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Computation of Hankel Functions

Leslie A. Berry-

Methods of computing solutions to Bessel's equation,

z^ —5- + z —^ + (z^ - v^) y = 0, for complex v and z, and
dz dz

for small, real v, are given in detail. The methods are

most suitable for use on an electronic digital computer.

With a computer which carries eight decimal digits, the

methods presented for small, real v will return at least

six correct significant digits for all z. When v and z are

both complex, the accuracy depends on |z
|

(since asymptotic

forms are used) and the ratio v/z. Relative error curves

are shown as a function of |v/z
|
parametric in |z |. For

V sufficiently far from z, seven correct digits are obtained,

which for v — z, the relative error is of the order 10 ^
/ \z\.

1. Introduction

Solutions to electromagnetic or sound-wave problems in spherical

or cylindrical co-ordinates usually involve solutions of Bessel's equa-

tion, z^ —X- + z -r- + (z^ - v^)y = 0. The Hankel functions [Watson,
dz dz

1958] Hy (z) and H^ (z) are one set of linearly independent solutions.

Other solutions can be written in terms of these solutions [see (19)].

The superscript indicates the "kind, " v, the "order, " and z, the

"argument" of the functions, and either v, or z, or both may be com-
plex. The purpose of this paper is to present in one place detailed

instructions for computing the Hankel functions on an electronic digital

computer, and to investigate quantitatively the relative errors incurred.

No new mathematical development is involved, but since considerable

algebraic reduction and systemization of scattered results were necessary,

publication of the results seems desirable.

Section 2 details methods of conciputing Hy(z) when v and z are

complex. If V — z, Hi(z) must be computed accurately, so techniques

are given in section 3 for computing Hv(z) when v is real and small
and z is unrestricted. The accuracy of the methods is discussed in

section 4,



2, Complex Order, v or z Large

In this section, it is assumed only that either v or z is large.

What is meant by "large" will be discussed quantitatively in section 4,

but the asymptotic expressions used here [(1) and table 1 ] accurately

describe the qualitative behavior of the Hankel functions over raost of

the V and z planes, since the minimum relative error is about one per

cent for |v| — |z| ^l (figure 5).

Two approximations are used. In the first, which will be called

the Hankel approximation [Fok, 1934],

H^/^{z) s^exp [(-1)1^-1 in/6] Vl - ri coth T] Hi^^(-i?), k=l, 2, (1)

where

^ = V (tanh r\ - r]), (2)

cosh r\ = v/z, and |arg v| < tt/2 [Olver, 1954]. For |arg v| > n/2, (3)

(9) is used.

The principal square root is used; i. e. ,

arg vw = g- arg w,

and - TT < arg w = TT.

for v/z ^1 [Fok, 1946],

-^ = 1 0-Sr [-10 -f^) -0-1^)1- <^)

The first term on the right has been used extensively as an
approximation to - i§ in radio propagation theory [Fok, 1946; Bremmer,
1949].



The second approximation, called the Debye approximation, will

be written in terras of [Watson, 1958]

^-— ivtanhri ^^^
^'"

(^j tanh T]

J

The combination of S\ (z) and S^ (z) to be used depends on the

location of v/z in the complex plane. The first four A„ are [British

Association Mathematical Tables, 1952]:

Ao = 1,

15 ,2
^^ = 8 - 24 ^°'^ '^'

3 77 ^,2 385 ^, 4
^^ = 128 - 576 "°*^ ^+3456 "°* ^'

5 1521
, 2 17017

, 4 17017
, e

>3 - l024 - 256^ ^°^^ ^+ I3i240 ^°* ^ " 248832 ^°^^
^- ^^^

Forms for A4 -- A7 can also be found in the above reference. In

(5), use the principal square root. The series in (5) can be written

00

Y r(m+|) A„ A^coth 11 3 Ag coth^ ri 1 5 A3 coth^ T]

L r(^) (±ivtanhTl)»
"

V
^

v^ v^
m =0

(7)

This is an asymptotic series and should be truncated at the smallest

term; i. e. , all terms preceding the smallest term should be summed.

The regions of the plane to be considered are shown in figure 1,

and the expressions for Hy(z) are given in table 1. These expressions
are correct only if Re(z) ^ 0, but if Re(z) < 0, the formulas [Watson,

1958]



and

sinTTv smTTv

where k is any integer, can be used to evaluate the desired function.

Although expressions can be derived for Hv(z) in regions 6b, 7b, and

9, it is simpler to compute H_y(z) [so that -v/z is in 6a, 7a, or 8]

and use [Watson, 1958]

h1^^(z) = exp [(-1)^ vni] h1.V(z). k = 1, 2. (9)

2. 1. Determination of T]

Directions for computing T] and for determining the correct region

of the plane, figure 1, will now be given. Let T\ = a +i3, where a and

3 are real. Then a + i3 = cosh"''" v/z. The infinitely many-valued
function, cosh"'', is made single valued by requiring that ^ 3 < TT

[Watson, 1958]. 3 = if v/z is real and v/z ^ 1. Specifically

a=-log(|^±y^ -1 I). (10)

The sign is chosen so that a has the same sign as Im(v/z). If

Im(v/z) = 0, and |v/z
j
> 1, the positive sign is chosen; if |v/z

|
^ 1,

11 = Cos"^ v/z. Then

3 = Cos"^ [Re(v/z)/cosh a] (U)

These directions are exact for use in (5), and are valid for (1) over
most of the plane. (For a discussion of the region of validity for the

Hankel approximation, consult Olver [1954].) For (1), when v = z,

arg (-i§) can be determined by examining the first term ^f (4); when v
is not near z, the Debye approximation is superior.

The m in table 1 is the largest integer less than

{{1 - a tanh a) tan 3 + 3}/TT.



Now, let

f(a, P) = 1 - e cot 3 - a tanh a . (12)

The signs of f(a, 0), f(a, 0) + n cot 0, Re(v/z), and Im(v/z) uniquely

determine in which of the regions shown in figure 1 v/z is located.

Coliamn 2 of table 1 shows how the region can be determined.

3. Real Order

To use (1), a routine for computing Hi(z) must be available. In

this section, methods are given for computing Hv(z) for small, real v.

The restriction that v be real is probably not necessary if z^ is care-
fully defined, but it is retained in this section,

3. 1. Small |z
|

If V is not an integer [Watson, 1958]

h1^^(z) = {-1)^ [exp [(-1)'^ vHi] J^(z) - J_^(z)3/i sin vTT, k = 1, 2,

(13)

where Jv(z) is the Bessel function of the first kind, defined by [Watson,

1958]

v(z) = y
(-l)''(z/2)^-"^''

L m ! r (v+ m+ 1)
m =0

(v/2)" r (z/2)^ (z/2)^ {z/2)^

r(v+l) V 1 ! (v+1) 2 ! (v+l)(v+2) 3 ! (v+l)(v+2)(v+3)

(14)

Jy(z) is made single-valued by specifying arg (z/2)^ = v arg (z/2) for

A - 2tt < arg (z/2) ^ A. Ordinarily, A = TT, but may have different

values for some applications.

If V is an integer, (13) is indeterminate. To compute Hn(z) for

integral n and small z, compute Jo(z) and Ji(z) using (14) and then find

the Bessel function of the second kind, Yo(z), from [Watson, 1958]



Y,(.)=|[<Y+log(f))J.(z)+f '^(^'•^,'^'
]. (15)

m=i

where y is Euler's constant, y = . 5772156649 • • • . The Jn(z), m > 1

are found with the recurrence formula [Watson, 1958],

J.+ i(2) =^ J„(z) - J„-i(z). (16)

Then [Watson, 1958]

y,(z) = {j,(z) Yo(z) +:^] /Jo(z) (17)

and

Finally,

Yn,.-i(z) =^ Y„(z) - Y„-,(z). (18)

H^^(z) . J„(z) + (-l)^-n Yn(z). (19)

3. 2. Large |z
|

As |z
I
gets large, (14) converges slowly and loses precision.

More serious is the precision lost in (13) and (19), since in half of the

z -plane the terms on the right are nearly negatives of each other when
Im(z) is large. For example, four significant digits are lost in (19)

when n = 1, z = 5 exp (i 85°), It is therefore necessary to use the

asymptotic series [Watson, 1958]-

jj(l)|^j
^ exp(iz-i(v+ i)T./ 2)

T^,.2i^)_ ,.„< ^^g , < 2„)_ (20a)

y n z/2

jj(^3)|^j __
exp(-iz-H(v+|)n£2) ^^j2i.), (-2n<argz<n), (20b)

^J n z/2



where

T,(z) = wy '^-'-^'"^-'-^''---'^-'-'^"-"''
. (21)^ n! (4zr

n = l

Unless V = n + -g, for integral n, Ty(z) is an asynaptotic series and
should be stopped at the smallest term. If v = n + ^, Tv(z) terminates,

and (20) is the finite series for Hn + i(z).

Using a computer which carries eight decimal digits in floating

point operations, about four correct significant digits in Hy(z) are
obtained over all of the z-plane, using the methods presented above.

This accuracy is increased to at least six digits if Dingle's [1958,

1959 ] convergence factor is used in (21), as described below.

3. 3. The Convergence Factor

In a series of papers, R. B, Dingle has developed a general
theory [Dingle, 1958] of convergence factors and has applied this theory
to many special functions [Dingle, 1958, 1959]. When the product of a

convergence factor, Cb(z), and the nth term of an asymptotic series is

added to the previous n - 1 terms, the sum is the exact sum of the

entire series. In practice, of course, the sum is not "exact," but the

use of a convergence factor does significantly extend the range of

application of an asymptotic series.

In the particxolar case of the Hankel functions, (21) is written:

N-l
(4v^ - l^)(4v-

n! (4z)"
Y (4v"-l^)(4v"-3")---(4v^-(2n-l)^)

^y^^) = ^ + i n!(4zr
nz:l

(4vS.l3)...(4v^_(2N-l)^)
+

N! (4z)N ^n(v, z), (22)

where N is chosen so that the term corresponding to N-l is the smallest
term of (21). Then, [ Dingle, 1959] for s = N - v - |,



r f^ .\ ~\ r(v + |)r(N+v-t + |) t
.(t),

.

t=o

' ^ ' (N+v-^) ' ^ ' (N+v-i)(N+v-|-) ' ^ '

where [Dingle, 1958]

(23)

Ai°^z)
r{s + l) J 1+x/z '

2 A ^z) . (s + z+l) A^ '(z) - z,

.(2) (i)/.x
, a(°),2zA^, '(z) = (s + z) A^, '(z) + A^^ >{z) - 1,

and

tzAl*)(z) = (s + z + 2-t) a[*"')(z) + A['~^h^), t>2. (24)

When |s
I

^ 1, or |z
|
^ 1, and |arg z

|
< 3TT/4 [Dingle, 1958],

a'/N^)-
^

s + z
1 -

z(s - 2z) z (s^ - 8sz + 6z^)

(s + z)*^ (s + z) (s + z)'
•)• (25)

(0)
Otherwise, A^ '(z) can be found by numerical integration. For the

general routine used with this paper, A^ '(z) was found with an eight

point Gaussian quadrature formula:

x^ e-'^ f(x) dx ^ ^ W, f(x,), (26)

^=1

since s ^ 5 for use in (24). The W^ and x^ are taken from Rabinowitz
and Weiss [1959]. Then Cfg(v, z) is approximated by the first four

terms of (23).

8



4, Discussion of Results

Fortran subroutines were written to compute Hj^(z) and Ha(z) and
3 3

Hn(z) using the methods of section 3. The values for Hj^(z) and H2(z)
3, 3

were checked against the Tables of Modified Hankel Functions of Order
One -Third and Their Derivatives [The Staff of the Computation
Laboratory, 1945]. The computed values agree with the tabular values

to at least six significant digits where the tables give six digits. (The

tables give eight decimal places. ) The values of Hn(z) computed by the

routine were checked against NBS tables for Jo(z) and J3^(z), [Mathe-
matical Tables Project, 1947] and Yo(z) and Y (z) [Computation
Laboratory, 1950] and gave comparable results.

The Debye and Hankel approximations were programmed sepa-

rately and checked for real order by comparing the values they returned

with the correct (to at least six significant digits) answers given by the

methods of section 3. A subroutine valid for small, complex v and z

was obtained from SHARE [Goldstein, Kresge', and Chen, I960], and
the asymptotic routines described here returned answers correct to

the expected accuracy, providing an independent check of the routines'

logic.

Defining

„ , . I
answer - approximation i ,_^,

Relative error = ^^
, (27)

answer

figures 2, 3, and 4 show relative error curves for both approximations
as functions of Iv/z|, parametric in |z

|
for |arg z| = 0°, 5 , and 15°,

respectively. It is apparent from these curves that the Debye approxi-
mation is the better except when v — z. Even when |v/z

|
= 1, if

|arg v/z
I
and |z

|
are not small, the Debye approximation is superior,

as shown in figure 5. Nevertheless, any general routine for computing
Hv(z) must include the Hankel approximation. The relative -error
curves all show that, for any z, there is an € > such that, if jv-z

|
< e,

the Debye approximation is useless.

If series (7) is truncated at the smallest term, the relative error
in the Debye approximation is of the order of the magnitude of that

term. Examination of figures 2 through 5 yields an empirical formula.



[relative error
I

Sf 10 ^
I \z\, (28)

for the Hankel approximation (1).

A general routine for Hy(z) was written, incorporating both the

Debye and Hankel approximations. The routine uses the Debye approxi-

mation unless the smallest term of series (7) is larger than 10"^/ (z |,

in which case the Hankel approximation is used. This routine and
other computer routines described in this paper are available from
SHARE [Berry, 1963],

5. Conclusions

Using an electronic computer, solutions to Bessel's equation of

real order and complex argiiment can be computed very accurately.

Even when the order is complex, computations can be made sufficiently

accurate for most applications. The subroutines incorporating the

methods should be valuable in radio and sound wave computations.
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7. List of Symbols

H\ (z) Hankel fxinction of argument z, order v, and kind k,

k = 1, 2.

Jy(z) Be s sal function of the first kind, of argixment z and order

V.

Yy{z) Bessel function of the second kind, of argument z and
order v, sometimes called Neumann's function and denoted

N,(z).

Tv(z) The series defined in (21).

T] = a + ip = cosh"^ —
z

(k)
S^ (z) The series defined in (5).

(k)
Aj, The coefficient of S^ (z), see (6).

f(a, 3) = 1 - 3 cot 3 - a tanh a

m = Largest interger less than [(1 - a tanh a) tan + 3}/Tr.

C|s|(z) Convergence factor for asymptotic series, see section 3. 3.
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Region
Determined

by
„;»,z, „;^',.,

1 Ua, p)>

Ua, P)+TT cot P>

s;»,., sj^'u,

2 f(a.P)<0
f(ff, P)+TT cot (3>0

Im V
^
<

z

s;»,., - s;^',., s;^',.,

3 f(«.P)<o
f(Qr, P)+TTCOtp>

Im .Vj <
z

s;",., s;^',., - s;" ,.,

4 f(<», P)>
f{a, P)+Trcotp<

Im (v/z) >

S^ (z)
„ (2) 2vTri (1)
S (z)-e S (z)
V V

5 Ha. P)>
f(a, p)+-iTcotp<

Im (v/z)<

„ (1), ,
-2vTTi„ (2), ,S^ (z)-e S^ (z) s;^',.,

6a f(a,P)<
f(a,P)+Tr cotp<0
Im (v/z) >
Re (v/z) >

P
(m+l)vTii sin mvir

1

sin VTT
s^%)J%)
V V

S^^'(z) + e<"^+^>^^^ ^^" "^^"
S<Hz)V sin VTT V

6b f(a,p)<0
f(Q', p)+Tr cotp <
Im (v/z) >
Re (v/z) <

Compute H (z) and
-V

use (9)

Compute H (z) and

use (9)

7a Ha,?,) <0
f(a,P)+Trcotp <
Im (v/z) <
Re (v/z) <

<i''\) g-(m+l)vTri sinmvTT^(2)
V sin VTT v

r ^-(m+DvTTi sin mvul (2|(1)
L sin VTT 1 V * ' v * '

7b f(a,P) <0
f(Q',P)+TTCOtP <0
Im (v/z) <
Re (v/z) <

Compute H (z) and

use (9)

Compute H '(z) and

use (9)

8 Im (v/z) =

Re (v/z) > 1

1 c (1), > e (2), V- S^ (z) - S^ (z) ^S<^\z).s(2\z)
2 V v

9 Im (v/z) =

Re (v/z) < - 1

Compute H (z) and
-V

use (9)

Compute H (z) and

use (9)

Table 1

Ik



Im(v/z)

v/z plane

'8— Re(V'z)

Figure 1. Regions of the v/z plane (table 1).
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