
BF ⁺ , BF	28
CN ⁺ , CN, CO ⁺	29
co, cf ⁺	29
CF, CS, NO ⁺	30
NO	30
NeO, NeF, NeAr	30
NaF, NaCl, NaBr	31
MgO, MgF, A1F	31
SiO, PN, PO	32
PO ⁻ , C1F, KF, KC1	32
CaO, ScO, ScF	33
TiO, VO	33
RbF, SrO	34
H ₃ ⁺	34
H ₃ , HeH ₂ , LiH ₂ ⁻	35

BeH ₂ , BH ⁺ ₂ , BH ⁻ ₂ 35
Сн ₂ , NH ₂ ⁺ 36
NH ₂ , NH ₂ , H ₂ 0 ⁺ 36
H ₂ O, H ₂ F ⁺ 37
H ₂ F ⁻ , NeH ₂ , H ₂ S37
Li ₂ H ⁺ , Li ₂ H ⁻ 38
LiOH, HCN, FOH38
FHF ⁻ , HeF ₂ , Li ₂ 0, BeF ₂ , C ₃ 39
NeC ₂ , OCN ⁻ , FCN, SCN ⁻ , C1CN39
CO ₂ , ScO, N ₃ , N ₂ O, NeN ₂ 40
NO_2^+, NO_2^-, NF_2^+
0 ₃ , NeO ₂ , F ₂ O41
NeF ₂ 41
H ₄ , H ₄ , BeH ₃ 41
BH ₃ , CH ₃ ⁺ 42
CH ₃ , CH ₃ , CF ₃ 42
NH ⁺ ₃ , NH ₃ 43
н ₃ 0 ⁺ , рн ₃ , нссн
нссн, нсно 44
H ₂ O ₂ , Licch, FCCH, ClccH44
HCOF, (CN) ₂ , NF ₃ 45
BH ₄ , CH ₄ 45
NH ₄ ⁺ , PH ₄ ⁺ , SiH ₄ ⁺ 46

	Chronological References47
	Experimental and Hartree-Fock Atomic Energies58
	Atomic Unit Conversions59
C.	One-electron Properties: Dipole Moment and Derivative, Quadrupole
	Moment, Field Gradient.
	Introduction60
	H ₂ , LiH61
	BeH, BH, CH61
	NH, OH62
	FH, NaH, MgH62
	A1H, SiH, PH, SH, C1H63
	He ₂ , Li ₂ , B ₂ , C ₂ , N ₂ 63
	N_2^+ , O_2 , F_2 , Na_2^- 64
	LiF, LiC1, LiBr, BeO64
	BF, CO65
	CS, NaF, NaCl, NaBr65
	MgO, A1F, SiO, PN, C1F66
	KF, KC1, CaO, ScO66
	ScF, TiO, RbF, SrO67
	H ₂ 0, H ₂ S, HCN67
	FHF, OCN, CO ₂ , N ₂ O, FCN68
	SCN, SCO, C1CN, NH ₃ , C ₂ H ₂ 68
	LICCH, HCCF, HCCC1, NCCN69
	HCCCN69

D. Static	Polarizabilities
-----------	------------------

	Introduction	70
	H ₂ , LiH, HF, F ₂ , N ₂ , CO, Li ₂ , BF	70
	HF, HC1, LiF, BF	71
	CO, NaBr, KC1, RbF	71
	A1F, SiO, PN, SrO	71
	HCN, N ₂ O, OCN ⁻ , FCN, SCO	71
	SCN, CICN, FCCH, CICCH	71
	NCCCH	71
E.	Magnetic Constants	
	Introduction	72
	LiH, Li ₂ , FH, F ₂ , BH	72
F.	Spectroscopic Constants	
	Introduction	73
	^H 2 ⁻	73
	Нен ⁺	74
	HeH, LiH, BeH, BH, CH	74
	NH, OH, OH, HF, NaH	75
	MgH, A1H, SiH, PH, SH, HC1	75
	$\operatorname{He}_{2}^{T}$, He_{2} , Li_{2} , $\operatorname{C}_{2}^{$	76
	N ₂ +	76
	N_2, F_2, F_2^- , Ne ₂ ⁺ , Cl ₂	77
	$C_1 = A_T$	77
	HeLi HeLi LiF LiNa	78
	LiCl. BeO. BN	78
	BF. CO. NaF	79
	NaC1	79
	MgO. ScO. ScF	79
	Ti0	80
	H_+	80
	3 AH	80
	18	

G.	Dissociation Energies: Diatomics	
	Introduction8	31
	Hydrides: Li, Be, B, C, N, O, F,8	31
	Na, Mg, Al, Si, P, S, Cl8	31
	Homonuclear: He ₂ ⁺ , Li ₂ , B ₂ , C ₂ , N.,,8	32
	$\mathbb{N}_{2}^{+}(\mathbb{Z}_{2}^{+},\mathbb{Q}_{g}^{+},\mathbb{Q}_{u}^{2}), \mathbb{O}_{2}^{-}(\mathbb{Z}_{g}^{+},\mathbb{Q}_{g}^{+},\mathbb$	32
	F, , F, , Ne, , Na,8	2
	Cl_2 , Cl_2^- , Ar_2^+	2
	Heteronuclear: HeLi, LiO, LiF, LiNa,8	3
	LiC1, BeO, BeF, BF, BO, CO, NO,8	3
	NaF, NaCl8	3
H.	Electron Affinities	
	Introduction 84	4
	Сн, NH, OH, SiH, PH, SH, NO 2 84	4
I.	Orbital Energies	
	Introduction 8	5
	Homonuclear diatomic:	
	H ₂ , Li ₂ , B ₂ , C ₂ , N ₂ 85	5
	0, 0, ⁻ , F ₂ , Na ₂ 86	6
	Heteronuclear diatomic	
	LiB, LiC, LiN, LiO86	6
	LiF, LiNa, LiC1, LiBr87	7
	BeO, BeF, BO87	7
	BO, BF, CN, CO88	3
	CF, CS, NO, NaF88	3
	NaCl, NaBr, MgO, AlF89)
	SiO, PN, ClF, KF89)
	KC1. CaO. RbF. Sr090)

Linear triatomi	.c	
	LiOH, FHF ⁻ , C ₃ , OCN ⁻	90
	FCN, SCN ⁻ , C1CN, CO ₂	91
	BeF ₂ , SCO, N ₃ , Li ₂ 0	91
Non-linear tria	tomic	
	FOH, NO ₂ , O ₃ , F ₂ O	92
AH		
Z	BH ₂ , CH ₂ , NH ₂ , H ₂ O, H ₂ S	- 92
Linear tetratom	ics, D _{wh}	
	C_2H_2, C_2N_2	. - 93
Linear tetratom	ics, C _{wv}	
	LiCCH, FCCH, ClCCH	. - 93
AH ₃		
5	BeH ₃ , BH ₃ , CH ₃ , CH ₃	- 94
	NH ₃ , PH ₃	94
AH ₄	BH _Δ , CH _Δ	94
Energy and Prope	rties as a Function of the Internuclear Distance	3
Introduction		- 95
LiF		- 95
LiC1		96
Be0		- 96
BF		- 97
CO		. - 97
NaF		- 98
NaCl		- 98
Mg0		. - 99
A1F		99
Si0		-100
PN		-100
Ca0		-101
Sr0		-101

J.

Potential Energy Curves	
Introduction	102
Н2	102
НеН +	103
НеН	103
LiH, BeH	104
ВН, СН	104
NH, OH	105
HF	105
NaH, MgH	106
AlH, SiH	107
РН, SH	108
HC1	108
NeH +	109
He ₂ +	109
Li ₂	111
N ₂	111
F	112
F	- 110
2	112
2	113
Ar ⁺ 2	113
C1 ₂	114
C1 -	
2	115
HeNe	115
NaLi	116
NaF	116
BeH 2	117
H CN	117
N ₂ 0	118
ے _ H ₂ F	119
	Potential Energy Curves Introduction H2

Figures and Acknowledgements

Figure	Acknowledgement
1	BH — Allen, L. C. (1966), "Quantum Theory of Atoms, Molecules, and the Solid State", Edited by P. O. Löwdin (Academic Press Inc., New York).
2,3	He-He; Ne-Ne — Gilbert, T. L. and Wahl, A. C. (1967), "Single- configuration wave functions and potential curves for some diatomic systems. I. The ground state of He ₂ , Ne ₂ , and Ar ₂ ." Scheduled to be published.
4	HeNe, HeAr, NeAr — Matcha, R. L. and Nesbet, R. K. (1967), "Electric dipole moments of rare gas diatomic molecules." Scheduled to be published.
5	Li ₂ — Das, G. (1967), J. Chem. Phys. <u>46</u> , 1568.
6	B. — Bender, C. F. and Davidson, E. R. (1967), J. Chem. Phys. 46, 3313.
7	C ₂ — Fougere, P. F. and Nesbet, R. K. (1966), J. Chem. Phys. <u>44</u> , 285.
8	N ₂ , N ₂ ⁺ Cade, P. E., Sales, K. D., and Wahl, A. C. (1966), J. Chem. Phys. <u>44</u> , 1973.
9	F. — Harris, F. E. and Michels, H. H. (1967), "Open-shell valence configuration-interaction studies of diatomic and polyatomic molecules" to be published Int. J. Quant. Chem. Slater Symposium Issue.
10,11,12	F ₂ ; LiNa; NaF — Wahl, A. C., Bertoncini, P. J., Das, G., and Gilbert, T. L. (1967), "Recent progress beyond the Hartree-Fock method for diatomic molecules: The method of optimized valence configurations." To be published Int. J. Quant. Chem. Slater Symposium Issue.
13	H ₃ — Conroy, H. and Bruner, B. L. (1966), "Molecular schrödinger equation VI. Results for H ₃ and other simple systems." Mellon Institute Preprint No. 22.

Figure	Acknowledgement
14	H ₃ — Edmiston, C. and Krauss, M. (1967), unpublished results.
15,16	C ₂ H ₆ ; CH ₃ OH — Fink, W. H. and Allen, L. C. (1967), J. Chem. Phys. <u>46</u> , 2261.
17	$NH_4C1 - Clementi, E. (1967)$, "Study of the Electronic Structure of Molecules. II. Wavefunctions for the $NH_3 + HC1 \rightarrow NH_4C1$ Reaction." IBM Research Report RJ411.

L. Survey of Large Gaussian Basis Calculations

Introduction128
C ₂ H ₆ 128
^B 2 ^H 6 ¹²⁹
C ₂ H ₄ 129
C ₃ H ₆ 130
C ₄ H ₂ 130
^C ₄ ^H ₆ 131
H ₂ CO132
CH ₃ NO, CH ₂ O ₂ 132
CH ₃ F133
C ₂ H ₅ F133
$C_4H_5N_Pyrrole$ 134
C ₅ H ₅ N, Pyridine135
C ₄ H ₄ N ₂ , Pyrazine136
L4 C ₅ H ₅ 137
C ₆ H ₆ 137
Acknowledgement138

COMPENDIUM OF ab initio CALCULATIONS OF

MOLECULAR ENERGIES AND PROPERTIES

ABSTRACT

The number of <u>ab initio</u> molecular electronic calculations has increased dramatically in the last few years. Both the practitioners and other interested students of the results of the calculations have found it increasingly difficult to determine the present status of these calculations. This compendium references the work from 1960 to the present and abstracts from the mass of data the best values for several observable properties including the total energy, dissociation energy, electron affinity, spectroscopic constants, electric moments, field gradients, polarizabilities, and magnetic constants. In order to provide an insight into molecular electronic structure tables of orbital energies are also included.

These tables are meant to direct attention to the successes and failures of the calculations by compiling a large percentage of the best results in a reasonably compact form. Its usefulness will be limited in time by rapid advance in the field.

KEY WORDS: <u>ab</u> <u>initio</u> electronic calculation, molecular electronic structure, energy, dissociation energy, dipole moment, quadrupole moment, polarizability, electron affinity, field gradient, spectroscopic constants, magnetic constants, orbital energy.

A. Preface

The increasing accessibility of powerful digital computers has inspired many investigators to the calculation of accurate electronic energies and other properties for molecules. In recent years a sufficient number of <u>ab</u> <u>initio</u> calculations have been completed to provide the evidence of the successes and failures of the variational techniques that form the bulk of the calculations. I do not believe the range of these calculations is widely known. This compendium is an effort to provide the non-specialist with an insight into the results that have been obtained to date as well as to summarize a wide range of data for the specialist.

This compendium will reference the variational calculations and will abstract from the more accurate calculations the values of certain observables e.g. the total energies, electric moments, field gradients and orbital energies. It is not our intention to critically review this material in any way. Several recent studies already provide that service.^a This compendium is intended to supplement the present and, perhaps, future reviews by providing a selected compilation of the raw material of the accurate calculations.

Much unpublished material has been included. Indeed without the 1967 references this report would be significantly shorter. It is hoped that the papers will soon be published so that the full content of this work will be available. In order to assist the reader to access this information, the address of the authors of unpublished material is given.

The calculations have been assigned to two broad groups: 1. Hartree-Fock (H.F.) and 2. Beyond Hartree-Fock. This division and the imputation of superiority to the second category refers only to the conceptual approach. In the latter the dynamical electron interaction is in some fashion taken into consideration. Often, though, the energy for the H.F. approximation is the lowest obtained for a given molecule; but the energy is not an absolute criterion of value. Listing the advantages and disadvantages of the H.F. approximation will suffice to show why certain information was tabulated.

The Hartree-Fock approach is important for the following reasons: 1. At the equilibrium geometry the H.F. function dominates the wave function. In near degeneracy cases electron correlation must be considered but for many systems the H.F. function describes the electronic behavior and electrons can be associated with a given spatial orbital. The orbital energies determine the spectroscopy of the molecule and the coefficients tell us much of the bonding properties of the orbital.

2. Expectation values of one-electron operators are good to second-order (often within 10% of experiment) when perturbed by the correlation potential. This holds for the perturbation by external fields. 3. Hartree-Fock energies provide a basis for determining correlation energies empirically and systematic calculations lay the basis for semi-empirical estimation of correlation energies.

The major disadvantages of the Hartree-Fock approximation are 1. Correlation error is significant for the energy of dissociation, excitation, and ionization or detachment. 2. Asymptotic behavior of the potential surface is poor except in exceptional cases involving closed shell fragments. This behavior reflects itself in appreciable, 20% - 50%, errors in the spectroscopic constants.

Each section will be preceded by a description of the tables. Table B is an annotated bibliography of <u>ab initio</u> calculations. Tables C, D, E, and F include selected results for, respectively, the one-electron properties such as the moments and field gradients, the static polarizabilities, the magnetic constants, and the spectroscopic constants. Dissociation energies, electron affinities, and orbital energies are found, respectively, in Tables G, H, and I. In order to illustrate the range of the data generated by the calculations the energy and properties as a function of internuclear distance are given in Tables J and K. Table L very briefly illustrates the rapidly increasing area of polyatomic calculations based upon Gaussian-type basis functions.

It is hoped that the numbers are sufficient witness to the successes or failures of the present techniques and that outside of writing a book on the subject the less commentary the better.

a. See:

Nesbet, R. K. "Approximate Hartree-Fock calculations on small molecules" which will appear in Adv. in Quantum Chemistry, ed. P. O. Lowdin, Academic Press, N. Y., 1967, Vol. 3; Wahl, A. C., Bertoncini, P. J., Das, G., and Gilbert, T. L., "Recent progress beyond the Hartree-Fock method for diatomic molecules" which will appear in the Int. J. of Quantum Chem. 1, 0000 (1967).

B. Annotated Bibliography: Introduction

This section attempts to summarize <u>ab initio</u> molecular energy calculations from 1960 to the present including many unpublished results. The molecules are organized in the following order: hydrides AH; homonuclear A_2 ; heteronuclear AB; triatomics AH₂, ABH, ABC; tetratomic AH₃, ABH₂, ABCH, ABCD; pentatomic AH₄. A, B, etc. are selected in the periodic table order with A < B < C < D or in the periodic table order of the first element to appear in the usual chemical nomenclature. In addition to the reference and the state of the molecule (note that the state is often not repeated when subsequent references refer to the same state) a very brief description of the method and results are given.

The Description of Method is minimal. A single symbol will denote a wide variety of calculations which are of unequal significance. The explanatory symbols which are listed in the glossary refer to the basic technique of the calculation but there is little or none of explanatory detail. Similarly the Basis Set column is devoid of detail; the use of the word "Extend." to denote a basis set larger than the minimum of one function per atomic orbital is perhaps overused since sets of almost minimal as well as saturated character will be similarly characterized. In most cases the energy, E, is given at a distance, R, and permits some judgment. For the polyatomic molecules the angles and distances are listed in the most compact form as given in the reference. This may not be completely unambiguous but consideration of the molecular symmetry and the convention of listing the internuclear separations in the order given in the formula heading should mitigate any difficulties. Again we note that the references are pointers only and the details suffer. In this section E and R are in atomic units.

The column, P, notes the properties considered in this calculation. Since many unpublished calculations are listed, it may happen that the results when published will be in separate papers. It can also be noted that Hartree-Fock results from the Laboratory of Molecular Structure and Spectra at the University of Chicago include all one-electron properties but the references are, in some cases, to published results which do not include these values. This situation may be more prevalent as computer packages for one-electron properties are being widely disseminated. In particular note that the Quantum Chemistry Program Exchange at Indiana University is distributing such a package as QCPE 103 written by T. Janiszewski and A. C. Wahl.

The check in the column E(R) indicates that a portion of the potential curve or surface has been calculated.

In order to facilitate a rapid judgment of the accuracy of a calculation a table of ground state H.F. atomic energies that was given by E. Clementi(Tables of Atomic Functions, Supplement to IBM J. Res. Develop. 9, 2 (1965)) and experimental values recommended by Cade and Huo (1967a,b) is also included after the references.

A table of the conversion factors for the atomic units is also given.

a. See:

"Hartree-Fock Wave Functions for Diatomic Molecules AH, A₂, and AB" Compiled by P. E. Cade to be published last quarter 1967.

Glossary

Hartree-F	ock Refers to restricted H.F. as proposed by Roothaan. Indicates close approach to the H.F. energy limit.
Nesbet	Refers to equivalence and symmetry restriction variant of the H.F. method
SCF	Self-consistent field restricted H.F.
MO	Molecular orbital (signifies calculation of the energy of a state using the unoccupied MO's of an SCF calculation)
SOC	Superposition of configurations
VB	Valence bond
NO	Natural orbital
Valence	Refers to configurations arising only from excitation of valence orbitals
IS	Ionic states
DODS	Different orbital different spin
OC	One center
STF	Slater type function
ETF	Elliptic type function
GTF	Gaussian type function
вА	Best atom basis
BI	Best ion basis
DZ	Double zeta basis
BA + P	Best atom plus polarization basis
E	Energy in atomic units
R	Internuclear distance in atomic units
Т	Term values; excited state energies
ω	Spectroscopic constants
μ	Dipole moment
Q	Quadrupole moment
q	Field gradient
Р	Polarizability
I3	Octupole moment
Vib-rot	Nuclear Schrodinger equation is evaluated
I	Ionization potential
EA	Electron affinity

Reference	State	Description of Method		E(R)	R	E
		Н2				
Davidson (1961)	$E^{1}\Sigma_{g}^{+}$	VB-ETF	Vib-rot	\checkmark	1.92	-0.7175
Fraga and Ransil (1961b)	$x^{1}\Sigma_{g}^{+}$	SCF-Min.STF SOC-MO	т,ω	\checkmark	1.402	-1.15919
Davidson and Jones (1962a)	$x^{1}\Sigma_{g}^{+}$	Best open-shell ETF	NO	\checkmark		
Davidson and Jones (1962b)	$x^{1}\Sigma_{g}^{+}$	NO Expansion of Kolos-Roothaan Function	Energy	for tru	uncated exp	pansions
Bishop (1963)	x ¹ Σ ⁺ g	0 C - S 0 C			1.4	-1.16042
Harris and Taylor (1963)	$x^{1}\Sigma_{g}^{+}$	SOC-DODS ETF			1.4	-1.16862
Hagstrum and Shull (1963)	$x^{1}\Sigma_{g}^{+}$	SOC-ETF	NO		1.4	-1.173128
Taylor (1963a)	¹ Σ ⁺ u	SOC-ETF			2.3	-0.74371
	ь ³ Σ <mark>1</mark>	SOC-ETF			Repulsive	e curve
Kolos and Wolniewicz (1963)	$x^{1}\Sigma_{g}^{+}$	Non-adiabatic 4 particle calculation	D _o = 36	091 cm	⁻¹ R _o = 1	.4191 ^a
Kolos and Wolniewicz (1964a)	$x^{1}\Sigma_{g}^{+}$	Accurate adiabatic calculation	H ₂ D _e	$1c = D_{e}^{e}$	exp + 4.2	cm ⁻¹
Kolos and Wolniewicz (1964b)	$x^{1}\Sigma_{g}^{+}$	Accurate non-adiabatic calculation	H ₂ D _o ca	$lc = D_{c}^{e}$	exp + 0.6	-1 cm ⁻¹
			D ₂ D _o ca	lc = D _c	exp + 1.3	cm ⁻¹
Browne (1964a)	$c^{1}\Pi_{\dot{u}}$	SOC ETF	w,Q,q	\checkmark	1.947	-0.714533
	c ³ ∏u	SOC ETF	w,Q,q	\checkmark	1.96	-0.733439

Reference	State	Description of Method	Р	E(R)	R	Ε
*****		Н2				
Browne (1964b)	3d ¹ ∆g	SOC ETF	w,Q,q NO	\checkmark	1.99	-0.757014
	3d ³ ∆g		w,Q,q	\checkmark	1.99	-0.657178
	2p ¹ II _g , 2	$p^{3}\Pi_{g}$, $3d^{1}\Delta_{u}$, $3d^{3}\Delta_{u}$	Long ra	nge rej	pulsive cu	rve
Goodisman (1964)	x ¹ ₂ ⁺	James-Coolidge trial function				-1.1738
Gerhauser and Taylor (1964)	$E^{1}\Sigma_{g}^{+}$	SOC ETF		\checkmark	1.9	-0.71643
	$a^{3}\Sigma_{g}^{+}$	SOC ETF		~	1.87	-0.72730
Wakefield and Davidson(1965)	$2s^{3}\Sigma_{g}^{+}$	SOC ETF Λ doubling	Vib-rot	\checkmark	1.864	-0.736615
	3s			\checkmark	1.990	-0.66048
	3d			~	1.984	-0.659325
Wright and Davidson (1965)	3d ³ ∏	SOC ETF	Vib-rot	~	2.0	-0.65929
Kolos and Wolniewicz (1965)	$x^{1}\Sigma_{g}^{+}$	Generalized James-Coolidge trial function	Powers	of r 🗸	1.401	-1.174474
	b ³ Σ ⁺ u		E for 1	arge R	Repulsive	curve
	c ¹ II _u			\checkmark	1.951	-0.7183492
Das and Wahl (1966)	$x^{1}\Sigma_{g}^{+}$	Extend. H.F. NO	ω	\checkmark	1.4	-1.169837
Hoyland (1966b)	c ³ II u	OC STF	w	\checkmark	1.948	-0.73567
	c ¹ II _u		ω	\checkmark	1.940	-0.71609
	3 _П		w	V	1.990	-0.65817
	¹ _∏ g		ω	\checkmark	1.990	-0.65803

Reference	State		Description of M	lethod	Р	E(R)	R	E
			Н2	-				
Rothenberg and Davidson	2p ¹ П	SOC ETF			Vib-rot	~	1.950	-0.717961
(1966a)	3р				Vib-rot	~	1.981	-0.655055
	4f				Vib-rot	~	2.000	-0.633939
	4 p				Vib-rot	~	1.985	-0.632404
Rothenberg and Davidson	$2s^{1}\Sigma_{g}^{+}$	SOC ETF			ω,ΝΟ	~	2.00	-0.717244
(1966)	3d				w,NO	~	2.00	-0.659817
	3s				ω,ΝΟ	~	2.00	-0.654481
	$2s^{3}\Sigma_{g}^{+}$				0,NO	~	2.00	-0.735976
	3d .				w,NO	V	2.00	-0.660093
	3s				w,NO	~	2.00	-0.659404
	$2p^{1}\Sigma_{u}^{+}$					~	2.00	-0.750402
	3p				w,NO	~	2.00	-0.664715
	$2p^{3}\Sigma_{u}^{+}$					~	Repulsi	ve curve
	Зp				w,NO	r	2.00	-0.682866
	2p ¹ 1				,NO	~	2.00	-0.717832
	Зp				w,NO	~	2.00	-0.655035
	4 f				ω,ΝΟ	~	2.00	-0.633939
	4 p				w,NO	~	2.00	-0.632391
	2p ³ П				w, NO	-	2.00	-0.736849

Reference	State	Description of Method	Р	E(R)	R	E
		н2				
	3p ³ ∏ _u		ω, ΝΟ	~	2.00	-0.660233
	4 p		w,NO	~	2.00	-0.634470
	4f		ω,ΝΟ	V	2.00	-0.633940
	3d ¹ II		w, NO	~	2.00	-0.659284
	3d ³ П		w,NO	V	2.00	-0.659362
	3d ¹ ∆g		w,NO	~	2.00	-0.657444
	3d ³ ∆g		w,NO	V	2.00	-0.657502
Wolniewicz (1966)	$x^{1}\Sigma^{+}$	Num. integration nuclear motion	н ₂ г	$p_o^{calc} = D_o^{calc}$	exp + 3.9	cm ⁻¹
			HD D	$D_o^{calc} = D_o^{calc}$	exp o + 4.7	cm ⁻¹
			D ₂ D	$p_o^{calc} = D_o^{calc}$	exp o + 3.6	cm ⁻¹
Kolos and Wolniewicz (1966a)	$B^{1}\Sigma^{+}_{u}$	Generalized James-Coolidge trial Function	D _e to	1.6 cm	¹ 2.43	-0.7566611
Kolos and Wolniewicz (1966b)	$x^{1}\Sigma_{g}^{+}$	H-D perturbation correction to vibronic function	HD D	$D_{o}^{calc} = D_{o}^{calc}$	exp o + 1.9	cm ⁻¹
Hayes (1967)	$\mathbf{x}^{1}\!\mathbf{\Sigma}_{\mathbf{g}}^{+}$	0C-SOC	w,Q	r	1.4	-1.17258

Reference	State	Description of Method	Basis Set	Р	E (R)	R	E
		Helt					
Anex (1963)	$\mathbf{x}^{1}\Sigma^{+}$	SOC	ETF	w,µ	\checkmark	1.40	-2.97424
Michels and Harris(1963)	$x_{1\Sigma_{+}}$	SOC	ETF	ω	\checkmark	1.40	-2.94321
Conroy (1964b)	x ₁ Σ+	Minimize energy variance			~	1.40	-2.97753 ^b
Preuss (1964)	$x^{1}\Sigma^{+}$	VB	STF		\checkmark	1.442	-2.94920
Stuart and Matsen (1964)	$x^{1\Sigma^{+}}$	OC-SOC	Extend. STF		~	1.40	-2.9691
Goodisman (1965)	X1∑+		Generalized James-Coolidge	Τ			-2.9729
Peyerimhoff (1965)	$x^{1}\Sigma^{+}$	SCF Hartree-Fock	Extend. STF	യ,പ	~	1.40	-2,93259
Wolniewicz (1965)	$x^{1\Sigma^{+}}$		Generalized James-Coolidge	Т	~	1.4363	-2.978669
	$A^{1}\Sigma^{+}$				~	Repulsi	ve curve
Gallup and McKnight(1966)	$x^{1\Sigma^{+}}$	SCF	Exact l-electron diatomic			1.40	-2.903
Harris (1966)	$x^{1}\Sigma^{+}$	SOC	ETF	ω	~	1.50	-2.9550
Hoyland (1966a)	$x_{1\Sigma_{+}}$	SOC	Non-integral ETF		~	1.40	-2.97190

Reference	State	Description of Method	Basis Set	Р	E (R)	R	E
		HeH					
Michels (1966)	x12+	SOC	ETF	т	\checkmark	1.40	-2.94321
	$A^{1}\Sigma^{+}$	SOC	ETF		~	6.0	-2.50124
	$B^{1}\Sigma^{+}$				~	8.5	-2.18177
	a ³ Σ ⁺				~	4.5	-2.50300
	ь ³ ∑†				\checkmark	8.0	-2.20072
	c ¹ П				V	8.0	-2.13318
	с ³ П				~	8.0	-2.13761
Michels and Harris (1963)	χ ² Σ ⁺	HeH SOC	DODS-ETF		~	3.0 Bapula	-3.35670
	2 _П	SOC	DODS-ETF	ω	\checkmark	1.5	-3.06983
	² _Σ +	SOC	DODS-ETF	ω	\checkmark	1.5	-3.08304
Ta ylor and Harrís (1964)	$x^2\Sigma^+$	SOC	DODS-ETF			3.0	-3.3618
Bender and Davidson (1966)	x²Σ+	SOC-NO	ETF	μ,Q		3.0	-3.38280
						Repuls	ive curve

Reference	State	Description of Method	Basis Set	Р	E(R)	R	Е
		L1H+	-				
Platas et al (1959)	$x^{2}\Sigma^{+}$	VB	DODS STF	I		3.01	-7.699
Browne (1964c)		VB	* Extend. STF+ETF	I	\sim	4.25	-7.7808
Cade and Huo (1967)		SCF Hartree Fock	Extend. STF			3.014	-7.72943
		LiH					
Karo and Olsen (1959)	$x^{1}\Sigma^{+}$	VB	Num. H.F.	μ,ω	\checkmark	3.245	-7.9941
	$A^{1}\Sigma^{+}$				\checkmark	4.90	-7.8963
Robinson et al (196 0)	$x^{1}\Sigma^{+}$	VB	DODS STF	μ		3.01	-8.0074
Browne and Matsen (1962)	$x^{1}\Sigma^{+}$	VB	Extend. STF	μ,ω	\checkmark	3.075	-8.04379
Ebbing (1962)		SOC	ETF	μ	\checkmark	3.0	-8.04127
Fraga and Ransil (1962b)		SCF SOC	Min. STF	μ		3.015	-7.9836
Kahalas and Nesbet (1963)		SCF SOC	Extend. STF	µ,q	\checkmark	3.0581	-8.0171
Browne and Matsen (1964)		VB	Extend. STF+ETF	μ,q,w	\checkmark	3.046	-8.0561
Csizmadia et al (1964)	$x^{1}\Sigma^{+}$	Group orbital SOC	Hartree Fock AO		\checkmark	3.0	-7.9922

 $A^{1}\Sigma^{+}$

 $3\Sigma^+$

✓ Repulsive curve

-7.8773

3.0

 \checkmark

Reference	State	Description of Method	Basis Set	Р	E(R)	R	Е
		LiH					
Harris and Taylor (1964)	$x^1 \Sigma^+$	SOC	DODS-ETF		\checkmark	3.2	-8.0387
Ebbing and Henderson (1965)		Geminal	ETF-NO			3.0	-8.0179
Bender and Davidson (1966)		SOC-NO	ETF	μ,q,Q		3.0147	-8.0606
Csizmadia (1966)		SCF	Extend. GTF	μ,ω	~	3.02	-7.9842
Cade and Huo (1967a)		SCF Hartree-Fock	Extend. STF	ω,Ι	~	3.015	-7.98731
Sanders and Krauss (1967)		SOC-PNO Valence	Extend. GTF		V	3.0	-8.0188
Kapral (1967)		SOC-MO-IS	GTF lobe		\checkmark	3,25	-7.9944
Michels (1967)	$x^{1}\Sigma^{+}$	VB	Min. STF + 2p		\checkmark	3.25	-7.9813
	³ ∑ ⁺	VB	Min. STF + 2p		\checkmark	Repulsive	curve
		BeH ⁺					
Cade and Huo (1967a)	$x^{1}\!\!\Sigma^{+}$	SCF Hartree-Fock	Extend. STF			2.479	-14.85396

BeH

Cade and Huo (1967)	$x^2\Sigma^+$	SCF Hartree-Fock	Extend. STF	w,I	\checkmark	2.538	-15,15312
LMSS (1967)	^{A²II_r}	SCF Hartree-Fock	Extend. STF			2,519	-15.05062

						25	
Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		BH ⁺					
Cade and Huo (1967a)	$x^{1}\Sigma^{+}$	SCF Hartree-Fock	Extend. STF			2.296	-24.82064
LMSS (1967)	A ² II _r	SCF Hartree-Fock	Extend. STF			2.374	-24.68317

		BH					
Fraga and Ransil (1962b)	$x^{1}\Sigma^{+}$	SCF-SOC	Min. STF			2.329	-25.0903
Buenker et al (1967)		SCF	Extend. GTF lobe		~		-25.1001
Cade and Huo (1967a)		SCF Hartree-Fock	Extend. STF	w,I	~	2.305	-25.13147
Kaufman and Burnelle (1967)		SCF	Extend. GTF			2.336	-25.1298
Harrison (1967)	$x^{1}\Sigma^{+}$	VB Valence	GTF lobe A0	μ,Q,q	~	2.50	-25.1455
	з _П			μ, Q, q	\checkmark	2.25	-25.1134
	1 _{II}			μ, Q, q	\checkmark	2.50	-25.0394
	3 ₂ -			μ, Q, q	\checkmark	2.50	-24.9948
	là			μ,Q,q	\checkmark	2.25	-24,9207

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		CH+					
Moore et al (1965)	$X^{1}\Sigma^{+}$	VB	Extend. STF		~	2.2356	-37,91786
Cade and Huo (1967a)		SCF Hartree-Fock	Extend. STF		\checkmark	2.137	-37.90881

			CH						
Cade and Huo (1967a)	x ² II _r	SCF Hartree-Fock	Extend. SI	ſF	w,I	~	2.086	-38,27958
			(TT =						
Cade (1967b)		x ³ Σ ⁻	SCF Hartree-Fock	Extend. SI	ſF	EA		2.086	-38,29003
Cade (196/b)		Y- 7.	SUF Hartree-Fock	Extend, SI	L.L.	LA		2.080	-38.29003

Reference	State	Description of Method	Basis Set	P	E(R)	R	E
	· · ·	NH	-				
Cade and Huo (1967a)	x ² U _r	SCF Hartree-Fock	Extend. STF			2.048	-54.50701

		NE					
Joshi (1965)	$x^3\Sigma^-$	0C-SCF	Extend. STF	μ	~	1.90	-54.9064
Cade and Huo (1967a)	x ³ Σ~	SCF Hartree-Fock	Extend. STF	w,I	~	1.923	-54.97838
LMSS (1967)		SCF Hartree-Fock				1.9729	-54.91081
Harrison (1967)	x ³ 2 ⁻	VBValence	GTF lobe A0	μ	~	2.375	-54 ,9400
	ı			μ	~	2.375	-54.8625
	Σ^{1}			μ	~	2.375	-54.8312
	3 _П			μ	~	2.375	-54,7860

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		NH-					
Cade (1967b)	$x^2\Pi_{i}$	SCF Hartree-Fock	Extend. STF	EA		1.923	-54.92138

Cade and Huo (1967a)	x ³ Σ-	OH ⁺ SCF Hartree-Fock	Extend. STF	EA	1.944	-75.00050
Cade and Huo (1967a) LMSS (1967)	x ² Π ₁ A ² Σ ⁺	OH SCF Hartree-Fock SCF Hartree-Fock	Extend. STF Extend. STF	w,I 🗸	1.795 1.912	-75.42127 -75.26553

Reference	State	Description of Method	Basis Set	P	E(R)	R	E
		- HO					
Krauss and Ransil (1960)	$X_{\tau}\Sigma_{+}$	SCF	Min. STF		\checkmark	1.8342	-74.8785
Grahn (1964)		VB	Min. STF			1.8103	-74.802
Rosenfeld (1964)		SCF	Min. STF			1.8103	-74.8221
Moskowitz et al (1965)		SCF	Extend. GTF			1.8	-75.3670
Cade (1967a)		SCF Hartree-Fock	Extend. STF	μ,Q,ω, q,EA	~	1.781	-75.41754
Fink et al (1967)		SCF	Extend.GTF lobe			1.85	-75.3413
Ritchie and King(1967b)		SCF	Extend. GTF			1.79	-75.3961

		HF				
Clementi (1962a)	² Σ+	SCF	Extend. STF	~	2.5	-99,3988
Cade and Huo (1967s)	x ² n _i	SCF Hartree-Fock	Extend, STF		1,7328	-99.53598
LMSS (1967)	² _Σ +	SCF	Extend, STF		1.7328	-99.39240

Reference	State	Description of Method	Basis Set	P	E(R)	R	E
		HF					
Clementi (1962)	$x^{1}\Sigma^{+}$	SCF	Extend. STF	μ, Τ	\checkmark	1.7328	-100.0580
Nesbet (1962)		SCF	Extend. STF	μ,Τ,ω,f	\checkmark	1.7328	-100.0571
Biahop et sl (1963)		0C-VB (1)	Non-integral n STF		\checkmark	1,7052	-99.6651
Peyerimhoff (1963)		VB (3)	Min. STF + 3d		~	1.7328	-99.6271
Harrison (1964)		SCF	Extend. GTF			1.75	-100.0178
Moccis (1964)		OC-SCF	Extend. STF	μ		1.7328	-100,0053
Moskowitz et sl (1966)		SCF	Extend. GTF	μ, Q, q		1.7328	-100.0622
Bender and Davidson (1967a)		SOC-NO	ETF	µ,Qq		1.7328	-100.2577
Cade and Huo (1967s)		SCF Hartree-Fock	Extend. STF	μ,Q,q,	\sim	1.696	-100.07077
Erdahl et sl (1967)		VB	Extend.GTF lobe	μ, Q, q			-100.1043
Whitten and Allen (1967)		SCF	Extend. GTF lobe	μ	\checkmark		-100.0224
McLean and Yoshimine (1967)		SCF Hartree-Fock	Extend. STF	μ,Q,q,P	,	1.7328	-100.07046
Harris and Michels (1967)		VB - Vslence	Min. and DZ STF		\checkmark	2.0	-100.0031

Reference	State	Deacription of Method	Baais Set	Р	E(R)	R	E
		NeH ⁺	5				
Peyerimhoff (1965)	$x^{1}\Sigma^{+}$	SCF Hartree-Fock	Extend. STF	μ,ω	~	1.83	-128.62836
Fink et øl (1967)		SCF	Extend. GTF lobe			1.93	-128.562 39
		N aH+					
Cade and Huo (1967b)	$x^2\Sigma^+$	SCF Hartree-Fock	Extend.STF			3,566	-162,1671
		NaH					
Cade and Huo (1967b)	$x^{1}\Sigma^{+}$	SCF Eartree-Fock	Extend. STF	w,I	~	3,566	-162,3928
Reference	State	Description of Method	Baais Set	Р	E(R)	R	E
	1 .4	MgH ⁺					
Lade and Huo (1967b)	X-Σ,	SCF Hartree-Fock	Extend. STF			3.116	-199,9082

Cade and Huo (1967b)	$x^2\Sigma^+$	SCF	Hartree-Fock	Extend, STF	w, T	\checkmark	3.271	-200,1566
LMSS (1967)	^{A²II} r	SCF	Hartree-Fock	Extend. STF			3.173	-200.0589
			AIH+					
Cade and Huo (1967b)	$x^{2}\Sigma^{+}$	SCF	Hartree-Fock	Extend. STF			3,027	-242.1930
LMSS (1967)	A ² II _r	SCF	Hartree-Fock	Extend. STF			3.007	-242.0542

MgH

Reference	State	Description of Method	Baais Set	P	E(R)	R	E
		A1H					
Cade and Huo (1967b)	$x^{1}\Sigma^{+}$	SCF Hørtree-Fock	Extend. STF	w,I	\checkmark	3,114	-242.4634
Cade and Huo (1967b)	$x_T \Sigma_+$	SiH ⁺ SCF Hartree-Fock	Extend. STF			2.874	-289.1656
Cade and Huo (1967b)	x ² II _r	SiH SCF Hartree-Fock	Extend, STF	ω,Ι	~	2.874	-289.4362
Reference	State	Description of Method	Baaia Set	P	E (R)	R	E
		S1H-					
Cade (1967b)	x ³ ∑~	SCF Hartree-Fock	Extend. STF	EA		2,861	-289.4598

Cade and Huo (1	967 b) 5	r ² II scf	₽H ⁺ Hørtree-Fock	Extend, SI	ĨF	2,693	~340.9386
						,	
			РН				

Cade and Huo (1967b)	$x^{3}\Sigma^{-}$	SCF	Hartree-Fock	Extend.	STF	w,I	\checkmark	2.708	-341.2932
LMSS (1967)	1 ¹	SCF	Hartree-Fock	Extend.	STF			2.708	-341,2473

Reference	State	Description of Method	Bssis Set	Р	E(R)	R	E
Cade (1967b)	x ² II ₁	PH" SCF Hartree-Fock	-	EA		2.668	-341.2847
C øde and Huo (1967b)	x ³ Σ-	SH ⁺ SCF Hartree-Fock	Extend. STF			2.551	-397.7593
LMSS (1967) Cade and Huo (1967b)	$A^2\Sigma^+$ $x^2\Pi_z$	SH SCF Hartree-Fock SCF Hartree-Fock	Extend, STF Extend, STF	w, I	~	2.551 2.551	-397.9441 -398.1015

Reference	Støte	Description of Method	Basis Set	P	E(R)	Ŗ	E
Cade (1967a)	$x^{1}\Sigma^{+}$	SH ⁻ SCF Hartree-Fock	Extend. STF	μ,Q,ω, q,EA	1	2.551	-398.1459

		HC1+			
Cade and Huo (1967b)	x ² II	SCF Hartree-Fock	Extend. STF	2.485	-459.6752
LMSS (1967)	$A^2\Sigma^+$	SCF Hartree-Fock	Extend. STF	2.861	-459,5376

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		HC1					
Moccis (1962)	$x^{1}\Sigma^{+}$	0C-SCF	Extend. STF	ц		2.404	-458.83776
Nesbet (1964b)		SCF	Extend. STP	μ,Q	\checkmark	2,4085	-459.80374
Cade and Huo (1967b)		SCF Hartree-Fock	Extend. STF	w,I	\checkmark	2.4087	-460.1103
McLeen end Yoshimine (1967)		SCF Hartree-Fock	Extend. STP	μ,Q,q,Έ		2.4087	-460.11185

Reference	Stste	Description of Method	Basis Set	P	E(R)	R	E
		He ⁺⁺ 2					
Kolos and Roothsan (1960)	$^{1}\Sigma_{g}^{+}$	40-term James-Coolidge Junction			~	1.3	-3.67964
Frags and Ransil (1962a)	$L_{\Sigma_g^+}$	SO C-SCF-MO	Extend. STF	ω	\checkmark	1.3	-3.66562
McLesn et al (1962)	L ₂ +	SOC	Extend. STF		\checkmark	1.3	-3,66222
Conroy and Bruner (1966)	$1_{\Sigma_{g}^{+}}$	Minimize energy variand	e		\checkmark	1.375	-3.6793 ^b
Michels (1967)	$^{1}\Sigma_{g}^{+}$	VB	Extend.STF		\checkmark	1.5	-3.6519
	(3) ¹ 2 ^{+*} _g				✓.	Repulsiv	e curves
	$^{1}\Sigma^{+}$				\checkmark	3.0	-2.3922
	(2) 1 ₂ +*				\checkmark	Repulsiv	e curves

		He ⁺ 2						
Resgsn et al (1963)	$x^2 \Sigma_u$	VB	Extend.	STF		~	2.00	-4.98540
Conroy and Bruner (1966)	$x^{2}\Sigma_{u}$	Minimize energy variance				\checkmark	2.00	-4.9846
Edmiston snd Krauaa (1966)	$x^{2}\Sigma_{u}$	SOC-PNO	Extend.	GTF		\checkmark	2.0626	-4.9841
Gilbert and Wahl (1967a)	$x^2 \Sigma_u^2, \Sigma_g$	SCF Hartree-Fock	Extend.	STF	ω,Τ	\checkmark	Curve rel	stive to
Browne (1966)	4 ₂ +	VB	STF-ETF			\checkmark	6.0	-4.21497
	$^{2}\Sigma_{g}^{+}, (^{2}\Sigma_{g}^{+})^{*}$					\checkmark	Repulsive	curves
	$4\Sigma_{g}^{+}, (2\Sigma_{u}^{+})$	*				\checkmark		

Reference	State D	escription of Method	Basis Sat	Р	E(R)	R	E
		He2					
Michels (1967)	$x^{2}\Sigma_{u}^{+}$ v	Ъ	Extend STF		\checkmark	2.05	-4.97068
	² Σ ^{+*} g				\checkmark	1.5	-4.0451
	² _∏ g				\checkmark	1.5	-3.83927
	2 _{II} u				\checkmark	1.5	-4.07516
	(4) $\sum_{u}^{2} \sum_{u}^{+*}, \sum_{g}^{2},$	(3) Σ_{g}^{+*} , $2\pi_{g}^{*}$, $2\pi_{u}^{*}$, $2\pi_{u}^{*}$			\checkmark	Repulsive	curves
Schwertz (1967)	$x^{2}\Sigma_{u}^{+}$ s	CF Hertree Fock	Floating S GTF			2.06	-4.92109

Reference	State	Description of Method	Basis Set	Р	E(R)	R	Е
		He 2	-				
Moore (1960)	$x^{1}\Sigma_{g}^{+}$	VB	Extend. STF		\checkmark	Repulsiv	e cu rv e
Ransil (1961)	0	SCF	Extend. STF		\checkmark	for the	ground state
Phillipson (1962)		SOC-MO	Extend. STF		\checkmark		
Kim (1962)		VB	Extend, STF	E at	large R		
Miller and Present (1963)		OC	Extend. STF	E at	large R		
Kestner (1966)		Pair Correlations		E at	large R		
Kestner and Sinanoglu(1966)		Pair Correlations		E at	large R		
Barnett (1967)		SOC	ETF-DODS		\checkmark		
Gilbert and Wahl(1967b)		SCF Hartree-Fock	Extend. STF		\checkmark		
Matsumoto et al (1967)		SOC-NO	ETF	E at	small R		
Morris and Present (1967)		OC - SOC	Extend.STF	E at	small R		
Brigman et al (1961)	³ Σ ⁺	VB	STF-DODS	Pot.	~	2.13	-5.0938
Poshusta and Matsen (1963)	³ Σ ⁺ _u	VB	Extend. STF	hump Pot. hump	~	2.13	-5.11346
				w,Q			
Scott et al (1966)	Σ_u^{1}	VB	Extend. STF	ω	~	2.10	-5.10509

Reference	State	Desc	Description of Method Basis Set		et	Р	E(R)	R	E
			L1 ⁺ 2						
LMSS (1967)	$x^2 \Sigma_g^+$	SCF	Hartree-Fock	Extend.	STF			5,051	-14.70971
	2 _{П.}	SCF	Hartree-Fock	Extend.	STF			5.051	-14.54197

Li₂

Fraga and Ransil (1962b)	$x^{1}\Sigma_{g}^{+}$	SOC	Min. STF			5.051	-14.8523
Das and Wahl (1966)		Extend. H.FValence	Extend. STF	ω	\checkmark	5.25	-14.8988
Das (1967)		Extend. H.FValence	Extend. STF	ω	~	5.07	-14.90260
Buenker et al (1967)		SCF	Extend. GTF lobe				-14.86501
Cade and Wahl (1967)		SCF Hartree-Fock	Extend. STF	ω	~	5.37	-14.87179
Kapral (1967)		SOC-MO-IS	GTF lobe A0	ω	~	5.5	-14.88715

Reference	State	Description of Method	Basis Set	Р	E(R)	R 33	E
		Be ₂					
Fraga and Ransil (1962b)	$x^{1}\Sigma^{+}$	SOC-MO	Min. STF			3.78	-29.10537
LMSS (1967)		SCF Hartree-Fock	Extend, STF	Repuls	ive	8,50	-29.14667
Bender and Davidson (1967c)	$x^{1}\Sigma_{g}^{+}$	SOC	NO; r_{1j}^{-1} MO	Repuls	ive	4.5	-29,21998
	$x^{1}\Sigma_{g}^{+}$	SOC	Extend. ETF	curve	\checkmark	4.5	-29.14586
	³ Σ ⁺ u				\checkmark	4.0	-29.11909
	3 _{πg}				~	4.0	-29.10969
		B ₂					
Padgett and Griffing (1959)	x ⁵ Σ _u	SCF	Mín. STF	T	\checkmark	3.0769	-49.063
Bender and Davidaon (1967b)	$x^5\Sigma_u^-$	SOC	Extend. ETF	Т	\checkmark	3.00	-49,1453
	$^{3}\Sigma_{\bar{g}}$				\checkmark	3,00	-49.1402
	³ _{IIu}				~	3.00	-49.1144
LMSS (1967)	$^{3}\Sigma_{g}^{-}$	SCF Hartree-Fock	Extend. STF	Q, q		3,005	-49.09087

Reference	State	Desc	ription of Method	Baais S	et	Ρ	E(R)	R	E
			C2						
Fraga and Ranail (1962b)	$<^{1}\Sigma_{\rho}^{+}$	SOC		Min. ST	F			2.3475	-75.3193
Fougere and Neabet (1966)	x ¹ Σ+	SOC		DZ 1 3d		ω, Τ	~		
	x ³ ∏u	SOC					~	Curvea calcula	relative to ted asymptote.
Buenker et al (1967)	$x^{1}\Sigma^{+}$	SCF		Extend.	GTF lobe				- 7 5 ,3500.
Verhøegen et al (1967)	x ¹ Σ ⁺	SCF		Extend.	STF	ω,Τ	\checkmark	2.3716	-75,385
LMSS (1967)	x ¹ ∑ ⁺	SCF	Hartree-Fock	Extend,	STF	Q,q		2.3481	-75,40620
	A ³ Σ=	SCF	Hartree-Fock	Extend,	STF	Q, q		2,5876	-75,51523

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		N ⁺ ₂	2				
Cade et al (19 66)	$x^2 \Sigma^+$	SCF Hartree-Fock	Extend. STF	ω	V	2.0385	-108.4079
	A ² II _u	SCF Hartree-Fock	Extend. STF	ω	\checkmark	2.134	-108.4320
	$B^2\Sigma^+_u$	SCF Hartree-Fock	Extend. STF	ω	~	1.934	-108,2702
Verhaegen et al (1967b)	$x^{2}\Sigma_{g}^{+}$	SCF Nesbet	Extend. STF		\checkmark	2.068	-108.3645
	A ² II _u	SCF Nesbet	Extend. STF		\checkmark	2.068	-108.3877

		N2					
Richardson (1961)	$X^{1}\Sigma_{g}^{+}$	SCF	DZ	т		2.067	-108.7853
	0						
Fraga and Ransil (1962)	$x^{1}\Sigma_{g}^{+}$	SOC	Min. STF			2.086	-108.6605
Nesbet (1964)	$x^{1}\Sigma_{g}^{+}$	SCF	Extend. STF	Q, W	\checkmark	2.068	-108.9714
Cade et al (1966)	$x^{1}\Sigma^{+}$	SCF Hartree-Fock	Extend. STF	ω	\checkmark	2.0132	-108.9956
Buenker et al (1967)	$x^{1}\Sigma_{g}^{+}$	SCF	Extend. GTF lobe				-108.9189
Kapral (1967)	$X^{1}\Sigma^{+}$	SOC-MO-IS	GTF lobe A0	w	\checkmark	2.24	-108.9441

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		0 ⁺ ₂					
LMSS (1967)	x ² ng	SCF \rightarrow Hartree-Fock	Extend. STF			2.122	-149.2257

		2					
Sahni and DeLorenzo(1965)	$x^{3}\Sigma_{\overline{g}}$	SCF	Min. STF			2.28167	-149.0921
LMSS (1967) X ³ 2 a ¹ /	$x^{3}\Sigma_{\overline{g}}$	$SCF \rightarrow Hartree-Fock$	Extend, STF	Q, q	\checkmark	2.282	-149.6659
	$a^1\Delta_g$	$SCF \rightarrow Hartree-Fock$	Extend. STF		\checkmark	2.297	-149.6172
	b ¹ Σ+	$SCF \rightarrow Hartree-Fock$	Extend. STF		\checkmark	2.318	-149.5683

State	Description of Method	Basis Set	P	E(R)	R	E
	0 ⁻ 2					
x ² ng	SCF → Hartree-Fock	Extend. STF		\checkmark	2,40	-149.6427
	F ⁺					
x ² IIg	SCF	Extend. STF			2.525	-198.1782
2 _{П.}	SCF	Extend. STF			2.525	-197.9972
$2\Sigma_{g}^{+}$	S CIF	Extend. STF			2,525	-198.0559
$2\Sigma_{u}^{+}$	SCF	Extend. STF			2,525	-197.3507
	State $x^2 \Pi_g$ $z^2 \Pi_g$ $x^2 \Pi_g$ $z^2 \Pi_u$ $z^2 \Sigma_u^+$ $z^2 \Sigma_u^+$	$\begin{array}{c c} \mbox{State} & \mbox{Description of Method} \\ & & & & & & \\ & & & & & \\ & & & & & $	$\begin{array}{c cccc} & & & & & & \\ & & & & & & \\ & & & & & $	State Description of Method Basis Set P 0^{-}_{2} $x^{2}\Pi_{g}$ SCF \rightarrow Hartree-Fock Extend. STF g^{2} $x^{2}\Pi_{g}$ SCF Extend. STF $2^{2}\Pi_{u}$ SCF Extend. STF $2^{2}\Sigma_{g}^{+}$ SCF Extend. STF $2^{2}\Sigma_{u}^{+}$ SCF Extend. STF	State Description of Method Basis Set P E(R) 0^{-}_{2} $x^{2}\Pi_{g}$ SCF \rightarrow Hartree-Fock Extend. STF \checkmark $x^{2}\Pi_{g}$ SCF Extend. STF $2^{2}\Pi_{u}$ SCF Extend. STF $2^{2}\Pi_{u}$ SCF Extend. STF $2^{2}T_{g}^{+}$ SCF Extend. STF $2^{2}T_{g}^{+}$ SCF Extend. STF $2^{2}T_{u}^{+}$ SCF Extend. STF	StateDescription of MethodBasis SetPE(R)R 0^{-}_{2} $x^{2}\Pi_{g}$ SCF \rightarrow Hartree-FockExtend. STF2.40 $x^{2}\Pi_{g}$ SCFExtend. STF2.525 $^{2}\Pi_{u}$ SCFExtend. STF2.525 $^{2}\Pi_{u}$ SCFExtend. STF2.525 $^{2}\Pi_{g}$ SCFExtend. STF2.525 $^{2}\Pi_{u}$ SCFExtend. STF2.525 $^{2}\Sigma_{u}^{+}$ SCFExtend. STF2.525 $^{2}\Sigma_{u}^{+}$ SCFExtend. STF2.525

Reference	State	Description of Method	Basis Set	Р	E (R)	R	E
		F 2					
Hijikata (1961)	$x^{1}\Sigma_{g}^{+}$	VB	Min.STF	Т	\checkmark	2.664	-197.9437
Fraga and Ransil (1962b)	x ¹ Σ+	SOC	Min. STF			2.680	-197.9558
Wahl (1964)	$x^{1}\Sigma_{g}^{+}$	SCF Hartree-Fock	Extend. STF	ω,Q,q T		2.680	-198.7683
Das and Wahl (1966)	$\mathbf{x}^{1}\Sigma_{\mathbf{g}}^{+}$	Extend. H.F. Valence	Extend. STF		\checkmark	3.0	-198.8378
Buenker et al (1967)	$x^{1\Sigma^{+}}$ g	SCF	Extend. GTF lobe				-198.6929
LMSS (1967)	$x^{1}\Sigma_{g}^{+}$	SCF Hartree-Fock	Extend. STF	Q,q		2.525	-198.7761
Kapral (1967)	$x^{1}\Sigma_{g}^{+}$	SOC-MO-IS	GTF lobe A0	ω	\checkmark	3.25	-198.7754
Das and Wahl (1967)	$x^{1\Sigma^{+}}_{g}$	Extend. H.FValence	Extend. STF		\checkmark	2.68	-198.8546
Horsley and Richards (1967)	x ¹ ₂ + g	SCF	Extend.STF	w,T	\checkmark	2.68	-198.7814
	3 _П	SCF-Nesbet	Extend. STF	ω	V	2.98	-198.6792
	${}^{3}\Sigma_{u}^{+}$				\checkmark	Repulsive	curve
	³ п _g				~	Repulsive	curve
Harris and Michels (1967)	$x^{1}\Sigma_{g}^{+}$	VB	DZ STF		V	3.1	-198.8179
		F _2					
Gilbert and Wahl (1967a)	$x^{2}\Sigma^{+}_{u}$	SCF Hartree-Fock	Extend. STF	ω, τ	~	Curve rel	ative to

Reference	State	Description of Method	Basis Set	P	E(R)	R	E
		Ne ⁺ 2	-				
Gilbert and Wahl (1967a)	$x^2 \Sigma_u^+$	SCF Hartree Fock	Extend. STF		~	Curve r calcula	elative to ted asymptote
		Ne 2					
Gilbert and Wahl (1967b)	$x^{1}\Sigma_{g}^{+}$	SCF Hartree Fock	Extend. STF		~	Repulsiv	e curve

Reference	State	Description of Method	Basis Set	Р	E(R)	R	Е
		. ^{Na} 2					
Ransil (1964)	$x^{1}\Sigma_{g}^{+}$	SCF	Min. STF	ω	\checkmark	5.8178	-322.3775
LMSS (1967)	$x^{1}\Sigma_{g}^{+}$	SCF	Extend. STF	Q,q		5.8178	-323.7116
Bertoncini and Wahl (1967)	$x^{1}\Sigma_{g}^{+}$	SCF	Extend. STF	Q	~	5.8	-323.7096
		Mg2					
Ransil (1964)	$^{1}\Sigma_{g}^{+}$	SCF	Min. STF			6.1	-397.8652
	0						
		Al ₂					
Ransil (1964)	$^{3}\Sigma_{g}^{-}$	SCF	Min. STF			4.838	-482.3287
	1 _A g					4.833	-482.3237
	$1\Sigma_{g}^{+}$					4.838	-482.3003
		Si ₂					
Ransil (1964)	$3\Sigma_{g}^{-}$	SCF	Min. STF	ω	\checkmark	4.5	-576.2190
	1 _{Ag}				~	4.653	-576.1893
	$\frac{1}{\Sigma_{\alpha}^{+}}$				V	4.653	-576.1645
Reference	State	Description of Method	Basis Set	Р	E (R)	R	Е
--------------------------	-----------------------	-----------------------	-------------	---	--------------	--------	-------------------
		P ₂					
Ransil (1964)	1 <u>5</u> +	SCF	Min. STF	ω	v	3.5798	-679.8020
Boyd and Lipscomb (1967)	0	SCF	Min. STF+3d			3.850	-679.166 4
		^s 2					
Ransil (1964)	$3\Sigma_{g}$	SCF	Min. STF	w	V	3.93	-793.2791
	1 _{Åg}				V	3.57	-793.2393
	$^{1}\Sigma_{g}^{+}$				V	3.57	-793.2055
		c1 ⁺ 2					
LMSS (1967	x ² Пg	SCF	Extend. STF			3.5748	~918.5171
	2 _{П.}	SCF	Extend. STF			4.25	-918.4230
	$^{2}\Sigma_{g}$	SCF	Extend. STF			3.7564	-918.3938
		Cl ₂					
Ransil (1964)	x 12+	SCF	Min. STF	ω	\checkmark	4.1	-917.0723
Gilbert and Wahl(1967c)	$x^{1}\Sigma_{g}^{+}$	SCF	Extend. STF	w	~	3.8	-918.9871

Reference	State	Descriptio	on of Method	Basis S	et	Ρ	E(R)	R	Е
	"2_+		C1 ₂		057		~	Currie rol	ativo to
Gilbert and Wani (1967a)	x <u>y</u> u	SCF		Extend.	514	ω,Τ		computed	asymptote
Gilbert and Wsh1 (1967a)	$x^2 \Sigma_{\mu}^+$	SCF	Ar ⁺ ₂	Extend.	STF	w,T	~	Curve rel	ative to
	us.							computed	asymptote
Gilbert and Hable (10(7))	v le+	C (77)	Ar ₂	Futor 1	CTTE			Repulsiv	e cu rv e

Reference	State	Description of Method	Bssis Set	Р	E(R)	R	E
Schneiderman and Michels (1965)	x ¹ 5 ⁺	+ HeLi SOC-DODS	ETF	ω	~	4.0	-10,1272
		HeLi					
Scheel snd Griffing (1962)	x²₅+	SCF	Min. STF	т	~	Repulsive	curve
Schneiderman snd Michels (1965)	$x^2\Sigma^+$	SOC-DODS	ETF	T	~	Repulsive	curve
	A ² ∐			ω	~	3.5	-10.2550
	a ⁴ ∏			w	V	6.0	- 9.617
	² Σ ⁺ *			ω	V	6.0	- 9.6322
	2 ₂ +**			ພ	V	5.0	- 9.5992
	$B^2\Sigma^+$	² ∑*** , ² ∑****			V	Repulsive	curves
	14 st	45+					

			HeO				
Allen et sl (1966)	$^{1}\Sigma^{+}$	VB		Extend.	GTF lobe	V	Repulsive curve

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
94		HeF					
Allen et al (1966)	$^{1}\Sigma^{+}$	VB	Extend. GTF lobe		~	Repulsive	curve
Michels (1967)	$2\Sigma^{+2}\Pi$	Hene.	Min. STF		~	Repulsive	curves
11200C2D (1997)	²∑ ⁺ *				\checkmark	4.0	-129.81825
		HeNe					
Matcha and Nesbet (1967)	$x^{1}\Sigma^{+}$	SCF Hartree-Fock	BA+P STF	μ	\checkmark	Repulsive	curve

			HeAr				
Matchs and Nesbet (1967)	$x^{1}\Sigma^{+}$	SCF	Hartree-Fock	BA+P STF	μ	~	Repulsive curve

Reference	State	Description of Method	Basis Set	P E(R)	R	E
		LiB				
LMSS (1967)	1 ₂ +	$SCF \rightarrow Hartree-Fock$	Extend. STF	μ, Q, q 🗸	4.60	-31,95508
		LiC				
LMSS (1967)	.2 _{II} r	SCF \rightarrow Hartree-Fock	Extend, STF	μ, Q, q 🗸	3.80	-45.11185
		LiN				
LMSS (1967)	3Σ-	$SCF \rightarrow Hartree-Fock$	Extend. STF	μ, Q, q 🗸	3.40	-61.82640
Reference	State	Description of Method	Basis Set	P E(R)	R	E
	-1 +	Li0 ⁺				
LMSS (1967)	XīΣt	SCF	GTF lobe AO		3.184	-81.88621
	0	LiO				
LMSS (1967)	2 ₁₁	$SCF \rightarrow Hartree-Fock$	Extend. STF	μ, Q, q 🗸 🗸	3.184	-82,31113
	Σ^+	SCF → Hørtree-Fock	Extend. STF		3.184	-82,29619
		LiF				
Fraga snd Ransil (1962b)	x ¹ _Σ +	SCF-SOC	Min. STF		2,85	-106.41211
McLean (1963b)		SCF	BA+P STF	µ, Q 🗸	2.8877	-106,98850

		0.01	Dirit Dir	Pr) 4	v	2,0077	100, 9005
1 cLean (1964)		SCF-Scale optimization	Extend. STF	μ, ω	\checkmark	2.89	-106.9769
AcLean and Yoshimine(1967)		SCF→ Hørtree-Fock	BA+P STF	μ,Q,q,P	\checkmark	2.8877	-106,9916
.MSS (1967)	$x^{1}\Sigma^{+}$	$SCF \rightarrow Hartree-Fock$	Extend. STF	μ, Q, q		2,955	-106.9904
Pfeiffer (1967)	$x^1\Sigma^+$	VB	GTF lobe AO	μ, q		3.000	-106.9534
Jahl et al (1967)	¹ Σ ^{#*} x ¹ 2 [*]	SCF	BI STF.	μ		3,000 2.955	-106.7177 -106.9788

t

Reference	State	Description of Method	Baaia Set	Р	E(R)	R	E
		LiF [†]	=				
LMSS (1967)	2 _{II}	SCF	GTF lobe A0			2.955	-106,6364
LMSS (1967)	² Σ+	SCF	GTF lobe AO			2.955	-106.6175

		LiNa					
LMSS (1967)	$x^{1}\Sigma^{+}$	SCF	Extend, STF	μ , Q, q		5.30	-169.2880
Bertoncini and Wahl	$x^{1}\Sigma^{+}$	Extend. H.FValence	Extend. STF	ω	\checkmark	5.50	-169.31422
(1967)		SCF Hartree-Fock	Extend. STF	ω	\checkmark	5.50	-169.2919
		LiCl					
Matcha (1967)	1_{Σ} +	SCF Hartree-Fock	BA I STF	ω,μ,q,	\checkmark	3.825	-467.05466
LMSS (1967)	$X^{1}\Sigma^{+}$	SCF	Extend, STF	Q μ, Q, q		3.81855	-467.0499
Wahl et al (1967)	$x^{1}\Sigma^{+}$	SCF	BI STF	ц		4.71	-467.0116

Reference	State	Description of Method	Baais Set	Р	E(R)	R	Е
		LiBr					
	1_+						
Matcha (1967)	-Σ.	SCF	Extend, STF	μ, q	\checkmark	4.0655	-2579.8901
		+					
		BeQ					
LMSS (1967)	2 _{II} i	SCF	Extend, STF			2.5149	-89.15694
	2 ₂ +	SCF				2.5149	-89,11320

Reference	State	Description of Method	Basis Set	P	E(R)	R	E
		BeQ					
Yoshimine (1964)	$x^1 E^+$	SCF Hartree-Fock	Extend. STF	μ, ω, Q	\checkmark	2.4377	-89,44787
Verhaegan and Richards (1966)	$x^{1}\Sigma^{+}$	SCF MO-SOC	Extend. STF	Т	~	2.676	-89.4282
McLean and Yoshimine (1967)	$x^{1}\Sigma^{+}$	SCF Hartree-Fock	BA + ₽	μ,Q,q	\checkmark	2.4377	-89,4541
Huo et al (1967)	$x^{1}\Sigma^{+}$	SCF Hartree-Fock	Extend. STF	μ, ω	\checkmark	2.5149	-89.4499
	а ³ ∏	SCF Hartree-Fock	Extend, STF	μ,ω	\checkmark	2.7647	-89.4877
	Α ¹ Π	SCF Hartree-Fock	Extend, STF	μ,ω	\checkmark	2.7647	-89.4835
		Bert					
LMSS (1967)	1_{Σ} +	SCF	Extend. STF			2.572	-113,8388
		BeF					
LMSS (1967)	$x^{2}\Sigma^{+}$	SCF	Extend, STF	μ,Q,q		2.572	-114.1688
	2 _{П1}	SCF				2.634	-113.8904
	2 _П	SCF				2.634	-113,9982
Walker and Richards (1967)	$x^2 \Sigma^+$	SCF Nesbet Hartree-Fock	Extend, STF	Т		2.572	-114.1859
	2 _{П1}	SCF Nesbet				2.572	-113.9164
	² IIr	SCF Nesbet				2.572	-114.0163
		BeNe					
Bender and Davidson (1967a)	$x^{1}\Sigma^{+}$	SCF	DZ-STF			3.0	-143.038

Reference	State	Descript	ion of Method	Basis S	et	Р	E(R)	R	Е
			BeS						
Verhaegan and Richards	(1967) Χ ¹ Σ ⁺	SCF		Extend.	STF	Т	\checkmark	3.3	-412.0971
	з _П							3.3	-412.0835
	A ¹ II							3.3	-412.0729
	3_+ Σ ⁺							3.3	-412.0287
			BN+						
LMSS (1967)	2 _П	SCF		Extend.	STF			2.421	-78.54305
LMSS (1967)	2 ₂ -+-	SCF		Extend.	STF			2.421	-78.49302

			BN			
Verhaegen et al (1967)	1_{Σ} +	SCF Nesbe	t Extend. STF	ω, т 🗸	2.30	-78.9004
LMSS (1967)	3 _Σ -	SCF	Extend. STF	μ,Q	2.421	~78.96701

Reference	State	Descri	ption of Method	Basis Set	£	P	E(R)	R	E
	1 +		во+		2				
LMSS (1967)	Σ,	SCF		Extend. S	STF			2.275	-99.06898
	3 ∑ -	SCF						2.275	-98.97693
	2=+		во						
LMSS (1967)	X- 2 . (SCF		Extend. S	STF	μ,Q q		2.275	-99.55550
	² _∏ i	SCF		Extend. S	STF	μ,Q, q		2.555	-99.47757
	2 _П r	SCF		Extend. S	STF	μ,Q, q		2.275	-99.24030
			во-						
LMSS (1967)	1_{Σ} +	SCF		Extend. S	STF			2.275	-99.59493

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		BF ⁺					
LMSS (1967)	$x^2\Sigma^+$	SCF	Extend. STF			2.391	-123.7952
	2 _{П1}	SCF	Extend. STF			2.64	-123.5769
	2 _{II} r	SCF	Extend. STF			2.391	-123.5499

		BF				
Fraga and Ransil (1962)	$\mathrm{X}^{1}\!\Sigma^{+}$	SOC	Min. STF	μ	2.385	-123.6756
Nesbet (1964)	$\mathbb{X}^{1\Sigma}+$	SCF	Extend. STF	μ,Q,ω	2.385	-124.14038
Huo (1965)	$x^{1}\Sigma^{+}$	SCF Hartree-Fock	Extend. STF	μ,ϱ,ω 🗸	2.354	-124.1664
Lefebvre-Brion and Moser (1965)	Excited	МО	Extend. STF	T 🗸		
McLean and Yoshimine(1967)	$x^{1}\Sigma^{+}$	SCF Hartree-Fock	BA +₽	µ,Q,q,P ✓	2.391	-124.1671
Kapral (1967)	$x^{1}\Sigma^{+}$	SOC-MO-IS	GTF lobe AO	ω 🖌	2.5775	-124.0962

Reference	State	Descrip	ption of Method	Basis Set	Р	E(R)	R	Е
			CN ⁺					
LMSS (1967)	$a^{l}\Sigma^{+}$	SCF		Extend. STF			2.217	-91.6410
	3 _Σ -	SCF					2.576	-91.75452
			CN					
IMSS (1967)	2 ₁₁	SCF	041	Fytend STF			2.214	-91 85104
LIBB (1907)	r	DOI		BACCING, DIT				51105104
			co+					
LMSS (1967)	$X^{2}\Sigma^{+}$	SCF		Extend. STF			2.107	-112.2915
	2 _{П.}	SCF					2.350	-112.2304
	2 _П r	SCF					2.107	-111.9131

Reference	State Description of Method		Basis Set	Р	E(R)	R	E
		CO					
Lefebvre-Brion et al (1960)	Excited	МО	Min, STF	Т	\checkmark		
Merryman et al (1960)	Excited	CM	Min. STF	Т	\checkmark		
Lefebvre-Brion et al (1961)	Excited	МЭ	Min. STF	Т	\checkmark	2.1319	-112.5752
Frage and Ranail (1962b)	$x^{1}\Sigma^{+}$	SOC	Min, STF			2.132	-112.3960
Lefebvre-Brion et al (1964)	Excited	МЭ	Extend. STF	Т	\checkmark		
Nesbet (1964)	x^{1}_{Σ} +	SCF	Extend. STF	μ, Q,	\checkmark		
				w		2.132	-112.7588
Nesbet (1965)	Excited	MO	Extend. STF	Т	\checkmark		
Huo (1965)	$x^{1}\Sigma^{+}$	SCF Hartree-Fock	Extend. STF	μ,Q, q,ω	\checkmark	2.081	-112.7879
McLean and Yoahimine (1967)	$x^{1}\Sigma^{+}$	SCF Hartree-Fock	Extend. STF	μ, Q,	q, P 🗸	2.132	-112.7891
Нио (1966)	a ³ ∏	SCF Hartree-Fock	Extend. STF	μ,Q,	q 🖌	2,2853	-112.5742
		CF +					
LMSS (1967)	$x^{1}\Sigma^{+}$	SCF	Extend. STF			2.322	-136.8862

Reference	State	Description of Method	Basis Set	Р	E(R)	R	Е
		CF	-				
LMSS(1967)	x ² II r	SCF	Extend. STF	μ,Q,		2 40 2	-137 2160
				71		2,402	-137.2103
		CS					
Richards (1967)	x ¹ Σ ⁺	SCF	Extend. STF	μ		2.89964	-435.3297
		NO [†]					
Lefebvre-Brion and Moser(19	66) Excited	SCF-MO	Extend. STF	т	Excitat	ion energi	les only
LMSS (1967)	$x^{1}\Sigma^{+}$	SCF	Extend. STF			2.007	-128.9560
Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		NO					
Lefebvre-Brion and Moser (1965)	Excited	SCF-MO	Extend. STF	т		Excitat	ion energies

Lefebvre-Brion and Moser (1966)	Excited, NO +	SCF-MO	Extend.	STF	Т	Excitation	energies
LMSS (1967)	x ² _π	SCF	Extend.	STF	μ, Q, q	only 2.1747 -	-129,2837

Reference	State	Description of Method	Basis Set	Р	E(R)	R E
Allen et al (1966)	1 ₂ +	NeO VB	Extend. GTF lobe		~	Repulsive curve
Allen et al (1966)	$^{1}\Sigma^{+}$	NeF VB	Extend. GTF lobe		~	Repulsive curve
Matcha and Nesbet (1967)	$x^{1}\Sigma^{+}$	Ne Ar SCF	BA+P STF	μ	~	Repulsive curve

Reference	State	Description of Method	Basis Set	P	E(R)	R	Е
		NaF					
Matcha (1967)	Σ^+	SCF Hartree-Fock	BA+P STF	w,µ,q,	\checkmark	3.628	-261.37849
Wahl et al (1967)		SCF Hartree-Fock	BI+P STF	ω,μ	\checkmark	3., 5	-261.3773
Das and Wahl (1967)		Extend. Hartree-Fock		NO,W	\checkmark	3.65	-261.4002
		NaCl					
Matcha (1967)	$_{1}\Sigma^{+}$	SCF Hartree-Fock	BA+P STF	w,µ,q,	\checkmark	4.485	-621.4574
Wahl and Gilbert (1967)		SCF Hartree-Fock	BI+P STF	ω,μ,	~	4.461	-621.4398
				Born pa	aramet	ers	
		NaBr					
Matcha (1967)	1_{Σ} +	SCF	Extend. STF	µ,q		4.729	-2734.2876

.

Reference	State	Descr	iption of Method	Basis Set	t	Р	E (R)	R	E
			MgO						
Richards et al (1966)	$1\Sigma^+$	SCF		Extend. S	STF	Τ,ω	\checkmark	3.4	-274.2784
	а ³ П	SCF	Nesbet	Extend. S	STF	ω	\checkmark	3.4	-274.3331
	³ Σ+					w	~	3.3	-274.4757
McLean and Yoshimine (1967)	1_{Σ} +	SCF	Hartree-Fock	Extend. S	STF	µ,Q,q	~	3.3052	-274.3751
			MgF						
Walker and Richards (1967)	² Σ ⁺	SCF	Nesbet	Extend. S	STF	Т	\checkmark	3.25	-299.0790
	2 ₁₁						~	3.25	-298.9493
			Alf						
McLean and Yoshimine (1967)	$1\Sigma^+$	SCF	Hartree-Fock	Extend. S	STF	µ,Q,q,P	\checkmark	3.126	-341.4832

Reference	State	Description of Method	Basís Set	Р	E(R)	R	E
McLean and Yoshimine(1967)	1 ₂ +	SiO SCF Hartree-Fock	Extend. STF	μ,Q,q,P	~	2.75	-363.8523
McLean and Yoshimíne(1967)	1_{Σ}^{+}	PN SCF Hartree-Fock	Extend. STF	μ,Q,q,Ρ ε	~	2.67	-395.1857
Boyd and Lipscomb(1967)	2 ₁₁	P0 SCF	Min. STF+P3d	μ		2.738	-414.1371

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		PO-					
Boyd and Lipscomb(1967)	3 ₂ -	SCF	Min. STF+P3d			2.859	-414.1168
		ClF					
Stevens (1967a)	$^{1}\Sigma^{+}$	SCF Hartree-Fock	Extend. STF	μ		3.0768	-558.8955

			KF				
Matcha (1967)	$1_{\!\boldsymbol{\Sigma}}\mathbf{+}$	SCF	Hartree-Fock	µ,q	~	4.1035	-698.68501
Wahl et al (1967)		SCF		μ		4.9720	-698.6645

			KC1					
Matcha (19 6 7)	$^{1}\Sigma^{+}$	SCF		Extend. STF	μ,q	~	5.039	-1058.7583

Reference	State	Jescription of Method	Basis Set	Р	E(R)	R	Е
McLean and Yoshimine(1967)	1 _Σ +	CaO SCF Hartree-Fock	Extend. STF	μ,Q,q	~	3.4412	-751.5591
Carlson et al (1965)	x ² ₂ +	ScO SCF	Extend. STF	Τ , ω,μ	, ,	3.05	-888.178
Carlson and Moser(1967) Cheetham and Richards(1967)	х ¹ Σ+ ³ П	ScF SCF SCF Nesbet	Extend. STF Extend. STF	Τ,ω,μ Τ	y y	3.31 3.51	-858,5453 -858,5107
	3 _Σ + 3 _Σ - 3 _φ			T T T	< < <	3.61 3.71 3.51	-858.4564 -853.4230 -858.4166
Reference	State	Description of Method	Basis Set	P	E(R)	R	E

			TiO					
Carlson and Moser (1963)		SCF		Min. STF+P	Τ			
Carlson and Nesbet (1964)	$1_{\Sigma}+$	SCF		Extend. STF	Τ,μ,ω	\checkmark	3.0618	-921.4959
	x ³ ^Δ r	MO		Extend. STF	μ,w	\checkmark	3.0618	-921.5418
Carlson and Moser (1967)	x ³ ∆ _r	SCF		Extend. STF	Τ,μ,ω	\checkmark	2.91	-922.4976

			VO				
Carlson and Moser (1966)	2	SCF		Extend. STF	Т	2.91	-1015.7627
	4 <u>-</u> -	MO		Extend. STF		2.91	-1015.8917

Reference	State	Descript	ion of Method	Basis Set	Ρ	E(R)	R	E
Matcha (1967)	$^{1}\Sigma^{+}$	SCF	RbF	Extend. STF	µ,q		4.3653	-3037.7727
			Sr0					
McLean and Yoshimine(1967)	1_{Σ} +	SCF		DZ+P	μ,Q,	q, P 🗸	3,6283	-3206.2311

Reference	State	Description of Method	Basis Set	Р	E(R)	R	Е
		н ⁺ 3					
						Equilater	al
Christoffersen et al (1964)	1 _A 1	SOC-VB			~	1.625	-1.3002
Conroy (1964a)	1 _A 1	Minimize energy variance	e		~	Energy su	urface
Conroy (1964b)	1 _A	Minímize energy variance	e		~	1.68	-1.357
Christoffersen (1964)		SOC-MO	Extend. STF	ω	~	1.6575	-1.3326
Hoyland (1964)	1 _A	VB	Generalized ETF			1.68	-1.2726
Lester and Krauss (1966)	1 _A	Correlated Closed-Shell	Extend. GTF			1.68	-1.2984
Pearson et al (1966)	1 _A	VB	Generalized GTF	ω	~	1.66	-1.3185
Joshi (1966)	1 _A	OC-SCF	Extend. STF		~	1.6229	-1.2863
Conroy and Bruner (1966)	1 _E	Minimize energy variance	2		~	3.0	-0.6721
Considine and Hayes (1967)	1 _A 1	OC-SOC	Extend. STF			Linear 1.8	-1.246 6
Schwartz (1967)	1 _A	$SCF \rightarrow Hartree-Fock$	Floating S GTF			1.6405	-1.2999
Schwartz (1967)	¹ A ₁	SOC-MO-"Out of-plane"	Floating S GTF			1.6504	-1.3376
		Correlation included.					

Reference	State	Description of Method	Basis Set	Ρ	E(R)	R	E
		н _з					
Boys and Shavitt (1959)	$2_{\Sigma^{+}}$	SOC-VB	Extend. STF	w	\checkmark	1.778	-1.6274
Hoyland (1964)	a	SOC-VB	Generalized ETF			1.78	-1.5889
Krauss (1964)		$SCF \rightarrow Hartree-Fock$	Extend. GTF		\checkmark	1.73	-1.5930
Edmiston and Krauss (1965)		SOC-PNO	Extend. GTF			1.8	-1.6493
Conroy and Bruner (1965)		Minimize energy variance			~	Energy sur	face
Conroy and Bruner (1966)		Minimize energy variance			-	1.75	-1.6551
Considine and Hayes (1967)		OC-SOC	Extend. STF			1.8	-1.6121
Shavitt et al (1967)		SOC	Extend. STF	Surfac	e 🗸	1.8	-1.65 <u>21</u>
Schwartz (1967)		$SCF \rightarrow$ Hartree-Fock	Floating s GTF			1.7	-1.5940
Edmiston and Krauss (1967)		SOC~PNO	Extend. GTF	Surfac	e 🗸	1.8	-1.6493

		HeH ₂				
Roberts (1963)	1 _A	VB	Min. STF	E at large R	~	
Krauss and Mies(1965)	1 _A 1	$SCF \rightarrow Hartree-Fock$	Extend. GTF	\checkmark	Analyti potenti	c interaction al
		LiH ₂				
Preuss and Diercksen(1967)	$x^{1}\Sigma^{+}_{g}$	SCF	Extend.GTF	V	3.5	-8.5313

Reference	State	Description of Method	Basis Set	P	E(R)	R	E
		BeH 2					
Peyerimhoff et al (1966)	$^{1}\Sigma_{g}^{+}$	SCF	Extend. GTF lobe		~	2.54	-15.712 3
Harris and Michels (1967)	0	VB	Min. STF		\checkmark	2.54	-15.7202
Peyerimhoff et al (1966)	1_+ g	BH ⁺ 2 SCF	Extend. GTF lobe		\checkmark	2.45	-25. 4363
Peyerimhoff et al (1966) Geller et al (1967)	1 _A 1 1 _A 1	BH ⁻ 2 SCF SCF →Hartree-Fock	Extend. GTF lobe Extend. GTF		V	2.35, 104 2.222,	25,6823

Reference	State	Description of Method	Basis Set	Р	E(R)	R	Е
		CH	with				
Krauss (1964)	1 _A 1	SCF	Extend. GTF		\checkmark	2.1,105°	~38.8026
	${}^{3}\Sigma_{g}^{-}$	SCF	Extend. GTF		V	1.95	-38.8936
Foster and Boys (1960)	³ B ₁	SOC	Min. STF+DZK	w	\checkmark	2.11,129°	-38.904
	1 _A 1	SOC	Min. STF+DZK	w	V	2.21,90°	-38.865
	¹ ^B 1	SOC	Min. STF+DZK	ω	\checkmark	2.11,132°	-38.808
Harrison (1967)	³ B ₁	VB	Extend. GTF lobe		\checkmark	2.0,138°	-38.893
	1 _A 1				~	2.0,108°	-38.843
	1 ₈₁				~	2.0,148°	-38.822
		NH ⁺ 2					

Peyerimhoff et al (1966)	1 _A	SCF	Extend. GTF lobe	~	2.05,130°	-55.0932
--------------------------	----------------	-----	------------------	---	-----------	----------

Reference	State	Description of Method	Basis Set	Ρ	E(R)	R	E
Krauss (1964)	2 ₈₁	NH ₂ SCF	Extend. GTF		r	1.95,105°	- 55. 4537
Fink et al (1967) Ritchie and King(1967b)	1 _A 1	NH <mark>-</mark> SCF SCF Hartree-Fock	GTF lobe AO		-	2.05,100°	-55.3795
					•	105	-10.0077
		H ₂ 0 ⁺					
Krauss (1964)	² B ₁	SCF	Extend. GTF		~	1.9,115°	-75.4465
Miller et al (1967)	² _B 1	SCF	Extend. GTF			1.81,105°	- 75.6025

Reference	State	Description of Method	Basis Set	P	E(R)	R	E
		н ₂ о					
McWeeny and Ohno (1960)	1 _A 1	Group Orbital	Min. STF				
Krauss (1964)	1 _{A1}	SCF	Extend. GTF		\checkmark	1.8,105°	-75.8453
Moccia (1964c)	1 _{A1}	OC-SCF	Extend. STF	μ		1.814,106	°-75.9224
Moskowitz and Harrison (1965)	1 1	SCF	Extend. GTF	μ		1,8,105°	-76.0421
Fink et al (1967)	1 _{A1}	SCF	Extend. GTF lobe AO	μ	\checkmark	1.83,110°	-76.0031
Ritchie and King(1967a)		SCF	Extend. GTF			1.8,105°	-76.0343
Snyder (1967)		SCF	Extend. GTF			1.81098 104°26′	-76.020
Miller et al (1967)	x ¹ A1	SCF	Extend, GTF	µ,f		1,81,105°	-76.0161
	³ B ₁	SCF	Extend, GTF		\checkmark	1.81,105°	-75.7788
	1 _{B1}	SCF	Extend. GTF		\checkmark	1.81,105°	-75.7642
		H2F ⁺					
Fink et al (1967)	1 _{A1}	SCF	GTF lobe AO			1.9,130°	-100,1773

Reference	State	Descript	ion of Method	Basis Set	Р	E(R)	R	Е
Ritchie and King (1966)	$^{1}\Sigma^{+}$	SCF	(H ₂ F)	Extend. GTF		~	1.9,2.2	-100.575
Kapral (1967)	l <u>r</u> + g	VB	NeH ₂	GTF lobe AO		~	Repulsiv	re curve
Moccia (1964c)	1 _A 1	OC-SCF	H ₂ S	Extend. STF	μ		2.509,89) [°] -397.5891

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
Preuss and Diercksen (1967)	$^{1}\Sigma_{g}^{+}$	(Li ₂ H) SCF	Extend.GTF	ω	~	3.2	-15.2887
Preuss and Diercksen (1967)	l ₂ + g	(Li ₂ H) SCF	Extend.GTF	ω	~	3.41	-15.3874

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		LiOH					
Buenker and Peyerimhoff (1966)	1_+ ∑	SCF	Extend, GTF lobe		~	3.0236, 1.833	-82.9092
Ritchie and King (1967b)		SCF Hartree-Fock	Extend, GTF			3.00, 1.79	-82.9285
		HCN					
McLean (1962)	1_{Σ}^{+}	SCF	Min. STF			2.0,2.18	
McLean and Yoshimine(1967)	$^{1}\Sigma^{+}$	SCF Hartree-Fock	BA+P	μ, Q, α	q, P	2.014, 2.179	-92.9147
Pan and Allen (1967)	1 ₂ +	SCF	Extend, GTF lobe AO	μ, Q		2.00,	-02 8287
		FOH				2.1/13	- 52,0207
Buenker and Peyerimhoff (1966)	$1_{\mathbb{A}}$	SCF	Extend, GTF lobe		~	2.65, 1.833, 100°	-174.7196

Reference	State	Descri	ption of Method	Basis Set	Р	E(R)	R	E
			(
Clementi (1961)	1_{Σ^+}	SCF	(FHF)	Min. STF			2.135	-198.2826
Clementi and McLean (1962b)	$1_{\Sigma_{\tau}^{+}}$	SCF		Extend. STF			2.126	-199.3791
Erdahl (1967)	1 _Σ +	VB-Val	ence	Extend. GTF lobe	w	~	2.2	-199.4924
McLean and Yoshimine				AU				
(1967)	1_{Σ}^{+}	SCF	BeF	DZ +P STF	Q,q,P	~	2.1	-199.5 73 0
Peyerimhoff et al (1967)	$^{1}\Sigma_{g}^{+}$	SCF	2	Extend. GTF lobe			2.072	-213.6527
			Li20					
Buenker and Peyerimhoff(1966)) ¹ Σ+ g	SCF		Extend. GTF lobe		\checkmark	3.313	- 89.7743
			HeF 2					
Allen et al (1965)	1 _A 1	VB		Extend. GTF lobe		V		
	1=+		С3				0 510	110 0075
Clementi (1961)	β	SCF		Min. STF			2.519	-113.08/5
(1962a)	$1_{\Sigma_{g}^{+}}$	SCF		Extend. STF			2.519	-113.1652
Reference	State	Descri	ption of Method	Basis Set	P	E(R)	R	E
			NeC ₂					
Ha and Allen (1967)	1 _{A1}	SCF		GTF lobe AO		\checkmark	Repulsiv	/e curve
			(OCN)					
(1967)	$1\Sigma^+$	SCF H	artree-Fock	BA+P STF	μ,Q,q	, P	2.213,	-167.2698
							1.14-	
			FCN					
McLean and Yoshimine (1967)	1_{Σ^+}	SCF H	artree-Fock	BA+P STF	μ, φ,	q,P	2.38109	>
			(SCN) [~]				2.20156	-191.7798
McLean and Yoshimine (1967)	$\frac{1}{\Sigma}$ +	SCF	. ,	DZ+P STF	μ,Q,q,	Р	2.95,	-489.9107
			CICN				2.30	
McLean and Yoshimine(1967)	L_{Σ}^{+} +	SCF		DZ+P STF	μ,Q,q,	Р	3.0784,	-551.8247
							2.1978	

Reference	State	Description of Method	Basis Set	P E(R)	R	E
		00	2			
		2				
McLean (1960)	$x^{1}\Sigma_{g}^{+}$	SCF	Min. STF		2.1944	-186.8427
McLean (1963)	$x^{1\Sigma^{+}}$ g	SCF	Extend. STF	Q	2.1944	-186.9300
Peyerimhoff et al (1967)	$x^{1}\Sigma_{g}^{+}$	SCF	Extend. GTF lobe A O		2.196	-187.4 9 29
McLean and Yoshimine(1967)	$x^{1}\Sigma_{g}^{+}$	SCF Hartree-Fock	BA+P S TF	0,q 🖌	2.1944	-187.7228
		SCO				
McLean and Yoshimine(1967)	$\mathbf{x}^{1}\Sigma^{+}$	SCF	DZ+P STF	µ,Q,q,P	2.9442, 2.2016	-510.3309
		พื่				
Clementi (1961)	$^{1}\Sigma_{g}^{+}$	SCF	Min. STF		2.217	-162.5422
Clementi and McLean	1.					1/2 20/0
(1963)	Σ	SCF	Extend. STF		2.268	-162.7048
Peyerimhoff and Buenker (196	7) ${}^{1}\Sigma_{g}^{+}$	SCF	Extend. GTF lobe	т	2.20	-163.1123
		N_0				
McLean and Yoshimine(1967)	¹ Σ ⁺	SCF	BA+P STF	μ,Q,q,P	2.1273, 2.2418	-183.7567
		NeN ₂				
Ha and Allen (1967)	¹ A ₁	SCR	GTF lobe AO	V	Repulsi	ive curve

Reference	State	Descrip	tion of Method	Basis Set	Р	E(R)	R	Е
Clementi (1961) Clementi and McLean (1963) Pfeiffer(1967)	${}^{l}\Sigma_{g}^{+}$ ${}^{l}\Sigma_{g}^{+}$ ${}^{l}\Sigma_{g}^{+}$	SCF SCF SCŀ	N0 ⁺ 2	Min. STF Extend. STF Extend. GTF lobe			2.173 2.173 2.1806	-202.9011 -203.1082 -203.4547
Pfeiffer (1967)	1 _A 1	SCF	NO2	DZ GTF lobe AO			2.3356 115.4	-203.9551
Geller et al (1967)	¹ A ₁	SCF	NF ⁺ ₂	GTF		~	2.58, 103 [°]	-250.0189

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
Peyerimhoff and Buenker(1967)) ¹ _A 1	0 ₃ SCF	GTF lobe AO	Т		2.50 116.8	-224.1618
Ha and Allen (1967)	l _A l	NeO ₂ SCF	GTF lobe AO		~	Repulsivo	e curve
Buenker and Peyerimhoff (1966)	1 _A 1	F ₂ 0 SCF	Extend. GTF lobe		~	2.64, 102°	-273.4456
Reference	State	Description of Method NeF	Basis Set	Р	E(R)	R	_Е В72
Allen et al (1966) Ha and Allen(1967)	l _A l _A l _A l	VB SCF	Extend. GTF lobe GTF lo b e AO			Repulsive Repulsive	e curve e curve

Reference	State	Description of Method	Basis Set P	E(R)	R	Ε
		H ₄ +			g g	
Schwartz (1967)	$2\Sigma_{u}^{+}$	SCF	GTF	\checkmark	out in	-1 7// 2
					1.0	-1.7443
		H 4				
Schwartz (1967)	$^{1}\Sigma_{g}^{+}$	SCF	GTF	\checkmark	R _{out} =Rin	
					1.6	-2.1669
Stevena (1967b)	¹ B _{2g}	SOC	DZ (s)	~	2.437	-2.0785
	³ A _{2g}			~	2.34	-2.0683
	0	BeH-3				
Peyerimhoff et al (1966)	¹ A1	SCF	Extend. GTF		2.54	-16.2540
Joshi (1967)	1 _{A1}	OC-SCF	Extend. STF	\checkmark	2.500	-16.1440

Reference	State	Description of Method	Basis Set P	E(R)	R	E
			~			
		BH3				
Kaufmsn and Burnelle(1966)	1 _A '	SCF	Extend. GTF		2.243	-26.3734
Peyerimhoff et al (1966)	1 _{A1}	SCF	Extend. GTF lobe		2.31	-26.3652
Palke and Lipscomb(1966)	1 _A 1	SCF	Min. STF		2.25	-26.3377
Palke and Lipscomb(1966)	1 _{A1}	SCF	Optimized Min. STF		2.25	-26.3517
Joshi (1967)	1 _{A1}	0C-SCF	Extend. STF	~	2.191	-26.2358
		сн+				
Herman et al (1966)	1 _A 1	3 OC-SCF	Extend. STF		2.013	-39.0189
Peyerimhoff et al (1966)	2	SCF	Extend. GTF lobe		2.10	-39.2346
Joshi (1967)		OC-SCF	Extend. STF		2.032	-39.1178
Kari and Csizmadia(1967)		SCF	Extend. GTF		1.95	-39.217 3

2.05

~

-39.1440

Bunau et al (1967)	SCF	Extend. GTF	ω

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		СН3					
Morokuma and Pedersen (1967)	2 _A "	SCF	GTF		~	2.041	-39.1933
Hackmeyer and Whitten (1967)	2 ⁰ A	SCF Hartree-Fock	Extend. GTF lobe			2.00	-39.5394
		CH ⁻ 3					
Rutledge and Saturno (1965)	1 _A 1	OC-SCF	Extend. STF			1.935	-39.2361
Fink et al (1967)	1 _{A1}	SCF	GTF lobe AO			2.0 111°	-39.3801
Ritter (1967)	¹ A ₁	OC-SCF	Extend. STF			2.013	-39.2734
Kari and Csizmadia(1967b)	1 _A 1	SCF Hartree-Fock	Extend. GTF	μ,τ		1.95, 115 [°]	-39. 4799
Ritchie s nd King (1967b)	1 ^A1	SCF	Extend. GTF			212 109 [°] 23 [°]	-39.4633
		CF ₃					
Morokuma and Pedersen (1967)	2 _A "	SCR	GTF			2.513, 15°	-332.5690

Reference	State	Description of Method	Basis Set	Р	E(R)	R	E
		NH ⁺ ₃					
Kaldor and Shavitt (1966)	² A1	SCF	Bond orbitals			120° 1.967	-55.7641
		NH ₃					
Bishop et al (1963)	1 _A 1	OC-SCF	Min. STF	œ		1.9161	-55.6052
Reeves and Harrison (1963)	1 _A 1	SCF	GTF	μ		106°48' 1.9162	- 54 .1144
Moccia (1964b)	1 _A 1	0C_SCF	Extend. STF	μ		108°54' 1.928	- 55.97482
Joshi (1965)	1 _A 1	OC-SCF	Extend. STF	μ		109°34′ 1.867	- 56.08419
Rajagopal (1965)	1 _A 1	SCF \rightarrow Hartree Fock	Extend. STF	µ,Q		109°30' 1.9053	- 56.2268
Bishop (1966)	¹ A ₁	OC-SOC	Extend. STF		\checkmark	104°10' 1.8592	- 55.8698
Kaldor and Shavitt (1966a)	1 _A 1	SCF	DZ STF	μ,Τ	\checkmark	106°48' 1.910	- 56.0992
Rutledge and Saturno(1966)	1 _A 1	OC-SOC	Extend. STF		\checkmark	120° 1.823	- 56.0222
Fink et al (1967)	¹ A ₁	SCF	GTF lobe AO	μ		115° 1.91	- 56.1464
Ritchie and King (1967b)	1 _{A1}	SCF	Extend. GTF			105° 1.903	- 56.2015
Snyder (1967)	¹ A ₁	SCF	Extend. GTF	μ		106°44′ 1.91638	- 56.183

Reference	State	Description of Met	od Basis Set	P	E(R)	ŋ	1 1 1
Grahn (1962)	¹ _{A1}	VB	Min. STF			120 [°] 1.80	-76.174
Bishop (1965)	1 _{A1}	0C-S0C	Extend. STF		\checkmark	115 [°] 5' 1.30	-76.0184
Moskowitz and Harrison(1965)		SCF	Extend. GTF			120 [°] 1.3	-76.3203
Fink et al (1967)		SCF	GTF lobe AO			12J° 1.33	-76.2669
		PH 3					
Moccia (1964b)	1 _A I	OC-SCF	Extend. STF	μ		89°48' 2.672	-341.3960
Boyd and Lipscomb(1967)		SCF	Min. STF+3d	μ		93°221 2.680	-341.3094
		HCCH					
McLean (1960)	$L_{\Sigma_{g}^{+}}$	SCF	Min. STF			2.002, 2.281	-76.5433
Moskowitz (1965)		SCF	Extend. GTF			2.002, 2.281	-76.760

Reference	State	Description of Method	Basis Set	Ρ	E (R)	R	Е
			8				
		HCCH					
Buenker et al (1967a)	${}^{1}\Sigma_{g}^{+}$	SCF	Extend. GTFlobe			2.002, 2.272	-73.7916
McLean and Yoshimine(1967)		SCF Hartree-Fock	B∧ -P	Q ,q		2.002, 2.281	-76.3540
		нсно					
Newton and Palke(1966)	1 _{A1}	SCF	Min. STF	μ			-113.4496
Buenker and Whitten(1967)	1 _{A1}	SCF	Extend. GTF lobe	μ			-113.8004

Reference	State	Descripti	on of Method	Basis Set	Р	E(R)	R	E B79
			^H 2 ⁰ 2					
Kaldor and Shavitt(1966b)	1 ₄₁	SCF		Scaled Min. STF	μ	~	dihedral an 120°	ngle -150.1565
Davidson and Allen (1967)	1 _{A1}	SCF		Extend. GTF lobe		~	180 [°]	-150.7004
Pedersen and Morokuma(1967)	1 A <u>1</u>	SCF	LiCCH	GIF		~	150°	-149.28845
Veillard (1967)	¹ Σ+	SCF		BA + P	μ		3.55, 2.2696, 2.0088	-83.7305
			FCCH					
McLean and Yoshimine(1967)	1_{Σ}^+	SCF		BA IP STF	μ,Q,q		2.417, 2.264, 1.990	-175.7236
			Clcch					

McLean and Yoshimine(1967) ¹ Σ ⁺ SCF DZ+P STF μ,Q,q 3.084, 2.288, -53.	535.7673
---	----------

Reference	State	Descrip	tion of Method	Basis Set	P	E(R)	R	E
Contrandia et al (1966)	1.	SCF	HCOF	Extend. GTF	μ	\checkmark		-212.1139
McLean and Yoshimine (1967)	$^{1}\Sigma_{g}^{+}$	SCF	(CN) 2	BA + P	₽,Q,q		2.186,	-261.4288
			NF3				2.000	
Burnelle and Kaufman(1967)	1 _{A1}	SCF		GTF			2.591, 102°9'	-348.8037

Reference	State	Description of Method	Basis Set P	E(R)	R	E
		BH				
Krauss (1964)	1 _A 1	SCF	Extend. GTF	\checkmark	2.35	-26.946
Hegstrom et al (1967)	1 _A 1	SCF	Optimized Min. STF		2.372	-26.9232
Fink et al (1967)	¹ A ₁	SCF	GTF lobe AO		2.35	-26.9490

CH4

Nesbet (1960)	1 _A 1	SOC-MO	GIF			2.0665	-39.1742
Saturno and Parr(1960)		S0C-0C	STF			2.0	-39,804
Albasiny and Cooper (1961)		SCF-OC	Numerical			2.00	-39.90
Krauss (1963)		SCF	Extend. GTF		~	2.0665	-40.1668
Woznick (1964)		SCF	Extend. STF			2.0665	-40.1810
Sinai (1964)		SCF	Min. STF	I		2.0	-39.863
Rutledge and Saturno(1965)		S0C-0C	Extend. STF	5	~		-39.859
Klessinger and McWeeny (1965)		Group orbital	Min. STF			2.067	-40.092
Fink et al (1967)		SCF	GTF lobe AO			2.04	-40.1711
Ritchie and King(1967a)		SCF Hartree-Fock	Extend. CTF			2.12	-40.1983
Snyder (1967)		SCF	Extend. GTF			2.0665	-40.189

Reference	State	Description of Method	Ba sis Set	Р	E(R)	R	E
		NH ⁺	5				
Grein (1962)		4 OC-SCF	Min. STF	w,P	\checkmark	1.835	-55.684
Krauss (1963)	1	SCF	Extend. GTF			1.94	-56.504
Moccia (1964b)		OC-SCF	Extend. STF			1.990	-56.2177
Raja go pal(1965)		SCF	Extend. STF			1.905	-56.5216
Fink et al (1967)		SCF	GTF lobe AO			1.98	-56.4996
		PH ⁺					
M (10(1-)	1 🛦	4 0C-SCE	Extend. STF			2.750	- 341 - 5493
Moccia (19646)	-1	00 001	Income bit			2.750	541.5475
Moccia (1964 a)	1_	S1H ⁺ 4	Extend. STF			2.787	-290,1024
100010 (19040)	~1	00 501	DALCHU: DIF			2.707	270.1024

- a. R_o is the inverse square root of the expectation value of $1/R^2$. Comparison can be made to the experimental rotational constant B_o for the zeroth vibrational level.
- b. Upper bound result. Extrapolated results are significantly lower. This calculation cannot be summarized simply and reference must be made to the original article for even a minimal description of the method.

(1958) Sutton, L. E. (1958), Tables of Interatomic Distances, London, The Chemical Society (1959) Boys, S. F. and Shavitt, I. (1959), U. of Wisconsin NRL Technical Report WIS-AF-13 Karo, A. M. and Olson, A. R. (1959), J. Chem. Phys. <u>30</u>, 1232 Padgett, A. A. and Griffing, V. (1959), J. Chem. Phys. <u>30</u>, 1286 Platas, O., Hurst, R. P., and Matsen, F. A. (1959), J. Chem. Phys. <u>31</u> 501

(1960)

Foster, J. M. and Boys, S. F. (1960), Revs. Modern Phys. 32, 305

Kolos, W. and Roothaan, C. C. J. (1960), Revs. Modern Phys. 32, 230

Krauss, M. and Ransil, B. J. (1960), J. Chem. Phys. 33, 840

Lefebvre-Brion, H., Moser, C. M., and Nesbet, R. K. (1960), J. Chem. Phys. 33, 931

McLean, A. D., (1960), J. Chem. Phys. 32, 1595

McWeeny, R. and Ohno, K. A. (1960), Proc. Roy. Soc. (London) A255, 367

Merryman, P., Moser, C. M., and Nesbet, R. K. (1960), J. Chem. Phys. 32, 631

Moore, N. (1960), J. Chem. Phys. 33, 471

Nesbet, R. K. (1960), J. Chem. Phys. 32, 1114

Robinson, J. M., Stuart, J. D., and Matsen, F. A. (1960), J. Chem. Phys. <u>32,</u> 988 Saturno, A. F. and Parr, R. G. (1960), J. Chem. Phys. 33, 22

(1961)

Albasiny, E. L. and Cooper, I. R. A. (1961), Mol. Phys. 4, 353

Brigman, G. H., Brient, S. J., and Matsen, F. A. (1961), J. Chem. Phys. <u>34</u>, 958

Burnelle, L. (1961), J. Chem. Phys. 35, 303

Clementi, E. (1961), J. Chem. Phys. <u>34</u>, 1468 Davidson, E. R. (1961), J. Chem. Phys. <u>35</u>, 1189 Fraga. S. and Ransil, B. J. (1961a), J. Chem. Phys. 35, 669

Fraga, S. and Ransil, B. J. (1961b), J. Chem. Phys. 35, 1967

Grahn, R. (1961), Arkiv Fysik 19, 147

Hijikata, K. (1961), J. Chem. Phys. <u>34</u>, 221
Lefebvre-Brion, H., Moser, C., and Nesbet, R. K. (1961a), J. Chem. Phys. <u>34</u>, 1950
Lefebvre-Brion, H. Moser, C., and Nesbet, R. K. (1961b), J. Chem. Phys. <u>35</u>, 1702
Mattheiss, L. F. (1961), Phys. Rev. <u>123</u>, 1209
Ransil, B. J. (1961), J. Chem. Phys. <u>34</u>, 2109
Richardson, J. D. (1961), J. Chem. Phys. <u>35</u>, 1829

(1962)

Browne, J. C. and Matsen, F. A. (1962), J. Phys. Chem. 66, 2332

Clementi, E. (1962a), J. Chem. Phys. 36, 33

Clementi, E. (1962b), J. Chem. Phys. 36, 750

Baran, J. and Kolos, W. (1962), J. Mol. Spectry. 8, 121

Clementi, E. and McLean, A. D. (1962a), J. Chem. Phys. 36, 45

Clementi, E. and McLean, A. D. (1962b), J. Chem. Phys. 36, 563

Clementi, E. and McLean, A. D. (1962c), J. Chem. Phys. 36, 745

Davidson, E. R. and Jones, L. L. (1962a), J. Chem. Phys. 37, 1918

Davidson, E. R. and Jones, L. L. (1962b), J. Chem. Phys. 37, 2966

Ebbing, D. D. (1962), J. Chem. Phys. 36, 1361

Fraga, S. and Ransil, B. J. (1962a), J. Chem. Phys. 37, 1112

Fraga, S. and Ransil, B. J. (1962b), J. Chem. Phys. 36, 1127

Grahn, R. (1962), Arkiv Fysik 21, 1

Grein, F. (1962), Theoretica Chimica Acta 1, 52

Kim, D. Y. (1962), Z. Physik 166, 359

McLean, A. D. (1962), J. Chem. Phys. 37, 3, 627

McLean, A. D. Weiss, A., and Yoshimine, M. (1962), unpublished data tabulated by Fraga and Ransil (1962)

Moccia, R. (1962), J. Chem. Phys. 37, 910

Nesbet, R. K. (1962), J. Chem. Phys. 36, 1518

Phillipson, P. (1962), Phys. Rev. 125, 1981

Scheel, N. and Griffing, V. (1962), J. Chem. Phys. 36, 1453

(1963)

Anex, B. G. (1963), J. Chem. Phys. <u>38</u>, 1651 Bishop, D. M. (1963), Mol. Phys. <u>6</u>, 305 Bishop, D. M., Hoyland, J. R., and Parr, R. G. (1963), Mol. Phys. <u>6,</u> 467

Carlson, K. D. and Moser, C. M. (1963), J. Phys. Chem. 67, 2644

Clementi, E. and McLean, A. D. (1963), J.Chem. Phys. <u>39</u>, 323 Hagstrum, S. and Shull, H. (1963), Revs. Modern Phys. <u>35</u>, 624 Harris, E. G. and Taylor, H. (1963), J. Chem. Phys. <u>38</u>, 2591

Kahalas, S. L. and Nesbet, R. K. (1963), J. Chem. Phys. 39, 529

Kolos, W. and Wolniewicz, L. (1963), Revs. Modern Phys. 35, 473

Krauss, M. (1963), J. Chem. Phys. 38, 564

Lefebvre-Brion, H., Moser, C., Nesbet, R. K., and Yamazaki, M. (1963), J. Chem. Phys. <u>38</u>, 2311

McLean, A. D. (1963a), J. Chem. Phys. 38, 1347

McLean, A. D. (1963b), J. Chem. Phys. 39, 2653

Michels, H. H. and Harris, F. E. (1963), J. Chem. Phys. 39, 1464

Miller, R. V. and Present, R. D. (1963), J. Chem. Phys. 38, 1179

Moskowitz, J. W. (1963a), J. Chem. Phys. 38, 677

Moskowitz, J. W. (1963b), J. Chem. Phys. 39, 1557

Peyerimhoff, S. (1963), Z. Naturforsch 18a, 1197

Poshusta, R. D. and Matsen, F. A. (1963), Phys. Rev. 132, 307

Reagan, P. N. Browne, J. C., and Matsen, F. A. (1963), Phys. Rev. 132, 304

Reeves, C. M. and Harrison, M. C. (1963), J. Chem. Phys. 39, 11

- Roberts, C. S. (1963), Phys. Rev. <u>131</u>, 203 Taylor, H. S. (1963a), J. Chem. Phys. <u>39</u>, 3375 Taylor, H. S. (1963b), J. Chem. Phys. <u>39</u>, 3382
 - (1964)
- Browne, J. C. (1964a), J. Chem. Phys. <u>40</u>, 43
- Browne, J. C. (1964b), J. Chem. Phys. 41, 1583
- Browne, J. C. (1964c), J. Chem. Phys. 41, 3495
- Browne, J. C. and Matsen, F. A. (1964), Phys. Rev. 135, A1227
- Carlson, K. D. and Nesbet, R. K. (1964), J. Chem. Phys. 41, 1051
- Christoffersen, R. E. (1964), J. Chem. Phys. 41, 960
- Christoffersen, R. E., Hagstrum, S. and Prosser, F. (1964), J. Chem. Phys. 40, 236
- Conroy, H. (1964a), J. Chem. Phys. 40, 603
- Conroy, H. (1964b), J. Chem. Phys. 41, 1341
- Csizmadia, I. G., Sutcliffe, B. T., and Barnett, M. P. (1964), Can. J. Chem. <u>42</u>, 1645
- Goodisman, J. (1964), J. Chem. Phys. 41, 3889
- Grahn, R. (1964), Arkiv Fysik 28, 85
- Harris, F. E. and Taylor, H. S. (1964), Physica 30, 105
- Harrison, M. C. (1964), J. Chem. Phys. 41, 499
- Hoyland, J. R. (1964), J. Chem. Phys. 41, 1370
- Kolos, W. and Wolniewicz, L. (1964a), J. Chem. Phys. 41, 3663
- Kolos, W. and Wolniewicz, L. (1964b), J. Chem. Phys. 41, 3674
- Krauss, M. (1964), J. Res. Natl. Bur. Std. 68A, 635
- Lefebvre-Brion, H, Moser, C. M., and Nesbet, R. K. (1964), J. Mol. Spectry. <u>13</u>, 418
- McLean, A. D. (1964), J. Chem. Phys. 40, 2774

Moccia, R. (1964a), J. Chem. Phys. 40, 2164 Moccia, R. (1964b), J. Chem. Phys. 40, 2176 Moccia, R. (1964c), J. Chem. Phys. 40, 2186 Nesbet, R. K. (1964a), J. Chem. Phys. 40, 3619 Nesbet, R. K. (1964b), J. Chem. Phys. 41, 100 Preuss, H. (1964), Mol. Phys. 8, 233 Ransil, B. J. (1964), unpublished work University of Chicago Rosenfeld, J. L. J. (1964), J. Chem. Phys. 40, 384 Sinai, J. J. (1964), J. Chem. Phys. 40, 3596 Stevens, R. M. and Lipscomb, W. N. (1964a), J. Chem. Phys. 40, 2238 Stevens, R. M. and Lipscomb, W. N. (1964b), J. Chem. Phys. 41, 184 Stevens, R. M. and Lipscomb, W. N. (1964c), J. Chem. Phys. 41, 3710 Stuart, J. D. and Matsen, F. A. (1964), J. Chem. Phys. 41, 1646 Taylor, H. S. and Harris, F. E. (1964), Mol. Phys. 7, 287 Wahl, A. C. (1964), J. Chem. Phys. 41, 2600 Woznick, B. J. (1964), J. Chem. Phys. 40, 2860 Yoshimine, M. (1964), J. Chem. Phys. 40, 2970 (1965)

Allen, L. C., Erdahl, R. M., and Whitten, J. L. (1965), J. Am. Chem. Soc. 87, 3769

Bishop, D. M. (1965), J. Chem. Phys. 43, 4453

Browne, J. C. (1965), J. Chem. Phys. 42, 1428

Burnelle, L. and Kaufman, J. J. (1965), J. Chem. Phys. 43, 354

Carlson, K. D. Ludena, E., and Moser, C. (1965), J. Chem. Phys. 43, 2408

Conroy, H. and Bruner, B. L. (1965), J. Chem. Phys. 42, 4047 Edmiston, C. and Krauss, M. (1965), J. Chem. Phys. 42, 1119 Ebbing, D. D. and Henderson, R. C. (1965), J. Chem. Phys. 42, 2225 Gerhauser, J. and Taylor, H. S. (1965), J. Chem. Phys. 42, 3621 Goodisman, J. (1965), J. Chem. Phys. 43, 3037 Huo, W. M. (1965), J. Chem. Phys. 43, 624 Huzinaga, S. (1965), J. Chem. Phys. 42, 1293 Joshi, B. D. (1965), J. Chem. Phys. 43, S40 Kern, C. W. and Karplus, M. (1965), J. Chem. Phys. 42, 1062 Klessinger, M. and McWeeny, R. (1965), J. Chem. Phys. 42, 3343 Kolos, W. and Wolniewicz, L. (1965), J. Chem. Phys. 43, 2429 Krauss, M. and Mies, F. H. (1965), J. Chem. Phys. 42, 2703 Larson, E. G. and Thorson, W. R. (1965), J. Chem. Phys. 43, 3832 Lefebvre-Brion, H. and Moser, C. M. (1965), J. Mol. Spectry. 15, 211 Moore, P. L., Browne, J. C., and Matsen, F. W. (1965), J. Chem. Phys. 43, 903 Moskowitz, J. W. and Harrison, M. C. (1965), J. Chem. Phys. 43, 3550 Moskowitz, J. W. (1965), J. Chem. Phys. 43, 60; (See errata J. Chem. Phys. 45,2338 (1966)) Nesbet, R. K. (1965), J. Chem. Phys. 43, 4403 Peyerimhoff, S. (1965), J. Chem. Phys. 43, 998 Rajagopal, P. (1965), Z. Naturforsch. 20a, 1557 Rutledge, M. and Saturno, F. (1965), J. Chem. Phys. 43, 597 Sahni, R. C. and DeLorenzo, E. J. (1965), J. Chem. Phys. 42, 3612 Schneiderman, S. B., and Michels, H. H. (1965), J. Chem. Phys. 42, 3706 Schulman, J. M., and Moskowitz, J. W. (1965), J. Chem. Phys. 43, 3287 Stevens, R. M. and Lipscomb, W. N. (1965a), J. Chem. Phys. 42, 3666 Stevens, R. M. and Lipscomb, W. N. (1965b), J. Chem. Phys. 42, 4302 Wakefield, C. and Davidson, E. R. (1965), J. Chem. Phys. 43, 834 Wright, W. M. and Davidson, E. R. (1965), J. Chem. Phys. 43, 840 Wolnfewicz, L. (1965), J. Chem. Phys. 43, 1087

Allen. L. C. (1966), "Quantum Theory of Atoms, Molecules, and the Solid State," edited by P. O. Lowdin (Academic Press Inc., New York) Allen, L. C., Lesk, A. M., and Erdahl, R. M. (1966), J. Am. Chem. Soc. 88, 615 Bender, C. F. and Davidson, E. R. (1966), J. Phys. Chem. 70, 2675 Bishop, D. M. (1966), J. Chem. Phys. 45, 1787 Bishop, D. M. and Randic, M. (1966), J. Chem. Phys. 44, 2480 Browne, J. C. (1966a), J. Chem. Phys. 44, 835 Browne, J. C. (1966b), J. Chem. Phys. 45, 2707 Buenker, R. J. and Peyerimhoff (1966), J. Chem. Phys. 45, 3682 Buenker, R. J. Peyerimhoff, S. D., Allen, L. C., and Whitten, J. L. (1966), J. Chem. Phys. 45, 2835 Cade, P. E. and Huo, W. H. (1966), J. Chem. Phys. 45, 1063 Cade, P. E., Sales, K. D., and Wahl, A. C. (1966), J. Chem. Phys. 44, 1973 Carlson, K. D. and Moser, C. (1966), J. Chem. Phys. 44, 3259 Cashion, J. K. (1966), J. Chem. Phys. 45, 1037 Clementi, E. and Davis, D. R. (1966), J. Chem. Phys. 45, 2593 Conroy, H. and Bruner, B. L. (1966), Theoretical Chemistry Preprint No. 22, Mellon Institute Csizmadia, I. G. (1966), J. Chem. Phys. 44, 1849 Csizmadia, I. G., Harrison, M. C., and Sutcliffe, R. T. (1966), Theoret. Chim. Acta 6, 217 Das, G. and Wahl, A. C. (1966), J. Chem. Phys. 44, 87 Dierclssen, G. and Preuss, H. (1966), Z. Naturforsch. 21a, 863 Fougere, P. F. and Nesbet, R. K. (1966), J. Chem. Phys. 44, 285 Galleys, G. A. and McKnight, M. S. (1966), J. Chem. Phys, 45, 365 Harris, F. E. (1966), J. Chem. Phys. 44, 3636 Hegstrom, R. A. and Lipscomb, W. N. (1966), J. Chem. Phys. 45, 2378

53

(1966)

Herman, R. B., Lykos, P. G., Sharp-Ritter, J. D., and Moccia, R. (1966), "Quantum Theory of Atoms, Molecules, and the Solid State'," P. O. Lowdin, Ed. (Academic Press Inc., New York)

Hoyland, J. R. (1966a), J. Chem. Phys. 45, 466

Hoyland, J. R. (1966b), J. Chem. Phys. 45, 3928

Huo, W. M. (1966), J. Chem. Phys. 45, 1554

Joshi, B. D. (1966), J. Chem. Phys. 44, 3627

Kaldor, V. and Shavitt, I. (1966a), J. Chem. Phys. 45, 888

Kaldor, V. and Shavitt, I, (1966b), J. Chem. Phys. 44, 1823

Kaufman, J. J. and Burnelle, L. A. (1966), RIAS Tech. Rept. 65-11

Kestner, N. R. (1966), J. Chem. Phys. 45, 208

Kestner, N. A. and Sinanoglu, O. (1966), J. Chem. Phys. <u>45</u>, 194 Kolos, W. and Wolniewicz, L. (1966a), J. Chem. Phys. <u>45</u>, 509 Kolos, W. and Wolniewicz, L. (1966b), J. Chem. Phys. 45, 944

LefebvrerBrion, H. and Moser, C. M. (1966), J. Chem. Phys. <u>44</u>, 2951 Lester, W. A. and Krauss, M. (1966), J. Chem. Phys. <u>44</u>, 207 Michels, H. H. (1966), J. Chem. Phys. <u>44</u>, 3834 McLean, A. D. and Yoshimine, M. (1966), J. Chem. Phys. <u>45</u>, 3676 Menna, E., Moccia, R., and Randaccio, L. (1966), Theoret. Chim. Acta <u>4</u>, 408 Michels, H. H. (1966), J. Chem. Phys. 44, 3834

Moskowitz, J. W., Newmann, and Harrison, M. C. (1966) "Quantum Theory of Atoms, Molecules, and the Solid State," edited by P. O. Lowdin (Academic Press Inc., New York) p. 227 Newton, M. D. and Palke, W. E. (1966), J. Chem. Phys. <u>45</u>, 2329
Palke, W. E. and Lipscomb, W. N. (1966a), J. Am. Chem. Soc. <u>88</u>, 2384
Palke, W. E. and Lipscomb, W. N. (1966b), J. Chem. Phys. <u>45</u>, 3948
Pearson, A. G., Poshusta, R. D., and Browne, J. C. (1966), J. Chem. Phys. <u>44</u>, 1815
Peyerimhoff, S. D. Buenker, R. J., and Allen, L. C. (1966), J. Chem. Phys. <u>45</u>, 734
Richards, W. G., Verhaegen, G., and Moser, C. M. (1966), J. Chem. Phys. <u>45</u>, 3226
Ritchie, C. D. and King, H. F. (1966), J. Am.Chem. Soc. <u>88</u>, 1069
Rothenberg, S. and Davidson, E. R. (1966a), J. Chem. Phys. <u>45</u>, 2560
Rutledge, R. M. and Saturno, A. F. (1966), J. Chem. Phys. <u>44</u>, 977
Scott, D. R., Greenwalt, E. M., Browne, J. C., and Matsen, F. A. (1966), J. Chem. Phys. <u>44</u>, 2981
Verhaegen, G., and Richards, W. G. (1966), J. Chem. Phys. <u>45</u>, 1828

Wahl, A. C. (1966), Science <u>151</u>, 961 Whitten, J. L. (1966), J. Chem. Phys. <u>44</u>, 359 Wolniewicz, L. (1966), J. Chem. Phys. <u>45</u>, 515

(1967)

Barnett, G. P. (1967), Can. J. Phys. <u>45</u>, 137
Basch, H. (1967), unpublished results Bell Telephone Laboratories
Bender, C. F. and Davidson, E. R. (1967a), J. Chem. Phys. <u>47</u>, 360
Bender, C. F. and Davidson, E. R. (1967b), J. Chem. Phys. <u>46</u>, 3313
Bender, C. F. and Davidson, E. R. (1967c), to be published
Bertoncini, P. and Wahl, A. C. (1967), unpublished work PhD thesis Bertoncini, University of Wisconsin)
Boyd, D. B. and Lipscomb, W. N. (1967), J. Chem. Phys. <u>46</u>, 910
Buenker, R. J., Whitten, J. L., and Allen, L. C. (1967), to be published J. Chem. Phys.
Buenker, R. J., Peyerimhoff, S. D., and Whitten, J. L. (1967a), J. Chem. Phys. <u>46</u>, 2029
Buenker, R. J., Peyerimhoff, S. D., and Whitten, J. L. (1967b), unpublished results

Bunau, G., Diercksen, G., and Preuss, H. (1967), to be published Burnelle, L. and Kaufman, J. J. (1967), unpublished results RIAS Cade, P. E. and Wahl, A. C. (1967), to be published Cade, P. E. and Huo, W. M. (1967a), J. Chem. Phys. 47, 614 Cade, P. E. and Huo, W. M. (1967b), J. Chem. Phys. 47, 649 Cade, P. E. (1967a), to be published Cade, P. E. (1967b), Proc. Phys. Soc. (London) 91, 842 Carlson, K. D. and Moser, C. (1967), J. Chem. Phys. 46, 35 Cheetham, C. J. and Richards, W. G. (1967), unpublished results Physical Chemistry Laboratory, Oxford Clementi, E. (1967a), IBM Research Paper RJ-411 2/6/67 Clementi, E. (1967b), IBM Research Paper RJ-416 2/8/67 Clementi, E. (1967c), IBM Research Paper RJ-418 2/8/67 Clementi, E. (1967d), IBM Research Paper RJ-415 2/8/67 Considine, J. P. and Hayes, E. F. (1967), to be published Das, G. (1967), J. Chem. Phys. 46, 1568 Das, G. and Wahl, A. C. (1967), to be published J. Chem. Phys. Davidson, R. and Allen, L. C. (1967), unpublished results Princeton University Edmiston, C. and Krauss, M. (1967), unpublished results Erdahl, R. M. (1967), PhD. thesis Princeton University Erdahl, R. M., Harrison, J. F., and Allen, L. C. (1967), to be published Fink, W. H. and Allen, L. C. (1967), J. Chem. Phys. to be published Fink, W. H. and Allen, L. C. (1967a), J. Chem. Phys. 46, 2261 Fink, W. H. and Allen, L. C. (1967b), J. Chem. Phys. 46, 2276 Fink, W. H., Whitten, J. L., and Allen, L. C. (1967), J. Chem. Phys. to be published Fink, W. H., Pan, D. D., and Allen, L. C. (1967), J. Chem. Phys. to be published Geller, M., Sachs, L., and Kaufman, J. J. (1967), unpublished results RIAS and Jet Propulsion Laboratory Gilbert, T. L. and Wahl, A. C. (1967a), to be published (Bull. Am. Phys. Soc. 10, 1097 (1965) Gilbert, T. L. and Wahl, A. C. (1967b), to be published Gilbert, T. L. and Wahl, A. C. (1967c), to be published Ha, T. K. and Allen, L. C. (1967), unpublished results Princeton University Hackmeyer, M. and Whitten, J. L. (1967), unpublished results Harris, F. E. and Michels, H. H. (1967), to be published Int. J. Quantum Chemistry Slater Symposium Issue Harrison, J. F. (1967), PhD. Thesis Princeton University Harrison, J. F. and Allen, L. C. (1967), to be published

Haves, E. F. (1967), to be published

Hegstrom, R. A., Palke, W. E., and Lipscomb, W. N. (1967), J. Chem. Phys. 46, 920 Horsley, J. A. and Richards, W. G. (1967), unpublished results Physical Chemistry Laboratory, Oxford B98 Huo, W. M., Freed, K. F., and Klemperer, W. (1967), J. Chem. Phys. 46. 3556 Janoschek, R., Preuss, H., and Diercksen, G. (1967a), to be published Janoschek, R., Preuss, H., and Diercksen, G. (1967b), to be published Joshi, B. D. (1967), J. Chem. Phys. 46, 875 Kapral, R. (1967), J. Chem. Phys. 46, 2317 Kari, R. E. and Csizmadia, I. G. (1967), J. Chem. Phys. 46, 1817 Kaufman, J. J. and Burnelle, L. A. (1967), RIAS Technical Report 65-11 Kolos, W. and Wolniewicz, L. (1967), J. Chem. Phys. 46, 1426 LMSS (1967), out put of Laboratory of Molecular Structure and Spectra, University of Chicago under the direction C.C.J. Roothaan. Attribution to each calculation was not given but the following individuals have contributed: P. E. Cade, J. Greenshields, W. M. Huo, G. L. Malli, K. D. Sales, and A. C. Wahl McLean, A. D. and Yoshimine, M. (1967), to be published, see J. Chem. Phys. 46, 3682 and Supplement to IBM Journal Res. and Dev. 11/67 Matcha, R. L. and Nesbet, R. K. (1967), to be published Matsumoto, G. H., Bender, C. F., and Davidson, E. R. (1967), J. Chem. Phys. 46, 402 Matche, R. L. (1967), to be published Michels, H. H. (1967), unpublished results United Aircraft Research Laboratories Miller, K. and Krauss, M. (1967), unpublished results Morokuma, K. and Pedersen, L. (1967a), unpublished results Morokuma, K. and Pedersen, L. (1967b), unpublished results Morris, B. M. and Present, R. D. (1967), J. Chem. Phys. 46, 653 O'Hare and Hurst (1967), J. Chem. Phys. 46, 2356 Pan, D. C. and Allen, L. C. (1967), J. Chem. Phys. 46, 1797 Pedersen, L. and Morokuma, K. (1967), to be published J. Chem. Phys. Peverimhoff, S. (1967), unpublished results (Princeton University) Peyerimhoff, S. D. and Buenker, R. J. (1967), J. Chem. Phys. to be published Peyerimhoff, S. D., Buenker, R. J., and Whitten, J. L. (1967), J. Chem. Phys. 46, 1707 Pfeiffer, G. V. (1967), unpublished results Princeton University Preuss, H. and Diercksen, G. (1967), unpublished results Richards, W. G. (1967), Trans. Faraday Soc. 63, 530

Richards, W. G., Verhaegen, G., and Moser, C. M. (1967), unpublished results Physical Chemistry Laboratory, Oxford and Centre de Mecanique Ondulatoire Appliquee, Paris Ritchie, C. D. and King, H. F. (1967a), to be published J. Chem. Phys. Ritchie, C. D. and King, H.F. (1967b), unpublished results State University New York at Buffalo Ritter. J. D. (1967). private communication to Kari and Csizmadia Rothenberg, S. and Davidson, E. R. (1967), J. Mol. Spectroscopy 22, 1 Sales, K. D., Cade, P. E., and Wahl, A. C. (1967), to be published Sanders, W. and Krauss, M. (1967), unpublished results Schwartz, M. E. (1967), thesis Vanderbilt University Shavitt, I., Stevens, R. M., Minn, F. L., and Karplus, M. (1967), to be published Snyder. L. C. (1967), J. Chem. Phys. 46, 3602 Stevens, R. M. (1967a), unpublished result Harvard University Stevens, R. M. (1967b), unpublished result Harvard University Veillard, A. (1967), unpublished work Verhaegen, G. and Richards, W. G. (1967), Proc. Phys. Soc. 90, 579 Verhaegen, G., Richards, W. G., and Moser, C. M. (1967a), J. Chem. Phys. 46, 160 Verhaegen, G., Richards, W. G., and Moser, C. M. (1967b), to be published J. Chem. Phys. Wahl, A. C., Bertoncini, P. J., and Gilbert, T. L. (1967), unpublished results Walker, T.E.H. and Richards, W. G. (1967), unpublished results Physical Chemistry Laboratory, Oxford Whitten, J. L. and Allen, L. C. (1967), to be published Whitten, J. L., Petke, J. D., and Buenker, R. J. (1967), unpublished results Whitten, J. L. and Buenker, R. J. (1967), unpublished results

Experimental and Hartree-Fock Atomic Energies

Atom	State	Hartree-Fock ^a	- E	Experimental
Не	¹ s _o	2.86168		2.90372 [°]
Li	² s _{1/2}	7.43272		7.4780
Ве	1 _{So}	14.57302		14.6685
В	² P1/2	24,52905		24.6579
С	³ Po	37.6886 <u>1</u>		37.8558
N	4 _{S3/2}	54.40091		54.6122
0	³ _P 2	74.80936		75.1101
F	² _{P3/2}	99.40928		99.8053
Atom	State	Hartree-Fock a	Experimental ^b	
------	----------------------------------	-------------------	---------------------------	
		- E		
Ne	1 _{Se}	128 54701	129 056	
ne	2	120,34701	129.000	
Na	² S _{1/2}	161.85889	162.441	
Mg	1 _{So}	199.61458	200.333	
Al	² P1/2	241.87665	242.752	
Si	³ Po	288.85426	289.927	
Р	⁴ s _{3/2}	340.71866	342.025	
S	³ P ₂	397. 5C475	399.144	
C1	² ^P 3/2	459.48201	461.514	
Ar	1 _{So}	526.8 175	529,303	

a. Clementi, E. (1965). Tables of Atomic Functions. Supplement to IBM J. Res. Develop. <u>9</u>, 2.

b. Cade and Huo (1967a,b). The analysis of the recommended "experimental" values is given in detail. For the rough comparison with molecular energies for which this table is included these values are more than adequate.

c. Pekeris, E. (1958), Phys. Rev. <u>112</u>, 1649.

Atomic Unit Conversions

Ε	la.u. (Hartree)	= 27.20976 eV
R	la.u. (Bohr)	= 0,529172 A
μ	1a. u.	= 2.54158 10 ⁻¹⁸ esu cm (Debye)
Θ	la.u.	$= 1.34492 10^{-26} \text{esu cm}^2$
q	la.u.	$= 3.24140 10^{15} esu/cm^{3}$

C. One electron properties : Introduction

The results of a selected set of diatomic calculations are given for the dipole moment and derivative, the quadrupole moment, and the field gradients. The results are in cgs units: μ in Debyes, 10^{-18} esu cm, μ ' in 10^{-10} esu, θ in 10^{-26} esu cm², and q in 10^{15} esu/cm³. When available experimental values are included. These are not referenced and were obtained for the most part from the theoretical paper that is referenced.

The polyatomic tables do not include the derivative of the dipole moment but the Larmor susceptibility χ_L in units of 10⁻⁵ erg/gauss² mole is included. Note that such values are usually available in diatomic studies for which the quadrupole moment is given.

The properties are defined as follows:

1. Dipole moment

$$\mu = \sum_{A} Z_{A} d_{A} - e < z >$$

2. Quadrupole moment

$$\theta = \sum_{A} Z_{A} d_{A}^{2} - \frac{1}{2} e < 3z^{2} - r^{2} >$$
3. $\chi_{L} = -\frac{e^{2}}{6\pi c^{2}} < r^{2} >$

4. Field gradient

Only the q component of the field gradient is tabulated here.a

$$q_{A} = \sum_{B} Z_{B} \frac{3\cos^{2}\theta_{AB} - 1}{d_{B}^{3}} - e < \frac{3\cos^{2}\theta_{A} - 1}{r_{A}^{3}} >$$

For the first three properties all distances are measured from a common origin which is commonly chosen to be the center of mass or the centroid of charge. Consideration of the gauge is discussed by McLean and Yoshimine (1966) who also illustrate the interrelations which exist between properties which depend on the square of the electronic coordinates. Note that some authors have not selected the center of mass as origin in determining the quadrupole moment and those cases are noted.

Polarity of μ is defined positive for $A^{+}B^{-}$ and $H^{+}A^{-}$.

The field gradient is determined in a coordinate system relative to the atom in question.

a. The field gradient tensor has been calculated ab initio only for formaldehyde. See Lowe and Flygare (1964), J. Chem. Phys. <u>41</u>, 2153; Flygare et al (1966), J. Chem. Phys. <u>45</u>, 2793.

Molecule						
and						
State	Reference	щ	μ	0	q ₁	q 2
	Н					
	2					
с ¹ П	Browne (196+a)			-6.697	0.209	
c ³ Π _u				-3.102	0.223	
1 _A g	Browne (1964b)			-46.32	0.259	
3 _A g				-47.13	0.259	
$x^{1}\Sigma_{g}^{+}$	McLean and Yoshimine(1966)			0.477		
	Exp			0.460		
$x^{1}\Sigma^{+}(H^{+}D^{-})$	Kolos and Wolniewicz(1966b)	1.54 10 ⁻³				
	Lit	ī				
$x^{1}\Sigma^{+}$	Ebbing (1962)	-5.96	-2.47			
	Kahalas and Nesbet(1963)	-5.388			-0.108	
	Browne and Matsen(1964)	-5.93			-0.112	
	Bender and Davidson(1966)	-5.965			-0.113	0.1.9
	Csizmadia (1966)	-6.008				
	Cade and Huo (1966)	-6.002				
	Exp.	-5.88	-2.0			

Molecule and						
State	Reference	μ	μĭ	θ	q 1	9 ₂
	ВеН					
$x^2\Sigma^+$	Cade and Huo(1966)	-0.282				
	BH					
x ¹ Σ ⁺	Cade and Huo(1966)	1.733				
x ¹ Σ ⁺	Harrison (1967)	1.584		-3.366 ^a	-1.823	0.549
ЗП		0.295		0.061 ^a	-0.332	0.927
¹ п		1.196		1.289 ^a	0.067	0.566
3 ₂ -		-0.338		5.075 ^a	1.853	0.989
1 _Δ		-0.864		4.768 ^ª	1.866	0.967

		CH
x ² П _r	Cade and Huo(1966)	1.570
	Exp	1.46

Molecule					
and State	Reference	μ – μ'	θ	Ч,	q 2
				-	
	NH				
x ³ Σ-	Joshi (1965)	1.931			
x ³ Σ ⁻	Cade and Huo(1966)	1.627			
x ³ 2 ⁻	Harrison (1967)	1.016			
1 _A		0.989			
$\frac{1}{\Sigma}$ +		0.869			
3П		1.294			
1	Huo (1966)	1.65			
3 _П		1.38			
ıΠ		1.85			
	OH				
x ² П _i	Cade and Huo(1966)	1.780			
	Exp	1.66			

Molecule and State	Reference	μ	μ'	θ	qi	q ₂
	FH					
$x^{1}\Sigma^{+}$	Nesbet(1962)	1.827	1.029			
	Clementi(1962)	1.984				
	Moccia (1964)	2.014				
	Cade and Huo(1966)	1.942				
	Moskowitz et al(1966)	1.921		2.539 ^a	9.299	
	Erdahl et al(1967)	2.008		2.390 ^a	10.48	1.771
	Whitten and Allen(1967)	1.98				
	Bender and Davidson(1967)	1.649			8.720	1.769
	McLean and Yoshimine(1967)	1.934		2.325	9.313	1.694
	Ехр	1.82				
	NaH					
$x^{1}\Sigma^{+}$	Cade and Huo(1966)	-6.962				
	МдН					
$x^2\Sigma^+$	Cade and Huo(1966)	-1.516				

Molecule and State	Poforona		. 1	0		
	neterence	μ	μ	8	q ₁	q _z
1.	AlH					
$x^{1}\Sigma^{+}$	Cade and Huo(1966)	0.170				
	SiH					
x ² II _r	Cade and Huo(1966)	0.302				
	PH					
x ³ 2 ⁻	Cade and Huo(1966)	0.538				
	SH					
x ² Π _i	Cade and Huo(1966)	0.861				
	C1H					
x ¹ Σ+	Moccia(1962)	2.166				
	Nesbet (1964b)	1.488	1.788	3.957		
	Cade and Huo(1966)	1.197				
	Menna et al(1966)		3.61			
	McLean and Yoshimine(1967)	1.215		3.744	11.55	0.908
	Ехр	1.08	±1.00			
Molecule						
State	Reference	μ	μ	θ	q 1	q z
	He ₂					
$^{3}\Sigma_{u}^{+}$	Poshusta and Matsen(1963)			7.625		

	Li ₂			
x¹∑+ g	LMSS (1967)	13.886	-0.0162	
	B ₂			
³ Σ-	LMSS (1967)	1.582	0.365	
	c ₂			
$x^{l}\Sigma_{g}^{+}$	LMSS(1967)	3.733	2.706	
$^{3}\Sigma_{g}^{-}$	LMSS (1967)	-4.960	-4.156	
	N ₂			
$x^{1}\Sigma_{g}^{+}$	Nesbet (1964a)	-1.221		
$x^{1}\Sigma^{+}$	LMSS (1967)	-1.264	-4.411	

Molecule

and	Deferrere	2			
	Reference	μ	μ. σ	۹ ₁	^q 2
		N2 ⁺			
$x^{2}\Sigma_{g}^{+}$	LMSS (1967)		4.246	2.256	
$A^2 \Pi_u$	LMSS(1967)		1.845	-5.755	
		02			
$x^{3}\Sigma_{g}^{-}$	LMSS (1967)		-0.376	4.483	
		F ₂			
$x^{1}\Sigma_{g}^{+}$	Wahl(1964)		0.886	22.262	
		Na			
		2			
xΣg	LMSS(1967)		13.984		

Molecule and State	Reference	μ	٣	θ	q ₁	۹ ₂
	LiF					
$x^{1}\Sigma_{a}^{+}$	McLean (1964)	6.30	4.08			
8	Pfeiffer(1967)	6.28	3.95		-0.089	
	McLean and Yoshimine(1967)	6.295		5.769	-0.118	-0.896
	Exp	6.28	4.35		-0.128	
	LiCl					
х ¹ Σ+	Matcha (1967)	7.256	2.30		-0.068	-0.399
	Exp	7.13	2.3			
	LiBr					
$x^{1}\Sigma^{+}$	Matcha (1967)	6.98			-0.069	-1.433
	Exp	7.27				
	BeO					
x ¹ Σ+	Yoshimine (1964)	7.290				
	McLean and Yoshimine (1967)	7.353		6.354	-2.824	-0.161

Molecule and						
State	Reference	μ	μ'	8	Ч ₁	9 ₂
	BF					
x ¹ ∑+	Nesbet (196 4a)	-0.617	4.88	-4.382		
	Huo (1965)	-1.04	5.56	-4.53 ^b	-1.753	1.702
	McLean and Yoshimine(1967)	-0.883		-4.482	-1.755	1.980
	со					
x 1 <u>5</u> +	Lefebvre-Brion et al (1963)	0.132				-2.071
	Nesbet (1964a)	0.361	3.83	-1.306	-3.82	-2.201
	Huo (1965)	0.274	4.89	-2.19 ^b		
	McLean and Yoshimine(1966)	c -0+	Analys	sis of sig	n of µ	
	Huo (1966)	0.274		-2.14	-3.82	-2.201
	McLean and Yoshimine(1967)	0.280		-2.204	-3.808	-2.348
x ¹ ∑+	Ехр	-0.112	2.97	±1.63		
a ³ ∏	Huo (1966)	2.46		1.07	0.016	3.153
	Exp	1.38				
Molecule and						
State	Reference	μ	μ	θ	9 ₁	9 2
	CS					
$x^{1}\Sigma^{+}$	Richards (1967)	1.6				
	Exp	1.98				
1	NaF					0.044
χ ¹ Σ+	Matcha (1967)	8.35			-1.224	-0.266
	Exp	8.16				
	NaC1					
x ¹ ₂ +	Matcha (1967)	9.10			-0.811	-0.648
	Exp	9.00				
	NaBr					
x ¹ ∑+	Matcha (1967)	8.74			-0.586	-0.162
	McLean and Yoshimine(1967)			17.5		

Molecule					
and State	Reference	μ μ'	θ	ql	9 ₂
	MgO				
$1\Sigma^+$	McLean and Yoshimine (1967)	8.842	0.221	-0.517	6.321
1.	AlF				
Σ+	McLean and Yoshimine(1967)	1.337	-6.713	-3.867	0.456
	SiO				
$1\Sigma^+$	McLean and Yoshimine(1967)	3.397	-5.219	-7.952	-3.006
1	PN				
Σ^+	McLean and Yoshimine(1967)	3.241	-2.818	-7.828	-4.954
	ClF				
1_{Σ}^{+}	Stevens (1967)	1.099			
	Exp	0.88			

Molecule and						
State	Refer e nce	μ	μ'	θ	q 1	q 2
	KF					
$^{1}\Sigma^{+}$	Matcha (1967)	8.69			-1.962	-1.158
	Ежр	8.60				
	KC 1					
15+	Matcha (1967)	10.46			-1.413	-0.326
	Exp	10.27				
	CaO					
${}^{1}\Sigma^{+}$	McLean and Yoshimine(1967)	10.946		-7.578	-0.846	-1.432
	ScO					
² _Σ +	Carlson et al (1965)	2.6	1.5			
$^{2}\Delta r$		7.7	1.0			

Molecule						
and State	Reference	بېز	μ'	θ	q 1	q 2
	ScF					
$1\Sigma^+$	Carlson and Moser(1967)	4.64				
³ A _r		5.77				
	TiO					
³ Ar	Carlson and Moser(1967)	5.93				
$1\Sigma^+$		4.25				
	RbF					
$1\Sigma^+$	Matcha (1967)	8.76			-2.813	-0.704
	Ежр	8.55				
	SrO					
$1 + \Sigma^+$	McLean and Yoshimine(1967)	10.207		-14.24	-0.805	-1.500

Molecule and State	Reference	μ	θ	9.1	9 ₂	9 ₃	X _L
		но					
1 _A _	Moccia (1964)	2.08					
1	Moskowitz and Harrison(1965)	1.99					
	Fink et al (1967)	2.50					
	Ехр	1.85	2.				
		н S 2					
1 _A 1	Moccia (1964)	1.72					
Î.	Exp	0.97					
		HCN					
1_{Σ^+}	McLean and Yoshimine(1967)	3.292	2.710	1.027	-1.580	-3.903	-3.925
	Pan and Allen (1967)	3.37					
	Ехр	2.98					

Molecule and State	Reference	μ	θ	9	q 2	q 3	XL
		(FU	τ.) -				
$^{1}\Sigma_{g}^{+}$	McLean and Yoshimine(1967)	(rn	-7.513	2.295	0.106	2,295	-8.934
		(00)	N) ⁻				
1_{Σ}^{+}	McLean and Yoshimine(1967)	1.800	-10.87	3.078	-2.002	-0.770	-9.387
		со	2				
$1\Sigma^+$	McLean and Yoshimine(1967)		-5.281	2.446	-2.362	2.446	-9.021
8	Exp		-3.				
		N ₂ O					
1 ₂ +	McLean and Yoshimine(1967)	0.638	-3.745	-1.284	- I. 559	8.310	-8 604
-	Exp	0.167	-2.5	11204	2.000	0.510	0.004
Ι.,		FCN					
τΣ÷	McLean and Yoshimine(1967)	2.279	-4.214	10.54	-0.476	-2.416	-9.567
Molecule							
State	Reference	ц	0	P	q	P	q X _T
	· · · · · · · · · · · · · · · · · · ·	(S	CN)	1	Z	3	4 5
$^{I}\Sigma^{+}$	McLean and Yoshimine(1967)	2.155	-11.47	5.500	-1.861	-1.424	-16.83
		SC	0				
$^{1}\Sigma^{+}$	McLean and Yoshimine(1967)	0.985	-1.479	6.417	-2.418	0.995	-16.02
		CI	.CN				
L_{Σ}^{+}	McLean and Yoshimine(1967)	3.052	-3.828	15.27	-0.785	-3.145	-16.16
		NF	3				
¹ A ₁	Moccia (1964b)	1.51					
	Joshi (1965)	1.52					
	Rajagopal (1965)	1.39	-0.270 ^a				
	Kaldor and Shavitt(1966a)	2.29					
	Fink et al (1967)	1.49					
	Exp	1.47					
		С	2 ^H 2				
l∑+ g	McLean and Yoshimine(1967)		7.232	1.111	-1.236		-4.852

Molecule and State	Reference	μ	θ	9 ₁	^q 2	9 ₃	q ₄	XL
		LiC	СН					
1 ₂ +	Veillard (1967)	6.166	21.08					
		нсс	F					
$1\Sigma+$	McLean and Yoshimine(1967)	0.913	4.528	10.59	0.099	-0.621	1.173	-10.80
		нсс	C1					
1 ₂ +	McLean and Yoshimine(1967)	0.421	7.764	14.40	-0.329	-0.963	1.170	-17.64
		NCC	N					
l∑+ g	McLean and Yoshimine(1967)		-9.063	-4.049	-1.084			-19.48
Molecule								
and State	Reference	μ	θ	q ₁	9 ₂	9 ₃	9 ₄	¶5
		нсс	CN					

McLean and Yoshimine (1967) 4.126 4.480 -3.548 -1.196 -0.559 -1.335 1.105

a. Origin of coordinates at heavy mass.

b. Origin of coordinates at mid-point of molecule.

D. Static Polarizabilities: Introduction

Two different techniques have been used to obtain the polarizabilities.

A perturbation approach has been applied to a few molecules based on both zero-order H.F. and, in the case of H $_2$, very accurate wave functions. These are summarized in the table on Dl. The H work is very extensive and results are reported for polarizabilities averaged over numerous vibration-rotation levels.

The second approach has been to solve the H.F. equations with the field included in the Hamiltonian. Previous work in this direction has been reported by Cohen and Roothaan (J. Chem. Phys. <u>43</u>, S34 (1965)) for atoms and a large number of linear molecules has recently been treated by McLean and Yoshimine. Their polarizability and hyperpolarizability tensor components are listed in the table on D2. Note the γ and B columns are to be multiplied by the scale factor at the top of the respective columns. Definitions and discussion of this procedure are referred to their publication and Buckingham (1959). Note that, with the exception of HCN, all the values are reported for the molecular geometries listed in the References.

Reference	Molecule	a xx	azz	
Kolos and Wolniewicz (1967)	^н 2	0.7022	1.0021	
Stevens and Lipscomb (1964a) O'Hare and Hurst (1967)	LiH	4.063 5.080	3.35 3.35	
Stevens and Lipscomb (1964b) O'Hare and Hurst (1967)	HF	0.623 0.791	0.859 1.002	
Stevens and Lipscomb (1964c) O'Hare and Hurst (1967)	F ₂	0.77 0.949	2.15 2.248	
O'Hare and Hurst (1967) Exp	^N 2	1.954 1.45	4.046 2.38	
McLean and Yoshimine (1967) O'Hare and Hurst (1967) Exp	CO	2.088 1.625	2.11 3.222 2.60	
O'Hare and Hurst (1967)	Li ₂	40.649	59.848	
	BF	3.738	2.716	

Molecular Polarizabilities^a

a. Units: 10^{-24} cm²

Molocular	Polariza	hilitioe
MOLECUIAL	POLATIZA	DIIILLES

Molecule	a	β 2.2.2	Y 2222	A z zz	B 22 22	3/2 C
			103		102	
HF	8.07	-74.		31.6	-1.5	34.
HC1	23.4	-288.	1.	137.	-5.7	i67.
LiF	8.40	27. • 10 ¹	4.	38.5	-1.0	53.
BF	23.6	57.	4.	-33.·10 ¹	-8.	513.
CO	21.1	19.·10 ¹	1.	-83.	-6.1	203.5
NaBr	45.4	610 ³	3.·10 ²	31.	-8.·10 ¹	39.·10 ¹
KC 1	39.7	31. · 10 ²	1102	44.°10 ¹	1101	108.'10 ¹
RbF	24.1	88101		16101		57.·10 ¹
AlF	45.	-8.°10 ²	-6.	-66.°10 ¹	-7.	106.*10 ¹
SiO	39.6	35.·10 ¹	3.	-49.	-2.	58.·10 ¹
PN	49.7	$15. \cdot 10^{1}$		215.	-10.7	506.
Sr0	62.3			1101		9. • 10 ²
HCN ^b	33.2	2102	5.	-94.	-13.	36.º10 ¹
N20	40.6	3. ·10 ²	8.	-85.	-4.6	38. ·10 ¹
(OCN)	41.1	-1. 102		17 10 1	-3.	59.'10 ¹
FCN	32.5	-1.°10 ²		267.	-2.	515.
SCO	62.7			44.	-6.	83. · 10 ¹

Molecular Polarizabilities								
Molecule	azz	Bzzz	Yzzzz	A z zz	B zz zz	3/2 C zz zz		
			10 ³		10 ²			
(SCN)	73.5			28.·10 ¹	-7.	114101		
CICN	53.3	-14.·10 ¹		378.	-3.2	978.		
FCCH	46.4	-8.·10 ²	8.	61.·10 ¹	-17.	107.101		
CICCH	76.1	-17.10 ²	15.	102.101	-40.	207. 101		
1CCCH	95.					2. 103		

a. For notation see Buckingham, A.D. (1959), Quart. Rev. 13, 194

b. HCN $R_1 = 1.81287$, $R_2 = 2.38053$

Entire table is due to McLean and Yoshimine (1967) Units: $\alpha \ 10^{-25} \text{ cm}^2, \ \beta \ 10^{-33} \text{ cm}^5/\text{esu}, \ \gamma \ 10^{-40} \text{ cm}^7/\text{esu}^2$ A $10^{-34} \text{ cm}^4, \ B \ 10^{-41} \text{ cm}^6/\text{esu}, \ C \ 10^{-42} \text{ cm}^5$

E. Magnetic Constants: Introduction

F₂ - Stevens and Lipscomb (1964c)
BH - Hegstrom and Lipscomb (1966)

This table slightly extends and updates a similar table in Nesbet's review on H.F. calculations (Adv. Quant. Chem., Vol. 3, 1967). It is provided as another test of the accuracy of one-electron properties of H.F. functions. All the calculations are based on perturbation of approximate H.F. functions.

Molecul	e (AB)	LiH	Li ₂	FH	F2	ВН	
χ(ppm)	calc	-7.630	-28.94	-10.27	-10.617	18.75	
	obs			-8.6			
σ(ppm)	calc	90.15	98.58	404.65	-199.7	-261.7	
**	obs				-210.1		
σ(ppm)	calc	26.45		28,11		24.46	
~	obs			27.9			
C _A (kc/s	sec)calc	9.45	0.240	336.0	152.0	492.9	
**	obs	9.92		<u>+</u> 305	157		
C_(kc/s	ec)calc	-9.15		-69.97		-14.92	
-	ado	-10.1		<u>+</u> 71			
$\mu_{\rm J}/J$ (nm	n) calc	-0.6677	0.1100	0,738	-0.101	-8.30	
J	obs	-0.654	0.10797	0.7392	-0.121		
LiH- S	Stevens and Li	рвсоть (1964а)					
Li ₂ - S	tevens and Li	pscomb (1965b)					
HF - 5	Stevens and Li	pscomb (1964b)					

Ground State Magnetic Constants of Diatomic Molecules

F. Spectroscopic Constants: Introduction

The results presented were obtained by a Dunham analysis of accurste H.F. and, for the few electron distomics, sccurste beyond H.F. calculations: Details of the fits will vary and in the case of H_2 extreme care has gone into the procedure. For the most accurate calculations the spectroscopic constants are usually ignored and the vibration-rotation energy levels are calculated by numerical integration of the Schrodinger equation. Unfortunately, the sccuracy of most calculations do not warrant an effort beyond the apectroscopic constants. Nontheless, these results are considered the best obtainable for their type of calculation.

In order to facilitate comparison with experimental values, w_e , $w_e x_e$, B_e . Ge are given in cm⁻¹and r_e in A. Experimental values are given when provided by the theoretical paper in question.

Molecule and State	Reference	w c	ux. B	a. e	с Г
c ¹ I.	Browne (1964a)	H2	1 91	1 204	1.020
u	fixn	2442 7	67.03	1.204	1.030
с ³ П	Browne (1964a)	2/ 20	36.40	1.020	1.055
u	Evn	2465 0	61.40	1.425	1.039
1 _Å	Browne(1964b)	2351.0	58.56	1.425	1.05
3 ₄		2349.0	58.78	1.57	1.05
$x^{1}\Sigma^{+}_{g}$	Das snd Wahl(1966)	4398			0.74
	Exp	4395.2			0.7416
$2s^{1}\Sigma_{g}^{+}$	Rothenberg and Davidson (1966b)	2354			1.009
3d		2296			1.073
3s		2502			1.042
$3d^{3}\Sigma_{g}^{+}$		2271			1.064
3s		2734			1.060
$3p^{1}\Sigma_{u}^{+}$		2127			1.005
$3p^{3}\Sigma_{u}^{+}$		2230			1.096
2p ¹ Π _u		2468			1.031
3p		2389			1.048
4 f		24 13			1.058

F1

Molecule and		(2)	w x	в	α	r
State	Reference	e	e'e	е	e	2
	¹¹ 2					1.063
3d ¹ II _g		2286				1.063
3d ³ IIg		2283				1.053
3d ¹ Ag		2354				1.053
3d 2,		2354				0.7/12
$x^{1}\Sigma^{+}$	Baran and Kolos(1962)	4401.4	119.3	60.879		0.7413
g	McLean(1964)	4402.3	121.82	60.880		0.7412
	Cashion (1966)	4402.744	121.548	60.8550		0.741405
	Exp	4400.39	120.82	60.864		0./4116
	нен	+				
v 1 ₅ +	Anex (1963)	3286				0.765
л <i>Ц</i>	Peyerimhoff(1965)	3233	176	35.30	2.82	0.0770
	Wolniewicz (1965)					0.774
1+++	Michels(1966)	3379	313.7	35.85	3.785	0.764
X-2.		209.7	89.71	2.343	0.7977	2.990
A Z		381.8	6.535	1.038	0.01449	4.491
-lπ		220.3	10.13	1.197	0.06081	4.183
c-n - 3 ~1		373.0	99.62	3.739	0.8156	2.366
a-2		395.8	5.882	1.244	0.02724	4.103
с ³ П		225.5	6.595	5 1.255	0.04136	4.085
Voloculo						
and	Reference	u)	(1)	P	a	~
	He	e H	e e	e	e	e
2-	With the and Harris (1963)	4065	252	38.0		0.742
-11 2 +	MICHEIS and Hallis (1903)	4005	273	39.8		0.725
2Σ+		41))	270			
	Li	Н				
x ¹ 2 ⁺	Browne and Matsen(1964)	1438	86			1.612
	Cade and Huo(1967a)	1433	23.26	7.426	0.1945	1.605
	Exp.	1405.6	23.20	7.513	0.213	1.595
	Вє	èH		10.000	0.06/7	1 229
$x^2\Sigma^+$	Cade and Huo(1967a)	2147	34.60	10.392	0.2647	1.330
	Exp.	2058.6	35.5	10.308	0.300	1.343
	וס	4				
,] et	Gada and Was(1967a)	a 2499	49.04	12.273	0.3726	1.797
$x_{j}\Sigma_{+}$	Bi Cade and Huo(1967a)	4 2499 2367 5	49.04 ~ 49	12.273	0.3726 0.408	1.797 1.611
x ¹ ∑ ⁺	Bi Cade and Huo(1967a) Exp	4 2499 2 367 •5	49 .0 4 ~ 49	12.273 12.016	0.3726 0.408	1.797 1.611
x ¹ x ⁺	Bi Cade and Huo(1967a) Exp C	н 2499 2 367. 5 Н	49.04 ~ 49	12.273 12.016	0.3726 0.408	1.797 1.611
x ¹ 2 ⁺	Bi Cade and Huo(1967a) Exp Cade and Huo(1967a)	н 2499 2 367.5 н 3053	49.04 ~ 49 55.50	12.273 12.016 14.882	0.3726 0.408 0.4712	1.797 1.611 1.104

Molecule							
State	Reference		e	u x 2 e	Be	¢.	é
		NH					
v ³ 5 ⁻	Cade and Hup(1067a)		3556	66.78	17.319	.). 575	1.017
	Evo		31.25	00170	16.668	0.646	1.038
	ovh		5125		10,000	01010	21030
		OH					
x ² Π,	Cade and Huo(1967a)		4062	74.54	19.712	0.6501	0.950
	Exp		3735.2	82.81	18.871	0.714	0.0971
		OH -					
$x^{1}\Sigma^{+}$	Cade (1967a)		4087.9	87.82	20.023	0.722	0.542
	Exp		3735		13.87		0.971
		HF					
x1Σ+	Cade and Huo(1967a)		4469	80.34	21.868	0.7693	0.897
	Exp		\$139.0	90.14	20.949	0.797	0.917
		NaH					
$X^{1}\Sigma^{+}$	Cade and Huo(1967a)		1187	14.71	4.766	0.1151	1.914
	Ежр		1172.2	19.72	4.901	0.135	1.837
Molecule							
and							
State	Reference		u	w_x_	В	a	r
State	Reference	MgH	u e	w x e e	Be	a _e	re
$x^2\Sigma^+$	Reference Cade and Huo(1967a)	MgH	ие 1598	^w e ^x e 21.79	^В е 5.859	a _e 0.1315	^r e
$x^2 \Sigma^+$	Reference Cade and Huo(1967a) Exp	MgH	u _e 1598 1495.7	⁽¹⁾ e ^x e 21.79 31.5	B _e 5.859 5.818	α _e 0.1315 0.167	r _e 1.725 1.731
x ² Σ ⁺	Reference Cade and Huo(1967a) Exp	MgH	u _e 1598 1∔95.7	@ x e ^e e 21.79 31.5	B _e 5.859 5.818	α _e 0.1315 0.167	r _e 1.725 1.731
$x^2 \Sigma^+$	Reference Cade and Huo(1967a) Exp	MgH AlH	u _e 1598 1∔95.7	^(t) e ^x e 21.79 31.5	^В е 5.859 5.818	α _e 0.1315 0.167	r _e 1.725 1.731
x ² Σ ⁺	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a)	MgH AlH	u _e 1598 1÷95.7 1741	^(U) e ^x e 21.79 31.5 26.86	B _e 5.859 5.818 6.394	α _e 0.1315 0.167 0.1719	r _e 1.725 1.731 1.647
x ² Σ ⁺ x ¹ Σ ⁺	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp	MgH AlH	u _e 1598 1→95.7 1741 1682.6	^(U) e ^x e 21.79 31.5 26.86 29.09	B _e 5.859 5.818 6.394 6.391	α _e 0.1315 0.167 0.1719 0.186	r _e 1.725 1.731 1.647 1.643
x ² Σ ⁺	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp	MgH AlH	u _e 1598 1÷95.7 1741 1682.6	⁽¹⁾ e ^x e 21.79 31.5 26.86 29.09	Be 5.859 5.818 6.394 6.391	α _e 0.1315 0.167 0.1719 0.186	r _e 1.725 1.731 1.647 1.643
state x ² Σ+ x ¹ Σ+	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp	MgH AlH	u _e 1598 1495.7 1741 1682.6	^U e ^x e 21.79 31.5 26.86 29.09	B _e 5.859 5.818 6.394 6.391	α _e 0.1315 0.167 0.1719 0.186	r _e 1.725 1.731 1.647 1.648
state x ² Σ ⁺ x ¹ Σ ⁺	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp	MgH AlH SiH	u _e 1598 1→95.7 1741 1682.6	^U e ^x e 21.79 31.5 26.86 29.09	B _e 5.859 5.818 6.394 6.391	α _e 0.1315 0.167 0.1719 0.186	r _e 1.725 1.731 1.647 1.643
x ² Σ ⁺ x ¹ Σ ⁺	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a)	MgH AlH SiH	u _e 1598 1495.7 1741 1682.6 2144 2042.5	^U e ^x e 21.79 31.5 26.86 29.09 30.91	Be 5.859 5.818 6.394 6.391 7.558 7.498	α _e 0.1315 0.167 0.1719 0.186 0.1894 0.216	r _e 1.725 1.731 1.647 1.648 1.514
x ² Σ ⁺ x ¹ Σ ⁺ x ² Π _r	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp	MgH AlH SiH	u _e 1598 1495.7 1741 1682.6 2144 2042.5	^U e ^x e 21.79 31.5 26.86 29.09 30.91 35.67	Be 5.859 5.818 6.394 6.391 7.558 7.498	α _e 0.1315 0.167 0.1719 0.186 0.1894 0.214	r _e 1.725 1.731 1.647 1.643 1.514 1.521
x ² Σ ⁺ x ¹ Σ ⁺ x ² Π _r	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp	MgH AlH SiH PH	u _e 1598 1495.7 1741 1682.6 2144 2042.5	^(U) e ^x e 21.79 31.5 26.86 29.09 30.91 35.67	Be 5.859 5.818 6.394 6.391 7.558 7.498	α _e 0.1315 0.167 0.1719 0.186 0.1894 0.214	r _e 1.725 1.731 1.647 1.648 1.514 1.514
x ² Σ ⁺ x ¹ Z ⁺ x ² Π _r x ³ Σ ⁻	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp	MgH AlH SiH PH	u _e 1598 1495.7 1741 1682.6 2144 2042.5 2515	^U e ^x e 21.79 31.5 26.86 29.09 30.91 35.67 36.37	Be 5.859 5.818 6.394 6.391 7.558 7.498 8.664	α _e 0.1315 0.167 0.1719 0.186 0.1894 0.214	r _e 1.725 1.731 1.647 1.643 1.514 1.521 1.412
x ² Σ+ x ¹ Σ+ x ² Π _r x ³ Σ ⁻	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp	MgH AlH SiH PH	u _e 1598 1495.7 1741 1682.6 2144 2042.5 2515	^(U) e ^x e 21.79 31.5 26.86 29.09 30.91 35.67 36.37	B _e 5.859 5.818 6.394 6.391 7.558 7.498 8.664	α _e 0.1315 0.167 0.1719 0.186 0.1894 0.214 0.2145	r _e 1.725 1.731 1.647 1.648 1.514 1.521 1.412
state x ² Σ+ x ¹ Σ+ x ² Π _r x ³ Σ ⁻	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a)	MgH AlH SiH PH	u _e 1598 1495.7 1741 1682.6 2144 2042.5 2515	^U e ^x e 21.79 31.5 26.86 29.09 30.91 35.67 36.37	Be 5.859 5.818 6.394 6.391 7.558 7.498 8.664	α _e 0.1315 0.167 0.1719 0.186 0.1894 0.214 0.2145	r _e 1.725 1.731 1.647 1.648 1.514 1.521 1.412
x ² Σ+ x ¹ Σ+ x ² Π _x x ³ Σ ⁻	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a)	MgH AlH SiH PH	u _e 1598 1495.7 1741 1682.6 2144 2042.5 2515 2860	^(U) e ^x e 21.79 31.5 26.86 29.09 30.91 35.67 36.37 42.32	Be 5.859 5.818 6.394 6.391 7.558 7.498 8.664 9.756	α _e 0.1315 0.167 0.1719 0.186 0.1894 0.214 0.2145	r _e 1.725 1.731 1.647 1.643 1.514 1.521 1.412 1.412
x ² Σ+ x ¹ Σ+ x ² Π _x x ³ Σ ⁻ x ² Π _i	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a)	MgH AlH SiH PH SH	μ _e 1598 1495.7 1741 1682.6 2144 2042.5 2515 2860	^(U) e ^x e 21.79 31.5 26.86 29.09 30.91 35.67 36.37 42.32	Be 5.859 5.818 6.394 6.391 7.558 7.498 8.664 9.756	α _e 0.1315 0.167 0.1719 0.186 0.1894 0.214 0.2145 0.2494	r _e 1.725 1.731 1.647 1.648 1.514 1.521 1.412 1.330
x ² Σ+ x ¹ Σ+ x ² Π _r x ² Π _r x ² Π _i	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a) Cade and Huo(1967a)	MgH AlH SiH PH SH	^u e 1598 1495.7 1741 1682.6 2144 2042.5 2515 2860	^(U) e ^x e 21.79 31.5 26.86 29.09 30.91 35.67 36.37 42.32	Be 5.859 5.818 6.394 6.391 7.558 7.498 8.664 9.756	α _e 0.1315 0.167 0.1719 0.186 0.1894 0.214 0.2145 0.2145	r _e 1.725 1.731 1.647 1.643 1.514 1.521 1.412 1.330
$x^{2}\Sigma^{+}$ $x^{2}\Sigma^{+}$ $x^{1}\Sigma^{+}$ $x^{2}\Pi_{r}$ $x^{3}\Sigma^{-}$ $x^{2}\Pi_{i}$	Reference Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a) Exp Cade and Huo(1967a) Cade and Huo(1967a)	MgH AlH SiH PH SH	<u>и</u> е 1598 1495.7 1741 1682.6 2144 2042.5 2515 2860	^(U) e ^x e 21.79 31.5 26.86 29.09 30.91 35.67 36.37 42.32	B _e 5.859 5.818 6.394 6.391 7.558 7.498 8.664 9.756	α _e 0.1315 0.167 0.1719 0.186 0.1894 0.214 0.2145 0.2145	r _e 1.725 1.731 1.647 1.643 1.514 1.521 1.412 1.330

Molecule		2				
State	Reference	w e	wexe	Be	۵ _e	re
	HC1					
$x^{1}\Sigma^{+}$	Exp	2989.7	52.05	10.591	0.302	1.275
	He t					
$x^{2\Sigma^{+}}u$	Gilbert and Wahl (1967b)	1790		7.42		1.1
	He ₂					
$\frac{3}{\Sigma_{u}^{+}}$	Poshusta and Matsen(1963)	1743	91.7	6.6	0.26	1.13
${}^{l}\Sigma^{+}_{u}$	Scott et al (1966)	1665	43.4	6.739	0.216	1.12
	Li ₂					
Σ_{g}^{+}	Das and Wahl(1966)H.F.	326				2.78
	OVC	345				2.69
	Exp	351				2.67
	c2					
$r_{\Sigma_{g}^{+}}$	Fougere and Nesbet(1966)	1503				1.356
³ ∏u		1538				1.394
$^{3}\Sigma_{g}^{-}$		1328				1.444
¹ n _u		1527				1.392
	Verhaegen et al (1967)	1970				1.255
³ П _и		1710				1.300
n _u		1730				1.306

Molecule and State	Reference	we	w _e x _e	B _e	α _e	r _e
	N ⁺ ₂					
x ² ∑+	Cade et al (1966)	2570.5	9.809	2.065	0.0148	1.080
Ū.	Exp	2207.1	16.14	1.932	0.020	1.118
A ² II _u	Cade et al (1966)	2312.5	6.082	1.887	0.0155	1.129
	Exp	1902.8	14.91	1.740	0.018	1.176
β ² Σ ⁺ _u	Ca de et al (1966)	3101.8	19.88	2.296	0.0128	1.024
	Exp	2419.8	23.19	2.073	0.020	1.075

Molecule and State	Reference	we	⁽¹⁾ e ^x e	Be	ae	re
		N ₂				
$x^{1}\Sigma_{g}^{+}$	Cade et al (1966)	2729.6	8.378	2.121	0.0135	1.065
5	Exp	2358.1	14.188	1.999	0.0178	1.097
		F ₂				
$x^{1}\Sigma_{g}^{+}$	Wahl (1964)	1257	9.85	1.003	0.0108	1.33
	Das and Wahl (1966) Das and Wahl (1967) Harris and Michels (1967) Exp	678 704 1072 923.1	16.44 16.04	0.9087 0.8938	0.012 0.022	1.45 1.44 1.398 1.409
		F_2				
$x^{2}\Sigma_{u}^{+}$	Gilbert and Wahl (1967b)	510		0.50		1.9
		Ne ⁺ ₂				
$x^{2}\Sigma_{u}^{+}$	Gilbert and Wahl (1967b)	660		0.59		1.7
		Cl ₂				
$x^2 \Sigma_u^+$	Gilbert and Wahl (1967c)	577	2.2	0.24	0.0023	2.00
$x^{2}\Sigma_{u}^{+}$	Exp	559.7	2.70	0.24407	0.00153	1.9878

Molecule							
State	Reference	we	w x e e	Be	a	re	
- 2ret	Cilbert and Wahl (1967b)	2 260	2	0 136	0.001	2 65	
x-2 _u	A	r ⁺ 2	2.8	0.130	0.001	2.05	
$x^2 \Sigma_u^+$	Gilbert and Wahl(1967b)	300		0.139		2.4	

Molecule						
State	Reference	we	^w e ^x e	B _e	~e	r _e
	HeLi ⁺					
$x^{1}\Sigma^{+}$	Schneiderman and Michels(1965)	232.8	20.41	1.513	0.122	2.0 9 5
	HeLi					
2 _∑ **	Schneiderman and Michels(1965)	375.2	11.07	1.019	0.3043	2.553
2 _∑ *		284.2	5.32	0.724	0.0090	3.029
а ⁴ П		353.6	2.53	0.841	0.0086	2.810
а ² П		285.7	39.68	1.722	0.183	1.964
	LiF					
$x^{1}\Sigma^{+}$	McLean (1964)	1134.5	9.441	1.580	0.0182	1.528
	Exp	964.1	8.895	1.509	0.0241	1.564
	LiNa					
$x^{1}\Sigma^{+}$	Bertoncini and Wahl(1967)H.F.	264				2.94
	NO	256				2.90

Molecule and State	Reference	w e	w _e x _e	Be	α _e	re
	LiCl					
$x^{1}\Sigma^{+}$	Matcha (1967)	671.5	4.671	0.704	0.007 6	2.024
	Ежр	641.0	4.2	0.706	0.0080	2.021
$x^{1}\Sigma^{+}$	Yoshimine (1964)	1807.7	10.687	1.757	0.0151	1.290
	Exp	1487.3	11.830	1.651	0.0190	1.331
в ¹ ∑+	Verhaegen and Richards	1554				1.356
b ³ Σ ⁺	(1966)	1409				1.403
ΠA		1399				1.441
3 a ∏		1372				1.436
	BN					
1 _П	Verhæegen et al (1967)	1790				1.306
ι + Σ		2020				1.246
3 _Σ +		2070				1.220
x ³ π		1750				1.305

Molecule						
State	Reference	ш е	^{لن} عد و	Be	¢e	re
	BF					
$x^{1}\Sigma^{+}$	Nesbet (1964a)	1413.8	9.9	1.495		1.272
	Huo (1965)	1496	12.07	1.559	0.0185	1.246
	Exp	1402.1	11.8	1.510	0.016	1.265
	C0					
$x^{1}\Sigma^{+}$	Nesbet (1964a)	2257 2	11.1			
	Huo (1965)	2007.2	11.1	1.965		1.119
	Exp	2169 8	12 205	2.027	0.0153	1.101
	-	2109.0	13,295	1,931	0.0175	1.128
	NaF					
$x^{1}\Sigma^{+}$	Matcha (1967)	588.3	4.387	0.439	0.00468	1.920
	Das and Wahl (1967)	590				1.93
	Wahl et al (1967)	603				1.93
	Exp	536.1	3.83	0.437	0.00457	1.926
Molecule and						
State	Reference	w e	w x e e	Be	° e	re
	NaCl					
$x^{1}\Sigma^{+}$	Matcha (1967)	378.3	2.589	0.215	0.00179	2.373
	Wahl and Gilbert(1967)	341				2.42
	Exp	364.6	2.05	0.218	0.00162	2.360
Molecule						1214
and						E 14
State	Reference	e	ώx ee	Be	e	e
	MgO					
B ¹ ∑ ⁺	Richards et al (1966)	1055				1.666
$A^1\Pi$		887				1.812
ь ³ ₂ +		856				1.762
a ³ П		880				1.314
$x^{1}\Sigma^{+}$		808				1.785
	ScO					
$B^2\Sigma^+$	Carlson et al (1965)	1329				1.678
$A^2 \Pi_r$		1174				1.625
² _{Δ_r}		1318				1.654
$x^2\Sigma^+$		1373				1.615
	ScF					
1 A	Carlson et al (1965)	970				1.801
³ A _r		902				1./51
$^{1}\Sigma^{+}$		909				1.806

Molecule and							
State	Reference	ω e	ⁱⁱⁱ e ^x e	Be	¢e	re	
	TiO						
$d^{1}\Sigma^{+}$	Carlson and Moser(1967)	1737				1.526	
x ³ _{Δr}		1731				1.542	

H3⁺Spectroscopic Constants

Reference	A ₁	Е	
Coulson (1935)	3170		
Christoffersen (1964)	3354	2790	
Pearson et al (1966)	3610	4440	

Calculated Geometry and Vibrational Frequencies									
R _c (Å)	н ₂ 0 0.960	н ₂ s 1.328	N H ₃ 1.018	РН ₃ 1.414	СН ₄ 1.104	SiR ₄ 1.475	N H ⁺ 1.053	Р Н <mark>+</mark> 1.455	
HXHe	106.39 [°]	89.40°	109.16 [°]	89,26	Tetrahedral	Tetrahedra1	Tetrahedral	Tetrahedral	
^ω 1(Cm ⁻¹)	4411	3112	3672	28 39	3709	2542	3634	2462	
w2	1364	985	645	902	1262	845			
w ₃	4211	2798	3874	2791	3830	2557			
ω ₄			1035	864	1122	714			

Menna et al (1966)

G. Dissociation Energies : Introduction

Hartree-Fock diasociation energies are obtained by substracting the atomic H.F. energies from the molecular H.F. energy.

Beyond Hartree-Fock diasociation energies are obtained relative to the natural limit for the procedure at hand. In the case of the valence extended Hartree-Fock or NO procedures, the asymptotic limit is again the H.F. atom energies. For the VB calculations it is dependent on the basis set that is used.

Molecule	State		D _e (eV)	
		Hartree-Fock ^a	Beyond H.F.	Exptl.
LiH	Σ^{1}	1.49	2.24 ^b , 2.36 ^c	2.52
BeH	² _Σ +	2.18		(2.6)
вн	1_{Σ}^{+} +	2.78		3.58
СН	$^{2}\Pi_{r}$	2.47		3.65
NH	3 ₂ -	2.10		(3.8)
FO	² П ₁	3.03		4.63
HF	l_{Σ}^{+} +	4.38	2.77 ^d	6.12
NaH	1_{Σ} +	0.93		(2.3)
MgH	$^{2}\Sigma^{+}$	1.15		(2.3)
AlH	${}^{1}\Sigma^{+}$	2.36		3.01
SiH	² II _r	2,23		(3,32)
РН	³ Σ ⁻	2.03		(3,34)
SH	² П <u>1</u>	2.63		3.70
HC1	Σ^+	3.48		4.616

Hydride Dissociation Energy

a. All Hartree-Fock results: Cade and Huo (1967a,b)

b. Bender and Davidson (1966)

c. Sanders and Krauss (1967)

d. Harris and Michels (1967)

Homonuclear Dissociation Energy

D_			D _e (eV)	
Molecule	State	Hartree-Fock	Beyond Hartree-Fock	Expt1.
He ⁺ ₂	x ² \subset{2}_u^+	2.7 ^a		
Li ₂	x ¹ ₂ + g	0.17 ^c	0.99 ^d	1.1
^B 2	³ Σ ⁻ ε	0.89 ^c		
c ₂	x ¹ Σ ⁺	0.79 ^c	5.39 ^e	6.36
N2	$x^{1}\Sigma_{g}^{+}$	5.18 ^f		9.90
N ₂ ⁺	x ² ∑+	3.13 ^f		8.86
N ⁺ ₂	A ² II _u	3.59f		7.73
0 ₂	$x^{3}\Sigma_{g}^{-}$	1.28 ^c		5.21
°2	aldg	-0.06 ^C		4.23
°2	$b^{1}\Sigma^{+}_{\alpha}$	-1.39 ^c		3.57
F ₂	$x^{1}\Sigma^{+}$	-1.37 ^c	0.95 ^g 0.41 ^h ,2.01 ^h	1.69
Fī2	$x^2\Sigma_u^+$	1.66 ^a		
Ne ⁺ 2	$x^2 \Sigma_{u}^+$	1.65 ^a		
Na ₂	x ¹ ₂ ⁺ g	0.07 ^c		0.74

Molecule	State	D _e (eV) Hartree-Fock Beyond Hartree-	Fock Exptl	
C1	x ¹ <u>></u> +	0.87 ⁱ	2.51	
c1	x ² ∑+	1.28 ^a		
Art 2	$x^2 \Sigma_u^+$	1.25 ^a		

- a. Gilbert and Wahl (1967a)
- b. Reagan et al (1963)
- c. LMSS (1967)
- d. Das (1967)
- e. Fougere and Nesbet (1966)
- f. Cade et al (1966)
- g. Das and Wahl (1967)

h. Harris and Michels (1967), the first number is for the Hartree-Fock basis while the second is obtained with a minimal Slater basis.

i. Gilbert and Wahl (1967c)

Heteropolar Dissociation Energy

		neteropolar Dissoci	Lacron chergy	
Molecule	State	Hartree-Fock	Beyond Hartree-Fock	Exptl.
HeLi	А2∏		0.06 ^a	
	a ⁴ 11		0.89	
	2 5*		0.41	
	2 ** *		0.45	
LiO	² π _i	1.88 ^b		
LiF	x ¹ Σ ⁺	4.07 [°]		
LiNa	$x^{1}\Sigma^{+}$	0.05 ^d	0.65 ^d	
LiC1	$x \frac{1}{\Sigma}$ +	3.83 ^e		4.84
BeO	х 1 ² +	4.13 ^f		4.7
BeF	х &+	5.07 ^b		
BF	x É+	6.19 ^g		8.58±0.5
во	$x^2\Sigma^+$	5.91 ^b		.≦7.52
CO	$x^{1}\Sigma$ +	7.92 ^c		11.242
	a ³ II	2.07 ^h		5.206
NO	x ² ¶ _r	2.00 ¹		
NaF	$x^{1}\Sigma^{+}$	3.05 ^e	3.7 ^j	4.95
NaC1	x ¹ Σ ⁺	3.18 ^e		4.22

- a. Schneiderman and Michels (1965)
- b. LMSS (1967)
- c. McLean and Yoshimine (1967)
- d. Bertoncini and Wahl (1967)
- e. Matcha (1967)
- f. McLean and Yoshimine (1967)
- g. Huo (1965)
- h. Huo (1966)
- i. Estimated from LMSS (1967) NO total energy and ground state atom energies of -129.21027 a.u.
- j. Das and Wahl (1967)

H. Electron Affinities: Introduction

Ab initio calculation of electron affinities from beyond H.F. results is not possible today; direct calculation of the electron affinity of s molecule by the difference in the H.F. energies of the ion and neutral molecule yields poor results. Systematic study of the homologous series of molecules and snalyogous atoms does permit the estimation of the correlation energy and other properties of the ion. Cade (1967a,b) has completed such a program for the hydride ions.

The use of orbital energy from singlet symmetric ions is also illustrated. Note that other ions are listed in the orbital energy tables.

Molecule	EA(HF)	~e ^a	EA(Corr)	EA (Expt1.)
сн			1.61	> 1.4
NH			0.22	> 0
ОН	-0.10	2,90	1.91	1.83
SiH	0.64		~ 1.46	
рн	-0.23		~ 0.93	
SH	1.21	2.42	2.25	~ 2.3
NO ^c ₂		3.45		> 3.82 ^d

Electron Affinities of Molecules(eV)

a. Orbital with smallest energy for closed-shell ions.

b. Hydride results from Cade (1967a); (1967b).

c. Pfeiffer (Princeton) (1967).

d. Curran, R. K. (1962), Phys. Rev. 125, 910

I. Orbital Energies: Introduction

A variety of orbital energies are tabulated at the geometries listed in Section B. The majority of diatomic results are for accurate H.F. calculations and are likely to be unchanged by future work. This can not be said for many of the polyatomic cases. Nonetheless, the orbital energies tabulated here will provide the qualitative insight to the molecular shell structure and are presented to that purpose.

Many molecules are missing from the following tables since the orbital energies were presented with the potential energy curves in subsequent sections.

Hartree-Fock Oribital Energies

Orbitel		- (-		
	H ₂ (¹ Σ ⁺ _g)	Li ₂ (¹ Σ ⁺ _g)	^B ₂ (³ Σ ⁻ _g)	c ₂ (¹ 5 ⁺)	$N_2 \begin{pmatrix} 1 \Sigma^+ \\ g \end{pmatrix}$
log	0.5946 ^a	2.4523ª	7.7039 ⁸	11.3598 ^a	15.6819 ^b
20g		0.1816	0.7057	1.0613	1.4736
3σ _g					0.6349
40g					
5σ _g					
10 _u		2.4520	7.7031	11.3575	15.6783
20			0.3636	0.5172	0.7780
30 1					
40 u					
111			0.3594	0.4579	0.6154
1172					

Homonuclear Diatomic

Orbital			-6	
	$0_2 (\frac{3\Sigma_g}{g})^a$	0 ₂ (² ¶ _g) ^a	$- \mathbf{F}_2 (\mathbf{\Sigma}_g^+)^a$	$Na \left(\frac{1}{\Sigma_{g}} \right)^{a}$
log	20.7296	20.2877	26.420 7	40.4763
2 ⁰ 8	1.6488	1.1865	1.8075	2.7957
30g	0.7357	0.3150	0.7823	1.5179
40g				0.1698
50g				
lo _u	20.7286	20.2871	26.4204	40.4763
2 ^o u	1.0987	0.7260	1.4763	2.7956
30 _u				1.5160
4 ⁰ u				
1 ^{II} .	0.7052	0.3062	0.8282	1.5164
$1\Pi_{g}$	0.5319	0.08375	0.6507	1.5162

a. LMSS (1967)

b. Cade et al (1966)

Orbital		- e		
	Lib $(\Sigma^+)^a$	$\operatorname{Lic}(^{2\Pi}r)^{a}$	$\operatorname{Lin}(^{3}\Sigma^{-})^{a}$	L10(² II ₁) ^a
1σ	7.6336	11.1940	15.4463	20.4493
2 0	2.4508	2.4435	2.4344	2.4387
3σ	0.4583	0.6218	0.8203	1.0893
4σ	0.1978	0.2462	0.3031	0.4027
5 0				
6 0				
7 0				
1П		0.2912	0.3774	0.4100
2∏				

Hartree-Fock Orbital Energies Heteropolar Diatomic

Heteropolar Diatomic

Orbital		-6		
	LiF $(\frac{1}{\Sigma}^+)^b$	LiNa $(\Sigma^+)^a$	LICI $(^{1}\Sigma^{+})^{c}$	LiBr $(^{1}\Sigma^{+})^{c}$
1σ	26.1114	40.4727	104.7244	489.9253
20	2.4286	2.7923	10.4502	65.0563
30	1.3817	2.4637	7.916 6	58.4110
4σ	0.5046	1.5136	2.4762	9.7284
5 0		0.1783	0.9683	7.3362
6°			0.4037	3.0691
7 0				2.4750
80				0.8918
90				0.3656
1П	0.4786	1.5129	7.9164	58.4095
211			0.3759	7.3349
311				3.0675
4Π				0.3373
10				3.0700

Hartree-Fock Orbital Energies He

eteropolar	Diatomic
------------	----------

Orbital		- 6		
	BeO($^{1}\Sigma^{+})^{b}$	BeF $(2\Sigma^+)^d$	$\mathtt{BeF}({}^{2}\Pi_{\mathfrak{r}})^d$	B0(² Σ ⁺) ^a
10	20.4514	26.2399	26.1924	20.5551
20	4.6994	4.7335	4.7370	7.6796
3σ	1.1580	1.5614	1.5251	1.3258
4 0	0.4649	0.6980	0.6556	0.6315
50				0.5177
6 0				
7 0				
117	0.3943	0.3397	0.6275	0.5197
211			0.1688	

Orbital		- 6	~	
	B0 ⁻ (¹ Σ ⁴) ^a	BF $(^{1}\Sigma^{+})^{b}$	CN (² П _r) ^a	co (¹ Σ ⁺) ^b
1σ	20.2287	26.3759	15.6173	20.6643
2σ	7.2777	7. 70 79	11.3236	11.3597
зσ	1.0150	1.6977	1.2199	1.5210
4σ	0.3339	0.8533	0.5828	0.8038
50	0.0737	0.4044		0.5544
6°				
70				
111	0.2179	0.7444	0.5194	0.6395
2П			0.2429	

Orbital		- 6		
	$\operatorname{CF}(2\pi)^{a}$	$cs(^{1}\Sigma^{+})^{f}$	NO $(2\pi)^{a}$	$\operatorname{NaF}(^{1}\Sigma^{+})^{c}$
1σ	26.3744	91.9531	20.6911	40.4664
20	11.3405	11.3434 ,	15.7179	26.0627
30	1.7081	9.0359	1.5939	2.7872
4σ	0.9086	6.7117	0.9257	1.5131
5°	0.5480	1.1071	0.6802	1.3205
60		0.6921		0.4395
7 0		0.4705		
10	0.7469	6.6959	0.6710	1.5107
2Π		0.4634		0.4262

Orbital		- 6		
	NaCl $({}^{1}\Sigma^{+})^{c}$	NaBr $(\Sigma^{1})^{c}$	$MgO(\Sigma^{+})^{b}$	$AlF(\Sigma^+)^b$
10	104.6965	489.9002	49.0580	58.4962
2 0	40.4996	65.0351	20.4374	26.2456
3 σ	10.4216	58.3893	3.7949	4.9067
4σ	7.8881	40.4971	2.3092	3.2166
5σ	2.8191	9.7068	1.0785	1.5344
6 0	1.5418	7.3145	0.3177	0.6756
7σ	0.9354	3.0485		0.3365
8σ	0.3639	2.8165		
90		1.5374		
100		0.8643		
110		0.3315		
111	7.8879	58.3877	2.3112	3.2158
2∏	1.5419	7.3128	0.3496	0.6157
3∏	0.3474	3.0468		
41		1.5383		
51		0.3141		
18		0 30/9		

Orbital		-6		
	$Sig(^{1}\Sigma^{+})^{b}$	$PN(\Sigma^+)^b$	$Clf(^{1}\Sigma^{+})^{g}$	$\text{KF} (\Sigma^+)^c$
1σ	68.8027	79.9725	104.9343	133.4936
20	20.5239	15.5855	26.3673	26.0335
30	6.1539	7.5238	10.6541	14.4498
4σ	4.2559	5.4161	8.1220	11.4796
5σ	1.2787	1.1597	1.6347	1.7108
6σ	0.6103	0.6481	1.1020	1.3047
7 0	0.4345	0.4844	0.7011	0.9103
80				0.4090
90				
1 11	4.2551	5.4146	8.1174	11.4797
21	0.4864	0.4574	0.7237	0.9211
зΠ			0.4908	0.4010

Orb	tal		- 6	
	$\text{KC1}(^{1}\Sigma^{+})^{c}$	$CaO(^{1}\Sigma^{+})^{b}$	$RbF(^{1}\Sigma^{+})^{c}$	$sro(^{1}\Sigma^{+})^{b}$
1σ	133.5253	149.2651	551.4045	583.6000
2 0	104.6734	20.3183	74.9900	80.2804
3 0	14.4822	16.7186	67.8463	72.8900
4σ	11.5124	13.5279	26.0271	20.3036
5 0	10.3995	2.1479	12.0819	13.3588
6 0	7.8649	1.2834	9.4361	10.5848
7 0	1.7436	0.9525	4.6733	5.5703
8σ	0.9650	0.2653	1.4808	1.7823
90	0.8990		1.2962	1.1006
10 0	0.3372		0.7634	0.8648
11σ			0.3974	0.2487
1П	11.5126	13.5270	67.8458	72.8891
2∏	7.8648	1.2556	9.4367	10.5857
зП	0.9528	J.2617	4.6753	5.5695
4Π	0.3281		0.7737	0.9993
5∏			0.3964	0.2491
۱٥			4 .67 59	5.5695
a.	LMSS (1967)			
ь.	McLean and Yoshimine	(1967)		

- c. Matcha (1967)
- d. Walker and Richards (1967)
- e. Verhaegen and Richards (1967)
- f. Richards (1967)
- g. Stevens (1967)

Hartree-Fock	Orbital	Energies
Linea	ar Triat	omic

Orbital		- 6		
	$LiOH(^{1}\Sigma^{+})^{a}$	$(\text{FHF})^{-}({}^{1}\Sigma_{g}^{+})^{b},c$	c ₃ (¹ Σ ⁺ _g) ^{c,d}	$(\text{ OCN })^{-} (^{1}\Sigma^{+})^{b}$
1σ	20.4042	25.9331	11.2504	20.3177
2σ	2.4381	25.9331	11.2502	15.2657
3 0	1.1644	1.2505	1.1630	11.0716
40	0.5470	1.1961	0.8673	1.1851
50		0.4676	1.0377	0.9063
6σ		0.2717	0.4324	0.469 4
7σ			0.4777	0.2928
11	0.3701	0.3165	0.4016	0.3675
2П		0.2864		0.1349

Orbital		- 6		
	$fcn(^{1}\Sigma^{+})^{b}$	$(SCN) = (^{1}\Sigma^{+})^{b}$	$\operatorname{clcn}(\Sigma^{+})^{b}$	$\operatorname{co}_{2}(\Sigma_{g}^{+})^{b,c}$
1σ	26.4410	91.7031	104.9336	20.6492
2σ	15.6113	15.3121	15.6063	20.6493
3 0	11.3988	11.0670	11.3479	11.4601
4σ	1.7701	8.7079	1 0.6 579	14.7698
50	1.2536	6.3903	8.1244	1.5299
6 ⁰	0.9331	0.9503	1.2717	0.7434
7 0	0.6020	0.7823	1.1949	0.8002
80		0.3903	0.7570	
9σ		0.3059	0.5884	
1 Π	0.8182	6.3872	8.1218	0.7149
2П	0.5004	0.2785	0.5983	0.5443
3П		0.1124	0.4646	

Orbital		-6		
	$\operatorname{BeF}_{2}(^{1}\Sigma_{g}^{+})^{c,e}$	sco $(^{1}\Sigma^{+})^{b}$	$N_3^{-} ({}^{1}\Sigma_g^{+})^{c,f}$	Li20 (15+)a,g
	, i i i i i i i i i i i i i i i i i i i		-	0
1σ	26.1833	91.9960	15.4687	20.3398
2 σ	26.1829	20.6575	15.2198	2.3625
3 0	4.7709	11.4411	15.2200	2.3627
40	1.5310	8.9991	0.9674	0.3260
5σ	1.5246	6.6805	1.1950	1.0080
6σ	0.6531	1.5026	0.2810	
7 0	0.6448	1.0941	0.3505	
80		0.7796		
9σ		0.6386		
111	0.6275	6.6777	0.3991	0.2655
2∏	0.5982	0.6561		
зП		0.4226		

- a. Ritchie and King (1967b)
- b. McLean and Yoshimine (1967)

c. Orbitals are alternately gerade and ungerade for σ and vice versa for $\mathbb{I}.$

d. Clementi and McLean (1962a)

e. Peyerimhoff et al (1967)

f. Peyerimhoff and Buenker (1967)

g. Buenker and Peyerimhoff (1966)

Hartree-Fock Orbital Energies

Non-linear Triatomic

0rb	ital	- ¢		
	FOH(¹ A) ^a	N02 (1A1)p	0 ₃ (¹ A ₁) ^c	$F_{2}^{0} (^{1}A_{1})^{a}$
1a	26.3435	20.2663	20.8896	26.3833
2a	20.6866	15.4767	20.7255	20.8043
3a	1.6751	1.2922	1.7233	1.7760
4 a	1.3239	0.5764	1.1108	1.2860
5a	0.7864	0.4181	0.8168	0.8084
6a	0.6925	0.1495	0.5657	0.7268
7a	0.6039	0.1267	0.4906	0.6 5 22
8a				
1ь	0.7353	20.2666	20.7255	26.3833
2ь	0.5484	1.0594	1.4263	1.6443
3ь		0.3811	0.7808	0.8273
4 b		0.3797	0.7602	0.7945
5Ъ		0.1838	0.5807	0.6811
6Ъ				0.5887
0	Buankar and Pevarimbo	FF (1966)		
α.	buchaer and reyeringto			

b. Pfeiffer (1967)

c. Peyerimhoff and Buenker (1967)

Hartree-Fock Orbital Energies, AH

Orbital		- 6			
	BH ₂ ⁻⁽¹ A ₁) ^a	CH2(141)	$\operatorname{NH}_2^{-}(1A_1)^c$	H ₂ 0 (1A ₁) ^d	H ₂ S (1A ₁) ^e
1a 1	7.3903	11.3120	15.1656	20.56 2 4	92.4785
2a_1	0.4481	0.9095	0.7335	1.3615	9.0798
3a	0.00213	0.3859	0.0913	0.5737	6.6350
4a ₁					0.9403
5a ₁					0.4543
1b 2	0.2957	0.5712	0.2727	0.7273	6.6362
^{2b} 2					0.5307
¹⁶ 1			0.0205	0.5046	6.6318
^{2b} 1					0.3506
a. Gelle	eretal (19	67)			
b. Kraus	as (1964)				
c. Ritch	ie and King	(1967b)			
d. Ritch	ie and King	(1967a)			

e. Moccia (1964c)

Hartree-Fock Orbital Energies

Linear Tetratomics

Orbital		- C	
	HCCH $({}^{1}\Sigma_{g}^{+})^{a}$	HCCH $(1\Sigma_g^+)^b$	NCCN (15+) ^a g
1g	11.2440	11.2585	15.6576
20g	1.0296	1.0406	11.3554
30g	0.6828	0.6835	1.3048
40 g			0.9868
5σ g			0.6279
1qu	11.2403	11.2548	15.6576
2 ⁰ u	0.7698	0.7658	11.3543
3 4 1			1.2797
4J			0.6438
111 u	0.4103	0.4131	0.6035
ıП _g			0.5004
a. McL	ean and Yoshimine	(1967)	

b. Buenker et al (1967)

Hartree-Fock Orbital Energies Linear Tetratomics

Orbit	al	~ 6	
	Licch($^{1}\Sigma^{+}$)	FCCH $(^{1}\Sigma^{+})$	CICCH $(1\Sigma^+)$
1σ	11.1454	26.3837	104.8889
2σ	11.1250	11.3410	11.2984
3σ	2.4519	11.2470	11.2495
4 0	0.9404	1.7071	10.6136
5σ	0.6596	1.0529	8.0802
6 0	0.4207	0.8632	1.1941
70		0.7281	1.0198
80 80			0.7513
9σ			0.6722
1	0.32/0	0.7617	8.0778
211		0 / 196	0.5500
211		0.0190	0.5503
115			0.3919

McLean and Yoshimine (1967)

Orbital	· · · · · · ·	- ¢		
	BeH3 (1A1)b	BH3 (¹ A ₁ [*]) ^b	CH ₃ (² A ₁ ^{''}) ^c	$CH_3^- (1_{\mathbf{A}_1}^+)^d$
1a 1	4.4740	7.6173	11.2041	10.8872
2a ₁	0.2808	0.6943	0.9155	0.6153
3a			0.3723	-0.0077
-				
1.0	0.1530	0.4833	0.5834	0.2717

Orbital		- ¢
	NH3 (¹ A1) ^e	PH ₃ (¹ A ₁) ^f
¹ a ₁	15.4876	80.1650
2a ₁	1.1935	7.4798
3a ₁	0.3859	5.2572
4a		0.8380
5a ₁		0.3671
le	0.5967	5.2587
2e		0.4778

a. Both C_{3v} and D_{3h} symmetries are represented; for the D_{3h} orbitals the appropriate primes must be added.

b. Peyerimhoff et al (1966)

c. Hackmeyer and Whitten (1967)

d. Kari and Csizmadia (1967b)

e. Rajagopal (1965)

f. Moccia (1964b)

Hartree-Fock Orbital Energies, AH

Orbital		~6
	BH ₄ ⁻ (¹ A ₁) ^a	CH ₄ (¹ Λ ₁) ^b
^{1a} 1	7.2676	11.2216
^{2a} 1	0.4434	0.9295
^{lt} 2	0.1765	0.5348

a. Krauss (1964)

b. Ritchie and King (1967a)
J. Energy and Properties as a Function of the Internuclear Distance: Introduction

Results are presented for a series of diatomic molecules calculated to high accuracy in the H.F. approximation. These studies were carried out at the IBM laboratory at San Jose but similar results or capability exist at other lsborstories (e.g. LMSS or Argonne). Since these results were available they are presented as a witness to one srea of calculationsl capability.

Units: μ 10^{-18} esu cm, θ 10^{-26} esu cm², q 10^{15} esu/cm³,

 $X_{\tau} 10^{-5} \text{ erg/gauss}^2 \text{ mole}$

R	- E	μ	e	9 ₁	9 ₂	XL
2.45	106.9569	5.277	4.229	-0.040	-2.879	-2.061
2.65	106.9819	5.742	4.921	-0.094	-1.894	-2.208
2.7877	106.9894	6.062	5.408	-0.112	-1.291	-2.316
2.8877 ^a	106.9916	6.295	5.769	-0.118	-).869	-2.397
2.9877	106.9916	6.529	6.138	-0.121	-0.536	-2.481
3.20	106.9869	7.033	6.950	-0.118	0.115	-2.669
3.55	106.9713	7.885	8.384	-0.102	0.337	-3.008

Lif $(1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^2 1\Pi^4, \frac{1}{\Sigma^+})$

a. -€ : 26.1114, 2.4286, 1.3817, 0.5046, 0.4786

_					
	R	- <u>E</u>	μ ^a	ql	q_2
	3.35	467.0387	6.167		
	3.60	467.0517	6.709	-0.0574	-0.514
	3.66	467.0531	6 .843		
	3.723	467.0541	6.984		
	3.825 ^b	467.0547	7.218	-0.0679	0.389
	3.91	467.0543	7.415	-0.0700	0.687
	4.00	467.0533	7.626		
	4.10	467.0515	7.864	-0.0719	1.271
	4.55	467.0381	8.966		

LiC1 $(1\sigma^2 \rightarrow 6\sigma^2 1\overline{1}^4 2\overline{1}^4, 1\Sigma^+)$

a. $\mu_{v} = 7.218 + 0.0753 (v+1/2) + 0.0002 (v+1/2)^{2};$

 μ_{v} (exp) = 7.0853 + 0.0864 (v+1/2) + 0.0006 (v+1/2)²

 b. -ε: 104.7244, 10.4502, 7.9166, 2.4762, 0.9683, 0.4037, 7.9164, 0.3759.

Matcha (1967)

R	- E	μ	θ	q ₁	^q 2	X _L
1.80	89.18098	5.745	3.476	-6.395	0.489	-2.030
2.10	89.39983	6.508	4.838	-5.101	~0.001	-2.313
2.35	89.45122	7.138	5.962	-3.478	-0.140	-2.570
2.4377 ^a	89.4541	7.353	6.354	-2.824	-0.161	-2.665
2.50	89.45299	7.502	6.631	-2.329	-0.170	-2.734
2.75	89.43088	8.037	7.6 9 3	0.019	-0.173	-3.020
3.10	89.37967	8.223	8.649	5.523	-0.124	-3.473
3.80	89.30961	5.380	7.110	17.81	-0.024	-4.737
5.50	89.268 9 4	1.430	4.360	24.43	0.005	-3.489

BeO ($1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^2 1 \overline{1}^4, 1\Sigma^+$)

a. - c : 20.4514, 4.6994, 1.1580, 0.4649, 0.3943

BF $(\iota\sigma^2 \rightarrow 5\sigma^2 \quad {}^{1}\Pi^4, \quad {}^{1}\Sigma^+)$

R	- 12	ц	θ	ql	^q 2	XL
2.00	124.1090	-1.931	-4.312	-1.791	-1.189	~3.077
2.10	124.1413	-1.689	-4.393	-1.834	-0.285	-3.192
2.1925	124.1582	-1.448	-4.447	-1.835	0.4 9 8	-3.301
2.391 ^a	124.1671	-0.883	-4.482	-1.755	1.980	-3.541
2.5775	124.155 9	-0.293	-4.401	<1.624	3.108	-3.775
2.77	124.1352	0.371	-4.193	-1.463	4.005	-4.027
2.9625	124.1107	1.083	-3.855	-1.297	4.653	-4.289

a. - c: 26.3759, 7.7079, 1.6977, 0.8533, 0.4044, 0.7444

McLean and Yoshimine (1967)

 $co (1\sigma^2 \rightarrow 5\sigma^2 1 \Pi^4, 1\Sigma^+)$

R	- E	μ	e	9 ₁	9 ₂	XL
1.80	112.7025	-0.546	-2.563	~3. 574	-4.456	-2.740
1.898	112.7576	-0.319	-2.468	-3.721	-3.887	-2.85 9
2.015	112.7869	-0.029	-2.343	-3.798	-3.141	-3.007
2.132 ^a	112.7891	0.280	-2.204	-3.808	-2.348	-3.159
2.249	112.7733	0.602	-2.048	- 3.778	-1.522	-3.316
2.366	112.7461	0.934	-1.876	-3.729	-0.666	-3.479
2.483	112.7119	1.271	-1.690	-3.679	0.226	-3.647

a. - c : 20.6643, 11.3597, 1.5210, 0.8038, 0.5544, 0.6395

R	- E	μ ^a	q ₁	^q 2
3.10	261.3503	7.222		
3.36	261.3728	7.754		
3.50	261.3773	8.051		
3.56	261.3782	8.180	-1.334	-0.538
3.628 ^b		8.35	-1.249	-0.355
3.71	261.3781	8.510	-1.158	-0.155
3.7794	261.3773	8.510	-1.088	-0.0044
3.90	261.3750	8.941		
4.35	261.3603	10.02		
a. µv= 8.337 +	0.610 (\+1/2) +	0.002 (1/2) ² ;		
μ _ν (exp) =	8.1235 + 0.0644 (√+1/2) + 0.0004 (√+1	1/2) ²	

NaF ($1\sigma^2 \rightarrow 6\sigma^2 1\Pi^4 2\Pi^4, 1\Sigma^+$)

0.4395, 1.5107, 0.4262

b. -e : 40.4665, 26.0627, 2.7872, 1.5131, 1.3205,

Matcha (1967)

R	-E	μ ^a	q ₁	^q 2
3.70	621.4167	7.603		
4.15	621.4521	8.444	-1.025	-0.263
4.30	621. 4559	8.754	-0.919	0.187
4.40	621.4571	8.968		
4.4609	621.4574	9.101		
4.485 ^b	621. 4574	9.101	-0.805	0.680
4.60	621.4570	9.412	-0.743	0.953
4.75	621.4553	9.7 58		
5.00	621.4505	10.356		

NaCl
$$(1\sigma^2 8\sigma^2 1\Pi^4 3\Pi^4, \Sigma)$$

 μ_{v} (exp)= 8.9734 + 0.0570 (v+1/2) + 0.0005 (v+1/2)²

b. -¢: 104.6965, 40.4996, 10.4216, 7.881, 2.8191, 1.5418, 0.9354, 0.3639; 7.8879, 1.5419, 0.3474

Matcha (1967)

MgO ($1\sigma^2 \rightarrow 6\sigma^2 \ 1\Pi^4 \ 2\Pi^4, \ {}^{1}\Sigma^+$)

R	- E	Ч	θ	9 <u>1</u>	^q 2	X L
2.50	274.2087	8.217	0.681	-0.746	0.379	-4.731
3.00	274.3653	9.250	0.361	-0.756	2.545	-5.808
3.20	274.3754	9.082	0.315	-0.594	4.859	-6.317
3.3052 ^a	274.3751	8.842	0.221	-0.517	6.321	-6.603
3.40	274.3732	8.580	0.118	-0.458	7.666	-6.867
3.60	274.3653	7.868	-0.093	-0.359	10.50	-7.456
4.10	274.3405	6.041	-0.217	-0.209	16.04	-9.050
5.10	274.3073	3.512	-0.662	-0.072	21.50	-12.70

a. - c: -49.0580, -20.4374, -3.7949, -2.3092,

-1.0785, **-**0.3177, **-**2.3112, **-**0.3496.

McLean and Yoshimine (1967)

Alf ($1\sigma^2 \rightarrow 7\sigma^2$ $1\pi^4$ $2\pi^4$, $1\Sigma^+$)

R	- E	μ	θ	P	9 ₂	XL
2.60	341.4127	-0.030	-5.944	-6.415	-2.312	-5.938
2.85	341.4687	0.568	-6.322	-4.994	-0.843	-6.535
3.05	341.4824	1.114	-6.608	-4.141	0.133	-7.045
3.126 ^a	341.4832	1.337	-6.713	-3.867	0.456	-7.247
3.25	341.4811	1.717	-6.876	-3.465	0.928	-7.586
3.45	341.4718	2.369	-7.126	-2.920	1.551	-8.157
3.70	341.4544	3.240	-7.418	-2.375	2.116	-8.917

a. - c : -58.4962, -26.2456, -4.9067, -3.2166,

-1.5344, -0.6756, -0.3365, -3.2158, -0.6156

R	- E	ц	θ	а 1	9 2	X L
2.304	363.6988	2.280	-5.123	-10.97	-5.082	-5.149
2.50	363.8085	2.745	-5.124	-9 .427	-4.249	-5.574
2.604	363.8365	3.010	-5.153	-8.752	-3.748	-5.812
2.75 ^a	363.8523	3.397	-5.219	-7.952	-3.006	-6.160
2.854	363.8516	3.681	-5.282	-7.473	-2.458	-6.419
3.104	363.8250	4.378	-5.484	-6.584	-1.085	-7.075
3.404	363.7693	5.204	-5.831	-5.945	0.732	-7.925

sio $(1\sigma^2 \rightarrow 7\sigma, 21\pi^4, 2\pi^4, \Sigma^+)$

a. - ε : -68.8027, -20.5239, -6.1539, -4.2559,

-1.2787, -0.6103, -0.4345, -4.2551, -0.4864

McLean and Yoshimine (1967)

PN $(1\sigma^2 \rightarrow 7\sigma^2 \ 1\Pi^4 \ 2\Pi \ 4, \ \Sigma^+)$

R	- E	μ	θ	9 ₁	^q 2	XL
2.268	395.0243	3.238	-3.803	-11.66	-5.376	-5.053
2.45	395.1376	3.246	-3.338	- 9.758	-5.270	-5.437
2.568	395.1725	3.244	-3.055	-8.677	-5.116	-5.699
2.67 ^a	395.1857	3.241	-2.818	-7.828	-4.953	-5.932
2.818	395. 1848	3.232	-2.487	-6.720	-4.686	- 6.283
3.068	395.149 7	3.211	-1.958	-5.112	-4.204	-6.903
3.368	395.0800	3.178	-1.375	-3.477	-3.670	-7.705

a. - c: -79.9725, -15.5855, -7.5238, -5.4161, -1.1597,

-0.6481, -0.4844, -5.4146, -0.4574

CaO $(1\sigma^2 \rightarrow 8\sigma^2 \quad 1\Pi^4 \rightarrow 3\Pi^4, \frac{1}{\Sigma^+})$

R	- E	μ	θ	q 1	q 2	X L
2.9912	751.4896	9.366	-7.667	-0.452	-1.306	-7.602
3.1412	751.5243	10.022	-7.596	-0.817	-1.646	-8.050
3.2912	751.5415	10.552	-7.557	-0.909	-1.686	-8.523
3.4412 ^a	751.5478	10.946	-7.578	-0.846	-1.432	-9.023
3.6412	751.5435	11.203	-7.756	-0.628	-0.530	-9.737
3.8912	751.5264	10.652	-8.384	-0.264	2.346	-10.74
4.1412	751.5065	8.241	-8.692	-0.219	2.292	-11.95

a. - c: -149.2651, -20.3183, -16.7186, -13.5279, -2.1479,

-1.2834, -0.9525, -0.2653, -13.5270, -1.2556, -0.2617

McLean and Yoshimine (1967)

SrO $(1\sigma^2 \rightarrow 11\sigma^2 \ 1\Pi^4 \rightarrow 5\Pi^4 \ 1\delta^4, \ 1\Sigma^+)$

R	– E	μ	θ	9 ₁	^q 2	XL
3.10	3206.1729	7.643	-12.46	2.372	0.715	-9.820
3.25	3206.2059	8.439	-13.01	0.878	-0.150	-10.36
3.40	3206.2242	9.185	-13.52	-0.055	-0.840	-10.94
3.525	3206.2306	9.763	-13.93	-0.598	-1.263	-11.44
3.6283 ^a	3206.2311	10.207	-14.24	-0.805	-1.500	-11.87
3.78	3206.2262	10.798	-14.68	-0.911	-1.638	-12.52
4.10	3206.2007	11.663	-15.55	-0.618	-0.727	-14.02

a. -6: 583.6000, 80.2804, 72.8900, 20.3036, 13.3588,

10.5848, 5.5703, 1.7823, 1.1006, 0.8649, 0.2487,

72.8891, 10.5857, 5.5695, 0.9993, 0.2491, 5.5695.

K. Potential Energy Curves: Introduction

Examples of accurate H.F., extended H.F., SOC, and VB techniques are tabulated below. Both distances and energies are given in atomic units. In a number of instances figures were lifted from the original papers to illustrate the different techniques.

A very few polyatomic curves are included. The VB calculation of BeH_2 and the diatomic VB calculations show proper asymptotic dependence. Since they have also been used to obtain a number of the excited states it was felt that the VB calculations should be included even when more accurate surfaces may exist for a given state as in He₂ $\stackrel{+}{\cdot}$

Hartree-Fock results are included near equilibrium for stable polyatomic species including the orbital energies. One example of a reaction surface is included which also exhibits proper asymptotic dependence even though it is an approximate H.F. calculation.

In this section both R and E are in atomic units.

R		State		
	$x^{1}\Sigma_{g}^{+}$	ь ³ ∑+ ч	^{B¹Σ⁺_u}	c ¹ II _u
1.0	-1.1245385	-0.6215227	-0.5812963	-0.5724911
1.5	-1.1728537	-0.8096095	-0.7200327	-0.7004638
2.0	-1.1381312	-0.8970636	-0.7520541	-0.7182230
2.5	-1.0939273	-0.9454463		-0.7071783
3.0	-1.0573118	-0.9720104	-0.7524996	-0.6892372
4.0	-1.0163689	-0.9933781	-0.7354677	-0.6566106
5.0	-1.0037626	-0.9986849	-0.7147955	-0.6369889
6.0	-1.0008150	-0.9998125	-0.6948364	-0.6283423
œ	-1.0	-1.0	-0.625	-0.625

Potential Energy Curves of Hydrogen

 $x^{1}\Sigma^{+}_{g}, b^{3}\Sigma^{+}_{u}, c^{1}\Pi_{u}$: Kolos and Wolniewicz (1965c)

 $B^{1}\Sigma_{11}^{+}$: Kolos and Wolniewicz (1966a)

R	Hartree-Fock	Correlated	ΔE
1.2	-2.917390	-2.9620088	0.044619
1.4	-2.932594	-2.9779726	0.045379
1.6	-2.930450	-2.9762475	0.045797
1.8	-2.921683	-2.9675157	0.045833
2.5	-2.888782		
3.5	-2.868619		
4.5	-2.863752		
œ	-2.8616799	-2.9037244	0.0420445

a. Peyerimhoff (1965)

b. Wolniewicz (1965)

Energy A	As /	A	Function	of	the	Internuclear	Distance
----------	------	---	----------	----	-----	--------------	----------

HeH

R	ε (x ² Σ ⁺)	е (² П)	ε (² Σ ⁺)
1.0	-3.00243	-3.00243	-3.02196
1.25	-3.06456	-3.06456	-3.08194
1.5	-3,06983	-3.06983	-3.08304
2.0	-3.04399	-3.04399	-3.04801
3.0	-3.01159	-3.01159	-3.01045
4.0	-3.00382	-3.00382	-3.00321
6.0	-3.00112	-3.00112	
10.0			-3.00082

Michels and Harris (1963)

٤		- E
2.00	7.91322	15.11955
2.20	7.94594	15.14217
2.40	7.96663	15.15170
2.528 ^b		15.15313
2.60	7 .9 7887	15.15274
2.80	7.98517	15.14832
3.015 ^a	7.98731	
3.00		15.14045
3.20	7.98646	
3.30		15.12496
3.60	7.97932	
3.70		15.10139
4.00	7.96824	15.08338
a. LiH, o. BeH, Cade and	-ε : 2.4452, 0.3017 -ε : 4.7064, 0.4732, 0 Huo (1967 <i>2</i>)	.3126
a. LiH, o. BeH, Cade and	- ϵ : 2.4452, 0.3017 - ϵ : 4.7064, 0.4732, 0 Huo (1967a) 38H (1 σ^2 2 σ^2 3 σ^2 , $\frac{1}{\Sigma}^+$)	сн (1σ ² 2σ ² 3σ ² 1П, ² П)
a. LiH, o. BeH, Cade and	- ϵ : 2.4452, 0.3017 - ϵ : 4.7064, 0.4732, 0 Huo (1967a) 3H ($1\sigma^2 2\sigma^2 3\sigma^2 , \frac{1}{\Sigma}^+$)	.3126 CH(1σ ² 2σ ² 3σ ² 1П, ² Π _r)
a. LiH, b. BeH, Cade and I R 1.60	- ϵ : 2.4452, 0.3017 - ϵ : 4.7064, 0.4732, 0 Huo (1967a) 3H ($1\sigma^2 2\sigma^2 3\sigma^2 , \frac{1}{\Sigma}^+$)	-с -с -с -с -с -с
 LiH, BeH, Cade and I R 1.60 1.70 	- ϵ : 2.4452, 0.3017 - ϵ : 4.7064, 0.4732, 0 Huo (1967 <i>a</i>) 3H ($1\sigma^2 2\sigma^2 3\sigma^2$, $\frac{1}{\Sigma}^+$)	-ε 38.21353 38.24259
 LiH, BeH, Cade and I R 1.60 1.70 2.00 	-6 : 2.4452, 0.3017 -6 : 4.7064, 0.4732, 0 Huo (1967a) 3H ($1\sigma^2 2\sigma^2 3\sigma^2$, Σ^+) 25.05933 25.11803	сн(1σ ² 2σ ² 3σ ² 1П, ² П _г) -с 38.21353 38.24259 38.27826
 LiH, BeH, Cade and I R 1.60 1.70 2.00 2.086^b 	-ε : 2.4452, 0.3017 -ε : 4.7064, 0.4732, 0 Huo (1967a) 3H (1σ ² 2σ ² 3σ ² , ¹ Σ ⁺) 25.05933 25.11803	-ε -ε -ε 38.21353 38.24259 33.27826 38.27958
 LiH, BeH, Cade and I R 1.60 1.70 2.000 2.086^b 2.20 	- ϵ : 2.4452, 0.3017 - ϵ : 4.7064, 0.4732, 0 Huo (1967a) 3H ($1\sigma^2 2\sigma^2 3\sigma^2 , \frac{1}{\Sigma}^+$) 25.05933 25.11803 25.13016	-€ CH(1σ ² 2σ ² 3σ ² 1П, ² П _r) -€ 38.21353 38.24259 38.27826 38.27958 38.27767
 LiH, BeH, Cade and I R 1.60 1.70 2.00 2.086^b 2.20 2.305^a 	-ε : 2.4452, 0.3017 -ε : 4.7064, 0.4732, 0 Huo (1967a) 3H (1σ ² 2σ ² 3σ ² , ¹ Σ ⁺) 25.05938 25.11803 25.13016 25.13147	-€ -€ CH(10 ² 20 ² 30 ² 1П, ² П _г) -€ 38.21353 38.24259 38.27826 38.27958 38.27767
 LiH, BeH, Cade and I R 1.60 1.70 2.00 2.086^b 2.20 2.305^a 2.40 	-6 : 2.4452, 0.3017 -6 : 4.7064, 0.4732, 0 Huo (1967a) 3H ($1\sigma^2 2\sigma^2 3\sigma^2$, $\frac{1}{\Sigma}^+$) 25.05933 25.11803 25.13016 25.13147 25.13056	-€ -€ -€ -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
 LiH, BeH, Cade and I R 1.60 1.70 2.000 2.036^b 2.20 2.305^a 2.40 2.60 	-6 : 2.4452, 0.3017 -6 : 4.7064, 0.4732, 0 Huo (1967a) 3H ($1\sigma^2 2\sigma^2 3\sigma^2$, $\frac{1}{\Sigma}^+$) 25.05933 25.11803 25.13016 25.13056 25.12408	с. 3126 СН (1σ ² 2σ ² 3σ ² 1П, ² П _г) -€ 38.21353 38.24259 38.27826 38.27958 38.27958 38.27767 38.26755
a. LiH, b. BeH, Cade and I R 1.60 1.70 2.00 2.086 ^b 2.20 2.305 ^a 2.40 2.60 2.70	-6 : 2.4452, 0.3017 -6 : 4.7064, 0.4732, 0 Huo (1967a) 3H ($1\sigma^2 2\sigma^2 3\sigma^2$, $\frac{1}{\Sigma}^+$) 25.05938 25.11803 25.13016 25.13147 25.13056 25.12408	3126
a. LiH, b. BeH, Cade and r R 1.60 1.70 2.00 2.086 ^b 2.20 2.305 ^a 2.40 2.40 2.60 2.70 2.90	-6 : 2.4452, 0.3017 -6 : 4.7064, 0.4732, 0 Huo (1967a) 3H ($1\sigma^2 2\sigma^2 3\sigma^2$, $\frac{1}{\Sigma}^+$) 25.05933 25.11803 25.13016 25.13147 25.13056 25.12408 25.10763	2.3126 CH (1σ ² 2σ ² 3σ ² 1П, ² П _г) -€ 38.21353 38.24259 38.27826 38.27958 38.27767 38.26755 38.24395
 LiH, BeH, Cade and I Cade and I R 1.60 1.70 2.000 2.086^b 2.20 2.305^a 2.40 2.60 2.70 2.90 3.20 	- ϵ : 2.4452, 0.3017 - ϵ : 4.7064, 0.4732, 0 Huo (1967a) 3H ($1\sigma^2 \ 2\sigma^2 \ 3\sigma^2 \ , \ \Sigma^+$) 25.05933 25.11803 25.13016 25.13147 25.13056 25.12408 25.10763 25.03779	с. 3126 СН (1σ ² 2σ ² 3σ ² 1П, ² П _r) -€ 38.21353 38.24259 38.27826 38.27958 38.27958 38.27767 38.26755 38.26755 38.24395
 LiH, BeH, Cade and I Cade and Cade	-6 : 2.4452, 0.3017 -6 : 4.7064, 0.4732, 0 Huo (1967a) 3H ($1\sigma^2 2\sigma^2 3\sigma^2$, $\frac{1}{\Sigma}$ +) 25.05933 25.11803 25.13016 25.13147 25.13056 25.12408 25.10763 25.06724	2.3126 CH (10 ² 20 ² 30 ² 1П, ² П _г) -E 38.21353 38.24259 38.27826 38.27958 38.27767 38.26755 38.24395 38.24395

Energy As A Function of the Internuclear Distance

NH ($1\sigma^2 2\sigma^2 3\sigma^2 1\Pi^2$, $3\Sigma^-$) OH (1	$\sigma^{2} 2\sigma^{2} 3\sigma^{2} 1\pi^{3} , 2\pi_{i}$
R -E	
1.40	75.34382
1.45 54.88846	
1.50	75.38378
1.55 54.92947	
1.70 54.96392	75.41829
1.795 ^b	75.42127
1.90 54.97826	75.41837
1.923 ^a 54.97838	
2.10 54.97254	75.401 6 3
2.30 54.95667	
2.40	75.36367
2.60 54.92492	75.33582
2.80	75.30822
3.00 54.87971	
a. NH, -€ : 15.6082, 1.0480, 0.5535, 0.5377	
b. OH, -c : 20.6165, 1.3138, 0.66662, 0.5731	
Cade and Huo (1967a)	

Energy As A Function of the Internuclear Distance

HF $(1\sigma^2 2\sigma^2 3\sigma^2 1\pi^4, 1\Sigma^+)$

R	~E
1.325	99.93645
1.37	100.01003
1.427	.00.03280
1.50	100.05264
1.65	100.06996
1.596 ^a	100.07077
1.30	100.06731
1.933	100.055+0
2.10	100.03357
2.243	100.01183
2.40	99.98 67 6

a. -ε : 26.2939, 1.6079, 0.7759, 0.6521 Cade and Huo (1967a)

NaH	$(1\sigma^2 \rightarrow 4\sigma^2 1\Pi^4, 1\Sigma^+)$ MgH $(1\sigma^2 \rightarrow 4\sigma^2 5\sigma 1\Pi^4, 2\Sigma^+)$
R	-E
2.00	162.2012 199.9699
2.20	162.26 51 200.0448
2.50	16 2 .3285 200.1112
2.75	162.3601
2.80	200.1433
3.00	162.3788
3.10	200.1553
3.20	162.3872
3.259 ^b	200.1566
3.40	162.3915 200.1557
3.566 ^a	162.3928
3.70	162.3927
3.80	200.1467
4.15	200.1344
4.25	162.3854
4.50	200.1206
5.00	162.3675
a. NaH, -6	: 40.4662, 2.7869, 1.5077, 0.2752, 1.5090
b. MgH, -€	: 49.0450, 3.7818, 2.2988, 0.3909, 0.2594, 2.3005
Cade and Hud	o (1967a)

Energy As A Function of the Internuclear Distance

	Alm($1\sigma^2 \rightarrow 5\sigma^2 1\Pi^4$,	¹ Σ ⁺)	Sim($1\sigma^2 \rightarrow 5\sigma^2 1\Pi^4 2\Pi, 2\Pi_r$)
R		E	
2.00	242.2913		289.3033
2.20	242.3671		289.3715
2.40	242.4141		289.4099
2.60	242.4418		289.4290
2.80	242.4565		
2.861 ^b			289.4362
3.00	242.4627		289.4347
3.113 ^a	242.4634		
3.20	242.4630		289.4286
3.40	242.4597		289.4194
3.60			289.4085
3.80	242.4465		
4.00			289. 3 845
4.20	242.4296		
4.60	242.4119		
a. AlH,	-€ : 58.4894, 4.8999 3.2090	, 3.2082,	0.4966, 0.2883,
b. SiH,	-€ : 68.8064, 6.1512, 4.2520	, 4.2514	0.6299, 0.3776,
Cade and	Huo (1967)		

Energy As A Function of the Internuclear Distance

PH	$(1\sigma^2 \rightarrow 5\sigma^2 1\Pi^4 2\Pi^2, 3\Sigma^-)$	SH($1\sigma^2 \rightarrow 5\sigma^2 \ 1 \Pi^4 \ 2 \Pi^3, \ ^2\Pi_{i}$)
p	_	R
R.	0/1.0000	
1.80	341.0922	397.9439
2.00	341.1970	398.0360
2.10	341.2304	398.0633
2.20	341.2546	398.0818
2.40	341.2828	398.0996
2.512		398.1017
2.60	341.2928	
2.668 ^a	341.2934	
2.70		398.0972
2.80	341.291 6	
3.20	341.2715	398.0604
3.40	341.2573	398.0418
3.60	341.2420	398.0229
a. PH, -	ε : 79.9631.7.5050, 5.3961	, 0.7738, 0.4583, 5.3960, 0.3785
b. SH, -	ε : 91.9840, 8.9855, 6.6657	. 0.9411, 0.5444, 6.6645, 0.4122
Cade and H	Huo (1967)	

Energy As A Function of the Internuclear Distance

	HC1 ($1\sigma^2 \rightarrow 5\sigma^2 1 \Pi^4 2 \Pi^4$, $1\Sigma^+$)	
R	-Е	
1.80	459.9902	
1.90	460.0365	
2.00	460.0685	
2.10	460.0896	
2.20	460.1024	
2.389 ^ª	460.1104	
2.50	460.1083	
2.80	460.0884	
3.00	460.0689	
3.20	460.0475	
3.60	460.0040	

Energy As A Function of the Internuclear Distance

a. -\$: 104.8479, 10.5739, 8.0417, 1.1188, 0.6284. 8.0391, 0.4765 Cade and Huo (1967b)

NoH+(1.72	$2\sigma^{2}$	3-2	1_4	18+
wen (TO	20	JU	<u>тт</u> .	

R	E
R 1.35 1.5 1.6 1.7 1.8 1.83 ^a 1.9 2.0 2.1 2.2 2.4 2.7 2.0	E -128.53942 -128.59568 -128.61469 -128.62448 -128.62812 -128.62812 -128.62836 -128.62773 -128.62479 -128.62026 -128.61492 -128.61492 -128.60330 -128.58728 -128.58728
3.5 4.0 4.5	-128.57418 -128.55418 -128.55089

a. Orbital energies: -33.3381,-2.49750,-1.45857,-1.38468.
 Peyerimhoff (1965)

R			- E		
	x ² ∑+u	² ∑ ^{+*} _u	² ∑+** u	2 ₂ +*** u	2 21**** u
0.5	2.2926	1.8737	1.3044	0.4765	-0.6339
0.75	3.9033	3.3448	2.9825	1.9891	1.6240
1.0	4.5001	3.8088	3.4912	2.6971	2.5863
1.25	4.7736	3.9256	3.6355	3.2412	2.9834
1.5	4.9014	3.9118	3.6653	3.5470	3.3426
2.0	4.9701	3.9068	3.8281	3.6902	3.6817
2.05	4.9706	3,9089	3.8431	3.7037	3.6916
3.0	4.9356	4.0124	3.9667	3.9259	3.7568
4.0	4.9056	4.0944	4.0317	4.0201	3.8382
5.0	4.8940	4.1488	4.0730	4.0575	3 .9 181
6.0	4.8902	4.1768	4.0986	4.0779	3.9833
10.0	4.88849	4.1876	4.1471	4.1119	4.0964
12.0	4.88846	4.1806	4.1549	4.1198	4.1105

Potential Energy Curves of He +

Michels (1967)

	~	

	12
-	P

	2 ₂ + g	2×+* 8	22-1-## 8	- 25+***	2 5+***
0.5	2.1552	1.9677		1.0703	-0.6868
0.75	3.6223	3.3267		2.0920	1.3464
1.0	4.0108	3.6906		3.0705	2.4336
1.25	4.0779	3.7814		3.7144	3.0621
1.5	4.1818	4.0451	3.7506	3.7013	3.4179
2.0	4.5828	3.9912	3.8081	3.7496	3.6161
2.05	4.6065	3.9895	3.8149	3.7673	3.6209
3.0	4.8214	4.0447	3.8498	3.9439	3.7513
4.0	4.8713	4.1282	4.0285	4.0173	3.8283
5.0	4.8839	4.1760	4.0682	4.0546	3.9022
6.0	4.8874	4.1969	4.0914	4.0771	3.9659
8.0	4.8885	4.2042	4.1180	4.1022	4.0499
10.0	4.8886	4.1970	4.1332	4.1162	4.0895
12.0	4.8885	4.1881	4.1419	4.1249	4.1061
Michals	(1957)				

-
12

K		- E		
	2 _П g	2* g	2 _П	2 _∏ * u
0.5	2.0411	2.0411	2.3282	1.9999
0.75	3.3222	3.0208	3.6096	3.2905
1.0	3.7037	3.4048	3.9775	3.6660
1.2	3.8054	3.5080	4.0636	3.7546
1.5	3.8392	3.5860	4.0751	3.7743
1.75	3.8361	3.7561	4.0560	3.7725
2.0	3.8735	3.8295	4.0413	3.7782
3.0	4.0449	3.9079	4.0683	3.8933
4.0	4.0943	3.9882	4.1053	3.9798
5.0	4.1142	4.0370	4.1218	4.0289
6.0	4.1227	4.0672	4.1287	4.0595
8.0	4.1277	4.0992	4.1322	4.0928
10.0	4.1278	4.1132	4.1314	4.1080
12.0	4.1276	4.1190	4.1303	4.1152

Michels (1967)

	0,5						
$\text{Li}_2, \text{X}^1\Sigma_g^+$							
R	E(SCF)	E(ODC) ^a	E(OVC) ^b				
4.0	-14,852990	-14.859537	-14.884424				
4.5		-14.873465	-14,895621				
4.75	-14.869718	-14.877403	-14.898108				
4.77							
5.0		-14.879630	-14.898849				
5.25		-14.881261	-14.898876				
5.37	-14.871796						
5.5	-14.871484						
6.0	-14,868655	-14.881046	-14.893667				
8.0		-14.871553	-14.877459				
12.0		-14.865660	-14.866116				

Energy As A Function of the Internuclear Distance

a. ODC- Optimized Double Configurations.

b. OVC- Optimized Valence Configurations.

Energy As A Function of Internuclear Distance

 $N_2(1\sigma_g^2 1\sigma_u^2 2\sigma_g^2 2\sigma_u^2 3\sigma_g^2 1_{T_u}^4, X^1_{\Sigma_g}^+)$

R	- E	-€ ₂₀ g	-e 20 u	-e 30g	-е 1 _{Пи}
1.65 1.82 1.85 1.905 1.95 2.0132 2.05 2.068	108.7887 108.9489 108.9635 108.9825 108.9914 108.9956 108.9944 108.9928	g 1.6292 1.5584 1.5372 1.5194 1.4953 1.4803 1.4736	0.7002 0.7331 0.7387 0.7489 0.7570 0.7687 0.7747 0.7780	8 0.6534 0.6459 0.6459 0.6422 0.6401 0.6379 0.6355 0.6350	0.7355 0.6798 0.6709 0.6558 0.6438 0.6438 0.6285 0.6194 0.6154
2.0741 2.09 2.15 2.20 2.292 2.34 2.45 2.90	108.9922 108.9904 108.9799 108.9679 108.9397 108.9226 108.8792 108.6828	1.4712 1.4651 1.4421 1.4235 1.3902 1.3736 1.3376 1.2217	0.7790 0.7818 0.7918 0.8001 0.8149 0.8224 0.8393 0.9009	0.6346 0.6338 0.6306 0.6280 0.6226 0.6196 0.6123 0.5759	0.6140 0.6106 0.5974 0.5872 0.5693 0.5606 0.5418 0.4824

Cade et al (1966)

R	-E		
	Hartree-Fock	Extended	d Hartree-Fock (OVC)
1.8	198.41814	OVC ^a 198.44543	ovc ^b 198.45263
2.2	198.73236	198.77720	
2.68	198.76825	198.84853	198.85464
3.0	198.73302	198.84551	
3.5	198.66024	198.83094	198.83589
6.0	198.45753	198.81799	198.81799
\sim		198.81784	198.81784
a. Correl	ate only 30		

b. Additional 2° , 2° , 3° , 1 $\Pi_{\rm u}$, 1 $\Pi_{\rm g}$ excitations into $3\sigma_u^2$

Das and Wahl (1967)

	Potential	Energy	of	F	
--	-----------	--------	----	---	--

R		Еa			
	$2\Sigma_{u}^{+}$	² П g	² П.	² _Σ ⁺	
		-		-	
2.68	0.0346				
3.2	-0,0516	0.0673	0.1529	0.2027	
3.6	-0.0609	0.0209	0.0751	0.1132	
4.0	-0.0552	0.0037	0.0386	0.0662	
4.4	-0.0457				
4.8	-0.0365				
5.2	-0.0288				
5.6	-0.0227				
6.0	-0.0179				
6.6	-0.0129				
7.2	-0.0096				
~	0	0	0	0	
a. Hartree-Foo	ck				

Gilbert and Wahl (1967c)

Potential Energy of Ne⁺2

-

R		Ea		
	2 ₂ + 2, +	2 _{li} g	2 ₁₁	$2\Sigma^+_{\Sigma^-}$
2.5	0.0290			
2.8	-0.0417			
3.0	-0.0574	0.0489	0.1174	0.1961
3.2	-0,0607	0.0232	0.0736	0.1398
3.5	-0.0549	0.0049	0.0367	0.0863
4.0	-0.0378			
5.0	-0.0143			
\sim	0	0	0	0
a. Hartree-Fo	ock			
Gilbert and Wa	ahl (1967a)			

Potential Energy of Ar 2

R		Ea		
	² _Σ ⁺⁻ _u	² П _g	² Л _и	$2_{\Sigma_{g}}^{+}$
3.8	0.0015			
4.0	-0.0230			
4.2	-0.0369	0.0600	0.1188	0.1901
4.3	-0.0411			
4.5	-0.0453			
4.6	-0.0458	0.0228	0.0599	0.1154
4.7	-0.0458			
5.0	-0.0424	0.0065	0.0298	0.0712
5.5	-0.0328			
\sim	0	0	0	0
a . Hartre	e-Fock			

Gilbert and Wahl (1967a)

Potential Energy of Cl_2 , $\frac{l_2+}{g}$

R	3.6	3.8	3.9	4.2
- E	918.9823	918.9871	918.9858	918.9727
		- E		
10g	104.8909	104.8976	104.9006	104.9082
20g	10.6172	10.6216	10.6237	10.6292
30g	8.0861	8.0901	8.0921	8.0972
40 g	1.2506	1.2162	1.2017	1.1673
5σ _g	.6153	• 5964	• 5868	.5583
10 u	104.8909	104.8976	104.9006	104.9082
20 _u	10.6170	10.6215	10.6236	10.6291
30 _u	8.0858	8.0899	8.0919	8.0971
40u	1.0067	1.0197	1.0256	1.0407
111	8.0810	8,0856	8 0277	
211	5831	5(20	0.08/7	8.0932
u		• 2680	.5616	.5463

R	3.6	3.8	3.9	4.2
1 II g	8.0810	8.0856	8.0877	8.0933
2 II _g	.4358	.4480	.4534	.4668

Gilbert and Wahl (1967c)

Potential Energy of Cl

R	$^{2}\Sigma_{u}^{+}$	² II g	2 _П	² _∑ ⁺ _g
3.8	0.0346	0.1955	0.3104	0.3674
4.0	0.0017	0.1402	0.2357	0.2915
4.5	-0.0387	0.0577	0.1181	0.1646
4.7	-0.0444			
5.0 ^a	-0.0472	0.0213	0.0598	0.0946
5.1	-0.0471	0.0171	0.0523	0.0849
5.5	-0.0435			
6.0	-0.0361	0.0008	0.0168	0.0335
7.0	-0.0221	-0.0010	0.0057	0.0126
8.0	-0.0131	-0.0008	0.0020	0.0042
9.0	-0.0075	-0.0001	0.0011	0.0011
b	0	0	0	0
a6 : 104.	6033, 10.3252, 7.7930	0, 0.8380, 0.2542,		
104.	6033, 10.3252, 7.7930), 0.7904, 0.1915,		
7. b. E (C1 ₂)	7913, 0.2492, 7.7913 = -919.0204	3, 0.2124		
a Uartwaa-Fa	alt			

c. Hartree-Fock Gilbert and Wahl (1967a,b)

Potential Ene:	cgy curves	of	He	Ne	+
----------------	------------	----	----	----	---

R		-E		
	2 ₂ +	2 ₁₁	2 _Σ +*	
0.5		117.2660		
1.0		127.2128		
1.5	129.6685	129.1541	128.9913	
2.0	130.0612	129.8814	129.4127	
3.0	130.2145	130.1984	129.7877	
4.0	130.2274	130.2245	129.8182	
5.0	130.2273	130.2254	129.8128	
6.0		130.2247		

Michels (1967)

R	- E	
	Hartree-Fock	Extended Hartree-Fock
4.0	169.26357	169.28938
5.0	16 9.28917	169.31231
5.5	169.29186	169.31422
6.0	169.29073	169.31286

Bestoncini and Wahl (1967)

Potential Energy of NaF

R	- E	
	Hartree-Fock	Extended Hartree-Fock (OVC)
3.1	261.3495	261.3710
3.5	261.3773	261.3991
4.0	261.3722	261.3951
4.5	261.3561	261.3797
6.0	261.3030	261.3262
12.0		261.2659
\sim		261.2662

Das and Wahl (1967)

Potential	Energy	Curves	of	BeH,
-----------	--------	--------	----	------

R		-E
	$x^{1}\Sigma_{g}^{-1}$	3:- 2.u
1.5		14.7013
2.0	15.6063	15.1374
2.5	15.7202	
3.0	15.7159	15.4626
3.5	15.6696	15.5123
4.0	15.6363	15.5701
4.5	15.5485	15.5156
\sim	15.5481	
Michels	(1967)	

-

Potential	and	Orbital	Energies	сĒ	HC.
-----------	-----	---------	----------	----	-----

$1\sigma^{2} \rightarrow 5\sigma^{2} 1\pi^{4}$, $1\Sigma^{+}$				
R ₁	^R 2	- E	- 6	
1.81287	1.96119	92.8841	15.5560,11.2393,1.2906,0.8403,	
			0.5753, 0.5370	
1.81287	2.38053	92.8680	15.6362,11.3200,1.1903,0.8718,	
			0.5898, 0.4696	
1.9343	2.1091	92.9160	15.5850,11.2738,1.2543,0.8244,	
			0.5810, 0.5089	
1.9343	2.2491	92.9052	15.6118,11.3010,1.2200,0.8352,	
			0.5853, 0.4867	
2.00899	1.76507	92.7663	15.5136,11.2113,1.3303,0.7810,	
			0.5597, 0.5792	
2.03899	2.60325	92.8065	15.6667,11.3641,1.1405,0.8467,	
			0.5835, 0.4416	
2.0143	2.1791 ^a	92.9147	15.5978,11.2907,1.2365,0.8129,	
			0.5820,0.4968	
2.0843	2.1091	92.9153	15.5835,11.2797,1.2534,0.7930,	
			0.5786, 0.5077	
2.0843	2.2491	92.9048	15.6101,11.3068,1.2187,0.8043,	
•			0.5824, 0.4855	
2.23221	1.96119	92.8826	15.5520,11.2558,1.2888,0.7522,	
			0.5700, 0.5 340	

^R 1	R2	- E	- 6
2.23221	2.38053	92.3684	15.6314,11.3357,1.1861,0.7876,
			0.5800, 0.4660
2.47026	2.14248	>2.8846	15.5864,11.2983,1.2425,0.7277,
			0.5717, 0.4992

a. Exp. R

McLean and Yoshimine (1967)

Potential and Orbital Energies of N20 $1\sigma^2 \rightarrow 7\sigma^2 \ 1\pi^4 \ 2\pi^4$, $1\Sigma^+$

R ₁	^R 2	-E	-6
1.72311	2.20908	183.6268	20.5974,15.7855,15.6358,1.7055,1.4948, 0.7881,0.6984,0.8458,0.5048
1.91457	2.01762	183.7204	20.6334,15.8097,15.6255,1.7200,1.5086,
			0.8305,0.6758,0.8370,0.4971
1.91457	2.45453	183.7342	20.6163,15.8042,15.6931,1.6239,1.4010,
			0.7979,0.7103,0.7704,0.5002
2.10603	2.69998	183.7169	20.6303,15.8113,15.7395,1.5369,1.3300,
			0.3215,0.7005,0.7048,0.5016
2.11633	1.81586	183.6447	20.6835,15.8287,15.5998,1.8555,1.4151,
			0.8867, 0.6452, 0.8887,0.4594
2.1273	2.2418	183.7567	20.6505,15.8403,15.6947,1.6105,1.4240,
			0.8315, 0.6987, 0.7618,0.4914
2.34003	2.46598	183.6841	20.6610, 15.8580,15.7511,1.5139,1.3491,
			0.8464, 0.6979, 0. 6993, 0.4874
2.35148	2.01762	183.6958	20.6993,15.8579,15.6688, 1.7357,1.3342,
			J.8810, O.6769, O.8071, O.4554
2.58663	2.21938	183.6310	20.7108,15.8783,15.7217,1.6268,1.2667,
			0.8824, 0.6912, 0.7399,0.4516

a. Exp.R

Energy As A Function of the Internuclear Distance

 $(\mathrm{H}_{2}\mathrm{F})^{-}$ $(1\sigma^{2} \rightarrow 4\sigma^{2} \quad 1_{\mathrm{T}}^{4}, \quad 1_{\Sigma}^{+})$

R _{HH}	Ea
00	-100.517
3.00	~100,569
2.35	-100,574
2.20	-100.567
2.10	-100.574*
1,90	-100,575
1.80	-100,577
1.60	-100,582
1.40	-100.577*
1.80	-100.577*
1.50	-100.585
1,45	-100.586
1.40	-100,574
	R _{HH} 3.00 2.35 2.20 2.10 1.90 1.80 1.60 1.40 1.50 1.45 1.40

a. Potential energy along the reaction coordinate except for the points marked with an asterik

Ritchie and King (1966)

Fig. 1. Potential energy curves for ground and excited states of BH.

Fig. 3. Ne-Ne potential curves.

LCAO - linear combination of atomic orbitals method. AASGF - augmented asymptotic self-consistent-field method. Other curves represent Thomas-Fermi-Dirac (TFD) or semiempirical calculations. For references see original paper by Gilbert and Wahl (1967).

4.0

T

I

V(eV)

 $R(a_0)$

Fig. 8. Potential curves, E(R), for $N_2(X \xrightarrow{1}{\Sigma} g^+)$ and $N_2^+(X \xrightarrow{2}{\Sigma} g^+, A \xrightarrow{2}\Pi_{u'})$ B $\xrightarrow{2}{\Sigma}_{u}^+$: (a) calculated $E_{HF}(R)$ results; (b) $E_{RKR}(R)$ results of Gilmore. Note ordinate scale the same but ranges are different.

Fig. 12. Extended Hartree-Fock potential curves for NaF.

Fig. 14. Energy surface, linear Hq. Configuration interaction based on pseudo-natural orbitals.

Fig. 15. Barrier to internal rotation in ethane.

Fig. 16. Barrier to internal rotation in methyl alcohol.

Fig. 17. Reaction surface for NH₃ + HCl \rightarrow NH₄Cl (horizontal valley) or NH₄ + Cl \rightarrow NH₄Cl (vertical valley). The abscissa gives the N-H(4) distances; the ordinate gives the H(4)-Cl distances. Each energy contour represents steps of 0.025 a.u. (\cong 0.68 e.V.).

L. Gaussian Basis Colculationa: Introduction

These results are included for the chemist; they illustrate the beginning of a capability to handle fsirly large systems. The future may see the use of different basis sets or techniques and the economics of the calculations may radically alter but it is now possible to obtain H.F. spproximations to large systems at more than a minimal level. They have been applied to the calculation of internal rotation barriers, the surface of a chemical reaction. snd to the general understanding of the molecular shell structure and bonding characteristics. The success or lack of it at this time can be gauged by reference to the following studies. This area is moving rapidly and the conclusions obtained from these references may be very temporary but it is incontestable that large molecules can now be meaningfully trested by sb initio calculation.

с₂н₆

Basis ^a 86 GTF's contracted to 32 basis functions.

Symmetry		D 3d		D 3h		
Geometry	C-C	2.915878	C-H	2.0325		
Total energ	зУ	-79.1082				-79.1025
Orbital ene	rgies			- c		
la _{2u}		11.2141			la2"	11.2127
^{la} lg		11.2142			1a'	11.2126
2a _{lg}		1.0427			2a1	1.0423
^{2a} 2g		0.8544			2a''	0.8537
leu		0.6191			1e'	0.6189
3a _{lg}		0.5094			3a¦	0.5089
leg		0.5066			le"	0.5050

Clementi and Davis (1966)

a. Best atom basis, Huzinaga (1965)

	^B 2 ^H 6			
Basis See a.		54 GTF (B 9s, 3p)		
Symmetry	D _{2h}			
Geometry ^b See fig. 1 Buenker et al (1966); B-B 1.70, BH, 2.55, BH ₃ 2.30, < BBH, 49°, β0°				
Total energy -	52.7551	-52.753		
Orbital energies	- 6			
la g	7.6484	7.6416		
lb _{lu}	7.6479	7.6410		
2ag	0.8734	0.8979		
^{2b} lu	0.6427	0.6457		
^{1b} 3u	0.5493	0.5558		
^{1b} 2u	0.5285	0.5546		
3ag	0.5205	0.5174		
^{1b} 3g	0.4744	0.*737		
 b. β - dihedral angle between yz plane and H B H plane. 3 2 4 				
	C ₂ H ₄			
Basis Linear combination of GTF; decomposed long-range s and p components.				
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -				
Total energy	-78.0012			
Orbital energies	- 6			
la,	11.2341			
1g 1Ъ	11.2326			
3u 2a ₁₋	1.0324			
2b	0.7987			
1b	0.6462			
3a,	0.5847			
lb lb	0.5063			
lb lu	0.3676			

Whitten (1966)

```
Basis<sup>a</sup>
          Best atom linear combinations of 60s, 45p lobe functions.
          D
3h
Symmetry
Geometry C-C 2.880, C-H 2.022, < CCC 60°, < HCH 120°
Total energy -116.9164
Orbital energies -c
       la,
               11.2941
       1e'
               11.2935
       2a1
                1.1510
       2e<sup>1</sup>
                0.8344
       1a''
                0.7024
       3a'1
                0.6257
       le"
                0.5460
       3e' 0.4398
       a. Whitten (1966)
          Buenker et al (1967b)
                                   C<sub>4</sub>H<sub>2</sub>
Basis Best atom, Huzinaga (1965) C 9s,5p;H 3s.
Symmetry
          D
∞h
Geometry C-C 2.2772, C-C 2.6060, C-H 2.0107
Total energy -152.127 \pm 0.004^{a}
Orbital energies
                                     - E
       σg
                          σ
                                              П
                                                           Πg
       11.536
                          11.532
                                                           0.472
                                             0.592
      11.481
                          11.481
       1.163
                           1.106
       0.936
                  0.790
       0.776
```

a. Errors correspond to predetermined accuracy for integrals.

٠

Snyder (1967)
Basis

Best atom linear combinations of 70s, 60p lobe functions.

H5

Geometry

С₂₁

cis

s	-1 5 4.7023		-154.710	3
gie	8	-	6	
	11.3463		lag	11.3466
	11.3457		lb u	11.3459
	11.3045		2b _u	11.3098
	11.3045		2a g	11.3098
	1.1155		3ag	1.1089
	1.0109		3bu	1.0214
	0.8570		4ag	0.8331
	0.7442		4bu	0.7751
	0.7073		5ag	0.6638
	0.6292		5b _u	0.6603
	0.6022		6a g	0.5742
	0.5370		6b _u	0.5693
	0.5261		^{7a} g	0.5140
	0.4768		lau	0.4765

a. Whitten (1966)

^{4a} 1 ^{4b} 2 ^{5a} 1 ^{6a} 1

^{5b}2 6b2

7a₁ 1b₁ 1a₂

Whitten and Buenker (1967)

0.3541

1bg

0.3579

H_CO Linear combination of GTF; decomposed long-range s and p components. Basis Symmetry C21 C-O 2.2864, C-H 2.18, < HCH 120° Geometry Total energy -113.8094 Orbital energies - E la, 20.579 2a, 11.352 1.422 3a, 4**a**1 0.864 162 0.700 5a1 0.635 0.527 1b, 2b2 0.437 Dipole moment $(H_0C^+O^-)$ 3.4 Buenker and Whitten (1967) Formamide (CH3NO) Formic Acid (CH202) Basis: 87 GTF's grouped into 36 basis 83 GTF's grouped into 34 basis functions (Best Atom Bouble Zeta) functions (Best Atom Double Zeta) Symmetry: C (one reflection plane) C=0 2.2715 Geometry: C=0 2.3489 C-N 2.5379 C-0(H)2.5379 С-Н 2.0674 С-Н 2.0730 0-н 1.8368 N-H 1.8803 -188.6877 Total Energies:-168.8661 Orbital Energies: + C la' 20.5325 20.6248 2a' 20.5819 15.5939 11.4302 3a ' 11.3867 4**a**' 1.3939 1.5114 1 5**a** 1.2388 1.4042 0.8766 0.9084 6a' 7**a**' 0.7669 0.7413 8a' 0.6719 0.7137 9**a**' 0.6012 0.6019 10a' 0.4365 0.4809 1a'' 0.5774 0.6521 2a'' 0.4164 0.5000 Dipole Moment 4.95 Debyes 1.49 Debyes Also one non-planar geometry and several excited Comments: triplet states (planar geometry) in same basis. Basch (1967)

	CH ₃ F						
Basís ^a	57 GTF's contra	acted to 28 basis funct	ions.				
Symmetry	c _{3v}						
Geometry C-H 2.088, C-F 2.617							
	< HCH 109 [°] 54 [°] ,	< HCF 109°02 ¹					
Total Energy	-138.94979						
Orbital Energies	- 6						
lal	26.23270	26.23270					
^{2a} 1	11.31825	11.31825					
^{3a} 1	1.55533	1.55533					
4 ^a 1	0.94912	0.94912					
^{5a} 1	0.65554						
le	0.69095						
2e	0.52736						
a. Best atom basis, Krauss (1967)	, Huzinaga (1965)						
	Ethyl	<u>Fluoride</u> (C_2H_5F)					
Basis: 104 GTF sg	rouped into 23 bas	sis functions (Hartree-	Fock AO Basis).				
Symmetry: C _s (one re	eflection plane).						
Geometry: C-C 2.91)2. C-F 2.5984. C	-H 2.0919					
	,	Staggered	Eclipsed				
Fotal Energy:		-177.9409	-177.9368				
Orbital Energies:		- c	- c				
la'		26.141	26.140				
2a '		11.396	11.395				
3a'		11.266	11.264				
4a'		1.548	1.548				
5a '		1.032	1.032				
6a'		0.860	0.860				
7a'		0.668	0.669				
8a'		0.624	0.622				
9a'		0.548	0.545				
10a'		0.486	0.486				
la"		0.697	0.696				
2a''		0.569	0.573				
3a''		0.490	0.487				
10a' la" 2a" 3a" Dipole Moment		0.486 0.697 0.569 0.490 2.56 Debyes	0.486 0.696 0.573 0.487 2.52 De				

133

Basch (1967)

$C_{4}H_{5}N$, Pyrrole

Basis ^a	95 GTF's contracted	to 30 basis fun	ctions			
Symmetry	c _{2v}					
Geometry See b.						
Total energy -207.9313						
Orbital energies -6						
	a ₁ (°)	^b 2 ⁽⁰⁾	b∫∏)	a_(^[]) 2		
	15.7100	11.4253	0.6313	0.3879		
	11.4252	11.3785	U.4253			
	11.3793	1.0345				
	1.3239	0.7970				
	1.0955	0.6243				
	0.8251	0.6022				
	0.7779					
	0.6476					
	0.5766					
a. Best	atom basis, Huzinaga	(1965)				

b. Equilibrium value Sutton (1958)

Clementi (1967b)

C₅H₅N, Pyridine

Total energy -245.6219

Orbital energies

200			
a ₁ (°)	b ₂ (σ)	b ₁ (∏)	a ₂ (⊞)
15.6775	11.4611	0.6223	0.4472
11.4611	11.4344	0.45 8 6	
11.4430	1.1102		
11.4343	0.9043		
1.3277	0.7260		
1.1577	0.6700		
0.9218	0.5795		
0.7791			
0.7012			
0.6394			
0.4 6 54			
a. Best at	com basis, Huzinaga	(1965)	

Clementi (1967c)

			C H I	, Pyrazi	lne	
			, ,	2	-	
a Basis	108 GTF'	s contra	icted to	34 basis i	Eunctions	
Symmetry	C 2v					
Geometry	C-N 2.5	512 C-C	2.62674	С-Н 2.0	0598	
Total energy	-261.5	54 3				
Orbital ener	gies			- 6		
a ₁ (0)		b ₂ (♂)		b ₁ (∏)	a_(∏) 2
15.6	954		11.4765		0.6494	0.4618
15.6	953		11.4754		0.4935	
11.4	764		1.1326			
11.4	7 54		0.9310			
1.3	762		0.7552			
1.2	729		0.6937			
0.9	571		0.6107			
0.7	797					
0.7	228					
0.5	327					
0.4	412					
a.	Best atom	basis,	Huzinaga	(1965)		
	Clementi	(1967d)	•			

Li C₅H₅

Basis 72 GTF contracted to 51 basis functions

Symmetry

Geometry C-C 2.69, C-H 2.02, Ring-Li 3.08

Total energy -196.2318

C

Ring-Li frequency is calculated as $\perp = 750 \text{ cm}^{-1}$. Janoschek et al (1967b)

C₆H₆

```
Basis<sup>a</sup> Best atom linear combinations of 90 s, 90p lobe
        functions.
Symmetry D
Geometry C-C 2.64, C-H 2.048
Total energy -230.312
        a. Whitten (1966)
            Whitten et al (1967)
       78 GTF contracted to 54 basis functions.
Basis
Symmetry D<sub>6h</sub>
Geometry C-C 2.63 , C-H 2.04
Total energy -227.2695
        Energies determined at sufficient points to determine the following frequencies
                                           calc:
                                                                     Exp.
                   ω
                                          1200
                                                                    1000
                  ω<sub>2</sub>
                                         4110
                                                                    3062
                  ω3
                                          1376
                                                                    1540
                  w
                                          1280
        Janoschek et al (1967a)
```

Acknowledgement

The bulk of this report is abstracted either from very recently published work or work that is still unpublished. Without accest to this information this project would have been unthinkable. It was gratifying to find that many workers in this field were willing to take the considerable time required to summarize their unpublished work. I believe it reflects a desire to take stock in a rapidly moving field and to communicate a growing feeling of confidence in the ability to calculate meaningful molecular energies and properties.

The list of contributors is listed below in alphabetical order. I wish to thank them all for their effort and the speed of the response. The organization of their material is my responsibility alone, and I apologize beforehand to all who will find the organization is not properly responsive to the material.

I have also included addresses of the individuals since they can best answer inquiries as to their unpublished material.

For the considerable clerical and typing assistance I wish to thank Miss Patricia Ann Foreman and Mrs. Judith F. Frye.

Allen, Leland Department of Chemistry, Princeton University, Princeton, New Jersev 08540. Barnett, G. P. Theoretical Physics Group, Lockheed Research Laboratory, Palo Alto, California 94301. Basch, Harold Bell Telephone Laboratories, Murray Hill, New Jersey 07971 Cade, Paul E. Laboratory of Molecular Structure and Spectra, Department of Physics, University of Chicago, Chicago, Illinois 60637 Clementi, Enrico IBM Research Laboratory, Monterey and Cottle Roads, San Jose, California 95114 Conroy, H. Mellon Institute, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 Csizmadia, I. G. Department of Chemistry, University of Toronto, Toronto, Canada Davidson, Ernest R. Department of Chemistry, University of Washington, Seattle, Washington 98105 Diercksen. Geerd Max Planck-Institut fur Physik und Astrophysik, 8000 Munchen 23, Fohringer Ring 6, Munich, Germany Kaufman, Joyce J. RIAS, 1450 S. Rolling Road, Baltimore, Maryland 21227 King, H. F. Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214 Matcha, Robert L. Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201 Michels, H. H. United Aircraft Research Laboratories, United Aircraft Corporation, East Hartford, Connecticut 06108

McLean, A. D. San Jose Research Laboratory, IBM, Monterey and Cottle Roads. San Jose, California 95114 Neshet, R. K. IBM Research Laboratory, San Jose, California 95114 Pederson, L. Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138 Preuss. H. Max-Planck-Institut fur Physik und Astrophysik, Institut fur Astrophysik, Munich 23, Germany Ransil. Bernard Boston City Hospital, Thorndike Memorial Laboratory, 818 Harrison Avenue, Boston, Massachusetts 02118 Richards, Graham Physical Chemistry Laboratory, South Parks Road, Oxford, England Schwartz, Maurice E. Princeton University, Department of Chemistry, Princeton, New Jersev 08540 Snyder, Lawrence C. Bell Telephone Laboratories, Murray Hill, New Jersey 07971 Stevens, Richard M. Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02139 Wahl, Arnold C. Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 Whitten, Jerry Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11790 Yoshimine, M. San Jose Research Laboratory, IBM, Monterey and Cottle Roads, San Jose, California 95114

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

• Physics and Chemistry

Papers of interest primarily to scientists working in these fields: This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$5.00; foreign, \$6.00*.

• Mathematics and Mathematical Physics

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$2.25; foreign, \$2.75*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$2.75; foreign, \$3.50*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$1.50; foreign, \$2.25*.

*Difference in price is due to extra cost of foreign mailing.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Miscellaneous Publications. Charts, administrative pamphlets, Annual reports of the Bureau, conference reports, bibliographies, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Governmentgenerated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

> Clearinghouse U.S. Department of Commerce Springfield, Virginia 22151

Order NBS publications from: Superintendent of Documents Government Printing Office Washington, D.C. 20402 U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE