55\% *n 564

NBS

Eechnical Note
 no. 221

DEMAGNETIZING FACTORS FOR OBLATE SPHEROIDS USED IN FERRIMAGNETIC RESONANCE MEASUREMENTS

L. B. Schmidt, W. E. Case, and R. D. Harrington
U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

THE RATIONAL BUREAU OF STANDARDS

The Nation.l Bureau of Standards is a principal focal point in the Federal Government Eow worm maximum application of the physical and engineering sciences to the advanrem it of teriontin in industry and commerce. Its responsibilities include development and maintenanme of t rationt and ards of measurement, and the provisions of means for making mea-urements crewionit whe due standards; determination of physical constants and properties of materials: d vetrpmt t if motheib for testing materials, mechanisms, and stru tures, and making such test- as my b ther priett larly for government arencies; cooperation in the establishment of standard pratios fow moirpas. tion in codes and specifications; advisory service to qovernment agencies on civatific and hadancer problems; invention and development of devices to serve special needs of the Govrimeit andam.
 simplified trade practice recommendations; administration of programa in moveratiun whe Lembel States business groups and standards organizations for th-development of 1 trm ti- $\frac{1}{\text { anduabe al }}$
 nical, and engineerrng information. The scope of the Bureaus activities in -u"ye-ted in the follomy listing of its four Institutes and their organizational units.
Institute for Basic Standards. Electricity. Netrologi. Heat. Radiati n Phu-ics Mrele iog AE plied Mathematics. Atomic Physics. Physical Chemistry. Laboratory 1-tr, phr-i- * Rank Sand
 erence Data.
Institute for Materials Research. Analytical Chemistry. Polymers. Metallures. In rptain Vhe rials. Reactor Radiations. Cryogenics.** Office of Stmindard Referent e Material:
Central Radio Propagation Laboratory.** Innc-phere Re-e reh and Prypgetion rupoyhurty and Space Telecommunications. Radio Sy̧stems. Lpper Atmosphere and Spice Physir =
Institute for Applied Technology. Textiles and Apparel Terhnology Center. Buldiny Remerk Industrial Equipment Information Technology. Performance Test D vel pment. In-trumeniainTransport Systems. Office of Technical Services. Office of Weights and Measures Ofinerlfonuer ing Stanáards. Office of Industrial Services.

[^0]
NATIONAL BUREAU OF STANDARDS

Eechnical Mote 221

Issued September 4, 1964

DEMAGNETIZING FACTORS FOR OBLATE SPHEROIDS USED IN FERRIMAGNETIC RESONANCE MEASUREMENTS

L. B. Schmidt, W. E. Case, and R. D. Harrington
Radio Standards Laboratory
National Bureau of Standards
Boulder, Colorado

Abstract

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

[^1]
TABLE OF CONTENTS

Page

Abstract 1
Discussion 1
References. 8
Appendix I 9
Table I. 10

Demagnetizing Factors for Oblate Spheroids Used in Ferrimagnetic Resonance Measurements

L. B. Schmidt, W. E. Case, and R. D. Harrington

Demagnetizing factors for oblate spheroids magnetized along the short axis are given for aspect ratios from 25.0 to 35.0 in increments of 0.1 , from 35.0 to 55.0 in increments of 0.2 , from 55.0 to 80.0 in increments of 0.5 , from 80.0 to 129.0 in increments of 1.0 . The values of all demagnetizing factors given in the tables have been rounded off to 6 decimal places and are accurate to ± 5 units in the seventh place. The tables are presented in a form convenient for use in ferrimagnetic resonance measurements on disk shaped samples. A brief discussion of the effect of accuracy of demagnetizing factors on measurements of this type is included.

DISCUSSION

It is well known that the applied field H_{z} required for ferrimagnetic resonance in finite specimens at a frequency, ω, may be obtained from Kittel's [1948] equation,

$$
\begin{equation*}
\frac{\omega}{\gamma}=\left(\left[H_{z}-\left(N_{z}-N_{x}\right) M_{z}\right]\left[H_{z}-\left(N_{z}-N_{y}\right) M_{z}\right]\right)^{1 / 2} \tag{1}
\end{equation*}
$$

where γ is the gyromagnetic ratio, M_{z} is the magnetic moment per unit volume, and $\mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}$, and N_{z} are the demagnetizing factors along the corresponding axes. The equation is often used to calculate the gyromagnetic ratio, γ, from resonance measurements made on spherical specimens. For this situation $N_{x}=N_{y}=N_{z}$ and equation (1) reduces to

$$
\frac{\omega}{\gamma}=H_{z}
$$

However, in some situations, it may be more advantageous to use other geometries. For example, low field losses encountered in ferrinıagnetic resonance measurements at lower microwave frequencies may be avoided by using thin disk shaped samples with the dc field perpendicular to the face of the disk. The dc and rf field orientations for such measurements are shown in figure 1 . For this situation, $N_{x}=N_{y}$ and Kittel's equation becomes

$$
\begin{equation*}
\frac{\omega}{\gamma}=H_{z}-\left(N_{z}-N_{x}\right) M_{z} \tag{2}
\end{equation*}
$$

In a typical measurement, H_{z} is determined experimentally and $\left(N_{z}-N_{x}\right)$ is calculated from relations developed by Stoner [1945] which express the demagnetizing coefficient as a function of aspect ratio for spheroidal ellipsoids. Stoner expresses the demagnetizing factors as D_{x}, D_{z}, where $D_{x}=N_{x} / 4 \pi$ and $D_{z}=N_{z} / 4 \pi$. Equation (2) then becomes

$$
\begin{equation*}
\frac{\omega}{\gamma}=H_{z}-\left(D_{z}-D_{x}\right) 4 \pi M_{z} \tag{3}
\end{equation*}
$$

The value of the magnetization, M_{z}, may be determined independently using a magnetometer.

We have recently carried out a study involving measurements of H_{z} on several materials at 1100 MHz , using disk shaped samples [Case, Harrington, and Schmidt, 1964]. This study indicated that the measurement of disks of several sizes is often advantageous in obtaining data of

FIGURE 1

Field and Sample Orientations for Ferrimagnetic Resonance Measurements on a Disk.
(Demagnetizing factors in the table are applicable for this geometry.)
this type. Each sample of each material was measured at a number of different aspect ratios (diameter/thickness) by grinding the same diameter sample to successively smaller thickness for each measurement. By using these results a plot of $\frac{\omega}{\gamma}$ as a function of aspect ratio is readily obtained. Figure 2 shows results of this type on one material used in the study. The variation from a smooth curve in this example was less than one percent. It is apparent that $D_{z}-D_{x}$ must be known to considerably better than one percent if this quantity is not to contribute to the observed variation in $\frac{\omega}{\gamma}$. In fact, it can be shown that $D_{z}-D_{x}$ must be known to a few hundredths of a percent for typical materials if the contribution of any error in $D_{z}-D_{x}$ to this one percent variation in $\frac{\omega}{\gamma}$ is to be less than 0.1\%. (See Appendix I.) These demagnetizing factors may be calculated to sufficient accuracy using Stoner's equations. When measuring many different samples as mentioned above, it is apparent that tables of demagnetizing factors, given in finer aspect ratio increments than is presently available, would be very convenient.

Stoner has given tables of D_{z}, but only in increments of 5 and 10 in the region of aspect ratios of 25 to 129 . Osborn [1945] prepared graphs of $N / 4 \pi$ which equals D_{z}, but again the resolution was not adequate in this region. We have therefore prepared Table I which gives demagnetizing factors that meet the minimum requirements for increments of aspect ratios needed to prepare graphs within the precision represented by figure 2 and the calculations of $\frac{\omega}{\gamma}$ mentioned above. The tables are shown in six decimal places; however, this accuracy is not required for these calculations.

Table I was condensed from tables prepared on a computer, cal culated to eight significant figures and rounded off to six significant figures which provided a convenient comparison to Stoner's tables.

FIGURE 2
Typical Data for ω / γ Versus Aspect Ratio for Disk Samples
(SOヨ1Syヨo) $\frac{l}{m}$

Kittel's equation is written in terms of $\mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}$, and N_{z} when $\mathrm{N}_{\mathrm{x}}+\mathrm{N}_{\mathrm{y}}$ $+N_{z}=4 \pi$. It is more convenient, as noted by Stoner, to express the demagnetizing factors in terms of D_{x}, D_{y}, and D_{z} when

$$
D_{x}=\frac{N_{x}}{4 \pi}, D_{y}=\frac{N_{y}}{4 \pi}, D_{z}=\frac{N_{z}}{4 \pi} .
$$

In the tables prepared by the computer, D_{z} was first calculated using Stoner's equation 4.5 for an oblate spheroid as follows

$$
D_{z}=\frac{1}{1-m^{2}}\left[1-\frac{m}{\left(1-m^{2}\right)^{\frac{1}{2}}} \cos ^{-1} m\right]
$$

where $m=1 /$ aspect ratio. Then $D_{x}=D_{y}=\left(1-D_{z}\right) / 2$ was calculated to give the values of $D_{z}-D_{x}$ which are also given for convenience in using equation (3). The computer program was written to generate its own input in increments of aspect ratio as required. Using this method, the increments could be in integers, in tenths, or in hundredths. In cases where measurements are made on disks with very small changes in aspect ratios, tables in increments of 0.01 are most efficient. The table was readily prepared on the computer in increments of 0.01 from 1.01 to 130.00 to satisfy this requirement and possible future require ments.

Where applicable, the values of this table were compared with the corresponding values given in Table II in Stoner's paper. In two instances, the two disagree by one part in the sixth place. Stoner noted that his calculations were carried to the seventh place and rounded to the sixth place. The computer calculated our tables to the eighth significant figure and rounded to the sixth significant figure. At a third place, the aspect ratio of 60 , checking by hand calculations confirmed our value, so that Stoner's value appears to be in error.

The accuracy of Table I was spot checked by hand calculations. In addition, the accuracy of the entire table was verified by checking by differences [Miller, 1950]. The values of all demagnetizing factors given in the tables have been rounded off to 6 decimal places and are thus accurate to ± 5 units in the seventh place.

The tables were studied for the possibility of using linear interpolation for values between the aspect ratios given. The accuracy of this interpolation was verified by comparing the midpoint between in crements in the tables calculated by linear interpolation with the corresponding point in the tables prepared by the computer in increments of 0.01 in aspect ratio. It was found that the values of D_{z} may be interpolated linearly, accurate to one unit in the sixth place, for all aspect ratios. The values of $D_{z}-D_{x}$ may be interpolated linearly, accurate to one unit in the sixth place, except within the range of aspect ratios between 80.0 and 129.0 . Within this range, values of $D_{z}-D_{x}$ may be interpolated linearly accurate to two units in the sixth place. It was previously noted that this accuracy is more than adequate in the use of equation (3).

REFERENCES

Case, W. E., R. D. Harrington, and L. B. Schmidt (April-June 1964), Ferrimagnetic resonance in polycrystalline ferrite and garnet disks at L-band frequencies, J. Res. NBS 68C, No. 2, 85-89.

Kittel, C. (1948), On the theory of ferromagnetic resonance absorption, Phys. Rev. 73, 155-161.

Miller, J. C. P. (1950), Checking by differences-I, Mathematical tables and other aids to computation, 4, 3-11.

Osborn, J. A. (1945), Demagnetizing factors of the general ellipsoid, Phys. Rev. 67, 351-357.

Stoner, E. C. (1945), The demagnetizing factors for ellipsoids, Phil. Mag. (7), 36, 803-821.

For a fixed value of H_{z} and M_{z}, the percent error in $\frac{\omega}{\gamma}$ given by $\frac{\Delta \frac{\omega}{\gamma}}{\frac{\omega}{\gamma}}$ introduced by an error $\Delta\left(D_{z}-D_{x}\right)$ in $D_{z}-D_{x}$ is obtained from
equation (2)

$$
\begin{equation*}
\frac{\Delta\left(\frac{\omega}{\gamma}\right)}{\frac{\omega}{\gamma}}=-\frac{\Delta\left(D_{z}-D_{x}\right)}{D_{z}-D_{x}}\left[\frac{\left(D_{z}-D_{x}\right) 4 \pi M_{z}}{\frac{\omega}{\gamma}}\right] \tag{4}
\end{equation*}
$$

The percent error in $\frac{\omega}{\gamma}$ introduced by an error in $D_{z}-D_{x}$ is dependent on a factor that is inversely proportional to ω. Any percent error in ($D_{z}-D_{x}$) will thus have a greater influence on the percent error in $\frac{\omega}{\gamma}$ as the frequency decreases. For example, if data were desired at 1100 MHz on a material such as a commercially available substituted garnet we have $4 \pi M_{z} \cong 575$ gauss, $\frac{\omega}{\gamma} \cong 390$ oersteds, and $D_{z}-$ $D_{x}=.976735$ at an aspect ratio of 100 . If we desire the percentage error in $D_{z}-D_{x}$ to cause an error $\frac{\Delta \frac{\omega}{\gamma}}{\frac{\omega}{\gamma}} \leqq 0.1 \%$, then substituting in equation (4) we have $\frac{\Delta\left(D_{z}-D_{x}\right)}{D_{z}-D_{x}} \cong 0.07 \%$. In many cases, ω would be greater which would increase the allowable percent error of $D_{z}-D_{x}$ to hold its contribution of error in $\frac{\omega}{\gamma}$ to 0.1%; however, at the same time, M_{z} could also be larger to produce the opposite effect. Thus $D_{z}-D_{x}$ must be known to a few hundredths of a percent in order to cover all situations.

TABLE 1

Demagnetization Factors of Oblate Spheroids Magnetized Along the Short Axis Versus Aspect Ratio ($\frac{\text { Diameter }}{\text { Thickness }}$)

Tables are given for D_{z} and $D_{z}-D_{x}$ where z is along the short axis and

$$
D_{x}=D_{y}
$$

and

$$
D_{x}+D_{y}+D_{z}=1
$$

Aspect
Ratio
25.1 . 940450
$25.2 \quad .940675 \quad .911013$
$25.3 \quad .940898$

25.4	.941120
25,5	941340

$25.6 \quad .941558$
$25.7 \quad .941775$
$25.8 \quad .941990$

25.9	.942203
26.0	.942415

26.0	.942415
26.1	.942625

26.2 . 942834
26.3 . 943041
$26.4 \quad .943247$
$26.5 \quad .943451$ $26.6 \quad .943654$ 26.7 . 943855 $26.8 \quad .944055$ 26.9 . 944254 27.0 . 944451 $27.1 \quad .944647$ 27. $2 \quad .944841$ $\begin{array}{ll}27.3 & .945034 \\ 27.4 & .945226\end{array}$ $27.5 \quad .945416$ 27.6 . 945605 $27.7 \quad .945793$ $27.8 \quad .945979$ 27. 9 . 946164 $\begin{array}{ll}28.0 & .946348 \\ 28.1 & .946531\end{array}$ 28.2 . 946712 $\begin{array}{ll}28.3 & .946892 \\ 28.4 & .947071\end{array}$ 28.5 . 947249 $\begin{array}{ll}28.6 & .947425 \\ 28.7 & .947601\end{array}$ $28.8 \quad .947775$ $\begin{array}{lr}28.9 & .947948 \\ 29.0 & .948120\end{array}$

29.1	.948291	.922436
29.2	.948460	.922690
29.3	.948629	.922943
29.4	.948796	.923194
29.5	.948962	.923444
29.6	.949128	.923692
29.7	.949292	.923938
29.8	.949455	.924183
29.9	.949617	.924426

Aspect Ratio	D_{z}	$\mathrm{D}_{\mathrm{z}}-\mathrm{D}_{\mathrm{x}}$
30.0	.949778	.924667
30.1	.949938	.924907
30.2	.950097	.925146
30.3	.950255	.925383
30.4	.950412	.925618
30.5	.950568	.925853
30.6	.950723	.926085
30.7	.950877	.926316
30.8	.951031	.926546
30.9	.951183	.926774
31.0	.951334	.927001
31.1	.951484	.927226
31.2	.951634	.927450
31.3	.951782	.927673
31.4	.951930	.927894
31.5	.952076	.928114
31.6	.952222	.928333
31.7	.952367	.928550
31.8	.952511	.928766
31.9	.952654	.928981
32.0	.952796	.929194
32.1	.952938	.929407
32.2	.953078	.929617
32.3	.953218	.929827
32.4	.953357	.930035
32.5	.953495	.930242
32.6	.953632	.930448
32.7	.953769	.930653
32.8	.953904	.930856
32.9	.954039	.931059
33.0	.954173	.931260
33.1	.954307	.931460
33.2	.954439	.931659
33.3	.954571	.931856
33.4	.954702	.932053
33.5	.954832	.932248
33.6	.954962	.932442
33.7	.955090	.932635
33.8	.955218	.932827
33.9	.955346	.933018
34.0	.955472	.933208
34.1	.955598	.933397
34.2	.955723	.933585
34.3	.955848	.933771
34.4	.955971	.933957
34.5	.956094	.934142
34.6	.956217	.934325
34.7	.956338	.934508
34.8	.956459	.934689
34.9	.956580	.934870

Aspect Ratio	D_{z}	$\mathrm{D}_{\mathrm{z}}-\mathrm{D}_{\mathrm{x}}$
35.0	.956700	.935049
35.2	.956937	.935405
35.4	.957172	.935758
35.6	.957404	.936106
35.8	.957634	.936451
36.0	.957861	.936792
36.2	.958086	.937129
36.4	.958308	.937463
36.6	.958528	.937793
36.8	.958746	.938119
37.0	.958962	.938443
37.2	.959175	.938763
37.4	.959386	.939079
37.6	.959595	.939393
37.8	.959802	.939703
38.0	.960007	.940010
38.2	.960209	.940314
38.4	.960410	.940615
38.6	.960608	.940912
38.8	.960805	.941207
39.0	.960999	.941499
39.2	.961192	.941788
39.4	.961383	.942074
39.6	.961572	.942358
39.8	.961759	.942639
40.0	.961944	.942916
40.2	.962128	.943192
40.4	.962310	.943464
40.6	.962490	.943734
40.8	.962668	.944002
41.0	.962844	.944267
41.2	.963019	.944529
41.4	.963193	.944789
41.6	.963364	.945046
41.8	.963534	.945302
42.0	.963703	.945554
42.2	.963870	.945805
42.4	.964035	.946053
42.6	.964199	.946299
42.8	.964362	.946543
43.0	.964523	.946784
43.2	.964682	.947023
43.4	.964840	.947260
43.6	.964997	.947495
43.8	.965152	.947728
44.0	.965306	.947959
44.2	.965459	.948188
44.4	.965610	.948415
44.6	.965760	.948640
44.8	.965908	.948863

Aspect
Ratio

45. 0
46. 2 . 966202
45.4 . 966347
45.6 . 966490
45.8 . 966633
46.0 . 966774
46.2 . 966914
46.4 . 967053
46.6 . 967190
46.8 . 967327
47.0 . 967462
47. 2 . 967596
47.4 . 967729
47.6 . 967861
47.8 . 967992
48.0 . 968122
48. 2 . 968251
48.4 . 968379
48.6 . 968506
$48.8 \quad .968632$
$49.0 \quad .968756$
49.2 . 968880
49.4 . 969003
49.6 . 969125
49.8 . 969246
50.0 . 969366
50.2 . 969485
50.4 . 969603
50.6 . 969720.954580
50.8 . 969836
51.0 . 969952
51.2 .970066
$51.4 \quad .970180 \quad .955270$
51.6 .970293 . 955439
51.8 . 970405 . 955607
$52.0 .970516 \quad .955773$
52.2 . 970626 . 955939
52.4 . 970735
52.6 . 970844
52.8 . 970952
53.0 . 971059
53.2 . 971165
53.4 . 971271
53.6 . 971375
53.8 . 971479
54.0 . 97158.2
54.2 . 971685
54.4 . 971787
54.6 .971888
54.8 . 971988
$\underline{D_{z}-D_{x}}$
.949084

- 949303
. 949520
. 949735
.949949
.950161
.950371
.950579
.950785
. 950990
.951193
.951394
. 951594
.951792
. 951989
. 952183
. 952377
.952568
. 952759
.952947
.953135
. 953320
.953504
.953687
.953869
. 954048
.954227
.954404
- 954580
. 954927
. 955099

955607
.955773
.955939
.956103
.956266
. 956428
. 956588
. 956748
.956906
.957063
.957219
. 957374
. 957527
.957680
.957831
. 957982

Aspect R

55.0	. 972087
55.5	. 972333
56.0	. 972575
56.5	. 972812
57.0	. 973045

57.5 .973275
58.0 .973500
58.5 .973722
59.0 . 973940
59.5 .974154
60.0 .974365
$60.5 \cdot 974572$
61.0 .974777
61.5 .974977
62. 0.975175
62.5 .975370
63.0 .975561
63.5 .975750
64.0 .975936
64.5 .976119
65.0 .976299
65.5 .976476
66.0 .976651
66.5 .976823
67.0 .976993
67.5 . 977160
68.0 .977325
68.5 .977488
69.0 .977648
69.5 .977806
70.0 . 977961
70.5 .978115
71.0 .978266
71.5 .978416
72.0.978563
72.5 .978708
73.0 . 978852
73.5 .978993
74.0.979133
74.5 .979270
75.0 .979406
75.5 .979540
76.0 .979673
76.5 .979803
77.0 .979932
77.5 .980060
78.0 . 980185
78.5 .980310
79.0 . 980432
79.5 .980553

.958131
.958500
. 958862
. 959218
.959568
. 959912
. 960250
. 960582
. 960909
.961231
.961547
.961859
.962165
. 962466
.962763
.963055
.963342
.963625
. 963904
. 964178
.964448
.964714
.964977
.965235
. 965490
.965741
.965988
.966232
.966472
.966709
.966942
.967172
.967400
.967624
.967844
.968062
.968277
.968489
.968699
.968905
.969109
.969310
.969509
.969705
.969898
.970089
.970278
.970464
.970648
.970830

Aspect
Ratio

$$
\begin{gathered}
\mathrm{D}_{\mathrm{z}} \\
\hline
\end{gathered}
$$

.971009 . 971362 .971706 .972041
. 972369
. 972690
. 973003
. 973308
. 973607
. 973900
.974186
. 974465
. 974739
.975007
. 975269
. 975526
.975778
.976024
.976266
.976503
. 976735
.976962
. 977185
. 977404
.977619
. 977829
. 978036
.978239
. 978438
.978633
.978825
. 979014
. 979199
. 979381
. 979560
. 979736
.979909
.980079
.980246 .980410
.980571
.980730
.980887
. 981040
.981192
.981341
. 981487
. 981632
.981774
.981914

[^0]: * NBS Group, Joint Institute for Laboratory Astrophysies a the Linversti if C liredo.
 ** Loc-ted at Boulder. Colorado.

[^1]: For sale by the Superintendent of Documents, U. S. Government Printing Office Washington, D.C. 20402

 Price: 20 cents

