NBS TECHNICAL NOTE

365

Survey of Electrical Resistivity Measurements on 16 Pure Metals In the Temperature Range O to 273°K

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

UNITED STATES DEPARTMENT OF COMMERCE C.R. Smith, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

SURVEY OF ELECTRICAL RESISTIVITY MEASUREMENTS ON 16 PURE METALS IN THE TEMPERATURE RANGE O TO 273°K

L. A. HALL

Cryogenics Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402 Price 60 cents.

CONTENTS

	Abstract
l.	INTRODUCTION
2.	GENERAL DISCUSSION OF RESISTIVITY 2
3.	PRESENTATION OF DATA
4.	HOW TO USE THE DATA
5.	ELECTRICAL RESISTIVITY DATA SHEETS
	aluminum(Data Memorandum No. M-9)
	beryllium .(Data Memorandum No. M-25)
	cobalt(Data Memorandum No. M-10)
	copper(Data Memorandum No. M-11)
	gold(Data Memorandum No. M-13) 41
	indium(Data Memorandum No. M-14) 47
	iron (Data Memorandum No. M-15)
	lead (Data Memorandum No. M-16)
	magnesium .(Data Memorandum No. M-17)
	molybdenum .(Data Memorandum No. M-18)
	nickel · · · (Data Memorandum No. M-19) · · · · · · · · · 79
	niobium •• (Data Memorandum No. M-20) •••••• 85
	platinum • •(Data Memorandum No. M-21) • • • • • • • • 89
	silver(Data Memorandum No. M-22)
	tantalum(Data Memorandum No. M-23) 103
	tin (Data Memorandum No. M-24) 107

SURVEY OF ELECTRICAL RESISTIVITY MEASUREMENTS ON 16 PURE METALS IN THE TEMPERATURE RANGE O TO 273°K *

L. A. Hall

Experimental electrical resistivity data for 16 pure metals have been compiled, tabulated, and graphically illustrated for a temperature range of 0 to 273 °K. A section has been prepared for each particular metal which includes references, brief comments concerned with preparation of sample, purity, and any other pertinent information, tabulated data, and graph.

Key words: electrical resistivity, compilation, low temperature, aluminum, beryllium, cobalt, copper, gold, indium, iron, lead, magnesium, molybdenum, nickel, niobium, platinum, silver, tantalum, tin.

1. INTRODUCTION

Many articles describing experimental measurements of electrical resistivity are found in the open literature. Many present results of straight-forward temperature-dependent resistivity measurements on wires or rods of high-purity metals. Some deal with the effects of irradiation, plastic deformation, magnetic fields, and alloying on resistivity, while others show the variation in resistivity due to unusual shape of the sample, e.g., whiskers or thin films. In the recent literature, superconductivity has also been studied extensively. Because the amount of literature in this field is so large, we have restricted this survey to the temperature-dependent resistivity measurements on very pure metals, with the exception of the pressure-dependent measurements by Bridgman.

All of the data from this one area of resistivity measurements have been organized into a relatively concise and useful form. For the experimentalist, we have tried to present a complete picture of what data are already available so that he may plan his work in such a manner as to fill in "gaps" in existing data or to check or "reinforce" existing measurements. For the engineer, we have presented a method of predicting the electrical

^{*} This study was supported in part by the National Aeronautics and Space Administration, Office of Advanced Research and Technology, Contract R-06-006-046.

behavior of a metallic specimen of known purity. When the purity is not known, the resistivity of the metal may be predicted by measuring its residual resistivity, which can be measured at 4.2°K, and applying Matthiessen's rule, as will be explained below. With these objectives in mind, we have reviewed carefully all of the pertinent articles and noted in a "comments" section the purity of the metals studied, their residual resistivity value, any mechanical treatment of the sample and its final form during measurements, and any other facts which might help explain the character of the experimental data.

An earlier compilation^{*} presented experimental resistivity data for 53 metallic elements. From the time of that publication to the present, the Compilation Unit of the Cryogenic Data Center has been actively acquiring electrical resistivity articles. These articles were entered into our Storage and Retrieval System together with all the other cryogenically oriented documents that have come to our attention by a systematic scanning of the primary journals, and secondary publications such as Chemical Abstracts, Physics Abstracts, NASA STAR, Nuclear Science Abstracts, DDC TAB, and International Aerospace Abstracts. A computer search of this Storage and Retrieval System was the basis for this compilation. All pertinent articles from the references listed in this search were obtained and reviewed.

2. GENERAL DISCUSSION OF RESISTIVITY**

The measured resistivity ρ_T is a function of temperature, but on approaching absolute zero it approaches a constant residual resistivity ρ_0 . The quantity ρ_0 arises from the presence of impurities, defects, and strains in the metal lattice. However, in pure annealed metals it is only a small fraction of the total resistivity at room temperature. Subtraction of ρ_0 from the measured resistivity gives a value of the resistivity appropriate for a perfectly pure, strain-free specimen. The temperature-

 [&]quot;A Compendium of the Properties of Materials at Low Temperatures (Phase II)", R. B. Stewart and V. J. Johnson, editors, Natl. Bur. Standards, Cryogenic Eng. Lab., WADD Tech. Rept. 60-56, Part IV (1961) DDC AD 272 769.

^{**} A more complete discussion of electrical resistivity can be found in <u>Electrical Resistance of Metals</u> by G. T. Meaden, Plenum Press, New York, 1965.

dependent resistivity thus obtained is called the <u>ideal</u> or <u>intrinsic</u> resistivity ρ_i . It is caused by the interaction of the conduction electrons with the thermally induced vibrations of the lattice ions, and, if present, with the magnetic structure of the lattice. The separation of the total resistivity ρ_T into temperature dependent (ρ_i) and temperature-independent (ρ_0) contributions in this way is known as Matthiessen's rule, which may be written

$$\rho = \rho_0 + \rho_1 \quad .$$

This rule is a good approximation for all engineering purposes.

The ideal resistivity due to lattice vibrations may be expressed by the Grüneisen-Bloch relation

$$\rho_{l} = \frac{C}{M\theta_{R}} \left(\frac{T}{\theta_{R}}\right)^{5} \int_{0}^{\theta_{R}/T} \frac{z^{5}dz}{(e^{z}-1)(1-e^{-z})}$$

where M is the atomic weight, C is a constant, and T is in ${}^{\circ}K$. θ_{R} is an empirical temperature characterizing the metal's lattice resistivity in the same way the Debye temperature θ_{D} characterizes a solid's lattice specific heat. It is often true that $\theta_{R} \approx \theta_{D}$, typically about 300°K for most metals. Below about 0.1 θ_{R} this relation reduces to $\rho_{1} \propto T^{5}$. It is found that a few of the metals follow the T^{5} relation closely. The exponent of T for most nonmagnetic metals generally lies between 4.5 and 5.

A metal with a cubic crystal structure has the same resistivity whether in polycrystalline or single crystal form, apart from a small extra contribution in a polycrystal that may sometimes be caused by grain boundaries since the cubic structure is isotropic. But in a single crystal of a noncubic metal, the resistivity is often very <u>anisotropic</u>, its value depending on the direction of the flow of current. Likewise, polycrystalline specimens of such metals, if preferentially oriented, as by rolling or drawing, for instance, will have direction-dependent resistive properties.

In anisotropic metals, the electrical resistivity parallel to the principle crystalline axis is designated ρ_{\parallel} and electrical resistivity perpendicular to the principle axis is designated ρ_{\perp} . When values for ρ_{\parallel} and ρ_{\perp} have been determined for single crystals, one may calculate a value of ρ for a polycrystalline sample using the equation of Voigt*

$$\overline{\rho} = \frac{3\rho_{\perp} - \rho_{\parallel}}{2\rho_{\parallel} + \rho_{\perp}}$$

Superconductivity is observed in at least 30 elements. At temperatures less than their "superconducting transition temperatures, these elements lose all resistance to electric current. Articles dealing with superconductivity were not reviewed here and only the transition temperatures are noted for each metal. The curves on our graphs should not be extrapolated below this transition temperature. Some data for lead, however, do appear in the superconducting region. These measurements were made in the presence of a magnetic field, large enough to surpress the superconductivity.

^{*} Voigt, W., Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928), p. 959.

3. PRESENTATION OF DATA

A separate section has been devoted to each metal. These sections have been prepared in the format of our regular preliminary compilations and have been numbered consecutively with other worksheets dealing with other properties of materials at cryogenic temperatures. With the collection in this format, the user may easily remove any memorandum on a particular metal that he is studying from the group. The sections contain the following:

- a) Sources of data references for the articles from which we have taken the data.
- b) Additional references other articles dealing with electrical resistivity of the metal which may be of interest to the reader.
- c) Comments a concise discussion of any factors influencing the character of the experimenter's resistivity data, such as purity, heat treatment, shape of sample, crystal structure, etc.
- d) Tables tabulated experimental data. When the experimenters presented their results graphically, an attempt was made to read values from the graphs and put them into tabular form.
- e) Graph the data have been plotted as ratios $\rho_{\rm T}/\rho_{273}$, that is, the resistivity at a given temperature divided by the resistivity at 273.15°K. Many of the investigators have not given their ρ_{273} value, and in these instances we have used a value which we believed to be the most accurate value of ρ_{273} in calculating $\rho_{\rm T}/\rho_{273}$. Table 1 shows ρ_{273} values given by the investigators and the value chosen as the most accurate. The data are plotted on logarithmic coordinates which tend to emphasize the differences in the values reported by the several experimenters at the lower temperatures.

In Table 1 on pages 8 - 11, all experimental values of ρ_{273} have been tabulated for the 16 metals. The "selected" value is in most instances the lowest available value of ρ_{273} for that particular metal.

4. HOW TO USE THE DATA

As has been stated before, this is an attempt to gather all experimental data from temperature-dependent electrical resistivity measurements into a relatively concise form. The graph presents at a glance the amount of work done on a particular metal; however, for some of the more popular metals not all the tabular data are plotted because their curves would be superimposed on others. The annotated bibliography gives an insight into the character of the data.

An engineer, wishing to predict the resistivity of a particular metal, could:

- 1. review the comments section to find out if measurements have been made on a sample similar to his. If he succeeds in finding such measurements he can then refer to the tabular data and expect his metal to perform similarly.
- 2. apply Matthiessen's rule, $\rho_{\rm T} = \rho_0 + \rho_1$. The residual resistivity, ρ_0 , could be found by measuring the resistivity at 4.2°K of the particular metal being used. The ideal resistivity, ρ_1 , would be estimated from the graph by drawing a straight line downward from the portion of the lowest curve where $\rho \propto T^5$ (shown in figure 1).

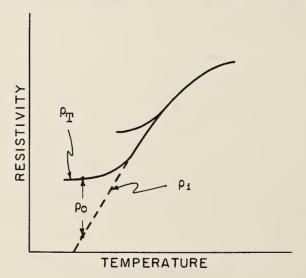


Figure 1. Relationship between ideal resistivity, ρ_i , residual resistivity, ρ_0 , and measured resistivity at a given temperature, ρ_m .

It is also possible to estimate the purity of a metal by measuring its residual resistivity at 4.2°K, finding its position on the graph, and referring to the comments section to find statements of purity for curves in the same region of the graph. Table 1 starts on the following page.

	a p ₂₇₃ value	reported resistivity only	De Sorbo(1958) Povell et al. (1960) Ottensmeyer et al.(1964)				Radhakrishna % Nielsen(1965)	Berman & MacDonald(1952)
3°K.	articles which did not report a	reported R/R ₂₇₃	Holborn(1919) Justi & Scheffers(1938) Thomas & Mendoza(1952) Caron(1953) Maimoni(1963)			Mac Donald & Mendelssohn (1950)	Schimank(1914) Semenenko et al.(1963)	Holborn(1919) Henning(1921) Meissner & Voigt(1930) de Haas et al.(1934) Sekula(1959) Gniewek & Clark(1965)
Experimental Resistivity Values at 273°K.	other values of resistivity at 273°K	p x 10 ⁶ ohm cm	2.50 Grüneisen & Goens(1927) 2.6 Meissner & Voigt(1930) 2.53 Aleksandrov & D'Yakov(1962) 2.46 Pawlek & Rogalla(1966)		3.58 Grüneisen & Adenstedt (1938)	17.0 McLennan & Niven (1927) 5.88 Levis (1929) 7.9 Meissner & Voigt (1930) 3.5 Denton(1947) 4.6 Mnite & Woods(1955)	5.94 Meissner & Voigt(1930) 5.57 Bridgman (1940)	1.55 Meissner(1915) 1.59 Broom(1952) 1.55 White & Woods(1959) 1.58 Domenicali & Christenson(1961) 1.58 Pawlek & Rogalla(1966) 1.546 Moore et al. (1967)
Experi	ions‡ «K	Gerritsen(1956) mo mío ⁸ 01 x q	2.50	3.12	3.58	2.78	5.2	1.55
Table 1.	compilations‡ e at 273°K	na mio ⁹ 01 x q b x 10 ⁶ ohm cm	2.50	3.12	3.58	3.25	5.2	1.55
	other co value	b ¹ х ТО ^е орш сш Мевдел(ТЭСЕ)	2.50	3.12	3.58	2.71	5.15	1.55
	our "selected" value at 273°K	тэ тио ⁹ 01 х q	2.44 Broom(1952)	3.12 Grüneisen & Erfling(1940)	3.56 Erfling & Grüneisen(1942)	2.7 Powell(1953) extrapolated value 2.74 Reich et al. (1963)	5.24 White & Woods (1959)	1.545 Powell et al. (1959)
	metal		munimulA	^T d u	"d mŢŢŢ	bo1% Bery	JL¤do⊃	Copper

		Protopopescu et al.(1962)			Kondorsky et al. (1958)	
	Onnes & Clay(1907) Cath, Onnes & Burgers(1918) Holborn(1919) Meissner(1925) Meissner & Voigt(1930) de Haas & Van den Berg(1936) Van der Leeden(1940) Justi(1940) Van den Berg & Franklin (1958)	Tuyn & Onnes(1923,1924) Meissner & Voigt(1930) Swenson(1955) Aleksantrov(1962) Orlova et al.(1963)			Holborn(1919) Semenenko & Sudovtsov(1962) Semenenko et al.(1962)	Onnes & Clay(1907) Holborn(1919) Onnes & Tuyn(1926) Meissner & Franz(1930) Meissner & Voigt(1930) Meissner(1932) Van der Leeden(1940) Van den Berg(1948)
	2.06 Meissner(1915) 2.09 Domenicali & Christenson(1961)	<pre>8.19 Meissner et al.(1932) 8.17 Olsen(1958) interpo- 1 ated value 8.37 Aleksandrov & D'Yakov(1962) 8.21 Kaznoff et al.(1967)</pre>			<pre>8.71 9.11 9.95 9.95 9.11 Meissner & Voigt(1930) 9.57 Kannuluik(1931) 9.06 Broom(1952) 9.28 Kemp et al.(1956) 9.27 Kemp et al.(1956) 1nterpolated value 8.80 White & Woods(1959) 8.94 Soffer et al.(1965) interpolated value</pre>	19.26 Meissner(1915) 19.3 Grüneisen(1945) 19.9 Buckel & Hilsch(1954)
	2.04	8.2			8.71	19.3
-	2.04	8.2			8.7	19.3
	2.01	8.0	6.7	8.3	8.7	19.3
	2.02 White & Woods (1959)	8.00 Powell et al. (1962)			8.7 Backlund(1961)	19.2 Aleksandrov & D'Yakov(1962)
	Gold	muif vioq ^q	"d uI	ď	norī	Геяд

	t a p ₂₇₃ value	reported resistivity only		3	Rosenberg(1954) Spohr & Webber (1957) Hein & Falge (1957)		Kondorsky et al. (1958) Greig & Harrison(1965)	
't).	articles which did not report a P273 value	reported R/Rara	Goens & Schmid(1936)	Goens & Schmid(1936)	Dewar & Fleming(1893) Yntema(1953)	Holborn(1919) McLennan et al.(1929)	Dewar & Fleming(1900, 1904) Sudovtsov & Semenenko(1957)	Meissner et al.(1933)
Experimental Resistivity Values at 273°K (con't).	other values of resistivity at 273°K	шэ шцо ₉ 07 х d			5.0 Meissner & Voigt(1930)	4.4 Blom(1919) 5.22 Meissner & Voigt(1930) 5.17 5.25 Kannuluik(1931) 5.29 Mite & Woods(1959)	7.07 Meissner & Voigt(1930) 7.37 Broom(1952) 6.2 Kemp et al.(1956) interpolated value	16.1 Reimann & Grant(1936) 13.96 White & Woods(1957)
1mental F	tions‡ 3°K	тэ то ⁹⁰¹ х д белл12еи(1956)	3.50	4.22	3.94	5.03	6.58	23.31
	other compilations [‡] value at 273°K	gruneisen(19μ5) Gruneisen(19μ5)	3.48	4.18	3.94	5.0	6.58	
Table 1	other c	b [;] x TO _e opu cu Wesgeu(1965)	3.47	4.17	3.94	4.84	6.20	13.5
	our "selected" value at 273°K	шэ шцо ₉ 0т х d	3.48 Grüneisen(1945)	4.18 Grüneisen(1945)	3.94 Gruneisen(1945)	5.00 Holmwood & Glang(1965)	6.23 White & Woods (1959)	13.96 White & Woods (1959)
	metal		¹¹ d ແກ		n3eM V I o q ^Q	MoLybdenum	ТэйэтИ	muidoiN

Powell et al. (1967)										
Cath et al.(1917) Holborn(1919) Onnes & Tuyn(1926) Van der Horst et al.(1929) Henning(1926) Meissner & Grassmann(1933) de Haas & de Boer(1933-1934) Hoge & Brickwedde(1939) Van der Leeden(1940)	Onnes & Clay(1908) Holborn(1919) de Haas & Van den Berg(1936) Van der Leeden(1940)	Holborn(1919) McLennan et al.(1929)	Onnes & Tuyn(1923) Meissner(1925) Van der Leeden(1940)					18 p.		
9.81 Meissner(1915) 9.53*Meissner & Voigt(1930) 9.81 White & Woods(1957)	1.48 Meissner & Voigt(1930) 1.51 Kannuluik(1931) 1.48 Gerritsen & Linde (1956) 1.50 Pawlek & Rogalla(1966)	15.2 Meissner & Voigt(1930) 12.4 Burgers & Basart(1934) 12.41 Cox (1943)	<pre>11.15 Jaeger & Diesselhorst (1900) 15.0 Kunzler & Renton(1957)</pre>	13.08 Bridgman(1933)	9.09 Bridgman(1933)	than the accepted value.		G. T. Meaden, Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.	5 (1945).	26 (1956).
9.81	1.50	12.4	10.1	13.08	60.6	e accepto		Metals,	L, 50-116	<u>9</u> , 137-2
9.81	1.50	12.4	1.01	13.13	9.05	than th		ance of	aturw. 2	hysik, 1
9.59	1.47	12.1	1.01	13.08	60.6	it lower		1 Resist	exakt. Na	ch der P
.9.60 White & Woods (1959)	1.48 White & Woods (1959)	12.3 White & Woods (1959)	10.05 Aleksandrov & D'Yakov(1963)	13.08 Aleksandrov & D'Yakov(1963)	9.01 Aleksandrov & D'Yakov(1963)	This value is quite a bit lower	at 303°K.	G. T. Meaden, Electrica.	E. Grüneisen, Ergebn. exakt. Naturw. 21, 50-116 (1945).	A. N. Gerritsen, Handbuch der Physik, 19, 137-226 (1956)
munttelT	Silver	mulstasT	ppoly	ntT II ⁹	Td	*	+	++		

5. ELECTRICAL RESISTIVITY DATA SHEETS

aluminum (Data	Memorandum No.	м-9).	•	•	•	•	•	•	•	•	•	•	•	13
beryllium . (Data	Memorandum No.	M-25)	•	•	•	•	•	•	•	•	•	•	•	21
cobalt (Data	Memorandum No	M-10)	•	•	•	•	•	•	•	•	•	•	•	29
copper (Data	Memorandum No	M-11)	•	•	•	•	•	•	•	•	•	•	•	33
gold (Data	Memorandum No.	M-13)	•	•	•	•	•	•	•	•	•	•	•	41
indium (Data	Memorandum No.	м-14)	•	•	•	•	•	•	•	•	•	•	•	47
iron (Data	Memorandum No.	M-15)	•	•	•	•	•	•	•	•	•	•	•	5 5
lead (Data	Memorandum No.	м-16)	•	•	•	•	•	•	•	•	•	•	•	63
magnesium . (Data	Memorandum No	M-17)	•	•	•	•	•	•	•	•	•	•	•	69
molybdenum . (Data	Memorandum No	м-18)	•	•	•	•	•	•	•	•	•	•	•	75
nickel (Data	Memorandum No.	M-19)	•	•	•	•	•	•	•	•	•	•	•	79
niobium (Data	Memorandum No	м-20)	•	•	•	•	•	•	•	•	•	•	•	85
platinum (Data	Memorandum No.	M-21)	•	•	•	•	•	•	•	•	•	•	•	89
silver (Data	Memorandum No	M-22)	•	•	•	•	•	•	•	•	•	•	•	97
tantalum (Data	Memorandum No	м-23)	•	•	•	•	•	•	•	•	•	•	•	103
tin (Data	Memorandum No.	M-24)	•	•	•	•	•	•	•	•	•	•	•	107

CRYOGENIC DATA MEMORANDUM

PROJECT NO. 3150123

FILE NO. M-9 (page 1 of 8)

ELECTRICAL RESISTIVITY OF ALUMINUM, AL (Atomic Number 13)

Sources of Data:

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co., Inc., 124-35 (1929).

Aleksandrov, B. N., "Size Effect in Electrical Resistivity of High-Purity Metals," Soviet Phys. JETP <u>16</u>, No. 2, 286-94 (1963), Transl. of Zh. Eksperim. i Teor. Fiz. <u>43</u>, 399-410 (1962).

Aleksandrov, B. N., and D'Yakov, I. G., "Variation of the Electrical Resistance of Pure Metals with Decrease of Temperature," Soviet Phys. JETP <u>16</u>, No. 3, 603-08 (1963), Transl. of Zh. Eksperim. i Teor. Fiz. 43, 852-9 (1962).

Bridgman, P. W., "The Resistance of 72 Elements, Alloys and Compounds to 100,000 kg/cm²," Proc. Am. Acad. Arts Sci. 81, No. 4, 165-251 (Mar 1952).

Broom, T., "The Effect of Temperature of Deformation on the Electrical Resistivity of Cold-worked Metals and Alloys," Proc. Phys. Soc. (London) <u>B65</u>, 871-81 (1952).

Caron, M. M., "Mesure de la conductibilite electrique a basse temperature de differents echantillons d'aluminum de haute purete," (Measurement of Electrical Conductivity at Low Temperatures of Different Samples of Aluminum of High Purity), Compt. Rend. 236, 1169-71 (Mar 1953).

De Sorbo, W., "Quenched Imperfections and the Electrical Resistivity of Aluminum at Low Temperatures," Phys. Rev. <u>111</u>, 810-12 (1958).

Maimoni, A., "Electrical Resistance of Aluminum at Low Temperature," Cryogenics 2, No.4, 217-22 (1962).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

Ottensmeyer, F. P., Bratsberg, H. G., Graham, G. M., and Hollis Hallet, A. C., "The Effect of Strain on the Residual Resistivity of Aluminum," Can. J. Phys. 42, No. 5, 1007-11 (May 1964).

Pawlek, F., and Rogalla, D., "The Electrical Resistivity of Silver, Copper, Aluminum, and Zinc as a Function of Purity in the Range 4 - 298°K," Cryogenics <u>6</u>, No. 1, 14-20 (1966) and Metall. <u>20</u>, No. 9, 949-56 (1966).

Powell, R. L., Hall, W. J., and Roder, H. M., "Low-Temperature Transport Properties of Commercial Metals and Alloys. II. Aluminums," J. Appl. Phys. 31, No. 3, 496-503 (1960).

Stevenson, R., "Resistance and Transverse Magnetoresistance of High Purity Aluminum," Can. J. Phys. 45, No. 12, 4115-9 (Dec 1967).

Other References:

Albert, P., "Influence de la cristallisation de l'aluminium sur la conductibilite electrique auz basses temperatures," (The Influence of the Recrystallization of Aluminum on the Electrical Conductivity at Low Temperatures), Bull. inst. intern. froid Annexe 1956-2, 41-49 (1956).

Alley, P., and Serin, B.; "Deviations from Matthiessen's Rule in Aluminum, Tin, and Copper Alloys," Phys. Rev. 116, No. 2, 334-38 (1959).

Boorse, H. A., and Niewodniczanski, H., "The Electrical Resistance of Aluminum at Low Temperatures," Proc. Roy. Soc. (London) AL53, 463-75 (1936).

Bridgman, P. W., "The Electric Resistance to 30,000 kg/cm² of Twenty Nine Metals and Intermetallic Compounds," Proc. Am. Acad. Arts Sci. 79, 149-79 (1951).

Bridgman, P. W., "Miscellaneous Measurements of the Effect of Pressure on Electrical Resistance," Proc. Am. Acad. Arts Sci. 82, No. 2, 83-100 (Apr 1953). (page 2 of 8)

Buckel, W., and Hilsch, R., "Influence of Condensation at Low Temperatures on the Electrical Resistance and Superconduction of Various Metals," Z. Physik 138, No. 2, 109-20 (1954).

Caron, M., "Mesures de la conductibilite electrique aux basses temperatures des aluminums de haute purete," (Measurements on the Electrical Conductivity at Low Temperatures of Very Pure Aluminums), Bull. inst. intern. froid Annexe 1956-2, 51-62 (1956).

Caron, M., Albert, P., and Chaudron, G., "Influence de tres faibles teneurs en impuretes sur la conductibilite electrique de l'aluminum raffine aux tres basses temperatures," (Effect of Very Small Amounts of Impurities on the Electrical Conductivity of Refined Aluminum at Very Low Temperatures), Compt. Rend. 238, 686-88 (1954).

Chaudron, G., Nature 174, 923 (1954).

Ch'iang, Yu. N., and Eremenko, V. V., "Singularities of the Temperature Dependence of Electric Conductivity of Aluminum at Helium Temperatures," JETP Letters 3, No. 11, 293-6 (1966).

Dimitrov, O., and Albert, P., "Etude de l'influence de tres faibles teneurs en impuretes sur l'evolution a basse temperature de la resistance electrique de l'aluminum ecroui," (Study of the Influence of Very Small Quantities of Impurities on the Variation at Low Temperatures of the Electrical Resistivity of Cold Worked Aluminum), Bull. inst. intern. froid Annexe 1958-1, 219-30 (Jun 1958).

Fenton, E. W., Rogers, J. S., and Woods, S. B., "Lorenz Numbers of Pure Aluminum, Silver and Gold at Low Temperatures," Can. J. Phys. <u>41</u>, 2026-33 (1963).

Frois, C., and Dimitrov, O., "Sur la restauration de la resistivite electrique, entre 60 et 200°K, de l'aluminum fortement ecroui dans l'hydrogene liquide," (The Restoration of Electrical Resistivity between 60 and 200°K, of Aluminum after Cold-working in Liquid Hydrogen), Compt. Rend. <u>258</u>, No. 2, 574-77 (Feb 1964).

Frois, C., and Dimitrov, O., "Etude de l'elimination entre 60 et 200°K des defaute crees dans l'aluminium par laminage a tres basse temperature," (Study of the Elimination between 60 and 200°K of the Defects Produced in Aluminum by Rolling at a Very Low Temperature), Mem. Sci. Rev. Met. <u>61e</u>, No. 11, 753-60 (Nov 1964), Transl. by Atomics International, Canoga Park, Calif., Transl. No. AI-TRANS-88 (Apr 1965) 16 pp, NASA N 66-17528.

Grüneisen, E., "Elektrische Leitfähigkeit der Metalle bei tiefen Temperaturen," (Electrical Conductivity of Metals at Low Temperatures), Ergebn. exakt. Naturw. <u>21</u>, 50-116 (1945).

Grüneisen, E., and Goens, E., "Untersuchungen an Metallkristallen. V. Elektrizitats- und Wärmeleitung von ein- und vielkristallinen Metallen des regularen Systems," (Investigations of Metal Crystals. V. Electrical and Thermal Conductivity of Single and Polycrystalline Metals of Regular Systems), Z. Physik 44, 615-42 (1927).

Hall, W. J., Powell, R. L., and Roder, H. M., "Thermal Conductivities of Common Commercial Aluminum Alloys," ADVANCES IN CRYOGENIC ENGINEERING, 3, 408-15 (Proceedings 1957 Cryogenic Engineering Conf.) Plenum Press Inc., New York (1960) Paper G-6.

Holborn, L., Z. Instrumentenk. 22, 114 (1902).

Holborn, L., Ann. Physik 59, 145 (1919).

Justi, E., and Scheffers, H., "Über die Widerständsanderung von Aluminiumeinkristallen in starken magnetischen Feldern bei tiefen Temperaturen," (About the Change in Resistance of Aluminum Crystals in Strong Magnetic Fields at Low Temperatures", Physik. Z. <u>39</u>, No. 3, 105-09 (Feb 1938).

Kovacs-Csetenyi, E., Vassel, C. R., and Kovacs, I., "The Effect of Impurity Content and Heat Treatment on the R_{273}/R_{76} Resistivity Ratio of Aluminum and Copper," Acta Phys. Acad. Sci. Hung. <u>21</u>, No. 2, 195-8 (1966).

Meissner, W., Physik. Z. 29, 897-904 (1928).

Meissner, W., and Voigt, B., "Messungen mit Hilfe von Flüssigem Helium XI. Widerstand der reinen Metalle in tiefen Temperaturen," (Measurements with the Help of Liquid Helium XI. Resistance of Pure Metals at Low Temperatures), Ann. Physik (5) 7, 761-97 (1930). Electrical Resistivity of Aluminum Cryogenic Data Memorandum No. M-9

Montariol, F., "Influence de traces de fer sur la resistance electrique de l'aluminium de haute purete a la temperature de l'hydrogen liquids," (Effect of Iron Traces on the Electrical Resistance of High Purity Aluminum at the Temperature of Liquid Hydrogen), Compt. Rend. <u>248</u>, No. 10, 1519-20 (Mar 1959).

Reich, R., "Etude des proprietes electriques et supraconductrices de metaux de differentes puretes," (Study of the Electrical and Superconducting Properties of Metals with Different Purities), Mem. Sci. Rev. Met. <u>6</u>2, No. 12, 869-920 (1965).

Simmons, R. O., and Balluffi, R. W., "Measurements of the High-Temperature Electrical Resistance of Aluminum: Resistivity of Lattice Vacancies," Phys. Rev. 117, No. 1, 62-68 (Jan 1960).

Taylor, C. S., Willey, L. A., Smith, D. W., and Edwards, J. D., Metals and Alloys 9, 189 (1938).

Thomas, J. G., and Mendoza, E., "The Electrical Resistance of Magnesium, Aluminum, Molybdenum, Cobalt, and Tungsten at Low Temperatures," Phil. Mag. <u>43</u>, 900-10 (Aug 1952).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data" and are listed as ratios of electrical resistivity with respect to a datum temperature of 273°K. When the actual values of ρ_{273} are not available for the samples used by the investigators, a datum value reported by Broom (1952) ($\rho_{273} = 2.44 \times 10^{-6}$ ohm cm) is suggested for calculating values of electrical resistivity from the ratios. These curves should not be extrapolated to lower temperatures since aluminum becomes superconducting at 1.175°K.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The values listed in the Landolt-Börnstein tables are those reported by Grüneisen and Goens; Holborn (1919); Justi and Scheffers; and Meissner and Voigt; and Thomas and Mendoza, while those values listed by the International Critical Tables are from Holborn (1902, 1919). These primary sources are listed above under "Other References". The original authors are used in labeling the curves on the graph.

The samples used by Holborn are reported in Landolt-Börnstein as polycrystalline with 0.4% impurities of unknown composition. The Holborn sample was annealed at 250°C. The value of ρ_{273} to be used with Holborn data in calculating values of electrical resistivity is $\rho_{273} = 2.53 \times 10^{-6}$ ohm cm. Grüneisen and Goens are reported to have used a polycrystalline sample with a small amount of impurities present. Their ρ_{273} value was 2.50 x 10⁻⁶ ohm cm. The sample used by Meissner and Voigt is reported as a polycrystalline sample with undetermined impurities, which had been annealed at 300°C for 2.5 hours.

A single crystal with a small amount of impurities present is reported as the sample used by Justi and Scheffers. The sample used by Thomas and Mendoza was a polycrystalline sample with 0.005% impurities of unknown composition which had been annealed at 300°C for two hours in vacuo. No other pertinent information was presented about any of the samples from the above experimenters.

Broom (1952) measured resistivities of wire samples at the annealing temperatures and the effect of deformation on the resistivity at the two higher temperatures, 0 and 100°C. His attempts to measure effects of deformation on resistivity at lower temperatures were unsuccessful because of repeated fractures of the wire between the surface of the refrigerant and the chuck. His aluminum was 99.9965% pure.

Bridgman (1952) studied pressure effects on electrical resistivity at room temperature. The results are reported as a ratio of the resistivity at the given pressure to the resistivity at one atmosphere here. His sample was annealed in vacuum to 400°C. The purity of the sample is not given.

The samples used by Caron (1953) were 99.99 and 99.998% pure. He reported his results as the ratio R_{290}/R . As Caron did not give a value of R_{290} , the value of $\rho_{293} = 2.75 \times 10^{-6}$ ohm cm and $\rho_{273} = 2.53 \times 10^{-6}$ ohm cm from Aleksandrov and D'Yakov (1963) were used in determining the ratio R/R_{273} .

The sample of very pure aluminum, annealed at 550 °C and then cooled at rates of 2 - 3 °C/min., was used by De Sorbo (1958) in his initial resistivity measurements. He then studied the effects of rapid quenching on the resistivity of the specimen.

The 3.66 mm diameter rod used by Powell et al. (1960) was initially 99.995% pure; however, the residual electrical resistivity was not as low as one would expect from a crystal of that purity. This single crystal rod was annealed in vacuum at about 400 °C for two hours.

In Maimoni (1962), data are tabulated for the resistance of eight specimens in the temperature range 2 to 26°K. Data for the specimen exhibiting the largest $R_{300}/R_{4.2}$ value (6,630) are given in the table below. This specimen had 1 mm square cross-section, and was machined from an ingot of 99.999% pure 'zone-refined' aluminum. It was annealed about 100 hours at 400°C, then stored for one week at room temperature before measurements were made. No value is given for the residual resistance. These values do not appear on the Electrical Resistivity of Aluminum graph.

A cylindrical single crystal sample of 99.999% purity was used by Aleksandrov and D'Yakov (1962) in their measurements in the temperature range 0 to 273°K. In the lower temperature range (<4.2°K) the error in a single measurement amounted to 6 - 7%. All samples were annealed 1.5 to 2 days in air at 300°C. The residual resistivity was $\rho_0 \simeq 10^{-10}$ ohm cm.

Measurements were made by Ottensmeyer, et al. (1964) on 99.995% pure rods before and after tensile strain. Their graph shows the effect of strain on the resistivity.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

The wire sample used by Pawlek and Rogalla (1966) was 99.999% pure aluminum which had been annealed at 400°C for one hour.

Stevenson (1967) studied the effects of strain and purity on resistance and magnetoresistance. He used aluminum wire of 59 and 69 purity which had received extensive deformation in the wire drawing process and further deformation when wound on mandrels of 1/2-inch diameter in making the samples for experiment. The mounted samples were annealed at 150°C for 4 hours. The data can be fitted to 35°K, with a maximum deviation of 6% by $\rho - \rho_0 = 7.5 \times 10^{-14} \text{ T}^3 + 7.6 \times 10^{-17} \text{ T}^5$ ohm cm. Below 20°K the 69 purity sample showed a T^{2.8} temperature variation, and the 59 sample a T^{3.1} variation. Between 20 and 35°K, they showed T^{4.1} and T^{4.4} variations respectively.

Tables of Values of Electrical Resistivity

 $\begin{array}{ll} \rho = {\rm resistivity, (ohm \, cm);} & \rho_{273} = {\rm resistivity \, at \, 273\,^{\circ}K, \, (ohm \, cm).} \\ {\rm R} = {\rm resistance, \, (ohm);} & {\rm R}_{273} = {\rm resistance \, at \, 273\,^{\circ}K, \, (ohm).} \end{array}$

	Holborn (1902, 1919)									
Temp. °C	100R/R273	Temp. °C	100R/R ₂₇₃	Temp. °C	100R/R ₂₇₃					
- 78.3* - 80 -100 -120	64.80* 64.1 55.2 46.4	-140 -160 -180 -191.9* -192.9*	37.7 28.9 20.2 14.85* 14.49*	-200 -220 -240 -253*	12.0 7.1 4.9 4.27*					
* Observed values. All other values have been interpolated.										

Electrical Resistivity of Aluminum Cryogenic Data Memorandum No. M-9

Justi and So	cheffers (1938)	Meissner and	Voigt (1930)	Thomas and Mendoza (1952			
Temp. °K	P/P273	Temp.* °K	R/R ₂₇₃	Temp. °K	R/R ₂₇₃		
14 20	0.0014 0.0018	1.32† 4.21 20.44 77.73 273.16†	0.0067 0.0065 0.0075 0.1008 1.0000	4	0.0026		
* The seco † p ₂₇₃ = 2	ond decimal place 2.60 x 10 ⁻⁶ ohm cm	of the temperature $\rho_{1.32} = 0.03$	ure values is so 174 x 10 ⁻⁶ ohm o	omewhat in doul cm.	ot.		

Broom (1952)								
Temp. °K	P/P273							
90 194.5 273 373	-183 - 78.5 0 100	0.352 1.55 2.44 3.59	0.144 0.635 1.00 1.47					

Caron (1953)								
[Using 1962) (Aleks	$\rho_{293} = 2.75 \times 10^{-6}$ ohm cm (Aleksandrov, and $\rho_{273} = 2.53 \times 10^{-6}$ ohm cm androv & D'Yakov, 1963)							

Temp.	Resistance Ratio							
°K	R ₂₉₀ /R	R/R290	R/R ₂₇₃					
	Pu	rity - 99.998%						
78 63 20.4 14.0	12.35 26.0 1050 1530	0.08097 0.0385 0.00095 0.00065	0.089 0.042 0.00105 0.00072					

73	90000 100000			.782 .770			
)89)42)0105)0072	Powel	, and Rode from graph	and Roder (1960) om graph)				
	Temp. °K		stivity ohm cm	p/P273			
	4 6 10 15 20	0.0 0.0 0.0	025 025 0255 026 0285	0.010 0.010 0.010 0.011 0.017			
	30 40 60 70 75	0.0	041 064 135 185 22	0.019 0.026 0.055 0.076 0.090			

De Sorbo (1958) (read from graph)					
$\begin{array}{c c} Temp. & \rho \times 10^9 & \rho/\rho_{273} \\ {}^{\circ}\!K & ohm \ cm \end{array}$					
2 4 14 16 18 20	2.94 2.95 3.5 3.77 4.06 4.4	0.0012 0.0012 0.0014 0.0015 0.0017 0.0017 0.0018			

(Room Ten	(Room Temperature)					
(Data compared with the resistance at one atmosphere taken as unity.)						
Pressure Resistance Ratio kg/cm ² R/R _o						
0 10000 20000 30000 40000 50000	1.000 0.959 0.923 0.892 0.865 0.843					
60000 70000 80000 90000	0.824 0.808 0.794 0.782 0.770					

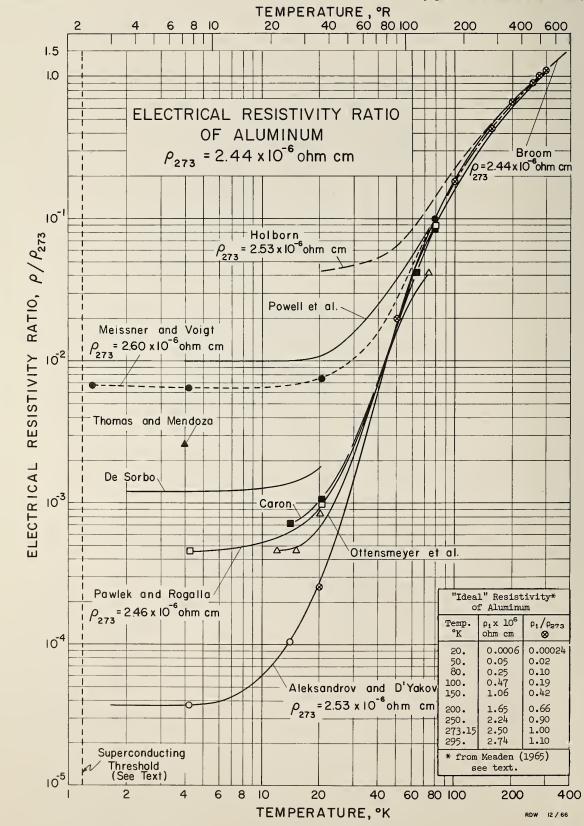
Bridgman (1952)

	Maimoni (1962)					
Temp. °K	$\frac{R - R^{0}}{R_{300} - R^{0}} *$	Temp. °K	$\frac{R - R^{\circ}}{R_{3 \circ \circ} - R^{\circ}} *$			
2 3 4 5 6 7 8 9 10	1.0×10^{-7} 8.0×10^{-7} 2.7×10^{-6} 6.0×10^{-6} 1.13×10^{-5} 1.70×10^{-5} 2.46×10^{-5} 3.32×10^{-5} 4.33×10^{-5}	11 12 13 14 15 16 17 18 19 20	$5.51 \times 10^{-5} 6.84 \times 10^{-5} 8.38 \times 10^{-5} 1.01 \times 10^{-4} 1.19 \times 10^{-4} 1.43 \times 10^{-4} 1.69 \times 10^{-4} 2.01 \times 10^{-4} 2.39 \times 10^{-4} 2.86 \times 10^{-4} $			
* R ⁰ = residual resistance. These values are not plotted on the Electrical Resistivity of Aluminum graph.						

	Aleksandrov and D'Yakov (1962)							
Temp. R/R [*] ₂₉₃ R/R [*] ₂₇₃ Temp. R/R [*] ₂₉₃ R/R [*] ₂₇₃								
1.65 3.4 3.7	3.4 x 10 ⁻⁵ 3.4 x 10 ⁻⁵ 3.4 x 10 ⁻⁵	3.7 x 10 ⁻⁵ 3.7 x 10 ⁻⁵ 3.7 x 10 ⁻⁵	58 63.5 77.4	0.032 0.043 0.086	0.035 0.047 0.093			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.140 0.246 1.0			
* ρ ₂₉₃ ρ ₂₇₃	$= 2.75 \times 10^{-6}$ $= 2.53 \times 10^{-6}$		* $\rho_{293} = 2.75 \times 10^{-6}$ ohm cm, from Aleksandrov (1962) $\rho_{273} = 2.53 \times 10^{-6}$ ohm cm.					

	Ottensmeyer, Bratsberg, Graham, and Hollis Hallet (1964) (read from graph - unstrained specimen)					
Temp. °K						
12	0.00151	0.151	1.15	0.00047		
15	0.00161	0.161	1.16	0.00048		
20	0.011	1.1	2.1	0.00086		
30	0.05	5	6	0.00246		
41	0.18	18	19	0.00779		
50	0.4	40	41	0.01680		
60	0.7	70	71	0.02910		
71	1.0	100	101	0.04139		

Electrical Resistivity of Aluminum Cryogenic Data Memorandum No. M-9


Pa	Pawlek and Rogalla (1966)				
Temp. Resistivity ρ/ρ_{273} °K $\rho \times 10^9$ ohm cm					
4.2 20.4 77 195 273	1.11 2.38 221 1440 2460	0.000451 0.000967 0.0898 0.586 1.000			

Stevenson (1967) (read from graph)					
Temp. °K	Resistivity* p x 10 ⁸ ohm cm 99.999% 99.999%				
4.2 5. 10. 15. 20. 25. 30. 34. 300.	5.74 5.8 6.1 6.7 7.7 10.1 14.5 2512.	2.27 2.3 2.4 2.7 3.2 4.2 6.2 9.3 2349.			
the El	* These values are not plotted on the Electrical Resistivity of Aluminum graph.				

(page 7 of 8)

(page 8 of 8)

Electrical Resistivity of Aluminum Cryogenic Data Memorandum No. M-9

CRYOGENIC DATA MEMORANDUM

PROJECT NO. 3150123

FILE NO. M-25

(page 1 of 7)

ELECTRICAL RESISTIVITY OF BERYLLIUM, Be (Atomic Number 4)

Sources of Data:

Denton, H. W., A.E.R.E. Rept. No. G/R 101 (Feb 20, 1947).

Erfling, H. D., and Grüneisen, E., "Weitere Untersuchungen an Berylliumkristalle im transversalen und longitudinalen Magnetfeld," (Further Investigations in Beryllium Single Crystals in Transverse and Longitudinal Magnetic Fields), Ann. Physik <u>41</u>, 89-99 (1942).

Grüneisen, E., and Adenstedt, H., "Einfluss transversaler Magnetfelder auf Elektrizitäts-und Wärmeleitung reiner Metalle bei tiefer Temperatur," (The effect of a transverse magnetic field on the electrical and thermal conduction of pure metals at low temperature), Ann. Physik <u>31</u>, 714-44 (1938).

Grüneisen, E., and Erfling, H. D., "Elektrischer und thermischer Widerstand von Berylliumkristallen in transversalen Magnetfeld," (Electrical and Thermal Resistivity of Beryllium Crystals in a Transverse Magnetic Field), Ann. Physik 38, 399-420 (1940).

Lewis, E. J., "Some Thermal and Electrical Properties of Beryllium," Phys. Rev. 34, 1575-87 (1929).

MacDonald, D. K. C., and Mendelssohn, K., "Resistivity of pure metals at low temperatures II. The alkaline earth metals," Proc. Roy. Soc (London) 202, 523-32 (1950).

McLennan, J. C., and Niven, C. D., "Electrical Conductivity at Low Temperatures", Phil. Mag. 4, 386-404 (1927).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

Meissner, W., and Voigt, B., "Messungen mit Hilfe von flüssigem Helium. XI. Widerstand der reinen Metalle in tiefen Temperaturen," (Measurements with the help of liquid helium. XI. Resistivity of pure metals at low temperatures), Ann. Physik 7, 761-97 (1930).

Powell, R. W., "The Thermal and Electrical Conductivities of Beryllium", Phil. Mag. <u>44</u>, No. 353, 645-63 (Jun 1953).

Reich, R., "Etude des proprietes electriques et supraconductrices de metaux de differentes puretes," (Study of the Electrical and superconducting properties of metals with different purities), Mem. Sci. Rev. Met. 62, No. 12, 869-920 (1965).

Reich, R., Kinh, V. Q., and Bonmarin, J., "Etude de la resistivite d'echantillons de beryllium de differentes purctes en fonction de la temperature et determination de la temperature de Debye de ce metal," (Study of the resistivity of samples of beryllium of different purities as a function of temperature and the determination of the Debye temperature of the metal), Compt. Rend. <u>256</u>, No. 26, 5558-61 (1963).

White, G. K. and Woods, S. B., "Thermal and Electrical Conductivities of Solids at Low Temperatures," Can. J. Phys. 33, 58-73 (1955).

Other References:

Bridgman, P. W., "The Compressibility and Pressure Coefficient of Resistance of Ten Elements," Proc. Am. Acad. Arts Sci. 62, 207-28 (1927).

Bridgman, P. W., "The Electric Resistance to 30,000 kg/cm² of Twenty Nine Metals and Intermetallic Compounds," Proc. Am. Acad. Arts Sci. 79, 149-79 (1951).

Dyakov, I. G., Papirov, I. I., and Tikhinskiy, G. F. "Residual Electrical Resistance of Beryllium" Phys. Metals Metallog. <u>19</u>, No. 5, 135-6 (1966), transl. of Fiz. Metal. i Metalloved. <u>19</u>, No. 5, 788-90 (1965). (page 2 of 7)

Electrical Resistivity of Beryllium Cryogenic Data Memorandum No. M-25

Lewis, E. J., "Some Thermal and Electrical Properties of Beryllium," Phys. Rev. 34, 1575-87 (1929).

Lillie, D. W., "The physical and mechanical properties of beryllium metal," <u>The Metal Beryllium</u>, Chapt. 6, 304-27 (1955).

Marder, A. R., "Beryllium, Effect of Ultra-High Pressure on Resistance," Science <u>142</u>, No. 3593, 664 (Nov 1963).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data". The tabular values are ratios of electrical resistivity with respect to the resistivity at 273.15°K (ρ_{273}). The ρ_{273} value used by each investigator is listed in the tables and on the graph.

Since beryllium is an anisotropic metal, resistivity values will vary according to the relation of the hexagonal c crystal axis to the direction of the resistivity measurements. Grüneisen and co-workers are the only investigators who have made measurements on single crystals. They report

 $\rho(\parallel)_{27.3} = 3.56 \times 10^{-6}$ ohm cm and $\rho(\perp)_{27.3} = 3.12 \times 10^{-6}$ ohm cm.

The lowest values of $\rho_{\rm 273}$ for polycrystalline beryllium were reported by Reich, et al. and Powell. They reported

$$\rho(\text{poly})_{273} = 2.7 \times 10^{-6} \text{ ohm cm}.$$

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The measurements by McLennan and Niven (1927) were made on thin sheets of beryllium. No information is given on purity or heat treatment of the sample.

Lewis (1929) used a rod of cross-sectional area 0.792 cm^2 made from 99.5% pure beryllium in his measurements. He found that the amount of heat treatment greatly affected the resistivity and that the best results were obtained after the sample had been slowly heated over a period of 24 hours to about 700°C and held there for 12 hours and then cooled slowly to room temperature.

The Meissner and Voigt (1930) sample was a rod with a length of 1.5 cm and hexagonal cross-section 0.18 \times 0.15 cm. The 98% pure sample was electrolytically prepared.

Grüneisen and Adenstedt (1938) measured resistivity of single crystals $Be_{||} 1$ and $Be_{||} 2$ in a direction parallel to the hexagonal c axis. The quality of crystal structure and purity of $Be_{||} 1$ were not as high as those of $Be_{||} 2$; therefore the values for $Be_{||} 1$ were not tabulated. The density of $Be_{||} 2$ was 1.84. The length was 1.55 cm and cross-section area was 0.00648 cm². The values for $Be_{||} 2$ in the tables below were taken with zero magnetic field.

The Grüneisen and Erfling (1940) measurements were made with single crystals Be_13 , Be_14 , and Be_18 in a direction perpendicular to the hexagonal c axis (at 12°, 2°, and 30° angles to the secondary axis). Crystal sizes are: for Be_14 , $l_1 = 0.91$ cm and $l_2 = 0.83$ cm; and for Be_18 , $l_1 = 1.40$ cm and $l_2 = 0.94$ cm. Be_13 dimensions were not given. The values in the tables below were taken with zero magnetic field. Their results show that deviation from the secondary axis has little effect on the resistivity.

Electrical Resistivity of Beryllium Cryogenic Data Memorandum No. M-25

(page 3 of 7)

Erfling and Grüneisen (1942) made measurements on single crystals $Be_{||} 2$ and $Be_{||} 6$ in a direction parallel to the hexagonal c axis.Crystal sizes are: for $Be_{||} 2$, $l_1 = 0.55_5$ cm and $l_2 = 0.45$ cm; and for $Be_{||} 6$, $l_1 = 0.57$ cm, $l_2 = 0.33$ cm. $Be_{||} 2$ is the same sample used in the Grüneisen and Adenstedt (1938) determinations with a change in mounting. $Be_{||} 6$ sample is a six sided prism of very regular cross-section and of somewhat higher purity than $Be_{||} 2$. The values in the tables below were taken with zero magnetic field.

Powell (1953) in a literature review of experimental electrical resistivity studies cites the Denton (1947) measurements on rods 3.5 cm long and 0.3 cm diameter from a block of American G.E.C. sintered beryllium. The values in the tables below were made on the samples after a 715°C heat treatment.

The analytical purities of the samples used by MacDonald and Mendelssohn (1950) were not available but they were stated to be of comparatively high purity. The samples were in the form of thin strips. No mention is made of heat treatment.

Powell's (1953) resistivity measurements on beryllium were made on a bar 1.884 cm long by 0.865 cm diameter with a density of 1.84. This specimen was subsequently heated in a vacuum for 1 hour at 700°C and furnace cooled. The original material was from Brush Beryllium Company's crude reactor product. No chemical analysis was made on the sample. The value for ρ_{293} is 3.2 x 10⁻⁶ ohm cm.

The specimens used by White and Woods (1955), Be 1 and Be 2, were sintered polycrystalline rods (5 mm and 4 mm diameters) with approximately 2% and 0.1% impurities, respectively. Up to a temperature of about 130 °K, the resistance of the two specimens may be represented by

$$p = (p_0 + 6.4 \times 10^{-8} T^{3.2}) \times 10^{-6}$$
 ohm cm.

Reich, et al. (1963) made measurements on polycrystalline beryllium wire which was annealed at 800° C for one hour in a vacuum. The beryllium was electrolytically prepared and the analysis before wiredrawing showed ~ 99.% pure beryllium. The specimen had a fine grain structure very close to the direction [1010]. ρ_0 for this sample was 0.033 x 10^{-6} ohm cm.

Reich (1965) studied the influence of impurities on the resistivity of polycrystalline beryllium wires at 4.2°K. In his article the type and amount of each impurity are given. His results are presented in the table below.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

(page 4 of 7)

Tables of Values of Electrical Resistivity

 $\rho = \text{Resistivity, (ohm cm)}$ $\rho_{273} = \text{Resistivity at 273°K, (ohm cm)}$ R = Resistance, (ohm) $R_{273} = \text{Resistance at 273°K, (ohm)}$

McLenn	McLennan and Niven (1927)			
Temp.	Specific Resistance [*]			
°K	micro ohm			
4.2	13.6			
20.6	13.6			
81	13.7			
273	17.0**			
293	17.6			
293 17.6 * These values are not shown on the Electrical Resistivity of Beryllium graph. ** Interpolated value.				

	Lewis (1929)					
Temp. Temp. Resistivity ρ/ρ_{273} °C °K $\rho \times 10^6$ ohm cm						
-189 - 77 0 + 21 + 25	84.15 196.15 273.15 294.15 298.15	1.50 3.22 5.88 6.45 6.50	0.255 0.548 1.00 1.10 1.11			

Meissner and Voigt (1930)				
Temp. °K	p/p ₂₇₃ *			
273.16 81.73 20.44 2.38 1.35	1.00 0.3229 0.3075 0.3075 0.3077			
* $\rho_{273} = 7.9 \times 10^{-6}$ ohm cm.				

Grüneisen and Adenstedt (1938)					
Temp. °C	р/р ₂₇₃				
		Be _{II} 2	Be _{ll} 2		
-252.82 -194.13 0.	20.33 79.02 273.15	0.00458 0.0454 3.58	0.00128 0.01268 1.00		

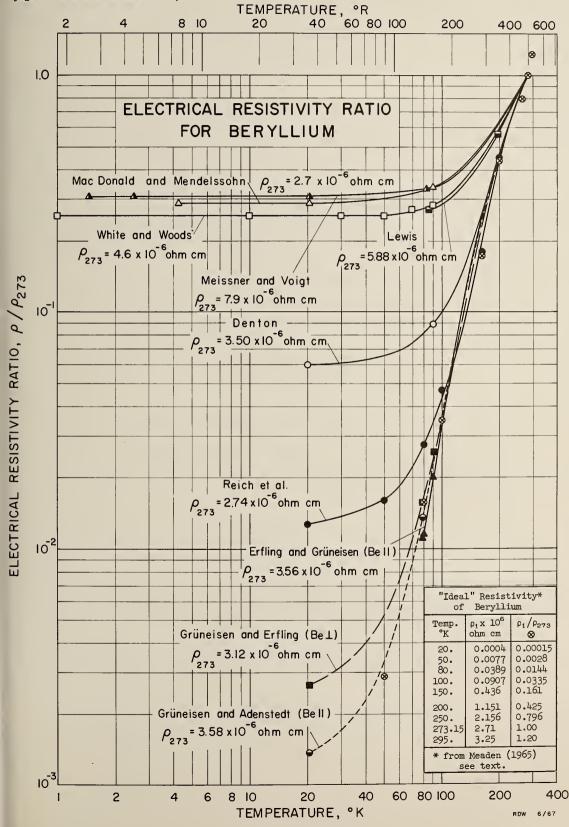
	Grüneisen and Erfling (1940)						
Temp. °K	Temp. °C	Resistivity p x 10 ⁶ ohm cm			P/P273		
		Be13	Be ₁ 4	Be_8	Be ₁ 3*	^{Be} ⊥ ⁴	Be ₁ 8
273.15 90.29 90.17 89.86	0 -182.86 -182.98 -183.29	3.12	3.13 0.0868	3.12 0.0770	1.00 0.02422	1.00 0.02775	1.00 0.02467
78.05 78.00 77.83	-195.10 -195.15 -195.32	0.0452	0.0537	0.0473	0.01443	0.01717	0.01515
20.37 20.36 20.34	-252.78 -252.79 -252.81	0.0078	0.0124	0.0076	0.00251	•0.00396	0.00243
* Be_3 1							

Erfling and Grüneisen (1942)					
Temp. °C	Temp. °K	Resistivity p x 10 ⁶ ohm cm		ρ/ρ ₂₇₃	
		Be _{II} 2 Be _{II} 6		Be ₁₁ 2*	Be _{II} 6
-194.86 -194.20 -193.52 -183.03 0.	78.29 78.95 79.63 90.12 273.15	0.0450 0.0763 3.58	0.0404 0.04125 0.0728 3.56	0.01257 0.02131 1.00	0.01135 0.01159 0.02045 1.00
* Be 2 values were plotted.					

Denton (1947)				
Temp. °C	Temp. Resistivity ρ/ρ °K $\rho \ge 10^6$ ohm cm		P/P273	
0 -183 -253	273.15 90.15 20.15	3.50 0.297 0.21	1.00 0.085 0.06	

Temp.	R/R	273
°K	Be l	Be 2*
273	1.000	1.000
90	0.397	0.322
20.4	0.384	0.276
4.2	0.384	0.276

Powell (1953)				
Temp.	Resistivity [*]			
°C	$\rho \ge 10^6$ ohm cm			
0	2.7**			
20	3.2			
50	4.1			
200	5.3			
200	8.1			
300	11.1			
400	13.5			
500	16.7			
600	20.4			
* These values have not been plotted on the Electrical Resistivity of Beryllium graph. ** Extrapolated value.				


White and Woods (1955) (read from graph)				
Temp. °K	Resistivity p x 10 ⁶ ohm cm		p/p273	
	Be l	Be 2	Be 1**	Be 2
0 10 30 50 70 90 273 295	1.11 1.11 1.12 1.18 1.25 4.6 * 5.08	1.21 1.21 1.22 1.28 1.35 4.3 * 4.93	0.241 0.241 0.243 0.257 0.272 1.00 1.10	0.281 0.281 0.281 0.284 0.298 0.314 1.00 1.15
* $\rho_{\rm 273}$ values were interpolated. ** Be 1 values were plotted.				

.

Reich, Kinh, and Bonmarin (1963)					
Temp. °K					
20 50 80 100 150 200 250 273.15 295	0.0334 0.0407 0.0719 0.1237 0.4690 1.184 2.189 2.743 3.283	0.0122 0.0148 0.0262 0.0451 0.1710 0.432 0.798 1.00 1.20			
* These values were actually taken from Meaden (1965) who received the experimental values directly from Reich. The p_0 value in Meaden (1965) should be 0.033 x 10 ⁻⁶ ohm cm.					

Reich (1965)					
Sample	Purity	Resistivity at 4.2°K [*] $\rho \ge 10^6$ ohm cm			
	10	After drawing	After annealing ir for l hour	a 10 ^{-S} Torr vacuum for 150 hours	
H 1209/SR H 978/CR F 887/CR F 671/CR	99•99785 99•997586 99•987469 99•989032	0.0375 0.512 0.598 1.050	0.0332 0.465 0.399 0.938	0.0361 0.492 0.492 1.008	
* These values were not plotted on the Electrical Resistivity of Beryllium graph.					

Electrical Resistivity of Beryllium Cryogenic Data Memorandum No. M-25

CRYOGENIC DATA MEMORANDUM

PROJECT NO. 3150123

FILE NO. M-10

ELECTRICAL RESISTIVITY OF COBALT, Co (Atomic Number 27) (page 1 of 4)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc., 124-35 (1929).

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

Meissner, W., and Voigt, B., "Messungen mit Hilfe von flüssigem Helium. XI. Widerstand der reinen metalle in tiefen Temperaturen," (Measurements with the Help of Liquid Helium. XI. Resistance of Pure Metals at Low Temperatures), Ann. Physik <u>7</u>, 892-936 (1930).

Radhakrishina, P., and Nielsen, M., "Transport Properties of Cobalt at Low Temperatures," Phys. Status Solidi 11, No. 1, 111-15 (1965).

Semenenko, E. E., Sudovtsov, A. I., and Volkenshtein, N. V., "Temperature Dependence on the Electrical Resistance of Cobalt between 1.3 and 4.2°K," Soviet Phys. JETP <u>18</u>, No. 4, 957-58 (1964), Transl. from Zh. Eksperim. i Teor. Fiz. 45, 1387-88 (1963).

White, G. K., and Woods, S. B., "Low Temperature Resistivity of the Transition Elements: Cobalt, Tungsten, Rhenium," Can. J. Phys. 35, 656-65 (1957).

White, G. K., and Woods, S. B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperature," Phil. Trans. Roy. Soc. (London) <u>A251</u>, 273-302 (1959).

Other References:

Bridgman, P. W., "The Electric Resistance to 30,000 kg/cm² of Twenty Nine Metals and Intermetallic Compounds," Proc. Am. Acad. Arts Sci. 79, 149-79 (1951)

Grüneisen, E., Handbuch der Physik 13, 1 (1928).

Grüneisen, E , "Elektrische Leitfähigkeit der Metalle bei tiefen Temperaturen," (Electrical Conductivity of Metals at Low Temperatures), Ergebn. exakt. Naturw. 21, 50-116 (1945).

Holborn, L., Z. Physik 8, 58 (1921).

Olsen-Bär, M., Univ. of Oxford, Ph. D. Thesis (1956).

Meissner, W., Physik. Z. 29, 897-904 (1928).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data" and are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. When actual values of ρ_{273} for the samples used by the investigators are not available, a datum value reported by White and Woods ($\rho_{273} = 5.24 \times 10^{-6}$ ohm cm) is suggested for calculating values of electrical resistivity from these ratios.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The values listed in the Landolt-Börnstein tables are those reported by Meissner and Voigt; and Bridgman (1951); while those values appearing in the International Critical Tables are from Holborn. These primary sources are cited above under "Other References." The original authors are used in labeling the curves on the graph. (page 2 of 4)

The Landolt-Börnstein tables list the sample used by Meissner and Voigt as an annealed, sintered polycrystalline specimen with no mention made of impurities present. The sample used by Bridgman was reported as polycrystalline with a very small amount of impurities. Bridgman reported only $\rho_{273} = 5.57 \times 10^{-6}$ ohm cm. No information is given on the amount of impurity or nature of the Holborn sample, and no further information is available on the mechanical strain or heat treatment for either of the samples.

White and Woods' (1957) measurements were with 99.99% pure cobalt rods. They report values of ideal resistivity $\rho_1 = \rho - \rho_0$ (ρ_0 = resistivity due to impurity scattering; ρ_0 values for the two cobalt samples were 0.0902 x 10⁻⁶ and 0.0907₅ x 10⁻⁶ ohm cm). Their data are reported graphically with tabular values taken from the graph. These tabular values may have an error of about ± 1% due to uncertainty in the geometry of the specimens.

White and Woods' (1959) review paper gives values of resistivity based on their earlier measurements (1957) between 15 and 295°K and the results obtained by Olsen-Bär (1956) for temperatures below 20°K.

Semenenko, et al. (1963) used rods of 99.9984% pure cobalt. No mention is made of mechanical strain or heat treatment of the sample prior to measurement.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

A polycrystalline wire of pure cobalt was annealed at 1040 °C in vacuo by Radhakrishina and Nielsen (1965) prior to resistance measurements. They do not state the percent purity of the sample. The data were presented graphically and were fitted to the expression $R = R_0 + R_1 T + R_2 T^2$, where $\begin{array}{l} R_{0} = 870.004 \ x \ 10^{-10} \ \text{ohm cm}, R_{1} < 3.13 \ x \ 10^{-12} \ \text{ohm cm}/^{\circ}\text{K}, R_{2} = 0.9892 \ x \ 10^{-11} \ \text{ohm cm}/(^{\circ}\text{K})^{2}. \\ P_{273} \ (5.24 \ x \ 10^{-6} \ \text{ohm cm}) \ \text{used in the resistance ratio was taken from White and Woods (1957)}. \end{array}$

Meissner and	Voigt (1930)	
Temp. °K	R/R ₂₇₃ *	
1.5 4.2 20.4 77.8 86.9 273.16	0.0431 0.0426 0.0463 0.1516 0.1829 1.0000	
* $\rho_{273} = 5.94 \times 10^{-6}$ ohm cm, $\rho_{1.5} = 0.256 \times 10^{-6}$ ohm cm.		

Tables of Values of Electrical Resistivity

Holborn (1921) 100 p/p273 Temp. °C - 80* 57.4 48.2 -100* -120* 40.0 -160* 24.8 -180* 17.4 -192 13.5 * Values from interpolation

 ρ_{273} = resistivity at 273°K, (ohm cm).

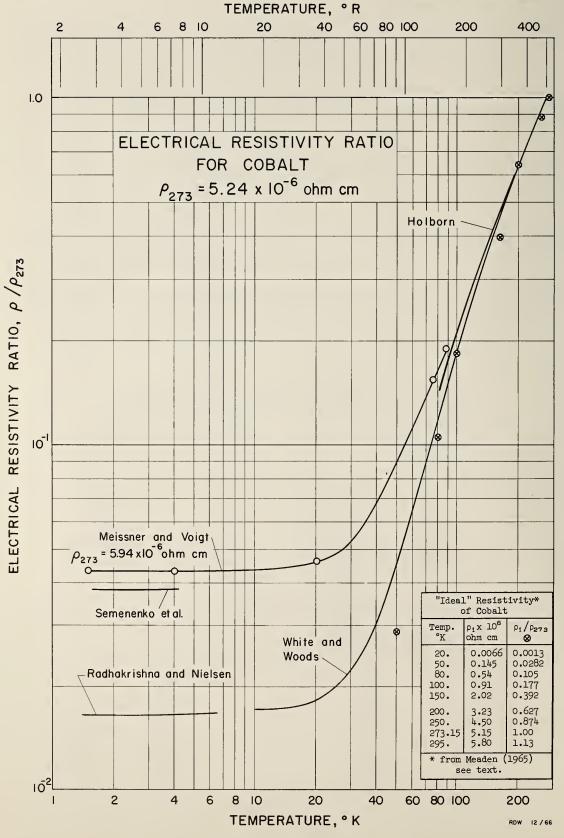
R₂₇₃ = resistance at 273°K, (ohm).

	, , , ,,
Meissner and	1 Voigt (1930)
Temp. °K	R/R ₂₇₃ *
1.5 4.2 20.4	0.0431 0.0426 0.0463 0.1516

 $\rho = \text{resistivity}, (\text{ohm cm});$

R = resistance, (ohm);

White and Woods (1957)


Temp. °K	"Ideal Resistivity" ρ _i x 10 ⁶ ohm cm	Resistivity, $\rho \ge 10^6$ ohm cm $\rho = \rho_1 + \rho_0$ (where $\rho_0 = 0.0905 \ge 10^{-6}$ ohm cm)	p/p273		
15	0.0025	0.0930	0.0177		
20	0.0065	0.0970	0.0185		
30	0.030	0.1205	0.0230		
40	0.079	0.1695	0.0323		
50	0.150	0.2405	0.0459		
75	0.460	0.5505	0.1050		
100	0.90	0.9905	0.1890		
150	1.98	2.0705	0.3951		
200	3.23	3.3205	0.6336		
273	5.15	5.2405	1.000		
295	5.80	5.8905	1.1239		

	White and Woods (1959)				
Temp. °K	"Ideal Resistivity" [*] $\rho_i \propto 10^6$ ohm cm	Resistivity, $\rho \times 10^6$ ohm cm $\rho = \rho_1 + \rho_0$ (where $\rho_e = 0.089 \times 10^{-6}$ chm cm)	P/P273		
10	0.0011	0.0901	0.0172		
15	0.0027	0.0917	0.0175		
20	0.0066	0.0956	0.0182		
25	0.014	0.103	0.0197		
30	0.027	0.116	0.0221		
40	0.072	0.161	0.0307		
50	0.145	0.234	0.0447		
60	0.25	0.339	0.0647		
70	0.38	0.469	0.0895		
80	0.54	0.629	0.120		
90	0.72	0.809	0.154		
100	0.91	0.999	0.191		
120	1.32	1.409	0.269		
140	1.78	1.869	0.357		
160	2.26	2.349	0.448		
180	2.75	2.839	0.542		
200	3.23	3.319	0.634		
220	3.72	3.809	0.727		
250	4.50	4.589	0.876		
273	5.15	5.239	1.000		
295	5.80	5.889	1.124		

* There is uncertainty in the last digit of the resistivity data

Radhakrishna and Nielsen (1965)				
	(read from graph)			
Temp. °K	$\begin{array}{c} \text{Resistivity} & \rho/\rho_{273} \\ \rho \ x \ \text{lo}^9 \ \text{ohm cm} \end{array}$			
1.4 1.9 2.3 2.8 3.2 3.6 4.0	. 87.145 87.160 87.175 87.200 87.220 87.226 87.246 87.282	0.01663 0.01663 0.01664 0.01664 0.01665 0.01665 0.01666		
4.6 5.1 5.5 5.9 6.2 6.4	87.336 87.380 87.423 87.465 87.495 87.520	0.01667 0.01668 0.01668 0.01669 0.01670 0.01670		

Semenenko, et al. (1963) (read from graph)			
Temp. °K	R / R ₂₇₃		
1.55 2.0 2.5 2.8 3.2 3.55 4.2	0.038196 0.038201 0.038206 0.038210 0.038215 0.038221 0.038233		

CRYOGENIC DATA MEMORANDUM

PROJECT NO. 3150123

FILE NO. M-11

ELECTRICAL RESISTIVITY OF COPPER, Cu

(Atomic Number 29)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc., 124-35 (1929).

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Berman, R., and MacDonald, D. K. C., "The Thermal and Electrical Conductivity of Copper at Low Temperatures", Proc. Roy. Soc. (London) <u>211</u>, 122-8 (1952).

Bridgman, P. W., "The Resistance of 72 Elements, Alloys, and Compounds to 100,000 kg/cm²," Proc. Am. Acad. Arts Sci. <u>81</u>, No. 4, 165-251 (Mar 1952).

Broom, T., "The Effect of Temperature of Deformation on the Electrical Resistivity of Cold-worked Metals and Alloys," Proc. Phys. Soc. (London) <u>B65</u>, 871-81 (1952).

Domenicali, C. A., and Christenson, E. L., "Effects of Transition Metal Solutes on the Electrical Resistivity of Copper and Gold Between 4 and 1200°K," J. Appl. Phys. 32, No. 11, 2450-6 (1961).

Gniewek, J. J., and Clark, A. F., "Preparation of Copper Crystals with Low Electrical Resistivity," J. Appl. Phys. <u>36</u>, No. 10, 3358-59 (1965).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

Meissner, W., and Voigt, B., "Messungen mit Hilfe von flüssigem Helium. XI. Widerstand der reinen Metalle in tiefen Temperaturen," (Measurements with the Help of Liquid Helium), Ann. Physik (5) 7, 761-97 (1930).

Moore, J. P., McElroy, D. L., and Graves, R. S., "Thermal Conductivity and Electrical Resistivity of High-Purity Copper from 78 to 400 °K," Can. J. Phys. 45, 3849-65 (1967).

Onnes, H. K., and Tuyn, W., "Data Concerning the Electrical Resistance of Elementary Substances at Temperatures below -80°C," Communs. Phys. Lab. Univ. Leiden Suppl. 58 (1926).

Pawlek, F., and Rogalla, D., "The Electrical Resistivity of Silver, Copper, Aluminum, and Zinc as a Function of Purity in the Range 4 - 298°K," Cryogenics <u>6</u>, No. 1, 14-20 (1966) and Metall. <u>20</u>, No. 9, 949-56 (1966).

Powell, R. L., Roder, H. M., and Hall, W. J., "Low-Temperature Transport Properties of Copper and Its Dilute Alloys: Pure Copper, Annealed and Cold-Drawn," Phys. Rev. <u>11</u>5, No. 2, 314-23 (1959).

Sekula, S. T., "Resistance Minimum and Resistivity of Copper at Low Temperatures," Phys. Rev. Letters 3, No. 9, 416-18 (1959).

White, G. K., "The Thermal and Electrical Conductivity of Copper at Low Temperatures," Australian J. Phys. <u>6</u>, No. 4, 397-404 (1953).

White, G. K., and Woods, S. B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperatures," Phil. Trans. Roy. Soc. (London) <u>A251</u>, 273-302 (1959).

Other References:

Blewitt, T. H., Coltman, R. R., and Redman, J. K., "Structural Defects in Copper and the Electrical Resistivity Minimum," Phys. Rev. 93, No. 4, 891 (1954).

Buck, 0., "Verforming und elektrischer Widerstand von Kupfer-Einkristallen bei tiefsten Temperaturen," (The Deformation and Electrical Resistivity of Copper Single Crystals at Low Temperatures), Phys. Status Solidi <u>2</u>, 535-57 (1962).

de Haas, W. J., de Boer, J. H., and Van den Berg, G. J., Physica II, 1115 (1934).

Dauphinee, T. M., and Preston-Thomas, H., "A Copper Resistance Temperature Scale," Rev. Sci. Instr. 25, 884-6 (1954).

(page 1 of 8)

(page 2 of 8)

Dolecek, R. L., and Schultz, D. J., "Residual Resistance of Copper Annealed in an O_2 Atmosphere," Acta Met. 8, 664 - 65 (1960).

Dugdale, J. S., and Gugan, D., "The Effect of Pressure on the Electrical Resistance of Copper at Low Temperatures," Proc. Roy. Soc. (London) <u>A241</u>, 397-407 (1957).

Franck, J. P., Manchester, F. D., and Martin, D. L., "The Specific Heat of Pure Copper and of some Dilute Copper and Iron Alloys Showing a Minimum in the Electrical Resistance at Low Temperatures," Proc. Roy. Soc. (London) <u>A263</u>, 494-507 (1961).

Grüneisen, E., "Elektrische Leitfähigkeit der Metalle bei tiefen Temperaturen," (Electrical Conductivity of Metals at Low Temperatures), Ergebn. exakt. Naturw. 21, 50-116 (1945).

Hatton, J., "Effect of Pressure on the Electrical Resistance of Metals at Liquid Helium Temperatures". Phys. Rev. <u>100</u>, No. 2, 681-4 (1955).

Henning, F., "Gasthermometrische Messungen zwischen -193 und -258°," (Gas Thermometry Measurements between -193 and -258°), Z. Physik 5, 264-79 (1921).

Holborn, L., Ann. Physik 59, 145 (1919).

Kannuluik, W. G., and Laby, T. H., "The Thermal and the Electrical Conductivity of a Copper Crystal at Various Temperatures," Proc. Roy. Soc. (London) Al21, 640-53 (1928).

Kovacs-Csetenyi, E., Vassel, C. R., and Kovacs, I., "The Effect of Impurity Content and Heat Treatment on the R_{273}/R_{78} Resistivity Ratio of Aluminum and Copper," Acta Phys. Acad. Sci. Hung. <u>21</u>, No. 2, 195-8 (1966).

Lange, W., and Haussler, G., "Measurements of Residual Resistance in Ultra Pure Copper," Phys. Status Solidi 2, K160-63 (1962), (Transl. available from SLA Transl. Center No. TT-65-13131.)

Mac Donald, D. K. C., "Minima of Electrical Resistance in Gold and Copper," Proc. Intern. Conf. on Low Temp. Physics, Oxford, 58 (1951).

Mac Donald, D. K. C., and Berman, R., "The Thermal and Electrical Conductivity of Copper," Proc. Roy. Soc. (London) A211, 122 (1952).

Meissner, W., "Thermische und elektrische Leitfähigkeit einiger Metalle zwischen 20 und 373° Abs," (Thermal and Electrical Conductivity of Some Metals between 20 and 373°K), Ann. Physik <u>47</u>, No. 16, 1001-58 (1915).

Meissner, W., Physik. Z. 29, 897 (1928).

National Bureau of Standards, Copper Wire Tables, Natl. Bur. Std. Handbook 100 (Feb 1966) 41 p.

Niccolai, G., "Uber den elektrischen Widerstand der Metalle zwischen sehr hohen und sehr tiefen Temperaturen," (The Electrical Resistance of a Metal between Very High and Very Low Temperatures), Physik. Z. <u>9</u>, 367 (1908).

Pearson, W. B., "CIII. Electron Transport in Copper and Dilute Alloys at Low Temperature. III. Solid Solutions of Iron in Copper," Phil. Mag. 46, 911 (1955).

Roder, H. M., Powell, R. L., and Hall, W. J., "Thermal and Electrical Conductivity of Pure Copper," Low Temperature Physics and Chemistry, Univ. of Wisconsin Press, p. 364-6 (Aug 1958).

Verel, D. J., "Recovery of the Resistivity of Copper Cold Worked at Low Temperatures," Physica 29, 562-64 (1963).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by de Haas, de Boer and Van den Berg; Holborn; and Meissner (1928); while those values in the International Critical Tables are from Henning. These primary sources are listed above under "Other References". The original authors are used in labeling the curves on the graph.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The data in the Landolt-Börnstein tables and the International Critical Tables tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273 °K. When the actual values of ρ_{273} for the samples used by the original investigators are not available, a datum value determined by Powell, et al. (1959) ($\rho_{273} = 1.545 \times 10^{-6}$ ohm cm) is suggested for calculating values of electrical resistivity from these ratios.

The Landolt-Börnstein tables report the samples used by the authors appearing in their compilation as annealed polycrystalline specimens with a small amount of impurities present. No other pertinent information is given about the data reported in Landolt-Börnstein tables or International Critical Tables.

The Meissner (1915) paper gave $\rho_{27.3} = 1.55 \times 10^{-6}$ ohm cm.

Onnes and Tuyn (1926) measurements were made on "natural copper crystals".

Meissner and Voigt (1930) present the same data as Meissner (1928).

Berman and Mac Donald (1952) used 99.9988% pure copper wires which were annealed for 6 hours at 450°C in helium.

Bridgman (1952) used 99.9999% pure 0.001 inch thick copper sheets to measure the effect of pressure on the electrical resistivity. He reported room temperature measurements as ratios of the resistance at a given pressure to the resistance at one atmosphere.

A 99.99% pure copper wire used by Broom (1952) was annealed for two hours at 600°C prior to resistivity measurements. The tabular data are for the specimen before deformation (wire drawing). Broom's graphs show the effect of deformation on the resistivity.

White (1953) and White and Woods (1959) used wires of 99.999% purity which were annealed in vacuum at 550 and 530 °C for three hours prior to measurement.

Sekula (1959) studied the effect of oxidizing or reducing atmosphere on the electrical resistivity minimum. The 99.99% pure copper wire specimen was first annealed in a vacuum of 2 x 10^{-5} mm Hg at 950°C for two hours before measurements were made. Then the specimen was reheated in 10 microns of air at 750°C for two hours before a second set of measurements was made. The resistance ratio $R/R_{20°C}$ is reported graphically for both sets of measurements; the value of $R_{20°C}$ is not given. The ratio $\rho_{293}/\rho_{273} = 1.7027/1.5527$ from White and Woods was used in determining the ratio R/R_{273} .

Powell, et al. (1959) used 99.99% pure copper rods which were annealed in vacuum at 400 °C prior to measurement at 4.2°K; the resistivity of the sample was (1.01 \pm 0.02) x 10⁻⁹ ohm cm. The values in the table below are read from their graph.

The copper used by Domenicali and Christenson (1961) contains 10^{-4} to $10^{-3}\%$ impurities. The copper was shaped in the form of square cross-section wires which were annealed at 500 °C for several hours in vacuo.

Gniewek and Clark (1965) used 99.999% pure copper in growing crystals in a 10^{-5} Torr vacuum. Their crystals were heated at 1000°C under a pressure of 5 x 10^{-5} Torr for approximately 15 hours and then cooled at a maximum rate of 150°C/hr.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

The samples used by Pawlek and Rogalla (1966) were 99.9943% and 99.9994% pure copper wires which had been annealed at 600°C for one hour and cooled no faster than 50°C/hr. The data in the table below are for the 99.9994% pure sample.

The Moore et al. (1967) measurements were made with 99.999% pure, polycrystalline copper rods 5 - 8 cm long.

Tables of Values of Electrical Resistivity

 $\begin{array}{ll} \rho \mbox{ = resistivity, (ohm cm); } & \rho_{273} \mbox{ = resistivity at 273 °K, (ohm cm). } \\ R \mbox{ = resistance, (ohm); } & R_{273} \mbox{ = resistance at 273 °K, (ohm). } \end{array}$

Meissner (1915)		Holborn (1919)		Henning (1921)		Onnes and Tuyn (1926)	
Temp. °K	р/р ₂₇₃ **	Temp. °K	R/R ₂₇₃	Temp. °C	100R/R ₂₇₃	Temp. °C	R/R ₂₇₃ **
20.7 90.7 273.1*	0.0026 0.186, 1.000	81 195	0.1502 0.6602	- 76 -183 -252.8	65.739 18.868 0.6291	-184.53 -192.04 -199.98 -206.94	0.1749 0.1440 0.1103 0.0840
* ρ ₂₇₃ = 1.55 x 10 ⁻⁶ ohm cm. ** These values are not plotted on the Electrical Resistivity of Copper graph.						-218.09 -252.57 -255.07 -256.63 -258.77	0.0469 0.00154 0.00129 0.00109 0.00097

Meissner a Meissner		de Haas, et al. (1934)		(ъ	Broom (1952) efore deformation	ı)
Temp.* °K	R/R ₂₇₃ **	Temp. °K	р/р ₂₇₃	Temp. °C	Resistivity p x 10 ⁶ ohm cm	р/р ₂₇₃
1.32 1.97 4.20 20.42 81.6 273.16	0.00029 0.00028 0.00029 0.00078 0.144 1.000	1.55 4.23 14.26 20.47	0.00117 0.00119 0.00128 0.00176	-183 - 78.5 0 100	0.291 1.06 1.59 2.23	0.183 0.67 1.00 1.40
* The second decimal place of the temperature values is somewhat in doubt.						

	Berman and Mac Donald (1952) (read from graph)			
Temp. °K	Conductivity $\sigma \times 10^{-6} (\text{ohm cm})^{-1}$	Resistivity ρ x 10 ⁶ ohm cm	p/p273*	
2.5 10. 16. 20. 24.5 30. 33. 40. 48. 53.5 64.	150 154 150 135 109 79 60 36 21 15	0.0067 0.0065 0.0067 0.0074 0.009 0.013 0.017 0.028 0.048 0.048	0.0043 0.0042 0.0043 0.0048 0.0058 0.0084 0.011 0.018 0.031 0.043	
84. 72. 80. 90.	9 6 5 3	0.11 0.17 0.20 0.33	0.071 0.11 0.13 0.21	
* These values were not plotted on the Electrical Resistivity of Copper graph.				

Bridgman (1952)				
(room tempe	erature)			
(Data compared with th atmosphere tak				
Pressure kg/cm ²	R/Po			
0 10000 20000 30000 40000 50000 60000	1.000 0.981 0.965 0.949 0.934 0.920 0.907			
70000 80000 90000 100000	0.895 0.884 0.875 0.866			

	White (1953)			
	(re	ad from graph)		
Temp. °K	"Ideal Resistivity" $\rho_i \propto 10^6$ ohm cm	Resistivity, $\rho \ge 10^6$ ohm cm $\rho = \rho_1 + \rho_0$ (where $\rho_0 = 4.6 \ge 10^{-9}$ ohm cm)	ρ/ρ ₂₇₃	
14 20 25 30 34 41 55 62 78 91 100 120 190	$\begin{array}{c} 0.00035\\ 0.00098\\ 0.0030\\ 0.0066\\ 0.014\\ 0.028\\ 0.074\\ 0.11\\ 0.19\\ 0.28\\ 0.38\\ 0.55\\ 0.98\\ \end{array}$	0.00495 0.00558 0.00760 0.0112 0.0186 0.0326 0.0786 0.1146 0.1946 0.2846 0.3846 0.3846 0.5546 0.9846	0.00319 0.00360 0.00490 0.00722 0.0120 0.0210 0.0507 0.0739 0.1255 0.1835 0.1835 0.2480 0.3576 0.6348	

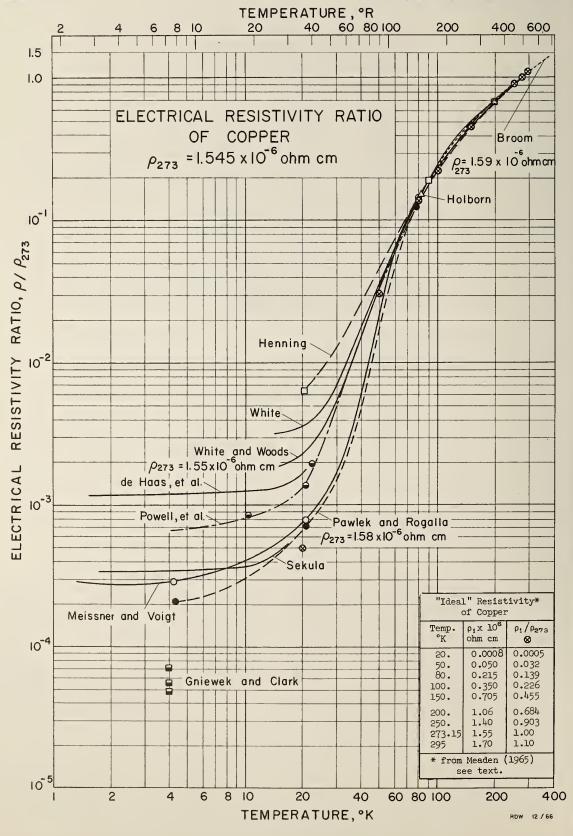
	White and Woods (1959)			
Temp. °K	"Ideal Resistivity" ρ _i x 10 ⁶ ohm cm	Resistivity, $\rho \ge 10^6$ ohm cm $\rho = \rho_i + \rho_o$ (where $\rho_o = 2.7 \ge 10^{-9}$ ohm cm)	p/P273	
15	0.00017	0.00287	0.00185	
20	0.0008	0.0035	0.0023	
25	0.0025	0.0052	0.0034	
30	0.0063	0.0090	0.0058	
40	0.022	0.0247	0.015	
50	0.050	0.0527	0.034	
60	0.095	0.0977	0.063	
70	0.153	0.1557	0.100	
80	0.215	0.2177	0.140	
90	0.280	0.2827	0.182	
100	0.350	0.3527	0.227	
120	0.490	0.4927	0.318	
140	0.635	0.6377	0.411	
160	0.775	0.7777	0.501	
180	0.92	0.9227	0.595	
200	1.06	1.0627	0.685	
220	1.20	1.2027	0.775	
250	1.40	1.4027	0.904	
273	1.55	1.5527	1.00	
295	1.70	1.7027	1.10	

	Sekula (1959)			
	(read	from graph)		
Temp.	R/F	ວິດຂ	R/R [*] 273	
°K	Vacuum Annealed	Air Annealed	Air Annealed	
1.7	8.95 x 10 ⁻⁴	3.10 x 10 ⁻⁴	0.000340	
4.6	8.85 x 10 ⁻⁴	3.18 x 10 ⁻⁴	0.000349	
6.0	8.81 x 10 ⁻⁴	3.21 x 10 ⁻⁴	0.000352	
7.6	8.81 x 10 ⁻⁴	3.27 x 10 ⁻⁴	0.000359	
9.0	8.85 x 10 ⁻⁴	3.31 x 10 ⁻⁴	0.000363	
11.1	9.00 x 10 ⁻⁴	3.46 x 10 ⁻⁴	0.000379	
13.5	9.37 x 10 ⁻⁴	3.90 x 10 ⁻⁴	0.000428	
15.0	9.70 x 10 ⁻⁴	4.28 x 10 ⁻⁴	0.000469	
16.5	10.10 x 10 ⁻⁴	4.80 x 10 ⁻⁴	0.000526	
18.0	11.00 x 10 ⁻⁴			
	* using the ratio ρ ₂₉₃ /ρ ₂₇₃ = 1.7027/1.5527 from White and Woods (1959).			

	Powell, et al. (1959) (read from graph)			
Temp. °K	Resistivity px10 ⁶ ohm cm	P/P273		
4.2	0.00101	0.000654		
5.0	0.00105	0.000680		
6.5	0.0011	0.000712		
7.7	0.00115	0.000714		
10.3	0.0013	0.000744		
20.4	0.0021	0.00136		
22.0	0.0030	0.00194		
78.0	0.190	0.123		
273.15	1.545	1.000		

Domeni	Domenicali and Christenson (1961) (read from graph)				
Temp. °K	Resistivity $\rho \ge 10^6$ ohm cm	P/P273*			
1 25 50 75 100	0.01 0.02 0.05 0.2 0.35	0.0063 0.013 0.032 0.13 0.22			
150 200 250 273 300	0.7 1.05 1.4 1.58 1.75	0.40 0.66 0.89 1.00 1.11			
	* These values were not plotted on the Electrical Resistivity of Copper				

	Gniewek and Clark (1965)				
	Crystal	R300°K /R4.0°K	R _{4.0} °K ∕R [*] 273°K		
А	polycrystalline	20000	0.0000548		
В	single	23000	0.0000477		
С	single	15600	0.0000703		
*	* Calculated using the values of White and Woods (1959) for ρ_{293} = 1.7027 \times 10 ⁻⁶ ohm cm and ρ_{273} = 1.5527 \times 10 ⁻⁶ ohm cm.				


Pawlek and Rogalla (1966)			
Temp. °K	P/P273		
4.2 20.4 77 195 273	0.336 1.11 192 996 1580	0.000213 0.000703 0.122 0.630 1.000	

Moore, McElroy and Graves (1967)				
Temp. °K	Resistivity p x 10 ⁶ ohm cm	p/p ₂₇₃ *		
4.2 85 90 100 110	0.00172 0.248 0.282 0.350 0.418	0.0011 0.160 0.182 0.226 0.270		
120 130 140 150 175	0.488 0.558 0.631 0.702 0.876	0.316 0.361 0.408 0.454 0.567		
200 225 250 273.16	1.0470.6771.2190.7881.3890.8981.5461.000			
* These values have not been plotted on the Electrical Resistivity of Copper graph.				

(page 7 of 8)

(page 8 of 8)

Electrical Resistivity of Copper Cryogenic Data Memorandum No. M-11

PROJECT NO. 3150123

FILE NO. M-13

ELECTRICAL RESISTIVITY of GOLD, Au (Atomic Number 79)

(page 1 of 6)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc., 124-35 (1929).

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Bridgman, P. W., "The Resistance of 72 Elements, Alloys, and Compounds to 100,000 kg/cm²," Proc. Am. Acad. Arts Sci. 81, No. 4, 165-251 (1952).

de Haas, W. J., and Van den Berg, G. J., "The Electrical Resistance of Gold and Silver at Low Temperatures," Physica 3, No. 6, 440-9 (1936) and Communs. Kamerlingh Onnes Lab. Univ. Leiden No. 241 D (1936).

Domenicali, C. A., and Christenson, E. L.,"Effects of Transition Metal Solutes on the Electrical Resistivity of Copper and Gold Between 4° and 1200°K,"J. Appl. Phys. <u>32</u>, No. 11, 2450-6 (1961).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

Meissner, W., and Voigt, B., "Messungen mit Hilfe von flüssigem Helium. XI. Widerstand der reinen Metalle in tiefen Temperaturen," (Measurements with the Help of Liquid Helium), Ann. Physik (5) 7, 761 (1930).

Onnes, H. K., and Clay, J., "On the Change of the Resistance of Metals at Very Low Temperatures and the Influence Exerted on It by Small Amounts of Admixtures," Communs. Phys. Lab. Univ. Leiden No. 99c (1907).

Onnes, H. K., and Clay, J., "On the Change of the Resistance of Pure Metals at Very Low Temperatures and the Influence Exerted on It by Small Amounts of Admixtures. II," Communs. Phys. Lab. Univ. Leiden No. 107c (1908).

Onnes, H. K., and Tuyn, W., "Data Concerning the Electrical Resistance of Elementary Substances at Temperatures below -80°C," Communs. Phys. Lab. Univ. Leiden Suppl. No. 58 (1926).

Van den Berg, G. J., and Franken, B., "The Measuring of the Electrical Resistivity of Gold Monocrystals by an Alternating Current Method," Bull. IIR Annexe 1958-1, 231-35 (Jun 1958).

Van der Leeden, P., "Geleiding van warmte en electriciteit door metalen," (Conduction of heat by metals), Gedrukt Bij Drukherig Waltman, Koornmarkt 62, Te Delft 11-76 (July 1940).

White, G. K., and Woods, S. B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperatures," Phil. Trans. Roy. Soc. (London) <u>A251</u>, No. 995, 273-302 (1959).

Other References:

Cath, P. G., Onnes, H. K., and Burgers, W. G., Proc. Acad. Sci. Amsterdam 20, 1163 (1918) and Communs. Phys. Lab. Univ. Leiden No. 152c (1917).

Croft, A. J., Faulkner, E. A., Hatton, J., and Seymour, E. F. W., "The Electrical Resistivity of Gold at Very Low Temperatures," Phil. Mag. [7] 44, 289-98 (1953).

Dugdale, J. S., and Mac Donald, D. K. C., "The Electrical Resistance of Some Metals and Alloys below 1°K," Can. J. Phys. <u>35</u>, 271-79 (1957).

Fenton, E. W., Rogers, J. S., and Woods, S. B., "Lorenz Numbers of Pure Aluminum, Silver, and Gold at Low Temperatures," Can. J. Phys. <u>41</u>, 2026-33 (1963).

Gaidukov, Yu. P., "Temperature Anomaly in the Resistance and the Hall Effect in Gold," Soviet Phys. JETP 7, No. 4, 577-82 (1958), Transl. of Zh. Eksperim. i Teor. Fiz. <u>34</u>, 836-42 (1958).

Gerritsen, A. N., Los, G. J., and Van der Aa, J. M. L. C., "The Preparation of Dilute Binary Alloys and the Determination of their Composition," Appl. Sci. Res. <u>A6</u>, 385 (1957), Communs. Kamerlingh Onnes Lab. Univ. Leiden No. 306c (1957). (page 2 of 6)

Goree, W. S., "Electrical Conductivity of Metals at High Pressures and Low Temperatures," Univ. of Florida, Gainesville, Fh. D. Thesis (1964) 166 p., (Avail. from Univ. Microfilms, Ann Arbor, Mich., Order No. 65-5985).

Goree, W. S., and Scott, T. A., "Pressure Dependence of Electrical Conductivity of Metals at Low Temperatures," J. Phys. Chem. Solids <u>27</u>, 835-48 (1966).

Grüneisen, E., "Elektrische Leitfahigkeit der Metalle bei tiefen Temperaturen," (Electrical Conductivity of Metals at Low Temperatures), Ergebn. exakt. Naturw. 21, 50-116 (1945).

Hatton, J., "Effect of Pressure on the Electrical Resistance of Metals at Liquid Helium Temperatures," Phys. Rev. 100, No. 2, 681-4 (1955).

Holborn, L., Ann. Physik 59, 145 (1919).

Justi, E., Physik. Z. 41, 486 (1940).

Kan, L. S., and Lazarev, B. G., "Effect of Hydrostatic Compression on the Electrical Conductivity of Metals at Low Temperatures," Soviet Phys. JETP 7, No. 1, 180-81 (1958), Transl. of Zh. Eksperim. i Teor. Fiz. 34, 258-59 (1958).

Knook, B., and Van den Berg, G. J., "The Electrical Resistance of Pure Au and Ag at Low Temperatures," Physica 26, 505-12 (1960), Communs. Kamerlingh Onnes Lab. Univ. Leiden No. 321c (1960).

Meissner, W., "Thermische und elektrische Leitfahigkeit einiger Metalle zwischen 20 und 373° abs," (Thermal and Electrical Conductivity of Some Metals between 20 and 373°K), Ann. Physik <u>47</u>, No. 16, 1001-58 (1915).

Meissner, W., Physik. Z. 26, 689 (1925).

Meissner, W., Physik. Z. 27, 725 (1926).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data" and are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. When the actual values of ρ_{273} are not available for the samples used by the various investigators, a datum value reported by White and Woods (1959) ($\rho_{273} = 2.02 \times 10^{-8}$ ohm cm) is suggested for calculating values of electrical resistivity from these ratios.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The values listed in the Landolt-Börnstein tables are those reported by Holborn, Justi, and Meissner, while the values appearing in the International Critical Tables are those from Cath, Onnes, and Burgers. These primary sources are listed above under "Other References". The original authors are used in labeling the curves on the graph. The Cath et al.measurements were made on "pure minting gold" wires. Meissner (1915) reported $\rho_{273} = 2.065 \times 10^{-5}$ ohm cm.

Onnes and Clay (1907) made their measurements on 0.1 mm diameter wires which were heated in an "annealing furnace for a long time and slowly cooled". The purity of the samples follows; Au_{III} was $\sim 99.985\%$, Au_{IV} and Au_V were $\sim 99.995\%$. Their 1908 measurements were on Au_V.

Onnes and Tuyn (1926) list values taken by Meissner (1925) see other references on single crystal gold. Onnes and Tuyn give no other information about the sample.

Meissner and Voigt (1930) present the same data as that found in the earlier Meissner paper (1926).

The 99.999% pure gold used by de Haas and Van den Berg (1936) was in the form of a wire which was annealed at 480°C for 5 hours prior to measurement.

Van der Leeden (1940) measured the resistivity of single crystal wires which were annealed at 480°C for 2 hours. The purity was not stated.

The material used by Bridgman (1952) was specified as "highest purity" but with no analysis. The sample was rolled to 0.001 inch thickness and annealed. The measurements were made at room temperature and the resistance ratio is the resistance at the given pressure compared to the resistance at one atmosphere.

The purity of the two single crystal samples used by Van den Berg and Franken (1958) was 99.998%. These single crystal samples were not prepared in high vacuum and were not annealed.

White and Woods (1959) used wire samples of 99.99% purity which had been previously annealed in vacuo at 530 and 700 °C.

The gold used by Domenicali and Christenson (1961) contains 10^{-4} to $10^{-3}\%$ impurities. The gold was shaped in the form of square cross-section wires which were annealed at 500 °C for several hours in vacuo.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

Tables of Values of Electrical Resistivity

ρ =	resistivity,	(ohm cm);	ç
R =	resistance,	(ohm);	F

 P_{273} = resistivity at 273°K, (ohm cm). R_{273} = resistance at 273°K, (ohm).

Onnes and Clay (1907)					
Temp.	Temp.	R/R _o			
°C	°K	Au _{III}	Au _{IV}	Auv*	
0 -103.83 -183.00 -197.87 -205.01 -215.34 -252.93 -255.13 -258.81 -261 -262	273.09 169.26 90.09 75.22 68.08 57.75 20.16 17.96 14.28 12.09 11.09	1. 0.59601 0.27653 0.21456 0.14058 0.01602 0.01095	1. 0.59389 0.27177 0.20963 0.13407 0.008743 0.004265 0.003257	0.005691 0.003601 0.002713 0.002526	
* These are the values plotted on the Electrical Resistivity of Gold graph.					

Meissner (1915)			
Temp. °K	R/R ₂₇₃ **		I
21.5 91.5 273.1*	0.00836 0.2764 1.0000		1
* $\rho_{273} = 2.06_5 \times 10^{-6}$ ohm cm.			

_				
		Holborn (1919)		
	Temp. R/R ₂ °K		R/R ₂₇₃	
		81 195	0.2375 0.6955	

 > p₂₇₃ = 2.05 x 10 ohm cm.
 ** These values are not plotted on the Electrical Resistivity of Gold graph.

Cauli, Onics and Durgers (1910)			
Temp. °C	Temp. °K	100R/R ₂₇₃	
0.0	273.09	100.	
- 84.97	188.12	66.443	
-102.22	170.87	59.628	
-130.28	142.81	48.507	
-145.86	127.23	42.273	
-164.37	108.72	34.764	
-183.95	89.14	26.660	
-195.88	77.21	21.622	
-205.31	67.78	17.596	
-208.18	64.91	16.365	
-216.26	56.83	12.906	
-222.78	50.31	10.130	
-228.73	44.36	7.680	
-233.62	39.47	5.804	
-236.80	36.29	4.667	
-240.25	32.84	3.538	
-243.68	29.41	2.553	
-245.80	27.29	2.039	
-252.57	20.52	0.845	
-255.01	18.08	0.594	
-258.35	14.74	0.379	
-268.88	4.21	0.223	
-269.57	3.52	0.223	
-271.61	1.48	0.223	

Cath, Onnes and Burgers (1918)

(page 4 of 6)

Meissner (1925)			
Temp. R/R ₂₇₃ °C			
-191.37 -193.14 -200. * -220. * -240. * -252.69 -260. * -268.89 -269.38 -271.48	0.2320 0.2252 0.195 * 0.009 * 0.033 * 0.00642 0.0010* 0.00039 0.00038 0.00039		
* Interpolated values.			

Electrical Resistivity of Gold Cryogenic Data Memorandum No. M-13

Meissner and Voigt (1930) Meissner (1926)			
Temp. R/R ₂₇₃ °K			
1.61 4.20 20.41 81.75 84.87 273.16	0.00109 0.00109 0.00707 0.2341 0.2480 1.0000		

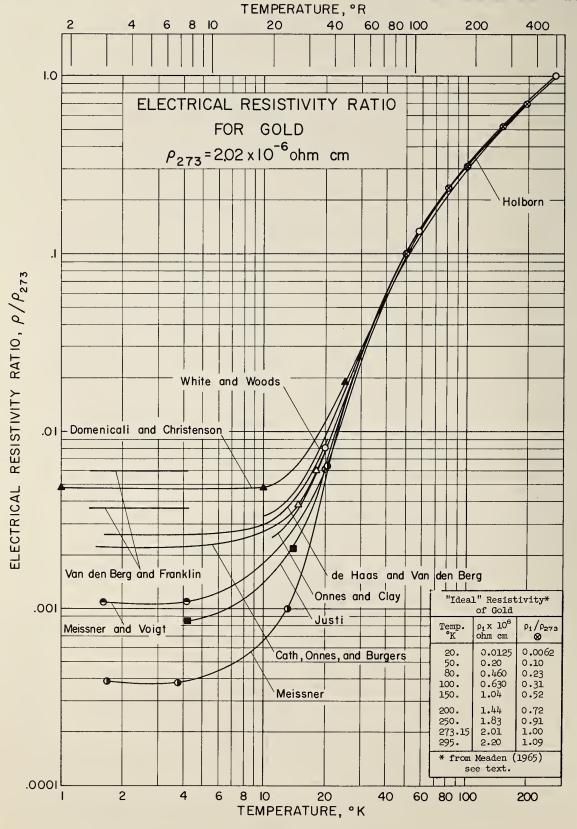
Justi (1940)			
Temp. °K	R/R273		
4.2 14.0 20.4 79.0	0.00085 0.00227 0.00709 0.219		

de Haas and Van den Berg (1936)					
Temp. °K	100R/Ro°c	Temp. °K	100R/R _{6°C}		
20.44 18.08 17.03 16.05 15.17 12.10 11.95 11.84 10.00 9.95	0.9048 0.6573 0.5730 0.5076 0.4564 0.3386 0.3348 0.3320 0.2967 0.2959	9.38 8.83 7.28 6.54 6.08 4.81 4.23 3.77 3.12 2.39 1.63	0.2890 0.2826 0.2714 0.2685 0.2674 0.2651 0.2644 0.2644 0.2644 0.2646 0.2652 0.2666		

Van der Leeden (1940)				
Au l Temp. 100R/R ₂ °K		Au Temp. °K	2 100R/R ₀ *	
20.43 18.23 17.38 16.32 15.18 14.13	0.9960 0.7537 0.6767 0.5964 0.5240 0.4720	20.41 18.215 17.365 16.61 15.37 14.23	2.108 1.854 1.774 1.721 1.624 1.560	
* These values were not plotted on the				

Electrical Resistivity of Gold graph.

Γ	Bridgman (1952)				
L	(room temperature)				
	(Data compared with the resistance at one atmosphere taken as unity)				
	Pressure R/Ro Pressure R/Ro kg/cm² kg/cm² kg/cm² kg/cm²				
	0 10000 20000 30000 40000 50000	1.000 0.971 0.944 0.919 0.896 0.874	60000 70000 80000 90000 100000	0.855 0.840 0.829 0.821 0.816	


Van den Berg and Franken (1958)					
Temp. °K	R _I x 10 ⁶ ohm	R _{II} x 10 ⁶ ohm	R _I /R ₂₇₃	R _{II} /R ₂₇₃	
1.365 1.762 1.968 2.229	1.1684 1.1659 1.1648 1.1633	2.4227 2.4217 2.4211 2.4211 2.4209	0.003686 0.003678 0.003674 0.003670	0.005953 0.005950 0.005949 0.005948	
2.719 3.196 3.713 4.240	1.1619 1.1602 1.1604 1.1599	2.4207 2.4205 2.4214 2.4223	0.003665 0.003660 0.003661 0.003659	0.005948 0.005947 0.005949 0.005952	
273.0	317.0	407.0	1.0	1.0	

	White and Woods (1959)				
Temp. °K	"Ideal Resistivity" $\rho_i \ge 10^6$ ohm cm	Resistivity, $\rho \ge 10^6$ ohm cm $\rho = \rho_1 + \rho_0$ (where $\rho_0 = 6.23 \ge 10^{-9}$ ohm cm)	ρ/ ρ ₂₇₃		
10	0.0006	0.0068	0.00337		
15	0.0037	0.0099	0.00491		
20	0.0125	0.0197	0.00977		
25	0.027	0.0332	0.0165		
30	0.050	0.0562	0.0279		
40	0.12	0.1262	0.0626		
50	0.20	0.2062	0.102		
60	0.29	0.2962	0.147		
70	0.38	0.3862	0.192		
80	0.460	0.4662	0.231		
90	0.545	0.5512	0.273		
100	0.630	0.6362	0.316		
120	0.790	0.7962	0.395		
140	0.956	0.9612	0.477		
160	1.12	1.1262	0.559		
180 200 220 250 273 295	1.28 1.44 1.60 1.83 2.01 2.20	1.2862 1.4462 1.6062 1.8362 2.0162 2.2062	0.638 0.717 0.911 1.000 1.094		

Domenicali and Christenson (1961) (read from graph)			
Temp. °K	Resistivity $\rho \ge 10^6$ ohm cm	ρ/ρ273	
1	0.01	0.005	
10	0.01	0.005	
25	0.04	0.020	
50	0.2	0.099	
75	0.4	0.20	
100	0.6	0.30	
150	1.08	0.53	
200	1.45	0.71	
250	1.86	0.92	
273	2.02	1.00	
300	2.3	1.14	

(page 5 of 6)

(page 6 of 6)

FILE NO. M-14

ELECTRICAL RESISTIVITY of INDIUM, In (Atomic Number 49)

(page 1 of 7)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc., 124-35 (1929).

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Aleksandrov, B. N., "Size Effect in Electrical Resistivity of High-Purity Metals," Soviet Phys. JETP <u>16</u>, No. 2, 286-94 (1963), Transl. from Zh. Eksperim. i Teor. Fiz. 43, 399-410 (Aug 1962).

Aleksandrov, B. N., and D'Yakov, I. G., "Variation of the Electrical Resistance of Pure Metals with Decrease of Temperature," Soviet Phys. JETP <u>16</u>, No. 3, 603-08 (1963), Transl. from Zh. Eksperim. i Teor. Fiz. 43, 852-59 (Sept 1962).

Bridgman, P. W., "The Resistance of 72 Elements, Alloys, and Compounds to 100,000 kg/cm²," Proc. Am. Acad. Arts Sci. 81, No. 4, 165-251 (1952).

Kaznoff, A. I., Orr, R. L., and Hultgren, R., "Thermophysical Properties of Indium Metal", <u>Thermodynamik-Symposium</u>, Heidelberg, Germany, Sept. 1967 (Sponsored by International Union of Pure and Applied Chemistry) Paper No. IV-3.

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

Olsen, J. L., "Magnetoresistance and Size Effects in Indium at Low Temperatures", Helv. Phys. Acta. <u>31</u>, 713-26 (1958).

Orlova, M. P., Astrov, D. N., and Medvedeva, L. A., "Indium Resistance Thermometers for Temperature Range 3.4 to 300 °K," Cryogenics <u>4</u>, No. 2, 95-97 (1964), Transl. from Pribory i Tekhn. Eksperim. No. 2, 160 (1963).

Powell, R. W., Woodman, M. J., and Tye, R. P., "The Thermal Conductivity and Electrical Resistivity in Indium," Phil. Mag. 7, 1183-86 (1962).

Protopopescu, M., Zamirca, St., Petrescu, N., and Trita, V., "Rezistivitatea Electrica a Indiuliu in Functie de Gradul de Puritate," (Electrical Resistivity of Indium in Relation to Purity), Acad. Rep. Populare Romine, Studii Cercetari Met. 7, 305-17 (1962).

Swenson, C. A., "Some Properties of Indium and Thallium at Low Temperatures," Phys. Rev. <u>100</u>, 1607-14 (1955), ASTIA AD 103 810.

Other References:

Bridgman, P. W., "The Electric Resistance to 30,000 kg/cm² of Twenty Nine Metals and Intermetallic Compounds," Proc. Am. Acad. Arts Sci. <u>79</u>, 149-79 (1951).

Buckel, W., and Hilsch, R., "Einfluss der kondensation bei tiefen Temperaturen auf den elektrischen Widerstand und den Supraleitung fur verscheidene Metalle," (Effect on the Electrical Resistance and Superconduction of Various Metals of Condensation at Low Temperatures), Z. Physik <u>138</u>, 109-20 (1954).

Cotti, P., "A New Size Effect", Phys. Letters 4, 114-6 (1963).

Goree, W. S., "Electrical Conductivity of Metals at High Pressures and Low Temperatures," Univ. of Florida, Gainesville, Ph.D. Thesis (1964) 166 p. (Avail. from Univ. Microfilms, Ann Arbor, Mich., Order No. 65-5985).

Goree, W. S., and Scott, T. A., "Pressure Dependence of Electrical Conductivity of Metals at Low Temperatures," J. Phys. Chem. Solids <u>27</u>, 835-48 (1966).

Lüthi, B., and Wyder, P., "A Monte-Carlo Calculation for a Size Effect Problem," Helv. Phys. Acta 33, 667-74 (1960).

(page 2 of 7)

Electrical Resistivity of Indium Cryogenic Data Memorandum No. M-14

Mc Lennan, J. C., and Niven, C. D., "Electrical Conductivity at Low Temperatures," Phil. Mag. 4, 386-404 (1927).

Meissner, W., Franz, H., and Westerhoff, H., "Messungen mit Hilfe von flüssigem Helium. XV. Widerstand von Barium, Indium, Thallium, Graphit und Titan in tiefen Temperaturen," (Measurements with the Help of Liquid Helium. XV. Resistance of Barium, Indium, Thallium, Graphite, and Titanium at Low Temperatures), Ann. Physik 13, 555-63 (1932).

Meissner, W., and Voigt, B., "Messungen mit Hilfe von flüssigem Helium. XI. Widerstand der reinen Metalle in tiefen Temperaturen," (Measurements with the Help of Liquid Helium. XI. Resistance of Pure Metals at Low Temperatures), Ann. Physik (5) <u>7</u>, 761-97 (1930).

Meissner, H., and Zdanis, R., "Paramagnetic Effect in Superconductors. VI. Resistance Transitions in Indium Wires," Phys. Rev. <u>109</u>, No. 3, 681 (1958).

Tuyn, W., and Onnes, H. K., "Further Experiments with Liquid Helium. S. On the Electrical Resistance of Pure Metals etc. XII. Measurements Concerning the Electrical Resistance of Indium in the Temperature Field of Liquid Helium," Communs. Phys. Lab. Univ. Leiden No. 167a (1923) and Koninkl. Ned. Akad. Wetenschap. Proc. 26, 504-9 (1923).

Tuyn, W., and Onnes, H. K., Arch. Neerl. Sci. Ser. III A 7, 289 (1924).

White, G. K., and Woods, S. B., Rev. Sci. Instr. 28, 638 (1957).

White, G. K., Woods, S. B., and Anglin, F., "Indium Resistance Thermometer," Rev. Sci. Instr. 29, No. 2, 181-82 (1958).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Meissner, Franz, and Westerhoff; and Meissner and Voigt; while those values appearing in the International Critical Tables are from Tuyn and Onnes. These primary sources are listed above under "Other References". The original authors are used in labeling the three curves on the graph. The curves should not be extrapolated to lower temperatures since indium becomes a superconductor between 3.374 and 3.432°K.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The data in the Landolt-Börnstein tables and the International Critical Tables, tabulated here, are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273 °K. The actual values of ρ_{273} were not available for the samples used by Meissner and Voigt; and Tuyn and Onnes, so a datum value reported by Powell, Woodman, and Tye ($\rho_{273} = 8.00 \times 10^{-6}$ ohm cm) is suggested for calculating values of electrical resistivity from these ratios.

The Landolt-Börnstein tables list the samples of both references as polycrystalline with 0.2% impurities in the sample used by Meissner and Voigt and a very small amount of impurity in the samples used by Meissner, Franz and Westerhoff. No mention is made of the amount of impurities in the sample used by Tuyn and Onnes, and no information was given on the mechanical strain or heat treatment for any of the samples from any of the above authors.

Bridgman (1952) studied the effect of pressure on electrical resistivity. The sample was rolled and cut into strips and was believed to be 99.9% pure.

The purity of the indium wire samples used by Swenson (1955) was 99.9%. The wires were extruded and not annealed. The values of resistance ratio in the table below for 60, 40, 20, and 4.2° K are extrapolated; all others are experimental.

Olsen's (1958) measurements were made on ten wire specimens with diameters varying from 0.2 to 2.54 mm in diameter from three different sources. No statement of purity was made. Below 3.37 K, where indium becomes superconducting, the zero field resistance was obtained by extrapolating from measurements in fields greater than the critical. The values in the table below are for the 2.0 mm diameter wire; this wire having the lowest residual resistivity $\rho_0 = 0.27 \times 10^{-9}$ ohm cm.

(page 3 of 7)

The cylindrical indium samples used by Aleksandrov (1962) had a purity of 99.9993% and were annealed 1-2 days at 25-50 °C before measurements were made. He observed the effect of sample size on the resistivity of indium and estimates the error in a single measurement on the thickest and purest sample at 4.2 °K to be 1.5%. He found $\rho_{293} = 9 \times 10^{-6}$ ohm cm. The samples of indium used by Aleksandrov and D'Yakov (1962) were the same as those of Aleksandrov (1962) with the exception that they were all polycrystalline. They found $\rho_{273} = 8.37 \times 10^{-6}$ ohm cm, $\rho_0 = 3 \times 10^{-10}$ ohm cm.

Powell, et al. (1962) used 99.9997% pure rods in their measurements. No mention is made of heat or mechanical treatment to the sample. The experimental data were plotted on a graph and the following tabular values are taken from that graph.

Protopopescu, et al. (1962) reported the influence of purity on the electrical resistivity of indium. The samples range from 96.05 to 99.998% pure. The table below presents values for the four purest samples.

Wire samples of 99.9994% purity were used by Orlova, et al. (1963) in constructing resistance thermometers. The thermometers were annealed at ~ 100 °C for 3 hours prior to resistivity measurements.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

Kaznoff et al. (1967) used 99.999% pure polycrystalline rods which were 0.3" in diameter. The table below gives smoothed values.

Tables of Values of Electrical Resistivity

p = Resistivity, (ohm cm); R = Resistance, (ohm); ρ_{273} = Resistivity at 273 °K, (ohm cm). R₂₇₃ = Resistance at 273 °K, (ohm).

Tuyn and Onnes (1923, 1924)					
Temp. °C	Temp. °K	100R/R ₂₇₃	Temp. °C	Temp. °K	100R/R ₂₇₃
-182.79	90.30	28.75	-254.95	18.14	5.173
-194.06	79.03	24.92	-256.61	16.48	4.796
-202.07	71.02	22.20	-258.89	14.20	4.317
-209.98	63.11	19.52	-268.87	4.22	3•394
-218.30	54.79	16.71	-269.49	3.60	3•392
-252.65	20.44	5.739	-269.61	3.48	3•387

Meissner and	Voigt (1930)
Temp. °K	R/R ₂₇₃
4.21 20.46 77.82 88.90 273.16	0.00387 0.0256 0.2177 0.2567 1.0000

Meissner, Franz and Westerhoff (1932)		
Temp. R/R ₂₇₃ °K		
4.23 20.4 77.8 273.16*	0.0015 0.0216 0.212 1.000	
* $\rho_{273} = 8.19 \times 10^{-6}$ ohm cm.		

.

Bridgman (1952)			
R/R _o (At Room Temperature) Pressure kg/cm ² (Taking the Resistance at Atmospheric Pressure as R _o)			
0	1.000		
10000	0.891		
20000	0.810		
30000	0.746		
40000	0.694		
50000	0.650		
60000	0.610		
70000	0.578		
80000	0.548		
90000	0.520		
100000	0.493		

Swenson (1955)		
Temp. °K	R/R273.2°K	
4.2 20.0 40.0 60.0 77.7 117.6 143.0 160.5 180.7 194.7 210.8 227.0 242.0 257.3 272.2	0.0010 0.0200 0.0820 0.1520 0.2189 0.3607 0.4549 0.5214 0.6023 0.6576 0.7224 0.7929 0.8603 0.9286 0.9286 0.9942	

.

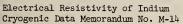
Olsen (1958)				
Temp. °K	ρ x l0 ⁹ ohm cm	ρ/ρ273*		
1.45 1.6 2.0 2.5 3.0 3.5 4.0 4.2	.277 .277 .295 .321 .356 .435 .567 .620	3.39×10^{-5} 3.39×10^{-5} 3.61×10^{-5} 3.93×10^{-5} 4.36×10^{-5} 5.32×10^{-5} 6.94×10^{-5} 7.59×10^{-5}		
* $\rho_{273} = 8.17 \times 10^{-5}$ ohm cm was calculated using Olsen's $\rho_{293} = 8.79 \times 10^{-6}$ ohm cm and the Aleksandrov and D'Yakov ratio ρ_{273}/ρ_{293} .				

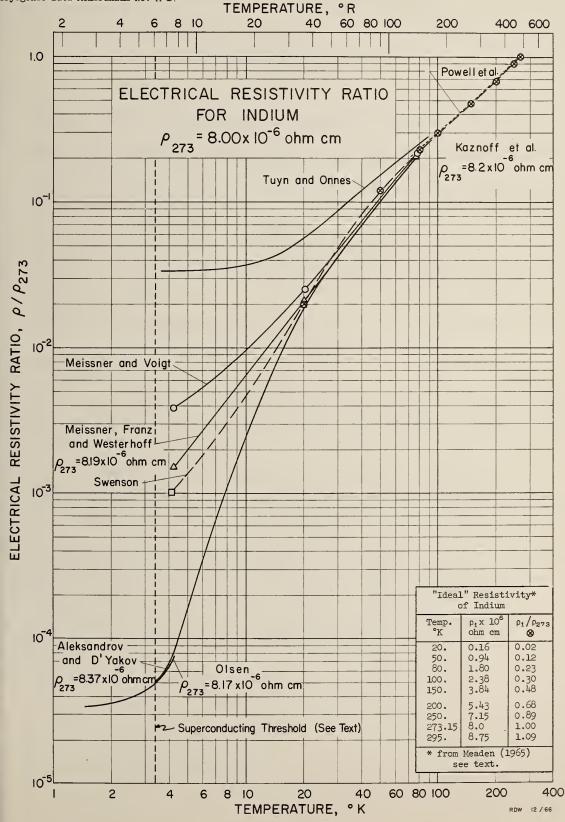
(page	5	of7)
-------	---	-----	---

Aleksandrov (1962)					
Temp. °K	Type of Crystal	R /R ₂₉₃	R /R ₂₇₃		
4.2 3.4 4.2	Polycrystal Polycrystal Single crystal	0.000073 0.000048 0.000065	0.000079 0.000052 0.000070		

Temp.		
°K	R /R [*] 293	R / R_{273}^{*}
3.4	4.8×10^{-5}	5.2×10^{-5}
3.7	5.4 \times 10 ⁻⁵	5.8 x 10^{-5}
4.22	7.3 \times 10 ⁻⁵	7.8×10^{-5}
4.46	8.6×10^{-5}	9.2×10^{-5}
14.0	6.7×10^{-3}	7.2×10^{-3}
20.4	0.018	0.019
58.0	0.128	0.138
77.4	0.193	0.207
90.31	0. 232	0.249
111.6	0.309	0.332
273.0	0.93	1,000

Powell, et al. (1962)					
Temp. °C	Temp. °K	Resistivity ρ x 10 ⁶ ohm cm	p/p273		
-200	73.15	1.65	0.206		
-150	123.15	3.08	0.385		
-100	173.15	4.60	0.575		
- 50	223.15	6.22	0.778		
0	273.15	8.00	1.000		
50	323.15	10.00	1,250		
100	373.15	12.15	1.519		
120	393.15	13.00	1.625		


Protopopescu, et al. (1962)						
Sample NumberPurity % $\rho_{293} \times 10^6$ ohm cm $\rho_{80} \times 10^6$ ohm cm ρ_{80}/ρ_{293} * ρ_{80}/ρ_{293} *						
5 (electrically refined)	99.99	8.16	1.62	0.199	0.216	
6 (zone refined)	99.988	8.28	1.69	0.204	0.221	
7 (zone refined)	99.996	7.92	1.33	0.168	0.182	
8 (zone refined)	99.998	7.49	1.23	0.164	0.178	


* These values are not plotted on the Electrical Resistivity of Indium graph.

Orlova, et al. (1963)					
Thermometer	rmometer Resistance Ratios*				
Number	R20.4/R273	R4.2/R273			
1	0. 02123	0.0004216			
2	0.02103	0.0004066			
3	0.02105	0.0002968			
4	0.02103	0.0002792			
6	0.02101	0.0002704			
8	0.01289	0.0002887			

* These values are not plotted on the Electrical Resistivity of Indium graph.

	Kaznoff et al. (1967)				
Temp. °K	ρ x 10 ⁶ ohm cm	p/p273	Temp. °K	p x 10 ⁶ ohm cm	P/P273
80 100 120 140 160	1.826 2.431 3.038 3.647 4.257	0.222 0.296 0.370 0.444 0.518	180 200 220 240 260 273	4.869 5.499 6.155 6.894 7.694 8.211	0.593 0.670 0.750 0.840 0.937 1.000

.

CRYOGENIC DATA MEMORANDUM

PROJECT NO. 3150123

FILE NO. M-15

ELECTRICAL RESISTIVITY OF IRON, Fe (Atomic Number 26)

(page 1 of 7)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. 124-35 (1929).

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Backlund, N. G., "An Experimental Investigation of the Electrical and Thermal Conductivity of Iron and Some Dilute Iron Alloys at Temperatures Above 100°K," J. Phys. Chem. Solids <u>20</u>, Nos. 1-2, 1-16 (1961).

Broom, T., "The Effect of Temperature of Deformation on the Electrical Resistivity of Cold-worked Metals and Alloys," Proc. Phys. Soc. (London) B65, 871-81 (1952).

Grüneisen, E., and Goens, E., "Untersuchungen an Metallkristallen. V. Elektrizitats und Warmeleitung von ein- und vielkristallinen Metallen des regularen Systems," (Investigation of Metal Crystals. V. Electrical and Thermal Conductivity of Single and Polycrystalline Metals of Regular Systems), Z. Physik 44, 615-42 (1927).

Kannuluik, W. G., "The Thermal and Electrical Conductivities of Several Metals Between -183°C and 100°C," Proc. Roy. Soc. (London) <u>A141</u>, 159-68 (1931).

Kemp, W. R. G., Klemens, P. G., and Tainsh, R. J., "Thermal and Electrical Conductivities of Rhodium and Iron," Ann. Physik 5, 35-41 (1959).

Kemp, W. R. G., Klemens, P. G., and White, G. K., "Thermal and Electrical Conductivity of Iron, Nickel, Titanium, and Zirconium at Low Temperatures," Austrailian J. Phys. 9, No. 2, 180-88 (1956).

Kondorsky, E., Galkina, O. S., and Tchernikova, L. A., "Nature of Electrical Resistivity of the Ferromagnetic Metals at Low Temperatures," J. Appl. Phys. <u>29</u>, No. 3, 243-6 (1958), also Zh. Eksperim. i Teor. Fiz. 34, No. 5, 1070-6 (1958).

Meaden, G. T., <u>Electrical Resistance of Metals</u>, Plenum Press, New York (1965) 218 p.

Semenenko, E. E., and Sudovtsov, A. I., "Some Features in the Temperature Dependence of the Electrical Resistance of Ferromagnetic Metals at Low Temperatures," Soviet Phys. JETP <u>15</u>, No. 4, 708-10 (1962), Transl. of Zh. Eksperim. i Teor. Fiz. 42, 1022-26 (1962).

Semenenko, E. E., Sudovtsov, A. I., and Shvets, A. D., "Temperature Dependence of the Electrical Resistance of Iron in the Range 0.38 - 4.2°K," Soviet Phys. JETP <u>15</u>, No. 6, 1033-4 (1962), Transl. of Zh. Eksperim. i Teor. Fiz. <u>42</u>, 1488-9 (1962).

Soffer, S., Dreesen, J. A., and Pugh, E. M., "Hall Effects, Resistivity, and Thermopower in Fe and Fe_{1-x} Ni_x for x = 0 to 0.2," Phys. Rev. <u>140</u>, No. 2A, 668-75 (Oct 1965).

White, G. K., and Woods, S. B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperatures," Phil. Trans. Roy. Soc. (London) <u>A251</u>, 273-302 (1959).

Other References:

Cleaves, H. E., and Hiegel, J. M., J. Res. Natl. Bur. Stds. 28, 643 (1942).

Holborn, L., Ann. Physik 59, 145 (1919).

Kohlhaas, R., and Richter, F., Arch. Eisenhuettenw. 33, 291-99 (1962).

Meissner, W., Physik. Z. 29, 897-904 (1928).

Meissner, W., and Voigt, B., Ann. Physik (5) 7, 892 (1930).

Migaud, B., and Witenberger, M., "Etude du Vieillissement du der pur, par mesure de resistivite auf tres basses Temperatures," (Study of the Aging of Pure Iron by the Measurement of Resistivity at Very Low Temperatures), Compt. Rend. <u>246</u>, No. 3, 425-28 (1958).

Pallister, P. R., "The Specific Heat and Resistivity of High-Purity Iron up to 1250°C," J. Iron Steel Inst. (London) 161, 87-90 (1949).

Powell, R. W., "Further Measurement of Thermal and Electrical Conductivity of Iron at High Temperatures," Proc. Phys. Soc. (London) <u>51</u>, 407-18 (1939).

Stromberg, H. D., and Stephens, D. R., "Effects of Pressure on the Electrical Resistance of Certain Metals," J. Phys. Chem. Solids 25, 1015-22 (1964).

Sudovtsov, A. I., and Semenenko, E. E., "Peculiarities of the Temperature Dependence of the Electrical Resistance of Ferromagnetic Metals at Low Temperatures," Soviet Phys. JETP 4, 592 (1957), Transl. of Zh. Eksperim. i Teor. Fiz. <u>31</u>, 525-26 (1956).

Yoshida, I., "Electrical Resistivity of Pure Metals Below 1°K," Phys. Letters 16, No. 1, 12-13 (1965).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Meissner; and Cleaves and Hiegel; while those values appearing in the International Critical Tables are from Holborn. These primary sources are cited above under "Other References." The original authors are used in labeling the curves on the graph.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The data in the Landolt-Börnstein tables and the International Critical Tables, tabulated here, are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. When the actual values of ρ_{273} for the samples used by the several investigators are not available, a datum value reported by Backlund (1961) (ρ_{273} = 8.7 x 10⁻⁶ ohm cm) is suggested for calculating values of electrical resistivity from these ratios. The value ρ_{273} = 8.7 x 10⁻⁶ ohm cm will be used for all data sets, except those investigations which measured ρ_{273} .

The Landolt-Börnstein tables list the sample used by Cleaves and Hiegel as an annealed polycrystalline specimen with less than 0.01% impurities. Their value for resistivity at 293°K was 9.71×10^{-6} ohm cm. The sample used by Meissner is reported as an annealed polycrystalline specimen with a very small amount of impurities present.

The Holborn (1919) sample contained 0.009% impurity and was heated to 500 $^\circ C$ for several minutes, then annealed at 380 $^\circ C$ for 3 hours.

Grüneisen and Goens (1927) report the following information about their iron samples: Iron 1 - double electrolytically refined, first hammered, then tempered; Iron 2 - electrolytically separated many crystals, technically "pure", not tempered; Iron 3 - electrolytic, hammered many times, tempered for one hour at 500 °C.

Meissner and Voigt (1930) presented the same data as Meissner (1928).

Kannuluik (1931) used a 99.88% pure iron wire.

The samples used by Broom (1952) were 99.993% pure and were annealed at 600°C for two hours before measurements were made. The tabular values below are for resistivity measurements before deformation. Broom's graphs show the effect of deformation on resistivity.

Kemp, et al. (1956) made resistivity measurements on 2 mm diameter rods (99.9% purity) which were annealed at 750°C for four hours in vacuo. White and Woods (1959) presented a table of smoothed values based on the Kemp, et al. (1956) work and the subsequent work of White and Woods (1959).

The iron wires used by Kondorsky (1958) were made from chemically pure material. The specimens were heated in a vacuum at 900 °C for one hour and then cooled slowly within the furnace. The residual resistivity was 1.458×10^{-6} ohm cm.

Kemp, et al. (1959) used iron specimens, believed to be from the same material as that of Grüneisen and Goens which was described as follows: "Doubly refined electrolytic iron, not melted in vacuo but cut out of a precipitated plate, annealed at 950°C to remove H₂ then compressed to destroy the precipitation structure and reannealed in vacuo at 950°C". However, the residual resistivity found by Kemp, et al. indicates that the samples were not as pure as the ones used by Grüneisen and Goens. The Kemp samples were cut into the shape of bars and measurements were made without any further treatment. The values listed in the table below are for Kemp's second sample, a slightly modified bar with projections of the same iron as the sample on which the potential and thermometer connections were made.

Backlund (1961) used very pure iron bars (cross section of about 15 mm² and length of 100 mm) which were annealed at about 500 °C for 10 hours to remove the cold-work effects.

The iron specimen used by Semenenko and Sudovtsov (1962) was grown by distillation in vacuum in the form of a needle, having a grain size approximately equal to the specimen diameter. The purity of the sample was greater than 99.99% and compensation was made for the earth's magnetic field during the measurements. They give two equations to represent their data in the temperature ranges of their investigations:

- 1) for 1.23 to 4.2°K, $R/R_0 \circ_c = 3.9606 \times 10^{-3} + 3.1 \times 10^{-6}T + 1.10 \times 10^{-6}T^2$; and
- 2) for 14 to 20 °K, $R/R_0 \circ_a = 3.9606 \times 10^{-3} + 1.64 \times 10^{-6} T^2 + 4.02 \times 10^{-11} T^5$.

The values in the table below have been read from their graph.

Semenenko, et al(1962) found "the residual resistance of the iron was $R(0^{\circ}K)/R(0^{\circ}C) = 3.9606 \times 10^{-3}$ in a compensated earth's field, for a measuring current of 150 mA; $R(0^{\circ}K) = 1.2595 \times 10^{-3} \Omega$. The temperature was determined accurate to $10^{-2}^{\circ}K$ from the helium vapor pressure". No information is given about the sample. They found the equation $R = 3.9606 \times 10^{-3} + 3.1 \times 10^{-6} T + 1.1 \times 10^{-6} T^2$ to represent their data.

The iron rectangular plate sample used by Soffer et al. (1965) was made from an ingot of zone-refined iron with a purity of 99.999815%. The sample was cold rolled and annealed to minimize strains. The sample size was 10 cm x 1 cm x 1 mm.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm cm)

 $\rho_{27.3}$ = Resistivity at 273°K, (ohm cm)

Holborn (1919)					
Temp., °C	100R/R ₂₇₃	Temp., °C	100R/R ₂₇₃		
- 78.1 - 80 * -100 *	57.86 55.9 47.3	-192.7 -200 * -220 *	8.48 6.2 2.7		
-120 * -140 * -160 *	38.1 29.2 20.7	-240 * -253	1.4 1.13		
	* Values from	interpolation	1		

	Grüneisen and Goens (1927)					
Sample	ρ _{273.2} x 10 ⁶	ρ _{83.2} x 10 ⁶	ρ _{21.2} x 10 ⁶	P83.2/P273.2	P21.2/P273.2	
Number	ohm cm	ohm cm	ohm cm			
1	8.71	0.778	0.0681	0.0893	0.00782	
2	9.11	0.92 ₉	0.1437	0.1020	0.01120	
3	9•95	1.917	1.060	0.1927	0.01937	

Meissner and Voigt (1930) Meissner (1928)					
Temp. °K*	p/p273 **				
1.98† 4.21 20.40 78.24 273.16†	0.00618 0.00620 0.00761 0.0741 1.000				
* The second decimal place is in doubt.					
is in doub	decimal place ot.				

 $\rho_{273} = 9.11 \times 10^{-6}$ ohm cm $\rho_{1.98} = 0.0563 \times 10^{-6}$ ohm cm

Kannuluik (1931)					
Temp.	Temp.	Specific Resistance	ρ/ρ ₂₇₃ *		
°C	°K				
-183	90.15	1.531	0.160		
- 78.5	194.65	5.74	0.600		
0	273.15	9.57	1.00		
	* These values were not plotted on the Electrical Resistivity of Iron graph.				

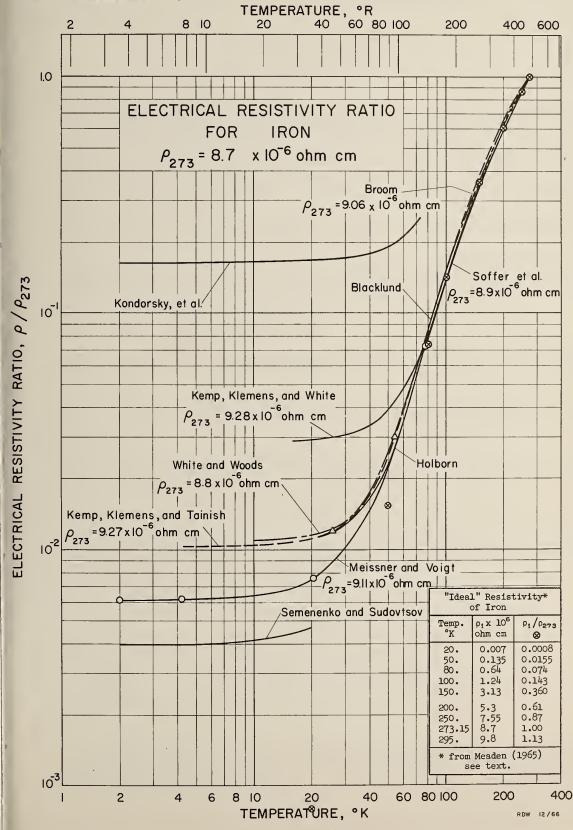
Broom (1952)					
Temp. °C	Temp. °K	Resistivity px10 ⁶ ohm cm	P/P273		
-183.0	90.15	1.09	0.120		
- 78.5	194.65	5.78	0.638		
0.0	273.15	9.06	1.000		
100.0	373.15	14.73	1.648		

	Kemp, Klemens, and White (1956) (read from graph)				
Temp. °K	"Ideal resistivity" $\rho_1 \propto 10^6$ ohm cm	$\begin{array}{l} \text{Resistivity, } \rho \times 10^6 \text{ohm cm} \\ \rho = \rho_1 + \rho_0 \\ \text{where} \\ \rho_0 = 2.48 \times 10^{-7} \text{ohm cm} \end{array}$	P/ P273		
16 23 30 35 40	0.010 0.014 0.028 0.041 0.050	0.258 0.262 0.276 0.289 0.298	0.0289 0.0293 0.0309 0.0323 0.0333		
58 80 100 130 200 273 293	0.19 0.45 0.98 2.0 5.0 9.0 10.0	0.438 0.698 1.228 2.248 5.248 9.248 9.248 10.248	0.0490 0.0781 0.137 0.251 0.587 1.000 1.146		

Kondorsky, Galkina, and Tchernikova (1958) (read from graph)				
Temp. Resistivity ρ/ρ_{273} °K $\rho \times 10^6$ ohm cm				
2 20 40 60 73	1.46 1.5 1.6 1.9 2.3	0.168 0.172 0.184 0.218 0.264		

Kemp, Klemens, and Tainsh (1959)			
Temp.	Resistivity	P/ P273	
°K	ρxl0 ⁶ ohm cm		
4.2 15.2 20.8 26.1 32.5	0.092 0.097 0.100 0.106 0.120	0.0103 0.0109 0.0112 0.0119 0.0134	
54.4 61.2 74.2 79.1 90.2 273.0* 293.0	0.269 0.368 0.631 0.744 1.06 9.27* 10.3	0.0301 0.0412 0.0706 0.0832 0.119 1.000 1.152	

* Interpolated value.


	White and Woods (1959)			
Temp. °K	"Ideal Resistivity" $\rho_i \propto 10^6 \text{ohm cm}$	Resistivity, $\rho \ge 10^6$ ohm cm $\rho = \rho_1 + \rho_0$ where $\rho_0 = 0.095 \ge 10^{-6}$ ohm cm	P/ P273	
10	0.0015	0.0965	0.0110	
15	0.0034	0.0984	0.0112	
20	0.007	0.102	0.0116	
25	0.0125	0.1075	0.0122	
30	0.022	0.117	0.0133	
40	0.06 ₀	0.155	0.0176	
50	0.13 ₅	0.230	0.0262	
60	0.25	0.345	0.0392	
70	0.42	0.515	0.0586	
80	0.64	0.735	0.0836	
90	0.92	1.015	0.115	
100	1.2₄	1.335	0.152	
120	1.9₅	2.045	0.233	
140	2.7₃	2.825	0.321	
160	3.5₅	3.645	0.414	
180	4.4₀	4.495	0.511	
200	5.3	5.395	0.613	
220	6.2	6.295	0.716	
250	7.5₅	7.645	0.869	
273	8.7	8.795	1.000	
295	9.8	9.895	1.125	

Backlund (1961)				
	(read from graph)			
Temp. °K	Resistivity $\rho \ge 10^6$ ohm cm	ρ/ρ ₂₇₃		
90 195 273 293	1.1 5.1 8.7 9.8	0.123 0.570 1.000 1.096		

Semenenko and Sudovtsov (1962) (read from graph)				
Temp.	Resistance Ratio			
°K	R /R _{o°c}			
2.0	0.00397			
4.0	0.00399			
9.2	0.00410			
12.0	0.00421			
13.8	0.00430			
16.0	0.00442			
17.0	0.00450			
20.0	0.00474			

Semenenko, Sudovtsov and Shvets (1962) (read from graph)						
Temp. Resistance R/R ₂₇₃ * °K R x 10 ⁶ ohm						
0.38 1261.35 0.00396 1. 1263.9 0.00397 2. 1270.7 0.00399 3. 1279.6 0.00402 4. 1291.1 0.00406 273.0 318000. 1.000						
* These values are almost identical to the Semenenko and Sudovtsov (1962) values and are therefore not plotted on the Electrical Resistivity of Iron graph.						

Soffer, Dreesen, and Pugh (1965) (read from graph)				
Temp. °K	P/P273*			
77 112 169 231 273 300	0.6 1.8 4.0 6.9 8.94 10.7	0.067 0.20 0.45 0.77 1.00 1.20		
* These values are not plotted on the Electrical Resistivity of Iron graph because these points coincide with others previously plotted.				

-

FILE NO. M-16

ELECTRICAL RESISTIVITY OF LEAD, Po (Atomic Number 82)

(page 1 of 5)

Sources of Data:

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Aleksandrov, B. N., "Size Effect in Electrical Resistivity of High-Purity Metals," Soviet Phys. JETP 16, No. 2, 286-94 (1963), Transl. of Zh. Eksperim. i Teor. Fiz. 43, 399-410 (1962).

Aleksandrov, B. N., and D'Yakov, I. G., "Variation of the Electrical Resistance of Pure Metals with Decrease of Temperature," Soviet Phys. JETP <u>16</u>, No. 3, 603-08 (1963), Transl. of Zh. Eksperim. i Teor. Fiz. 43, 852-59 (1962).

Bridgman, P. W., "The Resistance of 72 Elements, Alloys and Compounds to 100,000 kg/cm²," Proc. Am. Acad. Arts Sci. 81, No. 4, 165-251 (1952).

Buckel, W., and Hilsch, R., "Einfluss der Kondensation bei tiefen Temperaturen auf den elektrischen Widerstand und den Supraleitung fur verschiedene Metalle," (Effect on the Electrical Resistance and Superconduction of Various Metals of Condensation at Low Temperatures), Z. Physik 138, 109-20 (1954).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

Meissner, W., Ann. Physik (4) 47, 1001-58 (1915)

Onnes, H. K., and Clay, J., "On the Change of the Resistance of the Metals at Very Low Temperatures and the Influence Exerted on It by Small Amounts of Admixtures," Communs. Phys. Lab. Univ. Leiden No. 99c (1907).

Van der Leeden, P., "Geleiding van warmte en electriciteit door metalen," (Conduction of heat by metals), Gedrukt Bij Drukherig Waltman, Koornmarkt 62, Te Delft 11-76 (July 1940).

Other References:

Bridgman, P. W., "Miscellaneous Measurements of the Effect of Pressure on Electrical Resistance," Proc. Am. Acad. Arts Sci. 82, No. 2, 83-100 (1953).

Gruneisen, E., Ergebn. exakt. Naturw. 21, 50 (1945).

Holborn, L., Ann. Physik (4) 59, 145-69 (1919).

Jaeger, W., and Diesselhorst, H., "Wärmeleitung, Elektricitatsleitung, Wärmecapacitat und Thermokraft einiger Metalle," (Heat Conduction, Electrical Conductivity, Specific Heat and Thermal Power in Metals), Wiss. Abhandl. physik-tech. Reichsanstalt 3, 269-424 (1900).

Meissner, W., Ann. Physik (5) 13, 641 (1932).

Meissner, W., and Franz, H., Z. Physik 65, 30 (1930).

Onnes, H. K., and Tuyn, W., Communs. Kamerlingh Onnes Lab. Univ. Leiden Suppl. No. 58 (1926).

Onnes, H. K., and Tuyn, W., Communs. Kamerlingh Onnes Lab. Univ. Leiden No. 160b (1922).

Van den Berg, G. J., "The Electric Resistance of Potassium, Tungsten, Copper, Tin, and Lead at Low Temperatures," Physica <u>14</u>, 111-38 (Apr 1948), also Communs. Kamerlingh Onnes Lab. Univ. Leiden No. 274a (1948).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data". The data listed in the Landolt-Börnstein tables are those reported by Meissner and Franz; Meissner; Onnes and Tuyn; and Van den Berg; listed above under "Other References". The original authors are used in labeling the curves on the graph.

The curves on the graph should not be extrapolated to lower temperatures as lead becomes a superconductor at 7.22°K. It will be noted, however, that the data of Van den Berg; Aleksandrov and D'Yakov; and Meissner extend into the superconducting region. These data below the transition temperature were based on observations of the electrical resistance with the lead subjected to a super-critical magnetic field to maintain electrical resistance.

The data tabulated here are ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. When the actual values of ρ_{273} are not available for the samples used by the original investigators, a datum value reported by Aleksandrov and D'Yakov ($\rho_{273} = 19.2 \times 10^{-6}$ ohm cm) is suggested for calculating values of electrical resistivity from these ratios.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The Landclt-Börnstein tables report the samples used by all of the investigators in their compilation as polycrystalline with a very small amount of impurities present.

Yaeger and Diesselhorst (1900) report the sample used in determining ρ_{273} as polycrystalline with less than 0.05% impurities. Their value at 273°K was 19.2 x 10⁻⁶ ohm cm.

The purity of the lead strip used by Onnes and Clay (1907) was 99.985%. No other information is given about the preparation of the sample. The values listed in the table below are resistances compared with the resistance at 0°C.

Meissner (1915) reported $\rho_{273} = 19.2_6 \times 10^{-6}$ ohm cm.

Van der Leeden (1940) used a polycrystalline lead wire (0.025 cm diameter) in his electrical resistivity measurements. The purity of the sample was not stated.

The purity of Bridgman's (1952) sample was 99.999%. His measurements show the effect of pressure on electrical resistivity at room temperature.

Buckel and Hilsch (1954) prepared metal layers for their measurement by low temperature condensation (4°K). They report only one measurement at 273°K of 19.9 x 10^{-6} ohm cm.

Aleksandrov (1962) used polycrystalline samples of 99.99964% purity. The samples were in the form of 0.5 to 2.5 mm diameter rods. He estimated the error to be < 1%. Measurements were made in a magnetic field of H = 640 Oe in addition to H = 0 at 4.2°K. He used $\rho_{273} = 19.3 \times 10^{-6}$ ohm cm.

Aleksandrov and D'Yakov (1962) used the same lead samples as Aleksandrov (1962). However, they did not reduce the diameters so much so that the resistance would be affected. The measurements for temperatures below 7.22°K were made in the presence of a magnetic field. Using a quadratic dependence of ρ on H, they obtained values of ρ for H = 0. Their $\rho_0 \simeq 4 \times 10^{-10}$ ohm cm.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

Tables of Values of Electrical Resistivity

 ρ = resistivity, (ohm cm); R = resistance, (ohm); $\begin{array}{l} \rho_{\text{273}} = \text{resistivity at 273}\,^{\circ}\text{K}\,, \,\, (\text{ohm cm})\,.\\ \text{R}_{\text{273}} = \text{resistance at 273}\,^{\circ}\text{K}\,, \,\, (\text{ohm})\,. \end{array}$

Onnes and Clay (1907)				
Temp.	Temp.	Resistance ratio		
°K	°C	R/R ₂₇₃		
14.39	-258.70	0.01311		
18.02	-255.07	0.02314		
20.31	-252.78	0.03032		
56.48	-216.61	0.17129		
68.57	-204.52	0.21742		
77.94	-195.15	0.25257		
89.44	-183.65	0.29439		
169.46	-103.63	0.59548		
273.09	- 0.0	1.000		
289.42	16.33	1.0652		

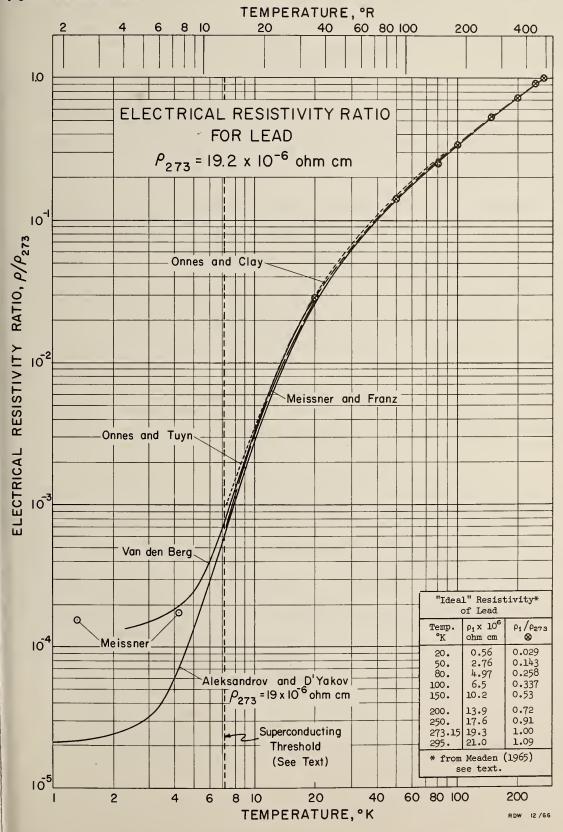
Meissne	Meissner (1915)				
Temp. ρ/ρ ^{**} °K					
21.8 0.0350 91.7 0.303 273.1* 1.000					
* $\rho_{273} = 19.2_8 \times 10^{-6}$ ohm cm. ** These values are not plotted on the Electrical Resistivity of Lead graph.					

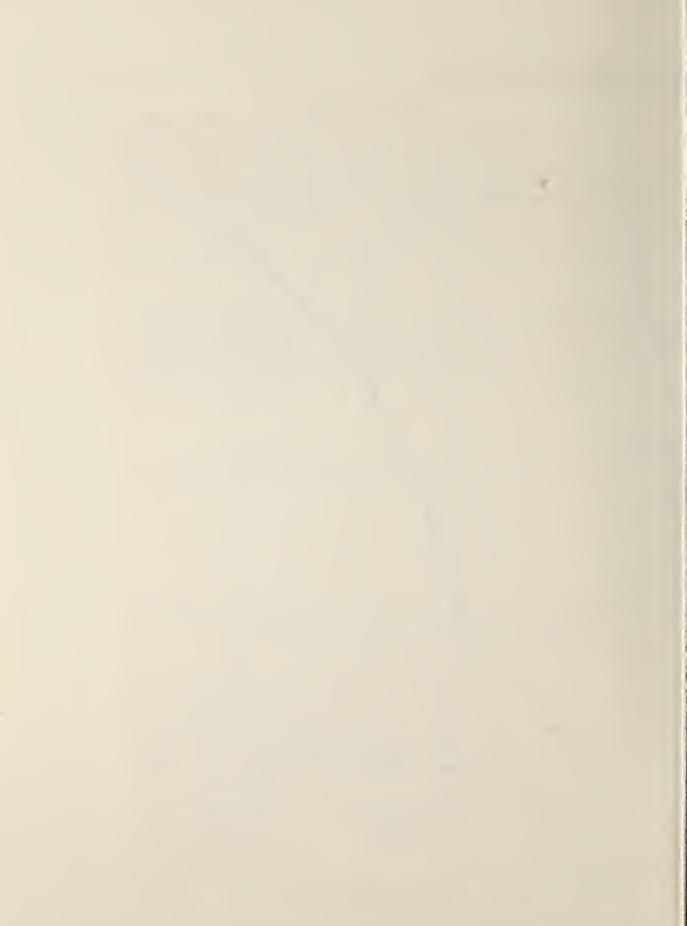
Onnes and T	Luyn (1926)	Meissner and Voigt (1930) Meissner and Franz (1930)			
Temp*	R/R273	Temp*	R/R273	Temp.	R/R273
°K		°K		°K	
7.26 14.32 20.52 73.11 88.56	0.0010 0.0113 0.0301 0.2321 0.2895	7.26 14.02 20.32 273.16	0.0007 0.0104 0.0292 1.0000	1.3 4.2	1.55 x 10 ^{-4**} 1.75 x 10 ^{-4**}
* The second decimal place of the temperature values is somewhat in doubt.					

* The second decimal place of the temperature varies is somewhat in doubt.

** These measurements were made with the aid of a supercritical magnetic field at temperatures at which lead is normally a superconductor.

Van der Leeden (1940)						
Temp. 100R/R ₀ * Temp. 100R/R						
K K 90.33 29.65 20.40 3.015 82.06 26.51 19.35 2.639 73.16 23.19 18.21 2.272 67.09 20.92 17.29 1.988 55.33 16.51 16.00 1.620 15.03 1.356 14.10 1.118						
* These values have not been plotted on the Electrical Resistivity of Lead graph.						


Van den	Van den Berg (1948)		Bridgman (1952)		
Temp* °K	R/R ₂₇₃	(Resistance compared with the resistance at room temperature and one atmosphere pressure.)			
2.30 3.22	0.00013 † 0.00015 †	Pressure kg/cm ²	R/R _o	Pressure kg/cm ²	R/R _o
4.24 7.22 9.38 20.32	0.00019 † 0.00083 0.0025 0.0301	0 2000 3000 4000 50000	1.000 0.873 0.779 0.704 0.647 0.603	60000 70000 80000 90000 100000	0.570 0.543 0.521 0.502 0.487
 * The second decimal place of the temperature values is somewhat in doubt. ** The fifth decimal place of the electrical resistivity ratio values is somewhat in doubt. † These measurements were made with the aid of a supercritical magnetic field at temperatures at which lead is normally a superconductor. 					


Aleksandrov (1962)							
Sample	Temp. °K	R/R ₂₉₃ †	R/R ₂₇₃ †				
Polycrystal H = 640 Oe	4.2	0.00007	0.00008				
Polycrystal H = 0	4.2	0.000063	0.000068				
Polycrystal	20.4	0.00268	0.00290				
† $\rho_{293} = 20.9 \times 10^{-6}$ ohm cm and $\rho_{273} = 19.3 \times 10^{-6}$ ohm cm.							

Aleksandrov and D'Yakov (1962)							
Temp. °K	R/R ₂₉₃	R/R ₂₇₃	Temp. °K	R/R ₂₉₃	R/R ₂₇₃		
0.0 1.9 3.6 3.8 4.0 4.22 4.46	$1.9 \times 10^{-5} + 2.15 \times 10^{-5} + 3.8 \times 10^{-5} + 4.52 \times 10^{-5} + 5.3 \times 10^{-5} + 6.28 \times 10^{-5} + 7.8 \times 10^{-5} \times 10^{-5} + 7.8 \times 10^{-5} \times 10^$	$\begin{array}{c} 2.1 & \times 10^{-5} \\ 2.33 & \times 10^{-5} \\ 4.1 & \times 10^{-5} \\ 4.90 & \times 10^{-5} \\ 5.7 & \times 10^{-5} \\ 6.80 & \times 10^{-5} \\ 8.4 & \times 10^{-5} \end{array}$	7.2 14.0 20.4 58.0 77.4 90.31 273.0	$\begin{array}{c} 6.3 \times 10^{-4} \\ 9.5 \times 10^{-3} \\ 0.027 \\ 0.166 \\ 0.230 \\ 0.272 \\ 0.917 \end{array}$	$\begin{array}{c} 6.8 \times 10^{-4} \\ 10.3 \times 10^{-3} \\ 0.029 \\ 0.180 \\ 0.249 \\ 0.295 \\ 1.00 \end{array}$		
 * Using ρ₂₉₃ = 20.9 x 10⁻⁶ ohm cm and ρ₂₇₃ = 19.2 x 10⁻⁶ ohm cm from Aleksandrov (1962). [†] Measurements below 7.22°K were made in the presence of a magnetic field. 							

Electrical Resistivity of Lead Cryogenic Data Memorandum No. M-16

(page 5 of 5)

FILE NO. M-17

ELECTRICAL RESISTIVITY OF MAGNESIUM, Mg (Atomic Number 12)

(page 1 of 5)

Sources of Data:

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co., Inc., 124-35 (1929).

Bridgman, P. W., "The Resistance of 72 Elements, Alloys and Compounds to 100,000 kg/cm²," Proc. Am. Acad. Arts Sci. 81, No. 4, 165-251 (1952).

Goens, E., and Schmid, E., "Elastische Konstanten, electrischer Widerstand und thermische Ausdehnung des Magnesiumkristalls," (Elastic Constants, Electrical Resistance and Thermal Expansion of Magnesium Crystals), Physik. Z. <u>37</u>, 385-91 (1936).

Grüneisen, E., "Elektrische Leitfahigkeit der Metalle bei tiefen Temperaturen," (Electrical Conductivity in Metals at Low Temperatures), Ergebn. exakt. Naturw. <u>21</u>, 50-116 (1945).

Hein, R. A., and Falge, R. L., "Resistance Minimum of Magnesium: Electrical Resistivity Below 1°K," Phys. Rev. 105, 1433-34 (1957).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

Spohr, D. A., and Webber, R. T., "Resistance Minimum of Magnesium: Electrical and Thermal Resistivities," Phys. Rev. <u>105</u>, 1427-33 (1957).

Other References:

Bridgman, P. W., "Electrical Resistance Under Pressure, Including Certain Liquid Metals," Proc. Am. Acad. Arts Sci. 56, 61-154 (1921).

Bridgman, P. W., "The Electric Resistance to 30,000 kg/cm² of Twenty Nine Metals and Intermetallic Compounds," Proc. Am. Acad. Arts Sci. <u>79</u>, 149-79 (1951).

Das, K. B., and Gerritsen, A. N., J. Appl. Phys. 33, 3301 (1962).

Dewar, J., and Fleming, J. A., Phil. Mag. (5) 36, 271 (1893).

Kan, L. S., and Lazarev, B. G., "On the Resistance Minimum of Magnesium at Low Temperatures," Akad. Nauk. SSSR Doklady 81, 1027-29 (1951).

MacDonald, D. K. C., and Mendelssohn, K., Proc. Roy. Soc. (London) A202, 523-33 (1950).

Meissner, W., and Voigt, B., "Messungen mit Hilfe von flüssigem Helium. XI. Widerstand der reinen Metalle in tiefen Temperaturen," (Measurements with the Help of Liquid Helium. XI. Resistance of Pure Metals at Low Temperatures), Ann. Physik (5) 7, 761-97 (1930).

Niccolai, G., "Über den elektrischen Widerstand der Metalle zwischen sehr höhen und sehr tiefen Temperaturen," (Concerning the electrical resistance of metals between very high and very low temperatures), Physik. Z. 9, 367 (1908).

Nichols, J. L., J. Appl. Phys. 26, 470 (1955).

Rorschach, H. E., and Herlin, M. A., "The Resistance Minimum in Magnesium at Low Low Temperatures," Phys. Rev. 87, 193 (Jul 1952).

Rosenberg, H. M., "The Thermal and Electrical Conductivity of Magnesium at Low Temperatures," Phil. Mag. <u>45</u>, 73-9 (1954).

Stager, R. A., and Drickamer, G. H., "Effect of Temperature and Pressure on the Electrical Resistance of Four Alkaline Earth Metals," Phys. Rev. <u>131</u>, No. 6, 2524-27 (1963).

(page 2 of 5)

Electrical Resistivity of Magnesium Cryogenic Data Memorandum No. M-17

Yntema, G. B., "Magnetoresistance of Mg, Cu, Sb, and Al at Liquid Helium Temperatures," Phys. Rev. <u>91</u>, 1388-94 (Sept 1953).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data" and are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273 °K. Since magnesium is an anisotropic metal, we list suggested values of ρ_{273} for Mg $_{\parallel}$, Mg $_{\perp}$, and polycrystalline magnesium to be used in calculating electrical resistivity from these

ratios. These values are: and $\rho_{(||)_{273}} = 3.48 \times 10^{-6}$ ohm cm, $\rho_{(\perp)_{273}} = 4.18 \times 10^{-5}$ ohm cm, $\rho_{(\perp)_{273}} = 4.18 \times 10^{-5}$ ohm cm,

These values are from Grüneisen (1945).

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The values listed in the Landolt-Börnstein tables are those reported by Meissner and Voigt; Niccolai: Rosenberg; and Yntema; while those values listed in the International Critical Tables are from Dewar and Fleming. Those primary sources are listed above under "Other References". The original authors are used in labeling the curves on the graph.

The sample used by Meissner and Voigt is reported by Landolt-Börnstein as polycrystalline and annealed in a vacuum at 250°C for 2.5 hours. The sample used by Yntema was of a polycrystalline nature with less than 0.02% impurities present. The Yntema sample was also annealed but no mention is made of conditions. The sample used by Niccolai was reported as polycrystalline with very few impurities present. Rosenberg's sample was a 1.5 mm diameter rod (99.95% pure) which was annealed in vacuo at 500°C for six hours.

The Goens and Schmid (1936) measurements were made with cylindrical shaped single crystals which were grown from the melt of 99.95% pure starting material. Only two resistivity values are given for a temperature of 18.0°C:

$$p_{11} = 3.77_5 \times 10^{-6}$$
 ohm cm and
 $p_{11} = 4.53_0 \times 10^{-5}$ ohm cm.

Grüneisen (1945) uses Goens and Schmid's data to determine the resistivity values at 0°C:

$$\rho_{\parallel} = 3.48 \times 10^{-6}$$
 ohm cm and
 $\rho_{\parallel} = 4.18 \times 10^{-5}$ ohm cm

and by averaging the two using Voigt's equation, he calculates for the quasiisotrope:

 $\rho_{273} = 3.94 \times 10^{-6}$ ohm cm.

Bridgman (1952) measured the effect of pressure on electrical resistivity. His sample was from "old single crystal stock" rolled to a thickness of 0.002 inch with widths varying from 0.013 to 0.039 inch.

Spohr and Webber (1957) measured the resistivity of two specimens in the shape of rods about 9 cm long and 3 mm in diameter. The first specimen $M_g(Fe)$ was 99.98+ % pure with iron as the major contaminant and the second $M_g(Mn)$ was 99.95+ % pure with manganese as the only significant contaminant. Prior to measurements $M_g(Fe)$ was cold-worked and $M_g(Mn)$ was annealed for 24 hours at 300°C and rapidly quenched in water at 40°C. The data in the table below have been read from their graph.

Hein and Falge (1957) extended the measurements of Spohr and Webber to temperatures below $l^{\circ}K$. They used the same specimens, Mg(Fe) and Mg(Mn). The values in the table below were taken from their graph.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

(page 3 of 5)

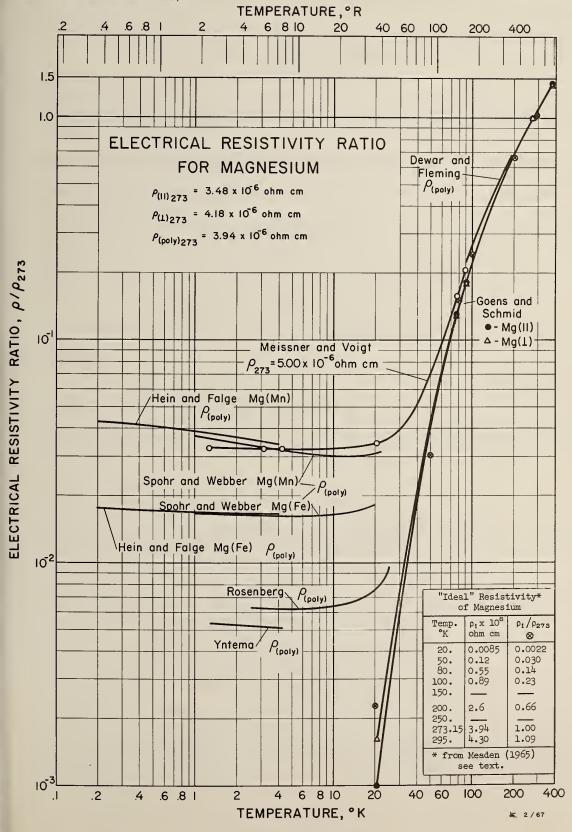
Tables of Values of Electrical Resistivity

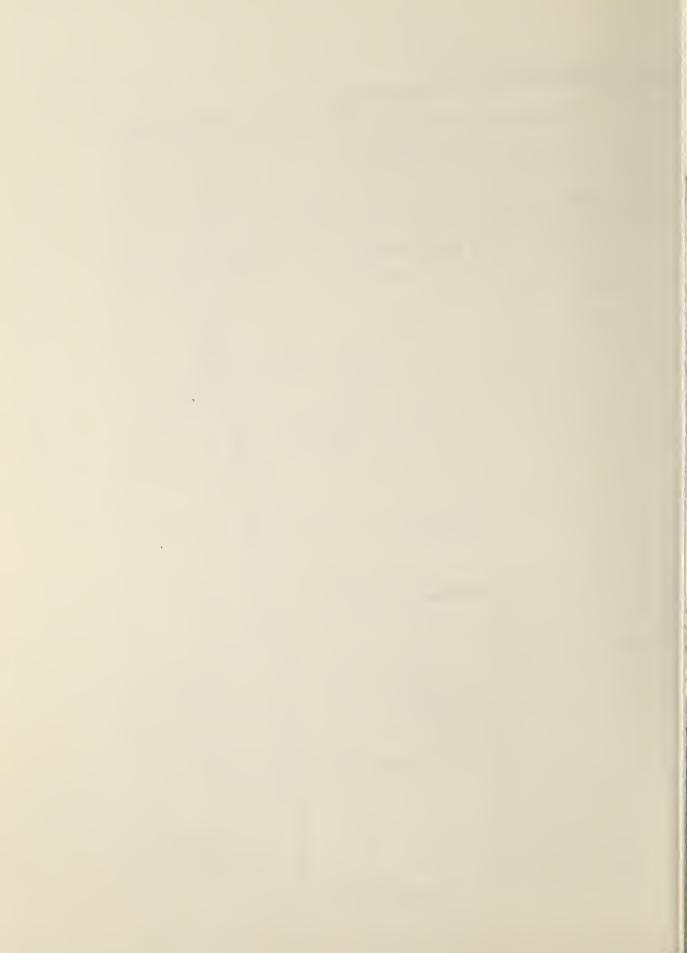
 $\label{eq:rho} \begin{array}{l} \rho & = \mbox{Resistivity, (ohm cm)} \\ \rho_{\mbox{273}} & = \mbox{Resistivity at 273°K, (ohm cm)} \end{array}$

Dewar and F	leming (1893)	Meissner and Voigt (1930)		Yntem	a (1953)		
Temp. °C	100 p/p ₂₇₃	Temp.** °K	R/R 273	Temp. °K	R/R ₂₇₃		
- 78.3* - 80 -100 -120 -140 -160 -180 -182.9*	68.2* 67.4 59.0 50.5 41.9 33.2 24.4 23.0*	1.27 † 3.16 4.20 20.46 77.61 88.19 273.16 †	0.0329 0.0326 0.0323 0.0344 0.1576 0.2006 1.0000	1.30 4.21	0.00537 0.00516		
** The sec	* Results of actual observations. All other values from interpolations.						

Temp.	Resistance R	e Ratio, R/Ro*	
°C	°K	Mg II	Mg ⊥
+100	373.15	1.429	1.421
0	273.15	1.000	1.000
-183.1	90.05	0.182,	0.179 ₈
-195.25	77.90	0.1313	0.1279
-252.8	20.35	0.0010	0.0016

(page 4 of 5)


Rosenbe	Rosenberg (1954)				
Temp. °K	ρ/ρ ₂₇₃				
2.5 5 10	0.00630* 0.00623* 0.00632*				
15 25	0.0068 0.0096				
* The fifth decimal place is in doubt.					


Bridgman (1952)						
(Resistance compared to resistance at room temperature and one atmosphere pressure.)						
Pressure R/R _o Pressure R/R _o kg/cm ² kg/cm ²						
0 10000 20000 30000 40000 50000	1.000 0.953 0.916 0.886 0.859 0.837	60000 70000 80000 90000 100000	0.817 0.800 0.786 0.776 0.767			

Spohr and Webber (1957) *						
Temp.	Resistivity,	$\rho \ge 10^8$ ohm cm	P/P273			
°K	Mg(Fe)	Mg(Fe) Mg(Mn)		Mg(Mn)		
1 3 7 10 12 15 17 20 22	6.624 6.50 6.46 6.47 6.53 6.61 6.78 6.95 7.25	14.79 13.21 12.70 12.24 12.00 11.90 11.87 11.95 12.20 12.40	0.0168 0.0165 0.0164 0.0164 0.0166 0.0168 0.0172 0.0172 0.0276 0.0184	0.0375 0.0335 0.0322 0.0311 0.0305 0.0302 0.0301 0.0303 0.0310 0.0315		
* read	from graph.					

Hein and Falge (1957) *						
Temp.	Resistivity,	$\rho \ge 10^8$ ohm cm	ρ/ρ273			
°K	Mg(Fe)	Mg(Mn)	Mg(Fe)	Mg(Mn)		
0.2 0.4 0.8 1.2 1.6 2.0 2.4 2.8	6.92 6.86 6.75 6.70 6.66 6.60 6.60 6.59	16.90 16.40 15.66 15.18 14.78 14.48 14.20 13.96	0.0176 0.0174 0.0171 0.0170 0.0169 0.0168 0.0168 0.0167	0.0429 0.0416 0.0397 0.0385 0.0375 0.0368 0.0360 0.0354		
2.0 3.2 3.6 4.0	6.59 6.59 6.58 6.58	13.96 13.72 13.60 13.48	0.0167 0.0167 0.0167 0.0167	0.0354 0.0348 0.0345 0.0342		
* read f	rom graph.					

Electrical Resistivity of Magnesium Cryogenic Data Memorandum No. M-17

PROJECT NO. 3150123

FILE NO. M-18

ELECTRICAL RESISTIVITY OF MOLYBDENUM, Mo (Atomic Number 42)

(page 1 of 4)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co., Inc., 124-35 (1929).

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Holmwood, R. A., and Glang, R., "Resistivity and Temperature Coefficient of Pure Molybdenum," J. Chem. Eng. Data <u>10</u>, 162-3 (1965).

Kannuluik, W. G., "The Thermal and Electrical Conductivities of Several Metals Between -183°C and 100°C," Proc. Roy. Soc. (London) <u>A141</u>, 159-68 (1931).

McLennan, J. C., Howlett, L. E., and Wilhelm, J. O., "On the Electrical Conductivity of Certain Metals at Low Temperatures," Trans. Roy. Soc. (Canada) <u>23</u>, 287-306 (1929).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

White, G. K., and Woods, S. B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperatures," Phil. Trans. Roy. Soc. (London) <u>A251</u>, 273-302 (1959).

Other References:

Blom, E. C., "Temperature Coefficient of Resistance of Molybdenum," Phys. Rev. 13, 308 (1919).

Bridgman, P. W., "The Electric Resistance to 30,000 kg/cm² of Twenty Nine Metals and Intermetallic Compounds," Proc. Am. Acad. Arts Sci. 79, 149-79 (1951).

Goree, W. S., "Electrical Conductivity of Metals at High Pressures and Low Temperatures," Univ. of Florida, Gainesville, Ph.D. Thesis (1964), (Avail. from Univ. Microfilms, Ann Arbor, Mich., Order No. 65-5985).

Holborn, L., Ann. Physik 59, 145 (1919).

Meissner, W., Physik. Z. 29, 897-904 (1928).

Meissner, W., and Voigt, B., "Messungen mit Hilfe von flüssigem Helium. XI. Widerstand der reinen Metalle in tiefen Temperaturen," (Measurements with the Help of Liquid Helium. XI. Resistance of Pure Metals at Low Temperatures), Ann. Physik 7, 892-936 (1930).

Northcott, L , Molybdenum, Butterworths, London (1956)

Taylor, R. E., and Finch, R. A., "The Specific Heats and Resistivities of Molybdenum, Tantalum, and Rhenium from Low to Very High Temperatures," North Am. Aviation Inc., Atomics Intern. Div., Canoga Park, Calif., NAA-SR-6034 (1961) Contr. AT(11-1)-Gen-8, 32 pp.

Taylor, R. E., and Finch, R. A., "The Specific Heats and Resistivities of Molybdenum, Tantalum, and Rhenium," J. Less Common Metals <u>6</u>, No. 4, 283-94 (Apr 1964).

Tye, R. P., "Preliminary Measurements on the Thermal and Electrical Conductivities of Molybdenum, Niobium, Tantalum and Tungsten," J. Less Common Metals 3, No. 1, 13-18 (Feb 1961).

Volkenshtein, N. V., Romanov, E. P., Starostina, L. S., et al., "Temperature Dependence of Electric Resistance of Molybdenum Single Crystals," Fiz. Metal. i Metalloved <u>17</u>, No. 4, 627-9 (1964).

Volkenshteyn, N. V., Starostina, L. S., Startsev, V. Ye., and Romanov, Ye. P., "Temperature Dependence of the Low-Temperature Electrical Conductivity of Molybdenum and Tungsten Single Crystals," Phys. Metals Metallog. <u>18</u>, 85-90 (1964), Transl. of Fiz. Metal. i Metalloved. <u>18</u>, No. 6, 888-94 (1964).

(page 2 of 4)

Worthing, A. G., "Physical Properties of Well Seasoned Molybdenum and Tantalum as a Function of Temperature," Phys. Rev. 28, 190-201 (1920).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data" and are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. When the actual values of ρ_{273} for the samples used by the several investigators are not available, a datum value reported by Holmwood and Glang ($\rho_{273} = 5.0 \times 10^{-8}$ ohm cm) is suggested for calculating values of electrical resistivity from these ratios.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The values listed in the Landolt-Börnstein tables are those reported by Meissner and Voigt; and Blom; while the values listed by the International Critical Tables are from Holborn. The samples used by both authors are listed as polycrystalline with no mention made of impurities present. No reference is made as to the nature of the sample used by Holborn, and no information is available on mechanical strain or heat treatment for any of the samples from any of the above sources of data. Meissner& Voigt gave $\rho_{273} = 5.22 \times 10^{-6}$ ohm cm. Blom gave $\rho_{273} = 4.4 \times 10^{-6}$ ohm cm.

The McLennan et al. (1929) wire sample was "baked in vacuo at a high temperature for a number of hours" prior to measurement. They do not list the purity of the sample.

Kannuluik (1931) used a 99.83% pure wire sample.

The three samples used by White and Woods (1959) were 99.9% pure wires. One sample was vacuum annealed at 1350°C prior to measurement, but the other two were not given any further treatment. The tabular data are smoothed values obtained from large-scale graphs.

Holmwood and Glang (1965) measured the resistivity of a 99.999% molybdenum bar, zone purified in vacuum and nearly single crystalline.

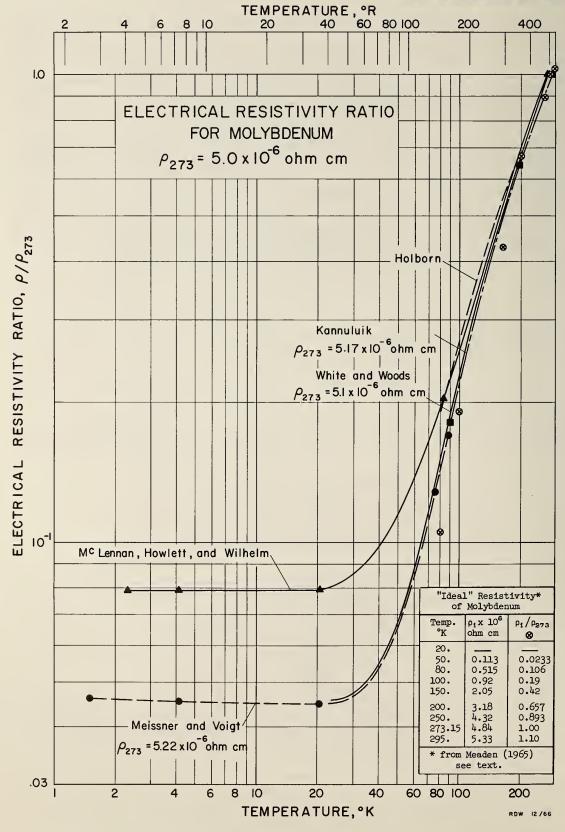
The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

Tables of Values of Electrical Resistivity

 $\rho = \text{Resistivity, (ohm cm)} \\ \rho_{273} = \text{Resistivity at 273°K, (ohm cm)} \\ R = \text{Resistance, (ohm)} \\ R_{273} = \text{Resistance at 273°K, (ohm)}$

Holborn (1919)				
Temp. °C	100R/R ₂₇₃			
- 78.2 - 80* -100* -120*	66.60 65.9 57.4 48.9			
-140* -160* -180* -192.5	40.5 32.2 24.2 19.11			
* Values from interpolation				

Mc Lennan, Howlett,	and Wilhelm (1929)
Temp.	Resistance Ratio
°K	R/R _{0°C}
2.3	0.079
4.2	0.079
20.6	0.079
84.1	0.206
273.1	1.00
298.6	1.12


Electrical Resistivity of Molybdenum Cryogenic Data Memorandum No. M-18

Meissner and	d Voigt (1930)	Kannuluik (1931)				
Temp. °K	P/P273*	Sample	Temp. °C	Temp. °K	Specific Resistance ρ x l0 ⁶ ohm cm	P/P273
1.5 4.2 20.4 77.8 86.9 273.16 * $\rho_{273} = 5.22$ $\rho_{1.5} = 0.241$	0.0462* 0.0455 0.0448 0.1370 0.1701 1.0000 x 10 ⁻⁶ ohm cm; x 10 ⁻⁶ ohm cm.	Mo 1 Mo 2	-183.0 - 78.5 0. 100. -183.0 78.5 0. 100.	90.15 194.65 273.15 373.15 90.15 194.65 273.15 373.15	0.952 3.39 5.25 7.67 0.882 3.33 5.17 7.56	0.181 0.646 1.00 1.46 0.171 0.644 1.00 1.46

White and Woods (1959)					
Temp. °K	"Ideal resistivity" $\rho_1 \times 10^6$ ohm cm	Resistivity, $\rho \times 10^6$ ohm cm $\rho = \rho_1 + \rho_0$ where $\rho_0 = 0.227 \times 10^{-6}$ ohm cm	P/ P ₂₇₃		
25 30 40 50 60 70 80 90 100 120 140 160 180 200 220 250 273 295	$\begin{array}{c} 0.004_{6} \\ 0.01_{2} \\ 0.04_{7} \\ 0.11_{3} \\ 0.21_{6} \\ 0.35_{4} \\ 0.51_{5} \\ 0.71_{4} \\ 0.92 \\ 1.36 \\ 1.8_{2} \\ 2.2_{7} \\ 2.7_{3} \\ 3.1_{6} \\ 3.6_{4} \\ 4.3_{2} \\ 4.8_{4} \\ 5.3_{3} \end{array}$	0.232 0.239 0.274 0.340 0.443 0.581 0.742 0.941 1.147 1.587 2.047 2.497 2.957 3.407 3.867 4.547 5.557	0.0458 0.0472 0.0541 0.0671 0.8874 0.1147 0.1464 0.1857 0.2264 0.3132 0.4040 0.4928 0.5836 0.6724 0.7632 0.8974 1.0000 1.0967		

Holmwood and Glang (1965)						
Temp. °C	Temp. °K	Resistivity* $\rho \times 10^6$, ohm cm				
-196 0 25 50 75 100	77.15 273.15 298.15 323.15 348.15 373.15	0.486 5.00 5.57 6.17 6.78 7.40				
	* These values are not plotted on the Electrical Resistivity of Molybdenum					

Electrical Resistivity of Molybdenum Cryogenic Data Memorandum No. M-18

78

8

CRYOGENIC DATA MEMORANDUM

PROJECT NO. 3150123

FILE NO. M-19

ELECTRICAL RESISTIVITY OF NICKEL, Ni (Atomic Number 28)

(page 1 of 5)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc., 124-35 (1929).

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Broom, T., "The Effect of Temperature of Deformation on the Electrical Resistivity of Cold-Worked Metals and Alloys," Proc. Phys. Soc. (London) B65, 871-81 (1952).

Greig, D., and Harrison, J. P., "The Low Temperature Electrical Transport Properties of Nickel and Dilute Nickel-Copper Alloys," Phil. Mag. <u>12</u>, No. 115, 71-79 (1965).

Kemp, W. R. G., Klemens, P. G., and White, G. K., "Thermal and Electrical Conductivities of Iron, Nickel, Titanium, and Zirconium at Low Temperatures," Australian J. Phys. 9, 180-88 (1956).

Kondorsky, E., Galkina, O. S., and Tchernikova, L. A., "Nature of Electrical Resistivity of the Ferromagnetic Metals at Low Temperatures," J. Appl. Phys. <u>29</u>, No. 3, 243-6 (1958), also Zh. Eksperim. i Teor. Fiz. <u>34</u>, No. 5, 1070-6 (1958).

Meaden, G. T., <u>Electrical Resistance of Metals</u>, Plenum Press, New York (1965) 218 p.

Meissner, W., and Voigt, B., "Messungen mit Hilfe von flussigem Helium, XI. Widerstand der reinen Metalle in tiefen Temperaturen," (Measurements with the Help of Liquid Helium, XI. Resistance of Pure Metals at Low Temperatures), Ann. Physik (5) 7, 892 (1930).

Sudovtsov, A. I., and Semenenko, E. E., "Peculiarities of the Temperature Dependence of the Electrical Resistance of Ferromagnetic Metals at Low Temperatures," Zh. Eksptl. i Teor. Fiz. <u>31</u>, 525 (1956), Soviet Phys. JETP <u>4</u>, 592 (1957).

White, G. K., and Woods, S. B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperatures," Phil. Trans. Roy. Soc. (London) <u>A251</u>, 273-302 (1959).

Other References:

Bridgman, P. W., "The Electric Resistance to 30,000 kg/cm² of Twenty Nine Metals and Intermetallic Compounds," Proc. Am. Acad. Arts Sci. 79, 149-79 (1951).

Dewar, J., Proc. Roy. Soc. (London) 73, 244 (1904).

Fleming, J. A., Proc. Roy. Soc. (London) 66, 50 (1900).

Grüneisen, E., "Elektrische Leitfahigkeit der Metalle bei tiefen Temperaturen," (Electrical Conductivity of Metals at Low Temperatures), Ergebn. exakt. Naturw. <u>21</u>, 50-116 (1945).

Meissner, W., Physik. Z. 27, 725 (1926).

Mott, N. F., "Resistance and Thermoelectric Properties of Transition Metals," Proc. Roy. Soc. (London) <u>A156</u>, 368-82 (1936).

Schwerer, F.C., and Silcox, J., "Electrical Resistivity of Nickel at Low Temperatures," Phys. Rev. Letters 20, No. 3, 101-3 (Jan 1968).

Volvick, G., "Influence de la pression d'un gaz neutre sur la resistance d'un fil de nickel," (Effect of the Pressure of a Neutral Gas on the Resistance of Nickel Wire), Compt. Rend. <u>252</u>, 1285-87 (1961).

Wise, E. M., Proc. Inst. Radio Engrs. 25, 714 (1937).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data" and are presented here as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. When the actual values of ρ_{273} for the samples used by the several investigators are not available, a datum value reported by White and Woods (1959) ($\rho_{273} = 6.23 \times 10^{-6}$ ohm cm) is suggested for calculating values of electrical resistivity from these ratios.

٦

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The values listed in the Landolt-Bornstein tables are those reported by Meissner and Wise; while those values appearing in the International Critical Tables are from Dewar and Fleming. These primary references are cited above under "Other References". The original authors are used in labeling both curves on the graph.

The Landolt-Bornstein tables list the sample used by Wise as polycrystalline with 0.01% impurities of unknown composition. A value of 6.14×10^{-6} ohm cm was reported by Wise for 273°K. The sample used by Meissner is reported as polycrystalline and was annealed in a hydrogen atmosphere.

Meissner and Voigt (1930) report the same data as Meissner (1926).

Broom's sample (1952) was 99.8% pure nickel wire and was annealed for two hours at 600°C before measurements were made. The values in the table below were before deformation.

The purity of the nickel sample used by Kemp, et al. (1956) was greater than 99.99%. The sample was in the form of a 2 mm diameter rod which was annealed four hours in vacuo at 750°C prior to measurement.

The Sudovtsov and Semenenko (1957) paper available to us was the Russian version and therefore I could not find out anything about the sample.

The nickel wires used by Kondorsky et al. (1958) were made from chemically pure material. The specimens were heated in a vacuum at 900 °C for one hour and then cooled slowly within the furnace. The residual resistivity was 0.20 x 10^{-6} ohm cm.

White and Woods (1959) used 99.997% pure nickel rods which were annealed in vacuo at 800 °C prior to measurement. These smoothed tabular values were read from a large-scale graph.

Greig and Harrison (1965) used 99.998% pure nickel rod with 2 mm diameter which had been annealed for 12 hours at 850°C. The values in the table below were read from their graph.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

Tables of Values of Electrical Resistivity

ρ = Resistivity, (ohm cm)

P273 = Resistivity at 273°K, (ohm cm)

Dewar and Fleming (1904, 1900)						
Temp. °C	Temp. °K	100 p/ p27 3	Temp. °C	Temp. °K	100 P/ P273	
- 78.3 - 80 † -100 †	194.85 193.15 173.15	61.3 60.5 51.8	-180 † -182.9 -200 †	93.15 91.25 73.15	21.7 20.8 15.6-	
-120 † -140 † -160 †	153.15 133.15 113.15	43.7 36.1 28.7	-220 † -240 † -252.7	53.15 33.15 20.45	11.2 8.9 8.5	
	t 1	Values are fro	m interpolation			

Electrical Resistivity of Nickel Cryogenic Data Memorandum No. M-19

Meissner and Voigt (1930) Meissner (1926)		
Temp.* R/R ₂₇₃ ** °K		
1.34† 4.21 20.40	0.00503 0.00508 0.00662	
78.8 0.0919 87.4 0.1179 273.16† 1.0000		
* The second decimal place is in doubt. ** The fifth decimal place is in doubt. † $p_{1.34} = 0.035 \times 10^{-6}$ ohm cm. $p_{273} = 7.07 \times 10^{-6}$ ohm cm.		

Broom (1952)			
Temp. °C	Temp. °K	Resistivity p x10 ⁶ ohm cm	P/ P273
-183.0	90.15	1.77	0.24
- 78.5	194.65	4.59	0.62
0.0	273.15	7•37	1.00
100.0	373.15	11.56	1.57

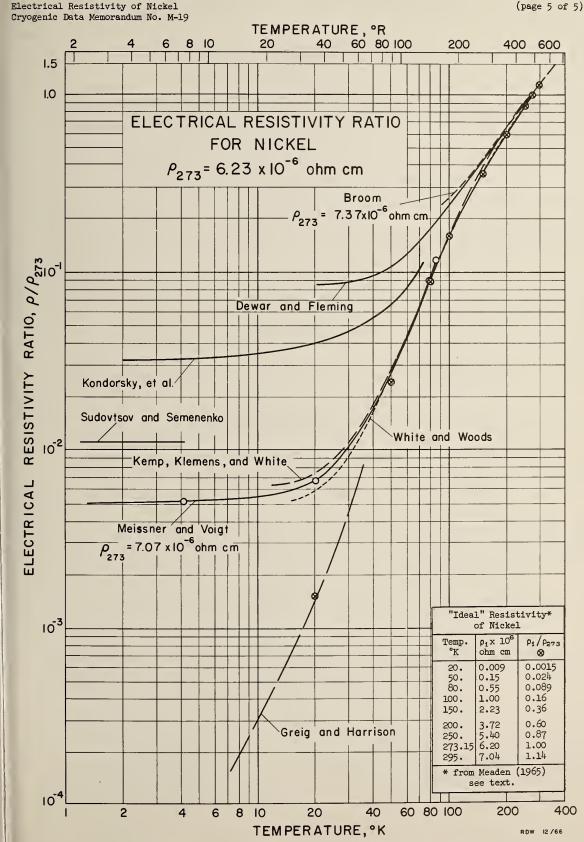
Kemp, Klemens, and White (1956) (read from graph)			
Temp.	"Ideal Resistivity"	Resistivity, $\rho \ge 10^6$ ohm cm	ρ, ρ ₂₇₃
· K	ρ _i x 10 ⁶ ohm cm	$\rho = \rho_1 + \rho_0$ (where $\rho_0 = 0.0347 \times 10^{-6} \text{ ohm cm}$)	
12 15 17 27 38	0.0043 0.0055 0.0075 0.024 0.066	0.0390 0.0402 0.0422 0.0587 0.101	0.0063 0.0065 0.0068 0.0095 0.0163
57 78 110 160 293	0.20 0.45 1.3 2.5 7.2	0.235 0.485 1.33 2.53 7.22*	0.0379 0.0782 0.215 0.408 1.166

* Reported in text.

Sudovtsov and Semenenko (1957) (read from graph)		
Temp. R/R ₂₇₃ °K		
1.2 1.6 2.0 2.6 3.0 3.6 4.2	0.010105 0.010108 0.010112 0.010120 0.010125 0.010136 0.010148	

L

Kondorsky, Galkina and Tchernikova (1958) (read from graph)		
Temp. °K	$\begin{array}{c} \text{Resistivity} & \rho/\rho_{273} \\ \rho \ x \ 10^6 & \text{ohm cm} \end{array}$	
2 20 40 60 73	0.20 0.25 0.35 0.50 0.71	0.032 0.040 0.056 0.081 0.11


(page 3 of 5)

(page 4 of 5)

	White and Woods (1959)			
Temp. °K	"Ideal Resistivity" $\rho_{\rm i} \ge 10^6 \rm ohm \ cm$	Resistivity, $\rho \propto 10^6$ ohm cm $\rho = \rho_i + \rho_0$ (where $\rho_0 = 0.0280 \propto 10^{-6}$ ohm cm)	P/ P273	
15	$\begin{array}{c} 0.00^{4}{}_{5} \\ 0.009 \\ 0.017 \\ 0.030 \\ 0.073 \\ 0.15 \\ 0.2^{4}{}_{5} \\ 0.38 \\ 0.55 \\ 0.75 \\ 1.0_{0} \end{array}$	0.0325	0.0052	
20		0.037	0.0059	
25		0.045	0.0072	
30		0.058	0.0093	
40		0.101	0.0162	
50		0.178	0.0286	
60		0.273	0.0438	
70		0.408	0.0655	
80		0.578	0.0928	
90		0.778	0.125	
100		1.028	0.165	
120	1.4_{6}^{*} 1.9_{7} 2.5_{2} 3.1_{0} 3.7_{2} 4.3_{6} 5.4_{0} 6.2_{0} 7.0_{4}	1.488	0.239	
140		1.998	0.321	
160		2.548	0.409	
180		3.128	0.502	
200		3.748	0.602	
220		4.388	0.705	
250		5.428	0.872	
273		6.228	1.00	
295		7.068	1.13	

Greig and Harrison (1965) (read from graph)		
Temp.Resistivity $\rho / \rho_{27.3}$ °K $\rho \times 10^6$ ohm cm		
7.5	0.001	0.00016
10.05 0.002 0.00032		
15.05 0.005 0.00081		
21.0 0.01 0.0016		
26.0 0.02 0.0032		
35.0	0.05	0.0081

82

CRYOGENIC DATA MEMORANDUM

PROJECT NO. 3150123

FILE NO. M-20

ELECTRICAL RESISTIVITY OF NIOBIUM, Nb (Atomic Number 41)

(page 1 of 4)

Sources of Data:

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Bridgman, P. W., "The Resistance of 72 Elements, Alloys and Compounds to 100,000 kg/cm²," Proc. Am. Acad. Arts Sci. <u>81</u>, No. 4, 165-251 (1952).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

White, G. K., and Woods, S. B., "Low Temperature Resistivity of Transition Elements: Vanadium, Niobium, and Hafnium," Can. J. Phys. <u>35</u>, 892-900 (1957).

White, G. K., and Woods, S. B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperatures," Phil. Trans. Roy. Soc. (London) <u>A251</u>, No. 995, 273-302 (1959).

Other References:

Argent, B. B., and Milne, G. J. C., "The Physical Properties of Niobium, Tantalum, Molybdenum and Tungsten," J. Less Common Metals 2, 154-62 (1960).

Bridgman, P. W., "The Electric Resistance to 30,000 kg/cm² of Twenty Nine Metals and Intermetallic Compounds," Proc. Am. Acad. Arts Sci. <u>79</u>, 149-79 (1951).

Mc Lennan, J. C., Howlett, L. E., and Wilhelm, J. O., "On the Electrical Conductivity of Certain Metals at Low Temperatures," Trans. Roy. Soc. Can. Sect. III, 23, 287-306 (1929).

Meissner, W., Franz, H., and Westerhoff, H., Ann. Physik (5) 17, 593 (1933).

Potter, H. H., "Electrical Resistance and Thermoelectric Power of the Transition Metals," Proc. Phys. Soc. (London) 53, 695-705 (1941).

Reimann, A. L., and Grant, K., Phil. Mag. (7) 22, 34 (1936).

Tye, R. P., "Preliminary Measurements on the Thermal and Electrical Conductivities of Molybdenum, Niobium, Tantalum and Tungsten," J. Less Common Metals <u>3</u>, No. 1, 13-18 (1961).

Comments:

The data presented here were taken from the references cited above under "Sources of Data" and are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The value of the electrical resistivity at 273°K (ρ_{273}) for niobium to be used in calculating values of electrical resistivity (ρ) is 13.96 x 10⁻⁶ ohm cm from White and Woods (1959). These data should not be extrapolated to lower temperatures as niobium becomes a superconductor at about 9.3°K.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The values listed in the Landolt-Börnstein tables are those reported by Meissner, Franz and Westerhoff; and Reimann and Grant, cited above under "Other References". The Landolt-Börnstein tables list the samples used by Meissner, et al. as polycrystalline with 0.0% 0_2 and 0.0% Ta impurities present. No other pertinent information is given about either of the samples. Reimann and Grant reported a value of $\rho_{273} = 16.1 \times 10^{-6}$ ohm cm.

Bridgman (1952) measured the effect of pressure on electrical resistivity of metal sheets of 0.0012 inch thickness. The purity of the sample was not given. His reported values are ratios of resistance at the given pressure to resistance at room temperature and one atmosphere pressure.

The niobium samples used by White and Woods (1957) were 99.7 and 99.9% pure and were in the form of rods and wires. Their table of values "may be regarded as somewhat tentative below 30°K, Mattheissen's rule not being strictly valid". They found that niobium becomes superconducting at 9.25°K.

Electrical Resistivity of Niobium Cryogenic Data Memorandum No. M-20

White and Woods (1959) cite their 1957 work as the basis for their tabular values. These values differ from the earlier ones in the lower temperature region. They note that there is appreciable uncertainty in the value of ρ_0 .

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

Tables of Values of Electrical Resistivity

ρ = Resistivity, (ohm cm)

 ρ_{273} = Resistivity at 273°K, (ohm cm)

Meissner, Franz a	nd Westerhoff (1933)
Temp.	R /R273
°K	
• 9•33	0.035
20.4	0.0617
78	0.2416
273.16	1.0000

Br	Bridgman (1952)		
Pressure kg/cm ²	R/R _o (Resistance compared with the resistance at room temperature and l atmosphere)		
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000	1.000 0.986 0.973 0.961 0.950 0.938 0.928 0.918 0.909 0.901 0.894		

White and Woods (1957)			
Temp. °K	"Ideal Resistivity" $\rho_i \propto 10^6 \text{ ohm cm}$	Resistivity, $\rho \ge 10^6$ ohm cm $\rho = \rho_1 + \rho_0$ (where $\rho_0 = 0.46 \ge 10^6$ ohm cm)	ρ/ β273
15	0.03 ₈	0.498	0.0357
20	0.084	0.544	0.0390
30	0.25	0.71	0.0508
40	0.56	1.02	0.0730
50	0.97	1.43	0.102
75	2.36	2.82	0.202
100	3.90	4.36	0.312
150	7.0	7.46	0.534
200	9.8	10.26	0.735
250	12.3	12.76	0.914
273	13.5	13.96	1.00
295	14.5	14.96	1.07

Electrical Resistivity of Niobium Cryogenic Data Memorandum No. M-20

White and Woods (1959)			
Temp. °K	"Ideal Resistivity" p _i xl0 ⁶ ohm cm	Resistivity, $\rho \ge 10^6$ ohm cm $\rho = \rho_1 + \rho_0$ (where $\rho_0 = 0.46 \ge 10^6$ ohm cm)	P/ P273
15 20	0.035 0.08	0.495 0.54	0.035 ¹ 4 0.0387
25 30 40	0.1 ₅ 0.25 0.5 ₆	0.61 0.71 1.02	0.0437 0.0508 0.0730
50 60	0.97 1.5	1.43 1.96	0.102 0.140
70 80	2.07 2.68	2.53 3.14 3.76	0.181 0.225 0.269
90 100 120	3.30 3.95 5.2	4.41 5.66	0.316 0.405
140 160	6.4 7.55	6.86 8.01	0.491 0.574 0.656
180 200 220	8.7 9.8 10.8	9.16 10.26 11.26	0.656 0.735 0.806

12.3

13.5

14.5

250

273

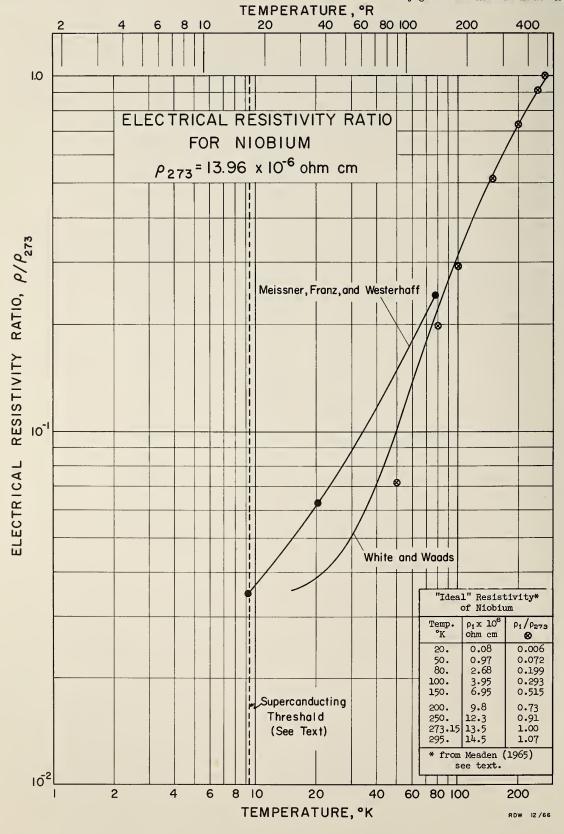
295

12.76

13.96

14.96

0.914


1.00

1.07

(page 3 of 4)

87

(page 4 of 4)

PROJECT NO. 3150123

FILE NO. M-21

ELECTRICAL RESISTIVITY OF PLATINUM, Pt (Atomic Number 78)

(page 1 of 7)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc., 124-35 (1929).

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Cath, P. G., Onnes, H. K., and Burgers, J. M., "On the Measurement of Very Low Temperatures. XXVIII. Comparison of the Platinum and the Gold Resistance Thermometers with the Helium Thermometer," Communs. Phys. Lab. Univ. Leiden No. 152c (1917).

de Haas, W. J., and de Boer, J., "The Electrical Resistance of Platinum at Low temperatures," Physica 1, 609-16 (1933-1934); Communs. Kamerlingh Onnes Lab. Univ. Leiden No. 231c.

Hoge, H. J., and Brickwedde, F. G., "Establishment of a Temperature Scale for the Calibration of Thermometers between 14° and 83°K," J. Res. Natl. Bur. Std. <u>22</u>, 351-73 (1939).

Meaden, G. T., <u>Electrical Resistance of Metals</u>, Plenum Press, New York (1965) 218 p.

Meissner, W., and Voigt, B., "Messungen mit Hilfe von flüssigem Helium. XI. Widerstand der reinen Metalle in tiefen Temperaturen," (Measurements with the Help of Liquid Helium. XI. Resistance of Pure Metals at Low Temperatures), Ann. Physik (5) 7, 892 (1930).

Powell, R. W., Tye, R. P., and Woodman, M. J., "Thermal Conductivities and Electrical Resistivities of the Platinum Metals," Platinum Metals Rev. 6, No. 4, 138-43 (1962).

Powell, R. W., Tye, R. P., and Woodman, M. J., "The Thermal Conductivity and Electrical Resistivity of Polycrystalline Metals of the Platinum Group and of Single Crystals of Ruthenium," J. Less-Common Metals <u>12</u>, No. 1, 1-10 (1967).

Van der Leeden, P., "Geleiding van warmte en electriciteit door metalen," (Conduction of heat by metals), Gedrukt Bij Drukherig Waltman, Koornmarkt 62, Te Delft 11-76 (July 1940).

White, G. K., and Woods, S. B., "Thermal and Electrical Conductivity of Rhodium, Iridium, and Platinum," Can. J. Phys. 35, 248-57 (1957).

White, G. K., and Woods, S. B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperature," Phil. Trans. Roy. Soc. (London) <u>A251</u>, No. 995, 273-302 (1959).

Other References:

Berry, R. J., "Relationship between the Real and Ideal Resistivity of Platinum," Can. J. Phys. <u>41</u>, No. 6, 946-82 (Jun 1963).

Berry, R. J., "Ideal Resistivity of Platinum below 20°K," Can. J. Phys. 45, No. 5, 1693-708 (May 1967).

Bridgman, P. W., "The Electric Resistance to 30,000 kg/cm² of Twenty Nine Metals and Intermetallic Compounds," Proc. Am. Acad. Arts Sci. 149-79 (1951).

Grüneisen, E., "Electrische Leitfahigkeit der Metalle bei tiefen Temperaturen", (Electrical Conductivity of Metals at Low Temperatures), Ergebn. exakt. Naturw. <u>21</u>, 50-116 (1945).

Hatton, J., "Effect of Pressure on the Electrical Resistance of Metals at Liquid Helium Temperatures," Fhys. Rev. <u>100</u>, No. 2, 681-4 (1955).

Henning, F., Handbuch der Physik IX, Berlin, Springer-Verlag (1926).

Holborn, L., Ann. Physik 59, 145 (1919).

Kos, J. F., and Lamarche, J. L. G., "The Electrical Resistivity of Thermometrically Pure Platinum below 11°K," Can. J. Phys. <u>45</u>, No. 2, Part 1, 339-54 (1967).

(page 2 of 7)

Meissner, W., "Thermische und elektrische Leitfähigkeit einiger Metalle zwischen 20 und 373° abs." (Thermal and Electrical Conductivity of Some Metals between 20 and 373°K), Ann. Physik <u>47</u>, No. 16, 1001-58 (1915).

Meissner, W., Physik. Z. 27, 725 (1926).

Meissner, W., and Grassmann, P., Physik. Z. 34, 516 (1933).

Onnes, H. K., and Tuyn, W., Communs. Phys. Lab. Univ. Leiden Suppl. No. 58 (1926).

Powell, R. W., Tye, R. P., and Woodman, M. J., Platinum Metals Rev. 6, 138 (1962).

Sharevshaya, D. I., and Strelkov, P. G., "The Resistance of Thermometric Platinum in the Liquid Helium Temperature Range," Izmeritel. Tekhn. No. 2, 18-19 (1960).

Van der Horst, H. D., Tuyn, W. and Onnes, H. K., Private communication with the editors of the International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, (1929).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data" and are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The value of electrical resistivity at 273°K (ρ_{273}) for platinum to be used in calculating values of electrical resistivity (ρ) is 9.60 x 10⁻⁶ ohm cm. This value is taken from White and Woods (1959).

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The values listed in the Landolt-Börnstein tables are those reported by Holborn; Meissner; and Meissner and Grassmann; while those values appearing in the International Critical Tables are from Henning; Onnes and Tuyn; and Van der Horst, Tuyn and Onnes. These primary sources are listed above under "Other References". The original authors are used in labeling the several curves on the graph. The sample used by Holborn is reported in the Landolt-Börnstein tables as cast polycrystalline with a very small amount of impurities present. The Meissner sample from the 1915 reference is reported to have been annealed. Meissner found $\rho_{273} = 9.81 \times 10^{-6}$ ohm cm. The sample used by Meissner and Grassmann is reported as an annealed polycrystalline sample with less than 0.001% of Cu and Pb impurities present.

The Cath et al. (1917) measurements were made with "extremely pure" platinum wires with 1/10 mm diameter. The wires are designated Pt-21 and Pt-26.

Meissner and Voigt (1930) report the same data as that found in the earlier Meissner paper (1928). The calculated value of ρ_{273} from the (1930) paper is 9.53 x 10⁻⁶ ohm cm.

The samples used by de Haas and de Boer (1933-1934) were 99.99% pure wires (6mm diameter) which had been previously tempered for 20 minutes at 750°C.

Hoge and Brickwedde (1939) measured the resistance of several platinum resistance thermometers in an effort to establish a method for measuring temperature below 83°K by a means other than the gas thermometer. The data for thermometer L6 was used to construct a table of smoothed values. The purity of the platinum was not stated.

Van der Leeden's (1940) measurements were made with 0.15 mm diameter wire which had been vacuum annealed at 840°C for 2 hours. The purity of the sample was not stated.

White and Woods (1957) used 99.9% pure rods which had been annealed at 1050°C prior to measurement. White and Woods (1959) used their 1957 measurements plus some additional measurements to obtain their table of smoothed values.

Powell et al. (1962) used 99.9997% pure platinum polycrystalline rods which were annealed at $\sim 1000\,^\circ\text{C}$ prior to measurement. They report one value at 273°K, ρ_{273} = 9.85 x 10^{-6} ohm cm.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

Electrical Resistivity of Platinum Cryogenic Data Memorandum No. M-21

(page 3 of 7)

Powell et al.(1967) measured the resistivity of polycrystalline rods which were annealed at 1273°K prior to measurement. The purity of the sample was ~99.999995%.

Tables of Values of Electrical Resistivity

 ρ = resistivity, (ohm cm); R = resistance, (ohm); ho_{273} = resistivity at 273°K, (ohm cm). R₂₇₃ = resistance at 273°K, (ohm).

Meissner (1915)	
Temp. ρ/ρ ₂₇₃ °K	
20.7 91.4 273.1	0.00631 0.250 1.000
* $\rho_{273} = 9.81 \times 10^{-6}$ ohm cm	

Cath, Onnes, and Burgers (1917)							
Pt- Temp. °K	21 R/R _o *	Pt- Temp. °K	26 R/R ₀ *				
273.09 250.08 230.07 211.79 170.07 160.37	1.00000 0.90890 0.82907 0.75545 0.58615 0.54627	273.09 250.08 230.07 211.79 170.07 160.37	1.00000 0.90867 0.82839 0.75453 0.58468 0.54469				
152.26 142.72 129.44 89.14 85.98 77.21	0.51277 0.47313 0.41762 0.24605 0.23249 0.19475	152.26 142.72 129.44 89.14 85.98 77.21	0.51111 0.47132 0.41570 0.24375 0.23014 0.19233				
67.78 64.91 61.04 56.83 50.31 44.38	64.91 0.14261 64.91 0.14011 61.04 0.12667 61.04 0.12419 56.83 0.10959 56.83 0.10704 50.31 0.084278 0.084278 0.00000000000000000000000000000000000						
43.83 43.78 43.09 41.39 39.48 36.29	0.061757 0.061566 0.059297 0.054016 0.048324 0.039554						
36.25 32.83 31.32 29.88 29.42 28.40	32.83 0.031219 32.83 0.028743 31.32 0.027921 31.31 0.025470 29.88 0.025195 29.88 0.022698 29.42 0.024253 0.024253 0.022698						
27.30 20.62 20.52 20.50 19.04 18.08	0.020618 0.012535 0.012415 0.012412 0.01235 0.011235	27.30 20.58 20.52 20.52 20.50 20.31	0.018208 0.010172 0.010103 0.010098 0.010093 0.010015				
16.94 15.36 14.20	0.0098758 0.0090808 0.0085984	20.25 18.08 14.18	0.0098924 0.0083504 0.0065589				
the valu therefor	values are a es of Van de e were not p stivity of P	r Horst et lotted on	al. and the Electri-				

Holbor	n (1919)	Meissner an Meissner	nd Voigt (1930) r (1926)			
Temp. °K	R/R 273	Temp.* °K	R /R 273 **	Temp.* °K	ρ/ρ273**	
20 81 195	0.0060 0.2060 0.6860	1.35 † 4.21 20.4 91.4 273.16 †	0.00165 0.00168 0.00607 0.250 1.000	1.35 4.2 20.4	0.00031 0.00031 0.00425	
* The second decimal place is in doubt. ** The fifth decimal place is in doubt. $\rho_{273} = 9.53 \times 10^{-6}$ ohm cm.					n cm, cm.	

	Onnes and Tuyn (1926)	Van der Horst et al. (1929)	Henning (1926)
Temp., °C	100R/R273	100R/R273	100P/P273
- 80	68.158	68.017	67.782
- 90	64.113	63.955	63.688
-100	60.053	59.874	59.576
-120	51.863	51.650	51.295
-140	43.595	43.337	42.928
-160	35.213	34.904	34.463
-180	26.709	26.356	25.885
-200	18.176	17.750	17.268
-210	14.009	13.563	
-220 -230 -240		9.587 6.030 3.252	
-250 -255 -260	1.5885 1.335	1.571 1.1263 0.894	0.5706
-265	1.239	0.810	
-270	1.225	0.7863	

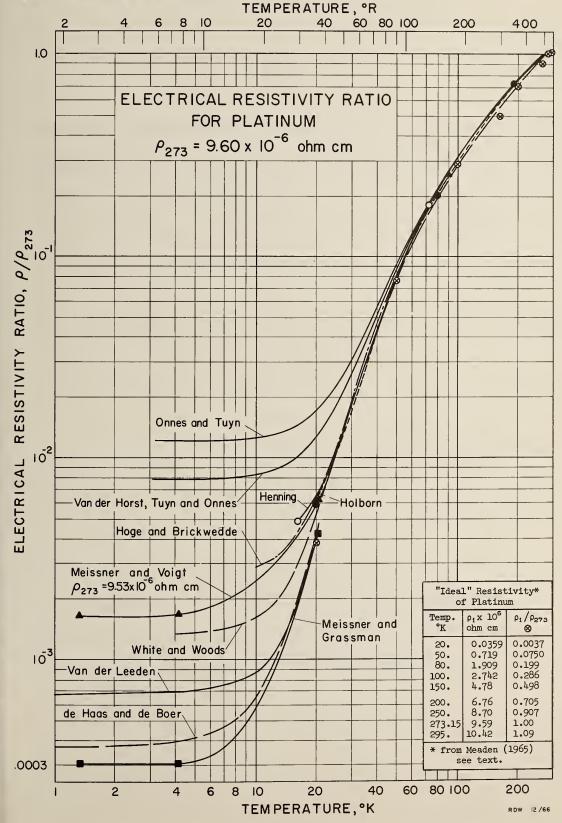
de Haas and de Boer (1933 - 1934)					
Temp. °K	R∕R _{O°C}	Temp. °K	R∕R _{O°C}		
0.00 1.07 1.68 2.49 3.36 4.25 5.28 6.75 7.41 8.51 8.82	0.0003621 0.0003638 0.0003644 0.0003712 0.0003791 0.0003902 0.000498 0.0004535 0.0004535 0.0004797 0.0005387 0.0005598	9.07 9.96 11.01 13.14 14.09 15.31 16.47 17.45 18.51 19.60 20.44	0.0005770 0.0006500 0.0007641 0.0011129 0.0013335 0.0017107 0.0021656 0.0026332 0.0031913 0.0038916 0.0038916		

Hoge and Brickwedde (1939) (smoothed values based on thermometer L6)				
Temp. °K	R/R _{o°c}			
10 13 15 20 25 30 35 40 50 60	0.002789 0.003298 0.003868 0.006513 0.011539 0.019454 0.030348 0.043967 0.077525 0.116550			
70 80 90	0.11050 0.158396 0.201338 0.244716			

	Van der Leeden (1940)						
Temp. °K	100R/R _o	Temp. °K	100R/R _o	Temp. °K	100R/Ro		
4.24 3.72 3.15 2.70 0.00	0.068474 0.067781 0.067178 0.066786 0.065760	20.43 19.42 18.26 18.23 17.38	0.4664 0.3918 0.3204 0.3215 0.2742	17.37 16.32 15.18 14.13	0.2731 0.2265 0.1839 0.1535		

	White and Woods (1957)					
Temp. °K	"Ideal Resistivity" p _i x 10 ⁶ ohm cm	Resistivity, $\rho \ge 10^6$ ohm cm $\rho = \rho_1 + \rho_0$ (where $\rho_0 = 0.0125 \ge 10^6$ ohm cm)	ρ/β273*			
6	0.0006	0.0131	0.00134			
10	0.0031	0.0156	0.00159			
15	0.0155	0.0280	0.00286			
20	0.044	0.057	0.0058			
30	0.180	0.193	0.0197			
40	0.45	0.46	0.047			
50	0.76	0.77	0.079			
75	1.72	1.73	0.176			
100	2.8 ₀	2.81	0.287			
150	4.8 ₀	4.81	0.491			
200	6.8 ₀	6.81	0.695			
273	9.8 ₀	9.81	1.00			
295	10.65	10.66	1.09			
273	9.80	9.81	1.00			
295	10.65		1.09			

* These values were not shown on the Electrical Resistivity Ratio for Platinum graph which is found on the last page of this Data Memorandum No. M-21.


(page 6 of 7)

Electrical Resistivity of Platinum Cryogenic Data Memorandum No. M-21

	White and Woods (1959)					
Temp. °K	"Ideal Resistivity" p _i x 10 ⁶ ohm cm					
4	0.00024	0.01274	0.001325			
6	0.00065	0.01315	0.001368			
8	0.0014	0.0139	0.001446			
10	0.0029	0.0154	0.00160			
15	0.0116	0.0241	0.00251			
20	0.0359	0.0484	0.00503			
25	0.0837	0.0962	0.01000			
30	0.160	0.173	0.0180			
40	0.396	0.409	0.0425			
50	0.719	0.732	0.0761			
60	1.094	1.107	0.115			
70 80 90	1.497 1.497 1.909 2.326	1.510 1.922 2.339	0.157 0.200 0.243			
100	2.742	2.755	0.287			
120	3.565	<u>3.578</u>	0.372			
140	4.375	4.387	0.456			
160	5.18	5.19	0.540			
180	5.97	5.98	0.622			
200	6.76	6.77	0.704			
220	7.54	7.55	0.785			
250	8.70	8.71	0.906			
273	9.59	9.60	1.00			
295	10.42	10.43	1.08			

Powell, Tye, and Woodman (1967)					
Temp. Resistivity* °K ρ x 10 ⁶ ohm cm					
100 2.8 200 6.9 300 10.92 400 14.72 500 18.4					
* These values are not plotted on the Electrical Resistivity of Platinum graph.					

Electrical Resistivity of Platinum Cryogenic Data Memorandum No. M-21

CRYOGENIC DATA MEMORANDUM

PROJECT NO. 3150123

FILE NO. M-22

ELECTRICAL RESISTIVITY OF SILVER, Ag (Atomic Number 47) (page 1 of 5)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co., Inc., 124-35 (1929).

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Bridgman, P. W., "The Resistance of 72 Elements, Alloys and Compounds to 100,000 kg/cm²," Proc. Am. Acad. Arts Sci. <u>81</u>, No. 4, 165-251 (1952).

Gerritsen, A. N., and Linde, J. O., "Thermal Conductivity of Some Dilute Silver Alloys," Communs. Kamerlingh Onnes Lab. Univ. Leiden No. 305b (1956).

Kannuluik, W. G., "The Thermal and Electrical Conductivities of Several Metals Between -183°C and 100°C," Proc. Roy. Soc. (London) A141, 159-68 (1931).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

Meissner, W., and Voigt, B., "Messungen mit Hilfe von flüssigem Helium. XI. Widerstand der reinen Metalle in tiefen Temperaturen," (Measurements with the Help of Liquid Helium. XI. Resistivity of Pure Metals at Low Temperatures), Ann. Physik (5) 7, 761-97 (1930).

Pawlek, F., and Rogalla, D., "The Electrical Resistivity of Silver, Copper, Aluminum, and Zinc as a Function of Purity in the Range 4 - 298°K," Cryogenics <u>6</u>, No. 1, 14-20 (1966) and Metall. <u>20</u>, No. 9, 949-56 (1966).

Van der Leeden, P., "Geleiding van warmte en electriciteit door metalen," (Conduction of heat by metals), Gedrukt Bij Drukherig Waltman, Koornmarkt 62, Te Delft 11-76 (July 1940).

White, G. K., and Woods, S. B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperatures," Phil. Trans. Roy. Soc. London <u>A251</u>, No. 995, 273-302 (1959).

Other References:

de Haas, W. J., and Van den Berg, G. J., Physica 3, 440-9 (1936) and Communs. Kamerlingh Onnes Lab. No. 241-D (1936).

Dewar, J., and Fleming, J. A., Phil. Mag. (5) 36, 271 (1893).

Fenton, E. W., Rogers, J. S., and Woods, S. B., "Lorenz Numbers of Pure Aluminium, Silver, and Gold at Low Temperatures," Can. J. Phys. <u>41</u>, 2026-33 (1963).

Goree, W. S., "Electrical Conductivity of Metals at High Pressures and Low Temperatures," Univ. of Florida, Gainesville, Ph.D. Thesis (1964) 166 pp., (Avail. from Univ. Microfilms Order No. 65-5985).

Goree, W. S., and Scott, T. A., "Pressure Dependence of Electrical Conductivity of Metals at Low Temperatures," J. Phys. Chem. Solids <u>27</u>, 835-48 (1966).

Hatton, J., "Effect of Pressure on the Electrical Resistance of Metals at Liquid Helium Temperatures," Phys. Rev. 100, No. 2, 681-4 (1955).

Holborn, L., Ann. Physik 59, 145 (1919).

Knook, B., and Van den Berg, G. J., "The Electrical Resistance of Pure Gold and Silver at Low Temperatures," Physica <u>26</u>, 505-12 (1960), Communs. Kamerlingh Onnes Lab. Univ. Leiden No. 321c (1960).

Meissner, W., Physik. Z. 27, 725 (1926).

Onnes, H. K., and Clay, J., Proc. Acad. Sci. Amsterdam <u>10</u>, 207 (1908) and Communs. Phys. Lab. Univ. Leiden No. 99c (1907).

(page 2 of 5)

Comments:

The data for this graph were taken from the references cited above under "Sources of Data" and are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. When the actual values of ρ_{273} are not available for the samples used by the several investigators, a datum value reported by White and Woods (1959) ($\rho_{273} = 1.476 \times 10^{-6}$ ohm cm) is suggested for calculating values of electrical resistivity from these ratios.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The values listed in the Landolt-Börnstein tables are those reported by Dewar and Fleming; Holborn; de Haas and Van den Berg; and Meissner; while those values appearing in the International Critical Tables are from Onnes and Clay. These primary sources are listed above under "Other References". The original authors are used in labeling the curves on the graph. The samples used by the investigators appearing in Landolt-Börnstein are all reported as polycrystalline with a small amount of impurities present. The samples used by Holborn, and de Haas and Van den Berg were annealed. The sample used by Meissner was aged. The Onnes and Clay sample was 99.82% pure silver wire. Dewar and Fleming reported one value $\rho_{278} = 1.47 \times 10^{-6}$ ohm cm.

Meissner and Voigt (1930) present the same data as Meissner (1926).

The purity of the Kannuluik (1931) sample was not given.

The samples used by Van der Leeden (1940) were 0.2 cm and 0.6 cm diameter wires designated Ag 1 and Ag 2, respectively. They were annealed at 500°C for 2 hours prior to measurement.

The purity of the Bridgman (1952) sample is not stated nor is there any mention of heat treatment made. The samples were in the form of thin sheets, 0.001 inch thick.

The samples Ag 2t and Ag 4t used by Gerritsen and Linde (1956) were annealed in "the gas" (assume air) for 4 hours at 740°K and 750°K, respectively. They were in the form of rectangular rods. No chemical analysis was available.

White and Woods (1959) rod specimens were 99.99% pure and were annealed in vacuum at 650° and 530°C. The smoothed values in the table below were taken from large-scale graphs.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

The sample used by Pawlek and Rogalla (1966) was 99.9964% pure silver wire. The wire was annealed one hour in argon at 500°C and cooled at less than 50°C/hr.

Tables of Values of Electrical Resistivity

ρ =	resistivity,	(ohm cm);	P273	=	resistivity at 273°K,	(ohm	cm).
R =	resistance,	(ohm);	R273	=	resistance at 273°K,	(ohm	cm).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Onnes and Clay (1908)									
-100 t 59.6 -160 t 34.8 -220 t 9.2 -103.81 58.087 -180 t 26.3 -240 t 2.6 -120 51.4 -183.57 24.679 -252.92 0.8913 -139.87 43.282 -195.17 19.703 -259.22 0.6942	Temp. °C									
-200 T 17.6	-100 † -103.81 -120	59.6 58.087 51.4	-160 † -180 † -183.57	34.8 26.3 24.679	-220 † -240 † -252.92	9.2 2.6 0.8913				

Electrical Resistivity of Silver Cryogenic Data Memorandum No. M-22

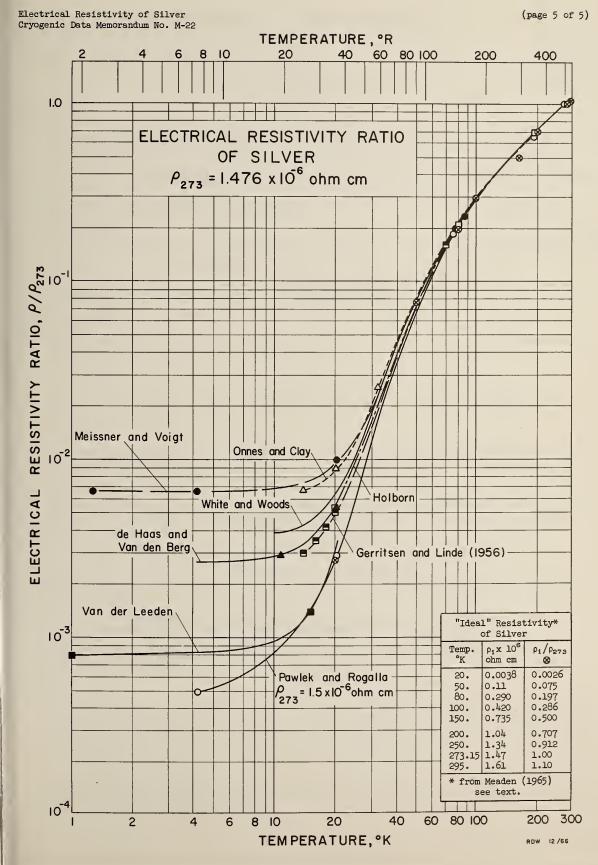
Holbor	n (1919)	9) Meissner & Voigt (1930) Meissner (1926)			as and Berg (1936)	
Temp.	P/P273	Temp.*	P/P273**	Temp.	P/P273	
°K		°K		°K		
20	0.0054	1.34 †	0.00679	4.2	0.00266	
81	0.2071	4.21	0.00682	6.0	0.00268	
195	0.6841	20.40	0.01000 8.4 0.002			
		78.85 0.1974 10.8 0.00288				
87.42 0.2349 20.4 0.00543 273.16† 1.0000						
* The second decimal place of the temperature values is somewhat in doubt.						
	** The fifth decimal place of the electrical resistivity ratio values is somewhat in doubt.					

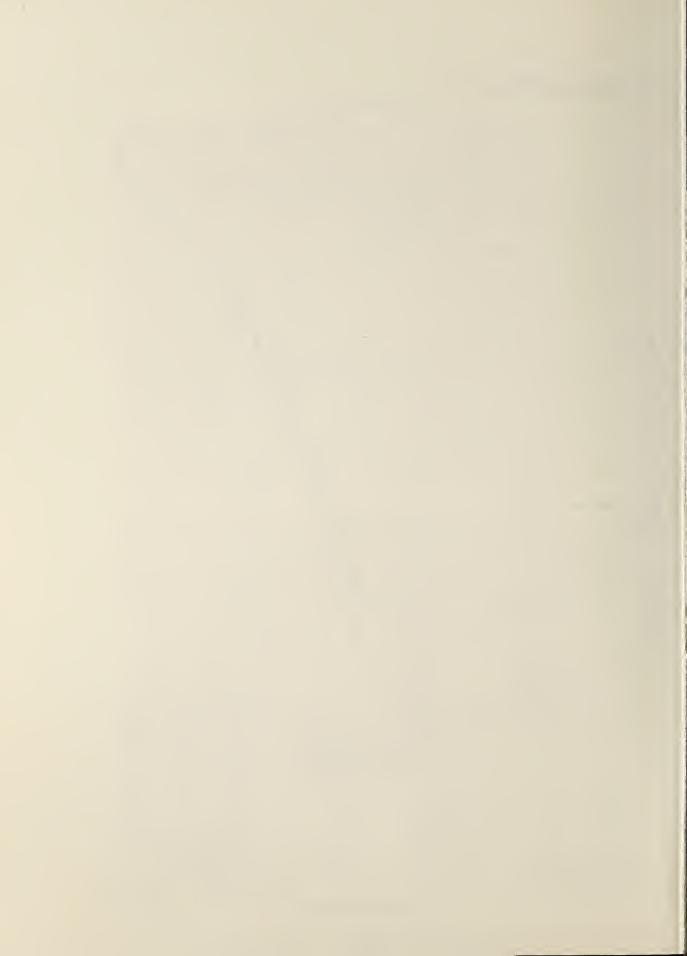
† $\rho_{273} = 1.48 \times 10^{-6}$ ohm cm; $\rho_{1.34} = 0.010 \times 10^{-6}$ ohm cm.

Kannuluik (1931)				
Sample	Temp. °C	Temp. °K	Specific Resistance ρ x 10 ⁶ ohm cm	ρ/ρ ₂₇₃ **
Ag Ag*	-183.0 - 78.5 0. 100. -183.0 - 78.5 0. 100.	90.15 194.65 273.15 373.15 90.15 194.65 273.15 373.15	0.377 1.036 1.509 2.121 0.341 1.035 1.510 2.123	0.250 0.687 1.00 1.41 0.226 0.685 1.00 1.41
* Measurements were repeated after the silver wire had re- ceived a prolonged annealing at 500 °C. **These values were not plotted on the Electrical Resistivity of Silver graph.				

Van der Leeden (1940)			
Temp.	Ag 1	Ag 2	
°K	100 R/R ₀ *	100 R/R ₀	
20.45	0.337	1.180	
19.41	0.2815	1.124	
18.23	0.232	1.058	
17.28	0.199	1.0215	
15.80	0.1605	0.959	
14.01	0.130	0.929	
0.00	0.079	0.830	
* Only the Ag l values were plotted on the Electrical Resisti- vity of Silver graph.			

Gerritsen and Linde (1956)				
Temp. °K	Resistivity ρx10 ⁶ ohm cm		p/p273	
	Ag 2t	Ag 4t	Ag 2t*	Ag 4t
14 16 18 20	0.00447 0.00519 0.00619 0.00743	0.00694 0.00758 0.00852 0.00983	0.00304 0.00353 0.00421 0.00505	0.00469 0.00512 0.00576 0.00664
70 80 90 273	0.238 0.297 0.359 1.47	0.235 0.299 0.363 1.48	0.162 0.202 0.244 1.00	0.159 0.202 0.245 1.00
* Ag 2t values were plotted.				


(page 4 of 5)


Electrical Resistivity of Silver Cryogenic Data Memorandum No. M-22

Bridgman (1952)			
(Resistance is compared with resistance at room temperature and one atmosphere pressure)			
Pressure kg/cm ²	R/R _o	Pressure kg/cm ²	R/R _o
0	1.000	50000	0.683
10000	0.910	60000	0.647
20000	0.837	70000	0.618
30000	0.775	80000	0.592
40000	0.724	90000	0.569
		100000	0.548

White and Woods (1959)			
Temp. °K	"Ideal Resistivity" p ₁ x 10 ⁶ ohm cm	Resistivity, $\rho \times 10^6$ ohm cm $\rho = \rho_0 + \rho_1$ (where $\rho_0 = 5.63 \times 10^{-9}$ ohm cm)	
10	0.0002	0.0058	0.0039
15	0.0011	0.0067	0.0045
20	0.0038	0.0094	0.0064
25	0.010	0.0156	0.0106
30	0.020	0.0256	0.0173
40	0.058	0.0636	0.0431
50	0.11	0.1156	0.0783
60	0.17	0.1756	0.1190
70	0.230	0.2356	0.1597
80	0.290	0.2956	0.2003
90	0.355	0.3606	0.2444
100	0.420	0.4256	0.2884
120	0.545	0.5506	0.3731
140	0.675	0.6806	0.4612
160	0.675	0.8006	0.5426
180	0.92	0.9256	0.6273
200	1.04	1.0456	0.7086
220	1.16	1.1656	0.7899
250	1.34	1.3456	0.9119
273	1.47	1.4756	1.0000
295	1.61	1.6156	1.0949

Pawlek and Rogalla (1966)			
Temp. Resistivity °K ρx10 ⁹ ohm cm		ρ/ Ρ273	
4.2 20.4 77.0 195.0 273.0	0.739 4.33 276.0 991.0 1500.0	0.000493 0.00289 0.184 0.661 1.000	

CRYOGENIC DATA MEMORANDUM

PROJECT NO. 3150123

FILE NO. M-23

ELECTRICAL RESISTIVITY OF TANTALUM, Ta (Atomic Number 73)

(page 1 of 4)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc., 124-35 (1929).

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Bridgman, P. W., "The Resistance of 72 Elements, Alloys, and Compounds to 100,000 kg/cm²," Proc. Am. Acad. Arts Sci. <u>81</u>, No. 4, 165-251 (1952).

Cox, M., "Thermal and Electrical Conductivities of Tungsten and Tantalum," Phys. Rev. 64, 241-47 (1943).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

White, G. K., and Woods, S. B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperatures," Phil. Trans. Roy. Soc. (London) <u>A251</u>, No. 995, 273-302 (1959).

Other References:

Bridgman, P. W., "The Electric Resistance to 30,000 kg/cm² of Twenty Nine Metals and Intermetallic Compounds," Proc. Am. Acad. Arts Sci. <u>79</u>, 149-79 (1951).

Burgers, W. G., and Basart, J. C. M., Z. Anorg. Allgem. Chem. 216, 223 (1934).

Goree, W. S., "Electrical Conductivity of Metals at High Pressures and Low Temperatures," Univ. of Florida, Gainesville, Ph.D. Thesis (1964), 166 p., Univ. Microfilms Order No. 65-5985.

Holborn, L., Ann. Physik 59, 145 (1919).

McLennan, J. C., Howlett, L. E., and Wilhelm, J. O., "On the Electrical Conductivity of Certain Metals at Low Temperatures," Trans. Roy. Soc. Sec. III, <u>23</u>, Pt. 1, 287-306 (Jan 1929).

Meissner, W., Physik. Z. 29, 897-904 (1928).

Meissner, W., and Voigt, B., "Messungen mit Hilfe von flüssigem Helium XI. Widerstand der reinen Metalle in tiefen Temperaturen," (Measurements with the Help of Liquid Helium XI. Resistance of Pure Metals at Low Temperatures), Ann. Physik <u>7</u>, 892-936 (1930).

Preston-Thomas, H., "Electrical Resistance of Tantalum" Phys Rev. 87, 210 (Jul 1952).

Taylor, R. E., and Finch, R. A., "The Specific Heats and Resistivities of Molybdenum, Tantalum, and Rhenium from Low to Very High Temperatures," Atomics International, Canoga Park, Calif., Rept. No. NAA-SR-6034 (1961).

Tye, R. P., "Preliminary Measurements on the Thermal and Electrical Conductivities of Molybdenum, Niobium, Tantalum, and Tungsten," J. Less-Common Metals 3, No. 1, 13-18 (1961).

Worthing, A. G., "Physical Properties of Well Seasoned Molybdenum and Tantalum as a Function of Temperature", Phys. Rev. <u>28</u>, 190-201 (1926).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data" and are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. When actual values of ρ_{273} are not available for the samples used by the investigators, a datum value reported by White and Woods (1959) ($\rho_{273} = 12.3 \times 10^{-6}$ ohm cm) is suggested for calculating values of electrical resistivity from these ratios. The curves on this graph should not be extrapolated to lower temperatures as tantalum becomes a superconductor at 4.2° K.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

(page 2 of 4)

Electrical Resistivity of Tantalum Cryogenic Data Memorandum No. M-23

The values listed in the Landolt-Börnstein tables are those reported by Burgers and Basart; McLennan, Howlett and Wilhelm; and Meissner and Voigt; while those values appearing in the International Critical Tables are from Holborn. These primary sources are cited above under "Other References". The names of the original authors are used in labeling the curves on the graph. The samples used by the investigators appearing in Landolt-Börnstein are reported as polycrystalline with no mention made of impurities. Burgers and Basart reported $\rho_{273} = 12.4 \times 10^{-6}$ ohm cm.

The wire sample used by Cox (1943) was 99.9% pure tantalum. No mention is made of any heat treatment prior to measurements.

Bridgman (1952) measured the effect of pressure on the resistivity of thin sheets (0.003 inch thick). No additional information is given about the sample.

White and Woods (1959) used 99.9% pure tantalum rods which were annealed in vacuo at 2500 °C.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

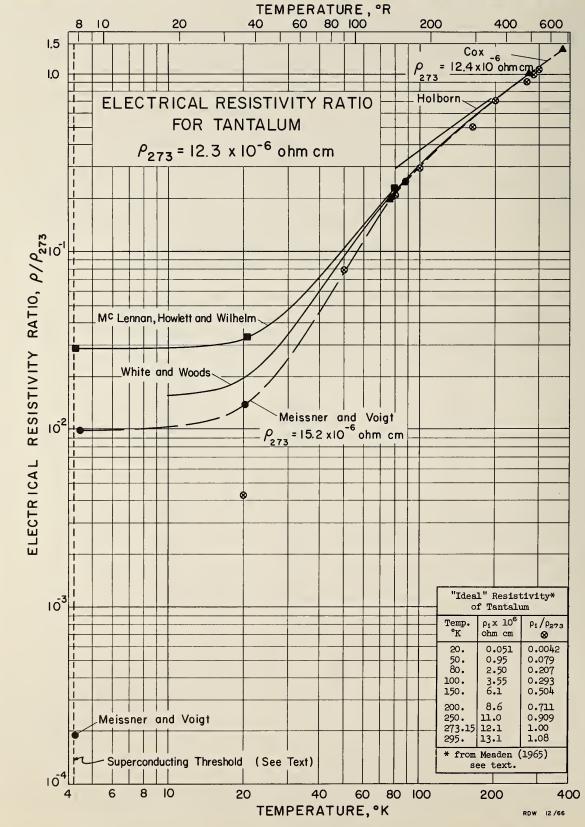
Tables of Values of Electrical Resistivity

$\rho = resistivity,$	(ohm cm);		= resistivity at 273°K, (ohm cm)
R = resistance,	(ohm);	R273	= resistance at 273°K, (ohm).

Holborn (1919)				
Temp. 100R/R ₂₇₃ Temp. 100R/R ₂₇₃ °C °C °C °C				
- 78.2 - 80 † -100 † -120 †	72.98 72.4 64.9 57.3	-140 † -160 † -180 † -192.6	49.6 41.9 34.3 29.55	
t Values from interpolation.				

McLennan, Howlett and Wilhelm (1929)			
Temp. R/R ₂₇₃			
°K			
4.3	0.029		
20.6	0.033		
80.0 273.1	0.230 1.00		

Meissner and	Voigt (1930)		
Temp.*	R/R273		
°K			
4.29**	0.00019		
4.49	0.0099		
20.44	0.0140		
77.61	0.2037		
88.30	0.2511		
273.16**	1.0000		
* The second decimal place of the temperature values is somewhat in doubt. ** ρ ₂₇₃ = 15.2 x 10 ⁻⁶ ohm cm ρ _{4.29} = 0.0029 x 10 ⁻⁶ ohm cm			
P4.29 = 0.0029	x 10° ohm cm		


Cox (1943)			
Temp. °K	ρ/ρ273		
77.33 273.2 373.4	2.46 12.41 17.18	0.1982 1.000 1.384	

Electrical Resistivity of Tantalum Cryogenic Data Memorandum No. M-23

Bridgman (1952)				
(Resistance compared	(Resistance compared with resistance at room temperature and 1 atmosphere pressure)			
Pressure R/Ro Pressure R/Ro kg/cm ² kg/cm ² kg/cm ² kg/cm ²				
0 10000 20000 30000 40000 50000	1.000 0.984 0.968 0.954 0.941 0.929	60000 70000 80000 90000 100000	0.918 0.908 0.898 0.890 0.882	

	White and Woods (1959)			
Temp. °K	"Ideal Resistivity" $\rho_1 \times 10^6$ ohm cm	Resistivity, $\rho \times 10^6$ ohm cm $\rho = \rho_i + \rho_o$ (where $\rho_o = 0.1881 \times 10^6$ ohm cm)	P/P273	
10	$\begin{array}{c} 0.003_{2} \\ 0.01_{7} \\ 0.05_{1} \\ 0.1_{2} \\ 0.2_{3} \end{array}$	0.1913	0.01557	
15		0.2051	0.01669	
20		0.2391	0.01946	
25		0.3081	0.02507	
30		0.4181	0.03402	
40	0.54	0.7281	0.05925	
50	0.95	1.138	0.09262	
60	1.43	1.618	0.1317	
70	1.96	2.148	0.1748	
80	2.50	2.688	0.2187	
90	3.0₃	3.218	0.2619	
100	3.5₅	3.738	0.3042	
120	4.6	4.788	0.3896	
140	5.6	5.788	0.4710	
160	6.6₅	6.838	0.5565	
180	7.65	7.838	0.6379	
200	8.6	8.788	0.7152	
220	9.6	9.788	0.7965	
250	11.0	11.188	0.9105	
273	12.1	12.288	1.000	
295	13.1	13.288	1.081	

(page 4 of 4)

106

CRYOGENIC DATA MEMORANDUM

PROJECT NO. 3150123

FILE NO. M-24

(page 1 of 5)

ELECTRICAL RESISTIVITY OF TIN, Sn (Atomic Number 50)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc., 124-35 (1929).

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin, 1-46 (1959).

Aleksandrov, B. N., "Size Effect in Electrical Resistivity of High-Purity Metals," Soviet Phys. JETP 16, No. 2, 286-94 (1963).

Aleksandrov, B. N., and D'Yakov, I. G., "Variation of the Electrical Resistance of Pure Metals with Decrease of Temperature," Soviet Phys. JETP $\underline{16}$, No. 3, 603-08 (1963).

Bridgman, P. W., "The Effect of Pressure on the Electrical Resistance of Single Metal Crystals at Low Temperature," Proc. Am. Acad. Arts Sci. <u>68</u>, 95-123 (1933).

Bridgman, P. W., "The Resistance of 72 Elements, Alloys and Compounds to 100,000 kg/cm²," Proc. Am. Acad. Arts Sci. 81, No. 4, 165-251 (1952).

Kunzler, J. E., and Renton, C. A., "Size Effect in Electrical Resistivity Measurements on Single Crystals of High-Purity Tin at Liquid Helium Temperatures," Phys. Rev. 108, No. 6, 1397 (1957).

Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965) 218 p.

Van der Leeden, P., "Geleiding van warmte en electriciteit door metalen," (Conduction of heat by metals), Gedrukt Bij Drukherig Waltman, Koornmarkt 62, Te Delft 11-76 (July 1940).

Other References:

Bridgman, P. W., "The Effect of Pressure on the Electrical Resistance of Single Metal Crystals at Low Temperature," Proc. Am. Acad. Arts Sci. <u>68</u>, 95-123 (1933).

Buckel, W., and Hilsch, R., "Einfluss der Kondensation bei tiefen Temperaturen auf den electrischen Widerstand und den Supraleitung fur verschiedene Metalle," (Effect on the Electrical Resistance and Superconduction of Various Metals of Condensation at Low Temperatures), Z. Physik <u>138</u>, 109-20 (1954).

Goree, W. S., "Electrical Conductivity of Metals at High Pressures and Low Temperatures," Univ. of Florida, Gainesville, Fh.D. Thesis (1964), 166 p., Univ. Microfilms Order No. 65-5985.

Goree, W. S., and Scott, T. A., "Pressure Dependence of Electrical Conductivity of Metals at Low Temperatures," J. Phys. Chem. Solids <u>27</u>, 835-48 (1966).

Grüneisen, E., Ergbn. exakt. Naturw. 21, 50 (1945).

Jaeger, W., and Diesselhorst, H., Wiss. Abhandl. physik. tech. Reichsanstalt 3, 269 (1900).

Kan, L. S., and Lazarev, B. G., "Effect of Hydrostatic Compression on the Electrical Conductivity of Metals at Low Temperatures," Soviet Phys. JETP 7, No. 1, 180-81 (1958).
Meissner, H., "Paramagnetic Effect in Superconductors. V. Resistance Transition of Tin Wires", Phys. Rev. <u>109</u>, 668-80 (1958).

Meissner, W., Physik. Z. 29, 897-904 (1928).

Meissner, W., Physik. Z. 26, 689 (1925).

Onnes, H. K., and Tuyn, W., Proc. Roy. Acad. Sci. Amsterdam 25, 443 (1923).

Reich, R., "Etude des proprietes electriques et supraconductrices de metaux de differentes puretes," (Study of the electrical and superconducting properties of metals with different purities), Mem. Sci. Rev. Met. <u>62</u>, No. 12, 869-920 (1965).

Reich, R., and Kinh, V. G., "Variation de la resistivite ideale engre 3.75 et 4.22°K et determination de la resistivite residulle au zero absolu d'echantillons d'etain de differentes puretes," (Variation of ideal resistivity between 3.75 and 4.22°K and determination of the residual resistivity at absolute zero of tin samples of different purities), Compt. Rend. <u>256</u>, 156-58 (1963). Reich, R., and Montariol, F., "Resistivite a l'etat massif d'echantillons d'etain de differentes puretes et libre parcours des electrons a la temperature de l'helium liquide," (Resistivity at the bulk state of tin samples of different purities and free flow of electrons at the temperature of liquid helium), Compt. Rend. 254, No. 8, 1423-5 (Feb 1961).

Reich, R., and Montariol, F., "Des conditions de validite des mesures de resistivite electrique de l'etain," (Valid conditions for measuring electrical resistivity of Tin), Compt. Rend. <u>254</u>, 1278-9 (1962).

Stromberg, H. D., and Stephens, D. R., "Effects of Pressure on the Electrical Resistance of Certain Metals," J. Phys. Chem. Solids <u>25</u>, 1015-22 (1964).

Walton, A. J., "The Thermal and Electrical Resistance of Tin in the Intermediate State," Proc. Roy. Soc. (London) Ser. A, <u>289</u>, No. 1418, 377-401 (1965).

Zernov, V. B., and Sharvin, Y. V., Soviet Phys. JETP <u>9</u>, 737 (1959), Transl. of Zh. Eksperim. i Teor. Fiz. <u>36</u>, 1038 (1959).

Comments:

The data for this graph were taken from the references cited above under "Sources of Data" and are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. Since tin is an anisotropic metal, we list suggested values of ρ_{273} for SnII, SnL, and polycrystalline tin to be used in calculating electrical resistivity from these ratios. These

values are:

 $\rho(||)_{273} = 13.084 \times 10^{-6} \text{ ohm cm}, \qquad \rho(\perp)_{273} = 9.01275 \times 10^{-5} \text{ ohm cm, and}$ $\rho(\text{poly})_{273} = 10.05 \times 10^{-5} \text{ ohm cm.}$

The first and second values are from Aleksandrov and D'Yakov (1963) and the third value was calculated from their data using Voigt's equation: $\frac{1}{\rho_{(poly)}} = \frac{1}{3} \left[\frac{1}{\rho_{\parallel}} + \frac{2}{\rho_{\perp}} \right].$ The curves on the graph should not be extrapolated to lower temperatures as tin becomes a

The curves on the graph should not be extrapolated to lower temperatures as tin becomes a superconductor at 3.74°K.

In instances where data points were quite widely separated or areas where data did not exist, symbols were used to show the available data points so that the reader will know where arbitrary position or shape of the graph was made.

The values listed in the Landolt-Börnstein tables are those reported by Jaeger and Diesselhorst; and Meissner; while those values appearing in the International Critical Tables are from Onnes and Tuyn. These primary sources are listed above under "Other References". The Landolt-Börnstein tables list the samples of Meissner as polycrystalline with no mention of impurities present. The sample used by Onnes and Tuyn is reported as polycrystalline with less than 0.01% impurities of unknown composition. Jaeger and Diesselhorst reported less than 0.03% Pb impurity in the polycrystalline sample used in the determination of ρ_{273} . Their value was $\rho_{273} = 11.15 \times 10^{-6}$ ohm cm. No information was given on the mechanical or heat treatment of any of the above samples.

The Bridgman (1933) measurements were made with a 1 mm diameter single crystal rod at four crystal orientations; 82°, 17°, 90°, and 0° angles between axis and length of rod. The rod was formed in pyrex tubing by slowly lowering from a furnace.

Van der Leeden (1940) measured the resistivity of a 0.2 mm diameter wire. The wire was presumably polycrystalline with purity not stated.

Bridgman (1952) measured the effect of pressure on the resistivity of thin sheets of 0.001 inch thickness.

Kunzler and Renton (1957) made measurements on single crystals of high purity. The values in the table are for the specimen before it was reduced in cross section; the initial thickness was 4 mm.

Aleksandrov (1963) used 99.99985% pure tin in the form of rods of 2.7 mm diameter. Aleksandrov and D'Yakov (1963), using the same samples as Aleksandrov, obtained values for resistivity of tin from 3.7 to 273°K, using wire diameters which do not affect the resistivity values. Their samples were single crystals with the principal axis parallel to the sample axis (SnI), and with the principal axis at right angles to the sample axis (SnI). They state that the error of a single measurement of R/R_{293} at T = 4.2°K amounted to 2 - 2.5% for tin. The $\rho_0(Sn \parallel) \simeq 10^{-10}$ ohm cm and $\rho_0(Sn \perp) \simeq 7 \times 10^{-11}$ ohm cm.

The "ideal" resistivity values tabulated in the lower right-hand corner of the graph were taken from Meaden (1965). His book presents a comprehensive review of the literature dealing with experimental determinations of electrical resistivity together with a relatively concise account of the modern theory of the electrical resistance of metals and alloys.

Tables of Values of Electrical Resistivity

Onnes and Tuyn (1923)					
Temp.	Temp.	Temp. $100\rho/\rho_{273}$ Temp. Temp. $100\rho/\rho_{273}$			
°C	°K		°C	°K	-
-102.13 -115.14 -127.50	171.02 158.01 145.65	57.36 52.16 47.25	-209.98 -218.30 -252.65	63.17 54.85 20.50	14.67 11.45 1.162
-141.06 -158.74 -182.80	132.09 114.41 90.35	41.90 34.91 25.44	-254.95 -256.61 -258.89	18.30 16.54 14.26	0.836 0.637 0.409
-194.07 -202.07	79.08 71.08	20.98 17.79	-269.33	3.82	0.099

Meïssner (1925)			
Temp. ρ/ρ ₂₇₃ °K			
4.2 20.4 88.2	0.00078 0.0120 0.2457		

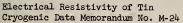
Van der Leeden (1940)			
Temp. °K	100R/R _o		
14.29	0.443		
16.31	0.672		
17.48	0.813		
19.46	1.107		
20.40	1.266		
69.05	17.52		
77.50	20.93		
78.15	21.40		
84.15	23.66		
90.30	26.08		

	Bridgman (1952)			
Pressure kg/cm ²	r/r _o *	Pressure kg/cm ²	R/R _o *	
0 10000 20000 30000 40000 50000	1.000 0.910 0.837 0.775 0.724 0.683	60000 70000 80000 90000 100000	0.647 0.618 0.592 0.569 0.548	
* Resistance compared with resistance at room temperature and one atmos- phere pressure.				

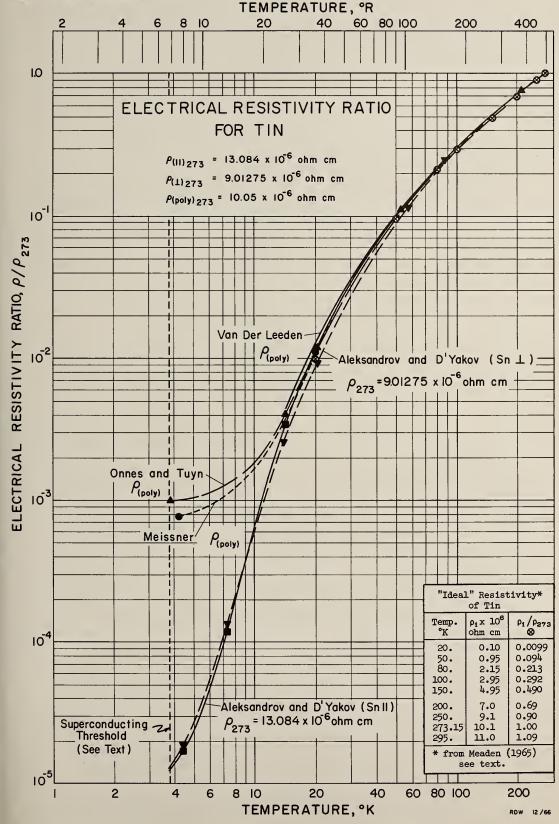
Bridgman (1933)				
Temp.	Angle between axis and length			
°K	90°	0°	90°	0°
	Resist p x 10 ⁶	ivity ohm cm	p/p273*	
90.35 194.85 273.15	3.2552.4040.24890.26468.7366.1470.66780.676413.089.0881.0001.000			
* These values were not plotted on the Electrical Resistivity of Tin graph.				

Kunzler and Renton (1957)					
Temp. °K	Resistivity ρx10 ⁶ ohm cm	ρ/ρ ₂₇₃ *			
4.2	0.000525	0.000035			
273.0	15.0	1.0			
Autors and some not plotted on					

*These values were not plotted on the Electrical Resistivity of Tin graph.


(page 3 of 5)

Electrical Resistivity of Tin Cryogenic Data Memorandum No. M-24


(page 4 of 5)

Aleksandrov (1963)				
Temp. °K	Resistance Ratio R/R [*] ₂₉₃			
	Snl	Sn L		
4.2	1.45	1.55		
* For Sn $_{\rm H}$, ρ_{293} = 14.3 x $10^{-6}{\rm ohm}$ cm. For Sn $_{\rm L}$, ρ_{293} = 9.85 x $10^{-6}{\rm ohm}$ cm.				

Aleksandrov and D'Yakov (1963)					
Temp. °K	Resistance Ratio R/R [*] ₂₉₃		Resistance Ratio R/R [*] 273		
	Sn II	Snl	Sn II	SnL	
3.7 4.22 4.46 7.2 14.0 20.4 58.0 63.5 77.4 90.31 111.6 273.0	$\begin{array}{c} 1.13 \times 10^{-5} \\ 1.45 \times 10^{-5} \\ 1.64 \times 10^{-5} \\ 1.05 \times 10^{-4} \\ 3.2 \times 10^{-3} \\ 0.0111 \\ 0.119 \\ 0.140 \\ 0.199 \\ 0.244 \\ 0.331 \\ 0.915 \end{array}$	$\begin{array}{c} 1.17 \times 10^{-5} \\ 1.55 \times 10^{-5} \\ 1.81 \times 10^{-5} \\ 1.23 \times 10^{-4} \\ 2.54 \times 10^{-3} \\ 8.68 \times 10^{-3} \\ 0.109 \\ 0.128 \\ 0.182 \\ 0.23 \\ 0.316 \\ 0.915 \end{array}$	$\begin{array}{c} 1.23 \times 10^{-5} \\ 1.58 \times 10^{-5} \\ 1.79 \times 10^{-5} \\ 1.15 \times 10^{-4} \\ 3.5 \times 10^{-3} \\ 0.0121 \\ 0.130 \\ 0.153 \\ 0.217 \\ 0.267 \\ 0.362 \\ 1.000 \end{array}$	$\begin{array}{c} 1.28 \times 10^{-5} \\ 1.70 \times 10^{-5} \\ 1.99 \times 10^{-5} \\ 1.35 \times 10^{-4} \\ 2.79 \times 10^{-3} \\ 9.52 \times 10^{-3} \\ 0.120 \\ 0.140 \\ 0.200 \\ 0.252 \\ 0.347 \\ 1.000 \end{array}$	
* For SnI ; $\rho_{293} = 14.3 \times 10^{-6}$ ohm cm, $\rho_{273} = 13.084 \times 10^{-6}$ ohm cm. For SnI ; $\rho_{293} = 9.85 \times 10^{-6}$ ohm cm, $\rho_{273} = 9.01275 \times 10^{-6}$ ohm cm.					

(page 5 of 5)

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$5.00; foreign, \$6.00*.

• Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$2.25; foreign, \$2.75*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$2.75; foreign, \$3.50*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$1.50; foreign, \$2.25*.

Difference in price is due to extra cost of foreign mailing.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Governmentgenerated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

> Clearinghouse U.S. Department of Commerce Springfield, Virginia 22151

Order NBS publications from: Superintendent of Documents Government Printing Office Washington, D.C. 20402

U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

POSTAGE AND FEES PAID