Eechnical Mote

FRANK L. McCRACKIN

AND JAMES P. COLSON
U. S. DEPARTMENT OF COMMERCE

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units.
Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Applied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radio Standards Laboratory: Radio Standards Physics; Radio Standards Engineering.** Office of Standard Reference Data.
Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.** Office of Standard Reference Materials.
Central Radio Propagation Laboratory.** Ionosphere Research and Propagation. Troposphere and Space Telecommunications. Radio Systems. Upper Atmosphere and Space Physics.
Institute for Applied Technology. Textiles and Apparel Technology Center. Building Research. Industrial Equipment. Information Technology. Performance Test Development. Instrumentation. Transport Systems. Office of Technical Services. Office of Weights and Measures. Office of Engineering Standards. Office of Industrial Services.

[^0]
NATIONAL BUREAU OF STANDARDS

 Technical Note 242ISSUED MAY 27, 1964

A FORTRAN PROGRAM FOR ANALYSIS
 OF ELLIPSOMETER MEASUREMENTS AND CALCULATION OF REFLECTION COEFFICIENTS FROM THIN FILMS

Frank L. McCrackin

and James P. Colson

Abstract

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

Pa.ge

1. Introduction 1
2. Méthods of Calculation 3
2.1 Calculation or Ellipsometry Readings 6 and Reflection Coefficients for a Film Covered Surface.
2.2 Calculation of Index of Refraction for 3 Film-Free Substrate from Ellipsoneter Readings
2.3 Calculation of Film Thickness from 3 Ellipsometer Readings for Given Index of Refraction of Film----------------------
3. Computer Instructions 9
4. Functions and Subroutines for Ellipsometry 22 Programn-
5. Variables Used in Program 23
6. Foricran Progran 23
7. References 37

A Fortran Program for Analysis of Ellipsometer Measurements and Calculation of Reilection Coefficients from Thin Films

Frank L. McCrackin

A Fortran computer program to calculate the reflection coefficients for both single and multiple thin films and to analyze optical measurements of such films by an ellipsometer is presented. Both the films and the suiostrate may be absorbing and have complex indexes of refraction. The reflection coefficients of inhomogeneous films (films of varying refractive index) may be computed by determining the reflection coefficients of an equivalent series of homogeneous films.

The ellipsometer measurements for a given film may be calculated or the index of refrac.-. tion and thickness of a film may be calculated from ellipsometer readings. The ellipsometer measurements may be corrected for the retardation of the compensator or for multiple reflections of the light.

1. Introduction

The reflection of light from surfaces and thin films has been discussed by various authors [1,2]. The reflection is expressed in terms of the reflection coefficients R^{p} for light polarized parallel to the plane of incidence and R^{s} for light polarized perpendicular to the plane of incidence. Since these coefficients are complex quantities, they represent both the change of amplitude and phase of the light on reflection.

The ellipsometer is an optical instrument used to study surfaces and their films by reflection of light [3,4]. The ellipsometer measures the ratio of the reflection coefficienta

$$
\rho=\frac{R^{p}}{R^{S}}=\text { ian } \psi e^{i \Delta}
$$

The ellipsometer contains a polarizer, analyzer, and compensator. For the commonly occurring case of the relative retardation Q of the compensator equal to 90°, and the arrangement of components gjuen by reference 3 , ρ is related to the settings of the polarizer P and the analyzer A by

$$
\begin{aligned}
& P=\Delta / 2-45^{\circ} \\
& \Lambda=\psi
\end{aligned}
$$

The ratio of reflection coefficients, ρ, is a function of the refractive index of the substrate, n_{3}, (which may be complex) the thickness d_{j}, and refractive index n_{j} of any of j films on the surface, some or all of which may be complex, the refractive index of the surrounding medium, n_{1}, the angle of incidence, ${ }^{0_{1}}$, the wavelength of the light used, and the retardation of the quarter wave plate. Hence the ellipsometer readings P and A are related to the optical constants of a surface and the thickness and index of refraction of films on the surface. However, since the calculations required to determine these quantities from ellipsometer measurements (and also the inverse calculations) are very time consuming, this Fortran program was consequently developed for this purpose.

The following computations can be performed by this program:

1) Computation of cllipsometer readings and reflection coefficients for given refractive indexes of surroundine mediam, film and substrate and given film thicloness.
2) Cumpetion of film thickness from ellipsometer 2eadings for given refractive indexes of film and substrate
D) Computation of film thickess and refractive index of film from ellipsoneter readings for given refractive index of substrate.
3) Computation of refractive index of a bare substrate from ellipsometer readings.

2. Methods of Calculation

Most of the formulas used in this program are given in McCrackin et al [3]. The correction of ellipsometer readings for a compensator which has a retardation other than quarter wave, is given by Winterbottom [2]. The calculations involved in use of multiple reflections of the light from several surfaces as well as discussion of increase of sensitivity and experimental technique is given by Stromberg et al [5]. The calculation from P and A of the thickness of a film of given refractive index (Instructions No. 903) has also been described by McCrackin et al [3].

I will now describe briefly the manner of introducing data and instructions into the computer and some of the calculations which may be performed by this progran; a
detailed discussion of the procram will be found in the Uection entitued "Computer Instructions".

The inxtt card for any calculation is a title card that contains any desired jdentifying information. Following cards start with an instruction number jor colums 1 to 3 of the cards, followed by numbers starting in columns 10, 20, 30, 40, 50, and 50. Al1 numbers excent the instruction numbex must contain a decimal point. The instruction number determines the meaning of subsequent numbers and the calculation (if any) to be performed. Instruction numbers from 001 to 901 are used to introduce data; those from 902 to 907 instruct the computer to perform a certain calculation.

For a substrate without a film, the ratio of reflection coefficients, ρ, depends on the angle of incidence, ϕ, of the light, the refractive index, n_{1}, of the surrounding medium, and the refractive index, n_{3}, of the substrate. The rerractive index of the substrate, n_{3}, may be calculated from the measured value of ρ (given by values of P and A), ϕ and n_{1}. This calculation is done by the instruction number 905 after ϕ and n_{I} have been given by a 001 instmaction.

For a film on a substrate, ellipsometer readings P and A and the reflection coefficients may be computed from ϕ, n_{1}, n_{3}, and the thickness, d_{2}, and refractive index, n_{2}, of the film. This calculation is performed by the 902 instruction after n_{1} and ϕ are given by an 001 instruction, n_{2} is given by an 002 instruction, and n_{3} is given by an 003 instruction. The thickness d_{2} is given by the 902 instruction. Alternatively, the.thickness of a film, d_{2}, may be computed from P, A, ϕ, n_{1}, n_{2}, and n_{3} by instruction 903. The P and A values are given by the 903 instruction after $\dot{\phi}$ and n_{1} are given by an 001 instruction, n_{2} is given by an 002 instruction, and n_{3} by an 003 instruction. For a non-absorbing film, with real index of refraction, both d_{2} and n_{2} may be computed by the 904 instruction. The P and A values are given by the 904 instruction after ϕ and n_{l} are given by an 001 instruction, n_{3} by an 003 instruction, and a range of values that includes the solution for n_{2} by the 002 instruction.

The required instructions to perform some typical calculations for single films are now described. The Section entitled "Computer Instructions" gives detailed instructions for the similar calculations for mulciple films as well as the other calculations that may be performed by this program.
2.1 Calculation of Ellipsometry Readings and Reflection Coefficients for a Film Covered Surface

Instruction number 902 will cause the computer to calculate the ellipsometer readings and reflection coefficients for reflection of light from a film-covered surface. The thickness of the film is given with the 902 instruction card. Before the 902 instruction, instructions 001,002 , and 003 must be used to give the other values required for the calculation. The 001 instruction gives the index of refraction of the medium above the film, the angle of incidence of the light, and the wavelength of the light. The 002 instruction gives the index of refraction of the film and the 003 instruction gives the index of refraction of the substrate. Also, every calculation must be teminated by a 910 instruction. For example, lé light of wavelength 4800 A be incident at 65° in air on a film covered surface. Let the thickness of the film be 40 A , the refractive index of the film be 1.4 , and the complex refractive index of the substrate be 3.316-4.333i. The following input data computes the ellipsometer reading, P and A, and the reflection coefficients, R^{p} and R^{s} :
$1 \quad 10 \quad 20 \quad 30$

JONES TEST CAICULATION

$$
3-10-64
$$

001	1.4	65.	4800.
002	1.4		
003	(biank)	3.316	4.383
902	40.		
910			

Notice that the absolute value of the imaginary component of the refractive index is used.

Tables of ellipsometer readings and reflection coefficients for films of different thicknesses and refractive indexes may also be computed by the 902 instruction. In this case, the injtial value, increment, and final value to be used are given for the thickness and refractive index of the film. Thus, the input data:

Column No.
$1 \quad 10 \quad 20 \quad 30$

JONES	CALCUL		
001	1.	65.	4800.
002	1.4	0.1	1.6
003	(blank)	3.316	4.383
902	0.	20.	100.

will produce tables for fjlms of refractive index of 1.4 , 1.5, and 1.6 for each table, the ellipsometer readings and reflection coefficients will be given for films $0 .$, 20., 40., 60., 30., and 100 A thick.

Calculations may also be performed for absorbing films of complex refractive index, as described in the section enti'tled, "Computer Instructions".
2.2 Calculation of Index of Refraction for Film-Free

Substrate from Ellipsometer Readings

Instruction 905 calculates the index of refraction of a film-free surface from ellipsometer readings P and A. The index is printed and may also be used in the following calculations.
2.3 Calculation of Film Thickness from Ellipsome'cer

Readings for Given Index of Refraction of Film
Instruction 903 computes the thickness of a film from ellipsome'cer readings P and A. The 001 and 002 ins'ruction must precede this instruction and the index of the substrate must have been either given by a 003 instruction or calculated by a 905 instruction. For example, suppose a filmfree surface was measured under water (refractive index of 1.33) to give $P=27.32^{\circ}$ and $A=30.45^{\circ}$. Then an absorbing film of refractive index 2.5-0.3 i was placed on the surface and reading of $P=31.15$ and $A=29.00^{\circ}$ were obtained. Let the angle of incidence be 65° and the wavelength of the light be 4800 A in vacuum. The following input data will calculate the thickness of the film: Column No.

1	10	20	30	40

JONES CAL FILM THICKNESS
1.33
27.32
2.5
31.15
65.
30.45
(blank)
29.00
4800.
(blank) . 3

If the 002 instruction specifies a series of values for the refractive index of the film, a film thickness can be computed using each value of the series for the refractive index of the film.

These examples illustrate the manner in which the input data is written. Instructions are also available to do calculations for multiple films, to calculate the index of refraction of adsorbed films, to determine ranges of error of the calculated refractive index of a film, to correct the ellipsometer readings for reflection of light from multiple surfaces, and to correct the ellipsometer readings for a compensator of arbitrary relative retardation. A detailed explanation of all the instruction numbers, a list of subroutines used by the program, a list of variables used in the program, the fortran program, and a flow diagram of the program follow.
3. Computer Instructions

This program can perform calculations for reflection of light from one to 898 films. The case of five films is shown in Ficure 1.

The refractive indices are labelled n_{1} to n_{7} and the thicknesses of the films are d_{2} to d_{6}. The index n_{l} of the medium is assumed real, but all the other indices may be complex. The angle of incidence of the light in the medium is ϕ, and is measured in degrees. The vacuum wavelength of
the light is λ. The film thicknesses and λ must be expressed in the same units. The relative retardation of the quarter wave plate in the ellipsometer is Q, measured in degrees, and is assumed to be 90° unless otherwise specified.

The first line of the data is a title identifying the run. Each following line (or card) of data consists of an instruction number followed by the data. Each instruction number determines the meaning of subsequent data and the calculation to be performed. The instructions are as follows:

Instruction No. 001
This instruction gives values of $n_{1}, \phi, \lambda, \alpha$, number of reflections, and Q for use in later calculations. n_{1} is the refractive index of the surrounding medium, $\dot{\phi}$ is the angle of incidence, λ is the wave length of the light in vacuum, α is a number used to control the calculations for instruction No. 904 and will be discussed under instruction. 904, and Q is the relative retardation of the compensator used in the ellipsometer. The instruction reads as follows: Column No.

1	10	20	30	40	50	60
001	n_{1}	ϕ	λ	α	No reflections	0

The computer assumes the initial values
$n_{1}=1$
$\phi=70^{\circ}$
$\lambda=5461$.
$\alpha=0$
No. of Reflections $=1$
$Q=90^{\circ}$
and if these values are to be used, the instruction 001 does not need to be given. Also, values need be given only when they are to be changed. Thus, to give the values $n_{l}=1.5$, $\phi=65^{\circ}, \lambda=5461, \alpha=0$, number of reflections $=5$, and $Q=90^{\circ}$, the instruction would be

Columns

1	10	20	30	40	50	60
001	1.5	65		5.		

If later calculations were to be performed for the same values except that ϕ is changed to 75°, the required 001 instruction is

Columns
110 20
00175.

Notice tnat, except for instruction numbers, all numbers given as input data must have a decimal point.

Instruction No. 002
This instruction gives values of the index of refraction, n_{2}, of the top film for use in following calculations. If only real values of n_{2} are to be used, the arrangement of the 002 card is

Columns

1	10	20	30
002	Initial	Increment	Final
	n_{2}		n_{2}

For example, to specify $n_{2}=3,3.5$ and 4 , the instruction is:

Columns

1	10	20	30
002	3.	.5	4.

To specify complex values of the refractive index, the values to be used for the imaginary component are specified after the real component. For example, the card:

Columns

1	10	20	30	40	50	60
002	3.	.5	4.	0.	.1	.2

will cause all following calculations to be done for these values of n_{2} :
3.
3.5
3.5-0.1 i
4.-0.1 i

3-0.2 i
3.5-0.2 i

A single value for the refractive index may be given by omitting the increment and final value for the real and imaginary component. Thus the value $n_{2}=3-i$ is specified by:

Columns

1	10	20	30	40	50	60
002	3		1.			

Instructions No. 003 to 900
These instructions give the thicknesses and indices of the films and substrate. Thus, if film number 4 was 100 A thick with an index of $1.4-2.2 i$, the line of data would be

004 100. $1.4 \quad 2.2$
No thickness is given for the substrate. An instruction for a film may be repeated. For example, for five films with medium and substrate lines with instruction numbers 001 to 007 would be given. These would be followed by instructions causing calculations. Then the thickness and index of any film could be changed by repeating its instruction number and additional calculations could be performed with the original values for the other films. For more than one film, the last of these cards must contain I. starting in column 40 on the card.

Instruction No. 901
This instruction gives values of $\rho_{1}, \rho_{p}, n_{p}, \delta^{\prime} P_{\text {, and }}$ $\delta^{\prime} \mathrm{A}$ to be used in subsequent calculations. The values ρ_{1}, ρ_{p} and n_{p} are used to compute the mass of material per unit area of the film for instructions 903 and 904 . The values $\delta^{\prime} \mathrm{P}$ and $\delta^{\prime} \mathrm{A}$ are used by instruction 904 . If this instruction is used, all values must be given.

Instruction No. 902
This instruction causes the computer to calculate tables of P, A, and reflection coefficients for the films. The
range of thicknesses of the upper film are given on the lirie. Thus

902 0. 5. 15.
will cause the calculation for $d_{2}=0 ., 5 ., 10$, and $15 \AA$ and for all values of n_{2} given previously.

The values of d_{2} may be omitted from the 902 instruction if they have been previously given. For example, a section of data may be
0011.3

902 0. 10. 100.
0011.4

902
0011.5

902 100. 10. 200.
910

Tables of P and A will be printed for $d_{2}=0$ to 100 in steps of 10 for $n_{1}=1.3$ and 1.4 , and for $d=100$ to 200 in steps of 10 for $n_{1}=1.5$.

Instruction No. 903
In this case, readings P and A are given. The computer calculates and prints a value of d_{2} to give the best fit [3] to the P and A readings for every n_{2} given by the 002 instruction. It also computes the value of P and A corresponding exactly to the n_{2} and d_{2} values and prints the differences $\delta \mathrm{P}$ and $\delta \mathrm{A}$ between these computed P and A
values and the P and A readings.
Two solutions for d_{2} and a measure of error for each solution are computed by the method given in reference 3 . These solutions are obtained as solutions of a quadratic equation by taking the plus or minus sign for the radical. The solution with the smallest measure of error, labeled THICK, with its measure of error, labeled ERROR, and δP and δA, labeled DEL P and DEL A, are printed on the left hand side of the printout, and the sign of the radical for this solution is printed to the extreme right of the printout. The other solution for the thickness with corresponding values of $\delta P, \delta A$ and measure of error are printed on the right hand side of the printout.

If the film is not compact but is a mixture of the surrounding medium and a material of density ρ_{p} and refractive index n_{p}, the mass of material per unit area of the film is computed in $\mathrm{mg} / \mathrm{cm}^{2}$ and is printed. The value of ρ_{1}, density of surrounding medjum $\mathrm{g} / \mathrm{cm}^{3}, \rho_{\mathrm{p}}$ in $\mathrm{g} / \mathrm{cm}^{3}$ and n_{p} are given by the 901 instruction; the LorentzJorentz equation is used to compute the refractive index of the film.

If compensator with retardation other than 90° is used, values of P, a_{p} and a_{s} must be given (listed in this order) instead of merely P and $A[2,3]$.

Instruction No. 904
The measured values of P and A are given. The computer determines the $f i l m$ index, n_{2}, and film thiclmess corresponding to the values of P and A, if a solution for n_{2} exists in the range of values given for n_{2} by the prevjous 002 instruction. If $n_{2}=n_{2 r^{-}}$in $n_{2 i}$ is complex and a range of values of $n_{2 i}$ has been specified by a 002 instruction, a value of $n_{2 r}$ will be computed for each of the values of $n_{2 i}$ specified.

The computer finds the solution for $n_{2 r}$ by computing the film thickness for assumed values of $n_{2 r}$ [3]. This computed thickness is a complex number. The real part of the computed thickness is chosen as the film thickness and the imaginary part, d_{i}, as a measure of error. Then the P. and A values are calculated for this film index and real thicmess and their differences δP, δA from the given values of P and A are computed. These differences are then compared with the allowed differences $\delta^{\prime} \mathrm{P}$ and $\delta^{\prime} \mathrm{A}$ given by the 901 instruction. If the differences δP and δA are both smaller (in absolute value) than the allowed differences $\delta^{\prime} P$ and $\delta^{\prime} A$, the computer prints the results of the calculation for this value of $n_{2 r}$; otherwise a new value of $n_{2 r}$ is chosen and the calculation repeated until $\delta \mathrm{P}$ and $\delta \mathrm{A}$ are smaller than $\delta^{\prime} \mathrm{P}$ and $\delta^{\prime} \mathrm{A}$.

If values of $\delta^{\prime} \mathrm{P}$ and $\delta^{\prime} \mathrm{A}$ have not been given by a 901 instruction, the computer assumes $\delta^{\prime} \mathrm{P}=\delta^{\prime} \mathrm{A}=.0005^{\circ}$.

In particular, the film thickness and error terms δ P, δA and d_{i} are first computed for the initial and final values of $n_{2 r}$ given by the previous 002 instruction. The two error terms d_{i} for the two values of $n_{2 r}$ are examined. Since d_{i} must be zero for the correct value of $n_{2 r}$, it is expected to change sign as $n_{2 r}$ varies from the initial to final value of the specified range. Therefore, if the d_{i} values for the initial and final values of $n_{2 r}$ have the same sign, the computer assumes that there is no solution within the specified range of $n_{2 r}$. The information printed for this case is determined by the sign of α as given by a previous 001 instruction. If it is not specified or α is positive, no printout is given. However, if a has a negative value, the comment "No solution in range of n_{2} " is printed and the results of the calculation for the initial and final values of $n_{2 r}$ are printed. If the range of values for $n_{2 r}$ specified by the 002 instruction is too large, cwo or more solutions for $n_{2 r}$ may occur in the range of $n_{2 r}$, so the error term d_{i} may have the same sign at each end of the range of $n_{2 r}$. In this case, the computer will erroneously assume that there is no solution in the range of $n_{2 r}$. In practrice, this has only occurred when n_{2} is complex.

However, if d_{i} has different signs for the initial and final values of $n_{2 r}$, the computer performs the calculations for a value of $n_{2 r}$ equal to the average of the two previous values of $n_{2 r}$. If the error terms δP and $\delta \Lambda$ for this solution are less than $\delta^{\prime} \mathrm{P}$ and $\delta^{\prime} A$, the computer prints the solution. Otherwise, it determines in which half of the range of n_{2} the solution lies. If the signs of d_{i} for initial, average, and final values of the refractive index of the film are +- or -++ , the solution for n_{2} lies between the initial and average values, otherwise the solution lies between the average and final values. Using this reduced range for n_{2} the procedure is repeated until the error terms δP and δA are less than $\delta I P$ and $\delta I A$ in absolute value. The procedure will be repeated only 20 times as a precautionary measure against use of excessive computation time.

Thus an index of refraction n_{2} and thickness of a film is computed from measured values of P and Ω. This value of n_{2} is the best value determined from the measured P and A values but will contain an error due to errors of measurement of the P and A values. The computer will determine the limits of error for $n_{2 r}$ from the limits of error of P and A if a value for r has been previously given. The upper limit of error is determined first. The increment of $n_{2 r}$ (given by preceding 002 instruction) is added to the
hes* value of n_{2} and film thickness and error terms computed for this value. If the error term in either $P(O P)$ or $A(S A)$ iss larger than the limit of experimental error of P and A, this value of $n_{2 r}$ is taken as the upper limit for $n_{2 r}$. otherwise, the increment of $n_{2 r}$ is again added and the process repeated. This process is repeated until one of three things occur:
(1) Either error term is larger than the experimental error of P or A.
(2) The value of $n_{2 x}$ is larger than the upper limit for $n_{2 r}$ (given by 002 instruction).
(3) The process has been performed a times. (The absolute value of α is taken, as α may be negative).

The value of α is, of course, given by the 001 instruction. A value of 20 for a has been found to be satisfactory.

The lower limit for n_{2} is determined similarly with the increment of n_{2} subtracted instead of added. In this case, the calculation stops if the value of n_{2} is less than the lower limit for n_{2}.

If a compensator with a retardation different from 90° is used in the ellipsometer, values of p, a_{p}, and a_{s} (listed in this order) instead of P and A must be given with this instruction.

Instruction No. 905
This instruction calculates the index of the substrate from P and A readings of the bare substrate. The index of the substrate may be given by an instruction 003 to 900 or computed by this instruction. If the retardation of the compensator is different than 90°, values of p, a_{p}, and a_{s} must be given.

Instruction No. 906
The experimental errors of P and A are given. These are used for instruction 904 when α has been given. Instruction No. 907

Experimental values of p, a_{p}, and a_{s} are given and the value Q of the compensator is calculated. The notation and equations are given by Winterbottom [2]. Instruction No. 903

This instruction allows another title card to follow it. Instruction No. 909

This instruction secs all the values that have been given by instructions 001, 902, and 906 to their initial values. It is followed by a title card.

The number of films may be increased by giving instructions 003 to 900, but may not be decreased. Suppose, for example, the system of 5 films previously shown (with refractive indexes n_{2} to n_{7}) has been given to the computer. Then to describe a system of 7 films (indexes n_{1} to n_{g})
instructions 003 and 009 with instructions for any other films that are to be changed in thickness of index are all that are required. However, to describe a system of less than 5 films, instruction 909 must be used. Instruction No. 910

This instruction stops the calculation. It must bé the last instruction of every set of data.

To perform calculations involving multiple reflection of the light, or where an imperfect quarter wave plate ($Q \neq 90^{\circ}$) has been used, the number of reflections or value of Q are given by 001 instruction. For an imperfect quarter wave place, values of P, a_{p}, and a_{s} are given with instructions 903, 904, and 905, also the value of Q may also be computed by a 907 instruction.

Every set of data must start with a title card and instructions 903 and 909 must be followed by a title card. A title card may contain any information desired in columns 1 to 80.

The program is written in Fortran II for use on IBM machines 704 , 7090 or 7094 with the Bell Monitor. For use with other Monitors, the READ, PRINT, and CALL SYSTEM statements would have to be changed.

SRC(R, Tl, T2) Small reflection coefficient
R, Tl, T2 complex
$R=\frac{T 1-T 2}{T 1+T 2}$

N(Ch, RP21, RF32, Q) Capital reflection coefficient $C R, R P 21, R P 32$, and Q are complex

$$
\begin{aligned}
& P=4 \pi Q \\
& C R=\frac{R P 21+R P 32 e^{i P}}{1+R P 21 * R P 32 e^{-i P}} \\
& Q=\frac{n_{2} \cos \phi_{2} d_{2}}{\lambda}
\end{aligned}
$$

5. Variables Used in Fortran Program

B(2)	Coefficient in equation for y
C (2)	Coefficient in equation for y
C2(2)	$\cos \phi_{2}$
C3(3)	$\cos \phi_{3}$
CI(2)	$\cos \phi_{i}$
CIPI(2)	$\cos \phi_{n+2}$
Civ(2)	$\cos \phi_{n}$
CNMil (2)	$\cos \phi_{n-1}$
CRN(2)	Total reflection coefficient (normal polarization)
CRN21 (2)	Total reflection coefficient between films 2 and 1 (normal polarization)
CRN32 (2)	Total reflection coefficient between films 3 and 2 (normal polarization)
CRP (2)	Total reflection coefficient (parallel polarization)
CRP21 (2)	Total reflection coefficient between films 2 and I (parallel polarization)
CRP32(2)	Total reflection coefficient between films 3 and 2 (parallel polarization)
$D(900)$	d_{L} - - - thickness of film L
D2C (2)	d_{2} - - - computed from y_{1}
D2ck(2)	$d_{2}-\ldots-$ computed from y_{2}

DFIN2 (2) Increment for film refractive indez
E(2) Coefficient in equation for y
FN2(2) n_{2} — - -refractive index of upper film
FN2E(2) Final value for film refractive index
FN2I(2) Initial value for film refractive index
FN2X(2) $\quad n_{2}-\ldots$ - wich imaginary pare positive
FNX $(900,2) \quad n_{L} \ldots$ - - refractive indexes of film J , IDT(12) Title

RHO (2)
$0=\frac{R^{p} 21}{R_{21}^{n}}=\tan \psi \varepsilon^{i \Delta}$
RN(2)
$r^{n}{ }_{n-1, n}$ reflec'tion coefficient between substrate and adjacent film (normal polarization)
RN21 (2) $\quad r_{21}^{n} \ldots .$. reflection coefficienc bétween films 2 and 1 (normal polarization
RN32(2) $r^{n} 32 \cdots \cdots$. reflection coefficient between films 3 and 2 (normal polarization)
$R P(2)$
$r_{n-1, n}^{p}$ reflection coefficient between substrate and adjacen' film (parallel polarization)
RP21 (2) $\mathrm{r}_{2}^{\mathrm{p}} 21 \ldots$. - reflection coefficient between films 2 and 1 (parallel polarization)

RP32(2) $\mathrm{r}_{32}^{\mathrm{p}}$ ——. - reflection coefficient between films 3 and 2 (parallel polarization)

Tl(2) to T5(2) Temporary storage for complex numbers

XX(2)
Yl (2)
Y2 (2)
$\operatorname{Ln}(-y)$
Solutions for $y=\epsilon^{-4 \pi_{i} n_{2} \cos \phi_{2} d_{2} / \lambda}$
of equacion $E y^{2}+3 y+C=0$

\wedge	A	Angle of analyzer
ADX	${ }^{\text {cal }}{ }^{-A} \exp$	Difference between calculated and experimental values of A
AP	A_{p}	
AS	${ }^{\text {A }}$	
AX		Calculated A for single and multiple reflections
AXX	Measured A	
Cl	$\cos \phi_{1}$	
DC	A	Adsorption of polymer
DD2	Increment of d_{2}	
DEL	$=2 P+90^{\circ}$	Relative phase retardation
DENP	ρ_{p}	Density of polymer
DENI	ρ_{1}	Density of solvent
D1	c_{2}	Computed film thickness
D2	a_{2}	Thickness of upper film
D2F	Final d_{2}	
D2I	Initial d_{2}	
$\begin{aligned} & \mathrm{EA} \\ & \mathrm{EP} \end{aligned}$		Experimental errors in A and P, used for calculating allowed range of values for film thickness
ERA. ERP	$\begin{aligned} & \triangle A \\ & \triangle P \end{aligned}$	Allowed errors in A and P for calculating n_{2}
$\begin{aligned} & \text { ERI } \\ & \text { ER2 } \\ & \text { ER3 } \end{aligned}$		Errors in d_{2} for real part of $n_{2}=X_{1}, X_{2}^{2}$, and X_{3}
FN		Number of rerlections
Pive	n_{p}	Index of polymer

FN1	${ }^{\mathrm{n}} \mathrm{I}$	Refractive index of surrounding mediu
HOLD		Temporary storage
I		Index and $\mathrm{n}-2$
J		Index
L		Instruction numbers
M	L-900	Reduced instruction numbers
NXX		Index for computed go to
MY		Index for computed go to
N		Number of layers
NX	N-4	
P	P	Angle of polarizer
PDX	$\mathrm{P}_{\text {cal }}{ }^{-\mathrm{P}^{\text {exp }}}$	Difference between calculated and experimental values of p
PX	P	Calculated p for single and multiple reflections
PXX	P	Corrected for quarter wave plate
PHII	O_{1}	Angle of incidence
QUP	Q or $\delta \mathrm{K}$	Retardation of compensator
Sl	$\sin \phi_{1}$	
THETAI	θ_{1}	Phase of $\mathrm{R}^{\mathrm{P}} 21$
Theta2	θ_{2}	Phase of $\mathrm{P}^{\mathrm{n}} 21$
TNA	Tan A	
TNPSI	$\operatorname{Tan} \psi$	
UL	λ	Vacuum wavelength of light
WP		Used in computing DC
X	$n_{1} \operatorname{Sin} \phi_{1}$	
XNil		Nagnitude of $\mathrm{R}^{\frac{\mathrm{D}}{}} 21$
		26

XM2	Magnitude of $R^{n} 21$
X1	Trial values of real part of n_{2}
X2	
X3	Winterbottom
XXL	I
Z	Sign used in solution of quadratic eq.
Zl to Z6	Temporary storage for input data

ПIMFNSION CRN(?), CN(2$) \cdot R N(2), R P(ว), F N X(7,900), D(000), X X(ว)$
DIMFNSION FN2(2),FN2I(2), DFN2(2), FH2E(2), FN2X(2), (2(2), C3(2)
DINENSION RP21(2),RN21:2),RP32(2), RN32(2),Y1(2),Y2(2), E(2), B(2)
DIMENSION $C(2), T 1(2), T 2(2), T 3(2), T 4(2), T 5(2), R H O(2), I D T(14), C R P(2)$
DIMENSION D2C(2), D2CX(2), CPN32(2), CRP32(2), CRN21(2), CRP21(2)
DIMENSION O(2), CNill(2),CI!2),CIPl(2)
10 FNl=1.
PHIl $=70$.
WL=5461.
DEN1=1.
DENP $=1$.
$F N P=1.5$
$N=3$
$E R P=.0005$
$E R A=.0005$
D2I=0.
DD2 $=0$.
$02 F=0$.
$\mathrm{NCH}=0$.
$Q W P=0$.
FN=1.
$E P=.006$
$E A=.02$
20 READ 30,IDT
30 FORMAT (13A6,A2)
PRINT 40, IDT
$4 \cap$ FORNAT(IH113A6,A2,38H PROG. 10 MULTIPLE FILM ELLIPSOMETRY)
50 READ 6C,L,Z1,Z2,Z3,Z4,Z5,Z6,Z7:Z8
50 FORMAT(I $3,6 \mathrm{X}, 6 \mathrm{~F} 10,0,46,45)$
PRINT $70, L, Z 1, Z 2, Z 3, Z 4, Z 5, Z 6: Z 7, Z 8$
70 FORMATI 1 HOI 3, 6 F12.5,3X,A6, A5)
IF(L-1)80,170,80
8ก IF(L-2)90.290,00
0n IF(L-900)120.120,100
100 N=L-900
IF $(M-9) 101,101,550$
$10160 \mathrm{TO}(110 \cdot 1050,1100 \cdot 1100,1100 \cdot 2070,670 \cdot 27,10), \mathrm{M}$
110 DEN1 = Z1
DENP $=22$
$F N P=Z 3$
$E R P=24$
$E R A=Z 5$
GO TO 50
$120 \mathrm{D}(\mathrm{L})=\mathrm{Zl}$
FNX(1,L) $=22$
FNX(2,L) = -ARSF(Z?)
$N=X M A X O F(N, L)$
IF $(24) 130.50 \cdot 130$
$130 \mathrm{X}=51 \div \mathrm{TN} 1$
CALL CSICN,X,FNX(I,N))
CALL CS(CNMI, X,FNX(1.N-1))
CALL Cin(T1,FNX(1,N), CNFI)
CALL CN(T2,FNX(1,N-1), CN)

```
    CALL SFC(CRP,T1,T2)
    CALL CN(Tl,FNXil,N-1),CNM1)
    CALL CM(T2,FNX(1,N):CN;
    CALL SRC(CRN,T1,T2)
    IF(N-4)160,150,140
140 NX=N-4
    I=N-2
    DO 15C J=1,NX
    CALL CS(CIP1,X,FNX(1,I+1))
    CALL CS(CI,X,FNX(I,I))
    CALL CM(Tl,FNX(1,I+1),CI)
    CALL CM(T2,FNX(1,I),CIP1)
    CALL SRC(RP,T1,T2)
    CALL CM(Tl,FNX(l,I),CI)
    CALL CM(T2,FNX(1,I+1),CIPl)
    CALL SRC(RN,T1,T2)
    Q(1)=T2(1)*D(I+1)/WL
    Q(2)=T2(2)*D(I+1)/WL
    CALL RC(CRN,RN,CRN,Q)
    CALL RC(CRP,RP,CRP,Q)
150 I = I-1
160 GO TO 50
170 IF(Z1)180,190,180
180 FNl=Z1
190 IF(Z2)200,210,200
200 PHIl= Z2
210 IF(Z3)220,230,220
220 NL= Z3
230 IF(Z4)240,250,240
240 NCH=Z4
250 Sl= SINDF(PHIl)
    Cl= COSDF(PHIl)
    IF(Z5)260,270,260
260 FN= Z5
270 IF(Z6) 280,275,280
275 QWP=Z6
2 8 0 ~ I F ( N - 4 ) ~ 5 0 , 1 3 0 , 1 3 0
290 FN2I(1)= ABSF(Zl)
    DFNZ(1)= Z2
    FN2E(1)= Z3+DFN2(1)/2.
    FN2I(2)=ABSF(24)
    DFN2(2)= Z5
    FN2E(2)= Z6+DFN2(2)/2.
    GO TO 50
320 IF(Z1)321,322,321
321 D2I= Z1
322 IF(Z2) 323,324,323
323 DD2= Z2
324 IF(Z3)325,400,325
325 D2F= Z3+DD2/2.
    GO TO 400
3 8 0 ~ I = N - 2
    PRINT 390,I,FNX(1,N),FNX(2,N),FN,P,A
390 FORMAT(1HOI3,23H FILMS,INDEX SUBSTRATE=2F9.5,2H I,F5.0,13H REFLECT
    IIONS.2X,2HP=F9.3,2X,2HA=F9.3/9HC THICK3X,9HA MG/CMSQ4X,5HDEL P4X
```

```
    2,5HDEL A6X,5HERROR4X,5HTHICK4X,5HDEL P4X,5HDEL AGX, bHERROR 3X,IGIII2
    3 REAL N2 IMAG)
400 FN2X(1)= FN2I(1)
    FN2X(2)= FN2I(2)
410 FN2(1) = FN2X(1)
    FN2(2) = -FN2X(2)
    HX=1
420 X=FN1*S1
    CALL CS(CZ,X,FM2)
    CA!L CS(C3,X,FNX(1,3))
    Tl(1)= FN2(1)*Cl
    [](2)=FN2(2)*C1
430 T2(1)=FN1*C2(1)
    T2(2)=FN1*C2(2)
    CALL SRC(RP21,T1,T2)
    CALL CN(T2.FN2,C2)
        Tl(1)= FN1*CJ
    Tl(2)=0.
    CALL SRC(RN21,T1,T2)
        IF(N-3)550,440,450
440 CALL CM(Tl,FNX(1,3),C2)
    CALL CM(T2,FN2,C3)
    CALL SRC(CRP32,I1,T2)
    CALL CM(T1,FN2,C2)
    CALL CN(TI2,FNX(1,3),C3)
    CALL SRCICRN32,T1,T2)
    GO TO 470
450 CALL CM(T1,FNY(1,3),C2)
    CALL CM(T2,FN2,C3)
    CALL SRC(RP32,T1,T2)
    CALL CM(T1,FN2,C2)
    CALL CM(T2,FNX(1,3),C3)
46O CALL SRC(RN32,T1,T2)
    CALL CM(T1,FNX(1,3),C3)
    T2(1)= T1(1)*D(3)/WL
    T2(2)= i1(2)*D(3)/WL
    CALL RC(CRP32,RP32,(RP,T2)
    CALL RC(CRN32,RN32,CRN,T2)
470 GO TO(550,480,580,580).M
480 GO TO(481,483,485),MY
481 PRINT 482
482 FORMAT (1H06X,2HD26X,1HP8X,1HA9X,6HRF.CF.5X,1HP9X,6HPF.CF.5X,1HN7X,
    14HFN2P5X,4HFN2 I)
    GO TO 486
4 8 3 ~ P R I N T ~ 4 8 4
484 FORMAT(1H06X,2HD26X,1HP8X,2HAP8X,2HAS8X,6HRF.CF.5X,1HP9X,GHRF.CF.5
    1X,1HN 7X,4HFN2R5X,4HFN2I)
        GO TO 486
4 8 5 \text { PRINT 482}
486 D2 = D2 I
    CALL CM(T1,FN2,C2)
500 T2(1)=T1(1)*02/WL
    T2(2)=T1(2)*D2/WL
    CALL RC(CRP21,RP21,CRP32,T2)
    CALL RC(CRN21,RN21,CRN32.,T2)
```

```
    CALL CR(RHC,CZRP21,CR`21:
    PX=ATN1H(RHO(2), RHO(11)*28.54780-45.
    AX=ATANDF(SQRTF(RHC(I)**2+RHC(2)**21)
    XMI=SQRTF(CRD2I(1)**2+CRP21(2)**2)
    THETA1= LTN1F(CRP21(2),(RF21(1))*57.2950
    XN2=SOKT\vec{r}(CR*:21(1)**2+CRN21(2)**2)
    THETA2=~TN1F(CRN21(2),CRN21(1))*57.2920
    GU TO(501:503,505), NH
```



```
    502 FORMAT(1H %%.1,2Fy.3.F12.5,FG.2,F1<.5,F9.3,2FY.4)
    GO TO 506
    503 PXX=.5*4TANOS(SINDF(OmP)*SINTF(2.*FX)/EUSNF(2.FX))
    XL = .5*ACOSF(COSDF(2.*PXX:*COSDF(G*P))
    AP = ATANDF(SINDF(AX)*COSF(XL)/ COSOF(AI)/SINF(XL))
    AS = ATANDF(SINDF(AX)*SIMF:XL)/COSNF(AX)/COSF(XL))
    PRINT 5C4,D2,PXX,AP,AS,XM1,IHETA1,X:`2,IHETAZ,FN21I;,FN2(2)
```



```
    GO TO 506
505 AXX= ATANDF(SINDF(AX)/COSDF (AX)**FN)
    PXX=(FX+45.)*FN-45.
    PKIN1 5U2,D2,PXX,AXX,XI1,THETA1,XM2,THETA2,FN2(1),FNZ(Z)
506 D2- D2+LD2
    IF(D2F-02)520,520,500
520 FN:2\times(2)= FN 2\times(2:+DFN2(2)
    IF(FN2F(?)-FN2X(2))530.530,410
530 FN2X(1)= FN2X(1)+DFN2(1)
    FN2X(2)= FN21(2)
    PRINT 540
540 FORMAT(1H)
    IF(FN2E(1)-FN2X(1))50,50,410
550 CALL SYSTEM
560 RhOO(1)=SINDF(A)/CUSUF(m)*COSDF(2.*F+90.)
    RHU(2)=SINDF(A)/COSDT(A)*SINDF(2.*F+90.)
    Ti(1)=4.*S1**2*RHO(1)
    Tl(2)=4.*Sl**2*RHO(2)
    T2(1)=RHO(1)+1.
    T2(2)=RHO(2)
    CALL CM(T3,T2,T2)
    CALL CD(T2,T1,T3)
    T1(1)=1.-T2(1)
    T1(2)=-「2(2)
    CALL CSR(T2,T1)
    D(N)=0.
    FNX(1,N)= 51/C1*T2(1)*FN1
    FNX(2,N)= S1/C1*T2(2)*FNI
    PRINT 570,FNX(1,N),FNX(2,N),F,A
```


13)
GO TO 130
$580 \operatorname{RHO}(1)=\operatorname{SINDF}(A) / \operatorname{COSRF}(A) * \operatorname{COSDF}(2 . * P+90$.
$\operatorname{RHO}(2)=\operatorname{SINDF}(A) / \operatorname{COSLF}(A) * \operatorname{SNDF}(2 \cdot * P+90 \cdot)$
CALL CM(T1,CRN32,CRP32)
CALL CM(T2,T1,RP21)
CALL CM(T3,T2,RHO)
CALL CM(T4,TI,RN21)
$-(1)=13(1)-1+(1)$
$(2)=T う(2)-14(2)$
CALL CH(T1,R1H21, RP21)
CALL CH(T2, I , CRP32)
T3(1) = CRN32(1) +T211)
$T 3(2)=$ CRN32(2) + T2(2)
CALL (H) T4, T3, RHO)
CALL CM(T5,TI,CRN32)
E(1) = T4 (1) -CR? $32(1)-T 5(1)$
$t(2)=T 4(2)-C R P 32(2)-T b(2)$
CALL CM(T1,RN21,RHO)
$C(1)=T 1(1)-R P 21(1)$
$C(2)=T 1(2)-R P 21(2)$
CALL CN(TI,B,B)
CALL CM(T2,E,C)
T 3 (1) $=T 1(1)-4 \cdot * T 2(1)$
$T \underline{2}(2)=T 1(2)-4 \cdot * T 2(2)$
CALL CSR (T4, T3)
DO 590 IX=1,2
$T 1(I X)=-F(I X)+T 4(I X)$
$T 2(I X)=-B(I X)-T 4(I X)$
590 T3 (IX) $=2 \cdot * 5(I X)$
CALL CD(Yl,T1,T3)
CALL CD (Y2,T2,T3)
CALL CM(T1,FN2,C2)
$T 3(1)=12.56537 \div T 1(1) / W L$
$T 3(2)=12.55637 \div T 1(2) / W L$
$X X(1)=A T N 1 F(-Y 1(2), Y 1(1))$

CALL CD(D2C, XX, T3!
$X X(1)=A T N 1 F(-Y 2(2), Y 2(1))$
$X X(2)=0.5 * \operatorname{LOGF}(Y 2(1) * * 2+Y 2(2) * * 2)$
CALL CD(D2CX, XX,T3)
$Z=606060606020$
IF (ABSF (D2C(2))-ABSF (D2CX(2)))610,610,600
$600 \mathrm{HOLD}=\mathrm{D} 2 \mathrm{C}(1)$
D2C(1)=D2CX(1)
D2CX(1) = HOLD
HOLD=D2C(2)
$D 2 C(2)=D 2 C \times(2)$
D2CX(2) $=\mathrm{HOLD}$
$Z=606060606040$
$610 \mathrm{D} 1=\mathrm{D} 2 \mathrm{C}(1)$
$620 \mathrm{~T} 2(1)=T 1(1) \div D 1 / W L$
$T 2(2)=T 1(2) * D 1 / W L$
CALL RC(CRP21,RP21,CRP32,T2)
CALL RC(CRN21,RN21,CRN32,T2)
CALL CD (RHO, CRP21, CRN21)
$W P=((F N 1 * 2-1 \cdot) /(F N 1 * 2+2 \cdot)-(F N 2(1) * * 2-1 \cdot) /(F N 2(1) * 2+2 \cdot)) * D E N P /$
$1(((F N 2(1) * 2-1 \cdot) /(F N 2(1) * * 2+2 \cdot)) *(D E N 1-D E N P)-(F N P * * 2-1 \cdot 1 /$
2 (FNP**2+2•) $\because D E N 1+(F N 1 * * 2-1 \cdot) /(F N 1 * * 2+2 \cdot) * D E N P)$
$D C=W P /(W P / D E N P+(1 \cdot-W P) / D E N 1) * D 1 * 1 \cdot E-5$
ADX = A TAADF (SQRTF (RHO (1) $\because * 2+R H O(2) * * 2))-A$
PDX = ATNIF (RHO (2) , RHO (1)) $* 28.64789-45 .-P$
T2(1)=T1(1) $\mathrm{FD} 2 \mathrm{CX}(1) / W L$

```
    T2(2)=T1(2)*D2CX(1)/NL
    CALL RE(CRP21,RP21,CRP32,TZ)
    CALL RC(CRN21,RN21,CRN32,T2)
    CALL CD(RHO,(RP21,CKN21)
    ADXX=ATANDF(5QRTF(RHO(1)**2+RHO(2)**2))-A
    PDXX=ATiv1F(RHO(2),RHO(1))*28.64789-45.-P
    GO TO (625,820,830,880,1030,1190,2030),MX
6 2 5 ~ P R I N T ~ 6 3 0 , ~ D 1 , ~ D C , P D X , A D X , D 2 C ( 2 ) , D 2 C X ( 1 ) , P D X X , A D X X , D 2 C X ( 2 ) , F N 2 1 1 ) ,
    l FNC(2),Z
632 FORNAT(1H F8.1,1PE12.4,OP2F9.3,F12.5,F8.1,2F9.3,F12.5,2F9.5,A6)
    GO TO 520
670 P= Z1
    A=Z2
    AP=ころ
    TNPSI=SQRTF(SINDF(A)/COSDF(A)*SINDF(AP)/COSDF(AP))
    XL=ATNIF(TNPSI,SINDF(A)/COSDF(A))
    QWP=ACOSF(ABSF(COSF(2.*XL)/COSDF(2.*P)))*57.2956
    PRINT 680,QWP
6 8 0 ~ F O R N A T ( ~ 4 5 H O R E L A T I V E ~ R E T A R D A T I O N ~ O F ~ Q U A R T E R ~ W A V E ~ P L A T E ~ = F 9 . 3 ) ~
    GO TO 50
810 I =N-2
    PRINT 390.I,FNX(I,N),FNX(2,N),FN,P,A
    FN2X(2)=FN2I(2)
315 FN2(2)=-FN2X(2)
    MX=2
    XI= FN2I(1)
    X2= FN2E(1)
    FN2(1)= X2
    GO TO 420
820 ER2 = D2C(2)
    FN2(1)= X1
    MX=3
    GO TO 420
830 ERI= D2C(2)
    IF(ERI)840,840,850
840 IF(ER2) 855,855,870
850 IF(ER2) 870,870,855
855 IF(NCH)&56,1031,1031
856 PRINT 857
8 5 7 \text { FORMAT(27HONO SOLUTION IN RANGE OF N2)}
860 FRINT 630,D1,DC,PDX,ADX,D2C(2),D2CX(1),PDXX,ADXX,D2CX(2),FN2(1),
    l FN2(2),Z
    GO TO 1020
870 DO 950 I=1,20
    X3=(X1+X2)/2.
    FN2(1)= X3
    MX=4
    GO TO 42O
880 ER3= D2C(2)
    IF(ABSF(PDX)-ABSF(ERP))890,890,900
890 IF (ABSF(ADX)-AESF(ERA))1170,1170,900
900 IF(ERI)910,910,920
910 IF(ER3)930,930,940
920 IF(ER3)940,940,930
930 X1= X3
```

```
    FR1=FR3
    GO TU 95!!
    i+ K? = X3
    ER2=ER3
    y50 CLNIIINUE
    50G PRINT 570
    97! FURFMI(24mUNO OLWTIUN IVV 2O TRIES)
    GO iO 10130
1020: }\because\times=
    FN2(1)= X2
    GO TO 420
```



```
    l FN>(?),Z
1031 FN2X(つ)=FN2X(?)+DFN2(2;
    IF(FN2F(2)-FN)X(2))50,50.815
]050, 1F(0WP) URC,1070,1060
] 1)66. 
    GO TU 1C8C
1070 MY=1
1080 IF(FN-1.)10%0,320,10%0
1090 FiY=3
    GO TO }32
1100 P=Z1
    A=Z ?
    IF(QuP)]110,1120,1110
11]: xL=ACOSF(ABSF(COSDF(QNP)*COSDF(2.*P)))!?.
    DEL=ATN1F(SINDF:Q%P).-SINDF:2.*F)/COSDF(2.*F))
    A=AIN1F(SINDF(A);COSF'F),COSF(XL;ISINF(XL))*57.2956
    AX=ATNIFISINLF(Z\Sigma)/COSNF(Z3)•SINF(XL)/COSF(XL))年5T. 2956
    PRIMT 1115,A,AX
1&&FORUAT(14HOCHLCULATEUGA=115.4.4H ANOF15.4)
    P}=DEL*28.6478-45.
    A=(A+AX):2.
112U IF(FN-1.)1130,1160,1130
1130 TNA=SINEF(A)/COSDF(A)
    IF (TNA) 1140,1150,1150
114n TNA=-TNA
    P=P+90
1150 P = (P+45.)/FN-45.
    A=ATANOF(TNA**(1./FN))
1160 GO TO (550,550,380,810.560),M
1170 IF(NCH)1175,`030,11?5
1175 PRNNT 630,D1,DC,PDX,ADX,D2C(2),D2CX(1),PDXX,ADXX,D2CX(2),FN2(1),
    1 FNz(2), Z
    NPCH= XABSF (NCH)
    DO 2O11 I=1,NPCH
1180 FN2(1)=FN2(1)-DFN2(1)
    MX=6
    GO TO 420
    1190 IF(ABSF(PDX)-EP)2000,2000,2015
    2000 IF (APSF(ADX)-FA)2010,2010,2015
    2010 IF(FN2(1)-FN2I(1))2015,2015,2011
    2011 CONTINUE
    2015 PRINT 630,C1,DC,PDX,ADX,D2C(2),D2CX(1),PDXX,ADXX,D2CX(2),FN2(1),
        1 FN2(2),Z
```

```
    FN2(1)=x3
    20 2060 I=1,NPCH
    2020 FN2(1)=FN2(1)+DFN2(1)
    \X=;
    (6) YO 47,
    2030 IF(AOSF(PDX)-FP)2040.2040,1.23n
    2O4O IF(AG=E(ADX)-FA)2050•2050,1030
    2050 TF(FN2:l)-FNEF(1)12060.2060,1030
    2060 CONTINUF
    GO TO 1030
    2070 EP= 21
    EA = Z2
    GO TO 50
        END
    SURROUTINE CE(C3.X,FN3)
    DIMENSIOM C3(2),FN3(2),T1(2).T2(2),T3(2)
    Tl(1)= Y
    Tl(2)=0.
    CALL CD(T2,T1,FN3)
    CALL (1:(T3,T2,T2)
    T1(1)=1.-T3(1)
    T1(2)=-T3(2)
    CALL CSR(C3,T1)
    C }\quad\textrm{X=NI*SIN(PHII)
    RETURM
    END
    SUBROUTINE SRC(R,T1,T2)
    DIMENSION P(2),T1(2),T2(2),T3(2)\cdotT4(2)
    DO 1 I=1.2
    T3(I)=T1(I)-T2(I)
    1 T4(I) =T?(I)+T2(I)
    CALL CD(R,T3,T4)
    RETURN
    END
    SUBROUTINE RC(CR,RP21,RP32,Q)
    C MCCRACKIN REFLECTION CUEFFICIENT OF A FILM Q=N2*COS(PHIZ)*DINL
    DIMENSION CR(2),RP21(2),RP32(2),Q(2),T1(2),T2(2),T3!2),P(2)
    P(1)=12.56637*Q(1)
    P(2)=12.56637*Q(2)
    T2(1)=EXPF(P(2))*COSF(P(1))
    T2(2)=-EXPF(F(2))*SINF(P(1))
    CALL CM^(T1,T2,RP32)
    CALL CM(T3,T1,RP21)
    T1(1)=RF21(1)+T1(1)
    T1(2)=RP21(2)+T1(2)
    T3(1)=1.+T3(1)
    CALL CD(CR,T1,T3)
    RETURN
    END
    SUBROUTINE CSR(SRX,X)
    DIMENSION SRX(2),X(2)
    C SRX=COMPLEX SQRT X,IF SRX(2)=0,SRX(1)=POSITIVE,IF SRX(1)=0,
    C SRX(2)=NEGATIVE,OTERWISE SRX(1)=POSITIVE AND SRX(2)=CORRECT SIGN
    IF(X(2))4,1,4
    1 IF(X(1))2,2,3
```

```
2 58x(1)=0.
    SRX(フ)=-SQRTF(&BSF(X(1))
    GO TU E
3 SPX(1)=SQRTF(X(1))
    SRX(2)=0.
    GO TO 5
4R=SQRTF(X(1)**2+X(2)**2)
    SRX(1)=SQRTF((R+X(1))/2.)
    SRX(2)=SIGNF(SQRTF((R-X(1))/2.),X(2))
5 \text { RETURN}
    END
    SUBROUTINE CD(T2,T1,T3)
    DIMENSION T1!2),T2(2),T3(2)
    E=T3(1)**2+T3(2)**2
    T2(1)=(T1(1)*T3(1)+T1(2)*T3(2))/E
    T2(2)=(T1(2)*T3(1)-T1(1)*T3(2))/E
    RETURN
    END
    SURROUTINE CM(T3,T1,T2)
    DIMENSION Tl(2),T2(2),T3(2)
    T3(1)=T1(1) %T2(1)-T1(2) %T2(2)
    T3(2)=T1(1)*T2(2)+T1(2)*T2(1)
    RETURN
    END
```

[]] O. Heavens, Optical Properties of Thin Solid Films (1.055) Butterworth Scientific Publications, Iondon
[2] A. B. Wintembotion, Optical Studies of Metal Surfaces, The Royal Nomegian Scientific Society Report No. I, (1955) published by F. Bruns, Trondheim, Norway
[3] F. I. McCrackin, E. Passaglia, R. P. Stromberg and II. T. Steinberc, Measurement of the Thickness and Refractive Incex of Very Thin Films and the Optical Pronerties of Surfaces by Ellipsometry, J. Research NBS A 67, 363, July-August 1963
[4] Proceedings of the Symposium on the Ellipsometer and its Use in the Measurement of Surfaces and Thin Films, National Bureau of Standards, Sept. 5, 6, 1963, to be published by NBS, for sale by the Supt. of Documents, U.S. Government Printing Office, lashington, D. C.
[5] R. R. Stromberg, E. Passaglia and D. Tutas, J. Research NBS 67A, (Phys. and Chem.) 431 (1963)

Fig. 1. schematic diagren of 5 films on a substrate. Re-fractive indices of films are n_{2} to n_{6}, thicknesses of tiflis are d_{2} to d_{6}, angle of incidence is ϕ, and refractive inafces of surrounding medium and substriate are n_{1} and n_{7}.
START

Fig. 3. Diagrams A and B. A: Deternines MY and stores range of values for film
thickness for instruction no go \quad B: Corrects ellipsometer readings for
retardation of compensator $(Q W P)$ and number of reflections (FN).

Pig. 4. Diáran C. Calculates and prints ellipsometer readings (PX and $A X$ or $1 \times X, A P$ and $A S$) and reflection coefficients $\left(\mathrm{RP}_{21}\right.$ and $\left.\mathrm{RN}_{21}\right)$.;

TO STATEMENT 1030
Fig. 5. Diagram D. Interprets INCH. If NCH is zero, no calculation is performed, if NCH is not zero, the limits of error for F FN2(I) are determined and printed.

[^0]: * NBS Group, Joint Institute for Laboratory Astrophysics at the University of Colorado.
 ** Located at Boulder, Colorado.

