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Transmission and Reflection of Electrons by
Aluminum Foils

Martin J. Berger

Electron transmission and reflection coeffi-
cients for aluminum foils, pertaining both to

number and energy, are given for source energies
between 0.125 and 2.0 Mev, source obliquities
ranging from perpendicular to grazing incidence,
and foil thicknesses up to one half of the elec-
tron mean range. The results were obtained by a

Monte Carlo calculation.

1. Introduction

In the course of an investigation of the Monte Carlo method in
application to the transport of fast charged particles, the author has
had occasion to compute reflection and transmission coefficients for
electrons incident on aluminum foils. These results were obtained in
preliminary model studies; they disregard energy-loss straggling, and
take into account only the deviation of the electron path from a

straight line due to multiple Coulomb scattering.

For foils of small and intermediate thicknesses this approximation
is actually quite good. Nevertheless, on account of the preliminary
nature of the results, only some of them have been included for publica-
tion in [l]. It has been pointed out to the author that there is some
interest in transmission and reflection data in connection with the

shielding of space-vehicles against electrons encountered in the Van
Allen belt. There is scarcity of such data, experimental or calculated,
and the coverage of the preliminary results is greater than that
available from other sources, and includes not only number - but also

energy - reflection and transmission coefficients, and their dependence
on direction of the incident electron beam as well as on its energy .

Accordingly, these results are presented here, with the proviso that
they are subject to future revision. Further work of this type,

Figures in brackets indicate literature references at the end of

this paper.



including the effect of energy-loss straggling and the associated
bremsstrahlung emitted by the electrons, is currently in progress at

the National Bureau of Standards.

2. Calculation

A beam of monoenergetic electrons, with energy E , is assumed to

be incident in direction 6 on a plane-parallel foil of aluminum of

thickness z. The angle of incidence, G , is the angle between the

direction of incidence and the normal to the foil. Thus, the value
6 = 0° corresponds to perpendicular incidence, and the value O

= 90
to the limiting case of grazing incidence. The azimuth of the direc-
tion of incidence does not enter into the calculation.

The following quantities are computed:

1. Number reflection coefficient,

number of electrons reflected
N number of electrons incident

2. Number transmission coefficient,

number of electrons transmitted
N " number of electrons incident

3. Energy reflection coefficient,

r - energy reflected
E energy incident

4. Energy transmission coefficient,

_ energy transmitted
E energy incident



The calculation of these quantities is achieved by simulating the

actual physical multiple scattering process by an (artificially con-

structed) random walk, each step of which takes into account the com-

bined effect or many successive Coulomb scatterings. The transition
probabilities for this random walk are obtained from the Bethe theory
of electron stopping power, and the Molie"re theory of multiple scatter-
ing. A detailed description of the procedures used can be found in [l].'

3. Results

It is useful to present reflection and transmission coefficients as

functions of the "reduced foil thickness" z/r , where r is the mean
range of an electron of energy E , i.e., the average rectified path-
length it would travel in an unbounded medium from the time it has

energy EQ until it comes to a stop. The reason for the introduction of

the reduced thickness is a scaling law, suggested by theoretical con-

siderations and verifiable empirically, which states that in first ap-
proximation, particularly for source energies E

Q
below 1 Mev, trans-

mission and reflection coefficients are nearly independent of E > pro-
vided the foil thickness is expressed in units of z/r . In other words,
the energy dependence of reflection and transmission is largely taken
into account by the energy dependence of r

Q . This facilitates interpola-
tion of the Monte Carlo results with respect to E .

Table 1 contains values of the mean range at the energies treated
in this report. Actually, two sets are shown: the first set does not
take into account energy loss by bremsstrahlung, and corresponds to the
actual input data used in the Monte Carlo calculation; the second set

includes the effects of bremsstrahlung, and should preferably be used
to convert actual to reduced foil thickness. Actually, there is a sig-
nificant difference only at the highest source energy listed, 2 Mev.

Tables 2, 3, 4- and 5 contain reflection and transmission co-
efficients for electron number and energy. These are raw results, as

they come off the computer, and could be smoothed and somewhat improved
by cross-plotting them against source energy and obliquity, and against
foil thickness. Three significant figures are given, but the last is

not really significant and has been left in to facilitate cross-plotting
and comparisons.

Reflection coefficients are listed only for z/rQ ^ 0.3 because a

further increase of foil thickness does not further increase the amount
of reflection. Transmission coefficients are listed only for
z/r ^ 0.5> because for much greater thicknesses the neglect of energy

*
r

In the terminology of
I
1 !* the calculations presented here are based

on Model {i, PL(l6, 96), EC, AM, DLT}.



loss straggling would begin to have serious consequences. The trans-
mission coefficients plotted against z/r have an approximately straight
slope between z/r - 0.3 and 0.5. A linear extrapolation of this portion
of the curve yields a lower limit for transmission, and the intercept,
at zero-transmission, is the so-called extrapolated electron range.

For each source energy, the results for all values of 6Q and z/r
were obtained in one run of n = 1000 Monte Carlo case histories. The
standard deviations of the number reflection and transmission co-
efficients are

a(R
N) = ^N

(l - R
N
)/n

a(T
N

) = J[Jl - T
N
)/n

The standard deviations of the energy transmission and reflection
coefficients have not been estimated directly. Experience with gamma-
ray Monte Carlo problems indicates that their fractional standard
deviations (ratio of standard deviation to the coefficient itself) is

approximately 2-3 times greater than those for the number transmission
and reflection coefficients.

It can be seen from tables 2-5 that the coefficients, particularly
those for transmission, are rather independent of the value of E , at

least up to 1 Mev, as has been predicted. For many purposes it is

reasonable, therefore, to take coefficients averaged over a set of

source energies, such as those given in table 6. The ratios Tg/Tj^ and

RE/Rjg, also shown there, represent the ratios of the mean energy of the

transmitted (reflected) electrons to the incident energy.

Table 7 compares number transmission coefficients for perpendicular
incidence from this paper with results obtained by Perkins [2]. The
calculation of Perkins is based on the same general principles as the

present work, but differs in procedural details, and includes the ef-
fects of energy-loss straggling. The mean ranges assumed by Perkins
(1.20 g/cm^ at 2 Mev, 0.545 g/cm^ at 1 Mev) differ somewhat from those
used by us. In the comparison, his transmission curves, which he

plotted against z/r , were first converted to an absolute thickness
scale and then to a z/r scale using our values for r . For E = 2 Mev
the agreement is quite good, and for EQ

= 1 Mev it is fair. The trans-
mission coefficients of Perkins are generally somewhat higher, which



at least in part can be ascribed to our disregard of energy-loss
straggling. Perkins gives data at 2 Mev which indicate that for
z/rQ

~ 0.5 the inclusion of energy-loss straggling may raise the trans-

mission coefficient by about 3-4%. According to a private communica-
tion from him, he imposed a certain upper limit on the magnitude of the

multiple scattering deflections in his calculation, which, he estimates,
may have decreased his reflection coefficients from 10-20$. This of

course is accompanied by a corresponding increase of his transmission
coefficient and contributes to the discrepancy between his and our re-
sults.

In table 8, a comparison is made with experimental transmission
data of Agu, Burdett and Matsukawa [3]> the agreement being quite close.
Further comparisons, as well as indications of the effect of the

systematic errors due to the assumed Monte Carlo model of the calcula-
tion, will be found in |~l]. Finally, it should be pointed out that the

error of the energy transmission and reflection coefficients, due to

the neglect of energy loss straggling, is likely to be larger than the

corresponding error for the number transmission and reflection co-

efficients.
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Table 1. Mean Range of Electrons in Aluminum

E

(Mev)

r , g/cm

Bremsstrahlung
included

Bremsstrahlung
not included

2.0
1.0
0.5
0.25
0.125

1.214
0.5501
0.2246
0.08165
0.02690

1.237
0.556
0.2258
0.08196
0.02706

Table 2. Number Transmission Coefficient, T
N

E e z/r

(Mev) (Degrees)

'

0.1 0.2 0.3 0.4 0.5

2.0 0.988 0.962 0.847 0.689 0.469

45 0.922 0.803 0.637 0.459 0.276
60 0.804 0.648 0.483 0.340 0.161
75 0.600 0.458 0.328 0.186 0.091
90 0.237 0.178 0.106 0.064 0.026

1.0 0.983 0.925 0.785 0.608 0.373

45 0.881 0.758 0.582 0.417 0.218
60 0.766 0.608 0.445 0.283 0.145
75 0.573 0.429 0.299 0.166 0.065
90 0.233 0.170 0.114 0.067 0.021

0.5 0.972 0.890 0.751 0.559 0.361

45 0.877 0.747 0.582 0.400 0.202
60 0.768 0.619 0.451 0.270 0.129
75 0.564 0.436 0.305 0.165 0.075
90 0.254 0.197 0.114 0.069 0.023

0.25 0.977 0.894 0.738 0.538 0.306

45 0.863 0.721 0.539 0.349 0.189
60 0.733 0.575 0.408 0.249 0.122
75 0.544 0.393 0.268 0.149 0.061
90 0.237 0.167 0.109 0.064 0.021

0.125 0.967 0.880 0.731 0.531 0.321

45 0.861 0.703 0.543 0.346 0.176
60 0.744 0.570 0.414 0.242 0.113
75 0.546 O.404 0.260 0.151 0.063
90 0.230

_ . ..

0.168 0.116 0.059 0.023



Table 3. Energy Transmission Coefficient, T
b

E

(Mev)

e

(Degrees)

z/r

0.1 0.2 0.3 0.4 0.5

2.0 0.889 0.749 0.546 0.351 0.183

45 0.780 0.556 0.360 0.205 0.094
60 0.638 0.412 0.245 0.133 0.051

75 0.437 0.260 0.148 0.067 0.025
90 0.165 0.096 0.048 0.022 0.008

1.0 0.892 0.727 0.515 0.321 0.154
45 0.757 0.538 0.343 0.193 0.080-

60 0.622 0.407 0.238 0.121 0.048
75 0.434 0.259 0.146 0.064 0.019
90 0.169 0.099 0.053 0.023 0.006

0.5 0.890 0.711 0.507 0.313 0.157
45 0.765 0.546 0.357 0.200 0.081
60 0.632 0.422 0.257 0.128 0.048
75 0.442 0.280 0.161 0.070 0.024
90 0.191 0.119 0.057 0.027 0.007

0.25 0.902 0.730 0.511 0.301 0.143
45 0.757 0.535 0.338 0.181 0.079
60 0.616 0.402 0.237 0.120 0.047
75 0.432 0.258 0.144 0.067 0.022
90 0.183 0.106 0.059 0.027 0.007

0.125 0.897 0.728 0.521 0.318 0.158
45 0.763 0.537 0.354 0.191 0.081
60 0.630 0.409 0.253 0.127 0.050
75 0.439 0.274 0.152 0.075 0.025
90 0.181 0.113 0.064 0.029 0.009



Table 4» Number Reflection Coefficient, R
N

E e
z/r

(Mev) (Degrees)
0.3

0.1 0.2 or larger

2.0 0.008 0.015 0.023

45 0.051 0.078 0.083
60 0.130 0.159 0.161

75 0.293 0.313 0.314
90 0.711 0.719 0.720

1.0 0.017 0.061 0.090

45 0.118 0.198 0.220
60 0.231 0.318 0.330
15 0.423 0.489 0.494
90 0.766 0.792 0.796

0.5 0.028 0.087 0.108

45 0.122 0.209 0.229
60 0.230 0.304 0.316
75 0.430 0.485 0.494
90 0.745 0.774 0.782

0.25 0.023 0.069 0.097
45 0.133 0.216 0.237
60 0.264 0.349 0.360
75 0.451 0.523 0.531
90 0.763 0.796 0.798

0.125 0.033 0.093 0.121

45 0.135 0.228 0.235
60 0.253 0.339 0.347
75 0.448 0.514 0.518
90 0.765 0.785 0.788



Table 5. Energy Reflection Coefficient, R

E e
z/r

(Mev) (Degrees) 0.3
0.1 0.2 or larger

2.0 0.008 0.015 0.023

45 0.051 0.078 0.083
60 0.130 0.159 0.162
75 0.293 0.312 0.314
90 0.711 0.719 0.721

1.0 0.013 0.035 0.044

45 0.083 0.118 0.124
60 0.168 0.204 0.208
75 0.337 0.364 0.365
90 0.714 0.724 0.725

0.5 0.021 0.050 0.057

45 0.091 0.132 0.1-38

60 0.174 0.209 0.212

75 0.354 0.378 0.380
90 0.702 0.714 0.715

0.25 0.018 0.043 0.053

45 0.099 0.140 0.147
60 0.204 0.245 0.249
75 0.381 0.413 0.415
90 0.720 0.735 0.735

0.125 0.026 0.061 0.072

45 0.105 0.154 0.157
60 0.201 0.254 0.248
75 0.380 0.414 O.416

90 0.725 0.733 0.734



Table 6. Average Transmission and Reflection Coefficients,
Obtained by Averaging over the Results for Source
Energies E

Q
- 1.0, 0.5, 0.25 and 0.125 Mev

zAo
9o

(Degrees) % TE teAn RN Re RE/RN

0.1 0.975 0.895 0.92 0.025 0.018 0.72
45 0.871 0.760 0.87 0.127 0.095 0.75
60 0.753 0.625 0.83 0.245 0.187 0.76

75 0.557 0.436 0.78 0.43b 0.363 0.83
90 0.239 0.181 0.76 0.760 0.715 0.94

0.2 0.897 0.724 0.81 0.078 0.047 0.60

45 0.732 0.539 0.74 0.213 0.136 0.64
60 0.593 0.410 0.69 0.328 0.226 0.69
75 0.416 0.268 0.64 0.503 0.392 0.78
90 0.176 0.111 0.63 0.787 0.727 0.92

0.3 0.751 0.513 0.68 0.104 0.057 0.55

45 0.562 0.348 0.62 0.230 0.142 0.62
60 0.4-30 0.246 0.57 0.339 0.229 0.68
75 0.283 0.151 0.53 0.509 0.394 0.77
90 0.113 0.058 0.51 0.791 0.727 0.92

0.4- 0.559 0.313 0.56

4-5 0.378 0.191 0.51

60 0.261 0.124 0.47
75 0.158 0.069 0.44
90 0.065 0.027 0.42

0.5 0.34-0 0.153 0.45

4-5 0.196 0.080 0.41
60 0.127 0.048 0.38
75 0.066 0.023 0.35
90 0.022 0.007 0.32
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Table 7. Number Transmission Coefficients, T»i, for
Perpendicular Incidence. Comparison with
the Results of J. F. Perkins, [2]

Eo
(Mev) zA This Report Perkins

2.0 0.2 0.962 ± 0.006 0.96
0.3 0.84-7 ± 0.015 0.86
0.4- 0.689 ± 0.015 0.68
0.5 0.4-69 ± 0.016 0.4-8

1.0 0.2 0.925 ± 0.008 0.94
0.3 0.785 ± 0.013 0.83
0.4 0.601 ± 0.015 0.64
0.5 0.373 ± 0.015 0.42

Table 8. Number Transmission Coefficients, T^, for Perpendicular
Incidence. Comparison with the Results of Agu, Burdett
and Matsukawa, [3]. The Experimental Results Represent
an Average for Various Source Energies between .25 and

.75 Mev. The Calculated Results are from Table 6.

Agu et al

z/ro Experiment Calculation

0.1 0.97 0.975 ± 0.003
0.2 0.88 0.897 ± 0.005

0.3 0.74 0.751 ± 0.007

0.4 0.54 0.559 ± 0.008
0.5 0.34 0.340 ± 0.008
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