TECHNICAL NOTE

Improved Fortran Program for Single Particle Energy Levels and Wave Functions in Nuclear Structure Calculations

RANDALL S. CASWELL

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

ISSUED SEPTEMBER 30, 1966

Improved Fortran Program for Single Particle Energy Levels and Wave Functions in Nuclear Structure Calculations

Randall S. Caswell
Institute for Basic Standards
National Bureau of Standards
Washington, D.C., 20234

Abstract

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

Contents

Page

1. Introduction 1
2. Description of the Calculation 2
3. Search Procedure 5
4. Sample Results 7
5. Accuracy and Checks of the Code 7
6. References 8
Appendix 1. Evaluation of \mathbf{f}_{ℓ} (outside) for Scattering States 9
Appendix 2. Instructions for use of EIGENV subroutine and mean- ing of input variables 11
Appendix 3. Fortran II listing 13
Appendix 4. Fortran IV listing 24

Improved Fortran Program for Single Particle Energy Levels and Wave Functions in Nuclear Structure Calculations

Randall S. Caswe 11

An improved program has been developed for numerical calculations of single particle energy levels and wave functions for Woods-Saxon or other real potential wells. The program is designed to be used as a subroutine of a larger program for nuclear structure calculation but may be used separately if desired. Improvements over the previous program include: (1) for bound states the wave function is calculated by integrating outward from zero radius and inward from a maximum radius beyond the nuclear potential well with matching at an intermediate radius; (2) a first order correction has been made to the starting conditions at small radius for the integration of the wave function; (3) a large step size is used until the calculation has nearly converged on the eigenvalue; then a small step size is used to provide maximum accuracy; (4) the correction of a small error in the KuttaRunge integration procedure has been made. As a result of the changes the program is approximately five times faster than the previous version. Checks with harmonic oscillator potentials give an accuracy of $.01 \%$ in the energy level values. Listings of Fortran II and Fortran IV versions are given.

Key Words: Eigenvalues, eigenfunctions, energy levels, wave functions, single particle shell model.

1. Introduction

Nuclear she 11 model calculations usually have employed harmonic oscillator wave functions for the evaluation of radial integrals for both bound and continuum states. Deeply bound states can be well represented by harmonic oscillator wave functions. For continuum wave functions it appears desirable to use more realistic wave functions, for example, those of a real Woods-Saxon well. A previous program (Caswell, 1962) was developed to provide these eigenvalues and wave functions. The older program, however, used a method of matching.inside and outside wave functions at successively larger radii which is inherently slow. In some large nuclear structure programs
the calculation of the single particle wave functions occupies an undesirably large fraction of the computer time. The program described here speeds up the calculation by a factor of roughly 5, provides increased accuracy, and gives normalized wave functions at up to 201 radial points.

2. Description of the Calculation

The chief calculational steps are: (1) calculation of the WoodsSaxon real potential well including a spin-orbit term; (2) numerical integration of the wave function, $u(r)=r \psi(r)$, from zero to a matching radius, RMATCH and, for bound states, from a maximum radius beyond the nuclear potential, RMAX, backwards in radius to the same matching radius -- for scattering states the maximum radius is used as the matching radius; and (3) calculation of the logarithmic derivatives, f_{ℓ} (inside) and f_{ℓ} (outside). For scattering states f_{ℓ} (outside) is determined from the criterion of a 90° phase shift. It is also possible to read in from the input data values for f_{l} (outside) which are taken as the value at the maximum radius, RMAX. The approximate location of the eigenvalues may be determined by a survey versus energy of f_{l} (inside),$f_{\ell}($ outside $)$, and the difference between them, called "signature of the well". An automatic search procedure finds the energy for which $\mathrm{f}_{\ell}($ inside $)=\mathrm{f}_{\ell}$ (outside), and the wave function vs. radius is calculated and stored in memory.

The potential is calculated by subroutine VR3 as a function of radius at up to 399 points, which is the number required for the numerical integration routine for up to 201 radial points for the wave functions. Spacing between points is RMAX/NINTVL where RMAX is the maximum radius and NINTVL is the number of intervals (one less than the number of points). The potential used is:

$$
\begin{equation*}
\mathrm{V}(r)=\mathrm{V}_{\mathrm{c}} \rho(\mathrm{r})-\alpha \mathrm{V}_{\mathrm{c}}\left(\frac{\hbar}{2 \mathrm{Mc}}\right)^{2}(\vec{l} \cdot \vec{\sigma}) \frac{1}{r} \frac{\mathrm{~d} \rho}{\mathrm{dr}} \tag{1}
\end{equation*}
$$

where $\rho(r)=\frac{1}{1+\exp \left(\frac{r-R_{o}}{a}\right)}$, the "Saxon" potential; α is the strength
of the spin-orbit interaction compared to the "Thomas" interaction for a nucleon; M is the nucleon mass; V_{c} is the central real potential; \hbar / Mc is the Compton wave length for a nucleon; \vec{l} is the orbital angular momentum of the neutron; $\vec{\sigma}$ is the Pauli spin operator of the incident neutron; R_{0} is the nuclear radius; and a is the "diffuseness" parameter of the potential. If a negative value is given for α, it is taken as $\mathrm{V}_{\text {so }}$, the depth of the spin-orbit well in MeV where $\alpha \mathrm{V}_{\mathrm{c}}\left(\frac{\hbar}{2 \mathrm{Mc}}\right)^{2}$ is replaced by $V_{s o}\left(\frac{\hbar}{m_{\pi} c}\right)^{2}, m_{\pi}$ being the mass of the π-meson. If $j=\ell+\frac{1}{2}$, then $\vec{\sigma} \cdot \vec{l}=2$, and the values of the variable VPLUS (nuclear potential) for different radii are calculated. If $j=\ell-\frac{1}{2}$, then $\vec{\sigma} \cdot \vec{\ell}=-(\ell+1)$, and potential is calculated for the spin-orbit antiparallel case. Other potential shapes can be used by changes in this subroutine. For example, the program has been tested with a harmonic oscillator potential.

The calculation of f_{l} (inside) and f_{ℓ} (outside), and the search procedure for matching the f_{ℓ} values is controlled by EIGENV, the main subroutine of the program. First, the radial part of the non-relativistic Schrödinger wave equation is integrated out in radius for the appropriate $\ell:$

$$
\begin{equation*}
\frac{d^{2} u_{\ell}(r)}{d r^{2}}+\frac{2 m}{\hbar^{2}}\left[E-\frac{\ell(\ell+1) \hbar^{2}}{2 m r^{2}}-V(r)\right] u_{\ell}(r)=0 \tag{2}
\end{equation*}
$$

The values of the function and the first derivative at the first radial point (radius $=H$) are determined from the relation $u_{l}(r)=$ $\mathrm{C}_{e^{r^{\ell+1}}}$ as $r \rightarrow 0$, where C_{ℓ} is a constant. We make a first order correction to the starting value of the wave function, u, and the derivative $\frac{d u}{d r}$ at the first radial point as follows: Equation (2) may be rewritten (omitting subscript $\ell^{\prime} s$):

$$
\begin{equation*}
\frac{d^{2} u}{d r^{2}}=\frac{\ell(\ell+1) u}{r^{2}}-\frac{2 m}{\hbar^{2}}(E-V) u \tag{3}
\end{equation*}
$$

As $r \rightarrow 0$, the last term on the right is negligible compared to the first and our solution is just $u=r^{\ell+1}$ as indicated above, taking C_{ℓ} equal to one. Taking into account the second term and using our approximate solution for u, we may find the derivative at the first point r ($=$ H:) by integration of (3).

$$
\begin{equation*}
\frac{d u}{d r}=(\ell+1) r^{\ell}-\frac{2 m}{\hbar^{2}} \frac{(E-v) r^{\ell+2}}{(\ell+2)} \tag{4}
\end{equation*}
$$

Integrating again,

$$
\begin{equation*}
u=r^{\ell+1}-\frac{2 m}{\hbar^{2}} \frac{(E-v)}{(\ell+2)(\ell+3)} r^{\ell+3} \tag{5}
\end{equation*}
$$

Equations (4) and (5) are used as the initial values of wave function and derivative to be used by the wave function integration subroutine V is taken as the value of the potential at the point $\mathrm{r}=\mathrm{H}$.

A similar problem arises in the backward integration from a radius RMAX for bound states. At this distance the centrifugal poten tial term is small and the differential equation may be written:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dr}}=\frac{2 \mathrm{~m}}{\hbar^{2}}[\mathrm{~V}(\mathrm{r})-\mathrm{E}] \mathrm{u}=\gamma^{2} u \tag{6}
\end{equation*}
$$

where the expression in the square bracket is positive for a bound state. If we consider $\mathrm{V}(\mathrm{r})$ as constant, then the descending exponential solution to this equation is $u=\exp (-\gamma r), d u / d r=$ $-\gamma \exp (-\gamma r)$, and $(\mathrm{du} / \mathrm{dr}) / \mathrm{r}=-\gamma$. Since normalization is initially arbitrary, we set $a=1$ and $(d \Psi / d r)=-\gamma$ at RMAX for starting the backward integration.

The second order Runge-Kutta method is used for the numerical integration (see Zurmüh1, 1961). An error in the previous code (Caswell, 1962) which led to errors of about 1 percent in the eigenvalues and eigenfunctions by causing a slightly wrong potential to be
ised at certain steps has been corrected. The integration is controlled by subroutine INTEG 3 and carried out by subroutines KRRI and FR.

Modes of the calculation. The calculation may be run in three alternative modes. When MODE $=1$, if the energy is negative (bound state), the wave function is integrated outward from zero to RMATCH and inward from RMAX to RMATCH, using the starting conditions given above. For convergence on an eigenvalue it is required that the "inside" and "outside" f_{ℓ}^{\prime} s match at RMATCH. If the energy is positive (continuum state), the criterion of a 90° phase shift is applied to the wave function at the radius RMAX where the inside and outside wave functions must join smoothly (as indicated by having the same value of f_{ℓ}). For the 90° phase shift continuum case, the "outside" or asymptotic solutions are spherical Neumann functions, $G_{\ell}=-x n_{\ell}(x)$, since Coulomb effects are not considered. The argument $x=k r$. The evaluation of the logarithmic derivatives, f_{ℓ}, is given in Appendix 1.

When $\mathrm{MODE}=2$, values of f_{ℓ} (outside) at a radius beyond the nuclear potential radius, RMAX, may be given the EIGENV program by the calling program. The variable FLOUT is used to read in the value of f_{ℓ} (outside). In the case of a bound state, after integration inward from RMAX starting at the value FLOUT, the variable FLOUT is actually matched to the f_{ℓ} (inside).

When $M O D E=3$, the program just calculates and normalizes the wave function at the given energy EN. No search is carried out. EN must have been determined on a previous run. This mode is provided to minimize running time by avoiding unnecessary searches.

3. Search Procedure

To begin the search procedure, one needs a trial energy. 'In principle this may be selected by guess. The guess will usually converge to some eigenvalue if enough search steps are allowed. A more systematic way to find approximate energies for starting the automatic search procedure is to use the method called the "signature of the well." This is carried out by setting the variable NOMAX $=1$, and making a run with a large number of trial energies, for example, at 1 MeV steps
throughout the energy range of interest. When NOMAX $=1$, the radius of the well at the energy, EN, is used as the matching radius for bound states, and RMAX is used for scattering states. Values are calculated for $f_{\ell}(i n s i d e), f_{l}$ (outside), and for the difference between the two (see, for example, Figure 1). The integration in radius is carried out only once for each value of EN. The energy values at which the difference, DIF, equals zero are close to the energy of the final converged eigenvalue which is to be found, and they serve as suitable starting values for the automatic search procedure.

Automatic search procedure. First an integration of the wave function is carried out at the trial eigenvalue energy (the value of EN when EIGENV is called). A second integration is carried out at a nearby energy (one percent difference in energy). Using the differences (between the inside and outside f_{ℓ} 's found at the matching radius) found in these two trial calculations, a linear interpolation or extrapolation is made to an energy for which the difference is predicted to be zero (corresponding to smooth joining of the inside and outside wave functions). Integration in radius is carried out at this predicted eigenvalue energy, and the difference is again found. We now know three energies and the three corresponding differences. Using this information, the program predicts by quadratic interpolation a fourth energy at which the difference should be closer to zero. The calculation continues, energy prediction being made by quadratic interpolation on the last three values, until either the difference between $f_{\ell}{ }^{\prime} s$ is closer to zero than the difference specified by the value of EPS given to the subroutine, or until the maximum number of tries, NOMAX, has been used up. The wave functions during the convergence procedure are shown in Figure 2 for a typical case. If the maximum number of tries has been used up without converging on an eigenvalue, the value of EN and values of the wave function at radial points, WAVEFN(I), are set equal to zero to insure that the calling program does not use incorrect information. When the converged eigenvalue has been found, the part of the wave function between RMATCH and RMAX is renormalized so that it has the proper absolute magnitude to join smooth1y to the inner wave
function at RMATCH. A radial integration of the $\int u^{3} d r$ is then carried out by subroutine SIMPSN, and the complete wave function is normalized so that $\int_{0} u^{2} d r=1$.

To save computer time an integration step size five times the final step size is used for the initial steps of the search (when DIF>0.1). Integration step size is controlled by the variable KSTEP which is set equal to 5 in the early, rough part of the search and set equal to 1 for the final determination of the eigenvalue and wave function.
4. Sample Results

Sample results for eigenvalues and wave functions are shown in Figure 3. Eigenvalues are shown for the $1 s_{\frac{1}{2}}, 2 s_{\frac{1}{2}}, 3 s_{\frac{1}{2}}, 1 p_{\frac{3}{2}}, 1 p_{\frac{1}{2}}, 1 d_{\frac{5}{2}}$ state. Wave functions are shown for the $15_{\frac{1}{2}}, 25_{\frac{1}{2}}$, and $1 d_{\frac{5}{2}}$ states.
5. Accuracy and Checks of the Code

To test the accuracy of the program, subroutine VR3 was rewritten to use an harmonic oscillator potential:

$$
V(r)=-100\left[1-(r / 5)^{2}\right] \mathrm{MeV}
$$

where r is in fermis. For this particular potential $h \omega=18.810 \mathrm{MeV}$ for $\operatorname{AMASS}=15.0$. Based on this value we may compare eigenvalues given by the code for various l values with the usual relation $E=\left(n+\frac{1}{2}\right) h w$, all energies being in MeV.

Harmonic Oscillator
Levels

- 15.355
-34.165
-52.975
-71.785
It can be seen that the code predicts the level separations to an accuracy of about 0.01% which is about the accuracy of various constants in the code.

Abramowitz, M. and Stegun, I.A., (1964). Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series No. 55.

Blatt, J. M. and Weisskopf, V. F., (1952). Theoretical Nuclear Physics, 334, Wiley (New York).

Caswell, R. S. (1962). A Fortran code for calculation of eigenvalues and eigenfunctions in real potential wells, NBS Technical Note 159. The present report replaces this reference, which should no longer be used.

Schiff, L. I. (1955). Quantum Mechanics, 77, McGraw-Hill (New York). Zurmuhl, R. (1961). Praktische Mathematic für Ingenieure and Physiker, 412, Springer-Verlag (Berlin, Gottingen, Heidelberg).

The author would like to thank Michael Danos for suggestions and his continued interest in this problem.

Appendix 1. Evaluation of f_{ℓ} (outside) for Scattering States For continuum states ($\mathrm{E}>0$) we may write for the logarithmic derivative:

$$
\begin{equation*}
\mathrm{f}_{\ell}(\text { outside })=R \frac{\left(\mathrm{du}_{\ell} / \mathrm{dr}\right)_{R}}{\left(\mathrm{u}_{\ell}\right)_{R}}=R \frac{\left[(\mathrm{~d} / \mathrm{dr})\left(\mathrm{rn}_{\ell}\right)\right]_{R}}{\left[r n_{\ell}\right]_{R}}, \tag{1}
\end{equation*}
$$

where n_{l} is the spherical Neumann function, which corresponds to a 90° phase shift, as defined in Schiff (1955).
But

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{xn}_{\ell}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\ell+1} \mathrm{x}^{-\ell} \mathrm{n}_{\ell}(\mathrm{x})\right)=(\ell+1)\left[\mathrm{n}_{\ell}(\mathrm{x})\right]-\mathrm{xn}_{\ell+1}(\mathrm{x}) . \tag{2}
\end{equation*}
$$

If $X=k R=\left(\frac{2 m}{\hbar^{2}} E\right)^{\frac{1}{2}} R$, we have for $f_{\ell}($ outside $):$

$$
\begin{equation*}
f_{\ell}=\ell+1-\frac{X_{\ell+1}(X)}{n_{\ell}(X)}\left(=X \frac{G_{\ell}^{\prime}}{G_{\ell}}\right) \text {, } \tag{3}
\end{equation*}
$$

where the prime refers to differentiation with respect to X . The quantities F_{ℓ} and G_{ℓ} are the "regular" and "irregular" wave functions which for neutrons (no Coulomb interaction) are $F_{\ell}=X j_{\ell}(X)$ and $G_{\ell}=-X n_{\ell}(X)$.

For values of $X>1$, "forward" recursion formulae are used (see, for example, Abramowitz and Stegun, 1964):

$$
\begin{aligned}
& n_{0}(x)=-\frac{\cos X}{x} \\
& n_{1}(x)=-\frac{\cos X}{x^{2}}-\frac{\sin X}{x}, \text { and } \\
& n_{\ell+1}(X)=(2 \ell+1) \frac{n_{\ell}(X)}{x}-n_{\ell-1}(X) .
\end{aligned}
$$

For $\ell \leq 9$ the values accurately reproduce tabular values from the same reference, there appearing to be no need for use of "backward" recursion formulas (from large to small ℓ).

For $\mathrm{X}<1$ a series expansion is used (see Abramowitz and Stegun, 1964) :

$$
n_{\ell}(X)=-\frac{1 \cdot 3 \cdot 5 \cdot \ldots(2 \ell-1)}{x^{\ell+1}}\left\{1-\frac{\frac{1}{2} x^{2}}{1!(1-2 \ell)}+\frac{\left(\frac{1}{2} x^{2}\right)^{2}}{2!(1-2 \ell)(3-2 \ell)}-\cdots\right\} .
$$

Appendix 2. Instructions for use of EIGENV subroutine and meaning of input variables.

To call the EIGENV subroutine values must be assigned to the following list of variables (with meanings given) and then the statement CALL EIGENV calls the subroutine. The subroutine returns as the answer a value of EN which is the energy eigenvalue, and of a normalized WAVEFN(I) at up to 201 equally spaced points. The wave function is $\mathrm{r} \psi$.

VARIABLE TYPICAL VALUE MEANING

RADIUS $3.15 \quad$| radius of the Saxon potential in fermis, |
| :--- |
| typically $1.25 \mathrm{~A}^{1 / 3}$ |

A
.65

VC
-50.0

ALPHA
20.0

AMASS
15.0

RMAX
8.0

EPS .0001

MODE

MODE
2
f_{ℓ} (outside) is read in from the input data. It is considered as the value of f_{ℓ} (outside) at radius RMAX.

VARIABLE	TYPICAL VALUE	MEANING
MODE	3	just calculate the wave function for the given energy, EN. Do not search for a better eigenvalue.
NOMAX	20	maximum number of automatic search steps seeking the eigenvalue. If NOMAX=1, one point is determined for the "signature of the well."
NINTVL	100	number of intervals in radius over which the wave function is to be determined. In the example 101 radial points will be calculated, equally spaced between the first point at $R=0$ and the last point at $R=R M A X$. NINTVL must be a multiple of 10 .
L	1	orbital angular momentum of the single particle state sought.
JDB LD	3	twice the j-value of the state sought. In the example $j=\frac{3}{2}$ so " j-doubled" is 3 .
JPR INT	1	no printing of intermediate results.
	2	print intermediate results for code checking.
EN	-11.0	value given to subroutine is the initial energy. Value returned by subroutine is the eigenvalue (if successful). Value is in MeV.
FLOUT	4.	read-in value of f_{ℓ} (outside) for the radius RMAX.

> Appendix 3. Fortran II listing.

The subroutine and their functions are:

MAINEV

EIGENV

VR3
INTEG3

KRR 1
FR

SIMPSON

A main program for testing the EIGENV program and a sample for how to call the program.

Controlling subroutine which performs matching and eigenvalue prediction.

Calculates $V(r)$.
Controls integration in radius.
Kutta-Runge integration subroutine.
Calculates $f(r)$ for differential equation $d^{3} u / d r^{2}=f(r)$.

Simpson rule integration subroutine for normalization of the wave function.

The DIMENSION and COMMON statements appearing in the subroutines must also appear in the calling program.

```
* LABEL
CMAINEV
* LIST
C MAIN PROGRAM TO TEST EIGENV SINGLE PARTICLE EIGENVALUE AND
C WAVE FUNCTION PROGRAM
            DIMENSION RPRINT(5),WAVE(5),ENRGY(100),FL(100)
            DIMENSION WAVEFN(201),VPLUS(399),XINTGD(201)
            COMMON WAVEFN,RADIUS,A,VC,ALPHA,AMASS,RMAX,EPS,MODE,NOMAX,NINTVL,
            1L, ELL,K,JDBLD,JPRINT,MPRINT,NPUINT, EN,FLCUT,HI,R,RR,VPLUS,V,NMAX,
            2F,RMATCH,I, XPLUS,XPLUSP,FRR, INOUT,KSTEP,REFL,XINTGD,YINTG,XINT1,H,
            3XINT2,X
            5 WRITE DUTPUT TAPE 6,7
            7 FORMAT(1HI)
            READ INPUT TAPE 5,10
    10 FORMAT172H
    1 )
        WRITE OUTPUT TAPE 6,10
            WRITE DUTPUT TAPE 6,4501
4 5 0 1 ~ F O R M A T I 7 C H ~ R A D I U S ~ \$
    IRMAX EPS )
        READ INPUT TAPE 5,1,RADIUS,A,VC,ALPHA,AMASS,RMAX,EPS
        WRITE OUTPUT TAPE 6,1,RADIUS,A,VC,ALPHA,AMASS,RMAX,EPS
    1 FORMAT (7F10.5)
            WRITE DUTPUT TAPE 6,4503
```



```
    IDBLD JPRINT )
        READ INPUT TAPE 5,20,KZ,MODE,NOMAX,NINTVL,L,JDBLD,JPRINT
        WRITEOUTPUTTAPE 6,20,KZ,MODE,NOMAX,NINTVL,L,JDBLD,JPRINT
    20 FORMAT(7I10)
        NPOINT = NINTVL+1
        GO TO (4081,4082,4081),MODE
    4081 WRITE OUTPUT TAPE 6,4504
    4 5 0 4 ~ F O R M A T ( 1 5 H ~ T R I A L ~ E N E R G I E S ~ ) ~
        READ INPUT TAPE 5,1,(ENRGY(KY),KY=1,KZ)
        WRITEOUTPUT TAPE6,1,(ENRGY(KY),KY=1,KZ)
        GO TO 4085
4082 WRITE OUTPUT TAPE 6,4083
4 0 8 3 \text { FORMAT(25H ENERGY FLOUT,RMAX )}
    READ INPUT TAPE 5, 1,(ENRGY(KY),FL(KY),KY=1,KZ)
    WRITE OUTPUT TAPE 6, 1,(ENRGY(KY),FL(KY),KY=1,KZ)
4 0 8 5 ~ D O ~ 1 0 0 ~ K Y = 1 , K Z ~
    EN=ENRGY(KY)
    FLOUT=FL(KY)
    WRITE OUTPUT TAPE 6,6180
6180 FORMÄT ( 68H ENERGY DIFFERENCE FL INSIDE FL OUT
    ISIDE RMATCH )
        CALL EIGENV
    IF(ABSF(EN)-1.E-10) 100,4088,4088
4 0 8 8 \text { WRITE DUTPUTTAPE 6,4089,EN}
4089 FORMAT (34H WAVE FUNCTION VS RADIUS, ENERGY=,F10.5,4H MEV)
    R=-HI
```

```
    INMAX=5
    DO 200 N=1,NPOINT,5
    DO 150 IN=1,INMAX
    NN=N+IN-1
    WAVE(IN)=WAVEFN(NN)
    R=R+HI
    RPRINT(IN)=R
    IF(NN-NPOINT)150,150,155
    150 CONTINUE
    GO TO 159
    155 INMAX=IN-1
    159 WRITE OUTPUT TAPE 6,160,(RPRINT(IN),WAVE(IN),IN=1,INMAX)
    160 FORMAT(5(F9.3,E15.6))
    200 CONTINUE
    GO TO (100,170),JPRINT
    170 WRITE OUTPUT TAPE 6,180,YINTG
    180 FORMAT(7H YINTG=,F10.5)
    100 CONTINUE
    READ INPUT TAPE 5,20,NDUMMY
    IF (NDUMMY)1000,1000,5
    1000 CALL EXIT
    END
CEIGENV
LIST
    SUBROUTINE EIGENV
    DIMENSION Y(11)
    DIMENSION WAVEFN(201),VPLUS(399),XINTGD(201)
    COMMON WAVEFN,RADIUS,A,VC,ALPHA,AMASS,RMAX,EPS,MODE,NOMAX,NINTVL,
    1L, ELL,K,JDBLD,JPRINT,MPRINT,NPOINT, EN,FLOUT,HI,R,RR,VPLUS,V,NMAX,
    2F,RMATCH,I,XPLUS,XPLUSP,FRR,INOUT,KSTEP,REFL,XINTGD,YINTG,XINTI,H,
    3XINT2,X
    K=L+1
    HI=RMAX/FLOATF(VINTVL)
    NPOINT=NINTVL+1
    IF(ALPHA) 1,2,2
    1 ALPHA=ALPHA*181.1/VC
    2 CALL VR3
    KSTEP=1
    H=HI
    GO TO (15,15,6130),MODE
    15 IF(EN) 180,180,170
    170 RMATCH=RMAX
    GD TO 190
    180 RMATCH=(5.*FLOATF(NINTVL/15+1))*HI
    190 MPRINT=2
        IF(NOMAX-1) 25,30,25
    25 KSTEP=5
    H=5.*HI
    30 CALL INTEG3
    NO=1
203 ENERGY=EN
    IF(EN) 213,213,220
    213 FLOMT=R*XPLUSP/XPLUS
    DIF=REFL-FLOMT
    GC TO 6001
220 PMOM=SQRTF(.04826*F*EN)
    DIF=REFL-FLOUT
    FLOMT=FLOUT
    GO TO (2201,6001,6130),MODE
```

```
2201 XX=R#PMOM
    KPLUS1=K+1
    IF(XX-1.) 300,300,400
    300 NPASS=1
    301 SUM=1.
    TERM=1.
    DC 310 N=1,20
    TERM=-TERM*0.5*XX**2/(FLOATF(N)*FLOATF(2*N-1-2*L))
    SUM=SUM+TERM
    IF(ABSF(TERM)-1.E-8)320,310,310
    310 CONTINUE
    320 IF(K-1) 325,335,325
    325 DO 330 IK=2,K
    AK=IK
    330 SUM=SUM*(2.*AK-3.)
    335 GO TU (340,350),NPASS
    340 YL=-SUM/(XX**K)
    K=K+1
    L=L+1
    NPASS=2
    GO TO 301
    350 YLPLUS=-SUM/(XX**K)
    K=K-1
    L=L-1
    GO T0 500
400 Y(1)=-\operatorname{CosF}(XX)/XX
    Y(2)=-COSF(XX)/XX**2-SINF(XX)/XX
    DO 410 IK=3,KPLUS1
    AK=IK
410 Y(IK)=(2.*AK-3.)*Y(IK-1)/XX-Y(IK-2)
    YL=Y(K)
    YLPLUS=Y(KPLUS1)
    500 FLOMT=FLOATF(L)+1.-XX*YLPLUS/YL
    DIF=REFL-FLOMT
6 0 0 1 ~ I F ( N U - N O M A X ) ~ 6 0 0 4 , 6 1 0 0 , 6 1 0 0 ~
6004 IF(NO-2) 6005,6080,6090
6005 EN=0.99*EN
    GO TO 6l00
6080 EN = (ENERG1*DIF-ENERGY*DIFMI)/(DIF-DIFM1)
    GO TO 61CO
6090 EN = (()ENERG2*DIFM1-ENERG1*DIFM2)*DIF/(DIFM1-DIFM2))-((ENERG1
    1*DIF-ENERGY*DIFM1)*DIFM2/(DIF-DIFM1)))/(DIF-DIFM2)
6100 IF(ABSF((EN /ENERGY)-1.)-.2) 6110,6110,6101
6101 EN=ENERGY+ABSF(ENERGY)*SIGNF(O.1,(EN-ENERGY))
6 1 1 0 \text { WRITE OUTPUT TAPE 6,6160,ENERGY,DIF,REFL,FLOMT,R}
6160 FORMAT(F15.5,3E15.7,F8.3)
    IF (NO-NOMAX) 6114,6140,6140
6114 IF(ABSF(DIF )-EPS) 6115,6115,6120
6115 IF(KSTEP-1) 105,6116,105
6116 EN=ENERGY
    GO TO 6130
6120 IF(KSTEP-1) 100,110,100
    100 IF(ABSF(DIF 1-.1) 105,110,110
    105 KSTEP=1
    H=HI
    110 CALL INTEG3
        DIFM2=DIFM1
    DIFM1=DIF
    ENERG2=ENERG1
    ENERGI = ENERGY
```

```
    NO}=\textrm{NO}+
    GO TO 203
6 1 3 0 ~ M P R I N T = 1
    CALL INTEG3
    GO TO 6150
    6140 EN=O.
    OO 6145 N=1,NPOINT
    6 1 4 5 ~ W A V E F N ( N ) = 0 .
6 1 5 0 ~ C O N T I N U E
    RETURN
        END
    LABEL
CVR
    LIST
    SUBROUTINE VR3
    DIMENSIDN WAVEFN(201),VPLUS(399), XINTGD(201)
    COMMON WAVEFN,RADIUS,A,VC,ALPHA,AMASS,RMAX,EPS,MODE,NOMAX,NINTVL,
    1L,ELL,K,JDBLD,JPRINT,MPRINT,NPOINT, EN,FLOUT,HI,R,RR,VPLUS,V,NMAX,
    2F,RMATCH,I, XPLUS,XPLUSP,FRR,INDUT,KSTEP,REFL,XINTGD,YINTG, XINT1,H,
    3XINT2,X
    R=HI
    H=HI/2.
    GO TO (2090,2000),JPRINT
    2000 WRITE OUTPUT TAPE 6,2091
    2 0 9 1 ~ F O R M A T ~ ( 2 5 H ~ V ~ R ~ ) ~
    2090 C= .0110270/A
    NMAX=2*NINTVL-1
    DO 2210 I=1,NMAX
    REXP=EXPF((R-RADIUS)/A)
    VCC=VC/(1.0+REXP)
    VS=ALPHA*VC*C*REXP/(()(1.0+REXP)**2)*R)
    AK=K
    IF(JDBLD-2*L) 22,22,21
    21 VPLUS(I)=VCC+VS*(AK-1.0)
    GO TU }2
    22 VPLUS (I)=VCC-VS*AK
    25 GO TO (40,28),.JPRINT
    28 WRITE OUTPUT TAPE 6,30,VPLUS(I),R
    30 FORMAT( E15.7,F7.3)
    4 0 ~ R = R + H
2210 CONTINUE
    RETURN
        END
    LABEL
CINTEG
    LI ST
    SUBRDUTINE INTEG3
    DIMENSION WAVEFN(201),VPLUS(399),XINTGD(201)
    COMMON WAVEFN,RADIUS,A,VC,ALPHA,AMASS,RMAX,EPS,MODE,NOMAX,NINTVL,
    1L,ELL,K,JDBLD,JPRINT,MPRINT,NPOINT, EN, FLOUT,HI,R,RR,VPLUS,V,NMAX,
    2F,RMATCH,I,XPLUS, XPLUSP,FRR,INOUT,KSTEP,REFL, XINTGD,YINTG,XINT1,H,
    3XINT2,X
    GO TO (1,15),MPRINT
    l GO TO (5,5,15),MODE
    5 IF(EN) 5215,4221,4221
    15 WAVEFN(1)=0.
    AK=K
    F=AMASS/(AMASS+1.00898)
    R=H
    RR=R
```

```
    V=VPLUS(2*KSTEP-1)
    XPLUS=R**K
    X=XPLUS
    ELL=0.
    CALL FR
    ELL=K-1
    XPLUS=XPLUS+FRR*R**2/((ELL+2.)*(ELL +3.))
    WAVEFN(2)=XPLUS
    XPLUSP = AK#(R ##(K-1)) +FRR#R/(ELL+2.)
    GO TO (4090,4090,4080),MODE
4 0 8 0 ~ N O M A X = 2
4 0 9 0 ~ [ ~ N O U T = 1
    DC 4210 I=KSTEP,1000,KSTEP
    I= I
    CALL KRRI
    R=R+H
4127 IF(NOMAX-1) 4130,4128,4130
4 1 2 8 \text { RMATCH=RMAX}
    IF (R-0.2*RADIUS) 4130,4129,4129
4129 IF(EN-V) 10,1C,4132
    10 RMATCH=R
    GO TO 4220
4130 WAVEFN(I+2)=XPLUS
4132 IF(R-RMATCH+.001) 4210,4220,4220
4210 CONTINUE
4220 REFL=R#XPLUSP/XPLUS
    WMATCH=XPLUS
    IF(EN) 4211,4216,4216
4211 XPLUS=1.
    NAVEFN(NPOINT)=1.
    GO TO (4212,4213,4213),MODE
4212 XPLUSP=-SQRTF(VPLUS(NMAX)-EN)
    GO TO 4214
4213 XPLUSP=FLOUT/RMAX
4 2 1 4 H = - H
    R=RMAX
    INOUT=-1
    0O 5210 J=1,1000,KSTEP
    I = NINTVL-J
    CALL KRRI
    R=R+H
    WAVEFN(I+1)=XPLUS
    IF(R-RMATCH-.001) 4215,4215,5210
5210 CONTINUE
4215 H=-H
    GO TO (5215,4230),MPRINT
5215 I= I +1
    DO 5216 J=I,NPOINT
5216 WAVEFN(J)=WAVEFN(J)*WMATCH/XPLUS
4216 GO TO (4221,4230),MPRINT
4 2 2 1 ~ Y I N T G = 0 . ~
    XINTl=0.
    XINT2=RMAX
    DO 4225 N=1,NPOINT
4225 XINTGD(N)=WAVEFN(N)**2
    CALL SIMPSN
    DO 4228 N=1,NPOINT
4 2 2 8 ~ W A V E F N ( N ) = W A V E F N ( N ) / S Q R T F ( Y I N T G )
4 2 3 0 ~ R E T U R N ~
    END
```


SUBROUTINE KRRI

DIMENSION WAVEFN(201), VPLUS(399), XINTGD(201)
COMMON WAVEFN,RADIUS, A, VC, ALPHA, AMASS, RMAX, EPS, MODE, NOMAX, NINTVL,
$1 L, E L L, K, J D B L D, J P R I N T, M P R I N T, N P O I N T, E N, F L U U T, H I, R, R R, V P L U S, V, N M A X$,
2F, RMATCH, I, XPLUS, XPLUSP,FRR, INOUT,KSTEP,REFL, XINTGD, YINTG, XINT1, H
3XINT2,X
GO TU $(56,40)$, JPRINT
40 WRITE OUTPUT TAPE $6,45, H, R, X P L U S, X P L U S P, A I, E N, V, R M A T C H$
45 FORMAT $(3 H H=, F 8.5,3 H \quad R=, F 8.5,7 H \quad X P L U S=, E 12.5,8 \mathrm{H}$ XPLUSP $=, E 12.5,4 \mathrm{H}$ A
$1 I=, F 8.5,4 \mathrm{H} \quad \mathrm{EN}=, \mathrm{F} 10.4,3 \mathrm{H} \quad \mathrm{V}=, \mathrm{F} 9.4,8 \mathrm{H}$ RMATCH $=, \mathrm{F} 6.31$
$56 \mathrm{RR}=\mathrm{R}$
INDEX $=2 *$ I-INOUT
$V=$ VPLUS (INDEX)
$X=X P L U S$
CALL FR
$A I=F R R * H * 2 / 2.0$
$R R=R+H / 2.0$
$X=X P L U S+X P L U S P * H / 2.0+A I / 4.0$
INDEX $=2$ *I + INOUT* (KSTEP-1)
$V=V P L U S(I N D E X)$
CALL FR
AII =FRR*(H**2)/2.0
$R R=R+H$
X=XPLUS + XPLUSP $* H+A$ I I
INDEX=2*I + INOUT*(2*KSTEP-1)
$V=V P L U S(I N D E X)$
CALL FR
AI I I $=$ FRR* $H * * 2 / 2.0$
$X P L U S=X P L U S+H * X P L U S P+(A I+2.0 * A I I) / 3.0$
XPLUSP $=X P L U S P+(A I+4.0 * A I I+A I I) /(3.0 * H)$
GC TO $(4125,190)$, JPRINT
$190 \operatorname{IF}(A B S F(R R-R M A T C H)-.001) 195,4125,4125$
195 WRITE UUTPUT TAPE 6,45,H,RR,XPLUS, XPLUSP,AI,EN,V,RMATCH
4125 CONTINUE
RETURN
ENO

- label

CFR

* LIST

SUBROUTINE FR
OIMENSION WAVEFN(201),VPLUS(399), XINTGD(201)
COMMON WAVEFN, RADIUS, A, VC, ALPHA, AMASS, RMAX,EPS, MODE, NOMAX, NINTVL,
$1 L, E L L, K, J D B L D, J P R I N T, M P R I N T, N P O I N T, E N, F L O U T, H I, R, R R, V P L U S, V, N M A X$,
2F, RMATCH, I, XPLUS, XPLUSP,FRR, INOUT, KSTEP,REFL, XINTGD, YINTG, XINTI,H,
3XINT2, X
$F R R=-.04826 * F *(E N \quad-20.721 * E L L *(E L L+1.0) /(F * R R * 2)-V) * X$
RETURN
END

- LABEL

CSIMPSN
LIST
SUBROUTINE SIMPSN
DIMENSION WAVEFN(201),VPLUS(399), XINTGD(201)
COMMON WAVEFN,RADIUS, A, VC, ALPHA, AMASS,RMAX,EPS, MODE, NOMAX,NINTVL,
$1 L, E L L, K, J D B L D, J P R I N T, M P R I N T, N P O I N T, E N, F L O U T, H I, R, R R, V P L U S, V, N M A X$, 2F, RMATCH, I, XPLUS, XPLUSP,FRR, INOUT,KSTEP,REFL, XINTGD, YINTG, XINTI,H, 3XINT2,X

DELINT = (XINT2-XINT1)/FLOATFININTVL)
NPOIVT = NINTVL +1
YINTG3 = XINTGO(1)
NPT $=1$
DO 20 NPT $=2$,NINTVL, 2
YINTG3=YINTG3+XINTGO(NPT)*4.0
20 CONTINUE
CO 30 NPT $=3$, NINTVL,?
YINTG3 = YINTG3 + XINTGD (NPT) 2.0
30 CONTINUE
YINTG3 = YINTG3 + XINTGD (NPOINT)
YINT G=YINTG+YINTG3*DELINT/3.0
RETURN
END

Appendix 4. Fortran IV listing.
A block of COMMON called MEMEIG is common to MAINEV, EIGENV and to the subroutines called by EIGENV. It must appear in the calling program.

SIBFTC MAINEV LIST, M94,XR7
C MAIN PROGRAM TO TEST EIGENV SINGLE PARTICLE EIGENVALUE AND WAVE FUNCTION PROGRAM
DIMENSION RPRINT (5), WAVE(5), ENRGY(1CO),FL(10C)
COMMON/MEMEIG/WAVEFN(2O1), RADIUS,A, VC, ALPHA, AMASS,RMAX,EPS,MODE, 1 NOMAX, NINTVL,L, ELL, K, JDBLD, JPRINT, MPRINT,NPGINT, EN, FLOUT, HI,R,RR, 2H,VPLUS(399), V, NMAX,F,RMATCH,I, XPLUS, XPLUSP,FRR, INOUT, KSTEP, 3REFL, XINTGD(201),YINTG,XINT1,XINT2,X
5 WRITE $(6,7)$
7 FORMAT (IHI)
READ 5,10)
10 FORMAT (72H
1
WRITE 6,10$)$
WRITE 6,4501$)$
4501 FORMAT(7OH RADIUS A VC ALPHA(VSO) AMASS
IRMAX EPS)
READ(5,1) RADIUS,A,VC,ALPHA,AMASS,RMAX,EPS
WRITE(6,1)RADIUS, A, VC, ALPHA, AMASS, RMAX,EPS
1 FORMAT(7F10.5)
WRITE(6,4503)
4503 FORMAT $170 H$ ENERGIES MODE NOMAX NINTVL L J
1 DBLD JPRINT)
READ $(5,20) \mathrm{KZ}$, MODE, NOMAX,NINTVL,L,JDBLD,JPRINT
WRITE $(6,20) \mathrm{KZ}$, MODE, NOMAX,NINTVL,L,JOBLD,JPRINT
20 FORMAT(7110)
NPOINT $=$ NINTVL +1
GO TO (4081,4082,4081), MODE
4081 WRITE $(6,4504)$
4504 FORMAT (15H TRIAL ENERGIES)
$\operatorname{READ}(5,1)$ (ENRGY(KY),KY=1,KZ)
WRITE $(6,1)$ (ENRGY(KY),KY=1,KZ)
GO TO 4085
4082 WRITE $(6,4083)$
4083 FORMAT(25H ENERGY FLOUT, RMAX)
$\operatorname{READ}(5,1) \quad(E N R G Y(K Y), F L(K Y), K Y=1, K Z)$
WRITE(6,1) (ENRGY(KY),FL(KY),KY=1,KZ)
4085 DO $100 \mathrm{KY}=1, \mathrm{KZ}$
EN=ENRGY(KY)
FLOUT=FL(KY)
WRITE $(6,6180)$
6180 FORMATI 68 H ENERGY DIFFERENCE FL INSIDE FL OUT
ISIDE RMATCH)
CALL EIGENV
IF(ABS (EN)-1.E-10) $100,4088,4088$
4088 WRITE $(6,4089)$ EN
4089 FORMAT $(34 \mathrm{H}$ WAVE FUNCTION VS RADIUS, ENERGY $=, F 10.5,4 \mathrm{H}$ MEV)
$\mathrm{R}=-\mathrm{HI}$
I NMAX=5
DO $200 \mathrm{~N}=1$, NPCINT, 5
DO 150 IN=1, INMAX
$\mathrm{NN}=\mathrm{N}+\mathrm{I} \mathrm{N}-1$

```
    WAVE(IN)=WAVEFN(NN)
    R=R+HI
    RPRINT(IN)=R
    IF(NN-NPOINT)155,150,155
    150 CONTINUE
    GO TU 159
    155 I NMAX=I N-1
    159 WRITE(6,160) (RPRINT(IN),WAVE(IN),IN=1,INMAX)
    160 FORMAT(5(F9.3,E15.6))
    200 CONTINUE
    GO TO (100,170),JPRINT
    170 WRITE(6,180) YIVTG
    180 FORMAT(7H YINTG=,F12.5)
    100 CONTINUE
    GO TO 5
    END
$IBFTC EV LIST,M94,XR7
    SUBROUTINE EIGENV
    DIMENSION Y(11)
    COMMON/MEMEIG/WAVEFN(201),RADIUS,A,VC,ALPHA,AMASS,RMAX,EPS,MODE,
    INOMAX,NINTVL,L,ELL,K,JDBLD,JPRINT,MPRINT,NPOINT,EN,FLOUT,HI,R,RR,
    2H,VPLUS(399),V,NMAX,F,RMATCH,I, XPLUS,XPLUSP,FRR,INOUT,KSTEP,
    3REFL,XINTGD(201),YINTG,XINT1,XINT2,X
    K=L+1
    HI=RMAX/FLOAT (NINTVL)
    NPOINT=NINTVL+1
    IF(ALPHA) 1,2,2
    1 ALPHA=ALPHA*181.1/VC
    2 CALL VR3
    KSTEP=1
    H=HI
    GO TO (15, 15,6130),MODE
    15 IF(EN) 180,180,170
    170 RMATCH=RMAX
    GO TO 190
    180 RMATCH=(5.*FLOAT(NINTVL/15+1))*HI
    190 MPRINT=2
        IF(NOMAX-1) 25,30,25
    25 KSTEP=5
    H=5.*HI
    30 CALL INTEG3
    NO=1
    203 ENERGY=EN
    IF(EN) 213,213,220
    213 FLOMT=R*XPLUSP/XPLUS
    DIF=REFL-FLOMT
    GO TO 6001
    220 PMOM=SQRT(.04826*F*EN)
    DIF=REFL-FLOUT
    FLOMT=FLOUT
    GO TO (2201,6001,6130),MODE
2201 XX=R*PMOM
    KPLUSl=K+1
    IF(XX-1.) 300,300,400
    300 NPASS=1
    301 SUM=1.
    TERM=1.
    DO 310 N=1,20
    TERM=-TERM*O.5*XX**2/(FLOAT(N)*FLOAT(2*N-1-2*L))
    SUM=SUM+TERM
```

IF $(A B S(T E R M)-1 . E-8) 320,310,310$
310 CCNTINUE
320 IF $(K-1) 325,335,325$
325 DO 330 IK $=2, K$
$A K=I K$
330 SUM $=$ SUM $*(2 . * A K-3$.
335 GO TO $(340,350)$, NPASS
$340 \mathrm{YL}=-$ SUM $/(X X * * K)$
$K=K+1$
$L=L+1$
NPASS=2
GO TO 301
350 YLPLUS $=-$ SUM $/(X X * * K)$
$K=K-1$
$L=L-1$
GO TU 500
$400 \quad Y(1)=-\cos (X X) / X X$
$Y(2)=-\operatorname{Cos}(X X) / X X * 2-S \operatorname{IN}(X X) / X X$
DO 410 IK=3,KPLUS 1
$A K=I K$
$410 Y(I K)=(2 \cdot * A K-3 \cdot) * Y(I K-1) / X X-Y(I K-2)$
$Y L=Y(K)$
YLPLUS = Y(KPLUS 1$)$
$500 \mathrm{FLOMT}=F L O A T(L)+1 \bullet-X X * Y L P L U S / Y L$
DIF=REFL-FLOMT
5001 IF (NO-NOMAX) 6004,6100,6100
5004 IF (NO-2) 6005,6080,6090
$5005 E N=0.99 * E N$
GO TO 6100
5080 EN $=(E N E R G 1 * D I F-E N E R G Y * D I F M 1) /(D I F-D I F M 1)$
GO TO 6100
5090 EN $=(($ (ENERG2*DIFMI-ENERG1*DIFM2)*DIF/(DIFM1-DIFM2))-((ENERG)
1*DIF-ENERGY*DIFM1)*DIFM2/(DIF-DIFM1)))/(DIF-DIFM2)
5100 IF (ABS ((EN /ENERGY)-1.)-.2) 6110,6110,6101
$6101 E N=E N E R G Y+A B S$ (ENERGY)*SIGN(0.1, (EN-ENERGY))
6110 WRITE $(6,6160)$ ENERGY,DIF,REFL, FLOMT, R
6160 FORMAT (F15.5,3E15.7,F8.3)
IF (NO-NOMAX) 6114,6140,6140
5114 IF(ABS(DIF)-EPS) 6115,6115,6120
6115 IF (KSTEP-1) 105,6116,105
$6116 \mathrm{EN}=\mathrm{ENERGY}$
GO TO 6130
6120 IF (KSTEP-1) $100,110,100$
100 IF(ABS(DIF)-.1) $105,110,110$
$105 \mathrm{KSTEP}=1$
$\mathrm{H}=\mathrm{HI}$
110 CALL INTEG3
DIFM2=0IFM1
D I FMI=D IF
ENERG2 = ENERG 1
ENERGI = ENERGY
$\mathrm{NO}=\mathrm{NO}+1$
GO TO 203
5130 MPRINT = 1
CALL INTEG3
GO TO 6150
$5140 \mathrm{EN}=0$.
DO $6145 \mathrm{~N}=1$, NPOINT
6145 WAVEFN $(N)=0$.

RETURN
END
\$IBFTC VR LIST,M94,XR7
SUBROUTINE VR3
COMMON/MEMEIG/WAVEFN(201),RADIUS,A, VC, ALPHA,AMASS,RMAX,EPS,MODE, 1 NOMAX, NINTVL, L, ELL, K, JDBLD, JPRINT, MPRINT, NPOINT, EN, FLOUT, HI, R, RR,
2H,VPLUS(399), V.NMAX,F,RMATCH, I, XPLUS, XPLUSP, FRR, INOUT, KSTEP,
3REFL,XINTGD(201),YINTG,XINT1,XINT2, X
$\mathrm{R}=\mathrm{H} \mathrm{I}$
$\mathrm{H}=\mathrm{HI} / 2$ 。
GO TU $(2090,2000)$, JPRINT
2000 WRITE(6,2091)
2091 FORMAT(25H V R)
$2090 \mathrm{C}=.0110270 / \mathrm{A}$
NMAX $=2$ *NI NTVL-1
DO 2210 I =1, NMAX
REXP=EXP ((R-RADIUS)/A)
$V C C=V C /(1.0+R E X P)$
$V S=A L P H A * V C * C * R E X P /((1.0+R E X P) * * 2) * R)$
$A K=K$
IF(JDBLD-2*L) 22,22,21
$21 \operatorname{VPLUS}(I)=$ VCC $+V S *(A K-1.0)$
GO TO 25
22 VPLUS (I)=VCC-VS*AK
25 GO TO $(40,28)$, JPRINT
28 WRITE(6,30) VPLUS(I),R
30 FORMAT (E15.7.F7.3)
$40 \mathrm{R}=\mathrm{R}+\mathrm{H}$
2210 CONTINUE
RETURN
END
\$IBFTC INTEG LIST,M94,XR7
SUBROUTINE INTEG3
COMMON/MEMEIG/WAVEFN(201),RADIUS,A,VC,ALPHA,AMA SS, RMAX,EPS,MODE, 1 NCMAX, NINTVL, L, ELL, K, JDBLD, JPRINT, MPRINT, NPOINT, EN, FLOUT, HI, R, RR, 2H, VPLUS (399), V,NMAX, F,RMATCH, I, XPLUS, XPLUSP,FRR, INOUT, KSTEP,
3REFL, XINTGD(201), YINTG,XINT1,XINT2,X
GO TO (1,15),MPRINT
1 GO TO $(5,5,15)$, MODE
5 IF(EN) $5215,4221,4221$
15 WAVEFN(1)=0.
$A K=K$
$F=A M A S S /(A M A S S+1.00898)$
$\mathrm{R}=\mathrm{H}$
$R R=R$
$V=V P L U S(2 * K S T E P-1)$
XPLUS $=R * * K$
$X=X P L U S$
$E L L=0$.
CALL FR
ELL=K-1
XPLUS=XPLUS+FRR*R**2/((ELL+2.)*(ELL+3.))
WAVEFN(2)=XPLUS
$X P L U S P=A K *(R * *(K-1))+F R R * R /(E L L+2$.
GO TO (4090,4090,4080), MODE
4080 NOMAX=2
4090 I NOUT $=1$
OO 4210 I=KSTEP, 1000, KSTEP
I = I
CALL KRR1

```
    R=R+H
4127 IF(NOMAX-1) 4130,4128,4130
4128 RMATCH=RMAX
    IF (R-O.2*RADIUS) 4130,4129,4129
4129 IF(EN-V) 10,10.4132
    10 RMATCH=R
    GO TO 4220
4130 WAVEFN(I+2)=XPLUS
4132 IF(R-RMATCH+.001) 4210,4220,4220
4210 CONTINUE
4220 REFL=R*XPLUSP/XPLUS
    WMATCH=XPLUS
    IF(EN) 4211,4216,4216
4211 XPLUS=1.
    WAVEFN(NPOINT)=1.
    GO TO (4212,4213,4213),MODE
4212 XPLUSP =-SQRT (VPLUS (NMAX)-EN)
    GO TO 4214
4213 XPLUSP=FLOUT /RMAX
4214 H= -H
    R=RMAX
    INOUT=-1
    OO 5210 J=1,1000,KSTEP
    I=NINTVL-J
    CALL KRR1
    R=R+H
    WAVEFN(I+1)=XPLUS
    IF(R-RMATCH-.001) 4215,4215,5210
5210 CONTINUE
4215 H=-H
    GO TO (5215,4230),MPRINT
5215 I= I +1
    DO 5216 J=I,NPOINT
5216 WAVEFN(J)=WAVEFN(J)*WMATCH/XPLUS
4216 GO TO (4221,4230),MPRINT
4 2 2 1 ~ Y I N T G = 0 . ~
    XINT1=0.
    XINT2=RMAX
    DO 4225 N=1,NPOINT
4225 XINTGD(N)=WAVEFN(N)**2
    CALL SIMPSN
    DO 4228 N=1,NPOINT
    4228 WAVEFN(N)=WAVEFN(N)/SQRT(YINTG)
    4230 RETURN
    END
$IBFTC KRR LIST
    SUBROUTINE KRRI
    COMMON/MEMEIG/WAVEFN(2O1),RADIUS,A,VC,ALPHA,AMASS,RMAX,EPS,MODE,
    INOMAX,NINTVL,L,ELL,K,JDBLD,JPRINT,MPRINT,NPOINT,EN,FLOUT,HI,R,RR,
    2H,VPLUS(399),V,NMAX,F,RMATCH,I, XPLUS,XPLUSP,FRR,INOUT,KSTEP,
    3REFL,XINTGD(201), YINTG,XINT1,XINT2,X
    GO TO (56,40),JPRINT
    4 0 \text { WRITE (6,45) H,R,XPLUS,XPLUSP,AI,EN,V,RMATCH}
    4 5 \text { FORMAT(3H H=,F8.5,3H R=,F9.5,7H XPLUS=,E12.5,8H XPLUSP=,E12.5,4H A}
    II=,F9.5,4H EN=,F10.4,3H V=,F9.4,8H RMATCH=,F6.3)
    56 RR=R
        INDEX=2*I-INOUT
        V=VPLUS(INDEX)
        X=XPLUS
        CALL FR
```

```
        AI=FRR*H**2/2.0
        RR=R+H/2.0
        X=XPLUS+ XPLUSP*H/2.0+AI/4.0
        INDEX=2*I+INOUT*(KSTEP-1)
        V=VPLUS(INDEX)
        CALL FR
        AII =FRR*(H**2)/2.0
        RR=R+H
        X=XPLUS+XPLUSP*H+AII
        INDEX=2*I+INOUT*(2*KSTEP-1)
        V=VPLUS(INDEX)
        CALL FR
        AIII=FRR*H**2/2.0
        XPLUS=XPLUS+H*XPLUSP+(AI+2.0*AII)/3.0
        XPLUSP = XPLUSP +(AI +4.0*AII+AIII)/(3.0*H)
        GC TO (4125,190),JPRINT
    190 IF(ABS(RR-RMATCH)-.001) 195,4125,4125
    195 WRITE(6,45) H,RR,XPLUS,XPLUSP,AI,EN,V,RMATCH
    4125 CONTINUE
        RETURN
            END
$IBFTC FR LIST,M94,XR7
SUBROUTINE FR
    COMMON/MEMEIG/WAVEFN(201),RADIUS,A = VC,ALPHA,AMASS,RMAX,EPS,MODE,
    INCMAX,NINTVL,L,ELL,K,JDBLD,JPRINT,MPRINT,NPOINT, EN,FLOUT,HI,R,RR
    2H,VPLUS(399),V,NMAX,F,RMATCH,I, XPLUS,XPLUSP,FRR,INOUT,KSTEP
    3REFL,XINTGD(201),YINTG,XINT1,XINT2,X
        FRR=-.04826*F*(EN -20.721*ELL*(ELL+1.0)/(F*RR**2)-V)*X
        RETURN
        END
$IBFTC SIMPSN LIST,M94,XR7
        SUBROUTINE SIMPSN
        COMMON/MEMEIG/WAVEFN(201),RADIUS,A,VC,ALPHA,AMASS,RMAX,EPS,MODE,
        1NOMAX,NINTVL,L,ELL,K,JDBLD,JPRINT,MPRINT,NPOINT,EN,FLOUT,HI,R,RR
        3REFL,XINTGD(201),YINTG,XINT1,XINT 2,X
        DELINT=(XINT2-XINTI)/FLOAT (NINTVL)
        YINTG3=XINTGD(1)
        NPT=1
        DO 20 NPT=2,NINTVL,2
        YINTG3=YINTG3+XINTGD(NPT) *4.0
    20 CONTINUE
        DO 30 NPT=3,NINTVL,2
        YINTG3=YINTG3+XINTGD(NPT) }=2.
        30 CONTINUE
        YINTG3 = YINTG3+XINTGD(NPOINT)
        YINTG=YINTG+YINTG3*DELINT/3.0
    RETURN
    END
```

?ig. 1. Results of the "signature of the well" run for the $\ell=0$ well shown in Figure 3. Results are given for f_{ℓ} (inside), f_{ℓ} (outside), and for the difference (DIF) between them. Note that the energy at which the difference is zero is close to the energy of the converged eigenvalue, indicated by the short arrow.

Fig. 2. Improvement of the wave function match during the automatic search procedure. Note that for proper normalization of the bound state wave function that RMAX must be sufficiently large that there is negligible contribution to $u^{2} d r$ beyond RMAX.
Fig. 3. Single particle states and the $1 s_{\frac{1}{2}}, 2 s_{\frac{1}{2}}$, and $1 d_{\frac{5}{2}}$ wave functions in a Woods-Saxon potential well. The parameters of the well are: $\mathrm{V}_{\mathrm{c}}=-50 \mathrm{MeV}$, RADIUS $=3.15$ fermis, $\mathrm{a}=0.650 \mathrm{fermis}$, and the spin-orbit term is 20 times the Thomas term for a nucleon (ALPHA $=20$). The shape of the well shown is for $\ell=0$. During the "signature of the well" preliminary run, the matching radius is given by the heavy black line - the edge of the well for bound states, and the maximum radius (8 fermis in this example) for continuum states.

(

