Technical Note

No. 40-6

Boulder Laboratories

MEAN ELECTRON DENSITY VARIATIONS

OF THE QUIET IONOSPHERE

No. 6 - AUGUST 1959

BY J.W. WRIGHT, L.R. WESCOTT AND D.J. BROWN
Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of non-periodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 ($1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 ($1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (Includes Titles of Papers Published in Outside Journals 1950 to 1959) ($2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.
MEAN ELECTRON DENSITY VARIATIONS
OF THE QUIET IONOSPHERE No. 6-August 1961

by

J. W. Wright, L. R. Wescott and D. J. Brown
Central Radio Propagation Laboratory

NBS Technical Notes are designed to supplement the Bureau’s regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature. They are for sale by the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C.
MEAN ELECTRON DENSITY VARIATIONS OF THE QUIET IONOSPHERE

No. 6 - August 1959

by

J. W. Wright, L. R. Wescott and D. J. Brown
Central Radio Propagation Laboratory

ABSTRACT

The CRPL has initiated a program for large-scale computation of electron density profiles from ionospheric vertical soundings. Scaling is performed at field stations, permitting computation of hourly profiles at the Central Laboratory. These profiles are combined to form hourly mean quiet profiles for each station and month. The results of this program for the month of June are illustrated graphically. This report is the sixth of a series illustrating the electron density variations in the mean quiet ionosphere between latitudes 15°N and 50°N along the 75°W meridian.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Hourly Vertical Cross sections along 75°W
Geographic Meridian 12

Isoionic Maps (150, 200, 250, 300, 350, 400 km; Nmax, hmax, Scat, Shmax, Shinf) 36

Electron Density vs. Time Curves (N(t)),
(Newfoundland, Ft. Monmouth, White Sands, Grand Bahama, Puerto Rico) ... 47
MEAN ELECTRON DENSITY VARIATIONS OF THE QUIET IONOSPHERE
No. 6 - August 1959

by

J. W. Wright, L. R. Wescott and D. J. Brown
Central Radio Propagation Laboratory

I Introduction

Part of the basic responsibility of the Central Radio Propagation Laboratory is to gather ionospheric, solar, or other geophysical data necessary in the pursuit of research leading to improvements in radio communication and knowledge of the earth's upper atmosphere. The existing network of ionospheric vertical sounding stations is an important source of such data. Typically, the radio sounding data directly provide observations of peak electron densities (corresponding to "critical" frequencies f_{0E}, f_{0F1}, f_{0F2}), data on Sporadic E, and certain derived propagation data such as maximum usable frequencies or MUF factors (Smith, 1939).

In fact, the vertical sounding is potentially capable of providing the complete electron density profile of the underside of the ionosphere (i.e., below h_{maxF2}) and of providing a basis for extrapolation to much greater altitudes. However, because a lengthy and difficult calculation is required, little of this work had been done until quite recently when techniques and computers have become available and the exigencies of the IGY and satellite programs have made it imperative.
In the course of its development of facilities for electron density profile calculations, the CRPL has succeeded in devising means by which basic data for this purpose may be scaled by the individual field stations, thereby decentralizing and simplifying the most onerous part of the work. Through its own station network and those of the U. S. Army Signal Radio Propagation Agency, and through cooperation with closely associated stations in other countries, the CRPL has initiated an extensive systematic data reduction program, from which hourly electron density profiles are being computed for the following stations:

Puerto Rico (NBS, January 1959)
Grand Bahama Island (U. S. Army Signal Corps, February 1959)
Fort Monmouth, New Jersey (U. S. Army Signal Corps, Feb. 1959)
White Sands, New Mexico (U. S. Army Signal Corps, March 1959)
St. Johns, Newfoundland (Def. Res. Tel. Establ. Canada, June 1959)
Adak, Alaska (U. S. Army Signal Corps, June 1959)
Okinawa, Ryukus (U. S. Army Signal Corps, June 1959)
Thule, Greenland (U. S. Army Signal Corps, July 1959)
Bogota, Colombia (January 1960)
Huancayo, Peru (January 1960)
Talara, Peru (January 1960)
Baguio, Philippines (February 1960).

Affiliation and approximate date of initial participation in this program are given in parentheses.

The hourly electron density profiles are extensively used in the research programs of CRPL and are supplied directly to certain other agencies as part of various research and practical activities. However, in this comparatively early stage, broad dissemination of the computed data is a somewhat difficult problem.

In an attempt to make at least a summary of the results of the program widely and rapidly available, the CRPL has initiated the present series of reports. These provide graphical representations of the monthly mean quiet hourly electron densities from certain of the stations in the preceding list, from which a fairly clear picture of the local ionosphere morphology may be obtained.
These reports contain \(N(h) \) data for the stations at Newfoundland, Fort Monmouth, Grand Bahama Island, White Sands, and Puerto Rico. Pertinent facts concerning these stations are given in the following table:

Table 1

<table>
<thead>
<tr>
<th>Station</th>
<th>(f_H)</th>
<th>Lat.</th>
<th>Dip</th>
<th>Geog. Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Johns, Newf.</td>
<td>1.38 Mc/s</td>
<td>58.5°N</td>
<td>72°N</td>
<td>47°33'N 52°40'W</td>
</tr>
<tr>
<td>Ft. Monmouth, N.J.</td>
<td>1.46</td>
<td>51.7°N</td>
<td>71.5°N</td>
<td>40°15'N 74°01'W</td>
</tr>
<tr>
<td>White Sands, N.M.</td>
<td>1.30</td>
<td>41.2°N</td>
<td>60°N</td>
<td>32°24'N 106°52'W</td>
</tr>
<tr>
<td>Grand Bahama Island</td>
<td>1.30</td>
<td>37.9°N</td>
<td>59.5°N</td>
<td>26°40'N 78°22'W</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>1.15</td>
<td>30°N</td>
<td>51.5°N</td>
<td>18°30'N 67°12'W</td>
</tr>
</tbody>
</table>

II Description of Basic Data

True heights of reflection of radio waves are calculated from the observed or "virtual" heights by the method of Budden (1954); this method need not be described here, but it should be pointed out that full correction for geomagnetic field effects is made and that the usual restrictions to monotonic profiles apply.

Tabulations of the mean electron density data at 10 km intervals and certain related quantities are the bases for the graphs and charts. A sample for the Puerto Rico July data is given on Page 11. The table on the following page identifies the quantities appearing on the tabulation.
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Units</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Electron Density ((\text{N}))</td>
<td>(x10^3) = electron/cm(^3) ((10^{-5}) on maps)</td>
<td>Body of table; given at each 10 km of height from the lowest (\text{hmin}) to 950 km.</td>
</tr>
<tr>
<td>(\text{NMAX})</td>
<td>(x10^3) = electron/cm(^3) ((10^{-5}) on maps)</td>
<td>The mean value of (\text{Nmax}).</td>
</tr>
<tr>
<td>(\text{COUNT})</td>
<td>Kilometers</td>
<td>Count of the number of profiles entering the mean.</td>
</tr>
<tr>
<td>(\text{HMIN})</td>
<td>Kilometers</td>
<td>The average height of zero or very low electron density, obtained by linear extrapolation of the electron density of the individual profiles.</td>
</tr>
<tr>
<td>(\text{HMAX})</td>
<td>Kilometers</td>
<td>The average height of maximum electron density, determined by fitting a parabola to the upper portion of the individual profiles.</td>
</tr>
<tr>
<td>(\text{SCAT})</td>
<td>Kilometers</td>
<td>One half of the half-thickness of the parabola best fitting the upper portion of the F-region profile. Approximates the scale height near the true (\text{HMAX}).</td>
</tr>
<tr>
<td>(\text{SHMAX})</td>
<td>(x10^{10}) = electrons/cm(^2) column ((10^{-12}) on maps)</td>
<td>Obtained by averaging the integration of the individual profiles between the limits (\text{HMIN}) and (\text{HMAX}).</td>
</tr>
<tr>
<td>(\text{SHINF})</td>
<td>(x10^{10}) = electrons/cm(^2) column ((10^{-13}) on maps)</td>
<td>The average total number of electrons in a column to infinity obtained by extrapolation of observed profiles into the region above (\text{HMAX}). (See text.)</td>
</tr>
</tbody>
</table>
The following particular features of the tabulated data should be noted:

A. Averaging process. Each hour of each day is identified with its magnetic character figure, Kp. For each hour, those days for which Kp is less than 4+ are included in the "quiet" average. The other days are similarly combined to form a "disturbed" average; however, this rarely has physical significance because the number of disturbed periods is usually small and the behavior of the ionosphere during disturbed hours is not consistent. Thus graphs for these latter averages are not presented here.

B. Determination of hmax. The nature of the "true height" process is such that no direct measure of hmaxF2 is obtained, the virtual height at Nmax being immeasurable. A useful procedure is to fit the portion near hmaxF2 with a suitable curve and to determine hmax from this curve. A parabola is quite satisfactory for this purpose; it is fitted to two of the highest true heights and the measured value of Nmax(foF2).

C. Extrapolation of profiles above hmax. Before averaging, the individual profiles are extrapolated above hmax by a Chapman distribution of 100 km scale height. This assumed model seems to agree well with the few published measurements dealing with the profile of the F region above hmax (Wright, 1960). Extrapolation is necessary in order to calculate homogeneous averages near hmax, and the average profiles are, in fact, given to 950 km.

D. Integrated Electron Densities. The total number of electrons in a unit column of the ionosphere between the effective bottom (hmin) and hmax is called Shmax; it is obtained by numerical integration of the observed profiles between these limits. An estimate of the total electron content to infinity, based upon the Chapman model, is called Shinf. It is obtained by adding to Shmax the quantity \(N_A = 2.82 \times 10^4 \) Nmax where H is an (assumed constant) scale height for the region above hmax. Current evidence
III Description of Graphical Representation

The relative smoothness of mean quiet ionosphere data lends itself to various kinds of graphical presentation which offer convenient aids to the visualization of the height, geographic, and temporal variability of the ionosphere. Included here are three such graphical forms prepared from the tabulations described in Section II.

A. Vertical cross sections of the ionosphere along the 75°W meridian. Pages 12 through 35 give for each hour, a vertical cross section of the mean quiet ionosphere along a meridian section, nominally the 75°W geographic meridian, for the month of July 1959. Contours are parametric in "plasma" frequency (f_N) related to electron density N by

\[12,400 \frac{f_N^2}{\text{Mc/s}} = N(\text{electrons/cm}^3) \]

The height of maximum electron density is represented by a dashed line. Note that the vertical scale is expanded about 5.5 times.

With the exception of White Sands, each of these stations is reasonably close to the 75°W meridian (see Table 1). There is the possibility that some of the anomalies imposed by White Sands on these contours are the result of the well-known longitudinal asymmetry of the ionosphere.

B. Local time vs Latitude Maps. Another form of presentation, useful for indicating the two-dimensional geographic variations of the ionosphere, is that illustrated by the maps of pages 36 through 45. Here, for fixed levels in the ionosphere (150, 200, 250, 300, 350, 400 km), contours of electron density are drawn in the latitude vs. local time plane. To the extent to which longitude anomalies are negligible, these maps give also the longitude vs. latitude

(Wright, 1960) indicates \(H = 100 \text{ km} \) is an acceptable choice.
distribution of electron densities at the indicated heights when it is noon over the 75°W meridian. Similar maps for the peak density, Nmax; its height, hmax; its characteristic thickness, Scat; the total electron content to Nmax, Shmax; and the estimated total electron content, Shinf, are also shown.

C. Electron density vs. time curves (N(t) curves). The mean quiet diurnal variation of electron density between 150 and 400 km heights above the sounding stations is illustrated by these curves. Dashed lines are used wherever the electron density at any height falls below the peak density (i.e. when the height hmaxF2 falls below the height for the curve in question.) Such electron densities are the result of the extrapolations by the Chapman model discussed in Section II C.

IV Discussion and Applications of the Data

Mean quiet electron density data over wide geographic areas are essential for application to numerous problems of both practical and scientific interest. For example, the assessment of the radio refraction errors and Faraday rotation effects in satellite tracking requires a knowledge of the electron density profile in the direction of the satellite or an estimate of the electron density at the satellite itself. Alternatively these properties of the ionosphere, or estimates of the total electron content in a column, may be measured by observations from rockets and satellites, or from radar moon-echoes, and compared with ground-based observations of the kind shown here.

Frequently it will be necessary to use instantaneous density data because of the considerable variability of the ionosphere about the quiet mean. In such cases, the mean data are of value as a "reference level" in the design of the experiment; for example, in the choice of radio frequencies, satellite heights, antennas, etc.
Since electron density data represent virtually our only source of continuous, widespread data on the earth's upper atmosphere, such data also are essential to geophysical problems involving the electrical, neutral, and magnetic properties of the atmosphere.

For example, data on the vertical cross sections may be compared with theoretical expectations for the meridional height dependence of the quiet ionosphere. Several workers (Hirono, 1955; Martyn 1956) have investigated the equilibrium height (of hmax) for an ionosphere controlled by diffusion, height-varying electron loss rate, and uniform (or zero) vertical electron drift. The results are qualitatively in agreement with these observations in predicting a rise of hmax towards the equator in daytime and a reversal of this tendency at night.

The N(t) curves are perhaps the most physically significant representation of electron density data. The strong solar control at all levels and the important perturbations of this solar control in the upper F region may be easily seen.
Acknowledgments

We are indebted to Mr. A. H. Shapley for guidance in the initiation of this work, and to Dr. H. H. Howe for the development of the computer programs upon which the whole system heavily depends. This series of reports results from the combined efforts of the NBS Electron Density Profile Group, including at various times L. R. Wescott, L. Hayden, D. J. Brown, F. J. Burmont, I. Ford, N. Moore, M. Durham, G. Lira, under the direct supervision of G. H. Stonehocker. The cooperation of the U. S. Army Signal Radio Propagation Agency, in particular the assistance of Mr. F. H. Dickson (Chief), is gratefully acknowledged.
References

AVERAGE ELECTRON DENSITY

<table>
<thead>
<tr>
<th>TIME</th>
<th>0000</th>
<th>0100</th>
<th>0200</th>
<th>0300</th>
<th>0400</th>
<th>0500</th>
<th>0600</th>
<th>0700</th>
<th>0800</th>
<th>0900</th>
<th>1000</th>
<th>1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT</td>
<td>3222</td>
<td>2701</td>
<td>2430</td>
<td>2250</td>
<td>1983</td>
<td>1700</td>
<td>1270</td>
<td>1260</td>
<td>1132</td>
<td>1020</td>
<td>920</td>
<td>830</td>
</tr>
<tr>
<td>HMIN</td>
<td>2763</td>
<td>2430</td>
<td>2250</td>
<td>2080</td>
<td>1970</td>
<td>1760</td>
<td>1330</td>
<td>1370</td>
<td>1230</td>
<td>1120</td>
<td>920</td>
<td>790</td>
</tr>
<tr>
<td>NMAX</td>
<td>2763</td>
<td>2550</td>
<td>2430</td>
<td>2250</td>
<td>2120</td>
<td>1890</td>
<td>1450</td>
<td>1450</td>
<td>1330</td>
<td>1230</td>
<td>1020</td>
<td>910</td>
</tr>
<tr>
<td>SMAX</td>
<td>2763</td>
<td>2400</td>
<td>2250</td>
<td>2120</td>
<td>1970</td>
<td>1760</td>
<td>1380</td>
<td>1450</td>
<td>1330</td>
<td>1230</td>
<td>1020</td>
<td>910</td>
</tr>
<tr>
<td>SHIN</td>
<td>2763</td>
<td>2200</td>
<td>2120</td>
<td>2000</td>
<td>1890</td>
<td>1760</td>
<td>1450</td>
<td>1450</td>
<td>1330</td>
<td>1230</td>
<td>1020</td>
<td>910</td>
</tr>
</tbody>
</table>

KP BELOW 4.5

<table>
<thead>
<tr>
<th>TIME</th>
<th>60 W</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT</td>
<td>109</td>
<td>145</td>
<td>132</td>
<td>115</td>
<td>105</td>
<td>95</td>
<td>83</td>
<td>81</td>
<td>75</td>
<td>69</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>HMIN</td>
<td>109</td>
<td>145</td>
<td>132</td>
<td>115</td>
<td>105</td>
<td>95</td>
<td>83</td>
<td>81</td>
<td>75</td>
<td>69</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>NMAX</td>
<td>109</td>
<td>145</td>
<td>132</td>
<td>115</td>
<td>105</td>
<td>95</td>
<td>83</td>
<td>81</td>
<td>75</td>
<td>69</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>SMAX</td>
<td>109</td>
<td>145</td>
<td>132</td>
<td>115</td>
<td>105</td>
<td>95</td>
<td>83</td>
<td>81</td>
<td>75</td>
<td>69</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>SHIN</td>
<td>109</td>
<td>145</td>
<td>132</td>
<td>115</td>
<td>105</td>
<td>95</td>
<td>83</td>
<td>81</td>
<td>75</td>
<td>69</td>
<td>65</td>
<td>63</td>
</tr>
</tbody>
</table>

AVERAGE ELECTRON DENSITY

<table>
<thead>
<tr>
<th>TIME</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
<th>2200</th>
<th>2300</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT</td>
<td>130</td>
<td>195</td>
<td>170</td>
<td>155</td>
<td>140</td>
<td>125</td>
<td>110</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>HMIN</td>
<td>130</td>
<td>195</td>
<td>170</td>
<td>155</td>
<td>140</td>
<td>125</td>
<td>110</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>NMAX</td>
<td>130</td>
<td>195</td>
<td>170</td>
<td>155</td>
<td>140</td>
<td>125</td>
<td>110</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>SMAX</td>
<td>130</td>
<td>195</td>
<td>170</td>
<td>155</td>
<td>140</td>
<td>125</td>
<td>110</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>SHIN</td>
<td>130</td>
<td>195</td>
<td>170</td>
<td>155</td>
<td>140</td>
<td>125</td>
<td>110</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>63</td>
</tr>
</tbody>
</table>

KP BELOW 4.5

<table>
<thead>
<tr>
<th>TIME</th>
<th>60 W</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT</td>
<td>130</td>
<td>195</td>
<td>170</td>
<td>155</td>
<td>140</td>
<td>125</td>
<td>110</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>HMIN</td>
<td>130</td>
<td>195</td>
<td>170</td>
<td>155</td>
<td>140</td>
<td>125</td>
<td>110</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>NMAX</td>
<td>130</td>
<td>195</td>
<td>170</td>
<td>155</td>
<td>140</td>
<td>125</td>
<td>110</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>SMAX</td>
<td>130</td>
<td>195</td>
<td>170</td>
<td>155</td>
<td>140</td>
<td>125</td>
<td>110</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>SHIN</td>
<td>130</td>
<td>195</td>
<td>170</td>
<td>155</td>
<td>140</td>
<td>125</td>
<td>110</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>63</td>
</tr>
</tbody>
</table>
AUGUST 1959
0200 75° W TIME

VERTICAL SCALE 5.5 X HORIZONTAL SCALE

N — CONTOURS OF fn
— h — MAXIMUM

VERTICAL SCALE 5.5 X HORIZONTAL SCALE

NEWFOUNDLAND FORT MONMOUTH WHITE SANDS GRAND BAHAMA PUERTO RICO

NORTH GEOGRAPHIC LATITUDE

HEIGHT IN KILOMETERS
AUGUST 1959
0300 75° W TIME

VERTICAL SCALE 5.5 X HORIZONTAL SCALE

NORTH GEOGRAPHIC LATITUDE

HEIGHT IN KILOMETERS

CONTOURS OF fn
h-MAXIMUM

NEWFOUNDLAND FORT MONMOUTH WHITE SANDS GRAND BAHAMA PUERTO RICO
AUGUST 1959
0900 75° W TIME

HEIGHT IN KILOMETERS

VERTICAL SCALE 5.5 X HORIZONTAL SCALE

NORTH GEOGRAPHIC LATITUDE

CONTOURS OF f_n

h-MAXIMUM

NEWFOUNDLAND FORT MONMOUTH WHITE SANDS GRAND BAHAMA PUERTO RICO

50° 45° 40° 35° 30° 25° 20° 15°
AUGUST 1959
1100 75° W TIME

HEIGHT IN KILOMETERS

VERTICAL SCALE 5.5 X HORIZONTAL SCALE

NORTH GEOGRAPHIC LATITUDE
AUGUST 1959
1300 75° W TIME

VERTICAL SCALE 5.5 X HORIZONTAL SCALE

CONTOURS OF fN
h-MAXIMUM

NEWFOUNDLAND FORT MONMOUTH WHITE SANDS GRAND BAHAMA PUERTO RICO

NORTH GEOGRAPHIC LATITUDE
ELECTRON DENSITY AT 200 KILOMETERS
AUGUST 1959

75° W TIME

CONTOURS: \(\text{cm}^{-3} \times 10^{-5} \)
ELECTRON DENSITY AT 250 KILOMETERS
AUGUST 1959

CONTOURS: \(\frac{N_m}{cm^3} \times 10^{-5} \)

75° W TIME
ELECTRON DENSITY AT 300 KILOMETERS
AUGUST 1959

CONTOURS: \(\frac{\text{sd}}{\text{cm}^3} \times 10^{-9} \)
ELECTRON DENSITY AT 350 KILOMETERS
AUGUST 1959

CONTOURS: $\text{el/cm}^3 \times 10^{-5}$
ELECTRON DENSITY AT 400 KILOMETERS
AUGUST 1959

CONTOURS $\frac{8L}{cm^3} \times 10^{-5}$
MAXIMUM ELECTRON DENSITY
NMAX
AUG. 1959

CONTOURS = \frac{\text{alt}}{\text{cm}^3} \times 10^{-5}
HEIGHT OF MAXIMUM ELECTRON DENSITY
HMAX
AUG. 1959

CONTOURS: Km
QUARTER THICKNESS OF F-REGION PEAK SCAT

AUG. 1959

CONTOURS = Km
ELECTRON DENSITY INTEGRATED TO HEIGHT OF MAXIMUM ELECTRON DENSITY
SHMAX
AUG. 1959

CONTOURS: \(\frac{\text{cm}^{-1}}{\text{col} \times 10^{12}} \)
ELECTRON DENSITY INTEGRATED TO INFINITY
SHINF
AUG. 1959

CONTOURS = \frac{el}{cm^2 col.} \times 10^{-13}
N(t) NEWFOUNDLAND AUGUST 1959
FIXED HEIGHTS IN Km

ELECTRON DENSITY ($x10^5 = e/cm^3$)
N(t) FT. MONMOUTH AUGUST 1959
FIXED HEIGHTS IN Km
N(t) WHITE SANDS AUGUST 1959
FIXED HEIGHTS IN Km

ELECTRON DENSITY (x 10^5 = el/cm^3)

00 06 12 18 00
LMT
$N(t)$ GRAND BAHAMAS AUGUST 1959
FIXED HEIGHTS IN Km

ELECTRON DENSITY (10^5 el/cm^3)

LMT
N(t) PUERTO RICO AUGUST 1959
FIXED HEIGHTS IN Km

ELECTRON DENSITY ($x10^5$ = e/cm3)

00 06 12 18 00
LMT

150 200 250 300 350 400
THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Office of Weights and Measures.

BOULDER, COLO.

