Aコココロ？ 208049

The feriene of the Vation il Burran of Stamdards are at forth in the lot af Comprian Varih 19, atode I by Conyress ia Pablie Jaw 6F9. 1950. These include the develognment and

 on ultation and mforestoon mersices. Researels projects are ades performed for other gonernetern age 1 ke when the worh relates to and supplements the hasie program of the Burean or when the Bur. 1° : fotsons and sections on the inside of the back coner.

Publication:

- he rentts of the Burean's worh take the form of cither acteal equipment and deviere or pulb. hater papers. 「heme papers appear cither in the Burean'sown areres of public:atons or in the journal-

 and frefminary reforts on work in progrems: and Basie Kadio l'ropegation Pedietioce provide-

Information on the Burean's puldieations cam he found in \BS (:ireolar I60. Poblieations of the
 of Docmurnts. (;onemment Printing Ollice, II ashington 25. D.C.

NATIONAL BLREAU OF STANDARDS
 Eechnical Note

2-2
October 1960

SUPPLEMENTARY WORLD MAPS OF F2 CRITICAL FREQUENCIES AND MAXIMUM USABLE FREQUENCY FACTORS

Donald H. Zacharisen

This work was prepared in response to Study Program 60 and Recommendation 176 of the International Radio Consultative Committee (CCIR). This Technical Note supplements Technical Note 2 and together they present F2-layer prediction material for all months of the year.

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referfe to in Tepical Service, U. S. Depart sale by the Office of Technical Services, U. S. Depart ment of Commerce, Washington 25, D. C.

DISTRIBUTED BY UNITED STATES DEPARTMENT OF COMMERCE OFFICE OF TECHNICAL SERVICES

WASHINGTON 25, D. C.
Page
I. INIRODUCTION 1
II. A DESCRIPTION OF WORLD PREDICTION MAPS, PREDICTION CHARIS AND AIDS 1
III. INSTRUCTIONS FOR USE OF WORLD PREDICTION MAPS, PREDICTION CHARTS AND AIDS 4
IV. SAMPLE PREDICTIONS 9
A. SOLUTION OF F2-LAYER TRANSMISSION PROBLIEM FOR A PATH LESS THAN OR EQUAL TO 4000 KM- 1.1
B. SOLUTION OF F2-IAYER TRANSMISSION PROBLEM FOR A PATH GREATER THAN 4000 KM- 12
V. FIGURES AND TABIES 13
A. MAP OF THE WORLD 14
B. GREAT CIRCIE CHART 15
C. DISTANCE NOMOGRAM 16
D. SUPPLEMENTAL DISTANCE NOMOGRAM 17
E. TABLE OF APPROXIMATE VALUE OF ONE-HALF IHE GYROFREQUENCY 18
F. TABLE OF GEOMAGNETIC LATITUDE OF POINVIS ON THE EARTH 19
G. WORK SHEET FOR SOLUIION OF F2-IAYER TRANSMISSION PROBLEM FOR A PATH LESS THAN OR EQUAL TO 4000 KM-- 21
H. WORK SHEET FOR SOLUTION OF F2-LAYER TRANSMISSION PROBLEM FOR A PATH GREATER THAN 4000 KM- 22
VI. WORLD PREDICTION MAPS AND PREDICTION CHARTS 23
A. FEBRUARY 24
B. APRII 61
C. MAY 98
D. AUGUST 135
E. OCTOBER 172
F. NOVEMBER -209

SUPPLEMENTARY WORLD MAPS OF F2 CRITICAL FREQUENCIES AND MAXIMUM USABLE FREQUENCY FACTORS

by

Donald H. Zacharisen

Summary

This report supplements National Bureau of Standards Technical Note Number 2, April 1959, and completes the basic data required for F2-layer maximum usable frequency predictions. Prediction charts are given for the months of February, April, May, August, October and November. Auxiliary charts are included to aid in predicting F2layer MUFs.

The four parameters used for predicting MUFs are foF2 and the 4000 km MUF factor for a twelve-month running average Zurich sunspot number of 50, and the rates of change of foF2 and 4000 km MUF factor with sunspot number. The first three parameters are presented in map form for each even hour of Greenwich Mean Time. The fourth parameter is presented on a chart of geomagnetic latitude and local time.

1. INTRODUCTION

This report completes the twelve-month set of world prediction maps and charts for use in predicting median maximum usable frequencies (MUFs) for F2-layer transmission.

The basic parameters in this report for February, April, May, August, October, and November include most of the data taken during the IGY. National Bureau of Standards Technical Note Number 2^{l}, which presents the same basic data for January, March, June, July, September, and December, includes only a small amount of IGY data. All of the prediction maps and charts are prepared for average conditions. Each prediction map corresponds to an even hour of Greenwich Mean Time (GMI) which is also known as Universal Time (UT).

The results of a pilot study ${ }^{2}$ cover most of the considerations involved in producing these prediction maps. The history of the preparation of these maps is covered in two sources. ${ }^{1,3}$

> II. A DESCRIPTION OF WORLD PREDICTION MAPS, PREDICTION CHARTS AND AIDS

Figure 3 shows the map projection used in producing the world prediction maps. This map will be used in determining the location of the desired communication path endpoints. Figure 4, a great circle chart, is based on the same projection used in the above map of the world. Figures 3 and 4 are used to determine the great circle communication path between the transmitting and receiving terminals. The world prediction maps are all presented
for each even hour of the day. The prediction charts of slope of regression line of M-4000 factor on the twelvemonth running average Zurich sunspot number (RASSN) have time of day rather than longitude as the abscissa. Hence there are fewer charts to represent this parameter than there are maps to represent the other parameters. It was determined, from the results of a pilot study ${ }^{2}$, that it would be of doubtful value to attempt to specify this parameter in more detail.

Figure 5 and Figure 6^{*} are used to interpolate between the values of F2-zero-MUF and F2-4000-MUF provided by the world prediction maps and prediction charts.

Figure 5 is generally used. Figure 6 is to be used during certain daylight hours indicated in the accompanying Table. The nomogram in Figure 6 will, in general, give lower values of MUF than the nomogram in Figure 5. It is felt that the prescribed use of two distance nomograms (Figure 5, Figure 6) will give predictions which are more nearly consistent throughout the year. Both nomograms have F2-zero-MUF along the left vertical axis. F2-zero-MUF is obtained by adding one-half of the gyrofrequency (f_{H}) to

[^0]the foF2. An approximate value of $f_{H} / 2$ is obtained from Table 1 as a function of geomagnetic latitude. The geomagnetic latitude, for a given geographic latitude and longitude, may be obtained from Table 2.4

The prediction maps for foF2 at RASSN 50 and M-4000 factor at RASSN 50 are used respectively with those for the slope of regression of foF2 on RASSN and the prediction charts of the slope of regression of M-4000 factor on RASSN. The first two parameters above give the value of foF2 or M-4000 factor at a RASSN of 50 . The third and fourth parameters give the rates of change of foF2 or M-4000 factor with RASSN. For example, a value from the map of foF2 at RASSN 50 used with a corresponding value from the map of the rate of change of foF2 with RASSN will give, for a given geographical location, the value of foF2 for essentially all values of RASSN.

In addition to the above prediction material a predicted value of RASSN, such as is supplied five months in advance of the month in question by CRPL using the McNishLincoln method, ${ }^{5}$ is required to predict F2-layer MUFs.

It should be kept in mind that the se maps will provide predictions only for F2-layer propagation. For low sunspot numbers, during local surmer at middle latitudes,
the E- and Fl-layers may permit propagation at a somewhat higher frequency than the F2-layer. Also, at anytime, other factors, such as sporadic-E, scatter, layer tilts, etc., may also permit propagation at higher frequencies than predicted from these maps.

A simple set of equations are used to predict MUFs and optimum traffic frequencies (FOTs) ${ }^{*}$ from the prediction maps and charts, the aids, and a predicted RASSN. The following symbols are used in presenting these equations:
$R=$ predicted RASSN.
$f(R)=$ median ordinary-wave critical frequency (median foF2) at RASSN R (denotes median foF2 as a function of R).
$f(50)=$ median foF2 at RASSN 50.
$b_{f}=$ slope of the regression line of median foF2 on RASSN (the rate of change of median foF2 with RASSN).
$M(R)=$ median maximum usable frequency factor for a transmission distance of 4000 kilometers (median M-4000) at RASSN R.
$M(50)=$ median $M-4000$ at RASSN 50.
$b_{M}=$ slope of the regression line of median M-4000 factor on RASSN (rate of change of median M-4000 factor with RASSN).
*The term FOT supersedes OWF which appears in the report ${ }^{1}$ presenting the first six months of maps.
F2-zero-MUF(R) = maximum usable frequency for a
transmission distance of zero
kilometers at RASSN R
F2-4000-MUF $(R)=$ maximum usable frequency for a
transmission distance of 4000
kilometers at RASSN R.
$f_{H}=$ gyrofrequency.
$f(R)=f(50)+(R-50) b_{f}$.
$M(R)=M(50)+(R-50) b_{M}$.
$f(R)+f_{H} / 2=$ median $F 2$-zero-MUF (R).
$[f(R)][M(R)]=\operatorname{median} F 2-4000-M U F(R)$.
$f(50), b_{f}$, and $M(50)$ are read from their respective
maps at the geographical location of the control points
of the great-circle path between the transmitting and
receiving terminals. For circuits 4000 km or less, the
control point is at the great-circle midpoint. For
circuits greater than 4000 km , ionospheric conditions
2000 km from each terminal are assumed to control. b_{M}
is read from a chart at the geomagnetic latitude of the
control points. The predicted value of RASSN used with
this report should be one that will give the best MUF
predictions rather than one that will predict a correct
value of RASSN. The above value of RASSN should follow
closely the predicted or expected value of RASSN.
The world prediction maps of foF2 at RASSN 50 and

M-4000 factor at RASSN 50 were drawn from median values and the use of the values from these maps in the above equations will result in median values of $F 2-4000-M U F(R)$ and F2-zero-MUF(R). The median value is of course the middle value when the observed data are arranged in order of magnitude. Propagation at the MUF calculated from these prediction maps and charts should be possible on approximately 50% of the days of the month.

A frequency that should be propagated via the F2layer approximately 90% of the time (FOT) may be easily obtained from the above median F2-MUF. It might be found by taking 85% of the median F2-4000-MUF(R) and 85% of the median $F 2$-zero-MUF (R), but it is simpler just to take 85% of the median F2-MUF for which the distance interpolation has already been made. Both methods can be seen to yield the same results.
III. INSTRUCTIONS FOR USE OF WORID PREDICTION MAPS, PREDICTION CHARTS AND AIDS

Much of the material in this section is similar to that in National Bureau of Standards Circular 465^{6} which is probably familiar to many users of this report and therefore the use of a similar text should aid in determining F2-layer MUF's from the material included herein. It is suggested that if repeated use is to be made of
this report, the staples be removed and the report placed in a looseleaf notebook so that the pages will lie flat.

1. Determination of Great-Circle Distances and Locations of Transmission Control Points

Figure 3 is a map of the world. Figure 4 is a chart to the same scale as Figure 3, on which the solidline curves crossing the equator at two points 180° apart represent great circles. The numbered dot-dash lines crossing the great circles indicate distances along them in thousands of kilometers. In using Figures 3 and 4, proceed as follows:
(a) Place a plece of transparent paper over the map, Figure 3, and draw the equatorial line and the $120^{\circ} \mathrm{W}$ longitude line. Place dots over the locations of the transmitting and receiving terminals. Also mark the 0° meridian for use in determining GMI from the prediction charts of slope of regression line of M-4000 factor on RASSN.
(b) Place this transparency over Figure 4 and, keeping the equatorial line of the transparency always on the equatorial line of Figure 4, slide the transparency horizontally until the terminal points marked on it either
fall on the same great circle or are the same proportional distance between adjacent great-circle curves. Draw a great-circle path through the terminal points. Paths between Washington, D.C. and Miami, Florida, and Washington, D.C. and Trieste are shown in Figure 4.
(c) For paths shorter than 4000 km , locate the midpoint of the path by keeping the transparency in position on Figure 4 and using the numbered lines as a distance scale. The midpoint of the Washington-Miami path is at M on Figure 4.
(d) For paths longer than 4000 km , locate the following "control points" on the great circle transmission path:

Point "A" 2000 km from the transmitter
Point " B " 2000 km from the receiver
These control points for the Washington-Trieste path are shown in Figure 4.
2. Prediction of Maximum Usable Frequencies and Optimum Traffic Frequencies
2.1 Prediction of MUF and FOT for distances less than or equal to 4000 km
(a) A work sheet similar to that of Figure 7 is suggested.
(b) To predict the MUF:
(1) Place the great circle transparency over the map of foF2 at RASSN 50 for 0000 hours GMT for the month of interest and keep the equatorial line of the transparency over the equatorial line of the map and the $120^{\circ} \mathrm{W}$ line of the transparency over the $120^{\circ} \mathrm{W}$ line of the map.
(2) Read the value of foF2 for the midpoint of the path and record as $f(50)$ in Column a. of Figure 7.
(3) Repeat for the 0200, 0400, 0600, etc. maps.
(4) Repeat steps (1), (2), and (3) for the maps of the slope of the regression line of foF2 on RASSN and again for the maps of M-4000 factor at RASSN 50 and record values as b_{f} in Column b. and as $M(50)$ in Column e., respectively, of Figure 7 .
(5) Compute (R-50), using the predicted value of R for the desired month, and record this value in Column c. of Figure 7.
(6) From Figure 3, determine the geographical coordinates of the path midpoint located in Section

1 (c) above. Table 2 is then used to find the geomagnetic latitude of the midpoint. Geographic latitude is located along the vertical axis of Table 2 and geographic longitude is located along the horizontal axis. 180° E to 360° E longitude on Table 2 corresponds to $180^{\circ} \mathrm{W}$ to 0° longitude.
(7) If the geomagnetic latitude differs from the geographic latitude, place a dot on the geographic meridian of the great-circle midpoint at a geographic latitude equal to the geomagnetic latitude found in (6) above.
(8) Place the transparency over the chart of the slope of the regression line of M-4000 factor on RASSN and keep the equatorial line of the transparency over the equatorial line of the chart. Slide the transparency horizontally until the Greenwich meridian of the transparency coincides with 0000 hours on the local time (LT) scale.

Note that all points on the great-circle path are in their proper LT relationship to Greenwich.
(9) Read the slope of the regression line of M-4000 factor on RASSN for the location of the dot determined in Instruction (7) above and record as b_{M}
in Column f. of Figure 7.
Note that on the prediction chart (-) refers to an algebraic increase (e.g. -. 0040 to -.0050) of values inside the contour so specified while (+) refers to an algebraic decrease (e.g. -.0040 to -.0030) of values inside of the contour so specified.
(10) Repeat for $0200,0400,0600$, etc. on the time scale. Frequently it will be necessary to make the Greenwich meridian of the transparency coincide with an imagined $2600,2800,3000$, etc. on the time scale. A convenient aid is to place marks at two hour intervals on the equatorial line of the transparency.
(11) Compute the values for Columns d., g., and h. of Figure 7 from the equation at the heading of each of these columns. The equation for Column d. is $f(R)=$ Column $a_{0}+\left(\right.$ Column $\left.b_{\circ}\right)$ (Column $\left.c.\right)$.
(12) Use the geomagnetic latitude of the path midpoint found in Instruction (6) above to obtain onehalf of the gyrofrequency $\left(f_{H}\right)$ from Table 1 . Add this value of $f_{H} / 2$ to the median foF2 for all even hours to obtain median F2-zero-MUF(R) and record the values in column i. of Figure 7.
(13) For each hour place a straightedge between the values of F 2 -zero-MUF (R) and $\mathrm{F} 2-4000-\mathrm{MUF}(\mathrm{R})$ at the left-hand and right-hand sides, respectively, of the appropriate grid nomogram, Figure 5 or Figure 6, and read the MUF for the actual path length at the intersection point of the straightedge with the appropriate vertical distance line, interpolating between the oblique lines. Use the nomogram in Figure 6 as indicated by the accompanying Table. Otherwise use the nomogram in Figure 5. Record the values in Column j. of Figure 7 .
(14) Calculate the F2-FOT by multiplying each median $\mathrm{F} 2-\mathrm{MUF}$ in Column j. of Figure 7 by the factor 0.85 or by using the conversion scale contained in Figure 5. Record the values in Column k. of Figure 7.

2.2 Prediction of MUF and FOT for distances

 greater than 4000 km(a) General Considerations:

The long distance F2-layer MUF predictions are based on the assumptions:
(1) That there are F2-layer control points A and B.
(2) That the highest frequency that can be
propagated from the A-end to the B-end is the lower of the two frequencies of A and B above.
(3) That the frequency obtained in (2) is the same for propagation from the B-end to the A-end.
(b) A work sheet similar to Figure 8 is suggested. Scaled values and computations for control point A and control point B should be recorded in Columns a. through h. and Columns i. through o., respectively, on Figure 8. In the following instructions, the first designated column letter will apply to control point A and the one in parenthesis to control point B. The lower of A and B is entered in Column p. and the FOT is computed from this and entered in Column q.
(c) Locate the control points A and B as explained in Section 1. For very long paths the "short route" (minor arc of the great-circle path) and the "long route" (major arc) may both need to be considered.
(d) To determine the MUF:
(1) Place the great circle transparency over the map of foF2 at RASSN 50 for 0000 hours GMT for the month of interest and keep the equatorial line of the transparency over the equatorial line of the map and the $120^{\circ} \mathrm{W}$ line of the transparency over the $120^{\circ} \mathrm{W}$ line of the map.
(2) Read the value of foF2 for control point A and record as $f(50)$ in Column a. (1.) of Figure 8.
(3) Repeat for the 0200, 0400, 0600, etc. maps.
(4) Repeat steps (1), (2), and (3) for the maps of the slope of the regression line of foF2 on RASSN and again for the maps of M-4000 factor at RASSN 50 and record values as b_{f} in Column b. (j.) and as $M(50)$ in Column e. (. .), respectively, of Figure 8.
(5) Compute (R-50), using the predicted value of R for the desired month, and record this value in Column c. of Figure 8.
(6) From Figure 3, determine the geographical coordinates of the location of control point A which was located in Section 1 (d) above. Table 2 is then used to find the geomagnetic latitude of A. Geographic latitude is located along the vertical axis of Table 2 and geographic longitude is located along the horizontal axis. $180^{\circ} \mathrm{E}$ to $360^{\circ} \mathrm{E}$ longitude on this chart corresponds to $180^{\circ} \mathrm{W}$ to 0° longitude.
(7) If the geomagnetic latitude differs from
the geographic latitude, place a dot on the geographic meridian of control point A at a geographic latitude equal to the geomagnetic latitude found in (6) above.
(8) Place the transparency over the chart of the slope of the regression line of M-4000 factor on RASSN and keep the equatorial line of the transparency over the equatorial line of the chart. Slide the transparency horizontally until the Greenwich meridian of the transparency coincides with 0000 hours on the local time (IT) scale.

Note that all points on the great-circle path are in their proper LT relationship to Greenwich.
(9) Read the value of the slope of the regression line of M-4000 factor on RASSN for the location of the dot determined in Instruction (7) above and record as b_{M} in column f. (m_{0}) of Figure 8.

Note that on the prediction chart (-) refers to an algebraic increase (e.g. -. 0040 to -.0050) of values inside of the contour so specified while (+) refers to an algebraic decrease (e.g. -.0040 to -.0030) of values inside of the contour so specified.
(10) Repeat for $0200,0400,0600$, etc. on the time scale. Frequently it will be necessary to make the Greenwich meridian of the transparency coincide with an imagined $2600,2800,3000$, etc. on the time scale. A convenient aid is to place marks at twohour intervals on the equatorial line of the transparency.
(ll) Compute the values for Columns d. (k.), g. (n.), and h . (O.) of Figure 8 from the equation at the heading of each of these columns.
(12) Repeat steps (1) through (11) for control point B using Columns i. through 0 . on the work sheet as indicated in the parenthesis.
(13) For each of the even hours compare the two values of median $\mathrm{F} 2-4000-\mathrm{MUF}(\mathrm{R})$ in Columns h. and 0 . of Figure 8 representing control point A and control point B, respectively. The lower of the two values is the MUF for a given even hour for the transmission path. Record this median F2-MUF for the path in Column p.
(14) Calculate the F2-FOT by multiplying each median $\mathrm{F} 2-\mathrm{MUF}$ in Column p. of Figure 8 by the factor 0.85 or by using the conversion scale in Figure 5 .

The values obtained are recorded in Column q. of Figure 8.
IV. SAMPLE MUF AND FOT PREDICTIONS

1. Short Path

The MUF and FOT for the great-circle communication path between Washington, D.C. $\left(39.0^{\circ} \mathrm{N}, 77.5^{\circ} \mathrm{W}\right)$ and Miami, Florida $\left(25.7^{\circ} \mathrm{N}, 80.5^{\circ} \mathrm{W}\right)$, have been predicted for average conditions for the month of April using a RASSN of 119. This was the observed RASSN for April of 1956 and the values that have been predicted would be applicable to the propagation conditions encountered during that period. It is possible that a predicted value of RASSN would fit the propagation conditions encountered more precisely than the observed RASSN

The values that have been calculated are shown in Figure l. It will be noted here that the values recorded in Columns a., b., e., and f. of Figure 1 will always apply for the above communication path for the month of April. The values in Column c. will vary from year to year with changes in the value of RASSN. The values for Columns a., b., e., and f. could therefore be scaled, for a given month and transmission path, well in advance of the receipt of the predicted value of RASSN

The geographic latitude of the midpoint of the above path is included in the limits indicated in the Table in Figure 6 and therefore the distance nomogram in Figure 6 is used for the period 0700 to 1700 hours local time at the path midpoint. The nomogram in Table 5 is used for all other hours of the day.

2. Long Path

The MUF and FOT for the great-circle communication path between Washington, D.C. $\left(39.0^{\circ} \mathrm{N}, 77.5^{\circ} \mathrm{W}\right)$ and Trieste $\left(45.7^{\circ} \mathrm{N}, 13.8^{\circ} \mathrm{E}\right)$ have been predicted for average conditions for the month of October using a RASSN of 8 . This was the observed RASSN for October of 1954 and the values that have been predicted would be applicable to the propagation conditions encountered during that period. It is again possible that a predicted value of RASSN would fit the propagation conditions encountered more precisely than the observed RASSN.

The values that have been calculated for the control point A are shown in Columns a. through h. of Figure 2 and the values calculated for control point B are shown in Columns i. through o. of Figure 2. Again, it will be noted that the values recorded in Columns a., b., e., and f. and Columns i., j., l., and m. will always apply for
the above communication path for the month of October. The values in Column c. will vary from year to year with changes in the value of RASSN. The values for Columns a., b., e., and f. and Columns i., j., l., and m. could therefore be scaled, for a given month and transmission path, well in advance of the receipt of the predicted value of RASSN.

REFERENCES

1. Zacharisen, D.H., World maps of F2 critical frequencies and maximum usable frequency factors, Nat. Bur. Stand. Tech. Note 2, 1959.
2. Crow, E.L. and D.H. Zacharisen, "The error in prediction of F 2 maximum usable frequencies by world maps based on sunspot number", Statistical Methods in Radio Wave Propagation, Pergamon Press, 1960.
3. Zacharisen, D.H. and Vaughn Agy, World maps of F2 critical frequencies and maximum usable frequency factors for use in making ionospheric radio predictions, J. Geophys. Research, 65, 593-595, 1960.
4. Vestine, E.H., L. Laporte, I. Lange, C. Cooper, W.C. Hendrix, "Description of the earth's main magnetic field and its secular change 1905-1945", Carnegie Institution of Washington Publication 578, Washington, D.C., 1948, pp. 28-33.
5. McNish, A.G. and J.V. Lincoln, "Prediction of sunspot numbers", Trans. of the Amer. Geophys. Union, Vol. 30, pp. 673-685, 1949.
6. NBS Circular 465, "Instructions for the use of basic radio propagation predictions", U.S. Govt. Printing Office, 1947.

SOLUTION OF F2-LAYER TRANSMISSION PROBLEM FOR A PATH LESS THAN OR EQUAL TO 4000 KM

To \qquad Distance \qquad km

Predicted for \qquad 19

Geomagnetic latitude for path midpoint $43^{\circ} \mathrm{N}$
One-half gyrofrequency $\left(f_{H} / 2\right)$ for path midpoint 0.6 Mc
Note: All frequencies are in Megacycles

Procedure	Scale	Scale	Compute	Compute	Scale	Scale	Compute	Compute	Compute	Scale use Fig.	Compute
	f(50)	b_{f}	(R-50)	$\begin{aligned} & f(R)= \\ & a+b c \end{aligned}$	M(50)	${ }^{\text {b }}$ M	$\begin{aligned} & M(R)= \\ & e+c f \end{aligned}$	$\begin{aligned} & \text { median } \\ & \text { F2-4000- } \\ & \operatorname{MUF}(\mathrm{R}) \\ & =\mathrm{dg} \end{aligned}$	$\begin{aligned} & \text { median } \\ & \text { F2-zero } \\ & \text { MUF }(R)= \\ & d+f_{H} / 2 \end{aligned}$	$\begin{gathered} \text { median } \\ \text { F2-MMF } \\ \text { for } \\ \text { path } \end{gathered}$	$\begin{aligned} & \text { F2-FOT } \\ & \text { for } \\ & \text { path }= \\ & 0.85 j \end{aligned}$
	a	b	c	d	e	f	g	h	+ i	j	,
00	7.3	. 034	69	9.6	3.41	-. 0036	3.16	30.3	10.2	18.2^{*}	15.5
02	5.9	. 030	69	8.0	3.27	-. 0033	3.04	24.3	8.6	$14.8{ }^{*}$	12.6
04	4.9	. 030	69	7.0	3.09	-. 0029	2.89	20.2	7.6	12.6 *	10.7
06	4.6	. 031	69	6.7	3.11	-. 0028	2.92	19.6	7.3	12.2*	10.4
08	4.3	. 027	69	6.2	3.14	-. 0028	2.95	18.3	6.8	$11.4{ }^{*}$	9.7
10	3.8	. 024	69	5.5	3.20	-. 0032	2.98	16.4	6.1	10.2*	8.7
12	5.7	. 029	69	7.7	3.51	-. 0034	3.28	25.3	8.3	15.1**	12.8
14	7.1	. 036	69	9.6	3.40	-. 0033	3.17	30.4	10.2	17.0**	14.4
16	7.7	. 042	69	10.6	3.15	-. 0029	2.95	31.3	11.2	$18.0{ }^{* *}$	15.3
18	8.3	. 043	69	11.3	3.14	-. 0029	2.94	33.2	11.9	19.1**	16.2
20	8.3	. 040	69	11.1	3.20	-. 0030	2.99	33.2	11.7	$19.0{ }^{* *}$	16.2
22	8.1	. 035	69	10.5	3.30	-. 0034	3.07	32.2	11.1	$18.2^{* *}$	15.5
Done by											
Checked											

* The distance nomogram in Figure 5 was used
* The distance nomogram in Figure 6 was used

SOLUTION OF F2-LAYER TRANSMISSION PROBLEM FOR A PATH GREATER THAN 4000 KM
\qquad To \qquad Distance \qquad km

Geomagnetic latitude for control point $A \quad 60^{\circ} \mathrm{N}$ and control point $\mathrm{B} \quad 57^{\circ} \mathrm{N}$

Note: All frequencies are in Megacycles

	Control Point A								Control Point B							Lower of h and	Compute
Procedure	Scale	Scale	Compute	Compute	Scale	Scale	Compute	Compute	Scale	Scale	Compute	Scale	Scale	compute	Compute		
	f(50)	b_{f}	(R-50)	$\left.\begin{aligned} & f(R)= \\ & a+b c \end{aligned} \right\rvert\,$	M(50)	${ }^{\text {b }}$ M	$\left\|\begin{array}{l} M(R)= \\ e+c f \end{array}\right\|$	$\begin{gathered} \text { median } \\ \text { F2-4000 } \\ \operatorname{MUF}(\mathrm{R}) \\ =\mathrm{dg} \end{gathered}$	$f(50)$	b_{f}	$\left\lvert\, \begin{aligned} & f(R)= \\ & i+c j \end{aligned}\right.$	M(50)	${ }^{\text {b }}$ M	$\begin{aligned} & M(R)= \\ & \ell+c m \end{aligned}$	$\begin{gathered} \text { median } \\ \text { F2-4000- } \\ \text { MUF }(\mathrm{R}) \\ =\mathrm{kn} \end{gathered}$	$\begin{aligned} & \text { median } \\ & \text { F2-MUF } \\ & \text { for } \\ & \text { path } \end{aligned}$	$\begin{aligned} & \hline \text { F2-FOT } \\ & \text { for } \\ & \text { path }= \\ & 0.85 \mathrm{p} \\ & \hline \end{aligned}$
CMT	a	b	c	d	e	f	g	h	i	j	k	ℓ	m	n	-	p	q
00	4.7	. 027	-42	3.6	3.19	-. 0035	3.34	12.0	4.0	. 022	3.1	3.05	-. 0032	3.18	9.9	9.9	8.4
02	4.1	. 024	-42	3.1	3.14	-. 0033	3.28	10.2	3.6	. 018	2.8	2.99	-. 0032	3.12	8.7	8.7	7.4
04	3.6	. 024	-42	2.6	3.09	-. 0033	3.23	8.4	3.2	. 018	2.4	2.99	-. 0032	3.12	7.5	7.5	6.4
06	3.1	. 021	-42	2.2	3.06	-. 0033	3.20	7.0	2.8	. 019	2.0	3.08	-. 0032	3.21	6.4	6.4	5.4
08	2.7	. 019	-42	1.9	3.07	-. 0033	3.21	6.1	5.3	. 027	4.2	3.52	-. 0034	3.66	15.4	6.1	5.2
10	3.6	. 019	-42	2.8	3.33	-. 0033	3.47	9.7	7.1	. 038	5.5	3.55	-. 0036	3.70	20.4	9.7	8.2
12	6.4	. 032	-42	5.1	3.63	-. 0035	3.78	19.3	8.0	. 043	6.2	3.48	-. 0038	3.64	22.6	19.3	16.4
14	7.4	. 040	-42	5.7	3.50	-. 0037	3.66	20.9	8.1	. 042	6.3	3.46	-. 0038	3.62	22.8	20.9	17.8
16	7.9	. 040	-42	6.2	3.40	-. 0038	3.56	22.1	7.9	. 044	6.1	3.51	-. 0042	3.69	22.5	22.1	18.8
18	7.8	. 042	-42	6.0	3.37	-. 0040	3.54	21.2	7.0	. 037	5.4	3.50	-. 0039	3.66	19.8	19.8	16.8
20	7.3	. 037	-42	5.7	3.46	-. 0040	3.63	20.7	5.6	. 026	4.5	3.35	-. 0036	3.50	15.8	15.8	13.4
22	6.1	. 032	-42	4.8	3.35	-. 0037	3.51	16.8	4.2	. 024	3.2	3.13	-. 0033	3.27	10.5	10.5	8.9
Done by																	
Checked																	

FIGURE 2

FIGURE 3

GREAT CIRCLE CHART CENTERED ON EQUATOR SOLID LINES REPRESENT GREAT CIRCLES. NUMBERED DOT-DASH LINES INDICATE distances in thousand of kilometers

NOMOGRAM FOR TRANSFORMING F2-ZERO-MUF AND F2-4000-MUF TO EQUIVALENT MAXIMUM USABLE FREQUENCIES AT INTERMEDIATE TRANSMISSION DISTANCES; CONVERSION SCALE FOR OBTAINING OPTIMUM TRAFFIC FREQUENCIES (FOT).

tance nomothe zone in which this distance nomo gram should be used. It should be used only during the period 0700-1700 hours local time at the path midpoint.

Month	Geographic Latitude at Path Midpoint
January	$70^{\circ} \mathrm{S}$ to $14^{\circ} \mathrm{N}$
February	$57^{\circ} \mathrm{S}$ to $23^{\circ} \mathrm{N}$
March	$41^{\circ} \mathrm{S}$ to $36^{\circ} \mathrm{N}$
April	$27^{\circ} \mathrm{S}$ to $53^{\circ} \mathrm{N}$
May	$17^{\circ} \mathrm{S}$ to $67^{\circ} \mathrm{N}$
June	$12^{\circ} \mathrm{S}$ to $74^{\circ} \mathrm{N}$
July	$14^{\circ} \mathrm{S}$ to $70^{\circ} \mathrm{N}$
August	$23^{\circ} \mathrm{S}$ to $57^{\circ} \mathrm{N}$
September	$36^{\circ} \mathrm{S}$ to $41^{\circ} \mathrm{N}$
October	$53^{\circ} \mathrm{S}$ to $27^{\circ} \mathrm{N}$
November	$67^{\circ} \mathrm{S}$ to $17^{\circ} \mathrm{N}$
December	$74^{\circ} \mathrm{S}$ to $12^{\circ} \mathrm{N}$

NOMOGRAM FOR TRANSFORMING F2-ZERO-MUF AND F2-4000-MUF TO EQUIVALENT MUFS AT INTERMEDIATE DISTANCES.
FIGURE 6

An Approximate Value of One-half the Gyrofrequency (f_{H}) as a Function of Geomagnetic Latitude

$\frac{1}{2}$ Gyrofrequency $\left(f_{H}\right)$	Geomagnetic Latitude
0.8	$81^{\circ} \mathrm{N}-90^{\circ} \mathrm{N}$
0.7	$60^{\circ} \mathrm{N}-80^{\circ} \mathrm{N}$
0.6	$40^{\circ} \mathrm{N}-59^{\circ} \mathrm{N}$
0.5	$21^{\circ} \mathrm{N}-39^{\circ} \mathrm{N}$
0.4	$20^{\circ} \mathrm{N}-20^{\circ} \mathrm{S}$
0.5	$21^{\circ} \mathrm{S}-39^{\circ} \mathrm{S}$
0.6	$40^{\circ} \mathrm{S}-59^{\circ} \mathrm{S}$
0.7	$60^{\circ} \mathrm{S}-80^{\circ} \mathrm{S}$
0.8	$81^{\circ} \mathrm{S}-90^{\circ} \mathrm{S}$

TABLE 1

		：	6\％		\％	以品思遌				－のう铛号	个示示華率					¢¢¢¢̣号号尔	¢ ¢	
					す尔会品品											¢0\％		
	ださざさ	¢¢¢ ¢ ¢ \％													¢			
	ためさN゚	ヵ¢口\％ロ				¢\％\％さ N					の	\％${ }_{\text {\％}}^{\text {pr }}$		呋宁草吕				
											－			－				
							9			示号号云		的留 8	7					
			¢ ¢ ¢ ¢ ¢ ¢ \％	¢¢すずす	\％										1	－		
	F	¢吕碞品	¢品呺品	ますずす。	品品め吹品	¢ \％								枵菅㞻品号				
	Fどッ゙さ	¢ \％¢					べッ							令荌	\％${ }_{\text {O }}^{\text {¢ }}$	\％	－	
											\％			品吕		N才＊＊＊	1	
		¢吕染									号			\％ッ5	\％\％¢0¢0．7			
		¢¢8	的品	5\％	的号	た	へゅロップ			保	3 \％${ }^{\text {¢ }}$	草号施芴	\％\％\％${ }^{\text {a }}$		如枵号			
		¢¢8									T\％¢ ¢ ¢ ¢ ¢ ¢	，		品号ら		¢ ${ }_{\text {¢ }}^{\text {¢ }}$	¢	
		\＆				§ 』					¢	边		草号卢	\％¢ ¢ ¢ ¢ ¢ ¢			
	F	¢	的号汤咢	ち \％\％	¢吕品䂧									号号促				
	F	¢	is	\＆	5品品	§	へセップの			，	m	最号	管				～ロッロ	
	ミッが年	¢号む先	®吕怘伿。	まじす \％	¢\％䍖㗊									\square				
	だっがこ゚	\＆	品呺品	ま゚すき	品品あ笛品		のヘ				，	，		可莮号官	ず涫			
	FRさ～～	¢ \％	¢ちら品品	\％など	号的号筬	－¢ ¢	ニッフ			－		㽞芴节品	＋	¢ ¢ ¢ ¢ ¢	¢	\％$\square_{0}^{\text {¢ }}$		
											\％\％\％¢ ¢ \％\％			管可蜀品	や		下号号高華	
				욷		¢9				9		－	－	mo		ロガアめ゙	－190	
4																		
	トロッセ゚゙	¢ \％\＆¢ ¢		らすな．！		¢00오				めのうキ		，		－	，	¢¢¢ ¢ ¢ ¢	芥：	
	※ロッ゙	ㅇ¢¢）	¢8\％	～吅品年						－\％	¢\％	\％\％\％¢ ¢ ¢			品官号す	萛号号号尔	号号号下介	
	－\％\％	「89				あ				¢0ํ	¢			年干予号号			気ざ只号介	¢
											¢ ${ }^{\circ}$	す¢ ¢ ¢ ¢ ¢ ¢ ¢		京苧管品	品品尔品菅	\％		¢
앙		N	¢	出		出品	¢	$\stackrel{\text { ¢ }}{ }$		＋6mo	サ¢ ¢			倠品雉			－	¢¢\％
	「゚゙「ごさ	「88									111			1	¢	¢	¢1	
	ミ	ざズ゚	¢ ¢ \％\％¢	易ら？	¢		\％	¢ へ ¢							号苓古㞻号	¢		¢¢介
		¢		的品品只品	まずす \％\％		® ¢	－ニーフ					号郎志吊品					，
		そさざざ思	\＆̊\％¢ ¢	¢号号号ち	かない学7			ロロゴ心			号当宗号耍					¢\％		
		No	8	\％	～	○呚品品	的运呺奚	のニ゙ニコ					\％\％¢ ¢ ¢ ¢ ¢ ¢				¢\％¢\％운둔	ざき ${ }_{1}$
	$\stackrel{\sim}{\sim}$	だざった	毋®®\％\％	\＆¢ ¢ ¢ ¢		F易的品品			궁		－¢ 우구̇	¢ัずャ					¢ ${ }_{\text {¢ }}^{\text {¢ }}$	

\％${ }^{\circ}$	웆9ํ욷	ト゚スベス	¢\％\％\％\％	8 \％¢ ¢		750		Nั®		NONが	¢				¢ ${ }_{\text {¢ }}^{\substack{\text { ¢ }}}$		¢0，	
蕀		$\stackrel{\infty}{\sim}$	요犬发㐌	厄熍品：				※゙へのヘッ	\cdots					\％	¢			¢
－	요 \＆®io		下유：\％\％	No吕品的品		7 7 尔的品					¢ ¢ ¢ ¢ ¢	\bigcirc	¢	餄合㫘管	\％			¢
，		웅	N゙タら！	ジ®®®					のヅッの「		いヶのご			4	－			式式年
－								の	のベコの串		＋6mo욱	¢욱ㅇㅜㅝ	Ј ¢					F
菏		あ ${ }^{\circ}$	ござ名荗			\％す～¢ ¢		¢ $\sim_{\text {N }}^{\sim}$ ®			－－¢				1		售＂：	
苞			ドッN゚号	毋 ¢ ¢ ¢ ¢		¢ \％ツ \％\％		§パべ入の	テッヅニの		ツんヶの7							
\％		\％\％		品	－	\％	\％		へッヅニ		$\begin{array}{ll}\sim \\ \sim \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1\end{array}$		$\stackrel{\text { \％}}{1}$					
－		¢	「気呺	¢ ¢ ¢ ¢ \％	¢ ¢ ¢ ¢ \％\％	がきす \％\％	¢\％		잉		～＋0000	N					¢	
－	－¢ ¢ ¢ \％B			¢ \％¢ ¢ \％		¢ ¢ ¢～	韦号芴只品		＠¢ ¢ No				चָ\％	¢	¢	11		
	毋\％¢ ¢ \％		$\stackrel{\square}{\circ}$	¢¢ ¢ ¢ ¢ ¢	令的品呙ら	\％¢ ¢ \％		のだぶN゙	のテの～ブ		ーツんヶの	デ						
	® ¢ ¢ ¢ ¢	¢发戸 \％¢	$\stackrel{9}{1}$		名的号令ら	の「な～\％			のニセヅコ		－めいくの							
\％		タちy\％	がっだ	8¢ ¢ ¢ ¢	为的出号的	の「な年を		がぶ以Nで			－	二ヅッへの					¢	
							或呺品云				，			俗号只合咢		\％	\％	
\％	毋 ¢ \％\％\％	から女留官	が号が	タ5¢ ¢ ¢	名紹号も				のヘッツコ	のうのツの		ぞ号き，						－
－8\％			－	8	号納号ら	9	荗的足品云	¢	のニッヅニ		いかんにか			戸				
ᄃ				9		95\％\％J			のニセヅニ		いめがす。			产令苓命品				
发		¢ \％¢ \％\％	か下吕が		品的品品动	の「な年ま	易的品品动		のテのヅニ				テ	掚算郘号品			す¢ ¢ ¢ ¢ ¢ ¢	¢f
发鱼			がッざ～゚			のち゚～ブ	号ち品品云		のデ号ニ		\rightarrow－	ヱッツへの	む3ヶก	忒号号馬品			¢哭号号年	\＆
唇茄											\cdots		サ119	¢				
\bigcirc		あ思告品～ロ	下欯えの	¢¢\％\％尔	的出哭に品	¢ \％\％～\％		が®			\cdots	뀩ำ号						
		㮩先戸	®		出出的罗	子思	的品品的	ぶ～N゙った	へ～ツッチ		ツぃヶのデ						¢	
\％${ }^{\circ}$				® ¢ ¢ ¢ ¢		¢ ¢ N ¢ ¢			べツニの		かん「のデ		¢				\％¢ ¢ ¢ ¢ ¢ ¢	
－		め®	さ～～ロロ \％	¢ヵヵヵら	呙品ぢす	子等枈品	\％${ }_{\text {\＃}}$ ¢		○すへ～～か									
인	¢\％					\％			$\stackrel{\square}{\sim}$	1	い「1		す。					
$\stackrel{8}{3}$	－					す～\％\％\％	¢0ㅆㅆㅇํㅒํ					～その哭					¢ ${ }_{\text {¢ }}^{\text {¢ }}$	
\cdots	\％ 8	$\stackrel{1}{2}$	へヵちゅ』			吅す泉的		ぶへのに	∞		\cdots－¢		がmo	号骂咎尔筞				
－		ドッッチN	8 \％	あ風的品品	颔		¢0¢0N．			が			§ิธ			¢	¢	去号号管
－	の号が品	～ロ゙ャ					のが心～N						พ					宗会今，
	\％	かさッそ゚	毋 \％『	凬ら吕品ご	号涊ます	¢ ¢ ¢ ¢ \％			\exists	－	のニッゴき			郘早ざざ	※号管古が		ロロํํํำ	出粏号
\％	®ํㅜํ		¢ \％\％\％\％	思思ら゙		荗的品品		のニ号すき	$\bigcirc 000+0$	$\begin{array}{rrr} O N & +\infty & 0 \\ 1 & 1 & 1 \end{array}$	$\underset{\sim}{\circ} \approx \underset{1}{\square}$		号登品品合		甬预号吕品			$\stackrel{*}{1}$
－		ミ「ス゚ロ	8		\％	め®	\％ส \％	○ッツコ		いめが号		入＂	－¢					
$\stackrel{\sim}{*}$		용		呙志告品号	お毎゙す！		を丞むの	べささ～		\cdots		※゙ָ				○00\％		¢ヶ¢
${ }^{\circ}$	$\stackrel{1}{\sim}$	ค「㮩：\％					\％※ N \％			ツいのヅ						产菅号品：		今i¢＊
$\stackrel{\circ}{\circ}$		ฯ	®	む嵒品守与	\％${ }^{\circ}$					$+0 \infty$ 111	¢¢ ¢ ¢ ¢ ¢					¢0．0．0．0．0．		Ficosicis
总		二〇ロロ8		¢゙つか®				or		かくのジ			あ吊吊品年	号枵孚品号				
	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{2}$	¢\％®®0゙	N゙らす\％				$\triangle{ }_{1} \sim_{1}{ }^{\infty}$	－NON，	$\infty_{1}^{\infty}, \stackrel{0}{1} \underset{1}{\sim}$			品啠品等	挦等吋云品				
1	$\underset{+}{\text { ¢ ¢ }} \stackrel{+}{\text { ® }}$		¢		－¢ ¢ ¢ ¢ ¢＋			¢ ¢ ¢ ¢～	－	\cdots	$\underset{\sim}{\sim}$	テัָ	¢			\％¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		

\qquad To \qquad Distance \qquad km \qquad
Geomagnetic latitude for path midpoint \qquad
One-half gyrofrequency $\left(f_{H} / 2\right)$ for path midpoint \qquad
Note: All frequencies are in Megacycles

Procedure	Scale	Scale	Compute	Compute	Scale	Scale	Compute	Compute	Compute	$\begin{aligned} & \text { Scale - } \\ & \text { use Fig. } \end{aligned}$	Compute
	$f^{\prime}(50)$	b_{f}	(R-50)	$\begin{aligned} & f(R)= \\ & a+b c \end{aligned}$	M (50)	${ }^{6} \mathrm{M}$	$\begin{aligned} & M(R)= \\ & e+c f \end{aligned}$	$\begin{gathered} \text { median } \\ \text { F2-4000- } \\ \mathrm{MUF}(\mathrm{R}) \\ =\mathrm{dg} \end{gathered}$	$\begin{aligned} & \text { median } \\ & \text { F2-zero- } \\ & M U F(R)= \\ & d+f_{H} / 2 \end{aligned}$	median F2-MUF for path	$\begin{gathered} \text { F2-FOT } \\ \text { for } \\ \text { path }= \\ 0.85 j \\ \hline \end{gathered}$
GMT	a	b	c	d	e	f	g	h	i	j	k
00											
02											
04											
06											
08											
10											
12											
14											
16											
18											
20											
22											
Done by											
Checked											

FIGURE 7

- 22 -

SOLUTION OF F2-LAYER TRANSMISSION PROBLEM FOR A PATH GREATER THAN 4000 KM

From \qquad To \qquad Distance \qquad km

Predicted for \qquad 19

Geomagnetic latitude for control point A \qquad and control point B \qquad

Note: All frequencies are in Megacycles

	Control Point A								Control Point B							$\begin{array}{\|l} \text { Lower } \\ \text { of h } \\ \text { and } 0 \end{array}$	Compute
procedure	Scale	Scale	Compute	Compute	Scale	Scale	Compute	Compute	Scale	Scale	Compute	Scale	Scale	Compute	Compute		
	f(50)	${ }^{b_{f}}$	(R-50)	$\begin{aligned} & f(R)= \\ & a+b c \end{aligned}$	M(50)	${ }^{\text {b }}$ M	$\begin{aligned} & \mathrm{m}(\mathrm{R})= \\ & \mathrm{e}+\mathrm{f} \end{aligned}$	$\begin{gathered} \text { median } \\ \text { F2-4000 } \\ \operatorname{MUF}(\mathrm{R}) \\ =\mathrm{dg} \end{gathered}$	f(50)	b_{f}	$\begin{aligned} & f(R)= \\ & i+c j \end{aligned}$	m(50)	${ }^{\text {b }}$ M	$\begin{aligned} & M(R)= \\ & e+c m \end{aligned}$	$\begin{gathered} \text { medrian } \\ \text { F2-4000- } \\ \text { MUF }(\mathrm{R}) \\ =\mathrm{kn} \\ \hline \end{gathered}$	$\begin{aligned} & \text { median } \\ & \text { F2-MUF } \\ & \text { for } \\ & \text { path } \end{aligned}$	$\begin{aligned} & \text { F2- } \mathrm{FOT} \\ & \text { for } \\ & \text { path }= \\ & 0.85 \mathrm{p} \end{aligned}$
GMT	a	b	c	d	e	f	g	h	i	j	k	ℓ	m	n	-	p	q
00																	
02																	
04																	
06																	
08																	
10																	
12																	
14																	
16																	
18																	
20																	
22																	
Done by																	
checked																	

FIGURE 8

fof2 AT RASSN 50

february 0200 HOURS GMT

february 0400 HOURS GMT

FEBRUARY 0600 HOURS GMT

fof 2 AT RASSN 50

fo F2 AT RASSN 50
FEBRUARY 1800 HOURS GMT

FEBRUARY 2200 HOURS GMT

february 0600 hours gMt

FEBRUARY 1800 HOURS GMT

M-4000 FACTOR AT RASSN 50

M-4000 FACTOR AT RASSN 50
FEBRUARY 1000 HOURS GMT

APRIL 0000 HOURS GMT

foF2 AT RASSN 50

foF2 AT RASSN 50

foF2 AT RASSN 50
MAY 0200 HOURS GMT

foF2 AT RASSN 50
MAY 0400 HOURS GMT

foF2 AT RASSN 50
MAY 1000 HOURS GMT

foF2 AT RASSN 50

MAY 0400 HOURS GMT

MAY 1200 HOURS GMT

foF2 AT RASSN 50
AUGUST 0000 HOURS GMT

foF2 AT RASSN 50
AUGUST 0400 HOURS GMT

AUGUST 0800 HOURS GMT

foF2 AT RASSN 50 AUGUST 1000 HOURS GMT

fof2 AT RASSN 50
AUGUST 1200 HOURS GMT

foF2 AT RASSN 50
AUGUST 1600 HOURS GMT

fof2 AT RASSN 50

AUGUST 2000 HOURS GMT

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

AUGUST 1200 HOURS GMT

M-4000 FACTOR AT RASSN 50

M-4000 FACTOR AT RASSH 50 AUGUST 1600 HOURS GMT

AUGUST

foF2 AT RASSN 50 OCTOBER 0200 HOURS GMT

foF2 AT RASSN 50 OCTOBER 0400 HOURS GMT

foF2 AT RASSN 50 OCTOBER 0600 HOURS GMT

foF2 AT RASSN 50

foF2 AT RASSN 50
OCTOBER 1000 HOURS GMT

fof2 AT RASSN 50 OCTOBER 1200 HOURS GMT

$$
\begin{aligned}
\text { foF2 } & \text { AT RASSN } 50 \\
\text { OCTOBER } & 1400 \text { HOURS GHT }
\end{aligned}
$$

foF2 AT RASSN 50 OCTOBER 1600 HOURS GMT

foF2 AT RASSN 50
P. 181

OCTOBER 1800 HOURS GHT

foF2 AT RASSN 50 OCTOBER 2200 HOURS GMT

SLOPE OF REGRESSION LINE OF foF2 ON RASSN OCTOBER 0000 HOURS GMT

SLOPE OF REGRESSION LINE OF fOF2 ON RASSN

 OCTOBER 0200 HOURS GMT

 OCTOBER 1600 HOURS GMT

SLOPE OF REGRESSION LINE OF fOF2 ON RASSN OCTOBER 1800 HOURS GMT

SLOPE OF REGRESSION LINE OF foF2 ON RASSN OCTOBER 2200 HOURS GMT

M-4000 FACTOR AT RASSN 50 OCTOBER 0200 HOURS GMT

M-4000 FACTOR AT RASSN 50 OCTOBER 0400 HOURS GMT

M-4000 factor at rassn 50 OCTOBER 0600 HOURS GMT

M-4000 FAGTOR AT RASSN 50 OCTOBER 1200 HOURS GMT

M-4000 FACTOR AT RASSN 50 OCTOBER 1400 HOURS GMT

M-4000 FACTOR AT RASSN 50 OCTOBER 1800 HOURS GMT

M-4000 FACTOR AT RASSN 50 OCTOBER 2200 HOURS GMT

foF2 AT RASSN 50
 NOVEMBER 0000 HOURS GMT

foF2 AT RASSN 50
 NOVEMBER 0400 HOURS GMT

foF2 AT RASSN 50
NOVEMBER 1200 HOURS GMT

foF2 AT RASSN 50 NOVEMBER 1400 HOURS GMT

foF2 AT RASSN 50
NOVEMBER 1600 HOURS GMT

foF2 AT RASSN 50 NOVEMBER 2000 HOURS GMT

foF2 AT RASSN 50 NOVEMBER 2200 HOURS GMT

NOVEMBER 0000 HOURS GMT

SLOPE OF REGRESSION LINE OF foF2 OH RASSN
 NOVEMBER 0800 HOURS GMT

SLOPE OF REGRESSION LINE OF foF2 ON RASSH NOVEMBER 1000 HOURS GMT

SLOPE OF REGRESSION LINE OF fof2 ON RASSN NOVEMBER 1400 HOURS GMT

SLOPE OF REGRESSION LINE OF fOF2 ON RASSN
 NOVEMBER
 1600 HOURS GMT

SLOPE OF REGRESSION LINE OF fOF2 ON RASSN
NOVEMBER 2000 HOURS GMT

M-4000 FACTOR AT RASSN 50 NOVEMBER 0000 HOURS GMT

M-4000 FACTOR AT RASSN 50 NOVEMBER 0200 HOURS GMT

M-4000 FACTOR AT RASSN 50
 NOVEMBER O400 HOURS GMT

$M-4000$ FACTOR AT RASSN 50
NOVEMBER O800 HOURS GMT

M-4000 FACTOR AT RASSN 50
 NOVEMBER 1200 HOURS GMT

P. 242

$$
\begin{aligned}
& M-4000 \text { FACTOR AT RASSN } 50 \\
& \text { NOVEMBER } 1800 \text { HOURS GMT }
\end{aligned}
$$

M-4000 FACTOR AT RASSN 50 NOVEMBER 2000 HOURS GMT

v.aTIUNAL BUREAU OF STANDARDS

A. V. A tin, Dircito

THE NATIONAL BL'RLAV UF STANDARDS
The scope of actinties of the National Rurequ of Standards at is mator faboratories int Washingtom, 1).C., and Boulder, Colo, is suggested in the following listing of the dibsions and setions engrgel in technical work, In
 tith. A brief deserpption of the activities, and of the resultant publications, appears on the instle of the front concr. WASHINGTON, D.C
ELFCTRICITY: Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. bielectrics.
MLTROLOCYY. Photometry and Colormotry. Refractometry. Photographic Rescarch. L.ength. Enginering Met ology. Mass and Scale. Volunctry and Densimetry,
EAT. Temperature Physics. Heat Measurements. Cryorenic Plysies, Rhenlosy: Molecular kintir. Fite dadicals Researeh. Equation of State. Statistical Ihysics. Mulecular Spectroscops
RADIATION IPHYSICS, X-Ray, Radioactivity, Radiation Thenry, Itgh linergy Radiation. Radiologizal Equipmeit. Nucleonic Instrumentation. Neutron l'hysics.
CIIEMISTRY. Surface Clamistry. Organic Chemistry. Analytical Chemi. hy. Inompanic Chemistry. Lilectrole; osition. Molecular Structure and Properties of Gases. IPhysical Chemistry. Thernochemistry. Spectiochemtiy Pure Sulstances.
 ORGANIC AND FIRROUS MATERLALS. Rubber. Textiles. I'apr: Leather. Testing and Spertications. Polyn. . Structure. Plastics. Dental Reseatch.
 MANERAL PLODUCTS. Engineering Ceramics. Glass. Refractories. Rinameled Metal. Constitution and Hicro tructure
 equals. Corde. and Safets Standards. Heat Transfer. Inorganie Buiddue Matcrials.
APPLI:I) MATHLMATICS. Numeracal Analysis. Computation. Sta istical Engrinering. Matbonatical Physics
NTA PlothisStNE Stistems. Components and Techmiques. Digital Circuitis. Digital Sy lems. Ambog Syetems. Applications fanmerering.
ATUSHC PHYSICS. Spectroscong. Ladiometry. Mass Spectrometry, Solid State Physic: Electron Physics. Atomic Plysic.
NSTRUMENTATION. Engincering Electionics. Electron Devices. Electronic Instrumentation. Mcehanical nstruments. Basic Instrumentation.
Office of WCirhts and Measures.
BOCLLUER, COLO
CligOGENIC CNGLAEERLAB, C yogeme Equipment. Cryognic Proce es, I'ropertic: of Materials, Gas Liguefaction

 R.1DIO PROPAGATION I YGINELRIVG. Data Reduction Instrimentatim. Radto Noisp. Tropospheric Mca

 If at: C at S andads.

CHER ITMHSPHLRE AN゙ SPACE PHYSICS. CDPe Athosphre and Plasma I'hy ic: Ionosphere an E. (C Scstt i: Ai rlus dill Auloia I no pheric Radio Astion umy

NBS

[^0]: *Used by permission of Dr. Kenneth Davies of the National Bureau of Standards, Boulder, Colorado.

