AUG 111965

Eechnical Note

SOLUBILITY OF SOLIDS IN DENSE GASES
J. M. PRAUSNITZ
U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Abstract

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, tech nical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units. Institute for Basic Standards. Applied Mathematics. Electricity. Metrology. Mechanics. Heat. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radiation Physics. Radio Standards Laboratory:* Radio Standards Physics; Radio Standards Engineering. Office of Standard Reference Data. Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.* Materials Evaluation Laboratory. Office of Standard Reference Materials. Institute for Applied Technology. Building Research. Information Technology. Performance Test Development. Electronic Instrumentation. Textile and Apparel Technology Center. Technical Analysis. Office of Weights and Measures. Office of Engineering Standards. Office of Invention and Innovation. Office of Technical Resources. Clearinghouse for Federal Seientific and Technical Information.** Central Radio Propagation Laboratory.* Ionospheric Telecommunications. Tropospheric Telecommunications. Space Environment Forecasting. Aeronomy.

[^0]
NATIONAL BUREAU OF STANDARDS

Eechnical Mote 316

ISSUED July 1965

SOLUBILITY OF SOLIDS IN DENSE GASES

J. M. Prausnitz
Institute for Materials Research
National Bureau of Standards
Boulder, Colorado

Abstract

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

[^1]
CONTENTS

ABSTRACT 1

1. Introduction 2
2. Basic Thermodynamic Equations 3
3. Previously Proposed Methods for Predicting
Solubility of Solids in Compressed Gases 5
4. Calculation of Fugacity Coefficients Using
Redlich's Latest Equation 7
Table 1 11
Table 2 14
Table 3 17
Table 4 19
5. Calculations Based on Regular Solution Theory 22
6. Fundamental Thermodynamic Equations 22
7. Evaluation of Parameters 25
Table 5 28
8. The Carbon Dioxide-Nitrogen System 29
9. Correlation of Solubility Data 30
Table 6 31
10. Conclusion 32
11. Acknowledgment 34
12. References 35
Figure 1 37
Figure 2 38
Figure 3 39
Figure 4 40
Figure 5 41
Figure 6 42
Figure 7 43
Figure 8 44
Figure 9 45

SOLUBILITY OF SOLIDS IN DENSE GASES

J. M. Prausnitz
Institute for Materials Research
National Bureau of Standards
Boulder, Colorado
and
Department of Chemical Engineering University of California, Berkeley

ABSTRACT

The thermodynamics of solid-dense gas equilibria is discussed, and two techniques are described for calculating the solubility of a solid component in a gas at high pressure. The first one is based on the recent empirical equation of state of Redlich which, in turn, is derived from Pitzer's generalized tables of fluid-phase volumetric properties. The second one is based on the Hildebrand-Scatchard theory of solutions. Both methods give good semiquantitative results but cannot accurately predict solubilities from pure-component data alone.

1. Introduction

High-pressure processes are becoming increasingly important in the chemical and related industries; it is therefore of practical interest to develop techniques for the prediction of phase equilibria at advanced pressures. In this report we consider the equilibrium between a solid and a dense gas, i.e., a gas at pressures around 100-300 atm. In particular, we attempt to calculate the solubility of the heavy (solid) component in the light (gaseous) component. Experimental studies have repeatedly shown that such solubilities are very much larger than those computed by a simple calculation, which assumes ideal-gas behavior. Indeed, the ratio, of observed solubility to solubility calculated on the basis of ideality, is often of the order of 10^{3}; in some cases it is as high as $10^{6}[1]$.

We discuss two techniques for calculating the solubility of a solid in a dense gas. One is based on a new empirical equation of state recently developed by Redlich and co-workers; the other one is based on the regular solution concept of Hildebrand and Scatchard [2]. Unfortunately neither of these techniques is capable of giving very accurate quantitative predictions of the desired solubility. Both techniques however show the correct trends and give reasonable results. Furthermore, the application of regular solution theory to this problem offers a method
of correlating and extending experimental data in a rational manner. Before describing these two techniques we review briefly the basic thermodynamics and previously presented attempts to deal with the problem of solubility of solids in compressed gases.
2. Basic Thermodynamic Equations

Let subscript 2 refer to the heavy (solid) component and let subscript 1 refer to the light (gaseous) component. The equation of equilibrium is

$$
\begin{equation*}
\mathrm{f}_{2}^{\mathrm{s}}=\mathrm{f}_{2}^{\mathrm{g}}, \tag{1}
\end{equation*}
$$

where f stands for fugacity, superscript s stands for solid, and g stands for gas. The fugacity of the solid at temperature T and total pressure P is easily calculated from solid vapor pressure and density data. We assume that the solid is pure, i.e., the gaseous component 1 does not dissolve appreciably in the solid phase:

$$
\begin{equation*}
f_{2}^{s}=P_{2}^{s} \varphi_{2}^{s} \exp \int_{P_{2}^{s}}^{P} \frac{v_{2}^{s} d P}{R T} \tag{2}
\end{equation*}
$$

where $s=$ saturation,
$P_{2}{ }^{s}=$ saturation (vapor) pressure of the solid at T,
$v_{2}^{s}=$ molar volume of the solid at T, and
$\varphi_{2}{ }^{\mathbf{S}}=$ fucacity coefficient of saturated vapor at T and $\mathrm{P}_{2}{ }^{\mathrm{S}}$.

In almost all cases of practical interest, $P_{2}{ }^{s}$ is small and thus $\varphi_{2}^{s} \approx 1$. Further, the solid may be considered to be incompressible and thus (2) becomes

$$
\begin{equation*}
f_{2}^{s}=P_{2}^{s} \exp \frac{\mathrm{v}_{2}^{\mathrm{s}}\left(\mathrm{P}-\mathrm{P}_{2}^{\mathrm{s}}\right)}{R T} \tag{2a}
\end{equation*}
$$

The fugacity of component 2 in the gas phase is related to y_{2}, its mole fraction (i.e., the solubility) in that phase, by

$$
\begin{equation*}
f_{2}{ }^{g}=\varphi_{2} y_{2} P \tag{3}
\end{equation*}
$$

where φ_{2} is the fugacity coefficient of 2 in the gas mixture at temperature T, composition y_{2} and total pressure P. The entire problem of calculating the desired solubility lies in the calculation of φ_{2}.

The fugacity coefficient φ_{2} can be found from the rigorous thermodynamic relation [3],

$$
\begin{equation*}
\ln \varphi_{2}=\frac{1}{R T} \int_{V}^{\infty}\left[\left(\frac{\partial P}{\partial n_{2}}\right)_{T, V, n_{1}}-\frac{R T}{V}\right] d V-\ln z \tag{4}
\end{equation*}
$$

where V is the volume of the gas mixture at T and P having n_{1} moles of 1 and n_{2} moles of 2 , and where z is the compressibility factor of the
mixture:

$$
\begin{equation*}
z=\frac{P V}{\left(n_{1}+n_{2}\right) R T} \tag{5}
\end{equation*}
$$

In order to utilize (4) it is necessary to have an equation of state for the gas mixture, i.e., volumetric data for the mixture as a function of pressure and composition at the temperature of interest.
3. Previously Proposed Methods for Predicting Solubility of Solids in Compressed Gases

During the past dozen years there has been a variety of publications dealing with the calculation of φ_{2} as given by (4). In each case a particular equation of state is used and a particular set of mixing rules is employed to predict the volumetric properties of the gas mixture using only experimental data on the pure components. Equations of state which have been used for this purpose include those proposed by Benedict, Webb, and Rubin; by Beattie and Bridgeman; by Redlich and Kwong, and by Martin and Hou [4,5]. In a similar but slightly different approach, attempts have been made to calculate φ_{2} using a pseudocritical method and generalized thermodynamic charts as described by Joffe [6]. In some cases these methods have produced good results; in others the results have been only fair, and in a few cases the results have been poor. The absence of consistently good results is due to the inadequacy
of the equations of state and, more important, to the very rough nature of the empirical mixing rules which are used to relate mixture constants to those of the pure components. In some cases such rules are reliable but in others they are not, and it is very difficult in the absence of pertinent experimental information to decide a priori whether or not a given mixing rule is likely to be appropriate for a given mixture.

The most reliable method for calculating φ_{2} uses the theoretically valid equation of state known as the virial equation. Although this equation was originally proposed about sixty years ago on purely empirical grounds, it has been shown to have a sound statistical mechanical basis. The compressibility factor for the gas mixture is given by

$$
\begin{equation*}
z=1+\frac{B_{\text {mix }}}{v}+\frac{C_{\text {mix }}}{v^{2}}+\ldots, \tag{6}
\end{equation*}
$$

where v is the molar volume, i.e., $V /\left(n_{1}+n_{2}\right)$, and the virial coefficients for the mixture are given rigorously as a function of composition by

$$
\begin{align*}
& B_{\text {mix }}=y_{1}{ }^{2} B_{11}+2 y_{1} y_{2} B_{12}+y_{2}{ }^{2} B_{22} \tag{7}\\
& C_{\text {mix }}=y_{1}{ }^{3} C_{111}+3 y_{1}{ }^{2} y_{2} C_{112}+3 y_{1} y_{2}{ }^{2} C_{122}+y_{2}{ }^{3} C_{222} \tag{8}
\end{align*}
$$

The fugacity coefficient is determined by substituting (6), (7), and (8) into (4), yielding

$$
\begin{align*}
\ln \varphi_{2}=\frac{2}{v}\left(y_{1} B_{12}+y_{2} B_{22}\right) & +\frac{3}{2 v^{2}}\left(y_{1}{ }^{2} C_{112}+2 y_{1} y_{2} C_{122}+y_{2}{ }^{2} C_{222}\right) \\
& +\ldots-\ln z . \tag{9}
\end{align*}
$$

The various virial coefficients B_{ij} and $\mathrm{C}_{\mathrm{ijk}}$ are functions only of temperature. Various techniques have been proposed for calculating the necessary virial coefficients [7,8]. In general it is possible to make good estimates of the second virial coefficients $B_{i j}$ but, at present, it is not possible to estimate accurately the third virial coefficients $C_{i j k}$. As a result, use of the virial equation for calculating φ_{2} is limited to moderate densities or pressures (typically up to 20-60 atm depending on the temperature and on the nature of the components), and it is not at all useful for equilibria at very high pressure.
4. Calculation of Fugacity Coefficients Using

Redlich's Latest Equation

During the past few years Dr. Otto Redlich and co-workers have developed an equation of state which is an empirical modification of the equation proposed by Redlich and Kwong [9]. The modification is based on the generalized compressibility factor tables of Pitzer et al. [2]. Redlich's equation is of the form

$$
\begin{equation*}
z=z_{R K}+f\left(T_{R}, P_{R}, \omega\right) \tag{10}
\end{equation*}
$$

where z_{RK} is the compressibility factor as given by the Redlich-Kwong equation and $f\left(T_{R}, P_{R}, \omega\right)$ is a generalized analytical deviation function whose independent variables are reduced temperature T_{R}, reduced pressure P_{R}, and acentric factor ω. The Redlich-Kwong equation is

$$
\begin{equation*}
z_{R K}=\frac{v}{v-b}-\frac{a}{R T^{3 / 2}(v+b)} \tag{11}
\end{equation*}
$$

The two constants a and b are related to the critical temperature and pressure by

$$
\begin{equation*}
a=0.4278 \mathrm{R}^{2} \frac{\mathrm{~T}_{\mathrm{c}}^{2.5}}{\mathrm{P}_{\mathrm{c}}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{b}=0.0867 \frac{\mathrm{RT}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}} \tag{13}
\end{equation*}
$$

For a binary mixture of components 1 and 2,

$$
\begin{equation*}
a_{\operatorname{mix}}=y_{1}^{2} a_{1}+2 y_{1} y_{2} \sqrt{a_{1} a_{2}}+y_{2}^{2} a_{2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{b}_{\operatorname{mix}}=\mathrm{y}_{1} \mathrm{~b}_{1}+\mathrm{y}_{2} \mathrm{~b}_{2} \tag{15}
\end{equation*}
$$

The function $f\left(T_{R}, P_{R}, \omega\right)$ is a very complicated but analytical expression obtained by forcing agreement between (10) and Pitzer's generalized tables. To apply $f\left(T_{R}, P_{R}, \omega\right)$ to a mixture, a pseudocritical hypothesis is used to calculate the reduced temperature, the reduced pressure, and the acentric factor for the mixture. The simplest procedure for doing
so is to accept Kay's rule [4], but it was found by Redlich, et al that an alternate empirical procedure gives a much more accurate representation of volumetric data for gaseous mixtures. The details of this alternate procedure are described in a forthcoming publication [10]. Redlich and co-workers found that their equation reproduced with high accuracy volumetric data for a variety of nonpolar mixtures at moderate and high pressures. However, there were strong indications that at conditions near the critical of the mixture, the equation is not reliable.

In view of the mathematical complexity of Redlich's equation, it is essential to use an electronic computer for calculating φ_{2} and for finding the trial-and-error solution to the equation of equilibrium (Equation 1). Dr. Redlich kindly supplied the author with the necessary computer programs.

Calculations with Redlich's equation were performed for four systems for which high-pressure data (beyond the range of the second virial coefficient) were available; in each system the solubility of the heavy (solid) component in the gas phase was calculated. The four systems are: carbon dioxide-nitrogen, carbon dioxide-air, oxygen-hydrogen, and naphthalene-ethylene. The calculated results are compared with experimental solubilities in tables $1,2,3$, and 4 .

In table 1 we compare calculated and experimental results for the carbon dioxide-nitrogen system. The results are expressed in terms
of enhancement factors E defined by

$$
\begin{equation*}
E \equiv \frac{y_{2}(\text { actual })}{y_{2}(\text { ideal })} \tag{16}
\end{equation*}
$$

where by y_{2} (ideal) we mean the value calculated by assuming $\varphi_{2}=1$ and $f_{2}{ }^{s}=P_{2}{ }^{s}$. Thus

$$
\begin{equation*}
y_{2}(\text { ideal })=\frac{P_{2}^{s}}{P} \tag{17}
\end{equation*}
$$

Results are shown for the temperature range 140° to $190^{\circ} \mathrm{K}$ and for pressures up to 100 atm. For all temperatures except the lowest, agreement between calculated and experimental results is very good. At $140^{\circ} \mathrm{K}$ the agreement is somewhat worse, although still not bad. Deviations between experimental and calculated results at high pressure at this low temperature are probably due to the fact that the mixture is not far removed from its critical state, where Redlich's equation (as all other equations of state) is not very reliable.

Table 2 gives calculated and experimental solubilities for the carbon dioxide-air system up to 200 atm for the temperature range 133° to $163^{\circ} \mathrm{K}$. Agreement is not good especially at the lower temperatures. Again, the poor agreement at the higher pressures is probably due to the fact that the mixture is not sufficiently removed from its critical conditions.

Table l. Solid-vapor equilibria for carbon dioxide-nitrogen. Comparison of predicted and experimental results.
CO_{2}
$\mathrm{T}_{\mathrm{c}}=304.19^{\circ} \mathrm{K}$
$P_{c}=72.9 \mathrm{~atm}$
$\omega=0.225$
N_{2}
$\mathrm{T}_{\mathrm{c}}=126.2^{\circ} \mathrm{K}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{c}}=33.5 \mathrm{~atm} \\
& \mathrm{E}=\mathrm{y}_{2} \mathrm{P}^{2} \mathrm{P}_{2}^{\mathrm{s}}
\end{aligned}
$$

$$
\omega=0.04
$$

Pressure, atm Calculated

Experimental ${ }^{[11]}$
$\underline{\text { Enhancement factor at } 140^{\circ} \mathrm{K}\left(\mathrm{P}_{2}^{\mathrm{s}}=0.00184 \mathrm{~atm}\right)}$
10
20
30
40
50
60
70
80
90
$\underline{\text { Enhancement factor at } 150^{\circ} \mathrm{K}\left(\mathrm{P}_{2}{ }^{\mathrm{s}}=0.00834 \mathrm{~atm}\right)}$

10
20
30
40
50
60
70
80
90
100
1.36

1. 3043
1.96
2. 9565
3. 18
3.0978
4. 44
10.86
21.80
35.40
54.40
5. 10
6. 4348
11.685
25.435
42.609
60.435
77.283
1.32
7. 2723
8. 80
9. 6409
10. 52
11. 2830
3.62
12. 3769
13. 70
14. 5886
9.15
15. 1320
14.02
14.316
20.30
16. 118
27.00
28.894
35.00
17. 147

Table 1 (continued)

$$
E=y_{2} P / P_{2}^{s}
$$

Pressure, atm Calculated Experimental ${ }^{[11]}$

Enhancement factor at $160^{\circ} \mathrm{K}\left(\mathrm{P}_{2}{ }^{\mathrm{s}}=0.03114 \mathrm{~atm}\right)$

10
20
30
40 50
60
70
80
90
100

10
20
30
40
50
60
70
80
90
100

1. 26
2. 2580
1.62
3. 5987
4. 12
5. 0732
6. 84
7. 7643
8. 87
9. 55
10. 8694
7.69
11. 3503
10.52
7.4013
13.68
10.013
17.42
13.213
17.070

Enhancement factor at $170^{\circ} \mathrm{K}\left(\mathrm{P}_{2}{ }^{\mathrm{s}}=0.0993 \mathrm{~atm}\right)$
1.22

1. 2185
2. 509
3. 4804
4. 885
5. 8369
6. 34
7. 3041
8. 02
9. 9204
3.93
10. 7341
4.83
4.8288
6.65
6.1229
8.44
7.7946
10.59
9.7482

Table 1 (continued)

$$
\mathrm{E}=\mathrm{y}_{2} \mathrm{p} / \mathrm{p}_{2}^{\mathrm{s}}
$$

Enhancement factor at $180^{\circ} \mathrm{K}\left(\mathrm{P}_{2}^{\mathrm{s}}=0.274 \mathrm{~atm}\right)$

10	1.193	1.1861
20	1.430	1.3869
30	1.696	1.6533
40	2.04	2.0000
50	2.54	2.4270
60	3.06	2.9562
70	3.81	3.6022
80	4.61	4.3796
90	5.35	5.2883
100	6.75	6.4234

$\underline{\text { Enhancement factor at } 190^{\circ} \mathrm{K}\left(\mathrm{P}_{2}^{\mathrm{s}}=0.697 \mathrm{~atm}\right)}$

10	1.160	1.1458
20	1.349	1.3402
30	1.589	1.5641
40	1.849	1.8321
50	2.17	2.1576
60	2.58	2.5626
70	3.02	3.0206
80	3.67	3.5700
10	4.30	4.2415
100	5.16	4.0074

Table 2. Solid-vapor equilibria for carbon dioxide-air.

CO_{2}	$\mathrm{~T}_{\mathrm{c}}=304.19^{\circ} \mathrm{K}$	$\mathrm{P}_{\mathrm{c}}=72.9 \mathrm{~atm}$	$\omega=0.225$
O_{2}	$\mathrm{~T}_{\mathrm{c}}=154.35^{\circ} \mathrm{K}$	$\mathrm{P}_{\mathrm{c}}=49.7 \mathrm{~atm}$	$\omega=0.03$
$\mathrm{~N}_{2}$	$\mathrm{~T}_{\mathrm{c}}=126.2^{\circ} \mathrm{K}$	$\mathrm{P}_{\mathrm{c}}=33.5 \mathrm{~atm}$	$\omega=0.04$
		y_{2}	

CO_{2}
$\mathrm{T}_{\mathrm{c}}=304.19^{\circ} \mathrm{K}$
$P_{c}=72.9 \mathrm{~atm}$
$\omega=0.225$
O_{2}
$\mathrm{T}_{\mathrm{c}}=154.35^{\circ} \mathrm{K}$
$P_{c}=49.7 \mathrm{~atm}$
$\omega=0.03$
$P_{c}=33.5 \mathrm{~atm}$
$\omega=0.04$

Pressure
atm (gauge) Calc. $\times 10^{4} \quad$ Expt. $\times 10^{4}$ [12]

Mole fraction of CO_{2} in air at $133^{\circ} \mathrm{K}\left(\mathrm{P}_{2}{ }^{\mathrm{s}}=0.000567 \mathrm{~atm}\right)$

10	0.79	0.77
20	0.689	0.62
30	23.2	0.82
40		liquid air

Mole fraction of CO_{2} in air at $143^{\circ} \mathrm{K}\left(\mathrm{P}_{2}{ }^{\mathrm{s}}=0.00304 \mathrm{~atm}\right)$

10	4.31	4.19
20	3.06	2.92
30	3.32	3.54
40	32.1	5.19
50	39.6	7.39
60	45.0	13.1
70	49.4	17.1
80	53.7	18.8
100	59.6	22.9
150	71.5	27.3
200	83.1	30.2

Table 2 (continued)

y_{2}

$\begin{aligned} & \text { Pressure } \\ & \text { atm (gauge) } \\ & \hline \end{aligned}$	Calc. $\times 10^{4}$	Expt. $\times 10^{4}$
$\underline{\text { Mole fraction of } \mathrm{CO}_{2} \text { in air at } 152^{\circ} \mathrm{K}\left(\mathrm{P}_{2}{ }^{\mathrm{s}}=0.01129 \mathrm{~atm}\right)}$		
10	13.92	12.8
20	9.97	8.65
30	9.68	8.33
40	11.62	99.33
50	21.20	12. 20
60	54.70	15.1
70	71.90	22. 2
80	84.10	28.0
90	94.40	34.7
100	97.10	39.0
150	123.2	52.0
200	142.0	58.1

Mole fraction of CO_{2} in air at $163^{\circ} \mathrm{K}\left(\mathrm{P}_{2}{ }^{\mathrm{s}}=0.0456 \mathrm{~atm}\right)$

10	53.6	49.2
20	36.1	33.6
30	32.2	28.1
40	33.2	28.5
50	38.4	30.6
60	50.1	36.5
70	72.0	43.3
80	98.4	52.9
90	121.0	61.0
100	141.0	69.5
150	203.0	94.9
200	240.0	123.0

Table 3 gives calculated and experimental solubilities for the oxygen-hydrogen system up to 50 atm for the temperature range $40-53^{\circ} \mathrm{K}$. At normal temperatures 50 atm is not considered to be a very high pressure, but in this case it is relatively very high since the corresponding molar density is large due to the very low temperature. Since hydrogen. is a quantum fluid which does not obey the classical theorem of corresponding states, effective critical properties rather than actual critical constants were used. The effective values were determined by obtaining optimum agreement between calculated and observed volumetric properties of gaseous hydrogen.

The agreement between calculated and experimental solubilities is surprisingly good. The lowest temperature $\left(40^{\circ} \mathrm{K}\right)$ is only about $7^{\circ} \mathrm{K}$ above the (true) critical temper ature of hydrogen and one might expect that the calculations would be poor because of proximity to critical conditions. However, at this low temperature level, $7^{\circ} \mathrm{K}$ is a large amount. Furthermore, at $40^{\circ} \mathrm{K}$ the mole fraction of oxygen in the gas phase is of the order of 10^{-6} and therefore must have a very small effect on the critical properties of the gaseous mixture.

Finally, table 4 gives results for the solubility of naphthalene in ethylene up to 270 atm for the temperature range $285-323^{\circ} \mathrm{K}$. The critical temperature of ethylene is $282^{\circ} \mathrm{K}$. The results are only fair; at the higher pressures the calculated and experimental values differ by

Table 3. Solid-vapor equilibria for oxygen-hydrogen.
Comparison of predicted and experimental results.
O_{2}

$$
\mathrm{T}_{\mathrm{c}}=154.35^{\circ} \mathrm{K}
$$

$P_{c}=49.7 \mathrm{~atm}$
$\omega=0.03$
H_{2} (pseudo)
$\mathrm{T}_{\mathrm{c}}=40^{\circ} \mathrm{K}$
$P_{c}=28 \mathrm{~atm}$
$\omega=0$

Pressure, atm

Calculated

Expt. $[13,14]$
$\underline{\text { Mole fraction of } \mathrm{O}_{2} \text { in } \mathrm{H}_{2} \text { at } 40^{\circ} \mathrm{K}\left(\mathrm{P}_{2}^{\mathrm{s}}=1.585 \times 10^{-6} \mathrm{~atm}\right)}$
5
5. 72×10^{-7}
1.2×10^{-6}
10
15
5.53×10^{-7}
1.4×10^{-6}
7.94×10^{-7}
1.1×10^{-6}
20
1.56×10^{-6}
3.0×10^{-6}
30
2. 82×10^{-5}

40
2. 82×10^{-3}

50
4.28×10^{-3}
Mole fraction of O_{2} in H_{2} at $48^{\circ} \mathrm{K}\left(\mathrm{P}_{2}^{\mathrm{s}}=1.286 \times 10^{-4} \mathrm{~atm}\right)$

10
15
20
30
40
50
3.78×10^{-5}
3.73×10^{-5}
2.84×10^{-5}
2. 81×10^{-5}
2.9×10^{-5}
2. 8×10^{-5}
3.43×10^{-5}
6.14×10^{-5}
3.7×10^{-5}
1.4×10^{-14}
3.78×10^{-4}
7.0×10^{-5}
1.65×10^{-4}
2. 70×10^{-4}

Table 3 (continued)

Mole fraction of O_{2} in H_{2} at $53^{\circ} \mathrm{K}\left(\mathrm{P}_{2}^{\mathrm{s}}=8.95 \times 10^{-4} \mathrm{~atm}\right)$

5	2.38×10^{-4}	2.2×10^{-4}
10	1.61×10^{-4}	1.62×10^{-4}
15	1.46×10^{-4}	1.3×10^{-4}
20	1.515×10^{-4}	1.66×10^{-4}
30	1.99×10^{-4}	2.17×10^{-4}
40	3.11×10^{-4}	3.15×10^{-4}
50	5.31×10^{-4}	4.6×10^{-4}

as much as a factor of two. This system provides a particularly sensifive test of the calculational method; not only is the system rather near its critical conditions (notice the relatively large mole fraction of naphthalene in the vapor at the higher temperature and pressure), but, in addition, this system is a highly asymmetric one where the solute molecule is a very large one, much larger than the solvent molecule, and already on the borderline of the corresponding states correlation.

Table 4. Solid-vapor equilibrium for naphthalene-ethyiene. Comparison of predicted and experimental results.
$\mathrm{C}_{10} \mathrm{H}_{8}$
$\mathrm{T}_{\mathrm{c}}=751.69^{\circ} \mathrm{K}$
$P_{c}=40.6 \mathrm{~atm}$
$\omega=0.306$
$\mathrm{C}_{2} \mathrm{H}_{4}$
$\mathrm{T}_{\mathrm{c}}=283.09^{\circ} \mathrm{K}$
$P_{c}=50.5 \mathrm{~atm}$
$\omega=0.085$

$$
\begin{array}{|}
\mathrm{y}_{2} \\
\hline
\end{array}
$$

Pressure, atm Calc. $\times 10^{4}$ $\underline{\text { Expt. } \times 10^{4}[15]}$

Mole fraction of $\mathrm{C}_{10} \mathrm{H}_{8}$ in $\mathrm{C}_{2} \mathrm{H}_{4}$ at $285^{\circ} \mathrm{K}\left(\mathrm{P}_{2}^{\mathrm{s}}=3.1 \times 10^{-5} \mathrm{~atm}\right)$

Mole fraction at $308^{\circ} \mathrm{K}\left(\mathrm{P}_{2}^{\mathrm{s}}=2.92 \times 10^{-4} \mathrm{~atm}\right)$
126.3
96.2

170
142. 2
145.7
189.8
121.0

204
237.4
127.9

217
270.3
181.0

301
234.0 366
268.0

401

Mole fraction at $323^{\circ} \mathrm{K}\left(\mathrm{P}_{2}^{\mathrm{s}}=1.070 \times 10^{-3} \mathrm{~atm}\right)$
46.6
65.2
75.1
84.7
94.2
103.9
113.6
123.0
132.4
142. 2
151.8
161. 0
2. 27
5. 37
9.84
18.31
32. 3
49.5
70.2
91.6
116.0
134.0
161.0
185.5 563

Table 4 (continued)

Pressure, atm
 Canc. $\times 10^{4}$
 Expt. $\times 10^{4[15]}$

Mole fraction at $323^{\circ} \mathrm{K}\left(\mathrm{P}_{2}{ }^{\mathrm{s}}=1.070 \times 10^{-3} \mathrm{~atm}\right)$ (contd)
175.5

218
739
189.8

246
1075
204. 2

256
1534
218.3

273
1654
237.4

298
270.3

362
1737
1798

In summary, it appears that Redlich's equation of state is capoble of giving fairly good predictions of the solubility of a solid in a compressed gas. Predicted values are probably good at least within a factor of 2 , and at conditions remote from critical they are undoubtedly much better than that. Like all equations of state, Redlich's is least reliable in the critical region. The great advantage of doing solubility calculations based on Redlich's equation is that the calculations may easily be performed with an electronic computer and require no more than the critical temperature, critical pressure and acentric factor of each component.

5. Calculations Based on Regular Solution Theory

A dense gas is usually considered as an extreme case of a very nonideal gas, and by using the ideal gas as a reference state, fugacity coefficients can be calculated from volumetric properties; this approach is the common one of dealing with dense gas mixtures, and this was the one used in the previous section. An alternate approach, however, is suggested by the fact that a dense gas may be considered as an expanded liquid. When this view is adopted the thermodynamic properties of the mixture are calculated not from volumetric properties but from a suitable theory of liquid solutions. For nonpolar components a simple and reasonable description of liquid mixtures is given by the HildebrandScatchard theory of regular solutions.

6. Fundamental Thermodynamic Equations

We consider the equilibrium between a solid designated by subscript 2 and a dense fluid (subscript 1) and we wish to find the solubility x_{2} in the fluid phase. The thermodynamic relations appropriate for this situation are well known and are briefly summarized below.

The overall equation of equilibrium in terms of fugacities is

$$
\begin{equation*}
\mathrm{f}_{2}^{\mathrm{s}}=\mathrm{f}_{2}^{\mathrm{f}} \tag{18}
\end{equation*}
$$

where the superscripts s and f designate the solid and fluid phases. For
convenience we rewrite the equation of equilibrium:

$$
\begin{equation*}
R T \ln \frac{f_{2}{ }^{\text {L }} \text { (pure) }}{f_{2}^{s}}+R T \ln \frac{f_{2}^{f}}{f_{2}{ }^{\text {L }}(\text { pure })}=0, \tag{19}
\end{equation*}
$$

where $f_{2}{ }^{L}$ (pure) is the fugacity of pure subcooled liquid 2 at T, the temperature of interest. The first term in (19) is the Gibbs energy change of going, at temperature T and pressure P, from pure solid 2 to pure subcooled liquid 2. The second term in (19) is the partial Gibbs energy change experienced by subcooled liquid 2 as it goes, at temperature T, from the pure state to the solution in the fluid where its mole fraction is x_{2}. The first term in (19) is given in terms of pure-component properties of component 2 :

$$
\begin{equation*}
+\int_{P_{2}}^{P} \Delta v d P \tag{20}
\end{equation*}
$$

where $\Delta h_{\text {fusion }}$ at T_{m} is the molar enthalpy of fusion at the normal melting temperature T_{m} and,

$$
\begin{equation*}
\Delta c_{p} \equiv c_{p}^{\text {liquid }}-c_{p}^{\text {solid }} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \mathrm{v} \equiv \mathrm{v}^{\text {liquid }}-\mathrm{v}^{\text {solid }}, \tag{22}
\end{equation*}
$$

where c_{p} is the molar specific heat at (low) constant pressure, v is the molar volume at temperature T, and P_{2}^{s} is the saturation (vapor) pressure of the solid at T.

The second term in (19) is given by

$$
\begin{equation*}
R T \ln \frac{f_{2}^{f}}{f_{2}{ }^{\mathrm{L}}(\text { pure })}=R T \ln \gamma_{2}+R T \ln x_{2}, \tag{23}
\end{equation*}
$$

where the activity coefficient γ_{2} refers to pure subcooled liquid 2 at temperature T and pressure P as the standard state. This activity coefficient is given by the regular solution theory [2]:

$$
\begin{equation*}
R T \ln \gamma_{2}=v_{2}^{L} \Phi_{1}^{2}\left(\delta_{1}-\delta_{2}\right)^{2}, \tag{24}
\end{equation*}
$$

where $\mathrm{v}_{2}{ }^{\mathrm{L}}$ is the molar volume and δ_{2} the solubility parameter of pure subcooled liquid 2, and δ_{1} is the solubility parameter of the (fluid) solvent, all at temperature T and pressure P. Under the conditions of interest here, $x_{2} \lll 1$ and therefore Φ_{1}, the volume fraction of solvent, is for all practical purposes equal to unity. When (20), (23), and (24) are substituted into (19) we obtain, for the desired solubility x_{2},

$$
\begin{align*}
R T \ln \frac{1}{x_{2}}= & \Delta{\underset{\text { fusion }}{ }\left[1-\frac{T}{T_{m}}\right]-\int_{T}^{T} \Delta c_{p} d T+T \int_{T}^{T} \frac{m \Delta c_{p}}{T} d T}^{T} \quad \\
& +\int_{P_{2} s}^{P} \Delta v d P+v_{2}^{L} \Phi_{1}^{2}\left(\delta_{1}-\delta_{2}\right)^{2} . \tag{25}
\end{align*}
$$

In (25) the important terms on the right-hand side are the first and the last. The terms involving Δc_{p} and Δv are of secondary importance.

7. Evaluation of Parameters

The heat of fusion, the normal melting point, and the molar volume of a typical nonpolar solid are usually available from the literature. The specific heats of the pure liquid and solid are also known, at least for the more common substances; frequently, however, they are not known as a function of temperature in which case Δc_{p} may be treated as a constant with little error. Figures 1 and 2 give the f^{s} / f^{L} ratios for subcooled liquid carbon dioxide and for subcooled liquid naphthalene.

The molar volume of the subcooled liquid must be obtained by extrapolation; since the density of a liquid at temperatures near the melting point does not vary appreciably, this extrapolation is not a sensitive factor in applying (25). Molar volumes of subcooled liquid carbon dioxide and subcooled liquid naphthalene are shown in figures 3 and 4.

Much more important is the evaluation of the two solubility
parameters δ_{1} and δ_{2}. The solubility parameter is defined by

$$
\begin{equation*}
\delta_{1} \equiv\left(\frac{\Delta u_{i}}{v_{i}}\right)^{1 / 2} \tag{26}
\end{equation*}
$$

where v_{i} is the molar volume of component i at the temperature T and pressure P where its solubility parameter is desired, and where

$$
\begin{equation*}
\Delta u_{i}=u_{i}(T, \infty)-u_{i}\left(T, v_{i}\right), \tag{27}
\end{equation*}
$$

$u_{i}(T, \infty)$ is the internal energy of i at temperature T and at infinite volume (i.e., ideal gas) and $u_{i}\left(T, v_{i}\right)$ is the internal energy of i at temperature T and molar volume v_{i}.

First we consider the heavy component 2. Assuming that subcooled liquid 2 is incompressible and that its saturation (vapor) pressure is small (say, less than a few atmospheres),

$$
\begin{equation*}
\delta_{2}=\left(\frac{\Delta h_{v a p ~ a t ~}-R T}{v_{2}}\right)^{1 / 2} \tag{28}
\end{equation*}
$$

The enthalpy of vaporization $\Delta h_{\text {vap }}$ must be evaluated at temperature T; since T is below the melting temperature T_{m} this enthalpy of vaporization must be found by extrapolation using the equation

$$
\begin{equation*}
\Delta h_{\text {vap at }}=\Delta h_{\text {vap }} \text { at } T^{\prime}+\int_{T}^{T^{\prime}}\left(c_{p}^{L}-c_{p}^{V}\right) d T \tag{29}
\end{equation*}
$$

where c_{p}^{L} and c_{p} V are the molar specific heats of the saturated liquid and vapor, respectively. The (Erbitrary) temperature T^{\prime} is some convenient temperature in the real liquid region where the heat of vaporization is known accurately. Table 5 gives solubility parameters for subcooled liquid carbon dioxide.

The solubility parameter δ_{1} is for the fluid solvent, i.e., the dense gas. Since the volume of the gas is highly dependent on the pressure it follows that $\delta_{1}\left(\right.$ unlike $\left.\delta_{2}\right)$ is a strong function of pressure. The volume of the gas is given by

$$
\begin{equation*}
v_{1}=z \frac{R T}{P} \tag{30}
\end{equation*}
$$

and the compressibility factor z is given by Pitzer and Brewer [2] in the form

$$
\begin{equation*}
z=z^{(0)}\left(P_{R}, T_{R}\right)+\omega z^{(1)}\left(P_{R}, T_{R}\right) \tag{31}
\end{equation*}
$$

where $z^{(0)}$ and $z^{(1)}$ are generalized, tabulated functions of reduced pressure P_{R} and reduced temperature T_{R} and ω is the acentric factor defined by

Table 5. Solubility parameters for subcooled liquid carbon dioxide from pure-component data.

Temperature, ${ }^{\circ} \mathrm{K}$
140
150
160
170
180
$\delta,(\mathrm{cal} / \mathrm{cc})^{1 / 2}$
11.71
11.42
11.19
10.89
10.58

$$
\begin{equation*}
\omega \equiv-\log _{10}\left(\frac{P^{s}}{P_{c}}\right)_{T_{R}}=0.70-1.000 \tag{32}
\end{equation*}
$$

where P_{c} is the critical pressure and P^{s} is the saturation (vapor) pressure at $T_{R}=0.70$.

The change in internal energy given by (27) can also be found from Pitzer's generalized tables for the isothermal effect of pressure on enthalpy by using the relation between internal energy and enthalpy:

$$
\begin{equation*}
\Delta u=\Delta h-\Delta(P v) \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta h=h(T, P=0)-h(T, P) \tag{34}
\end{equation*}
$$

For $\Delta(P v)$ we write

$$
\begin{equation*}
\Delta(P v)=R T \Delta z \tag{35}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta z=z(\text { ideal gas })-z(P, T) \tag{36}
\end{equation*}
$$

Figures 5 and 6 show reduced solubility parameters as a function of reduced temperature and reduced pressure for two values of acentric factor. Figure 7 gives the solubility parameter of liquid and gaseous nitrogen over a wide range of pressure and temperature including the critical region where the solubility parameter is very sensitive to small changes in temperature or pressure. Data for the preparation of figure 7 were taken from Strobridge [16].

8. The Carbon Dioxide-Nitrogen System

Equation (25) was used to calculate the solubility of solid carbon dioxide in nitrogen in the region $140-170^{\circ} \mathrm{K}$ and 90-200 atm. When the calculated results are compared with experimental solubilities [11] the comparison shows that the calculated results are too low by one order of magnitude. This poor result is undoubtedly due to the fact that the solubility x_{2} is very sensitive to the values of δ_{1} and δ_{2}; even a slight change in $\delta_{1}-\delta_{2}$ can seriously affect the solubility. This sensitivity is necessarily always present whenever δ_{1} and δ_{2} are very different from one another, as they are in this case and as one may expect them to be in any solid-dense gas equilibrium situation. It therefore appears likely that the regular solution approach described above is not useful for
accurately predicting solubilities from pure-compon ent data alone.

However, (25) is a very useful equation for correlation and extrapolation of solubility data provided at least some data for the binary system are available.

9. Correlation of Solubility Data

Equation (25) may be considered as a semi-empirical correlating equation if δ_{2}, the solubility parameter of the solute, is treated as an empirical parameter, dependent on temperature but not on pressure. For example, table 6 gives the solubility parameter of naphthalene as calculated from the regular solution equation and from solubility data in saturated liquid carbon dioxide [17]; figure 8 gives the solubility parameters of carbon dioxide which were used. The solubility parameter of naphthalene calculated in this way is close to, but not identical with, the solubility parameter calculated from pure-component properties as given by (28) and (29). Figure 9 shows the solubility parameter of naphthalene as calculated from solubility data in compressed ethylene at several temperatures and pressures. These solubility parameters are somewhat lower than those determined from solubility data in carbon dioxide. Figure 9 shows that δ_{2} is essentially invariant with pressure which is consistent with the derivation of (25). The pressure-sensitive term in (25) is δ_{1}, the solubility parameter of the gaseous solvent, as indicated by figures 5 and 6.

Table 6. Solubility parameters for subcooled liquid naphthalene from solubility measurements in liquid carbon dioxide.

Temperature, ${ }^{\circ} \mathrm{C}$	$\delta,(\mathrm{cal} / \mathrm{cc})^{1 / 2}$
-20	12.20
-10	11.85
0	11.46
10	10.97
20	10.33
25	9.90

Equation (25) with figures 5 and 6 correctly predicts that the solubility of a solid in a dense fluid changes very rapidly with temperature and pressure in the vicinity of the critical temperature and pressure of the solvent; near the critical point, δ_{1} is very sensitive to small changes in temperature and pressure as shown by figures 5,6 , and 7 . Equation (25) indicates that near the critical point of the solvent a small increase in pressure or a small decrease in temperature can increase the solubility of a solid by one or more orders of magnitude. Such effects have been observed in the nitrogen-hydrogen system [13] and in the carbon dioxide-air system [18].

Application of (25) for the correlation of solid-dense gas solubility data was mentioned by Omar and Dokoupil [19] in their study of
the solid nitrogen-liquid hydrogen system.

10. Conclusion

This study shows once again the validity of a remark made by Professor Pitzer some years ago when he said that while our under standing of the liquid state is small, our understanding of the dense-gas state is still smaller. In both the liquid state and in the dense-gas state we are held back by our lack of knowledge concerning intermolecular forces in multi-body assemblies. However, in the liquid state the geometry of the assembly is at least reasonably regular and the density of a liquid (well below the critical point) is only a mild function of temperature and a very weak function of pressure. As a result it is not surprising that various lattice-type theories of liquids and liquid mixtures are reasonably successful, at least for approximation purposes; the simplification that a liquid is a 'loose" solid is a fairly good one for describing thermodynamic properties of liquid solutions. However, in a dense gas, this simplification is no longer applicable; the density is a very strong function of temperature, pressure, and composition--especially at conditions not far removed from the critical.

This study has briefly considered two approaches to the problem of solid-dense fluid equilibria. The first approach considers the dense fluid as a highly nonideal gas and starting out from the ideal-gas limit, attempts to correct for the nonideality by pure-component empirical
constants, generalized by the theorem of corresponding states. This approach is only moderately successful primarily because the extension to mixtures of corresponding states correlations for pure components is based on fixed but essentially arbitrary mixing rules. Unfortunately, these rules are not invariant with the system under consideration nor with the conditions of temperature, pressure, and composition.

The second approach considers the dense fluid as a liquid mixture and the solid solute as a hypothetical pure liquid whose properties are estimated by extrapolation. This extrapolation necessarily becomes increasingly uncertain as the temperature under consideration departs more and more from the melting temperature of the solid. The process of dissolving the hypothetical liquid in the "liquid" solvent is treated as a constant volume process, and again, somewhat arbitrarily, the intermolecular forces between solute and solvent are calculated in a fixed manner from those of the pure components by a geometric-mean assumption. These various simplifications, especially the last one, place a heavy strain on the difference between theory and reality. What clearly is needed is a better theory of fluids in the vicinity of the critical point; such theory is now under active development by workers in statistical mechanics and will, in time, be useful for increasing our ability to describe solid-dense gas equilibria.

11. Acknowledgment

The author is grateful to Mr. Pi-teh Shen for extensive assistance in the calculations and in the preparation of the figures.
[1] McKinley, C., Cryogenic Technology, R. W. Vance, ed., (John Wiley \& Co., New York, N. Y.), 1963, p. 95.
[2] Lewis, G. N., and M. Randall, Thermodynamics (2d. ed., revised by K. S. Pitzer and L. Brewer)(McGraw Hill Book Co., New York, N. Y.) 1961.
[3] Beattie, J. A., Chem. Rev. 44, 141 (1949).
[4] Comings, E. W., High Pressure Technology, (McGraw Hill Book Co., New York, N. Y.), 1956.
[5] Martin, J. J., and Y. C. Hou, A.I. Ch. E. Journal 1, 142 (1955).
[6] Joffe, J., Ind. Eng. Chem. 40, 1738 (1948).
[7] Prausnitz, J. M., A. I. Ch. E. Journal 5, 3 (1959).
[8] Prausnitz, J. M., and A. L. Myers, ibid., 9, 5 (1963).
[9] Redlich, O., and J. N. S. Kwong, Chem. Rev. 44, 233 (1949).
[10] Redlich, O., F. J. Ackerman, R. D. Gunn, M. Jacobson, and S. Lau, to be published in J. Chem. Eng. Data.
[11] Smith, G. E., R. E. Sonntag, and G. J. Van Wylen, Advances in Cryogenic Engineering, Vol. 8, K. D. Timmerhaus, ed., (Plenum Press, Inc., New York, N. Y.), 1963, p. 162.
[12] Webster, J. J., Proc. Roy. Soc. (London), A214, 61 (1952).
[13] Dokoupil, Z., Progress in Low Temperature Physics, Vol. III, C. Gorter, ed., (Interscience Publishers, Inc., New York, N. Y.) 1961, p. 454.
[14] McKinley, C., J. Brewer, and E. S. J. Wang, Advances in Cryogenic Engineering, Vol. 7, K. D. Timmerhaus, ed., (Plenum Press, Inc., New York, N. Y.), 1962, p. 114.
[15] Diepen, G. A. M., and F. E. C. Scheffer, J. Phys. Chem. 57, 575 (1953).
[16] Strobridge, T. R., NBS Technical Note No. 129, P.B. 161630 (Jan. 1962).
[17] Quinn, E. L., J. Am. Chem. Soc. 50, 672 (1928).
[18] Geist, J. M., personal communication.
[19] Omar, M. H., and Z. Dokoupil, Physica 28, 461 (1962).

Fig. 1. Fugacity ratio for solid and (subcooled) liquid carbon dioxide.

Fig. 2. Fugacity ratio for solid and (subcooled) liquid naphthalene.

Fig. 4. Molar volume of (subcooled) liquid naphthalene.

Fig. 5. Solubility parameters for dense gases with an acentric factor of zero.

Fig. 6. Solubility parameters for dense gases with an acentric factor of 0.075.

Fig. 8. Solubility parameter for saturated liquid carbon dioxide.

Fig. 9. Solubility parameter of naphthalene calculated from solubility data in gaseous ethylene.
U.S. DEPARTMENT OF COMMERCE

WASHINGTON, D.C. 20230
OFFICIAL BUSINESS

[^0]: * Located at Boulder, Colorado 80301.
 ** Located at 5285 Port Royal Road, Springfield, Virginia 22171.

[^1]: For sale by the Superintendent of Documents, U. S. Government Printing Office Washington, D.C. 20402

