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QUANTITATIVE METHODS FOR MANAGEMENT

George Suzuki

An elementary treatment of some of the better known and widely used
analytical methods in operations research/systems analysis. The material

is presented in a manner which attempts to indicate why quantitative methods
are useful in managerial dec ision-making situations. Some basic references

are provided.

Key Words: Operations Research, Quantitative Analysis, Management,
Decision-Making, Education.

1 . Introduction

Quantitative methods are universally used in practically all management activities. Even the

housewife in managing her household functions utilizes quantitative methods, either explicitly if she

is systematically inclined, or implicitly in terms (for example) of intuitive planning factors for the

weekly grocery purchase. Double entry accounting, which has an analytical foundation, is now a standard

practice. Statistical quality control, scientific sampling, portrayal of information by graphs, cost
accounting, and other such quantitative methods have wide acceptance. The usefulness of quantitative

methods in general is unquestioned.

Since World War II, under the labels of Operations Research, Management Science and Systems
Analysis, quantitative methods have been extended so that they can now be, at times, part of the main-
stream of executive decision-making. That is, quantitative methods previously had been primarily used
to provide data of various sorts which executives then integrated intuitively while performing their
functions of organizing, planning and controlling. Recent developments in analytical methodology and

the advent of electronic computers now permit quantitative methods to be utilized to provide answers

when management asks "what would happen if" for highly complex situations. In certain situations,
computers can be programmed with mathematical procedures to choose the best possible answer from all

possible "what if's," thus mechanizing the rendering of decision. Most decision situations still

require capable human judgments, and always will. However, the trend is towards facilitating the
exercise of judgment by providing information of greater pertinence and smaller volume.

Managerial activities are inconceivable without numerical data of some sort, and numerical data
imply or require quantitative methods for collection, processing, or analysis. Often the necessary
methods for collection and processing of data involve only simple arithmetic, and "analysis" may only
mean comparing one number with another. Trivial as they may be, these are quantitative methods. Even
disregarding such elementary procedures, the list of quantitative methods useful to managers is a long

one. To limit the discussion, the emphasis in this chapter will be on quantitative methods which
directly involve those choices within the control of the dec ision-maker. Thus, accounting, which deals
with systematic documentation and analysis of financial transactions, but not with the question of which
transaction to engage in; or, forecasting methods, which extrapolate historical data, but do not directly
include planned activities, will not be covered in this chapter. To a degree, the more traditional
subjects are covered in other chapters of this book.

This chapter will describe how, and also why, quantitative methods are useful. Techniques will be
mentioned, but explaining how to use them is beyond the scope of this chapter. References will be
cited for those readers who wish to learn more about them.

In order not to extend the scope of the chapter unnecessarily, quantitative methods will be con-
sidered within the single broad context of managerial decision-making. Since planning, organizing,
controlling and other managerial functions all involve decision-making, though with different time lags
for implementation and with different immediate purposes, the general context of decision-making is

appropriate for all managerial functions. Perhaps the managerial function which basically differs from
the others is the decision as to whether a particular situation needs to be looked into, i.e., the
recognition of a situation requiring a decision. Fundamentally, this also is a decision situation.
However, quantitative methods of the sort to be considered here are not applicable to such situations,
and so it will be assumed throughout that a decision situation in fact exists and has been identified.
Beyond the identification of a decision situation, it is presumed further that there are objectives
which, though not necessarily explicit, motivate resolving the situation with a "best" decision. The
significance of these objectives to the decision-making process will be illustrated throughout this
chapter

.

The elements or components of the decision-making process will be explained briefly. This will
provide the terminology to be used later in specifying in which among the many aspects of decision-
making a particular quantitative method has proved useful.



2. The Decision-Making Process

When decision-making is viewed in the context of a few alternatives presented by a subordinate to

his superior, perhaps with a recommendation for a choice, the process may appear to lack structure. All
decision situations, however, involve certain factors which may be determined explicitly if the decision
process is deliberate, or considered instinctively if the decision situation arises suddenly. These
are: (1) the elements which are subject to choice, (2) the criteria by which to evaluate the alternatives,

(3) the information relating the choice elements with the criteria, and (4) the means for making a choice.

Each element which is subject to choice is a variable . For example, a decision situation involving
purchase of any of a number of items, from several sources of supply and in quantities that are not
predetermined, has variables representing items, sources, and quantities. One alternative procurement
plan has one set of "values" associated with each of the variables. The "value" to be assigned a

variable can be numerical, such as 10,000 units of product A, or some qualitative identification such as
company X. A schedule in a machine shop consists of what work is to be done, on which machines, by
which workers, and at what times. The element of choice, or the variables, include the assignments of
jobs to a machine, to a worker, and to time periods. The alternative schedules are the various particular
assignments that might be made.

Decision situations invariably involve restrictions that limit the flexibility of (i.e., the range
of choices available to) the choices available to the decision -maker. These restrictions or constraints
may be physical, as with fixed amount of space or limited capacity of a machine; time-related as with a
deadline; financial, as with a fixed amount of funds; or institutional, as with an organizational policy
or legislative statute. An alternative is called feasible if the "values" assigned to the variables
satisfy all restrictions. Clearly, the identification of all inviolable restrictions is an important
part of the decision-making process.

The distinction between a constraint and a variable is often ambiguous, and factors which are meant
to be variables are sometimes expressed as constraints or assumed to be constraints. For example, a real
estate agent may be asked to locate a house for a prospective customer in another city. He is given
information on the size, style, and other features desired and told that the price of the house should
not exceed $25,000. Suppose the agent locates an outstanding buy, satisfying all of the requirements
except that the price is a firm $25,050. The agent will probably assume that the restriction to $25,000
is really not rigid and will inform his client of this house. However, if the agent had interpreted the
requirement to be a rigid constraint, the outstanding buy would not be a feasible alternative. Variables
can sometimes operate as constraints in terms of the limited alternatives that might be presented to a

decision-maker. For example, a project may be presented as a choice between a costly "crash" program
and a less expensive "normal" program. If the two programs are feasible, there are probably other
alternatives which are between the two and which may provide a more desirable solution. However,
restriction to the two alternatives essentially implies that the choice of values between the two
extremes are not permitted.

A decision involves the selection of a particular alternative, that is, the assignment of particular
values to the variables. The evaluation which leads to the decision is not based on the alternatives,
per se , but rather on the outcomes or consequences which would result from implementing the decision.
Thus, the means for developing information on the outcomes represent an integral part of the decision-
making process. Since the purpose of identifying the outcomes is to provide the basis for determining
which alternative's outcome is most preferred, the outcomes should be characterized in terms which
relate to the criteria pertinent to the decision-maker and which will facilitate his expression of
preference. For example, if there are several alternative research projects, the outcomes might be
specified in terms of the possible advancement of knowledge, the economic value of subsequent
edploitation of the technical knowledge, and others, depending upon the criteria by which the outcomes
are to be rated. It is important to note that the selection of the appropriate criteria requires not
only pertinence to the objectives, but also the capability of being related to the choice variables,
and the criteria together should encompass both benefits and disbenefits.

The means used by the decision-maker in arriving at his choice are obviously an important part of
the decision-making process as they directly determine the kinds of information which he requires. The
means for making a choice may appear to be straightforward, but in fact, there may be many available,
depending upon the circumstances of the decision situation. Some quantitative procedures will be
illustrated in later sections of this chapter.

3. Operations Research, Management Science, and Systems Analysis

With this description of the decision-making process, it may now be appropriate to comment briefly
on the sometimes confusing labeling of quantitative methods under the headings of Operations Research
(OR), Management Science (MS) and Systems Analysis (SA) . These categories have so much in common that
the distinctions are significant only for the purists. They all refer to the conscious formal application
of logic and scientific objectivity to the problems of decision-making. The SA purists maintain that OR
deals with decision situations which permit mathematical representation of the relationships between the



controllable (choice) variables and a single unambiguous criterion of preference. That is, that OR deals
with relatively simple systems. Systems Analysis is claimed by the purists to apply to complex situations
involving vague objectives and many criteria, usually non-quantitative, so that the mathematical techniques
so useful to simpler situations do not apply. The advocates of the OR label argue that because the
pioneering applications performed under the OR label did deal with relatively unambiguous criteria and
with situations that admitted optimization, this does not imply that OR is restricted to such situations.
Those performing studies under the label of Management Science maintain that MS covers complex decision
situations as well as the more simple situations ascribed by the SA purists to OR. Some who advocate
the MS designation have associated OR with military and hardware systems, while some OR purists suggest
that hardware systems are in the province of systems engineering.

The limited length of this chapter permits only examples dealing with relatively straight-forward
decision situations, and hence the illustrations may be considered to be of the OR- type in the sense
suggested by the SA purists.

The fundamentals pursued in this chapter, if not the examples, should satisfy the SA purists since
facility in and understanding of the rationale of quantitative procedures provide the basis for describing
and analyzing complex situations in a manner not generally possible without this knowledge.

4. Problems of Decision-Making

The task of decision-making, viewed in the context of the entire decision-making process, presents
many problems. Each situation will have its own peculiar problems, but the following general categories
are common:

1. Insufficient range of feasible alternatives.

2. Too many alternatives.

3. The outcomes of a possible action known only imperfectly, especially in terms pertinent to the
objectives.

4. The possible range of outcomes known, but specific outcome uncertain.

5. Presence of many pertinent but conflicting criteria, rendering evaluation (choice) difficult;
in addition, objectives may be vague.

Each of these problem categories will be discussed briefly; those to whose resolution quantitative
methods can contribute significantly will be treated more fully in the succeeding sections.

The development of feasible alternatives depends upon many factors. Imagination, ingenuity, and
technical knowledge are generally considered as being most important. However, the administrative
process through which alternatives reach the executive decision-maker is also a significant factor.
The decision-maker may be presented with two or three alternatives for a decision. His staff, however,
may have considered many possibilities so that the few presented to the chief represent the staff's
selection. The staff may have received information from the operating divisions representing those
division's decisions as to what merits being transmitted up the chain of command. Thus, viewed in the
context of the entire system, there exist many more possible alternatives than were even simultaneously
compared as system-wide alternatives; the administrative process itself limiting the development of
alternatives. When system-wide alternatives are compiled in this manner, the lower level objectives
explicitly or implicitly involved in screening out many possibilities, and the coordinated treatment
of the interfaces among the separate organizational units are important considerations. The decision-
maker's objectives and his constraints also influence the development of alternatives in significant
ways. For example, if a machine shop schedule is to be determined for one week, the alternatives are
more restricted than if a longer period is involved so that the feasible alternatives might include
procurement of additional personnel or even of new machinery. As mentioned before, the facility with
which alternatives can be evaluated limits the number of alternatives that can be considered and thus
inhibits development of the full spectrum of possible choices.

Quantitative methods are not a substitute for imagination, ingenuity, and technical know-how and
hence do not contribute directly to the development or identification of novel approaches to solving a
problem. That is, meagerness in the menu of identified alternatives due to lack of engineering
developments, or to lack of technical and specialized knowledge, will find no remedy in the quantitative
methods considered here. However, quantitative methods and their associated ways of formulating the
decision situation can often expand the variety and the scope of alternatives that are brought into
consideration. This is one of the primary functions of quantitative methods and will be discussed in a

subsequent section.

The problem of too many alternatives is not often recognized. Where more alternatives exist than
can be adequately considered, traditional administrative practices intervene to obscure the number and



variety of the actual possibilities. The practice of hierarchical filtering mentioned before is an
example; the top executive may believe there are only a few alternatives when in fact, the totality of
system-wide possibilities is overwhelming. Another aspect is that each decision-maker has his own bag
of techniques for decision-making. His conception of alternatives may be limited by his techniques. For
example, scheduling production in a large factory may offer a tremendous number of possibilities. How-
ever, the scheduler may use a rather specific set of rules to arrive at a feasible schedule. If this
is the only set of rules he knows, there may be only one possible schedule so far as he is concerned.
Quantitative methods are admirably suited for problems with many alternatives, especially when employed
in conjunction with electronic computers. Resource allocation problems, in general, have tremendous
numbers of feasible alternatives. For quantitative methods to be most helpful, however, the decision
criteria must be expressible in mathematical form [if only approximately) . The use of quantitative
methods for situations with many possible solutions will be considered in a subsequent section.

Perhaps the most difficult aspect of rational decision-making arises when the outcome of a possible
action is not known (at least not very specifically) in terms which are pertinent to the objectives.
Some direct consequences of the actions may be foreseeable, but the relationship of the observable
consequences to the objectives may be obscured by largely unknown relationships. For example, if a nuclear
attack is assumed, the direct consequences in terms of physical damages can be estimated, but the effects
on broad national objectives cannot be estimated nearly as well. Clearly, the problems of identifying
pertinent criteria and of relating action possibilities to these criteria are dominant in assessing
alternative government programs. For this problem area, quantitative methods may not be directly
applicable. However, mathematics provides an efficient language for representing and analyzing complex
relationships and so may help in clarifying and identifying parts of the complex relationships between
actions and objectives. Furthermore, the systematic and explicit formulation of the problem areas based
on deliberate analysis can be useful. The Planning, Programming, and Budgeting System currently being
promulgated for use in government agencies by the Bureau of the Budget and by the Program Planning System
of the Department of Defense are based on this idea. Specific quantitative methods or techniques here
are not yet available and hence are not covered in subsequent sections. However, this is an active area
of study under such labels as Benefit-Cost (or Cost-Effectiveness) Analysis and Systems Analysis; and
greater systematic knowledge and more powerful techniques are bound to develop.

Other problems in decision-making arise when the range of possible outcomes is known, but the specific
outcome is uncertain. To illustrate with a simple example, if a coin is to be flipped, the possible
outcomes (head or tail) are known, but not the outcome of a specific toss. In a similar manner, a

prospective action might lead to any one of many possible outcomes, putting another dimension of difficulty
into the evaluation of alternatives. Replacing the multiplicity of possible outcomes by some sort of
"average" is one of the devices most commonly used to eliminate (in effect) such uncertainties. This
practice can be very useful at times, but can also be misleading. There are many decision situations
where uncertainty must be taken into account, and quantitative methods, especially those dealing with
probability, provide a significant contribution. This problem area will be considered in the section
under Uncertainty and Decision-Making.

The existence of (possibly conflicting) multiple criteria, in general, creates further problems in

decision-making. The evaluation of multiple criteria situations is generally conceded to be the
exclusive province of executive judgment. This is unlikely to change. However, as decision situations
grow more complex and when multiple criteria situations are further complicated by many alternative
possibilities, the powers of executive judgment are likely to be severly taxed. Some modest advances
have been made in the use of quantitative methods in this area, and are discussed in the section on
Utility Theory.

Frequently, lack of data underlies all of the problems mentioned. Methods for obtaining specific
data, such as sampling, surveys, questionnaire administration, etc., are outside the scope of this
chapter. However, it should be noted that routine data collection or management information systems
ought to be developed on the basis of an explicit description of the decision-making process; the
development of such a description may be enhanced by quantitative methods, some of which will be
described in later sections.

The use of mathematical or logical models to represent relatively complex decision situations is

a primary tool of the contemporary approach to assisting managerial decision-making. Therefore, before
getting on to how specific quantitative methods may be helpful in decision situations, the idea of a

mathematical model will be examined.

5. Mathematical Models

A mathematical model is an abstract representation of an object, process, or system by the use of
symbols, functions, and relations. Some of the simplest mathematical models are used so widely that
they are considered common sense. For example, if c is the cost per unit of some item, and a quantity X
is to be purchased, then the total cost, T, is T=cX. This equation mathematically represents the cost
consequence T in terms of the choice of quantity X and the system parameter c (cost per item) . A more



involved decision situation with constraints and interrelated variables would, of course, require a more
elaborate and sophisticated representation, but basically the idea is the same.

Mathematical models can be categorized into three types depending on their purposes: (1) There are
mathematical models which represent a theory or a hypothesis explaining some phenomenon or the behavior

of a system. Physical laws such as the renowned E=mc2, and Newton's law of gravitational attraction,
which states that the force of attraction is proportional to the product of the masses and varies
inversely as the square of the distance between the particles, F=K(m]m2)/r2, are examples of mathematical
models of this type. An example in the social sciences is the "Gravity Model," predicting the flow of
traffic between two metropolitan areas in a manner similar to Newton's law of attraction. Lanchester's
theory of combat and random processes represented by "classical" mathematical descriptions (e.g., Poisson
or exponential distributions) are other examples. This type of mathematical model generally is not itself
a representation of a decision-making situation, but may be utilized as part of such a representation, for
example, the prediction of demand for some product. (2) A second type of mathematical model describes
the relationship between the choice variables and the outcomes. For a particular set of choices and
assumptions concerning the behavior of the recognized elements of the system, the mathematical model or
equations yields the consequences. The simple equation, T=cX, at the beginning of the section is an
example, and subjecting a miniature scaled aircraft to a wind tunnel test is a physical analog of this
type of model. The scaled aircraft represents one alternative configuration of an airframe and the wind
tunnel test yields performance characteristics which would be consequences of this configuration. A
series of different configurations can be tested. Similarly, in a descriptive mathematical model, a

series of different choices for variables and assumptions can be introduced and the outcomes associated
with them determined. The decision-maker can then make a choice from among these outcomes. (3) The
third type of mathematical model is an expansion of the second type in the sense that its information
also permits quantitative derivation of the "best" choice. This requires the optimization model to have
a single quantitative criterion of preference and to provide all feasible alternatives. Several examples
of this type of model will be presented in later sections.

Mathematical models are either deterministic or probabilistic. A deterministic model assumes that
each choice will lead to a fixed outcome. For the example cited earlier, if quantity X is purchased,
the per item cost will be c and the total cost will be T=cX. In a probabilistic model, the actual cost c

may be uncertain and hence the total cost is uncertain. The uncertainty is represented by probability
concepts and measures.

Mathematical models are abstractions of reality and are never complete representations of the real
situation. As in judgmental analysis, only the factors recognized as pertinent are identified and
portrayed in the model. However, since reality is always complex, the mathematical model may be inade-
quate in some relationships and misrepresent others. Thus a mathematical model, like any other aid in
analysis, must be tested to determine its reliability and accuracy.

6. Decision Situations with Many Alternatives

In some situations, the number of feasible alternatives is so enormous that though the relationship
between choice variables and their consequences may be straightforward, even a powerful electronic
computer may not be able to compute the consequences of each and every possible alternative. Intuitive
decision-making under these circumstances might be able to consider only a handful of the possibilities.
The odds are poor that the best alternative would happen to lie among these few.

To illustrate situations of this sort, consider an extension of a previously cited model. Suppose
there are four possible sources for procurement of an item and these sources are located at different
geographic locations. The purchases are to be delivered to three warehouses, each at a geographic
location not necessarily the same as any of the sources. Purchase requirement is for 45,000 units, with
10,000 required at warehouse 1, 15,000 at warehouse 2, and 20,000 at warehouse 3. The four sources have
8,000, 12,000, 11,000, and 30,000 units, respectively, available for sale. The following table shows
the quantities required at the warehouses, and the quantities available from the sources. The dollar
amounts at the intersection between a source and a warehouse in the table is the cost of purchase of a
unit from the source plus the cost of delivery of that one-unit from the source to the warehouse. The
C's with their subscripts besides the costs are the symbolic representation of each of these costs.

QUANTITY REQUIRED

Quantity 10,000 15,000 20,000

Available Warehouse 1 Warehouse 2 Warehouse 3

8,000
12,000
11,000
30,000

Source 1

Source 2

Source 3

Source 4

C, $3.00
C, 4.80

q 6.00

r
A

5.20

q $3.00

q 3.20

q 4.00
Cg 4.10

C
q $4.50

q n
5.00

q-" 5.50

C^2 6.00



The problem is to determine the sources from which 45,000 units are to be purchased so that the purchases
and deliveries to the warehouse in the required quantities result in the least possible total cost.

Although this is a small problem, an attempt to obtain the least cost solution by trial and error
methods will reveal the many awards which are possible. For a larger problem, for example, with 10

sources and 25 warehouses, the number of different, but feasible purchase-delivery combinations may be
so enormous that it would not be practical for even the most powerful computer to obtain a solution by
"one-by-one" examination methods.

The mathematical representation, or model, for this problem will be illustrated. Let Xx,X2,...Xi2
represent the decision variables. Thus Xj represents the quantity, if any, to be obtained from source 1

and delivered to warehouse 1. Let the subscripts of X correspond to those of the respective C's in the
above table. The model showing the relationship between the decision variables and the total cost
consequence is

Total Cost W C
2
X
2
+ C

3
X
3
+ + C

12
X12-

The decision variables, the X's, have constraints. Xi + X5 + X9 must not exceed 8,000 units, the
maximum quantity available from source 1. There are similar restrictions for the other sources.

Xi + X2 + X3 + X4 must equal 10,000, the quantity required at warehouse 1, and similarly for the other
warehouses. Thus, the alternatives are represented by the values of the X's which satisfy the following
constraints

:

None of the X's can be negative, and

X
l

+ X
2

+ X
3

+ X
a

= 10
> 000

X5 + Xg + X_, + Xg = 15,000 ^ warehouse requirements

Xn + Xnn+ X-...+ X10 11
+ X

12
= 20

>
000

quantities available

X
l

+ X
5

+ X
9 -* 8

'
000

12,000

11,000

30,000

The "solution" or decision to this problem is shown in the following table:

X
2

+ X
6

+ X
10

x
3

+ X
?

+ xu
X
4
+X

8
+X

12 1

warehouse 1 warehouse 2 warehouse 3 Quantity Purchased

source 1 x
1

= x
5

= x
g

= 8,000 8,000

source 2 x
2

= x
6

= 11,000 x
1Q

= 1,000 12,000

source 3 x
3

= x
y

= xu =11,000 11,000

source 4 x
4

= 10,000 x
g

= 4,000 x
12

= 14,000

* <_ is read "less than or equal to."



If, as in this case, the unit cost (purchase and delivery) is constant for each source-warehouse
pair, or at least does not decrease with increasing quantity (quantity discount), the situation can be
modelled or formulated as a Linear Program. This particular type of linear programming problem is

called a "Transportation" problem and is so distinguished because simpler solution methods are available
than for the general linear program. The very same mathematical representation could apply to a decision
situation involving personnel instead of procurement sources, and job vacancies instead of warehouses;
transportation, per se , need not be involved at all. "Transportation" problems occur frequently and
constitute one of the most frequent applications of linear programming. Analytical means are available
to obtain their solutions, so that it is not necessary to carry out an exhaustive one-by-one examination
of all possible alternatives.

Since linear programming represents a powerful analytical technique, permitting the selection of
the best from among an enormous number of possible alternatives, another illustration will be cited,
this time without the mathematical model. Suppose a firm has three different machines, the labor and
material to produce four different products, and an order for these products which must be shipped in a

week. The order is for 100 pounds of product A, at least 30 pounds of product B, and any combination of
products C and D so long as the total for the two products does not exceed 200 pounds. Product A requires
10 minutes per pound on machine 1 and 15 minutes per pound on machine 2. Product A can also be made by
using only machine 3, in which case it takes 30 minutes per pound. Similar information exists for the
other products and is tabulated below:

Time Required On Each Machine By Various Processes

In Minutes Per Pound

:

Product A Product B Product C Product D

process
1

process
2

process
1

process
2

process
3

(only 1

process)

(only 1

process)

Machine 1 10 -- 35 -- -- -- --

Machine 2 15 -- -- -- 15 10 --

Machine 3 -- 30 -- 40 20 -- 15

Profit per
pound $ 4 $ 3 $ 5 $ 1 $ 5 $ 3 $ 2

The profits for products A and B depend upon the process used. The profits per pound for the products
and the processes are shown on the bottom line. The sequence of machines on process 1 for product A
and process 3 for product B are immaterial and there are 40 hours of time available. Since time is

limited, the firm cannot use the most profitable process for each of the products. In this situation,
an alternative is a specification of the quantity of each product to be produced by each process. The
number of possible alternatives is very large, and the reader may wish to discover for himself the
difficulty of finding, without using advanced mathematics, a decision which represents the most profit-
able mix of products and processes. The reader will find that he will not know what the best mix is

until he has examined all possibilities. Mathematical methods provide a criterion which identifies the
best mix when it is encountered without an exhaustive search of remaining possibilities.

Mathematical Programming, which includes linear programming as one special case, is characterized
by a situation which has (1) two or more activities (controllable variables)

; (2) restrictions on the
extent, or levels, at which the activities can be carried out; and (3) a quantitative criterion of
preference. In the previous example, there were seven activities, namely the product-process pairs.
The restrictions on these activities were time availability, the quantities specified by the order, and
the implicit assumption that only three machines were available. If additional machines could have been
obtained at extra cost per unit, additional variables representing the possible utilization of the extra
cost machines could have been included in the model. The criterion of preference was the total profit.
Since mathematical programming often deals with decision situations where limited resources (money,
material, time, labor, equipment, and facilities) to be allocated among the activities, these problems
are generally called allocation problems.

Linear programming is a special type of mathematical programming where (1) the amount of each
resource required per unit of activity is constant regardless of the level of the activity, and (2)
the magnitude of the criterion unit associated with each unit of activity is constant. That is, all of
the relationships representing the decision situation can be expressed as linear equations.



Inventory problems illustrate another type of decision situation where many possible decisions exist,
and where the choice of the best decision may be facilitated by the use of a mathematical model . Inventory
problems are concerned with acquisition of stock in anticipation of future demand. A principal motive
for holding inventory is that it is less expensive and more convenient to obtain a relatively large
quantity at one time than to make smaller or separate purchases for each requirement. Other motives for
holding inventories are anticipation of price rises or of temporary unavailability of supply. Whatever
the motive for holding inventory, there are reasons for limiting its amount, such as the cost of storage,
deterioration and obsolescence of items, possible decrease in price, and better uses for the money
involved. The problem or decision is concerned with establishing procurement rules to provide the best
balance between the advantages and the disadvantages in holding inventory.

Consider a situation where the demand is constant for each time period and known to be "d" units;
procurement costs "r" dollars for each order plus "c" dollars per unit procured; and maintaining
inventory costs "h" per cent per time period on the value of items held in stock. If many small orders
are placed, storage cost may be small, but the cost of ordering will be large, since it costs "r" dollars
for each order. Conversely, if few orders are placed for large quantities, the ordering cost will be
small, but the storage cost will be large. It is possible to obtain the procurement quantity which will
result in the least total cost by many trials and errors; but a mathematical model and a little calculus
will provide a solution with much less effort. If x is the order size (quantity per order), then there
will be d/x orders for each period of time and the cost of these orders will be rd/x+cd. Demand is

assumed to be uniform over the time period, so that the stock can be considered to be held for half the
time period and the per period cost of holding inventory is h (cx/2) . The total cost each period, in

terms of the order quantity x, is represented by the model:

Total cost =» r - + cd + h(cx/2)

The value for x which yields the least total cost is

x = /2 rd/hc

This is known as the formula for "economic ordering quantity" (EOQ) or "economic lot size," and is

widely used. It can also be applied as an "economic production quantity" formula, where r represents
the set-up cost per production "run."

It may have occurred to the reader that the decision situations to which the economic ordering
quantity formula can be applied are rather limited. Demand is rarely known in advance and is unlikely
to be uniform, and delivery may be uncertain. Thus there are possibilities of stock-outs, and if

shortages are regarded as costly, as for certain items in military operations, then their disbenefits
must be taken into account. To accommodate more realistic and varied situations, a large body of
quantitative methods for determining good inventory policy decisions has been developed. Much of the
extensive literature on inventory theory has dealt with developing procurement rules for individual
inventory items. In recent years there have been increasing efforts devoted to larger systems, which
include interrelated demands, redistribution of stock among several supply facilities as an alternative
to new procuranent, and systems involving echelons or hierarchies of supply facilities. In military
logistics, shortages of different items can have widely varying consequences, and so the concept of
"military worth" of individual supply items has been receiving greater emphasis. Some quantitative
aspects of more complex inventory situations will be discussed later.

7. Uncertainty and Decision-Making

For the decision situations considered so far, it has been assumed that the relationships between
the decision variables and the outcome are known in advance, or at least that the outcome can be
estimated with acceptable accuracy. Thus for the model: Total Cost = CiX^ + C^i + C3X3 ^or procurement
from three possible sources, it was assumed that the prices were firm and that if quantities Xi, X7, and
X3 were purchased from the respective sources, the total cost would invariably be the sum indicated by
the equation.

In reality, the outcomes of proposed actions are generally uncertain. This uncertainty may arise
for many reasons. For example, factors which are not within the control of the dec ision-maker can
influence the outcome. These can be of two types: (1) competitive*, where there is purposeful action

* The case of competitive uncertainty, called Game Theory, will be considered later.
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such as by an "opponent" (e.g., a business competitor or military enemy) and (2) non-competitive, where
there is no deliberate opposition (e.g., the effects of the weather). Factors which are normally pre-

dictable by the decision-maker may deviate from expected behavior, e.g., the assignment of a person to

a job turning out badly because of unexpected illness, or the purchase of material proving unfortunate

because it was one of the few defective lots which (by chance) pass the quality controls without detection.

When the outcomes of each of the possible alternatives can vary widely, depending upon the nature and

relative importance of the uncontrollable or non-considered factors, the dec ision-maker must explicitly

take these uncertainties into account. Clearly characterization of possible uncertainties is an important

aspect of decision-making.

Basic to the treatment of uncertainty is the associated variability in the result of an action.

Obviously, if the result cannot vary significantly, then uncertainty does not matter. One should keep
in mind that uncertainty is a relative concept, in the sense that if the possible variability is trivial
or insignificant then the uncertainty can be ignored. Also basic to the characterization of uncertainty
is some knowledge of the likelihood with which each of the possible outcomes will result from an event
or an action. Information on these likelihoods may be derived from experiments and from experiences with
similar situations. The measures of probability is the usual way of denoting the likelihood of an out-

come. Probability is generally stated as a percentage or as a decimal between zero and one, and repre-
sents the relative frequency with which each of the possible outcomes might occur. Thus, from experiments,
it is known that the probability of a head on a flip of a coin is 50% or 0.50. From rainfall records, the
probability of getting 2.0 - 2.5 inches of rain in August in city "A" is 84.7% or 0.847. In many situa-
tions, experiments may not be possible and experience may not provide precise estimates. However, some
intuitive feelings of the likelihoods of the possible outcomes might be expressed, despite one's feeling
of inadequacy about translating such feelings into quantitative terms. Such probabilities are called
subjective probabilities, and permit incorporating more information than does the "neutral in the face of
total ignorance" assumption that assumes that all outcomes are equally likely.

The list of each possible outcome together with its associated probability of occurrence is called a

Probability Distribution (or a Frequency Distribution) and represents a useful way of characterizing
the uncertainty of results. Thus, heads-1/2, tails-1/2, is the probability distribution of the outcome
of a flip of a fair coin. The following is an example of a probability distribution of the demand for a
hypothetical product.

Demand in Probability
Thousands of occurrence

- 9 .05

10 - 19 .10

20 - 29 .28

30 - 39 .25

40 - 49 .20

50 or more .12

The well-known "normal" or "bell-shaped" distribution is a type of probability distribution which appears
to "fit" many actual situations.

A table to show a probability distribution (as above) is cumbersome and hence certain numerical
measures have been devised to represent the extent of variability. The most important of these are the
Variance and the Standard Deviation. The Standard Deviation is the square root of the Variance. The
Variance is the average of the squared differences between each of the values and the average (arithmetic
mean) of all the values. Thus, if the values do not vary much, they do not differ much from the average
and the Variance would be small.

An illustrative problem involving probabilities will now be presented. Suppose the probability
distribution of daily demand for a perishable item is estimated from past experience to be as follows

:

Demand for (units)

:

10 11 12 13 14 15 16 17 18 19 20

Probability: .02 .04 .07 .18 .20 .16 .12 .10 .07 .03 .01

Cumulative
Probability: .02 .06 .13 .31 .51 .67 .79 .89 .96 .99 1.00



The item can be purchased for $5 per unit and can be sold for $10 per unit. Purchases are made at the
beginning of the day and all unsold items can be returned at $3 (loss of $2). On any day, how many units
ought to be purchased? Suppose that 14 units are purchased. From the probability distribution, it is

seen that there is a probability of .02 that 10 will be sold for an income of $50. The 4 unsold units
with loss of $8, give a net income of $42. There is a probability of .18 that 13 will be demanded for
an income of $65, and one unsold unit with loss of $2, for net income of $63. If 14 units are to be
purchased, all of the possible outcomes are as follows:

Demand for 10, net revenue $42, with probability .02

Demand for 11, net revenue $49, with probability .04

Demand for 12, net revenue $56, with probability .07

Demand for 13, net revenue $63, with probability .18

Demand for 14 or more, net revenue $70, with probability .69

If 15 items are purchased, then the outcome possibilities are as follows:

Demand for 10, net revenue $40, with probability .02

Demand for 11, net revenue $47, with probability .04

Demand for 12, net revenue $54, with probability .07

Demand for 13, net revenue $61, with probability .18

Demand for 14, net revenue $68, with probability .20

Demand for 15 or more, net revenue $75, with probability .49

Similar computations can be made for all of the alternative quantities of purchase. What quantity should
be purchased?

Comparisons of the uncertain outcomes of the alternative decisions can be facilitated by the use of
two further concepts associated with uncertain situations, Expectation and the Expected Value. Expecta-
tion (or Mathematical Expectation) is the product of the probability with the value of the corresponding
outcome. In the previous example, if 15 items are purchased, the Expectation associated with a demand
of 10 items is (.02) ($40) = $8. This corresponds to the familiar concept of a fair bet. For example,
if the probability of a head or a tail on the flip of a coin in one-half, then the return for a proper
call is twice the amount bet. If a wheel of fortune has 100 numbers and the return is a prize worth $5,
the Expectation for any number selected in advance is one hundredth of $5, or 5 cents. The Expected
Value is the sum of the Expectations for all of the possible outcomes, and corresponds to the concept of
the average (arithmetic mean). In the coin example, if one dollar is received if a head turns up and a

loss of a dollar if a tail results, the Expected Value or average return is (1/2) (1) + (1/2) (-1) = 0.

The term Expected Value relates to the long run with many trials and not to the outcome of any one trial.

For the probability distribution of the demand in the previous problem, the Expected Value for the number
of units demanded is

:

(.02)(10)+(.04)(11)+(.07)(12)+(.18)(13)+(.20)(14)+(.16)(15)+(.12)(16)+(.03)(19)+(.01)(20)=14.67

or, in more familiar terms, the average demand is 14.67 units per day.

The reader is undoubtedly familiar with the computation of the average (arithmetic mean), that is,
adding all of the individual values and dividing by the number of values. If each of the values can be
considered to be an equally likely result, the probability for each value is one divided by the number '

of values and the average is thus computed as the sum of the Expectations.
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For the same example, if 15 items are purchased, the Expected Value of the net income (Expected net

income) is

:

.02($40) + .04($47) + .07($54) + .18($61) + .20($68) + .49($75) = $67.79

The Expected net income for each of the possible purchases is similarly found to be as follows:

Number purchased: 10 11 12 13 14 15 16 17

ExDGCtcd. net
income (in $) : 50.0 54.86 59.44 63.53 66.36 67.79 68.10 67.57

Number purchased: 18 19 20

Expected net
income (in$): 66.41 64.62 62.69

The relationship between quantity purchased and expected net income is

graphed below:
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If the criterion for preference among the alternative possibilities is the largest Expected return,
then the decision should be to purchase 16 items each day.* Although the Expected return with a purchase
plan for 16 items per day is $68.10, the actual demand can be as low as 10, in which case the return is

$38.00, resulting from 10 sold for $50, and 6 unsold for a loss of $12. Purchase of 10 each day will
yield a constant return of $50 per day since demand is at least 10 every day. With a purchase of 16 per
day, the Expected net income is higher, but the net income per day will have greater variability, varying
from $38 to $80. There may be individuals who would prefer a lower Expected value in order to have less
variability, that is, less risk.

If the purchases are to be made on many days, as implied in this example, the long run average will
conform to the Expected value much as flipping a coin many times will result in fairly even numbers of
heads and tails. Suppose, however, that a decision must be made for one day only. A gambler might want
to purchase 20 items since he could obtain, with luck, the highest possible income of $100. The very
conservative person might purchase 10 items since this assures him of $50. Another might purchase 14

items since a demand of 14 has the highest probability of occurrence. A purchase of 16 would give the
highest Expected income. These possible criteria have been given names. The gambler who purchases 20

items is said to follow a Maximax criterion. The conservative who would purchase 10 items will follow
a Minimax criterion. The one who purchases 14 items follows a Maximum Likelihood criterion, and the
one who purchases according to the maximum expected value follows the Bayes' Decision Rule. The choice
of criterion is one of personal inclination towards risk and of personal need for a specific outcome.

In the example of uncertain demand just cited, it was noted that the average demand per day is

14.65 or, in round numbers, 15 per day. The Expected values for the various purchase plans show that
purchase of 15 per day does not, in the long run, yield the largest income, perhaps contrary to
"common sense." Computations will show that if the salvage value of unsold stock is greater than the

$3 assumed in the example, then using the average demand to determine the purchase quantity will be an
even poorer plan relative to the best plan. Thus, the use of the probability distribution as a more
complete description of the uncertain situation yields better decisions.

The probability distribution of demand for inventory items (for example, spare parts) is utilized
extensively in the modelling of decision situations related to inventory control. It is also used to

represent the uncertainties related to failure of equipment and the scheduling of maintenance. Prob-
ability distributions are also central to Replacement Theory. Replacement Theory, which is closely
related to inventory and maintenance control, deals with best practices concerning when to replace
equipment based on cost of new equipment and cost of retaining, fixing, and overhauling existing
equipment. Probability distributions are also utilized in Queueing Theory, which will be described in

the next section.

The treatment of uncertainty so far has been concerned with situations where uncertainty arises from
lack of knowledge about behavior of relevant factors which are indifferent to the decision-maker's
objectives. Uncertainty arising from weather, from variabilities among material, machines, and workers,
from reactions to advertising, from certain behavioral patterns among homogeneous groups of people, and
from random throws of a pair of dice or spins of a roulette wheel are examples. Uncertainty also can
arise from lack of knowledge concerning the behavior of competitors who are not passive about the
decision-maker's objectives and who can take purposeful actions to prevent outcomes desired by a

competing decision-maker.

Game Theory is the study of decision-making in situations with competing "players" with conflicting
objectives. In Game Theory situations, the consequences of one competitor's action depend in part upon
the action of his opponents. For example, in weapons system planning, in political campaigns, and often
in business planning, competitors' possible actions and counteractions are important factors in arriving
at decisions. Clearly, decision-making in such situations calls for different considerations than when
uncertainty arises from unmotivated sources.

*The mathematical model of this problem can be expressed as:

» x

Expected income = rx^f(y)dy +C [ry + s(x-y)] f(y)dy - ex

where: x is the number of items to be purchased per day

r is the selling price per unit

c is the cost per unit
s is the salvage value per unit
f (y) is the probability distribution of demand

This mathematical expression for expected net income can be solved for the maxnnum expected value

without computing the expected income for each purchase possibility.
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Some fundamentals of game theory can be demonstrated with the following simple game: Player A has

3 possible actions and player B also has 3 possible actions. Each player must select his action without
knowledge of what action the other player will choose; however, each player knows in advance what the

consequence will be for each combination of actions that might be selected by himself and his competitor.
For each possible action A might take, B has 3 possible actions, and so there are 9 possible pairs of
actions and 9 consequences. These consequences are termed "payoffs," since in the usual context of game

theory, the consequence is what B pays A. The consequences of the 9 possible combinations of actions are
displayed in this "payoff" table:

B's Actions

A's Actions

4 -2

2 2 1

-3 -1

This means that if A takes his action 1 and B also takes his action 1, then B must pay A 4 units of
something of value. If A takes action 1 and B chooses action 2, then A must pay B 2 units. Where the

entry is zero, neither pays the other. The payoff entries in the matrix are what A gains or loses if

A and B should take the actions identified on the margins.

Consider the game being played many times. The maximum that A can get is 4 units. However, if A
takes action 1 to try to get his maximum, and B takes action 2, then A must lose 2 units. Similarly,
the most B can get is 3, but if B takes action 1 to try to get his 3 units and A takes action 1, B would
lose 4 units. A reasonable decision for B is to take action 3, since he can then limit his loss to at
most 1 unit, and for A to take his action 2 since he can be assured of gaining at least 1 unit. There
is not much incentive for either to stray from these actions, for if one strays and the other does not,
the one who strays will be in a worse position.

Some game situations involve a "mixed strategy." That is, assuming that the game is played many
times, each player should try to vary his actions, utilizing a mixed set of actions in order to optimize
the consequences to him. The game of matching coins is an example. In this game, both players indepen-
dently choose a side of a coin and then the choices are displayed. A must match B, which means that if

both players had chosen the same side of the coin, then B must pay A one unit. If the sides chosen are
unlike, then A must pay B one unit. The payoff matrix is:

Heads

Tails

Heads Tails

1 -1

-1 1

If this is to be played many times, neither player would benefit from persisting in one choice since
the other could easily take advantage of it. If one competitor should favor one side of a coin even
slightly more than the other, his competitor (if he detects this bias) can gain an advantage. Thus,
the most favorable strategy for each player is to randomize his selections so that 1/2 of the time heads
is shown and tails the other half. This is an example of a mixed strategy, i.e., the actions are varied
from game to game, with the choice of action selected randomly within the best relative frequency of
actions so that the opposing player cannot anticipate the outcome.

The two simple illustrations cited fall into the category called zero-sum, two-person games, since
two competitors are involved and what is gained by one is lost by the other. Zero-sum, n-person games
are those where there are more than two competitors involved and gains equal losses. Non- zero- sum games
are those where there are two or more competitors and where gains do not equal losses. Most business
situations are non- zero-sum games in that one firm's losses are not necessarily another company's gains.
All competitors may gain, but by different amounts. Behavioral theory in non- zero-sum games is much
more difficult since two or more competitors can form coalitions and conspire against other competitors,
or can offer payments or bribes to others in order to secure more favorable actions.
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Game Theory in its current state of development cannot be considered as a practical tool in the
sense of exhibiting numerous successful applications to real decision situations. However, it is widely
recognized that the concepts involved in the theory are often helpful in clarifying and enhancing the
judgment of those engaged in such decision situations. The capability for describing complex decision
situations so as to identify the significant elements and relationships, even without specific mathe-
matical functions or equations, is useful in resolving complex decision situations. As stated earlier,
facility with and understanding of quantitative methodology provide a strong background for this
capability.

8. Quantitative Methods Without Optimization

The previous section illustrated the use of quantitative methods to determine the optimal or best
alternative action or strategy among many possibilities. In many decision situations, it may not be
possible to develop quantitative methods that can be used to yield the optimum choice. For example,
there may not be a well defined, quantitatively measurable criterion for indicating preferences among
the alternatives; or even if such a criterion existed, the relationships among the decision variables
and the criterion may be so involved that mathematical methods may not be available to solve for the
optimum. In these cases, quantitative methods may still be useful, not to determine the best solution,
but to yield answers to specific questions of the type "what if?" A wind tunnel test of one airframe
model does not provide an optimal airframe design. The wind tunnel test provides an economical answer
to the question, "If an airframe is designed with these configurations, what might its performance
characteristics be?" Similarly, models of decision situations can be developed which economically yield
estimated consequences of specific alternatives. If the model is carefully developed, it may be possible
to test a variety of possible alternatives under a variety of environmental conditions.

These models are called descriptive or predictive models. The purpose is to predict the conse-
quences of selected actions or policies, but in order to accomplish this, the model must accurately
describe the behavior of the pertinent system elements with the decision variables as they might be
implemented. Descriptive models can employ analytical, simulation, or gaming techniques, or combinations
of them, for solution.

9. Descriptive Mathematical Models

Descriptive (or predictive) models that can be represented mathematically are employed in a variety
of decision situations and may vary widely in form, compactness of representation, and method of solution.

Unfortunately, there is no adequate classification scheme of these models that permits an easy overview

of their respective ranges of usefulness.

Decision problems involving queues or waiting lines, and/or sequencing of activities, are quite
general and often mathematically tractable. Since quantitative methods for these problem areas have
had extensive use, they will be illustrated briefly.

10. Queue ing Theory

Whenever a customer, arriving for some service, finds all the facilities in use and decides to wait,

a queue is formed. Since waiting is annoying, a queue is usually an unsatisfactory situation. However,

the elimination or reduction of queues requires additional service facilities which would increase the

cost of the service. Hence, the amount of time that customers would be expected to wait and their will-

ingness to wait are important elements in designing and operating service facilities. Service facilities
to which the theory can be applied include such things as cafeterias, traffic lights, telephone facilities,

tool booths, supermarket checkout counters, and airport runways. Queueing Theory in the broad sense is

concerned with decision-making where the length of time a customer must wait is an important consideration,
and it attempts to provide information on queueing characteristics for particular service and customer

arrival configurations.

Queueing situations are characterized by the time pattern of customer arrivals (input distribution)

,

customer behavior in a queue, the manner in which customers are selected for service (queue discipline),

time required for service (service-time distribution), and departure. If customers arrive at fixed
intervals of time and the service time is constant for each customer, the resulting situation is clear.

There will be no queue (or at most one customer waiting) if the service time is less than the time

interval between arrivals, while the queue will grow constantly if the service time is greater than the

arrival interval. Generally both arrival intervals and service times are variable (uncertain), and the

question is: "For a particular input distribution, service time distribution, number of service channels,
and queue discipline, what will be the average customer waiting time or the average number of customers
in the waiting line?" The important factors which determine the queue characteristics are the uncertain-
ties as to customer arrivals and service times. Even if the average service time is less than the average
time interval between arrivals, so long as some customers can occasionally require extremely lengthy
service, the service facilities may need to be different from when the average service time is the same
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but subject to less variation. If the average service time is equal to the average time between
arrivals, one might expect that there would be no queue. Queueing theory, however, can be used to

demonstrate that this is not the case if service time and arrivals are uncertain. A queue will form

even if the average service rate is less than the average arrival rate. A service facility should have

an average service time smaller than the average time between arrivals of customers and occasionally idle

service facility is a necessary part of efficient customer service.

Mathematical models of queueing situations are generally expressible only in terms of rather complex

equations and hence will not be illustrated here. There is, however, an extensive literature on the

subject dealing with situations (among others) involving customers leaving or not entering queues,

jockeying among queues, different types of input and service distributions, different queue disciplines

(random choice, first come first served, customers with priorities, etc.), multiple channels, sequence

of service, and batch arrivals. Queueing models are descriptive and provide information on expected

queue characteristics for particular situations. They do not directly determine what the service facil-

ities should be. However, like Game Theory and other quantitative methods, Queueing Theory provides
information and understanding which should lead to better decisions without the disadvantages of exper-

imenting with the actual facilities.

11. Network Analysis

Network modelling, i.e., the graphical display of relationships among activities, is frequently

utilized to describe the sequence relationships among activities. An illustration of a simple network

is as follows:

The node A may be the start of an activity, followed by tasks or events B,C,D,E,F,G, and H may be final

completion. The arrows indicate the direction of flow or the necessary sequence of tasks.

Besides the values of a graphic display and of the explicit identification of the necessary activ-
ities, tasks, or events, networks can also be utilized as quantitative models. In PERT (Program Review
and Evaluation Technique) , each node represents an identifiable event or milestone and the arrows
represent tasks. With each task are associated estimates of the time required to perform the task and
the possible variation in the task time. These estimates are often indicated by 3 estimates of time, a
pessimistic estimate which indicates a reasonable maximum, an optimistic estimate which is a reasonable
minimum, and the most likely time. Based on the most likely times for each of the tasks, the most likely
completion time is developed. The longest "path" through the network is called the "critical path." The
activities on the critical path are the ones to emphasize in control, since all of the other paths have
slack in the sense that their total times are less than those on the critical path. The estimated
variabilities of the task times are used to determine the estimated variance of the completion time.
Knowledge of the critical path and amount of slack in other paths may permit reallocation of manpower
or other resources so as to shorten completion time or to provide greater safety margins in completions
of tasks which are tightly scheduled. The reallocation is performed manually with PERT. However, variants
have been developed in which under certain conditions the adjustments are determined using linear
programming methods.

The network illustrated may also represent a network of roads for one direction of traffic. For
example, cars travelling from A to B may branch onto two roads, either going to C or to F. By observing
the proportion of cars taking each branching possibility in the network, and interpreting these pro-
portions as probabilities, it is possible to predict the probably flow of cars through the road network.
If each branching probability (called Transition Probability) is independent of the prior route taken,
then the model can be represented as a Markov Chain and there are efficient mathematical procedures for
obtaining certain information about flows through the network. Let pAT,>PT>p»PT,p>Ppn >Ppp>Ppp>Ppp>Pr)Ti>PpiT

be the set of probabilities that a car at the node represented by the first subscript will take the route
leading to the node of the second subscript. p. R ,p„H ,Pp„,pp„, and p„„ are all equal to 1 since there are

no branching possibilities at A,D,E,F, and G. These transition probabilities can be represented as a
matrix as follows:
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The rules of the branch of mathematics called "matrix algebra" can be used to determine the expected
relative frequency that each node will be entered and other descriptive characteristics of the flow
through the network. The importance of having such a routine and readily-automated solution method is
especially evident for large networks.

12. Simulation

Representing a decision situation by a mathematical model requires that the relationships among the
identified system elements be portrayed by mathematical functions, equations, and formal structures that
operate under the rules of mathematics. For many decision situations, the mathematically tractable forms
may be poor approximations of reality and their use may yield inadequate results. For example, in a
queueing situation, the customer arrival pattern may be totally unlike any that can be represented by a

mathematically tractable arrival distribution. Or, the servicing practice may involve additional per-
sonnel assisting at certain times according to rules which may be difficult to represent mathematically.

The advent of the large electronic digital computer has permitted the development of Simulation
models which are not "solved" by the usual mathematical methods. The Simulation models are, as the name
implies, simulations of some specified process or operation. Thus, the computer "runs through" the
sequence of activities guided by conditions and rules including those which are the object of the query,
maintaining the necessary records, and if necessary, performing calculations of the sort involved in
solving mathematical models. Highly complex systems that would be difficult or impossible to represent
and solve mathematically can be programmed and simulated on an electronic computer. Because electronic
computers operate at fantastic speeds, uncertain situations can be sampled many times as if the same
basic situation was repeated many times to generate a distribution of potential consequences. Also,
many time periods of activities can be simulated within a very short time. The simulation model
essentially provides management with an experimental laboratory in which new policies, equipment,
schedules and changes in other decision variables can be introduced, the operation under these conditions
simulated, and the consequences estimated.

The basic ideas of a computer simulation will be illustrated for a particular problem related to the
design of a package sorting machine. The machine includes a number of conveyor belts (operator lanes)
moving in the same direction. A worker (one for each lane) places packages with destination codes on the
operator lane. The operator lanes pass over a number of other conveyor belts moving at right angles to

the operator lanes. These conveyor belts are "destination lanes." A package moves along the operator
lane, until it comes to the appropriate destination lane where the package is mechanically transferred
to the destination lane and proceeds to a bin. The conveyors of both the operator and destination lanes
are continuous series of containers (moving containers) so that a package is placed in a container and
is transferred to a container and each container can have only one package. The schematic arrangement
is shown on the next page:
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In designing the machine, there is the problem of what to do when a package on an operator lane
arrives at a destination lane and the destination lane already has a package from a prior operator lane.

Since all belts are moving continuously at uniform speed, either the package must continue on the oper-
ator lane and be recycled through again, or there can be provision for limited storage at each inter-
section to act as a buffer. If the buffer storage were large enough, there would be no need to recycle.
Limited buffer storage would require some recycling. Since buffer space is costly, there is a problem
in deciding what capacity of the buffer storage should be designed into the machine.

The simulation may be performed in several ways, but only one will be illustrated. For simplicity,
it is assumed that the movements of all of the belts are synchronized, and also the movement of the
package in the beffer storage, so that it is always possible to transfer a package from operator lane to
destination belt if space is available. It is assumed that transit through the buffer storage is

immediate. Although the machine will have many destination lanes, the analysis can be made on the basis
of one destination lane, a specified number of operator lanes, and a buffer storage of a particular size
for each intersection.

To perform the simulation, it is necessary to know the arrival pattern of packages to the particular
destination. Assume that an analysis of destinations shows that 1/6 of the packages are for this destin-

ation and that the packages for this destination are randomly mixed with packages to other destinations.
Since the belts are synchronized and move at uniform speed, the time unit can be taken as the time re-

quired for movement of the conveyor one container length and time can then be considered to proceed in

discrete units.*

The simulation consists of a series of cycles with each cycle taking one unit of time. Each cycle
involves the following activities which the computer is programmed to imitate:

1. Suppose there is a "package" on some operator lane, and it has just reached a certain destina-
tion belt. A query is made whether the package shall drop off at this belt or proceed on to
other destinations. If the simulation were to be done manually, a six-sided die with one face
identified as the destination could be tossed. If the destination face turns up, the package
is regarded as meant for this destination. If some other face turns up, the package is destined
for some other destination. On the computer, the throw of the die can be simulated by generating
random 4 digit numbers.** The random number is compared to 1667 (since 1/6 is 16.67 percent).
If the random number is 1667 or less, then this is like the destination face of a die turning
up and the package is for the destination belt. If the number is greater than 1667, the package
proceeds on the operator belt.

2. If the package is for this destination, the content of the buffer storage is examined. If the
maximum number is already in the buffer, the new arrival cannot enter and is noted as being
recycled. A count is maintained for packages that are recycled. If the content of the buffer
is less than the maximum, the content is increased by one (the new arrival).

*0r the conveyor can be thought of a moving injerks, one container length at a time.

**There are many ways of doing this. For example, a randomly selected 10 digit number is squared and
the middle four digits of the product is selected. The middle 10 digit number is again squared to
determine the second 4 digit number. This process can be continued. This "mid-square" procedure is
not recommended for obtaining long series of numbers, since long-term patterns arise which spoil the
desired "randomness."
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3. If the buffer storage contains one or more packages, the container (on the destination belt)

into which the package will be discharged from the buffer is checked to determine whether it

already contains a package. If it is empty, a package is "transferred" to the container by
adding one to the container and subtracting one from the buffer. If the container already has
a "package," then a package from the buffer cannot be transferred and the buffer content remains
the same.

4. The content of each destination container is shifted forward to the next container. This simu-
lates the movement of the destination belt one container distance. The destination container
directly fed from the first operator lane (no prior operator lane) , after shifting its content
forward, will always get a zero content to replace it since the containers coming to the first
operator will always be empty.

5. A new cycle begins by returning to step 1. A count is made for each cycle and after a pre-
determined number of cycles, the process ends and the percentage of packages recycled on each
operator lane is obtained.*

This simulation may then be repeated for another buffer storage size, of if the buffer storage capacities
at each operator lane can be different, then a different configuration of capacities can be introduced.
Also, the proportion of packages to the particular destination can be varied in order to obtain relation-
ships between arrival densities, buffer sizes, and recycling.

A simulation need not be performed on a computer. However, even relatively simple simulations can
require a great many individual steps and involve keeping tract of voluminous records. The use of
computers provides the possibility of "experiencing" long runs of package processing in a matter of
minutes or even seconds. Also, the computer program could probably be easily modified to try different
package arrival patterns. The particular problem described can also be treated analytically, but the
analytical procedures would be beyond the scope of this chapter.

A problem which is sufficiently simple to permit description in a short amount of space may convey
the impression that simulation (as also other quantitative methods described) is applicable to only
trivial situations or to situations where experience mught provide an adequate basis for decision. The
purpose of simulation, of course, is to provide information about situations which are so complex as to
defy satiafactory intuitive analysis. Thus there have been extensive simulations performed of a variety
of highly complex situations, such as a large part of a military supply system, scheduling of aircraft
maintenance for a major airline company, passenger transportation in the Washington-Boston Corridor, and
many others.

Simulation of complex situations is generally an expensive operation, mainly due to the requirements
for large amounts of data generated by the specificity of activities and their relationships. This is

also true for most mathematical models, whether descriptive or optimizing.

13 . Gaming

Gaming or Games (War Games, Management Games) refer to simulations where human participants are
actively involved and play specific decision-making roles. A computer may be used to determine those
decisions' consequences, which are reported to the appropriate participants who then act on the basis
of this feedback information on the results of their own and other participants' decisions. Gaming
differs from Game Theory in that Game Theory is concerned with how competitors should act in order to
maximize their own gains. A Game Theory situation can be "gamed" with actual participants to determine
how people really do act. In gaming, the human participants are assigned roles, such as president of a
firm or company commander of a military force, and are provided rules, resources available, objectives,
alternatives, and other information. Generally, the participants are competitive groups or at least
groups with different and possibly conflicting objectives. As in purely computer simulation, time can
be compressed and years of "experience" can be played in relatively short periods of time.

The difference between gaming and simulation is that in simulation, one set of levels for the
decision variables is traced through to its consequences. In gaming, the participants make decisions
for which the consequences are obtained through an analytical model or possibly simulated, and these
consequences, communicated back to the participants, lead to the next group of decisions.

In most games, the participants are scored based on the results of their actions, and they attempt
to maximize their respective scores. The ability of games to capture the full realism of actual

Since a package is assumed to be able to move from operator lane through the buffer to the destination
container in one cycle, the perceptive reader may have noticed that the sequence described in step 2with the maximum number already in the buffer is not correct when the destination container is empty.
I his inconsistency is retained for ease of explanation.
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operations, especially in terms of the consequences of actions, is often questionable. However, war
games are used extensively in the military, and much useful information has been obtained through such

exercises

.

14. Indicators of Preference

The identification of the best choice among feasible alternatives is a simple matter if the criterion
for choice can be measured numerically, and if preference is a matter of selecting the largest value
(e.g., maximum profit) or the smallest value (e.g., minimum costs). The pertinent factors related to

performance, however, often involve qualitative factors, or factors which have natural or derived numer-
ical measures but which are not comparable, such as time and costs, or number of attack submarines and
number of strategic bombers. Under these conditions, it becomes very difficult to insure that decisions
are consistent with organization objectives, and that portions of them entrusted to different decision-
makers are treated on a consistent basis. Utility Theory is concerned with this problem, and attempts
to develop methods and understanding which will improve the judgmental process of the decision-maker.
The ultimate goal is the translation of the pertinent criteria into a single numerical scale which reflects
the decision-maker's preferences for all combinations and levels of the criteria involved. The present
state of development of Utility Theory is far from realizing such objectives; hence the discussion here
will deal with certain rudimentary ideas, and with problems rather than solutions.

Preferences among outcomes can be expressed quantitatively in two basic forms. The simpler form is

merely to express the order of preference - which one is preferred over another. The more difficult form
is to express how much one is preferred over another. If the decision circumstances are such that it is

feasible to rank-order the preferences for all alternatives, then this is sufficient to establish the
decision (just choose the top-ranking alternative). There are circumstances, however, when even ordering
the alternatives is difficult and it is desirable to find ways to facilitate the process . Situations
involving many possible alternatives but a single numerical criterion have already been considered.
Beyond this are situations where several qualitative or non-additive quantitative factors are involved,
together with many possible alternatives. Even when there are relatively few alternatives, policy
statements which provide consistent ordering guidelines to subordinates ' decision-making involve further
complications.

Let items A,B,C,D, and E (items could be people, jobs, programs, equipment, etc.) be arranged in

preference order, with A being the most preferred and E the least preferred. If the decision calls for
the selection of one item, then the preference order is sufficient to determine the choice. Suppose,
however, the five items are five possible projects which are expected to have the following costs:

Project A - $100,000
Project B - $200,000
Project C - $600,000
Project D - $300,000
Project E - $500,000

and the total budget is assumed to be $1,100,000.* There are many combinations of projects which are
possible within the budget limitations. Among them are:

(1) A,B, and C at a total cost of $900,000

(2) B,C, and D at a total cost of $1,100,000

(3) A,B,D, and E at a total cost of $1,100,000

It is seen that the preference order placed on the individual projects is not sufficient to indicate a
clear choice among the combinations of projects. Although C is preferred to either D or E individually,
D and E together may be preferred to C, in which case A,B,D, and E is preferred to A,B, and C. If C
is preferred to having D and E, or if C plus $200,000 to spend for something else if preferred to D and
E, then (1) is preferred to (3). If the budget limitation were $100,000, then (1) would be a clear
choice. However, in general, in order for a clear choice to be evident, preferences must be indicated
for feasible combinations of items rather than for specific items. This point is more clearly illustrated
in the next example, in which there are two factors comprising the basis for preference.

*This example and the one that follows are taken from G. Mellon, "An Approach to a General Theory of
Priorities: An Outline of Problems and Methods." Econometric Research Program, Princeton University,
Research Memorandum No. 42, 30 July 1962.
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Assume that there are three different jobs, an also three individuals each of whom can fill any of
the three jobs. Suppose the jobs are ranked in order of importance: job 1 is considered the most
important, job 2 is the next, and job 3 is considered the least important. Similarly, individual 1 is

ranked as the most desirable, individual 2 is the next, followed by individual 3 ranked lowest. The
possible assignments of individuals to jobs are shown as

Individual

jobs

A B C

D E F

G H I

A indicates that individual 1 is assigned to job 1, B means individual 1 assigned to job 2, etc. From
the rankings of the individuals and the jobs, A is clearly the highest ranked combination, and I is the
lowest ranked combination. What can be said about the seven other combinations B,C,D,E,F,G, and H?
The following statements are unambiguous:

A>B>C
D>E>F
G>H>I

A>D>G
B>E>H
C>F>I

> is read "is preferred to."

There is no basis, however, to order B and D,G,E, and C or H and F. Some might say that A,E,I is

the best assignment plan, but on the basis of the information available, there is no reason to choose
A,E,I over, Say, D,B,I. A may be preferred over D, but E is not preferred over B, thus A,E,I is not
a clear choice over D,B,I.

It is evident that when several independent attributes are involved in decision-making and each
attribute is priority - or preference-rated, these orderings are not sufficient to determine a complete
ordering of the combinations of attributes. If priority- rated attributes or criteria are provided as

guidelines to subordinates, then the latter can encounter circumstances in which they must impose their
own opinions to arrive at a decision. It is not difficult to imagine that one subordinate might interpret
D>B, another subordinate will interpret B>D and each will act accordingly.

When many criteria are involved, each with its separate priority structure, the existence of these
priority structures may collectively provide only minimal information or guidelines for decision-making.
In a practical situation, there may be heirarchies of authorities imposing priorities; there may be
functional priorities; there may be project priorities; there may be time priorities, etc. The existence
of these separate priorities or preferences may provide little or no guidance as to which of two partic-
ular alternatives should be regarded as preferable.

One of the most common devices to arrive at an ordering in the multiple criteria priority situation
is to impose a priority order on the criteria. This device is called a Lexicographic Ordering. An
alphabetical ordering is an example of a lexicographic ordering. The first letter position is overriding
over the second position which is overriding over the third position, etc. Thus, a word beginning with
A is placed before a word beginning with B, hence AZ is placed before BA. If the letters in the first
position are the same, then the second position becomes dominant, etc., thus Ac is placed before Ad.

In the previous example concerning jobs and people, a lexicographic ordering is justified if the
job category can be considered as overriding the individual category. In this ordering, job 1 with any
individual has precedence over job 2 with any individual, which in turn has precedence over job 3 with
any individual. Thus, the ordering is

A>D>G>B>E>H>C>F>I

and provides a complete ordering of the job- individual combinations,
plans is

The ordering of the assignment

AEI>AHF>DBI>DHC>GBF>GEC

.
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Although lexicographic orderings have certain advantages, they often impose stronger priorities
than are really desired. Depending upon the number of classes within a highly rated category, it is not
difficult to imagine decreasing marginal returns of low priority classes. Insisting that the lowest

priority class of the highest priority category have precedence over the highest class of the second
priority category may reduce the overall effectiveness significantly. A familiar example is the situation
in which a casual request by the boss which has extremely low priority so far as he is concerned, is

accorded top priority by his subordinates and overrides much more significant activities.

Due to the convenience of numerical values, they are often used to represent preferences. When
numerical values are used to convey the preference order , the ordinal characteristics of the numerical
values are utilized. Thus, if the highest preference item is assigned a value 100, the next highest 99,

and so on, so that the higher the number, the greater the preference, then the numbers have no more
significance than the use of alphabetic characters to denote order. The same order can also be indicated
by .0085, .0084, etc. Furthermore, when numbers are used to represent only the order of preference,
arithmetic operations on the numbers may be misleading since the usual arithmetic operations may not be
applicable ot ordinal numbers. For example, if A is the most preferred and is assigned a value 10, B

is assigned 8 and C is assigned 3, then the values for B and C added gives 11, but the fact that 11 is

larger than 10 does not necessarily mean that B and C together would be preferred to A.

All numbers representing preference order can be multiplied by a constant value and a constant
value can be added to each without altering the preference order. If the values for A,B, and C above
are all multiplied by 10 and 15 added, then the results, 115, 95 and 45, still retain the previous order.

Assigning ordinal numbers to represent preferences may be satisfactory for particular decision
situations where the outcomes are certain, but can be very misleading for uncertain situations. For
example, suppose the outcome of alternative A is uncertain so that the probability of an outcome with a

preference order of 10 is 80%, while there is a 20% chance that the outcome will have a preference order
of 5. These hypothetically possible outcomes and those for alternatives B and C are tabled below.

PROBABILITY OF OUTCOME WITH SPECIFIC PREFERENCE ORDER

10 98765432

Using the expected value concept described before, the expected values of the preference orders of the
3 alternatives are A:9.0, B:7.6, C:3.6. Suppose that any outcome below preference order 6 is very
undesirable. This might be reflected by a different numbering system but which still retains the same
preference order as before for the outcomes.

100 99 98 97 96

.80

.10 .60 .20

.20

.10

.10 .10 .20 .50 .10

The expected values of the preference orders of the 3 alternatives are now A:81, B:98.6, C:12.6 and B
has the largest expected value. This example is perhaps extreme; however, it illustrates that assigning
arbitrary numbers that reflect only order of preference can in uncertain situations suggest mathematical
operations leading to meaningless results.

When numerical values are determined in such a way as to represent strength or degree of preference,
then the numbers are said to have cardinal properties or represent Cardinal Utility. Numerical prefer-
ence values developed in this way can be manipulated arithmetically since the rules of arithmetic apply
to cardinal numbers. The determination of Cardinal Utility with any precision is readily seen to be a
difficult, if not impossible task, and even approximations require care. However, numerical values are
used so frequently (by non-mathematicians) to represent Cardinal Utility and are misused so widely in
this context, that some discussion seems warranted.

21



Even certain natural quantitative measures may not have precise cardinal properties in terms of
Utility. Amounts of money provide an example. For an individual without any funds, the first $100 may
have much greater significance or Utility than the second $100. Thus $200 may not have twice the Utility
value of $100. As another example, to a person who desperately needs at least $1000, $1000 may have much
more than twice the Utility value of $500. If amounts of money, as in net profit, gross sales, or costs
represent the desired preference criterion, then the lack of cardinality is not a hindrance since money
still has ordinal qualities in that more is preferred to less (for cost the reverse is of course true)

.

However, if quantity of money is only one among several criteria of preference, then the lack of
cardinality may be important. For example, the decision-maker's overall preference criterion may be
based on some combination of profit and share of the market. The "Utility" curve for profit for the
decision-maker may be of the form: ;

Profit Utility

Profit

and the "Utility" curve for share of the market may have the form:

Share of Market
Utility

T

Share of Market

The shape of the second curve might, for example, reflect the idea that too large a share of the market
would invite anti-trust actions. Thus for this decision-maker, an increment of the share of the market
at the lower end of the market share scale is relatively more desirable than an increment of profit at

the lower end of the profit scale. The same increments at the higher end of both scales show the reverse
to be true.

Although still viewed as experimental for practical applications, perhaps the best known procedure
for developing a Cardinal Utility scale derived from a decision-maker's indication of preferences is a

procedure developed by von Neuman and Morgenstern. Suppose the possible outcomes are arranged in pre-
ference order, from the most preferred, A, to the least preferred, say N. Thus, A>B>C>...>N. The ends
of the scale are arbitrarily determined, say A=100, and N=0, and it is desired to assign numerical values
to B,C,... between 100 and which will reflect the relative strength of preference of all the possible
outcomes. Obviously, if the outcome A is a sure thing, A would be preferred to all other outcomes. The
decision-maker is asked a series of questions starting with the following. Suppose you have two choices,

(1) the outcome B with certainty, or (2) a gamble, with outcome A having probability 1/2 and outcome N
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having probability 1/2 (i.e., on a flip of a coin, a head means outcome A and a tail means the least
desirable outcome, N) . If the decision-maker chooses (1) (B with certainty), then the same question is

asked with a larger probability for A and a correspondingly smaller probability for N. Since A with
certainty is the most preferred outcome, it seems reasonable that as the probability for A gets cjoser
to certainty, the gamble will become more desirable. Presumably, then, there will be a probability value
for which the decision-maker will be indifferent between the gamble for A or N, and the certainty of B.

If in the initial question the gamble (1/2 for A, 1/2 for N) is preferred, then it again seems reasonable
that as the probability for A gets closer to zero (N becomes more certain) , the gamble becomes less
desirable. There must again, then, be a value for the probability for which the gamble and the certainty
of B will be indifferent. If the probability of A at the point of indifference is p, then Utility value
for B = p (utility value for A) + (1-p) (utility value for N) or Utility value for B = p (100) + (-p) (0)

.

Similar series of questions are asked for each of the possible outcomes.

This procedure and others of similar nature can be applied to developing preference (utility) values
for sets of possible outcomes and also for the quantification of a particular criterion. If several
criteria are involved in a decision situation, then this type of procedure can be further utilized to
develop the "weights" for combining the criteria into a single quantitative scale. To illustrate this
last point, suppose the decision on an inventory plan is to be made on the basis of two criteria, say,
cost and the number of times shortages might occur. The preference values for various combinations of
cost and shortages might be obtained by some methods such as the von Neuman - Morgenstern method. Then
from these values, a "curve" might be fitted by statistical methods to obtain the relative weights
implicit to the two criteria by the preference values inferred for the combinations of the two criteria.

The reader is cautioned that the proper assignment of numerical values to reflect cardinal prefer-
ences requires careful analysis of the conditions underlying the decision situation. Since these values
represent management policy in the most direct manner, careful construction is a minimum requirement.

Even though quantitative representation of preference may be difficult to determine with precision
when the outcomes involve many factors, the use of numerical values has the important feature of making
explicit the particular rationality involved in choice making. This is particularly important for
repetitive decision-making, since experience will provide information by which errors and inconsistencies
can be systematically corrected, and numerical "preference numbers" can be induced gradually to converge
to satisfactory values, a difficult task when the rationality is hidden in intuitive judgment.

15. Conclusion

Two rather extreme views of mathematical methods, both unfortunate, are often held by managers.
At one extreme, there is a tendency for managers to be overwhelmed by the seeming sophistication of
certain quantitative methods and to accept their results unquestioningly. The basic concepts of any
mathematical model are capable of being explained to one who understands the decision situation, including
the assumptions implicit in the mathematical structure. The method of solution, like a doctor's pre-
scription, need not be explained, but the manager should demand a careful explanation of the model. This
is important because quantitative methods can be badly misused. A mathematical model is a more or less
accurate and useful representation of reality, and reality is always complex. Unfortunately, reality is

not only complex, but also rarely conforms directly to textbook models, and even textbook models can
appear to be highly sophisticated to an unquestioning manager. This attitude, besides possibly failing
to detect that a proposed model does not adequately represent the decision situation, can also lead to
overselling of quantitative methods so that complicated approaches are used where calculations on the
back of an envelope might suffice.

The opposite extreme view is the one held by the manager who denies any usefulness for quantitative
methods. He claims, often quite correctly, that there are so many factors involved in the real decision
situation that a mathematical model cannot possibly involve them all. The lack of precise representation
of reality is a weakness which is not unique to quantitative methods, although the formalism of mathe-
matics bares the lack more clearly. No one can ever consider all of the related factors which may be
relevant to a decision situation. Some degree of abstraction is always necessary. Thus, lack of perfect
realizm is not reasonable ground for criticism. The advantage of quantitative methods is their ability
to consider more factors than can be reasonably handled by the human mind, however capable. Where
precisely applicable, methods such as linear programming are superior to intuitive solution; however,
most uses of quantitative methods are attempts only to facilitate the judgmental process.

The purpose of this chapter has been to expose the reader to some recent developments in quantitative
methods and through them to attempt to provide an understanding of why and how quantitative methods can
be useful to management. The details of how these methods can be applied to specific situations must
be obtained from specialized sources, which can be found in the voluminous literature of this field.

23



16. References

16.1 General

R. Dorfman, "Operations Research." The American Economic Review, Vol. 50, No. 4, September 1960.

H. Bierman, C.P. Bonini, L.E. Fouraker, and R.K. Jaedicke, Quantitative Analysis for Business Decisions
,

Richard D. Irwin, 1965.

D. Miller and M. Starr, Executive Decisions and Operations Research , Prentice -Hall, 1960.

R. McKean, Efficiency in Government Through Systems Analysis , John Wiley and Sons, 1958.

M.A. Sasieni, A. Yaspan, and L. Friedman, Methods of Operations Research , John Wiley and Sons, 1959.

I. Horowitz, An Introduction to Quantitative Business Analysis , McGraw-Hill Book Company, 1965.

16.2 Basic Mathematics

J.G. Kemeny, J.L. Snell, and G.L. Thompson, Introduction to Finite Mathematics , Prentice -Hall, 1957.

16.3 Statistics

R. Schlaifer, Probability and Statistics for Business Decisions , McGraw-Hill Book Company, 1959.

A. Chernoff and L.E. Moses, Elementary Decision Theory , John Wiley and Sons, 1959.

16.4 Linear Programming

S. Gass, Linear Programming , Second Edition, McGraw-Hill Book Company, 1964.

G.B. Dantzig, Linear Programming and Extensions , Princeton University Press, 1963.

16.5 Game Theory

R.D. Luce and H. Raiffa, Games and Decisions , John Wiley and Sons, 1957.

M. Shubik, "The Uses of Game Theory in Management Science," Management Science, Vol. 2, No. 1, October
1955.

16.6 Utility Theory

W. Edwards, "The Theory of Decision-Making," Psychological Bulletin, Vol. 51, No. 4, 1954.

16.7 Simulation and Gaming

D.G. Malcolm, "Bibliography on the use of Simulation in Management Analysis," Operations Research,
March-April 1960, Vol. 8, Number 2.

H. Guetzkow, Editor, Simulation in Social Science: Readings , Prentice-Hall, Inc., 1962.

R.L. Ackoff, Editor, Progress in Operations Research, Volume I , John Wiley and Sons, Inc., 1961.

Chapter 9, G.W. Morgenthaler , "The Theory and Application of Simulation in Operations Research."
Chapter 10, C.J. Thomas, "Military Gaming."

P.S. Greenlaw, L.W. Herron, and R.H. Rawdon, Business Simulation in Industrial and University Education
,

Prentice-Hall, Inc., 1962.

24



16.8 Inventory Control

T.M. Whitin, Theory of Inventory Management , Second Edition, Princeton University Press, 1957.

Contributions by Dr. Alan J. Goldman, Applied Mathematics Division, Dr. Joseph D. Crumlish, and
others of the Technical Analysis Division in the preparation of the final draft are gratefully acknowl-
edged.

»U.S. GOVERNMENT PRINTING OFFICE: 1967— 251-027/113 25







U.S. DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20230

POSTAGE AND FEES PAID

U.S. DEPARTMENT OF COMMERC

OFFICIAL BUSINESS


