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SOLUTION OF THE ABEL INTEGRAL TRANSFORM FOR A

CYLINDRICAL LUMINOUS REGION WITH OPTICAL

DISTORTIONS AT ITS BOUNDARY*

Earl R. Mosburg, Jr. and Matthew S. Lojko

The use of orthogonal polynomial expansions in

the calculation of the Abel integral transform is dis-

cussed. Particular attention is directed to the effects

of optical and instrumental distortions when the lumi-

nous region is contained by a cylindrical glass tube.

An easily calculable solution of the Abel integral is

presented which reduces the effect of such distortions

by employing a weighting function which has a maxi-
mum at the center and vanishes at the boundary. This

approach results in a more accurate solution of the

Abel integral transform in the case where significant

optical and instrumental distortions are present near
the boundary of the luminous region.

Key Words: Abel transform, Abel inversion, plasma
diagnostics, emissivity profile, radiance

profile.

INTRODUCTION

In order to obtain the radial distribution of volume light

emissivity within a cylindrical, non-absorbing luminous region, we

must solve the Abel integral transform using the projected brightness

profile, measured by scanning the detector in a direction perpendicular

to the axis of the tube. If the projected brightness profile is f(x), where

x is the ratio of the distance off axis to the radius of the luminous

region, and if g(r) is the corresponding volume emissivity distribution,

where r is the normalized radius, then the Abel integral transforms

can be written as

*Work supported in part by the Advanced Research Projects Agency.
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where the primes indicate differentiation. A direct numerical solution

for g(r) using measured values of f(x) in Eq. (la) or Eq. (lc) is subject

to considerable error due to the behavior of the denominator in the

integrand and to the necessity for numerical differentiation. These

difficulties are considerably alleviated by first making a least square

fit of f(x) to a power series expansion as described by Freeman and
1

Katz.

A more convenient expansion in terms of orthogonal polynomials
2

has been reported by Herlitz using Tchebycheff polynomials of the

3
second kind. Popenoe and Shumaker have used Herlitz' s method as

well as an expansion in terms of Legendre polynomials. The use of

orthogonal polynomial expansions is equivalent to a weighted least

squares analysis. But here, because of the orthogonality of the basis

functions, the coefficients can be independently calculated. Each

coefficient can then be tested for statistical significance and the



expansion appropriately truncated without any prior, ad hoc decision

about the number of terms to be used. The weighting function w(x)/v(x)

of Eq. (5) is determined once a particular series of orthogonal poly-

nomials is chosen for the expansion.

Sufficient attention has not, however, been given to the use of

orthogonal polynomial expansions in the case where optical or instru-

mental distortions are introduced at the boundary of the luminous

region, as for example, by the presence of a glass container. In this

4
case, distortions due to the scattering and uneven refraction of light

in the tube walls may become important. These effects are a maximum

near x = 1 where a near grazing angle is involved in the measurement.

Furthermore, the finite size of the spectrometer slit introduces an

averaging over the normalized spacial resolution function of the

instrument, R(x-£), such that the measured curve becomes a function,

b.{Q), where ^
*C + D/2

I f(x)R(x-C)dx (le)

C - D/2

and ±D/2 are the limiting values of (x-C) for which there is appreciable

contribution to the integral. The projected brightness profile, f(x),

can, in principle, be recovered from h(£) by an appropriate inversion

of Eq. (le), but residual errors will be present. These errors will

also be larger near x = 1 where the differences between functions h(£)

and f(x) are largest, i. e. , where the second derivative of h(£) is more

important. These distortions are particularly large when it is desired

/ 2
to invert projected profiles approximating f(x) =Wl-x , which corresponds

to g(r) = constant. Here the second derivative of h(C) is even larger

near the boundary and the luminosity is now high in the region of

maximum distortion.



We wish to stress at this point that, in contrast to the distortions,

most projected brightness profiles of experimental interest vanish at

x = 1 and exhibit maxima at or near the center of the light source. It

is now clear that in order to reduce the effect of the distortions, we

would like a weighting function in Eq. (5) which vanishes at x = 1 and

exhibits a maximum at x = 0.

In this paper we restrict our choice of polynomial to the general

class of Ultraspherical or Gegenbauer polynomials, which includes

Legendre and Tchebycheff polynomials as special cases. In what

follows we will use the notation of the Handbook of Mathematical
5

Functions. We expand f(x) in terms of general Gegenbauer polynomials

as

N . (a)

f(x) = E a v(x)C (u(x)) (2)
n n

n =

where v(x) is some shape function to be chosen and u(x) is some

function of x. Substituting Eq. (2) into Eq. (la) we arrive at the

expression

7
N v(x)C

((X)
(u(x))xdx

g(r)= -^- E a -±-
J

1

JL . (3)
tt n rdr *r / c c

n= Vx - r

5When the orthonormalization integral for the Gegenbauer polynomials

is written in the form

f

b
w(x) C

(CC)
(u(x)) C

(CC)
(u(x)) dx = h 6

, (4)Jan m na nm



then multiplying Eq. (2) by ——r- C (u(x)) and using Eq. (4),
v(x) m

we obtain

1 pb w(x) (a). . .. .

a =—

—

f(x) . C (u(x)) dx (5)
n h *» a v(x) n

na

which allows the calculation of the coefficients a needed in Eq. (3).
n

It is clear that the function f(x) can be written as the sum of an

experimentally significant part, f (x), and a part due to optical and

instrumental distortions, f
n
(x); that is,

d

f(x)= f (x) + f (x). (6)
e d

In many cases it may be convenient to further split the experimental

part into an easily soluble approximate form, f (x), and a relatively

small perturbation to this form, f (x), so that
P

f(x) = f (x) + [f (x) + f (x)] = f (x) + f (x) . (7)
a p d a c

Experimentally the terms are not, of course, separable from prior

knowledge, but we may arbitrarily separate out the approximate function

f (x). The same final result is obtained by performing the Abel inversion

of these terms separately and then summing. Note that the polynomial

expansion used for f (x) need not be the same as that used for the two
a

other terms of Eq. (7).

The problem then becomes one of reducing the effect of the

distortion contribution, f
n
(x), in treating the combined contribution,

d

f(x) of Eq. (6), or f (x) of Eq. (7). When choosing a specific form of
c

Eq. (2) we wish therefore to satisfy two requirements:



(A) Proper weighting factor. The weighting factor in Eq. (5)

should be such that the contribution to the calculation of a is reduced
n

where the distortion contribution, f
n
(x) is largest. One would therefore

d

like the weighting function w(x)/v(x) to approach zero as x-»l and be a

maximum at the center.

(B) Ease of calculation. In principle, Eq. (3) can always be

evaluated numerically, but the number of integrals that must be cal-

culated can be very large. To illustrate this point, if we wish to

calculate g(r) for S different values of r, then the number of integrals

becomes N(S+1) where N is the number of terms in the polynomial

expansion. For convenience, then, Eq. (3) should be directly integrable

in some closed form, or, this failing, it should be easily calculable

as, for example, by a recurrence relation between the integrals of

order n+Z, n+1, and n. In this paper we have settled for the latter

condition in order to satisfy requirement A in full.

Once the form of Eq. (2) has been set, the weighting factor of

requirement A and the integrability or non-integrability of Eq. (3) in

closed form are fully determined. Thus the simultaneous satisfaction

of requirements A and B must be somewhat fortuitous. The number of

solutions of the Abel integral equation in terms of well-known polynomials

is severely limited. In rows 1 thru 4 of Table 1, we show the weighting

factors and solutions of the integrals of Eq. (3) for several choices of the

form of Eq. (2) where the function v(x) has been chosen to allow evaluation

of these integrals in closed form. All of these solutions can be derived

by proper manipulation of the general equation
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1 2
a " 2 (a ) 2

(1-x ) C (2x -l)x dx

rdr / pI ~~T
7x -r

-^^fTfr(l-r ) C (2/-l)-C (ZAl)
r(a+l) n n-1

We are not aware of any closed form solutions which are not specific

cases derivable from this equation. The form of v(x) in these solutions

is closely related to the normalization function w(x) and therefore the

weighting function w(x)/v(x) cannot be arbitrarily chosen. None of the

solutions listed has a weighting function of the form we desire. In this

paper we present a solution of the Abel integral equation which involves

a weighting function of the desired type and consists of an expansion in

terms of Gegenbauer (a=2) polynomials (Table 1, Row 5).

THE SOLUTION USING GEGENBAUER (cc=2) POLYNOMIALS

If we choose an expansion of the form

f(x)=Za J\ - x
2
c} 2)

(x) (9)
n 2n

then Eq. (5)becomes

a
n

= M 2n +

8

3)(2n + l) T ^ f(x) (1 " ^ C
Zn <X >

dx ^
and we immediately see that criterion A is satisfied. For the

sake of completeness, the first few polynomials of interest are given

below.

C ( 2)
(x) = 1 C^

2)
(x) = 12 x

2
-2 C^2) (x) = 80 x

4
-48 x

2
+3

C, (x) = 448 x -480 x
4
+ 120 x

2
-4



It remains to evaluate the equation

2 N
g(r)= - — Z _J_ _d_ o 1

* A-~ .1

1 - x
2
CL

(2)
(x) x dx

Zn
rr n=Q n r dr •-' r J

It can be shown that

(2

2n

^ 2
x - r

/7T7ci2
»(X) =

1

- (2n + 1)U
2n + 2

4

(x)]

=.[(2n+3)U_ (x)J^1 2n

(ID

(12)

and therefore
N

g(r)=+£ a [(2n+3)I (r)-(2n+l)I , . (r)]
,n=0 n n n + 1

(13)

where
, . U. (x)xdx

T i i-" 1 1 d pi 2n

n
KT}

2n r dr J r f~ ~T I 2 T
yi - x 7x - r

and thus I (r) = and I. (r) = - 1.
o I

(14)

(15)

Siibstituting the recurrence relation

U (x)= 2(2x
2

- 1) IT (x) - IT (x)
2n + 4 2n + 2 2n

= +2U (x)-U (x) + 4(x -1)U (x)
2n + 2 2n 2n + 2

(16)

into Eq.(14),we obtain

2 1 d ,.1

1 2yi-x u

n + _=2I -I + ^-L-iLJ
+ 2 n+1 n tt r dr ,J

2n + 2
(x) x dx

n— (17)



The integral of the last term has a closed form solution (see Table 1)

so that Eq. (17) becomes

J
„ + 2

(r) = 2 I
„ + l<

r » " y r
» - <2n+ 3)P

n+ l(
2r

2
- , ,, (18)

2 5where P ,(2r -1) is also generated by a recurrence relation
n + 1

given by

^.l^- 1'^^- 1)^ 2
- 1 '

P ,(2r
2

- 1). (19)n + 1 n - 1

Using Eqs. (15), (18), and (19), the desired function, g(r), can

readily be obtained from Eq. (13).

This approach was readily programmed for a computer solution.

The integral of Eq. (10) was evaluated using the trapezoidal rule and a

40 point Gaussian quadrature. The change in the values of the coefficients

using the trapezoidal rule was completely negligible. A listing of the

Fortran computer program using the trapezoidal rule is given in Appendix II.

The series of coefficients so calculated can be terminated by applying

the F-distribution significance test to each coefficient in turn. We

start by assuming that a is always significant. We then calculate

the mean square deviation, 6, between the input curve f(x.) and the
l

curve defined by Eq. (2) using the coefficients known to be significant.

This calculation, when repeated using one additional coefficient to be

tested, yields 6 '. The quantity F* = (6 - 6 ') x (number of points in the

input curve )/5 ' is then compared with the value of F chosen from

10



Table V of Ref, 6. If F* > F then the additional coefficient is considered

significant and the procedure is repeated for the following coefficient. When

a non- significant coefficient is found, all subsequent coefficients are

then set equal to zero. This is done on the physical basis that fine

structure is not expected.

In treating the input curves we allowed for asymmetries by

following the approach of Freeman and Katz, and thus did not force

the transformed curves to be symmetric. This was done, in spite of

the fact that no large asymmetries were expected, in order to obtain

a check on the symmetry of the discharge. In this approach, the

symmetric part of f(x) is contained in the even function

f (x)= M+*) + f(-x)
(20)

g z

and the asymmetric part of f(x) is described by the even function

f (+ x) - f (-x)
(21)

u 2x

After the Abel inversion of these functions to obtain g (r) and g (r),

g

the radial distribution is constructed by using

g (+ r)= g (r) + rg (r) (22)
8

and

g(-r) = g (r)-rg (r). (23)
6

11



CONCLUSION

The use and advantages of orthogonal polynomial expansions in

solving the Abel integral transform have been briefly discussed and a

new solution in terms of Gegenbauer (a = 2) polynomials, which utilizes

2
a weighting function (1-x ) in the calculation of the expansion coefficients,

has been presented. In the presence of significant distortions near the

boundary of the luminous region, a condition which is particularly true

2
for projected profiles approximating f(x) = 1-x , or g(r) approximately

constant, the use of the Gegenbauer (a=2) polynomial expansion will

reduce the contribution of such distortions in the calculation of the

expansion coefficients, and in principle allow a more accurate solution

of the Abel inversion integral.
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APPENDIX I

We present here a proof of the statement that the "impact

parameter" of a light ray is unchanged by passage thru the wall

of a uniform glass tube. Referring to figure 1, we write the law of

sines for triangle ABC as sin = sin ( 1 80-0 )/( 1 + t ), or

(1 + t) sin 9
2

= sin . (A-l)

The initial and final impact parameters are given by the relations

p.= (l+f)sin9. , and p = s in 9 „

.

(A-Z)
*i 1 .

r
f 4

The angles involved are related by Snell' s law as follows:

sin 9 / sin 9 = sin 8 / sin 9 = r|. (A-3)

Here r| is the index of refraction of the glass tube relative to that of

air and the indices of refraction both inside and outside of the tube are

assumed identical. Combining these relations, we obtain

p = sin 9 -. - sin (sin 9 /sin 9 ) = sin 9 (1 + t) = p.. Thus the impact

parameter inside the tube is identical with that of the incident ray. This

result is simply another expression of the conservation of angular

momentum. There is consequently no distortion due to refraction for

the case of a cylindrically symmetric light source, coaxial with a

cylindrical glass tube of uniform thickness.

14



INCIDENT
LIGHT RAY

Figure 1. Displacement of an incident beam of light in passing
through an optically perfect glass tube. The "impact
parameter" is not changed.
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APPENDIX II

PROGRAM ABELTAPE
DIMENSION HFD( 5 ) X ( 500 ) Y( 500 ) ,RP ( 100 ) ,RM( 100 ) »XP ( 250 ) »YP ( 250 ) ,

1YM(?50) »XF(501) »FX(501) •URK501 ) »UR2(501

)

*YKN(25l ) »AN(?0) »BN(20)

»

2ANN(20) »BNN(20) ,RA ( 20

)

»RB ( 20

)

»RX ( 5 01 ) » CS ( 501 ) »BS ( 501 ) »GP ( 100)

»

3GMQ00) » KIND (3,2 )>GR(201) »XJP(251) »XJM(251) »XX(251 ) ,HEE(10)
TYPE INTEGER DATE
COMMON NPOINT
DATA( IRUNO = 0) »( ISETO=0)
DATA (ESP I = 5. 092958)* ( FSP= 1. 273 2 395 ) »( (KIND(ltl) »I=1»2)=8H TCHEB,
15HICHEF) , ( (KIND(2»I ) ,I=1»2)=8H LEGE.4HNDRE) »((KIND(3»I)»I=1»2)=
?8H GEGE.5HNBAUR)

112 FORMAT(*0SET=*,I2»5X,*RUN=*»I2»* NOT FOUND ON INPUT TAPE*)
READ(60,505)HEE

505 FORMATM0A8)
C

C GENERATE RHO ARRAY
C

RZ = 0.
RP<1)=.01
RM(1)=-.01
DO 106 I=2»100
RP( I )=RP( I-D + .01

106 RM( I )=-RP( I )

DATE=IDATE(XDUMMY)
C

C GENERATE GR ARRAY
C

DO 500 i=i,ioo
IM=101-I
IP=101+I
GR( I )=RM( IM)

500 GR( IP)=RP( I )

GR( 101 )=0.
C

C READ INPUT PARAME TERS,DATA » AND HEADING.
C

99 READ (60,1 11 ) I SET , I RUN ,NN NX »HED I NFLAG
111 F0RMATUI5 ,5A8,I1)

IF(EOF, 60)98, 501
501 IF( INFLAG.EQ.O) GO TO 503

READ(60,153) ( X ( I ) Y( I ) , 1=1 ,NX

)

153 FORMAT(8(F5.0»F5.1 ) )

GO TO 9999
5 03 READ (60,151) ( X ( I ) » 1 = 1 »NX ) * ( Y(I ) 1= 1 »NX

)

151 FORMAT(8E10.3)
999 9 READ(60,152)NPOINT,NP,FVALUE,THICK»IPPP
152 FORMAT(2I5»2F10.5» II )

C
C GENERATE ARRAYS FOR YM AND YP THE CORRESPONDING Y

C VALUES FOR -X AND +X RESPECTIVELY AND ASSUME THE
C VALUES AT THE END POINTS ARE AVERAGFS OF THE MEASURED Y.

C NH=NX/2 FOR EVEN NX.
C NH=(NX-l)/2 FOR ODD NX.
C NT IS THE TOTAL NO. OF POINTS.

16



12

14

13

15

16

FIRST FIND THE AVERAGE DELTA X#

6 DXA=2./FL0ATF(NX-1 )

FIND N= NX MODULO 2.

N=XMODF(NX*2)
IF(N.EQ.O) 12»13

N=0 IMPLIES NX IS EVFN.

NH=NX/2
DXH=DXA/2.
NHPO=NH+l
DO 14 I=1»NH
NHP=NH+I
YP( I )=Y(NHP)
XP( I )=DXA*FLOATF( 1-1 )+DXH
NHM=NHPO-I
YM( I )=Y(NHM)
YZ=.5*( Y(NH)+Y(NHPO)

)

GO TO 16

N NOT IMPLIES NX IS ODD,

NH=(NX-1 )/2
NHPO=NH+l
DO 15 1=1 »NH
NHP=NHPO+I
YP ( I) =Y(NHP)
NHM=NHPO-I
XP( I )=DXA*FLOATF( I )

YM( I )=Y(NHM)
YZ=Y(NHPO)
DXH=DXA
XP(NH)=1.
YA=.5*( YP( NH)+YM(NH) )

YP(NH)=YA
YM(NH)=YA

APPLY BACKGROUND NOISE CORRECTION TO THE DATA,

C = 0.
C=YA/SQRT(TPS-1.)

17

TP=THICK+1.
TPS=TP*TP
IF (THICK. EQ.ru )

IF(THICK.NE.O.

)

YZ=YZ-C*THICK
DO 17 I=1,MH
XSQ=XP( I )*XP( I

)

DXP=SQRTF( TPS-XSQ)-SQRTF( l.-XSQ)
CD=C*DXP
YP( I ) =YP( I )-CD
YM( I )=YM( I )-CD

17



19
21
22
18

20

23

TRANSFORM THE FUNCTION SO THAT IT IS ZERO AT THE
BOUNDARY AND IT IS NORMALIZED.

YZ=YZ-YA
YMAXIN=YZ
DO 18 1 = 1 ,NH
YP( I )=YP( I )-YA
YVK I )=YM( I )-YA
IF(YP(I).GT,YMAXIN)19,21
YMAXIN=YP( I

)

IF(YM( I ) .GT. YMAXIN )22»18
YMAXIN=YM( I

)

CONTINUE
YZ=YZ/YMAXIN
DO 20 I=1»NH
YP( I )=YP( I ) /YMAXIN
YM( I ) =YM( I

)

/YMAXIN

24

SET UP XF AND FX ARRAYS USED RY
SIGNIFICANT COFFFICIENT TEST.

HE

NHPO=NH+l
NT=NH+NHPO
DO 23 I=1»NH
NHM=NHPO-I
FX(

I

)=YM(NHM)
XF( I )=-XP(NHM)
NHP=NHPO+I
FX (NHP)=YP ( I )

XE(NHP)=XP( I )

FX(NHPO) =YZ
XF(NHPO)=0.

CALCULATE SYMMETRIC AND ASYMMETRIC PORTIONS OF FUNCTION.

NHPO=NH+l
XJP( 1)=YZ
XJM( 1)=0.
DO 24 I=2»NHPO
XJP( I )=.5*(YP( I~1)+YM( 1-1 )

)

XJM( I ) = (YP( I.-1)-YM'(I-1 ) >/(2.*XP( I'-l) )

WRITE OUT FIRST PAGE OF OUTPUT.

WRITE(61»121)HEE»HED»DATE»ISET» I RUN ,NN ,NX * FVALUE , THI CK » NP ,

K

IND ( NPC

1INT»1) •KIND(NPOINT»2)
121 FORMAT( 1H1 1 0A8 » 5A 8 » 3X A8 //6H SET = I 3 ,4X * 4HRUN= I 3 »V+)

l»*TOTAL NO POINTS = *» I4»4X ,*NO POINTS USED=* * I 4 4X • 8HF VALUE = F6.2 ';

2X,6HTHICK=F8.3,4X,3HFORI3»lX,2A8,6H TERMS//)
WRITE (61 ,122 )

122 EORMAT(* THE LIS T ING OF THF IN^UT DATA FOLLOWS*//)
WRITF (61 ,123)

123 FORMAT( 5 ( 1 OX 1 HX »8X , 1HY 2 X ) )

18



WRITE(61 tl
124 F0RMAT(5(F

WRITE(61,1
1INT,1 ) »KIN
WRITE (61 »1

125 FORMAT(» T

WRITE (61 ».l

WRITE (61 ,

1

GENERATION
DXH=DXH/2.
XX(1 )=n.
DO 91 I=2»

91 XX( I )=XP( I

GO TO (100

100 DO 101 1=1
UR2( I )=1.
URK I )=XX(
IF( I.FQ.ll

19 8 AN(1)=XJP(
BN( 1 ) = XJM(
GO TO 101

199 AN(

1

)=AN(1
BN(1 )=BN (1

101 CONTINUE
AN( 1 ) =AN (1

BN( 1 ) =BN ( 1

DO 102 J=2
DO 103 1=1
TX=XX( I > + X

UR2( I )=TX*
UR1 ( I )=TX*
IF( I.EQ.l)

104 URR=UR2( I

)

AN( J)=XJP(
BN( J)=XJM(
GO TO 103

105 URR=UR2( I

)

AN( J)=AN( J
BN( J)=BN( J

103 CONTINUE
AN( J)=AN (J

BN ( J) =BN (J
102 CONTINUE

GO TO n

200 DO 201 1=1
UR2( I ) = 1.
YKN( I)=2.*
UR1 ( I )=YKN
IF( I.EQ.l)

298 URR=DXH*XX
AN( 1 )=XJP(
BN( 1 )=XJM(

24) (X( I ) »Y( I ) ,1=1, NN)
13.4,F9.4) )

21)HEE,HFD,DATE,ISFT, I RUN ,NN ,NX , FVALUE , THI CK ,NP ,

K

IND ( NPO
D(NPOINT,2)
25)
HE LISTING OF THF NORMALIZED INPUT DATA FOLLOWS*//)
23)
24) (XF( I ) ,FX( I ) 1 = 1, NT)
OF THE COEFFICIENTS FOR THE DESIRED POLYNOMIAL

NHPO
-1)
,200,300) ,NPOINT

NPOINT=l,
,NHPO

TCHEBICHEF CASE

I )+XX( I

)

198,199
1 )*DXH
1 )*DXH

)+XJP( I )*DXA
)+XJM( I )*DXA

)*FSP
)*FSP
,NP
,NHPO
X( I )

UR1 ( I )-UR2( I

)

UR2( I )-URl ( I

)

1 04,105
*DXH
I )*URR
I )*URR

*DXA
)+XJP( I )*URR
)+XJM( I )*URR

)*FSP
)*FSP

,NHPO

XX( I )*XX( I )-l.
( I )

298,299
( 1)

1 )*URR
1)*URR

NPOINT=2, LEGFMDRF CASE

19



299

201

234

235

231

244

245

249
204

205

203

255
254

20?

30n

398

399

301

GO TO
URR = D
AN(1 )

BN( 1)

CONTI
AN( 1 )

BN( 1 )

DO 20
IF(J.
XN = J-
GO TO
XN = J-
XN1 = J

XN2 = X

DO 20
IF( J.
UR = UR
GO TO
UR=(X
UR2( I

URK I

IF( I.

URR=U
AN (J)
BN( J)
GO TO
URR=U
AN(J)
BN( J)

CONTI
IF( J.

XN2 = X

TX = XN
AN( J)

RN( J)
CONTI
GO TO

DO 30
YKN( I

UR2 ( I

UR1 ( I

IF( I.

URR = Y

AN( 1 )

BN(1)
GO TO
URR = Y
AN(1)
BN( 1 )

CONTI
TX = ES
AN ( 1 )

BN( 1 )

201
XA*XX
= AN (1

= BN (1

NUE
= 2.*A
= 2.*B
2 J = 2

EQ.2)
1

231
2

-1

N +XN+
3 1 = 1

EQ.2)
KI)
249

N2*YK
)=UR1
)=UR
FQ.] )

R*DXH
= XJP(
= XJM(
203

R*DXA
= AN (J
= BN (J

NUE
E0.2)
N2 + 2.
2*2.
= AN( J
= BN (J

NUE
n

i i = i

) = i.-
) = i.
)=4.*
EQ.l )

KN( 1)

= XJP(
= XJM(
301

KN( I )

= AN(]
= BN (1

NUE
PI/3.
= AN (1

= BN( 1

( I )

)+XJP{ I )*URR
)+XJM( I )*URR

N( 1 )

N( 1)

,NP
234,235

1.

NHPO
244*245

N( I )*UR1 ( I )

(I )

204,205
*XX( I )

I )*URR
I )*URR

*XX( I )

)+XJP( I ) *URR
)+XJM( I )*URR

254,255

)*TX
)*TX

,NHPO
XX( I )*XX( I )

XX( I )

398,39^
*DXH
1 )*URR
1 )*URR

*DXA
)+XJP( I ) *URR
)+X JM( I )*URR

•XN*UR2 ( I ) )/XNl

NPOINT=3, GEGENBAUR CASE

)*TX
)*TX

20



304

305

303

302

11

31

33
34

32
36
35

38

41

39
4?

51

52

XN = 0.

DO 30
XN = XN
XN1=X
XN2 = X

XN3 = X

XN4 = X

TXRAT
DO 30
UR2( I

UR1 ( I

UR=UR
IF( I.

URR=U
AN( J)
BN( J)

GO TO
URR=U
AN( J)

BN(J)
CONTI
TX = ES
AN( J)

BN( J)

CONTI

2 J

+ 1.

N + l

N1 +
N2 +
N3 +
= XN
3 I

) = (

) = (

2( I

EQ.
R*D
= XJ
= XJ
30

R*D
= AN
= BN
NUE
PI/
= AN
= BN
NUE

•?»NP

1.
1.

1 .

2*
= 1

2.

2.
)*

1)

XH
P(

M(

3

XA
(J

(J

XN4
NHPO

*XN2* XX ( I )*UR1 ( I )-XN3*UR2 ( I ) ) /XN1
*XN3* XX ( I )*UR2( I )-XN4*URK I ) )/XN2
YKN( I )

304,305

I )*URR
I )*URR

)+XJP( I )*URR
)+XJM( I ) *URR

TXRAT
( J)*TX
( J)*TX

TEST FOR SIGNIFICANT COEFFICIENTS.

DO 31 I=1»NP
ANN( I )=AN( I

)

BNN( I )=BN( I

)

RA( I )=0.
RB( I )=0.
RA(1)=FVALUE+1.
GO TO (32»33»32) *NPOINT
DO 34 K=l »NT
RX(K)=1.
GO TO 35
DO 36 K=1>NT
RX(K)=SORTF( l.-XF(K )*XF(K )

)

DO 37 1=1, NP
IF( I.EQ.l) 38,39
DO 41 J=l ,NT
UR1 ( J)=l.
UR2 ( J)=l.
BS( J)=AN (1

)

GO TO 26
IF( I.EQ.2) 43,44
DO 45 J=1 ,NT
GO TO ( 51 ,52,5?) ,NPOINT
UR2(J)=4.*XF(J)*XF{J)-1.
UR1

(

J)=XF( J)+XF( J)

GO TO 54
Z=2.*XF( J)*XF( J)-l.
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53

54
45

44

61

62

63

64
47
46

48

26

68

37

65

66

UR2( J)=Z
GO TO 54
UR2( J)=12*
UR1 ( J)=4.*
CS( J)=8M J

BS( J)=BS(

J

GO TO 46
DO 47 J=l,
GO TO (61»
TXX=XF( J)+
URK J)=TXX
UR2(J)=TXX
GO TO 64
XM2 = I

XMN=I-1
XM1=XM2+XM
Z=2.*XF( J)

TXX=(Z*UR2
URK J)=UR2
UR2( J)=TXX
GO TO 64
XM2=I+I-3
XM3=XM2+1.
XM4=XM3+1

.

XM5=XM4+1

•

URK J) = (2.
UR2( J)=(2.
CS( J)=BS(

J

BS( J)=BS(

J

AS = 0.
DS = 0.

DO 48 K=l»
ASR=FX(K)-
DSR=FX(K)-
AS=AS+ASR*
DS=DS+DSR*
RA( I )=ABSF
AS = 0.

Ds = n.
DO 68 K=l
CS(K)=BS(K
BS(K)=BS(K
ASR=FX(K)-
DSR=FX(K)-
AS=AS+ASR*
DS=DS+DSR*
RB(

I

)=ARSF
CONTINUE
IPP = 1

DO 42 1=1

»

IF(RA( I ) .L
DO 66 J=I,
ANN( J)=n.
BNN( J)=n.

XF( J)*XF( J)-2.
XF( J)

)

)+AN( I )*UR2( J)*RX (J)

NT
62»63) »N<=OINT
XF( J)

*UR2(J)-UR1( J)
*UR1 ( J)-UR2( J)

N

*XF( J)-l.
( J)*XM1-XMN*UR1 ( J) ) /XM2
(J)

*XM3*XF( J)*UR2( J)-XM4*UR1 (J) )/XM2
*XM4*X^( J)*UR1 ( J)-XM5*UR2( J) ) /XM3
)

)+AN( I )*UR2( J)*RX ( J)

NT
CS(K)
BS(K)
ASR
DSR
( 100.*(AS-DS)/DS)

NT
)

)+BN(

I

)*UR2(K)*XF(K)*RX( K)

CS(K)
BS(K)
ASR
D.SR

(10n.*(AS-DS) /DS)

NP
E.FVALUE )65*69
NP
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GO TO 85
69 GO TO (84,42) » I PP
84 IF(RB(I ).LE.FVALUE)71,42
71 DO 72 J=I,NP
72 BNN(J)=0.

IPP = 2

42 CONTINUF
85 IPP=1

C

C GENERATE F(RHO) VERSUS RHO.
C

67 CALL FGRHO(RZ,ANN,l,GZ,NP )

DO 73 1=1,100
CALL FGRHO(RP( I ) » ANN * 1 ,GP ( I ) »NP )

CALL FGRHO(RM( I ) » PNN ,

2

»GM ( I ) » NP

)

73 CONTINUF
C

C WRITE OUT SFCOND PAGF OF OUTPUT.
C

WRITE(61»121)HEE»HFD,DATE,ISFT, I RUN »NN »NX ,FVALUE, THICK »NP ,K IND ( NPO
1INT,1

)

»KIND(NP0INT,2 )

WRITE(61,126)
126 F0RMAT(8X»*SIG COF FF* ,21 X ,*ALL COEFF* , 24X ,*RAT I0S*/4X ,*A ( I ) * ,9X ,*B

1( I )*,13X,*A( I )*»9X»*B( I)*»13X»*RA( I )*»10X,*RB( I )*/'/)

WRITE (61, 127) (ANN( I ) ,RNN( I ) , AN ( I ) , BN ( I ) , RA ( I ) , RR ( I ) I , I = 1 ,NP

)

127 F0RMAT(F10.6,F13.6,F17.6,F13.6,E19.4 ,E15 »4, 6X » I 2

)

C

C NORMALIZE F(RHO) AND SFT TO ZERO IF IT IS NEGATIVE.
C

81 DO 74 1=1,100
IM=101-I
IP=101+I
FX( I)=GP( IM)-GM( IM)

74 FX( IP)=GP( I )+GM( I

)

FXdOl )=GZ
FMXOUT=FX( 1

)

DO 75 1=2,201
IF(FX( I ) .GT.FMXOUT) 76,75

76 FMXOUT=FX( I

)

75 CONTINUE
83 DO 77 1=1 ,20]

FX( I )=FX( I ) /FMXOUT
IF(FX( I ) .LT.0.)78,77

78 FX( I)=0.
77 CONTINUE

C

C WRITE OUT THIRD PAGE OF OUTPUT.
C

WRITE(61,121 )HEE,HED,DATE,lSET,IRUN,NN,NX,FVALUE,THICK,NP,KIND(NPO
1INT,1 ) ,KIND(NPOINT,2 )

WRITE(61,128)
128 FORMAT(5(9X,3HRHO,4X,6HF(RHO) ) //)

WRITE (61, 124) (GR(I ) ,FX( I) ,1=1,201)
WRITE (61 , 1 29 )YMAX IN, FMXOUT
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129 FORMAT(*OTHE NORMALIZATION FACTORS ARE*//* INPUT/* ,E 1 1 .4 » 10X »*OUTP
1UT/*»E11.4)
IF( IPPP.EQ.l ) 9999,99

98 WRITE(61»131 )

131 FORMAT(* END OF THIS RUN*)
WRITE(61 ,506)HEE,DATE

506 FORMATdHl 1 0A8 20X , A8

)

CALL EXIT
END
SUBROUTINE FGRHO ( X AN

J

»FOX »NP )

DIMENSION AN(20)
COMMON NPOINT
DATA(TP=6. 2831853)
Y=2.*X*X-1.
XX = 3.
GO TO ( 11»12*13) »NPOINT

11 P2=l.
P1=Y
S=AN( 1)+3.*AN( 2)*Y
XN = 0.
DO 1 I=3»NP
XX=XX+2.
XN=XN+1.
PN=( (2.*XN+1. )*Y*P1-XN*P2 )/ (XN+1.

)

S=S+XX*AN( I)*PN
P2 = P1
P1 = PN

1 CONTINUE
GO TO (2*3 ) »J

2 FOX=.5*S
RFTURN

3 FOX=-.^*S*X
RETURN

12 XSQ=X*X
ZSQ=1.-XSQ
TZSQ=ZSQ+ZSO
Z=SQRTF(ZSQ)
P2 = l.
P1=3.-4.*XSQ
S=AN( 1)-AN( 2)*P1
S I = 1 .

DO 4 I=3»NP
PN=TZ9Q*P1-P2
P2=P1
P1 = PN
S=S+SI*AN( I)*PN

4 SI=-SI
DEN=1,5707963*Z
GO TO (5*6) »J

5 FOX=S/DEN
RETURN

6 FOX=-S*X/DEN
RETURN

13 P?=1.
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P1 = Y

T2=-l.
T1=1.-6,*X*X
S =AN( 1)+AN( 2)*(5.*T2-3.*T1 )

DO 8 I=3»NP
XN=I-1
XNN=XN-1.
XB=XN+XN+1.
XA=XB+2.
PN=( (XN+XNN)*Y*P1-XNN*P2) /XN
TN=T1+T1-XB*PN-T2

I )*(XA*T1-XB*TN)S=S+AN( I ) *(

T2 = T1
T1 = TN
P2 =P1
P1=PN
GO TO (7 .9) J

FOX= S"*X

RETURN
FOX = S

RETURN
END
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