Eechnical Mote

A PROGRAM FOR PLOTTING CIRCLES OF CONSTANT OVERPRESSURE AROUND TARGETED POINTS

MAI LIIS JOEL AND DOUGLAS D. LOTTRIDGE

U. S. DEPARTMENT OF COMMERCE

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units.
Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Applied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radio Standards Laboratory: Radio Standards Physics; Radio Standards Engineering.** Office of Standard Reference Data.
Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.** Office of Standard Reference Materials.
Central Radio Propagation Laboratory.** Ionosphere Research and Propagation. Troposphere and Space Telecommunications. Radio Systems. Upper Atmosphere and Space Physics.
Institute for Applied Technology. Textiles and Apparel Technology Center. Building Research. Industrial Equipment. Information Technology. Performance Test Development. Instrumentation. Transport Systems. Office of Technical Services. Office of Weights and Measures. Office of Engineering Standards. Office of Industrial Services.

[^0]
NATIONAL BUREAU OF STANDARDS

 Technical Nołe 249ISSUED OCTOBER 28, 1964

A PROGRAM FOR PLOTTING CIRCLES OF CONSTANT OVERPRESSURE AROUND TARGETED POINTS

Mai Liis Joel and Douglas D. Lottridge

Abstract

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

[^1]
Contents

Page
List of Illustrations iv

1. Introduction 1
2. The Maps 3
3. The Program 3
3.1 General 3
3.2 Inputs 3
3.3 Routines 5
3.4 Outputs 20
3.5 Operation 24
4. Future Plans 26
5. Acknowledgements 26
6. References 27

Appendix A: Card Formats
Appendix B: Program Listings

List of Illustrations

Page
Figure 1. Lethal Radius Plot Program Flow Chart 4
Figure 2. Phase I - Part 1 Flow Chart 6
Figure 3. Phase I - Part 3 Flow Chart 8
Figure 4. Standard Parallels of Lambert Conformal Conic Projection 9
Figure 5. Detail of Lambert Conformal Conic Projection 9
Figure 6. Phase II Main Program Flow Chart 12
Figure 7. CIRCLE Subroutine Flow Chart 14
Figure 8. CalComp Plotter Moves 18
Figure 9. Basic PLOT Subroutine Flow Chart 21
Figure 10. SYMBOL Subroutine Flow Chart 22
Figure 11. Semi-Buffered IBM 709-7090 Tape Write Routine (TRW2) 23
Figure i2. Plot Tape Format 25

A Program for Plotting Circles of Constant Overpressure Around Targeted Points

by

Mai Liis Joel
and
Douglas D. Lottridge

Abstract

The Defense Communications Agency is responsible for locating its communications facilities in a manner that will maximize the probability of maintaining communication in the face of nuclear attack. This report describes a program written for the IBM 7094 which produces as its final output one or more tapes to be used as input to a CalComp 570 plotter system. With these tapes the plotter can produce overlays for use with the series of World Aeronautical Charts covering the Continental United States. The overlays comprise circles representing a radius of constant overpressure around the target point of a given nuclear weapon. Based on hypothetical attacks the overlays provide the user with a means of visualizing the hardness required of facilities to survive in particular areas.

1. Introduction

The Defense Communications Agency (DCA) is responsible for the design and implementation of a world-wide communications network. Inherent in such responsibility is the need for DCA to determine where facilities should be located. There are some obvious restrictions in the placement of facilities. Certainly it would be impossible to put facilities in areas controlled by unsympathetic alien powers. Additionally, it is impossible to place facilities in areas which are topographically restrictive. But aside from these more clearly discernible restrictions, certain other limitations are imposed.

A major consideration in the design of a modern military network is the maximization of the probability of network survival in the event of a nuclear attack. The National Bureau of Standards (NBS) was asked to develop a method for presenting graphically the danger areas within the Continental United States (CONUS) where communications facilities might be destroyed if a nuclear attack were to take place.

There are many known effects from a nuclear blast; NBS was asked to consider, at the present time, only the direct blast effect. Data for the project are based on hypothetical attacks which are designed within the Defense Department.

The destructive power of a bomb at a point can be measured in terms of peak overpressure in pounds per square inch (PSI). This overpressure can be calculated from two bomb parameters, height of burst and yield. The distance from the bomb at which the overpressure is calculated is often referred to as the "lethal radius" for that particular PSI value.

The strength of a facility of the communications network to withstand the blast of a bomb is measured in terms of 'hardness." If a facility is hardened to 2 PSI, this means that, in all likelihood, it can withstand the blast of bombs with overpressures which are less than 2 PSI at that point. However, if a bomb were to produce an overpressure of 3 PSI at that point, it is likely that the facility would be destroyed.

A factor known as "circular error probable" (CEP) is introduced because it is likely that a bomb ta rgeted at a specific point will not land exactly on that point, but rather will land somewhere in the vicinity of the target. It is possible, therefore, that a facility located immediately outside the lethal radius might be destroyed if the bomb actually hit off target in the direction of the facility. An allowance for this possibility is introduced by adding a specified number of CEP's to the lethal radius. It should be noted, however, that adding CEP's will increase the probability that something located within the radius could actually withstand a blast. The probabilities of these occurrences for given numbers of CEP's have been calculated.

NBS has written a computer program which produces as its final output a magnetic tape which is used as input to the CalComp 570 Magnetic Tape Plotting System. With this tape as input, the CalComp plotter will produce overlays for the series of World Aeronautical Charts (WAC charts). Each of these overlays contains circles which represent lethal radii (including a specified number of CEP's) around ta rgeted points. Each circle bears a label of the PSI value which it represents. By placing an overlay on the appropriate map, then, it is possible to see to what PSI value a facility would have to be hardened in order to withstand the particular nuclear attack being considered.

It should be emphasized that this program does not consider all factors which are essential to the optimal placement of facilities. It does, however, provide readily available guidelines for determining the required hardness of a facility in a particular locale. It eliminates the need for laborious hand calculations and manual mapping.

2. The Maps

Before the programming effort began, it was necessary to select an appropriate map series. It was decided that a scale of 1 inch $=10$ to 20 miles provided enough detail without requiring too many maps to provide practical coverage of CONUS. The World Aeronautical Chart (WAC) Series was selected because of appropriate scale (1 inch $=16$ miles) and availability. Because the charts are in the Lambert Conformal Conic Projection, the algorithm to convert geographic coordinates to x, y coordinates is somewhat more complex than would be required for conversion from a rectangular projection. The algorithm is discussed in more detail in the section entitled Routines.

3. The Program

3.1 General

This program is written in two phases, both coded for the IBM 7090/94 computers.

Phase I is divided into three parts: the first generates the lethal radius and tags each bomb with the appropriate WAC identification; the second sorts the bombs into ascending WAC chart order; and the third generates the x, y coordinates of targeted points and produces the input tape for the second major phase.

Phase II of the main program calculates the codes required to produce circles whose radii correspond to specified overpressures. These codes, as well as control and labeling codes, make up the plotting tapes which are the main outputs of Phase II.

A general flow chart of the entire program is presented in Figure 1.

3.2 Inputs

This section briefly discusses the data and control card input requirements for the program. Specific details concerning the formats of all of these cards are presented in Appendix A.

The attack data cards are accepted by Part 1 of Phase I in a format which was chosen to make the input compatible with that of the National Military Command System (NMCS) Rapid Damage Assessment (RDA) model. Bombs targeted at the same point should be grouped together in the data deck so that the program can take advantage of the duplicate point deletion feature which is discussed in the section on Routines.

Two or more cards containing control and parameter items are placed in front of the data deck. These give the program flexibility in tape assignment, type of output, number of CEP's to be added to the lethal radii, number of radii to be calculated for each bomb, PSI

FIGURE I. LETHAL RADIUS PLOT PROGRAM FLOW CHART
values to be considered in calculating the radii, number of altitude categories to be considered, and coefficients associated with each altitude calculation. A single control card behind the data deck flags the end of the deck.

The input to Part 2 of Phase I is the binary output tape from Part 1. The required control cards for Part 2 (the IBM IBSYS Sort routine) are coded specifically for this sort and are included in the program package.

There are two input tapes required for Part 3 of the first major phase. One is the sorted tape from Part 2; the other is a binary tape (NBS number 1151) of computational constants for each WAC chart. (These constants are discussed in the following section.)

A single parameter card is placed at the end of the Part 3 program deck. Besides specifying the number of radii to be plotted around each point, it allows the programmer to assign specific tape units to the symbolically named tapes in the program.

Inputs to Phase II consist of the tape produced in Part 3 of Phase I (see section entitled Outputs for format description) and of one control card which specifies the number of hardness categories with their associated PSI values. The date of the run and an option for specifying security classification are also included on the control card.

3.3 Routines

Part 1 of Phase I is composed of a main program and two subroutines, all written in FORTRAN. A general flow chart is shown in Figure 2 and a program listing appears in Appendix B. The main program performs general control functions, writes out any necessary diagnostics, deletes duplicate bombs, and calls the following subroutines:

CHART - - This subroutine performs the function of supplying the appropriate WAC identification number for each bomb. The identification number is twice the true WAC chart number for the lower half of a chart, or one plus twice the true WAC chart number for the upper half of a chart.

RLETH -- This subroutine contains the mathematics for computing the lethal radii. The algorithm used is one developed by the RAND Corporation. The basic formula for calculating the lethal radii was taken from Reference 2. The coefficients used for 5, 000-foot and ground burst conditions were taken from a listing of the program discussed in Reference 2. As soon as the lethal radius has been computed, the main program adds the specified number of CEP's to it. This gives the radius which is used in plotting.

FIGURE 2. PHASE I - PART \& FLOW CHART

The duplicate point deletion feature in Part 1 eliminates redundant plotting of radii around a multiple weapon target area. As cards are read, the target coordinates are matched. If the geographic coordinates are within 20 seconds of arc of each other the larger yield is maintained with the coordinates of the first target. This process continues until a bomb is found which is not targeted within 20 seconds of arc of the first one. At this point the coordinates of the first bomb and the data of the one with the largest yield are made part of the data for plotting. Then the process continues. Since the plotter is insensitive to distances of less than about 6 seconds on the WAC charts, this feature produces virtually no information loss and provides more readable charts.

Part 2 of Phase I is a sort routine run under the IBM IBSYS Monitor System. Its purpose is to arrange the binary records on the Part 1 output tape into ascending order by WAC identification number. The routine was written by IBM and is found on the IBSYS Monitor tape. The control cards required to call the routine are included as part of the program package. Detailed information may be found in Reference 3.

Part 3 of Phase I is a FORTRAN routine which prepares the final Phase I output tape. This tape is used as input to the plotting routines of Phase II. A flow chart of Part 3 appears in Figure 3, and the program listing is given in Appendix B. This routine requires some detailed mathematical procedures to convert geographic positions to x , y coordinates for the WAC overlays. In order to describe the computational procedure a description of the Lambert Conformal Conic Projection must be given.

This projection is of the type which preserves angular relationships in mapped areas. The latitudes (parallels), therefore, are portions of concentric circles and the longitudinal lines (meridians) will intersect at either the north or south pole depending upon whether the mapped area is in the northern or southern hemisphere. (If the central latitude of the projection is the equator the meridians will be parallel.) A given chart will normally be based on two standard parallels. The mathematical relationships among points on the chart are calculated by considering the two standard parallels as the points of intersection of cone with a sphere. Figure 4 will help clarify this point.

The absence of immediately available values for the angular scale constant and for the meridian radii to given parallels presents a problem in expanding the use of this program to areas outside CONUS. It should readily be seen that any change in standard parallels will change the shape and size of the intersecting cone so that the lengths R and r (see Figure 5) and the angular scale factor will vary. While this problem may not be insurmountable, considerable effort would be required to derive formulas for computing the necessary constants.

FIGURE 3. PHASE I- PART 3 FLOW CHART

FIGURE 4. STANDARD PARALLELS OF LAMBERT CONFORMAL CONIC PROJECTION

FIGURE 5. DETAIL OF LAMBERT CONFORMAL CONIC PROJECTION

The formulas for calculating x, y coordinates were developed by NBS from information contained in Reference 1. Figure 5 will help to show how the equations were derived.

To calculate the x, y coordinates of the given geographic point \emptyset, λ, the origin $(0,0)$ is set at that point with geographic coordinates P, M. Each chart has an upper and lower parallel with latitudes p and P respectively and a central meridian with longitude M. Values for r, R, and k (defined below) are available from Reference lor the WAC chart series of the United States with standard parallels of 33° and 45°. The calculations are as follows:

$$
\frac{R-Z}{R-r}=\frac{P-\emptyset}{P-p}
$$

$$
Z=R-\frac{(P-\emptyset)(R-r)}{P-P} \quad \text { or }
$$

Let $\quad \theta=\mathrm{M}-\lambda$
and $k=a \operatorname{scale} c o n s t a n t$ for angular correction (required when representing a spherical surface on a plane surface).

Then $\quad A=k \theta$

$$
\mathrm{x}=\mathrm{Z} \sin \mathrm{~A}
$$

$$
y=R-Z \cos A
$$

It is now appropriate to specify the contents of the tape of constants (NBS 1151) which is used as input to Part 3. For each chart the tape contains the WAC identification number, the central meridian (M) of the chart in decimal degrees, the maximum value (TY) in inches on M, the unscaled meridian radius (R) in meters to the lower parallel, the unscaled difference ($R-r$) in meters between the meridian radii to the upper and lower parallels, and the latitude (P) of the lower parallel. The meridian radii to parallels are given for 30 -minute intervals in Reference l. The symbolic names used for these quantities in the program may differ from those used in this description because of FORTRAN requirements and the desire for simplicity in this presentation.

Eight subroutines and a main program which calls these subroutines make up the Phase II program package. The main program and the CIRCLE and CONVRT subroutines were written at NBS specifically for this project. The remaining subroutines are more general, being part of the Standard CalComp On-line Off-line Plotting
(SCOOP) package. See Reference 4. l/ However, two of these subroutines (PLOT and MEG) have been modified for use in this program and, therefore, should no longer be considered general purpose plotting routines.

The remainder of this section contains descriptions and flow charts (when necessary) of the routines used in Phase II. Figures 9, 10, and ii have been taken directly from the SCOOP manual. Because of its importance in this problem, the CIRCLE subroutine is described in much greater detail than the others. Appendix B contains listings of all routines in the form required by this program.

Phase II Main Program -- The main program, which is written in FORTRAN, reads the input tape and control card, calls the various subroutines necessary for producing a plotter tape, and produces a listing which shows the correspondence between WAC coverage and location (picture number) on the output tape. See Figure 6.

CIRCLE (CY, R, M, NUMB) -- This FORTRAN subroutine calculates the moves required to produce circles with specific radii. CY represents the y coordinate of the center of the circle and is expressed in floating point inches from the origin. R is the radius in inches, also expressed in floating point. The last two arguments (M, NUMB) are outputs used to call the internal subroutine CONVRT. The transfer vector is convert; that is, the subroutine transfers to CONVRT. See Figure 7.

In order to understand how CIRCLE works, it is necessary to know the following two facts about the CalComp plotter: (1) the plotter can move in eight directions; and (2) each move has a 0.01 -inch projection horizontally or vertically, or both. CIRCLE produces a certain number (NUMB) of integers (M) from 0 to 8. These integers correspond to a "no move" code (0) and to the eight possible plotter moves. See Figure 8.

If a circle is divided into eight sectors, a certain combination of only two plotter moves is required to draw the arc for any given sector. For example, the arc from 0° to 45° may be drawn using only north (1) and northwest (8) moves. Similarly, the 45° to 90° arc would require only northwest (8) and west (7) moves, and so on. As long as whole circles are drawn this remains true.

Permission to reproduce material from Reference 4 was given by California Computer Products, Inc. This material may not be reproduced except when authorized by that company.

FIGURE 6. PHASE II MAIN PROGRAM FLOW CHART

FIGURE 6. (continued)

FIGURE 7. CIRCLE SUBROUTINE FLOW CHART CALL CIRCLE (CY, R, M, NUMB)

FIGURE 7. (continued)

FIGURE 7. (continued)

FIGURE 7. (continued)

Figure 8. CalComp Plotter Moves

However, if truncation is necessary to prevent hitting the physical stops at the top or bottom of the plotter, the number of possible plotter moves in any given sector may become as high as four. In these instances substitutions for one or both of the two original moves are made. For example, if in moving from 00 to 45° either a north (1) or a northwest (8) move would exceed the physical limits of the plotter, a "no-move" code (0) and a west code (7) would need to be substituted for the two original moves. This action would produce a straight line at the top or bottom of a circle and would indicate that the circle had been truncated.

Phase II has been programmed so that when CIRCLE is called the codes have already been produced for positioning the plotter pen at 0° on the circumference of the circle to be drawn. Since this is true, it is possible for programming purposes to consider the center of the circle as being at a point $x=0, y=0$. The initial point on the circumference then becomes $x=r, y=0$. With these new reference points it is relatively simple to determine which sector is being drawn and, therefore, which moves are possible. To determine the sector, one needs only to compare the x and y values with zero and the absolute values of x and y with each other.

To determine which combination of the two possible moves for a given sector will produce the most perfect circle, the formula for a circle with center at $(0,0)$ is used:

$$
x^{2}+y^{2}=r^{2}
$$

To determine whether, for example, a north or northwest move is preferable, the value $x^{2}+y^{2}-r^{2}$ (del) is computed. If del is equal to zero, the pen is positioned exactly on the circumference of the circle. If it is less than zero, the pen is inside the circle, and if it is greater, it is outside. The value of del, then, indicates the best next move in order to stay closest to the perfect circumference. Each time a move is made the x and/or y value is changed by 0.01 inch for the next calculations.

For obvious reasons, tests to determine whether truncation is necessary cannot be made using the hypothetical center $x=0, y=0$. Instead, the true center y ($C Y$) value of the circle relative to the overlay is used for truncation tests. The true center x value is never needed, since truncation will occur only at the top and/or bottom of an overlay.

When a circle is truncated, the deleted portion of the circle is not plotted on the adjacent overlay. Although it is relatively simple to visualize the continuation of a truncated circle, it is currently impossible without examining surrounding overlays to know whether or not the area under consideration is affected by bombs targeted near the boundaries of adjacent charts. Further programming would be required to enter parts of circles with centers on adjacent charts. (This is under consideration in future plans.)

CONVRT (NUMB, $M(I), M(J))$-- This internal machine language (FAP) subroutine converts a certain number of integers (M) produced in CIRCLE into actual plotter moves. NUMB is the number of computer words (two moves to one word) needed to store these moves. The subroutine then transfers to PLOT with certain control codes as arguments; these codes permit the incorporation of circle-producing plotter moves into the main buffer area.

MSG -- This short, internal, FORTRAN subroutine is used for on-line messages to the computer operator. The original SCOOP version has been modified slightly to aid in producing the listing describedi under MAIN.

PLOT (X, Y,IPEN) -- The primary purpose of this FAP subroutine is to move the pen from its current location to a new one. The secondary purpose is to signal the end of the plot. X and Y are the coordinates of the point to which the pen is to be moved. The up or down condition of the pen during movement is specified by the magnitude of IPEN, where $1=$ no change, $2=$ pen down, and $3=$ pen up. If the sign of IPEN is positive the entrance is a normal plot entrance; if it is negative the entrance is an end-of-plot entrance and the following occurs:

1. The output buffer is written on tape, and
2. A new reference point is established by storing zero in the present pen position.

The subroutine has been modified to permit the insertion of circle producing codes into the main buffer area. The transfer vector is TRW. See Figure 9.

PLOTS (BUFFER (N), N) -- This short FAP subroutine sets up the tape write routine. BUFFER(N) is the first of N consecutive locations to be used as an output buffer. The transfer vector is TRWS.

SYMBOL (X, Y, HEIGHT, BCD, THETA, N) -- This FAP subroutine draws alphanumeric characters and special symbols on the plot. The coordinates of the lower left-hand corner of the characters are specified for alphanumeric characters; the coordinates of the center of the symbol are specified for special symbols. X and Y are the coordinates of the first character. HEIGHT represents the character height. $B C D$ is the location of the characters to be printed out or the actual string of characters in the form nHxxxxxx. THETA is the angle with the horizontal at which the characters are to be drawn. The absolute value of N is the number of characters to be drawn. If N is positive, the pen will be lifted between characters. When plotting symbols, N should be negative. Transfer vectors are PLOT and the system subroutines SIN and COS. See Figure 10.

TRW (BUFFER) -- This FAP subroutine writes the CalComp plotter commands on tape from an area called BUFFER. If more than one output tape is required, a transfer to MSG takes place.

TRWS (L(B)) -- This FAP subroutine initializes the write buffer. $L(B)$ is an address containing the following:

> PZE BLOCK, , m

BLOCK is the first of m consecutive addresses containing the m words to be written on tape. See Figure 11 for both TRW and TRWS.

3.4 Outputs

The output from Part l of Phase I is normally only a binary tape containing one record for each bomb. Each record contains a WAC identification number, latitude and longitude of the targeted point, and the computed lethal radii to be plotted around that point. The last record contains a false identification number of 9999 to indicate the end of the data. One field of the first parameter card allows the user to call for a BCI printout from Part I. This printout contains detailed information on all bombs to be plotted. Such information includes latitude and longitude of bomb target, altitude category for height of burst, yield, CEP, CEP multiplier for this run, and the lethal radius for each PSI value specified. If any heights of burst have been altered for computational purposes it will be so stated

BASIC PLOT SUBROUTINE FLOW CHART CALL PLOT (X,Y, I C)

Figure 9

SYMBOL SUBROUTINE FLOW CHART CALL SYMBL4 (X,Y,H,BCD,THETA,N

Figure 10

SEMI BUFFERED IBM 709-7090 TAPE WRITE ROUTINE (TRW2)

Figure 11
immediately before the data for that bomb. There will also be an appropriate message before each bomb that has been deleted from the plot tape because it falls outside of U.S. chart limits. Bombs which are deleted because they are duplicates of other bombs do not appear on the printout. Since valuable time is used in forming the print tape and in printing, there should be a real interest in some part of the printout before it is requested.

The output from Part 2 (the sort) is a binary tape containing the same record format as the binary output from Part l except that the records are arranged so that the WAC identification numbers appear in ascending order.

The output from Part 3 is a BCD tape which is used as input for the plot routines in Phase II. The tape is arranged so that there are at least three records for each WAC chart. The first record contains the WAC chart number and the top y value (TY) which is used as a reference point. The second record contains the x, y coordinates of a point and the lethal radii to be plotted around the point. There are additional records for as many more points as appear on that chart. The final record is in the same format but the x value is set to 99.99 as a flag to indicate the last record for a given chart. To indicate that the last chart has been considered, a dummy chart number is specified with a TY of 99.99.

The primary output from Phase II consists of one or more BCD, low density (200 b. p.i.) tapes. These tapes contain all control and data codes necessary for plotting overlays for targeted WAC chart areas. Figure 12 illustrates the tape format required by the CalComp system. A more detailed description of this format may be found in Reference 4. Another output from Phase II is a computer listing showing the relationship between WAC areas and their location (picture number) on tape. This listing permits the user to select and plot only the areas of interest. The final output of the program consists of the overlays produced on the CalComp 570 system.

3.5 Operation

Part 1 of Phase I is run under the NBS Bell Monitor System. The data deck follows the program on the system input tape with the parameter and control cards placed in the manner described in the section on Inputs. Output from Part 1 should be assigned to channel A for efficient entry to Part 2.

Part 2 is the sort from the IBSYS Monitor. The sort control cards are read in on-line from the card reader. The tape to be sorted is mounted on channel A but not readied until the on-line printer instructs the operator as to which unit number to dial. The output will be on channel B with the particular unit being specified on the online printer.

Figure 12

Part 3 is run under the NBS Bell Monitor System. There are three program tapes which may be assigned to units by the control card described in the section on Inputs. The output from Part 3 should be on channel A for efficient entry to Phase II.

Phase II which also runs under the NBS Bell Monitor System uses only two tape units in addition to the system units. The input should be placed on tape unit A5 and the low density output tape will be written on A6. If more than one output tape is needed, an on-line message will instruct the computer operator to save the tape on unit A6 and to mount a new tape on that unit. All A6 tapes should be labeled and saved for plotting.

When the user has selected the WAC charts which he wants plotted, he needs only to refer to the listing produced in Phase II to determine the tape and picture numbers which contain these charts. These numbers should be transmitted with the appropriate tapes to the CalComp operator. The operator should be instructed to position the plotter pen 1 inch from the bottom of the plotter paper before beginning plotting.

When the appropriately labeled overlays have been produced, the user should position them on the WAC charts in the following manner: for WAC chart overlay numbers with a U suffixed, the reference marks (+'s) on the overlays should be placed over the charts at the intersections of the upper and middle parallels with the central meridian; for WAC chart overlay numbers with an L suffixed, the reference marks should be placed over the charts at the intersections of the middle and lower parallels with the central meridian.

4. Future Plans

As time permits, two refinements should be made to the program. The first is an addition to the circle subroutine to handle the plotting of truncated portions of circles with centers on adjacent overlays. This was discussed in the section on Routines. The second refinement would be mainly for the convenience of the computer operator. Slight reprogramming would make it possible to run all parts of both phases under one monitor system.

5. Acknowledgements

The authors want to express their appreciation and thanks to David C. Friedman of NBS for his guidance and direction in assisting them to meet their program objectives.

The authors wish to give particular thanks to Peter S. Shoenfeld of NBS. Mr. Shoenfeld did much of the original work in developing the RLETH subroutine and in developing the algorithm used in the CIRCLE subroutine. Many of his suggestions in the past several months have proved helpful.

Thanks are also due to Mr. Eugene Kiley, of the Johns Hopkins Applied Physics Laboratory, who was very helpful in checking out the plotter tape control codes.
6. References

1. Oscar S. Adams, Lambert Projection Tables for the United States, Department of Commerce, U.S. Coast and Geodetic Survey. Special Publication No. 52, Government Printing Office, Washington, D.C. 1918, pp 5-35.
2. W. J.Erickson and C.F.Schemmerling, Operational and Mathematical Specifications for the Blast Vulnerability Model, System Development Corporation, FN 5746, August 3, 1961.
3. IBM 7090/7094 Generalized Sorting System, International Business Machines Corporation, Programming Systems Publications, Form C 28-6307-1, May 1963, pp 12-19.
4. James E. Newland and Robert Stomel, Reference Manual SCOOP Programming System for Digital Incremental Plotters, California Computer Products, Inc., November 1963.

Appendix A - Card Eormats
Data Card Format for Part 1 of Phase I
(Columns other than those specified are ignored by the program.)

Columns
19-24
26-32
55-57
58-60
69-74

Columns
1-2

4

6-9

11

Card 1 (placed in front of the data deck)

Contents

Latitude in degrees, minutes, and seconds
Longitude in degrees, minutes, and seconds
Height of burst in hundreds of feet
CEP in hundreds of feet
Yield in kilotons
Parameter Cards for Part l of Phase I.

Contents

"NTAP" - Numerical designation of the Part 1 binary output tape. Column 1 designates channel ($0=$ channel A, $1=$ channel B); column 2 designates the number of the drive on the channel.
"NOUT" - Code for the type of output $0=$ binary tape only
3 = binary tape and BCI printout
$6=\mathrm{BCI}$ printout only
"XCEP" - Specifies the number of CEP's to two decimal places to be added to the calculated radius. This enables the user to include a probability measure in the calculated radius around the designated ground zero (DGZ).
"NRINGS" - The number of hardness categories for peak over-pressures (PSI values) specified for this run.

Appendix A (Continued)

Columns
14-17
20-23
26-29
32-35
38-41
44-47

Card 2

1

Contents

"P(I)" - PSI values of overpressures to one decimal place. From one to six values may be specified beginning with the leftmost field. Unused fields should be left blank.
"NH" - Number of altitude categories, each corresponding to a specific height of burst. (While the program is written to accept up to six heights of burst, polynomial coefficients for calculations are currently available only for ground bursts and bursts at 5, 000 feet. If a different altitude is specified on a data card, the program sets the value to 5,000 feet for calculation purposes.)
"H(K, J)" - Polynomial coefficients for altitude category K. Four coefficients are required for each category; two categories fit on one card. Coefficients presently available appear on the card in the order $H(1, l), H(1,2), H(1,3)$, $H(1,4), H(2,1), H(2,2), H(2,3), H(2,4)$. Since the decimal place and sign may vary among coefficients, it is necessary to punch the decimal point and a sign (a plus sign need not be punched) into the field with the number. Additional coefficients for more categories would continue in the same format on additional cards. (Column l would be left blank.)

Last Data Card (placed at the end of the data deck)
"000000" - These six zeros indicate a bomb with zero yield and flag the end of Part 1 of Phase I. Because of the way the test is made, it is imperative that a data card never contain a yield of less than 10 kilotons. If it does, the end of the routine will be falsely indicated.

Control Card for Part 3 of Phase I
(placed at the end of the program deck)

Columns
1-2

3-4

5-6

7-8

Contents

"NRINGS" - The number of radii to be plotted around each point in this run.
"NTAP" - A two-digit number specifying channel and unit number for the sorted data tape, $0=$ channel $A, l=$ channel B.
"ICDN" - A two-digit number specifying channel and unit number for the tape of WAC constants.
"K ${ }^{\prime}$ " - A two-digit number specifying channel and unit number for the output tape to be used in Phase II.

Phase II. Control Card

(to be placed at the end of the program deck)

Columns
1-2

3-4

5-12

13-16
17-20
21-24
25-28
29-32
33-36

Contents
Example
Number of hardness categories. This is equal to the number of circles (maximum of six) plotted around each targeted point.

To print SECRET on each overlay enter 0l; to suppress printing enter 00.

Date of run (used for plotting
05-30-64 tape identification).

PSI values associated with hard- 05.0
ness categories. The number of 4-
02.5 column fields used equals the number of categories specified in columns 1 and 2.

```
        PHASE I - PART 1
            PART I OF PHASE I OF THE LFTHAL RADIUS CIRCLF PROGRAM
```

```
NOUTT=O FOR RINARY TAPF ONLY
```

NOUTT=O FOR RINARY TAPF ONLY
NOIIT=3 FOR RINARY TAPE ANO RCI PRINTOUT
NOIIT=3 FOR RINARY TAPE ANO RCI PRINTOUT
NOIIT=6 FOR RCI PRINTOUT ONLY
NOIIT=6 FOR RCI PRINTOUT ONLY
DIMENSION H(6,4),P(6),NAME(7),P(6)
COMMON NRINGS
RFAD 1,NTAP,NOUT,XCEP,NRINGS,(P(I),I=1,NRINGS)
1 FORMAT (I2,1X,I1,1X,F4.2,1X,I1,6(?X,F4.1))
READ 2, NH, ((H(K,J), J=1,4), K=1,NH)
? FORMAT(I1,7(FR.O,1X),F8.0/(8(1X,FR.0)))
IFIN=l
IPAGE=1
17 RFAD 3, ILAN, ILAM, ILAS, ILOD, ILON, ILOS, KALT, CEP, XW
3 FORMAT\18X, 3I7, 1X, I3, ?I?, >>X, 13, F3.0, 8X, F6.0)
14 RFAD 3, JLAD, JLAM, JLAS, JLOD, JLOM, JLOS, JALT, YEP, YW
IF(YW-0.)18,75,75
18 IFIN=0
GO TO 400
75 ZLATI = 3600*ILAD + 60*ILAM + ILAS
ZLATJ=3600*JLAD + 60*JLAM + JLAS
IF(ARSF{7LATI-7LATJ)-20.176,40n,400
76 7LONI=36ON\#ILOD + 60*ILOM + ILOS
ZLONJ=2600*JLOD + 60%JLOM + JLOS
IF(ARCF(7LONT-7LONJ)-7n.110,400,40n
10 [F(XW-Y!!){O\cap,14\&14
?O\cap ILAO=JIAD
ILAM=JLAM
ILAS=JLAS
ILOD=JLOD
ILOM=JLOM
ILOS=JLOS
300 KALT=JALT
CEP=YEP
XW=Y'W
GO TO 14
40n XLAD=ILAN
XLAM=ILAMA
XLAS=ILAS
XLOD=ILON
XLOM=ILOM
XLOS=ILOS

```
```

 XLAT=XLAD+XLAM/60.+XLAS/3500.
 XLON=XLON+XLOM/6O.+XLOC/36\capO.
 CEP=(CFP*100.)/5280.
 M=XW/1O\capO.
 IF(KALT)?0,55,?0
 55 KALT=]
 GO TO EO
 7n IF(KALT-5n)30,5n,2n
 30 IALT=KALT*100
 25 PRINT 40, IALT
 40 FORMATI3OHOACTUAL HEIGHT OF FUIRST FOR NEXT BOMB =I6, 59H FEET. HE
 IIGHT SFT AT 5000 FFFT FOR COMPUITATIONAL PUIRPOSES.I
 50 KALT=?
 60 CALL CHART IXLAT, XLON, INI
 4OO I=?,NRINGS
 CALL PLFTH(W,P(I),KALT,H,R(I))
 GP(I) = R(I) + XCFP*CFP
 8O IF(IPACF)R5,Q\cap,85
 8 5 ~ P R I N T ~ R G ~
 86 FORNAT(IHI)
 87 IPAGE=0
 90 [F(NOUT) 11,11,21
 21 IF(ID-9099) 7,2?,7
 22 PRINT }2
 23 FORMATI108H THF FOLLOWING BOMB IS TARGETED OUTSIDE THE UNITED STAT
 IFS CHART LIMITS AND DOFS NOT APPEAR ON THE PLOT TAPE.I
 7 PRINT 8, XLAT, XLON, KALT, W, CEP, XCEP
 8 FORMAT(14HO BOMR DATA---, }3\times,4HLAT=F7.2, 2X, 5HLONG=F7.2, 3X
 1.1OHALT. CAT.=I], 3X, 6HYIFLD=F5.?, 3X, 4HCFP=F4.2, 3X, 15HCEP MUL
]TIPLIFR=F4.?)
 OO Q I=1.,NPINGG
 - PRINT IN,P(I),R(I)
 10 FORMAT(4H FOR,F4.1,2OH PSI, LETHAL RADIUS=,F6.2)
 IF(ID-9999) 11,13,11
 11 IF(NOUT-5) 12,17,13
 12 WRITE TAPE NTAP, ID, XLAT, XLON, (R(I),I=1,NRINGS)
 13 IF(IFIN)500,5,?00
 500 PRINT 550
550 FORMAT(4IH FRROR FOUND IN IFIN TEST AT STATEMENT 131
5 IF(NOUT-5) 15,15,16
- In=9000
WRITF TAPF NTAP, ID, XLAT, XLON, (R(I), I=I,NRINGS)
FNO FILF NTAD
PFWINO NTAP
16 CALL SYSTEM
FND

```
            SURROIITINE CHART
            SUPROUTINE CHART (XLAT, XLON, IN)
            IF(XLAT-n4n.) On10,0n1n, nn 2n



nn4n IF（XLAT－ヘ2q．innon，n1nn．ngnn nの5，IF（XLAT－n4？）inlın，nlin．nlon


 ongn IF（XLAT－n34．in17n，ก18n．n18n










 nlon IF（XLON－noz．）\(n\) 3on，n4nn．n4nn
 0）1n IF（XLON－007．） \(0420,7440,044 n\) 07？0 TF（XLON－097．） 0450 ，0460，04ん0








へ310 IF (XLON-095.10630, 0630, ก64n

0230 TF (XLON-105.) \(7670,0670,0680\)









0420 IF (XLON-085.) \(0421,0435,1600\)
0421 IF (XLON-070.) 11600, 0425,0435
\(04 ? 5\) ID \(=1050\)
    PFTURN
n44n IF (XLON-103.) \(17445,0445,1\) ©n?
0445 In=1044
    RETURN
045n TF(XLON-ng5.) 17451, n451.15nn

\(0455 \quad 10=105]\)
    RETURN
04 6n IF (XLON-103.) \(0465,0465,1600\)
0465 I \(D=1045\)
    RFTURN
0470 IF (XLON-00n。) OR65,0855, n87n

040 O IF (XLON-non.) Nano, nann, naln




054n TF (XLON-121.) 10nn, 101n,101n
055n JF (XLON-n79.) 1 0 ?n, 107n, 102n
056n IF (XLON-002.) 1n4n.1040.105n
```

0570 [F(XLON-]07.)11060,1060.1070
0580 IF(XLON-171.)1080,109n,1090
0500 [F(XLON-n77.)11100,111n,1110
Of\capत IF(XLON-nO2.)111?0,1130,1130
OK10 In=061?
PFTIJRN
nG>n [F(XLON-117.)1140,114n,115n
nk2n IF(XION-O77.)1160,1170.1170
OK40 [F(XLON-NO2.)11RO.1190.1100
0650 [D=06]3
RETURN
066n [F(XLON-117.)11?00,1200,1210
0670 IF(XLON-na6.)117?0,1230,1230
0680 [}D=043
RETURN
0690 [D=0437
RFTURN
n70\cap [F(XLON-13).)n7n5,07n5.]60n
0705 IT=0420
RETURN
0710 [F(XLON-0RO.)1 240,1?50,1750
072) [0=0816
RETURN
0730 IF(XLON-101.117200,1260,1270
0740 [F(XLON-1]5.)]>80,1200,1290
0750 [FIXLON-0RO.173n0,1310,1310
0760 10=0817
RETURN
0770 [F(XLON-7n1.112?0.1320,1220
078C [F(XLON-115.)]240,1350,1350
0700 [F(XLON-nRO.)] 360,1270.1270

```

```

0\&10 [F(XLON-101.11400,1400.1410
OR70 IF(XLON-117.)11470,1470,1420
0830 IF(XLON-069.)11440,1450.1450
0840 IF(XLON-085.)1 1460,1470.1470
0850 IF(XLON-101.)1480,1480,1490
0860 [F(XLON-117.)]500.1500.1510
ORG5 IF(XLON-OR4.)11570,1520,153n
0R7\cap ID=0936
RFTURN
OR80 In=0Q2R
RETURN
080% [F(XLON-7n9.1)540.1540.1550
ngnn IF(XLON-C84.)7560,1570.1570
0910 ID=0937
RETURN
0920 [D=0930
RETURN
0930 IF(XLON-108.) 1500,1500,1500
094n [F(XI.ON-072.)11600,NO45,n945
0045 [D=0714
RFTURN
0050 [n=07]5
PFTURN
0980 [n=07]%
QFTURN
0070 [П=07つO
RFTURN
0QRO [D=072?
RETURN
0000 ID=07?4
RFTURN
1000 In=07?6
DETIIR:N

```
```

1N1n IF(XLON-12R.I1O15,1015,180n
1015 10=07ク8
DFTURN
307n JF(XLON-07?.1160ก,10>5,1025
1025 ID=07!5
RETURN
1020 10=0717
RETURN
1040 ID=0719
RETURN
1050 10=0771
RETURN
1060 10=07)\
RFTURN
1070 In=0775
PETURN
1080 10=0727
RETURN
1000 IF(XLON-128.)1005,1005,1600
1095 ID=07?O
RFTURN
1100 IF(XLON-N67.)1ROO.1105.1105
1105 In=0670
PFTURN
1110 IN=O61R
RETURN
1120 ID=0616
RETURN
1130 1D=0614
RETURN
1140 ID=0610
RETIJRN
1150 IF(XLON-125.)11155,1155,1600
1155 ID=060R
RFTURN
1160 IF(XLON-n67.)IG00,1165,!165
1165 In=0671
PFTURN
1170 IT=0610
RETURN
1180 ID=0617
RFTURN
1190 10=0615
RFTURN
1700 In=0611
RETURN
1?10 IF(XLON-175.)11?15,1215,160%
1215 [n=0600
RFTURN
172n IF(XLON-n87.)1\&^ก.17ク5.1つク5
1725 1n=0498
RFTURN
1270 ID=0436
RETURN
1240 IF(XLON-072.)11500,1245,1745
1245 10=0820
RETURN
1750 ID=0818
RFTURN
ITGO IN=0R14
PFTURN
177n In=0R1?
RETUPN
1780 IN=0810
RETURN

```
```

1290 IF(XLON-122.)11295.]295,1600
1205 ID=0808
RFTURN
1300 IF{XLON-073.11500,1305,1305
1205 In=08??
RFTUPN
1310 In=0819
RFTURN
1320 IN=0815
RETURN
1330 ID=0813
RETUPN
1340 [D=0811
RETURN
1350 IF(XLON-177.)1355,1355,1600
1355 10=080%
RFTURN
1260 IF(XLONI-O61.11600.1365,1265
1265 10=0574
RFTURN
1370 17=0576
RETURN
1380 I N=052R
PETURN
1300 I N=0530
RFTURN
1400 10=0522
RETURN
1410 IN=0534
PFTURN
1470 10=0576
RFTUPN
1420 IF(XLON-1)55.)1425,1425,1600
1435 ID=0530
RETURN
1440 IF(XLON-061.)1600,1445.1445
1445 ID=0575
RETURN
1450 ID=05?7
RFTURN
1460 IN=0570
RFTIIRN
1470 In=0521
RFTIJRN
1480 In=0533
RFTURN
1490 ID =0535
RETURN
1500 ID=0537
RETURN
1510 IF(XLON-125.)1515,1515.1600
1515 1D=0539
RETURN

```

```

]5ク5 IO=002?
RETURN
1530 IN=0034
RETIIRN
1540 ID=0940
RETURN
1550 TF (XLON-114.)11555,1555.1600
1555 ID=0942
RETURN
15RO IF(XLON-078.)I1600,1565,1565
1565 In=0033

```

PFTURA
1570 In=0035
RFTURN
\(1580 \quad 10=0941\)
RETURN
1590 IF (XLON-114.) 1595,1505,1600
1595 ID \(=0943\) RETURN
1600 I \(N=9990\) RETIJRN
FNO

\section*{SUBROIITINF PLFTH}

SIIRROUTINE RLFTH (M,P,K,H,R) OIMFNSION H(6,4)
\(Q=L O G F(P)\)
\(R=.18020204 * W * *\). \(27232323 * E X P F(H(K, 1)+H(K, 2) * Q+H(K, 3) * Q * * 2\) \(1+H(K, 4) * Q * * 3)\)
RETURN
END

PHASE I - PART 2
CONTROL CARDS FOR IBSYS SORT (\$ID CARD IS OPTIONAL)
```

\$ATTACH
\&AS
\$RFLFASF
\$RFLFASE
SRFLFASE
\&ATTACH
\$A.
\$FXFCUTF
\$ID 13780,PR,DDLOTT
06/10/64
REM, ASCENDING ORCER SNRT OF RINARY RECORDS BY WAC CHART ID NUMBER
FIL.INP/I,MOD/B,BLO/S,PAD/H
CHA,INP/A,MER/(AR,BR,IITR),OUT/RR
OPT,CAR,TAP
RFC,TYP/F,LFN/6,FJF/(36R,36R,144F)
SOR,Fll./l,SFO/G,ORN/?,FTF/?
FIL,OIIT,MON/B, \capFN/H,PLO/G
FN\mp@code{N}
\$IRSYS
\$RFSTORF
\$PAUSE

```
```

PHASE I - PART 3

```

ROUTINE TO CONVERT GEODETIC POSITIONS AND RADII TO PLOTTER INCHES
```

 NMAPS =0
 75 READ TAPE NTAP
 200 READ TAPE ICON,
IWAC, CM, FLRU, TY, RL, PL
205 IF(IWAC-IDI200,210,900
210 NMAPS =NMAPS +1
400 IMAP =IN/2
IMAD 2 = IMAD*?
ITFST=ID-IMAP2
45n IF(1TFST)]500,500,55n
500 WRITE OUTPUT TAPF KO, 510, IMAP, TY
510 FORMAT (3HWACI3, 1HL, 1X, F5.2)
GO TO 250
550 WRITE OUTPUT TAPE KO, 560, IMAP, TY
560 FORMAT (3HWACI3, 1HU, 1X, F5.2)
250 ANG=(CM-XLON)*0.6205
SANG=SINF(ANG*0.01745)
RP=RL-((XLAT-PL)*PLRU)/2.
CANG=COSF(ANG*O.01745)
XCX=RP*SANG
XCY =RL-(RD*(ANG)
CX=(XCX*20.37)/1000000.
CY=(XCY*30.37)/10nnonn.
DO 300 I=1,NRI NGS
300 R(I) =R(I)*0.06326
WRITE OUTPUT TAPF KO, 610, CX, CY,(R(I), I=1,NRINGS)
6]0 FOPMAT(F6.?.11F5.2)
100 READ TAPE NTAP, ID, XLAT, XLON,(R(I), I=1,NRINGS)
650 IF(IWAC-ID)70N,750,1000
700 CX=99.90
WRITF O|TPUIT TAPF KO, 61O, (X, (Y,(R(I), I=1,NRINGS)
750 IF(In-9000)?0\cap,17n0,R\capn
8OO DRTNT 850
850 FOPMAT(5OHOPROGRAM STOPPED WHFN IWAC GREATFR THAN ID AT STATEMENT
17501
GO TO 1700
9ON PRINT 950
950 FORMAT(59HOPROGRAM STOPPED WHFN IWAC GRFATFR THAN ID AT STATEMENT
12051
GO TO 1700
1500 PRINT 1600
160O FORMAT(59HOPROGRAM STODPFD WHFN ITFST FOUNN NFGATIVF AT STATFMENT
1450)
GO TO 1700
1000 CX=90.90
WRITF O(ITPUT TAPF KO, 610, CX, CY,(R(I), I=1,NRINGS)
PRINT 1200
1200 FORMAT(59HOPROGRAM STODPED WHEN IWAC GREATER THAN ID AT STATEMENT
16501
1700 TY=99.90
IMAP=0
WRITE OUTPUT TAPE KO, 1750, IMAP, TY
1750 FORMAT (3HWACI3, 1HX, 1X, F5.2)
WRITE OITPIIT TAPE KO, 19OO, NMAPS
1RON FORMAT (4OH TOTAL NUMRFR OF OVFPLAYG FOR THIS RUN =IX, 12)
FND FILF KO
RFWIND Kの
RFWIND TCON
REWIND NTAD
2000 CALL SYSTEM
FND

```
```

 MAIN PROGRAM
 PHASE II OF LFTHAL RADIUS PLOT PROGRAM
 HIMFNSTON DATA(7OOO),R(6),PSI(6),XMAP(?),M(3000)
 COMMON ITAPE
 12 FORMAT(2I2,A6,A2,6A4)
 14 FORMAT(AG,A1,1X,F5.2)
 16 FORMAT(F6.2.7F5.2)
 18 FORMAT(1H1,A6,A2)
 20 FORMAT(42HOWAC NUMBER - PICTURE NUMBER - TAPE NUMBER)
 22 FORMAT(?H AG,A1,10X,13,]3X,I1)
 I TAPF=1
 IPICT=1
 (ALL PLOTS(DATA(3000),3000)
 RFAD]2,NRINGS,ISFC,DATE(1),DATF(2),(PSI(JJ),JJ=I,NRINGS)
 PRTNT 12,\capATF(1),NATF(2)
 PRINT 2?
 10 RFAD INPUT TAPF 5,14,XMAP(1),XMAP(2),TY
 IF(TY-00.00)11,09,99
 11 PRINT 22,XMAP(1),XMAP(2),IPICT,ITAPE
 CALL GYMBOL(0.0,0.0,.07,3,0.0,-1)
 4 0 ~ C A L L ~ S Y M R O L ~ (- . 8 , - . 8 , - . ~ 2 8 , X M A P (1) , 0 . 0 , 7)
 IF(ISFC) 50,50,45
 4 5 \mathrm { CALL } S Y M B O L ~ (1 . 2 , - . 8 . . 7 8 , 6 H S E C R F T , n . 0 , 6)
 5\cap (ALL SYMROL(O.n,TY,.n7,3,n.0,-1)
 71 RFAD INPUT TAPE 5,16,CX,CY,(R(LL),LL=1,NRINGS)
 IF(CX-00.00)75, 25,25
 75 CALL PLOT(CX,CY,3)
 CALL PLOT(CX,CY,?)
 90 DO 23 IR=1,NRINGS
 FRSTX=(X+R(IR)
 CALL PLOT(FRSTX,CY,3)
 CALL PLOTIFRSTX,CY,2)
 CALL CIRCLF(CY,R(IR),M,NUMB)
 CALL SYMROL(FRSTX,CY,-.14,PSI(IR),90.0,4)
 73 CONT INUF.
 GO TO 71
 25 CALL PLOT(36.0,0.0,-3)
 IPICT=IPICT+1
 GO TO 10
 99 REWIND 5
 REWIND }
 CALL SYSTEM
 END
    ```
            SURROUTINES PLOTS, PLOT, CONVRT
* LABEL
* FAP
*PLOT2
    COUNT 340
    FNTRY PLOT
    FNTRY PLOTS
    ENTRY CONVPT
```

 REM FORTRAN LINKAGE.
 REM CALL PLOT (X,Y,I)
 REM X AND Y ARF COORDINATES OF NEW POINT
 REM I IS INDICATOR FOR PFN MOVEMFNT AND
 RFM END OF PICTURF. }3\mathrm{ IS PFN UP,2 IS
 RFM PEN DOWN.-IS END PICTURE.
 RFM
 RUFFR FOU O
 PLOTS SX\cap X4,4
 CLA 2,4
 STA MANY
 CLA 1,4
 STA W2
 STA W3
 STA W4
 ADD THRFE
 STA WX
 CTA WY
 COM
 SVN PAX 7,4
 TXI ** %,4,1
 SXD RCON,4
 MANY LX\cap ##.4
 LINK PXA ##,4
 ARS 1
 STA RCON
 W5 ADD W2
 STA SAVE
 COM
 PAX 0,4
 TXI *+1,4,?
 SXD LIMIT,4
 SX\cap LIM,4
 TSX $TRMES4
 SAVF PTF LTNK
 LXD X4,4
 TRA 2,4
 PLOT SXD XI,1 SAVF INDFX REGISTFRS
 SXD X2,2
 SXD X4,4
 CLA 1,4 PICK UP DATA LOCATIONS
 STA XXX
 CLA ?,4
 STA Y
 FOR Y COPRDINATF
 THRFF CLA 2,4
<TA FPF
FPF CLA \#\#
STO FPIND
CLS RLOCK
TMI TOTO
STO BLOCK
CLA N INCREMENT RLOCK ADDRESS
ADD ONE
STO N
LXA CLM,4
CLA GTART
STO APSNX
LDO N
CLM PXD 36,0
OVD TEN
STO ARSOY
TWO LRS 2
ALS }
LLS 38,4
ORS ARSDX

```
```

 LDQ ARSSYY
 TJX CLM,4,1?
 TCX & TRW,4
 DTF &TART,O, CVN!
 TSX STRW/4
 D7F CHANGF,O,THRFF
 LXA THRFE,4
 CLA START+2,4
 wX STO RUFFR+2,4
 TIX *-2,4,]
 ADD ONE
 WY STO RUFFP+3.4
 LXD RCON,? RCON=-RUFFR-3
 SXO ST,1
 LXA \capNF,?
 &XD FF.?
 TOT\cap LXN FOINN,l
LXA TEN,4
ONFO TXL X,1,1
CLA PENZ
TXH PFNUD,1,?
PFNDN
N\capP
CLA DOHN
RFIT LXD ST,I
LXD FF,?
STO PFMIT
TXL FL.?,n
CLW RUIFFR,!
LF CLA CON
TXI TXI LIM,l,-l
PFNIIP TMI X
CLA UPMA
X1 TXI RFTT,O,**
LIM TXH STO,1,** OECREMENT=-BUOER-ICOUNT+1
CLA FND
STO RUFFR,1
TCX \$TP!!,4
W? PTF R!IFFR,O,RCON
LXD PCON,l
X4 TXI TPAV,O,\#\#
FL STA RlIFFR,I
CLA ONFD
STD FF
X2 TXI LF,O,**
STO STO RUFER,l
TIX TXI,4,1
TRAV SXD ST,1
X CLA* XXX
FSR FRO
TPL MINF
xxx
LnO **
FMP F1\cap0
GTO XPLTC
SSP
FAD POO5 ROUNN OFF
ARS 1
ANA MASK
LDQ XPLTC
LLS 0
STO XT
GIIR PFNX
LNO XCON
IRS O
CTO XPLTC
SLIN ARCNX
RESTORE DY SIGN

```
```

Y LDO**
FMP F100
STO YPLTC
SSP
FAD POO5
ARS I
ANA MASK
LOO YPLTC
LLS O
STO YT
GIIR PFNY
LOO YCON
LRS O
STQ YPLTC
SSP
STO ARSOY
GUR ARSDX
TMI XPASIC
YRACIC CLA XPLTC
LO\cap YPLTC
GTO YPLTC
\&TO XPLTC
CLA ARSNY
PAX 0,4
STO TFST SFT UIP TEST VALUF
LDO APSDX
RFENT ARS 1
TXL FOP,4,0
STQ RATIO
CTO ACC!MM
CLA CON
A\capD XPLTC
STO XPLTC
AND YPITC
STO YPLTC
CLA XT
STO PFNX
CLA YT
STO PENY
LXD FF,?
LXD \&T,l
BACK CLA RATIO
ADD ACCUM
STO ACCIIM
SUP TFST
TMI SKIP
CTO ACCIJM
CLA YPLTC
FF TXI SKIP+1,0,1
MINE LXD FF,2
LXO ST,I
CLA RSIZF
PAX ,4
ADD CONSA
CTA DICKI
DICK SLN]
PICK1 CLA H*,4
CTO RIIFFR,l
TPA FLID+?
XRASTC CLA ADEOXX
DAX \cap,4
STO TFST
LDQ ARSDY
ST TXI RFFNT, O,**
SKIP CLA XPLTC

```
```

 TXL FLIP,7,0
 <TO RIIFFR,1
 TXI OR,>,-1
 FITP ARS 19
 STA PllFFR,l
 TY] *+],l,-1
 LIMIT TXH |IP.],**
 CLA END
 STO RUFFR,1
 SXD SAVF,4
 TSX $TRW,4
 W3 PTE RIIFFR,O,RCON
 LXD SAVF,4
 LXD RCON,?
 LXA ONE,?
 OR CLT ?
 TRA ORCC
 ORMN TIX DICK,4,l
 TRA *+?
 ORCC TIX PACK,4,1
 SXD &T,l
 CXD FF,?
 FOP CLA FPINN
 STO RLOCK
 TPL OVER
 &T\ PFNX
 GTZ DFNMY
 LX\cap FF.?
 LX\cap <T,l
 CLA ENN
 TX1 *+1,1,-2
 TXH *+3,2,0
 TX1 *+1,1,-1
 TXI *+1,2,1
 STO RUFER-?,l
 SXD FF,2
 DXA 0,1
 COM
 CCP
 GIIR W/?
 GTA K
 LXD RCCN,?
 SXD ST,l
 TSX कTRW,4
 W4 PZF RUIFFR,O,K
 OVFR LXD XI:1
 LXD X2,?
 LXD X4,4
 CLA TOL
 STO PFNON
 CLA *+?
 GTO #-?
 TRA 4,4
 TDI TPL X
 POO5 OCT ?.7ク40n0000n]
 XT PZE O
 YT PZE 0
 MASK PZE-1,0,0
TFST PTE O
CON RCD IGGGGGK
YCON RCO 1010nOO
STADT RCD 34444444444223322?1
ARSNX PTF O
RCก 2123223224444444444
FNO RCD 146?400

```
```

CHANGE RCD 3334444444444444433
F89 DEC 89.0
F100 DFC 100.0
PFNX PZE 0
PENY PTE O
ARSDY PZE O
XCON RCD 1]OOOOD
XPLTC PYF O
YOLTC DTF O
RATIO PTE O
ACCUM PTF O
BLOCK MZE O
ONE PZFI
TFN PZE 10
PENZ PZE
DOWN BCD 1667667
UPM RCD 1065665
BCON PZF 0,0,**
AN P7E O
FDIND PTF O
CONVRT EXA CON5,T
EXA CONG.?
SXA CON4.4
CONCON NOD CON2
CLA* 1.4
ARS 18
STA BSIZE
STA CON2
ADO CONSA
STA CON3
LnO =חOO2nกOOOOnOO
SLO CONCON
CON? AXT **,1
CLA* 2.4
ARG 18
PAC .?
CAL LIST.2
GLW TEMP
CLA* 3.4
ARS 18
PAC ,4
CAL LIST.4
APS l\&
ORA TFMP
CONz SLW **,1
TiX CONQ,l.l
LnO =0n76In@nnonon
SIQ CONCON
TSX PLOT,4
PZE FNIN
PZE FNIN
PZE CONPEN
CONS SXA CON?,I
CON4 AXT \#\#,4
CON5 AXT **,I
C\capNG AXT \#*,?
TRA 4,4
FMTM OFC 00.0
CONPFN PTF ,:?

```

```

CONSA PZE DRUFF
BSIZE PIE O
TEMP PZE 0
DPIIFF OSS 1500

```

\section*{SUPROITINE CIRCLE}
```

 FORTRAN LINKAGF
 (ALL CIRCLE(CY,R,M,NIIMP)
 CY=CENTFR Y COORDINATF OF CIRCLF
 R=RADIUS
 M AND NUMP ARE OUTPUTS
 SIIRROUTINE CIRCLE(CY,R,M,NUMMR)
 DIMENSION M(3OOO)
 I=0
 ENOSW=?
 X=?
 Y=0
 RS?=R**?
 XCO=RSO
 YSQ=0
 1 I = I +1
 BOUND=CY+Y
 IF(X) 2,2,4
 2 IF (Y) 7,7,3
 3 NQ=3
 GO TO &
 4 IF(Y)5,6.6
5 NO=7
GO TO 8
6 NO=1
GO TO 8
7 NQ=5
8IF(ARSF(X)-APSF(Y))90.90.9
9 NZ=0
GO TO 91
90 NZ=1
O1 DEL =XSQ+YSQ-RSO
NZO=NZ+NO
GO TO(10,20,3n,40,50,50,7n,8\cap),N70
10 IF(FN\capSW)09,11,09
90 M(I)=0
NUMAR=I/2
K=I-1
nO 37 I=1,k,2
J=I +1
37 CALL CONVRT (NUMR,M(I),M(J))
RETURN
11 TF(DEL)13,12,1?
12 [F(ROUND-9.5)14,14,15
14 M(I)=8
GO TO 16
15 M(1)=7
16 x<0=x.00-.n?*XX+.0nO1
X=X-.01
2? Yく\cap=Yくロ+.0)*Y+.0\capก1
Y=Y+.O!
GO TO 1
13 IF(ROUND-9.5)17,17.18
17 M(I)=1
GO TO 27
18 M(I)=0
G\cap TO 2?
20 IF(DFL);?,17,?1
21 M(I)=7
GO TO 45
40 IF(DFL)?1,71,41
41 IF(ROUND-0.5)42,42,43
42 M(I)=6
GO TO 44

```
\(43 \mathrm{M}(1)=7\)
\(44 Y S Q=Y S Q-. \cap 2 * Y+.0001\)
\(Y=Y-.01\)
\(45 \times \angle Q=X S Q-. \cap 2 * X+\). กOก
\(x=x-01\)
Gの TO 1
20 IF(DFL)41,41,71
2] IF(POUND +5 ) \(32,32,35\)
35 IF (ROUNR-Q.5) 37,32,33
32 \(M(1)=5\)
GO TO 55
\(33 \mathrm{M}(1)=0\)
GO TO 55
50 IF(DEL) 31,31,51
51 IF (ROUNN +.5\() 53,53,52\)
5) \(M(I)=4\)

GO TO 54
\(53 \mathrm{M}(\mathrm{I})=2\)

\(X=X+.01\)
\(55 Y S O=Y S Q-.02 * Y+.0001\)
\(Y=Y-.01\)
GO TO 1
60 IF(DEL)51,51,61
\(61 \mathrm{M}(1)=3\)
GO TO 85
80 [F(DFL) \(61,61,81\)
?1 IF (ROUND +. 5) 8 8, 87,82
\&) \(M(I)=\) ?
GO TO 84
\(23 M(I)=3\)
\(24 Y S O=Y S Q+.0 つ \# Y+.00 \cap 1\)
\(Y=Y+.01\)
\(05 \quad \mathrm{XSO}=\mathrm{XSO}+.02 * X+.0001\)
\(x=x+.01\)
GO TO 1
70 FNDSW \(=1\)
[F(DEL)R1,8],100
100 IF(ROUND+.5)18,18,17
END

\section*{SURPOIITINE MSG}
* LarEL.
* LIST8

CMSE
SURROUTINE MSG
COMMON ITAPF
ITAPE = ITAPE +1
HRITE OUTPUT TAPE 81,2
2 FORMAT (52H REMOVE TAPE ON A-6 AND MOUNT NEW TAPE. PRESS START) WRITE OUTPUT TAPE 81.3
3 FORMAT \(147 H\) RETURN ALL REELS WRITTEN ON A-6 TO PROGRAMMER. ) RFTURN
FNO

SUBROUTINE SYMBOL
```

 LABFL
 FAP
 * S YMBL 5
REM
COUNT 250
ENTRY SYMBOL
REM
REM FORTRAN LINKAGE
REM CALL SYMBOL(X,Y,SIZE,RCD,THETA,N)
REM
REM SOS TSX SYMBOL,4
REM PZE X
REM PZE Y
RFM PTF SIZE
REM PZF RCN
REM PZF THETA
REM PZEN
REM
REM WHERE X AND Y ARE THE PAGE COORDINATES OF THE
REM LOWER LEFT CORNER OF THE FIRST CHARACTER.
REM SIZE IS THE DESIRED LETTER HEIGHT. BCD IS THE
REM LOCATION OF ALPHA-NUMBERIC INFO. THETA IS THE
REM ANGLE OF LETTERING WITH RESPECT TO X AXIS.
REM N IS THE NUMRER OF CHARACTERS TO RE DRAWN.
RFM X,Y,SIZE,THFTA ARF FLOATING POINT NOS. THETA IS DFGRFES
REM RCD IS BCD AND N IS FIXED AT A RINARY OF 17.
REM SIZE MAY BE NEGATIVE. THIS INDICATES THE BCD
REM INFO IS STACKED BACKWARD AND VICE-VERSA.
RËM N MAY BE NFGATIVE. THIS MEANS BCD INFO IS A
REM FIXED POINT NUMBER AT A RINARY OF 17 AND
REM IS A SPECIAL SYMROL. FOR SPECIAL SYMBOLS N MAY BE -1 OR -2.
RFM -2 INDICATES A LINE IS TO BE DRAWN FRON CURRENT LOCATION
REM TO POSITION (X,Y) IN LINKAGE.
REM
SYMROL 5XD XI,1 SAVE INDEX RFGISTERS
5x0 X2,2
SXD X4,4
REM
CLA COM SFT IIP VARIARLE INSTRUCTION
STO VAR
REM
REM
CLA 1.4 PICK UP LOC. OF X COORD.
STA *+1
CLA **
PICK UP X COORD.
STO XO
RFM
CLA ?.4 PICK UP LOC. OF Y COORD.
STA \#+1
CLA **
CTO YO
REM
CLA 3.4 PICK UP LOC. OF LETTEP HFIHGT
STA *+1
CLA **
TMI OUT
LXA FWD,2
BACK SXD FF.2
FDP F7
CTQ FACT
RFM
CLA 4.4 FICV IIF LOC. NF RCN INFO.
CTA L\capC

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{} & REM & \\
\hline & CLA & 5,4 \\
\hline & STA & TH \\
\hline & REM & \\
\hline & CLA & 6,4 \\
\hline & STA & NN \\
\hline \multirow[t]{3}{*}{NN} & CLA & ** \\
\hline & STO & XXK \\
\hline & TMI & SPECL \\
\hline \multirow[t]{2}{*}{2FRO} & PDX & \(\bigcirc, 1\) \\
\hline & LXA & 36N,? \\
\hline LRTN & CLA & L3 \\
\hline \multirow[t]{2}{*}{RTN} & STD & VL \\
\hline & PFM & \\
\hline \multirow[t]{20}{*}{TH} & LDQ & \#* \\
\hline & FMP & CONST \\
\hline & STO & INCC \\
\hline & TSX & \$SIN,4 \\
\hline & LRS & 35 \\
\hline & FMP & FACT \\
\hline & STO & INCS \\
\hline & CLA & INCC \\
\hline & TSX & \$COS,4 \\
\hline & LRS & 35 \\
\hline & FMP & FACT \\
\hline & \[
\begin{aligned}
& \text { STO } \\
& \text { REM }
\end{aligned}
\] & INCC \\
\hline & LDQ & INCC \\
\hline & FMP & F6 \\
\hline & \(\bigcirc T O\) & X \(T\) \\
\hline & LDQ & INCS \\
\hline & FMP & F6 \\
\hline & STO & YT \\
\hline & PFM & \\
\hline & LXA & ZFPn, 4 \\
\hline \multirow[t]{2}{*}{Loc} & LDO & **4 4 \\
\hline & LGL & 42,2 \\
\hline \multirow[t]{4}{*}{VAR} & TXI & * \(+1,0,0\) \\
\hline & ANA & 63R35 \\
\hline & COM & \\
\hline & SXD & \(1 \times \cdot 1\) \\
\hline \multirow[t]{3}{*}{RFENT} & SXD & \(2 \times, 2\) \\
\hline & SXD & COM, 4 \\
\hline & PEM & \\
\hline \multirow[t]{5}{*}{Fwn} & PAX & -1.1 \\
\hline & CLA & TARLF-1,1 \\
\hline & STA & NLOC \\
\hline & STA & OLOC \\
\hline & ARS & 6 \\
\hline \multirow[t]{16}{*}{63R35} & PDX & 63,1 \\
\hline & ARS & 17. \\
\hline & ANA & 63835 \\
\hline & STO & NO \\
\hline & TZE & CLAP \\
\hline & CLA & XXK \\
\hline & TPL & DLOC-1 \\
\hline & RFM & \\
\hline & CLA & INCS \\
\hline & FSR & INCC \\
\hline & ACL & TWICF \\
\hline & FAD & x0 \\
\hline & STO & \(\times 0\) \\
\hline & CLS & INCC \\
\hline & FSR & INCS \\
\hline & ACL & TWICE \\
\hline
\end{tabular}
```

PICK UP LOC. OF THETA
PICK UP LOC. OF COUNT
PICK UP NUMRER OF CHARS.
SET UP SPECIAL CHARACTER INDICATOR
TRANSFER FOR SPECIAL CHARS.
INDFXI=NUMRFR OF CHARS.
SFT X? TO PICK UP FIRST RCD CHAR.
LINKAGF SFT UP FOR PEN UP
SFT UP VARIABLE LINKAGE
PICK UP THETA(DEGREES)
SAVE THETA(RADIANS)
COMPUTE SIN THETA
SAVF FACTOR * SIN THETA
COMPUTE COG THETA
FACTOR * COS THETA
COMPUTE THE LENGTH BETWEENCHARS.
SIX TIMES FACTOR (HEIGHT/7)
CHANGE IN X
CHANGE IN Y
6CHAR. PICK UP RFGISTER
PICK UP 6 CHARACTERS.
SHIFT CHARS.
NOP FOR NORMAL CHAR.
GET SINGLF 6 RIT CHAR.
SKIPED FOR SPECIAL CHAR.
SAVE INDEX REGISTERS
FOR NEXT TIME THRU.
PICK LOC OF OFFSET DATA
PICK UP SHIFT COUNT
SAVE ONLY OFFSET COUNT
TEST FOR SPECIAL CHAR.
TPANSFER ON NORMAL CHAR.
MOVF RFFERFNCE POINT
FOR SPECIAL SYMROLS
MULTIPLY RY 2
SO THAT ORIGINAL XO,YO
CORRESPONOS TO CENTER
MOVE REFERENCE POINT

```
MULTIPLY RY 2
```

 FAD YO
 STO YO
 RFM
    ```

LXA 2ERO,?
nLOC
LDS * * ? ?
LGL 39,1
ANA 7825
PAX 0,4
RFM
TXL *+3,4,6
CLA L 3
X4 TXI STD.ก,**
REM
CLA XO
\(\operatorname{sTO} x \times\)
CLA YO
CTO YY
REM
TXL OLOC,4,0
RFM
EN CLA XX
FAD INCC
STO XX
CLA YY
FAD INCS
STO YY
TIX FN:4.1
DFM
OLOC LNO **,?
LGL 4? 1
ANA 7R35
25N PAX 74,4
TXL JEN,4,0
REM
NFJ CLA YY
FAD INCC
STO YY
CLA XX
FSR INCS
cTO XX
TIX NEJ,4.9
DFM
JFN TSX \$PLOT,4
PTE XX
PZE YY
PZF VL
REM
CLA L2
STD STD VL
PFM
RFM
CLA NO
SUR ONF
TTF CLAD
STO NO
TIX DLOC,1,6
LXA ? \(6 \mathrm{~N}, 1\)
TXI DLOC, 2,-1
REM
CLAP CLA L3
STD VL
CLA XO
FAn XT
STn \(\times 0\)
Cla Y
CALL PLOT ROUTINF TO
MOVE TO COMPUTFD POINT.
RFSET LINKAGF TO
LOWER PEN
PICK UP OFFSFT COINT
DFCREMFNT PY ONF
FXIT WHFN FULFILLFN
DFCREMFNT SHIFT COUNT RY }
RFSFT SHIFT COUNT TO 26
MOVE TO NEXT OFFSFT WORD
RFSET LINKAGE TO LIFT PEN
CALCULATF X AND Y FOR
NFXT CHARACTFR IN SFRIFS
```

```
```

INITIAL SETTING FOR PICK UP OFFSET

```
```

INITIAL SETTING FOR PICK UP OFFSET
PICK OFFSFT DATA
PICK OFFSFT DATA
SHIFT OFFSFT CHAR INTO ACC!JM
SHIFT OFFSFT CHAR INTO ACC!JM
SAVF ONLY 3 RITS FOR }
SAVF ONLY 3 RITS FOR }
X4 =X OFFSFT COUNT
X4 =X OFFSFT COUNT
PICK IIP XO FOR USE IN
PICK IIP XO FOR USE IN
COMPIITING INTFRMEDIATEX
COMPIITING INTFRMEDIATEX
SAME FOR YO.
SAME FOR YO.
SKIP X CALCINCATION IF O
SKIP X CALCINCATION IF O
COS COMPONFNT OF OFFSET
COS COMPONFNT OF OFFSET
SIN COMPONENT OF OFFSET
SIN COMPONENT OF OFFSET
PICK UPP OFFSFT DATA
PICK UPP OFFSFT DATA
SAVF ONLY 3 RITS FOP X
SAVF ONLY 3 RITS FOP X
SKIP IF NO Y OFFSET COUNT
SKIP IF NO Y OFFSET COUNT
ADD COS COMPONENT TO
ADD COS COMPONENT TO
Y VALUF
Y VALUF
ADD SIN COMPONENT TO
ADD SIN COMPONENT TO
X VALIJF

```
X VALIJF
```

	FAD	$Y T$
	STO	YO
	REM	
	LXD	$1 \times, 1$
	LXD	$2 x, 2$
	L.XD	COM, 4
	PFM	
	$\begin{aligned} & \text { TIX } \\ & \text { RFM } \end{aligned}$	$*+3,2,6$
FF	LXA	36N,?
	TXI	* +1.4 **
	TXL	FXIT, 1,1
	TXI	$\operatorname{L\cap C,1,-1}$
	REM	
EXIT	LXD	$\times 1,1$
	LXD	$\times 2,2$
	LXD	X4,4
7835	TRA	7.4
	RFM	
OUT	SSP	
	LXA	ONE, 2
$\times 1$	TXI	AACK, O, \%*
	RFM	
SPFCL	LXA	ONF, 1
	LXA	$25 \mathrm{~N}, 2$
	LDQ	FACT
	FMP	F7TH
	STO	FACT
	CLA	$1 \times$
	\leqslant TO	VAR
	LXD	XXK, 4
	TXL	LRTN,4,1
	CLA	L?
$x 2$	TXI	RTN, 0 ***
	DFM	
F7	DFC	7.0
F7TH	DFC	1.75
CONST	DFC	0.0174533
FACT	PRE	0
INCC	PZF	0
INCS	PZE	0
X0	PZE	0
YO	P7E	0
COM	TXI	$V A R+1, n, * *$
1 X	TXI	MORF, 0 , **
MORE	SXD	$1 \mathrm{X}, 1$
	PAX	0,1
	TXL	REENT, 1,16
	TXI	* $+1,1,-17$
	STZ	XXK
36N	PXA	36.1
	LXD	$1 \times, 1$
$2 x$	TXI	$V A R+1,0$ **
	REM	
VL	PZE	0,0,**
TWICE	OCT	no1mnnnonano
L3	\square QF	0.0 .3
L. 2	P7E	$0,0,2$
ONF	P7F	1
NO	PZE	0
XXK	PZE	0
$X X$	P7E	0
YY	PZE	0
$\therefore \mathrm{C}$	PZE	0
YT	PRE	0

RESET INDFX RFGISTFRS
FOR NEXT CHARACTER
PICK UJP.
CHANGE SHIFT COINT FOR NFW CHAR.
RFGFT NFW CHARACTER SHIFT
MOVF TO NFXT RCD WORO
FND OF STRING OF CHAPS.
GO VACK FOR ANOTHER CHAP.
RESTORE INDEX REGISTERS
TO VALUES AT ENTRY TO
ROIITINE.
RETIJRN
SFT HFIGHT PLIIS
SFTX? FOR RKWN STACK DATA
RFTIIRN
COUNT = 1
SFT CHIFT COINAT TO PICK UP DFCP.
RFCOMPIITE FACTOR
FACTOR=HEIGHT/4
(ADD SPECIAL CHARACTER HANCLING)
PICK UP N VALUE FOR PFN LIFT DECISIO
IF $N=-1$ SET PEN TO LIFT
$N=-$ SSET PEN TO LOWFR.
RFTIIRN
FACTOR $=\mathrm{HFIGHT} / 7.0$
FACTOR $=\mathrm{HFIGHT} / 4.0$
$3.1416 / 1800.0$
LFTTER FACTOR
FACTOR * COS THETA
FACTOR * SIN THETA
X COORDINATE OF FIRST CHAR.
YCOORDINATE OF FIRST CHAR.
VARIARLE INSTRUCTION NORMAL
VARIARLF INSTRUCTION SPECIAL
PICK UP NUMRER FOR SPECIAL
IF GRFATFR THAN THF TOTAL
NUMBER OF SPECIAL CHARACTERS
THEN REDUCE BY 17 AND
GO INTO HOLLERTTH TABLE
CONSTANT FOR SPECIAL CHARACTER IND.

F6	DEC	6.0	
	PZE	VECTOR， $0.64 * 12+2$	－171
	P7E	VFCTOR，0， $64 * 24+$ ？	－16－
	PZE	S15，0，64＊24＋6	－11K
	P7E	S4，0，64＊12＋4	－14
	P7E．	S $13,0,64 * 74+6$	－13
	P7．E	S4，0，64＊30＋12	－17
	PRE	S11， $0,64 * 30+14$	－11
	PZE	S10，0，64＊30＋7	－10
	PZE	$59,0,64 * 36+8$	－9
	PZE	S8，0，64＊30＋6	－8
	PZE	S7，0，64＊36＋7	－7
	PZE	56，0，64＊36＋7	－6
	P7E	S5，0，64＊30＋7	－5
	P7F	S4，0，54＊30＋7	－4
	P7E	S3， $0,64 * ? 4+6$	－3
	P7E	S？，0，64＊18＋1？	－？
	PTE	S1， $0,64 * 24+8$	－1
TARLF	PRF	$0,0,64 * 24+0$	00
	P＞F．	N1，0，64＊18＋5	01
	PZE	N？，0，64＊24＋8	07
	PZE	N3，0，64＊24＋13	03
	PZE	N $4,0,64 * 30+9$	04
	PZE	N $5,0,64 * 6+9$	05
	PZE	N $6,0,64 * 24+11$	06
	PZE	N7，0，64＊36＋6	07
	PZE	N3，0，64＊2．4＋i7	10
	PZE	N9，0，64＊18＋12	11
	P7E	COLON， $0,64 * 24+11$	12
	P7．E	MTNUS， $0,64 * 12+5$	12
	PZE	MINUS，0，64＊17＋8	14
	PZE	LF ，0，64\＃24＋6	15
	PZE	N7，0，64＊12＋8	16
	PZE	$\mathrm{N} 2+1,0,64 * 12+4$	17
	PZE	PLUS， $0,64 * 12+5$	20
	PZE	A， $0,64 * 36+10$	21
	PZF	$D+1,0,64 * 30+12$	72
	PZE	$0,0,64 * 24+8$	23
	PフE	D，0，64＊6＋7	24
	PフE	$L, 0,64 * 30+7$	25
	P7F	L， $0,64 * 24+6$	26
	P7F	G，0，64＊18＋17	27
	P7F	$\mathrm{H}, 0,64 * 36+6$	30
	PZE	RP，0，64＊12＋6	31
	PZE	$\mathrm{N} 2+1,0,64 * 24+4$	32
	PZE	N7，0，64＊12＋5	33
	PZE	RP， $0,64 * 30+4$	34
	PZE	AR，0，64＊18＋5	35
	PZE	MINIJS， $0,64 * 30+8$	36
	P7E	AST， $0,64 * 24+3$	37
	PフF	MIN！IS， $0,64 * 30+2$	40
	PフE	U，0，64＊17＋5	41
	P7E	M，0，64＊19＋7	47
	P7E	L，0，64＊30＋3	43
	PTE	M， $0,64 * 36+5$	44
	PZE	$\mathrm{N}, 0,64 * 18+4$	45
	PZE	$0,0,64 * 36+11$	46
	PZE	$W, 0,64 * 18+7$	47
	PTE	0，0，64＊24＋11	50
	PRE	W，0，64＊18＋10	51
	PZE	PER， $0,64 * 36+14$	57
	PフE	$\mathrm{N} 7+1,0,64 * 6+11$	53
	P7E	AST， $0,64 * 1 ?+11$	54
	PフF	N1， $0.64+20+5$	55
	PフE	T，0．64＊12＋5	56

	FAD	$Y T$
	STO	YO
	REM	
	LXD	$1 \times, 1$
	LXD	$2 x, 2$
	L.XD	COM, 4
	PFM	
	$\begin{aligned} & \text { TIX } \\ & \text { RFM } \end{aligned}$	$*+3,2,6$
FF	LXA	36N,?
	TXI	* +1.4 **
	TXL	FXIT, 1,1
	TXI	$\operatorname{L\cap C,1,-1}$
	REM	
EXIT	LXD	$\times 1,1$
	LXD	$\times 2,2$
	LXD	X4,4
7835	TRA	7.4
	RFM	
OUT	SSP	
	LXA	ONE, 2
$\times 1$	TXI	AACK, O, \%*
	RFM	
SPFCL	LXA	ONF, 1
	LXA	$25 \mathrm{~N}, 2$
	LDQ	FACT
	FMP	F7TH
	STO	FACT
	CLA	$1 \times$
	\leqslant TO	VAR
	LXD	XXK, 4
	TXL	LRTN,4,1
	CLA	L?
$x 2$	TXI	RTN, 0 ***
	DFM	
F7	DFC	7.0
F7TH	DFC	1.75
CONST	DFC	0.0174533
FACT	PRE	0
INCC	PZF	0
INCS	PZE	0
X0	PZE	0
YO	P7E	0
COM	TXI	$V A R+1, n, * *$
1 X	TXI	MORF, 0 , **
MORE	SXD	$1 \mathrm{X}, 1$
	PAX	0,1
	TXL	REENT, 1,16
	TXI	* $+1,1,-17$
	STZ	XXK
36N	PXA	36.1
	LXD	$1 \times, 1$
$2 x$	TXI	$V A R+1,0$ **
	REM	
VL	PZE	0,0,**
TWICE	OCT	no1mnnnonano
L3	\square QF	0.0 .3
L. 2	P7E	$0,0,2$
ONF	P7F	1
NO	PZE	0
XXK	PZE	0
$X X$	P7E	0
YY	PZE	0
$\therefore \mathrm{C}$	PZE	0
YT	PRE	0

RESET INDFX RFGISTFRS
FOR NEXT CHARACTER
PICK UJP.
CHANGE SHIFT COINT FOR NFW CHAR.
RFGFT NFW CHARACTER SHIFT
MOVF TO NFXT RCD WORO
FND OF STRING OF CHAPS.
GO VACK FOR ANOTHER CHAP.
RESTORE INDEX REGISTERS
TO VALUES AT ENTRY TO
ROIITINE.
RETIJRN
SFT HFIGHT PLIIS
SFTX? FOR RKWN STACK DATA
RFTIIRN
COUNT = 1
SFT CHIFT COINAT TO PICK UP DFCP.
RFCOMPIITE FACTOR
FACTOR=HEIGHT/4
(ADD SPECIAL CHARACTER HANCLING)
PICK UP N VALUE FOR PFN LIFT DECISIO
IF $N=-1$ SET PEN TO LIFT
$N=-$ SSET PEN TO LOWFR.
RFTIIRN
FACTOR $=\mathrm{HFIGHT} / 7.0$
FACTOR $=\mathrm{HFIGHT} / 4.0$
$3.1416 / 1800.0$
LFTTER FACTOR
FACTOR * COS THETA
FACTOR * SIN THETA
X COORDINATE OF FIRST CHAR.
YCOORDINATE OF FIRST CHAR.
VARIARLE INSTRUCTION NORMAL
VARIARLF INSTRUCTION SPECIAL
PICK UP NUMRER FOR SPECIAL
IF GRFATFR THAN THF TOTAL
NUMBER OF SPECIAL CHARACTERS
THEN REDUCE BY 17 AND
GO INTO HOLLERTTH TABLE
CONSTANT FOR SPECIAL CHARACTER IND.

F6	DEC	6.0	
	PZE	VECTOR， $0.64 * 12+2$	－171
	P7E	VFCTOR，0， $64 * 24+$ ？	－16－
	PZE	S15，0，64＊24＋6	－11K
	P7E	S4，0，64＊12＋4	－14
	P7E．	S $13,0,64 * 74+6$	－13
	P7．E	S4，0，64＊30＋12	－17
	PRE	S11， $0,64 * 30+14$	－11
	PZE	S10，0，64＊30＋7	－10
	PZE	$59,0,64 * 36+8$	－9
	PZE	S8，0，64＊30＋6	－8
	PZE	S7，0，64＊36＋7	－7
	PZE	56，0，64＊36＋7	－6
	P7E	S5，0，64＊30＋7	－5
	P7F	S4，0，54＊30＋7	－4
	P7E	S3， $0,64 * ? 4+6$	－3
	P7E	S？，0，64＊18＋1？	－？
	PTE	S1， $0,64 * 24+8$	－1
TARLF	PRF	$0,0,64 * 24+0$	00
	P＞F．	N1，0，64＊18＋5	01
	PZE	N？，0，64＊24＋8	07
	PZE	N3，0，64＊24＋13	03
	PZE	N $4,0,64 * 30+9$	04
	PZE	N $5,0,64 * 6+9$	05
	PZE	N $6,0,64 * 24+11$	06
	PZE	N7，0，64＊36＋6	07
	PZE	N3，0，64＊2．4＋i7	10
	PZE	N9，0，64＊18＋12	11
	P7E	COLON， $0,64 * 24+11$	12
	P7．E	MTNUS， $0,64 * 12+5$	12
	PZE	MINUS，0，64＊17＋8	14
	PZE	LF ，0，64\＃24＋6	15
	PZE	N7，0，64＊12＋8	16
	PZE	$\mathrm{N} 2+1,0,64 * 12+4$	17
	PZE	PLUS， $0,64 * 12+5$	20
	PZE	A， $0,64 * 36+10$	21
	PZF	$D+1,0,64 * 30+12$	72
	PZE	$0,0,64 * 24+8$	23
	PフE	D，0，64＊6＋7	24
	PフE	$L, 0,64 * 30+7$	25
	P7F	L， $0,64 * 24+6$	26
	P7F	G，0，64＊18＋17	27
	P7F	$\mathrm{H}, 0,64 * 36+6$	30
	PZE	RP，0，64＊12＋6	31
	PZE	$\mathrm{N} 2+1,0,64 * 24+4$	32
	PZE	N7，0，64＊12＋5	33
	PZE	RP， $0,64 * 30+4$	34
	PZE	AR，0，64＊18＋5	35
	PZE	MINIJS， $0,64 * 30+8$	36
	P7E	AST， $0,64 * 24+3$	37
	PフF	MIN！IS， $0,64 * 30+2$	40
	PフE	U，0，64＊17＋5	41
	P7E	M，0，64＊19＋7	47
	P7E	L，0，64＊30＋3	43
	PTE	M， $0,64 * 36+5$	44
	PZE	$\mathrm{N}, 0,64 * 18+4$	45
	PZE	$0,0,64 * 36+11$	46
	PZE	$W, 0,64 * 18+7$	47
	PTE	0，0，64＊24＋11	50
	PRE	W，0，64＊18＋10	51
	PZE	PER， $0,64 * 36+14$	57
	PフE	$\mathrm{N} 7+1,0,64 * 6+11$	53
	P7E	AST， $0,64 * 1 ?+11$	54
	PフF	N1， $0.64+20+5$	55
	PフE	T，0．64＊12＋5	56

```
X4 AXT **,4
    TRA 2,4
    END OCT 076600001206
        RCHA BLOCK
        OCT 077200001206
        TSX $MSG.4
        HTR #+1
        REWA 6
        AXT 5,4
        WTBA 6
        TIX #-1,4,]
        SDLA 6 SFT DFNSITY LOW ON A-6
        OCT 0766\capก001?n6
        RCHA RLOCK
        CLA *-1
        STA TRY
        TRA SPIN BACK TO WRITING DATA
        OCT O76400001206
        OCT 076600001206
        OCT 076600001706
TRY RCHA IO
        TRA SPIN
    TRWS CLA 1.4
        STA IO
        RFWA 6
        SDLA 6 SET DENSITY LOW FOR TAPE A-6
        TRA 2,4
    10 PZE **,0,**
    BUFER PZE
    BLOCK PZE BLOCK+1.0.7
        BCD 7444444444433333331656565133333334444444444
        END
```


[^0]: * NBS Group, Joint Institute for Laboratory Astrophysics at the University of Colorado.
 ** Located at Boulder, Colorado.

[^1]: For sale by the Superintendent of Documents, U.S. Government Printing Office
 Washington, D.C., 20402 - Price 40 cents

