

Eechnical Note

ATMOSPHERIC BAND ABSORPTIONS FROM LABORATORY DATA

178

LEANN DROPPLEMAN, LAWRENCE R. MEGILL AND ROBERT F. CALFEE

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and the Central Radio Propagation Laboratory Ionospheric Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miseellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 (\$1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (includes Titles of Papers Published in Outside Journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D.C.

NATIONAL BUREAU OF STANDARDS

Eechnical Mote 178

ISSUED JUNE 3, 1963

AN INTERPOLATION PROCEDURE FOR CALCULATING ATMOSPHERIC BAND ABSORPTIONS FROM LABORATORY DATA

LeAnn Droppleman, Lawrence R. Megill and Robert F. Calfee

Collision Processes Laboratory National Bureau of Standards Boulder, Colorado

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. Price 20 cents

CONTENTS

1.	Introduction	Page 1
2.	Resume of Interpolation Method	2
3.	Results	6
4.	Conclusions	7
5.	References	7

An Interpolation Procedure for Calculating Atmospheric Band Absorptions From Laboratory Data

LeAnn Droppleman, Lawrence R. Megill, and Robert F. Calfee

A technique used for the calculation of absorption of the 4.3µ band of CO₂ has been extended to the 2.0µ, 2.7µ, and 15µ bands of CO₂. Results obtained agree favorably with the experimental data available.

1. Introduction

In recent years there has been an increased interest in problems associated with absorption of infrared radiation by constituents of the earth's atmosphere. Theoretical as well as experimental approaches have been made to the problem. One such attempt is that of Megill and Jamnick [1961] which makes use of laboratory data to determine, by means of a regular band model, the atmospheric absorption due to the CO_2 band at 4.3 μ . In another part of this paper a resume of their technique is given for the convenience of the reader.

This method has been employed for further determinations of atmospheric absorption by CO₂ for the 2µ, 2.7µ, 4.3µ and 15µ bands. The laboratory data used for these analyses are those of Howard, Burch, and Williams [1954], hereafter referred to as HBW. The HBW report gives the results of investigations made with a low resolution instrument. The spectrometer slits were set approximately 2000µ apart.

In all the determinations made for the various CO_2 bands, the effective transmission values were measured from the laboratory data at ten wave number (10 cm⁻¹) intervals. An average value of $\alpha_0 = 0.064$ cm⁻¹ was assumed for the half-width of the lines at standard atmospheric conditions p_0 and θ_0 . An average line spacing

 $\delta = 1.56 \text{ cm}^{-1}$ was used. Following Megill and Jamnick, corrections to the half-width were made only for pressure variations, using a constant value of temperature, $\Theta_0 \sim 290^\circ$ K. That is $\alpha = \alpha_0 \frac{P}{P_0}$. From these values the absorption coefficients were calculated and used to determine the integrated band absorption $\int A_v d v$.

2. Resume of Interpolation Method

The following is a brief review of the contents of the paper by Megill and Jamnick with some changes in notation which will be compatible with the present paper.

The basic relationship governing the absorption of energy is given by

$$I(v) = I_{0}(v) \exp[-k(v)m].$$
 (1)

This equation states that for radiation at any wave number v, the flux per unit area of radiation I, which has passed through a mass of material m is given as the product of the incident energy flux (I₀) and the exponential of the negative product of the mass m and an absorption coefficient k(v) characteristic of that material. The application of this simple relationship can result in a very complex problem when one attempts to calculate k(v) for a given material. This is especially true for an infrared band of a complex molecule. Here a technique will be described which has been developed to allow

one to extrapolate from laboratory data to fairly general atmospheric conditions.

The calculation of k(v) involves knowledge of the position, the strength and the shape of all absorption lines near enough to the point v to affect the calculation. The summation of the effect of all these lines is used to arrive at a total value for k(v). The integrated intensity and position are nearly independent of pressure and temperature for many applications, but the shape is a function of both.

The problem of specific concern is the absorption of infrared radiation through a non-uniform path such as the earth's atmosphere. Many molecules have a band structure consisting of nearly regularly spaced lines whose intensity varies slowly with wave number. This type of band has been studied by a number of authors - Elsasser [1938], Kaplan [1952], and Plass [1958]. Here the assumption is made that each portion of band can be represented by such a model with k(v) being calculated from

$$k(v) = \sum_{i} k_{i}(v) = \sum_{i} S_{oi} b(v - v_{oi})$$
(2)

where $k_i(v)$ is the contribution from the i'th line of intensity S_{oi} with its line center at position v_{oi} . The function b $(v - v_{oi})$ describes the line shape. It is further assumed that the pressure is such that only the Lorentz broadening need be considered so that

$$b (v - v_{oi}) = \frac{\alpha}{\pi} \frac{1}{[(v - v_{oi})^2 + \alpha^2]}, \qquad (3)$$

where α is the half-width of the line. The assumption of a regular band allows v_{oi} to be expressed as

$$v_{0i} = v_{0} + n \delta, \qquad (4)$$

where v_{o} is taken at the center of an arbitrary line and δ is the line spacing. Here n takes on positive and negative integral values. Assuming all the S_{oi} are equal, they will be denoted as S_o. Under these conditions the absorption coefficient may be written

$$k(v) = \sum_{-\infty}^{\infty} \frac{S_{0}}{\pi} \frac{1}{[v - (v_{0} + n \delta)]^{2} + \alpha^{2}}$$
(5)

It has been shown by Elsasser [1938] that, given the above expression, the transmittance of the region is

$$T = \int_{-\frac{1}{2}}^{\frac{1}{2}} \exp\left[-2 \pi y \gamma \frac{\sinh 2\pi y}{\cosh 2\pi y - \cos 2\pi x}\right] dx, \quad (6)$$

where $x = v/\delta$, $y = \alpha/\delta$, and $\gamma = S_0 m/2 \pi \alpha$. The temperature and pressure dependencies are included in the value used for α .

These pressure and temperature dependencies of α are given by

$$\alpha = \alpha_{o} \left(\frac{P}{P_{o}}\right) \left(\frac{\Theta_{o}}{\Theta}\right)^{\frac{1}{2}},$$
(7)

where α is the line width at pressure P and temperature θ_{0} .

Implicit in the above are the assumptions that the absorbing gas is dilute and that the population of the various states does not change with temperature; i.e., S_{o} is not a function of temperature.

Utilizing the regular band model (Eq. 6), the atmospheric transmittance was calculated from data taken from low resolution experimentally determined absorption curves. An equivalent line intensity S_0 at intervals of ten wave numbers was calculated for each pressure for which data were available. A plot of these values as a function of pressure was then made. If Eq. (6) were an accurate representation of the physical facts, then $S_0(v,P)$ should be independent of pressure. It was found from these plots that S_0 as here calculated is a function of pressure. Therefore, an equivalent line strength $S_0^{e}(v,P)$ was defined such that

$$S_{o}^{e}(v,P) = K(v) P^{a}.$$
 (8)

The absorptance in non-uniform paths was then calculated by: 1) assuming a regular band model; and 2) calculating the absorptance due to a large number of "slabs", each of which is assumed to have a distinct temperature and pressure. The values of S_0^{e} (v,P) are calculated for each slab from the empirically determined table of K's and a's. In this fashion the principal effects are taken account of by theory, while a second-order correction is made using the empirically determined parameters.

After determining the emergent flux I(v), the total band absorptance was calculated by summing the effects of each of the ten cm⁻¹ intervals. This result can then be compared to experimental data. Megill and Jamnick [1961] made a comparison between calculations of absorptance in the atmosphere by this technique based on the data of HBW and data obtained on a balloon flight reported by Murcray, Brooks, Murcray, and Williams [1960].

3. Results

For the present study of atmospheric absorption by the several 00_2 bands, the integrated absorptions were computed for each of the layers in the atmosphere. Table 1 gives a list of pressures and 00_2 concentrations for which laboratory data were available. Table 2 lists the least squares fit values of K and a from which the effective line strengths S e^{0} were calculated. Table 3 shows the values of total absorption $\int A_{\nu} d\nu$ calculated for each of the several layers in the atmosphere. Plots of the total absorption $\int A_{\nu} d\nu$ in cm⁻¹ as a function of the product of pressure, P, in millimeters of mercury, and mass, m, expressed as a fraction of the atmosphere traversed are shown in

figures 1, 2, 3, and 4. In addition the results from data obtained by balloon flight are also shown on the same graphs with the appropriate predicted results.

4. Conclusions

In the cases where comparisons with atmospheric data were made the agreement is good. Thus the method appears to be a feasible means of predicting atmospheric absorption by constituents which can be described by the regular band model and for which Lorentzian broadening of the lines is the principal factor in determining line shapes. Possibly, further refinements in the procedure could be attained by including temperature corrections to the line broadening. From the degree of success achieved in the case of the regular band, it seems that it may be feasible to use a similar approach to the random band model which is applicable to water vapor for example.

5. References

Elsasser, W. M., (1938). Phys. Rev. <u>54</u>, 126.

Howard, J. N., D. E. Burch, and D. Williams, (1954). Geophysics Research Directoral, Ohio State University Research Foundation.
Kaplan, L. D., (1952). J. Meteorol. <u>9</u>.
Megill, L. R., and P. M. Jamnick, (1961). J. Opt. Soc. Am. <u>51</u>, 1294.
Murcray, D. G., J. N. Brooks, F. H. Murcray and W. J. Williams, (1960). J. Opt. Soc. Am. 50, 107.

Plass, G. N., (1958). J. Opt. Soc. Am. <u>48</u>, 690.

TABLE 1

Combinations of pressure P and concentration of CO_2 w used for calculating effective line strengths S_0^e at intervals of 10 cm⁻¹.

CO ₂ Band	P total (mm Hg)	P partial (mm Hg)	w (atmo-cm)	P total (mm Hg)	P partial (mm Hg)	w (atmo-cm)
2μ	10	10	1730	100	50	8630
	35	35	378	200	10	108
	35	35	755	200	10	432
	35	35	1510	200	50	540
	35	35	3020	200	10	1730
	50	50	540	200	50	2160
	50	50	2160	200	50	8630
	50	50	8630	400	10	108
	() 75	() 75	1600	400	10	452
	() 75	() 75	2010	400	50	1(50 5)(0
	75	75	6)176	470	50	2160
	100	10	132	470 470	50	8630
	100	50	540	760	50	540
	100	10	1730	760	50	2160
	100	50	2160	760	50	8630
2.71	1	1	11	120	10	432
د • (µ	1	1	22	120	10	863
	ī	1	43	120	10	1619
	ī	1	86	126	0.4	25
	4	4	43	140	4	43
	4	4	86	140	4	86
	5	4	173	140	4	173
	5	4	345	140	4	545
	5	4	518	300	1	11
	10	10	108	300		25
	10	10	216	300	1	43
	10	10	432	300	1	86
	10	10	863	306	4	43
	10	10	1619	306	4	86
	25	1	11	306	4	173
	25	1	22	306	4	345
	25	0.4	25	306	4	648
	25	1	43	737	1	11
	25	1	06	()(1	22
	21 57	1	22	737	1	86

Table	1 c	onti	nued
-------	-----	------	------

CO ₂ Band	P total (mm Hg)	P partial (mm Hg)	w (atmo-cm)	P total (mm Hg)	P partial (mm Hg)	w (atmo-cm)
(2.7µ cont'd)	57 57 57 57 57 120 120 120 120 120 120 120	1 1 1 1 1 1 1 10 10	43 43 86 86 173 345 11 22 43 86 108 216	740 740 740 740 740 740 747 747 755 755 755	4 4 4 4 4 10 10 10 10 10	43 86 173 345 518 648 108 863 216 432 1619
4.3μ	$ \begin{array}{c} 1\\ 4\\ 5\\ 10\\ 10\\ 10\\ 20\\ 20\\ 52\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 103\\ 104\\ 199\\ 396\\ 396\\ 398\\ 731\\ \end{array} $	1 1 9.8 4 9.8 1 1 9.8 9.8 9.8 9.8 9.8 1 1 9.8 9.8 1 1 9.8 9.8 1 1 9.8 9.8 1 1 1 9.8 9.8 1 1 1 9.8 9.8 1 1 1 9.8 9.8 1 1 1 9.8 9.8 9.8 1 1 1 9.8 9.8 9.8 9.8 1 1 1 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	18 182 364 18 104 364 1043 18 182 18 104 209 1040 1043 182 18 104 1043 18 104 1043 18 1 18	$\begin{array}{c} 731 \\ 731 \\ 731 \\ 734 \\ 735 \\ 742 \end{array}$	1 1 9.8 1 1 1 1 1 9.8 1 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	$\begin{array}{r} 46\\ 64\\ 82\\ 91\\ 1043\\ 9\\ 18\\ 27\\ 36\\ 46\\ 55\\ 91\\ 104\\ 137\\ 182\\ 313\\ 626\\ 1040\\ 1570\\ 104\end{array}$

Table 1 continued

CO ₂ Band	P total (mm Hg)	P partial (mm Hg)	w (atmo-cm)	P total (mm Hg)	P partial (mm Hg)	w (atmo-cm)
15µ	20	20	216	125	4	173
	20	20	432	125	20	216
	20	20	863	125	20	432
	50	1	11	125	20	863
	50	1	22	350	1	11
	50	1	43	350	1	22
	50	4	43	375	1	43
	50	4	86	375	4	43
	50	4	173	375	4	86
	125	1	11	375	4	173
	125	1	22	375	20	216
	125	1	43	745	4	43
	125	4	43	745	4	86
	125	4	86	745	4	173

Least square fit values of K and a from which the effective line strengths $S_0^e = K P^a$ were calculated. P is expressed in millimeters of mercury.

CO ₂ Band	(cm ⁻¹)	K	а	(cm ⁻¹)	К	а
2μ	4710 4720 4720 4740 4750 4760 4770 4780 4800 4810 4820 4830 4850 4850 4850 4860 4860 4870 4880 4890 4910 4920 4920 4920 4930 4950	1.93×10 ⁻⁴ 1.14×10-1 1.22×10-3 1.56×10-2 4.28×10-2 1.38×10-1 3.17×10-1 7.78×10-1 1.26×100 2.78×100 5.22×100 6.27×100 6.15×100 5.69×100 5.69×100 5.48×100 5.48×100 5.48×100 1.51×101 2.38×101 1.51×101 2.38×101 4.67×101 4.34×101 3.59×101 2.78×101 2.78×101 1.63×101	4.07×10 ⁻¹ -6.19×10 ⁻¹ 2.49×10 ⁻¹ -3.99×10 ⁻² -8.86×10 ⁻² -1.84×10 ⁻¹ -2.24×10 ⁻¹ -2.91×10 ⁻¹ -3.44×10 ⁻¹ -3.44×10 ⁻¹ -2.91×10 ⁻¹ -3.06×10 ⁻¹ -2.65×10 ⁻¹ -2.65×10 ⁻¹ -2.65×10 ⁻¹ -2.61×10 ⁻¹ -2.96×10 ⁻¹ -2.96×10 ⁻¹ -3.75×10 ⁻¹ -4.15×10 ⁻¹ -4.15×10 ⁻¹ -4.10×10 ⁻¹ -3.61×10 ⁻¹ -3.18×10 ⁻¹ -2.92×10 ⁻¹ -2.92×10 ⁻¹	5010 5020 5030 5040 5050 5060 5070 5080 5100 5120 5120 5120 5140 5150 5140 5150 5160 5170 5160 5170 5200 5210 5220 5210 5220 5220 5220 522	1.34×10^{1} 1.06×10^{1} 6.75×10^{0} 4.66×10^{0} 4.00×10^{0} 3.74×10^{0} 3.36×10^{0} 4.01×10^{0} 5.87×10^{0} 6.83×10^{0} 6.13×10^{0} 4.97×10^{0} 3.24×10^{0} 3.40×10^{0} 1.59×10^{0} 9.58×10^{-1} 2.23×10^{-1} 1.2×10^{-1} 2.83×10^{-2} 1.16×10^{-2} 8.72×10^{-3} 3.93×10^{-3} 1.05×10^{-3} 1.44×10^{-3} 3.62×10^{-4} 1.02×10^{-5}	-3.43x10-1 -3.68x10-1 -3.36x10-1 -3.04x10-1 -2.87x10-1 -2.87x10-1 -2.18x10-1 -2.18x10-1 -2.18x10-1 -2.45x10-1 -2.48x10-1 -2.48x10-1 -2.02x10-1 -1.65x10-1 -1.65x10-1 -1.65x10-1 -1.65x10-1 -1.57x10-1 -1.53x10-1 1.53x10-1 1.53x10-1 2.11x10-1 3.42x10-1 3.15x10-1 4.71x10-1 8.92x10-1

Table 2 continued

CO ₂ Band	v (cm ^{-l})	К	a	v (cm ⁻¹)	К	a
2.7	4 3410 $342034403450345034503450349035003510359035503550355035503550355035503550355035503550355035603550356035603610362036403640$	2.75×10^{-3} 1.36×10^{-2} 7.28×10^{-2} 1.25×10^{-1} 2.35×10^{-1} 1.67×100 3.81×100 1.86×101 3.76×101 7.82×101 1.52×102 2.78×102 4.17×102 6.31×102 8.24×102 1.01×103 1.34×103 1.65×103 1.35×103 1.05×103 1.05×103 8.66×102 7.95×102	2.00x10 ⁻¹ 7.20x10 ⁻² -8.54x10 ⁻² -7.23x10 ⁻² -2.62x10 ⁻¹ -2.96x10 ⁻¹ -4.64x10 ⁻¹ -4.64x10 ⁻¹ -5.26x10 ⁻¹ -5.45x10 ⁻¹ -5.45x10 ⁻¹ -5.12x10 ⁻¹ -4.96x10 ⁻¹ -4.01x10 ⁻¹ -4.01x10 ⁻¹ -3.78x10 ⁻¹ -3.28x10 ⁻¹ -3.25x10 ⁻¹ -3.25x10 ⁻¹ -3.36x10 ⁻¹	3650 3660 3670 3690 3700 3710 3720 3770 3750 3770 3770 3770 3780 3770 3780 3790 3810 3820 3810 3820 3810 3820 3840 3850 3840 3850 3860 3860 3860	8.46×10^{2} 1.08×10^{3} 1.55×10^{3} 2.11×10^{3} 2.56×10^{3} 2.90×10^{3} 2.32×10^{3} 1.51×10^{2} 1.56×10^{2} 4.67×10^{2} 1.56×10^{2} 4.03×10^{1} 1.21×10^{0} 3.60×10^{-1} 4.18×10^{-2} 3.36×10^{-2} 9.56×10^{-3} 1.96×10^{-3} 2.07×10^{-3} 1.62×10^{-4} 1.74×10^{-1} 2.58×10^{-2} 4.53×10^{-3}	-3.51x10 ⁻¹ -3.80x10 ⁻¹ -4.14x10 ⁻¹ -4.39x10 ⁻¹ -4.39x10 ⁻¹ -4.90x10 ⁻¹ -4.91x10 ⁻¹ -4.91x10 ⁻¹ -3.84x10 ⁻¹ -3.84x10 ⁻¹ -1.90x10 ⁻¹ 1.28x10 ⁻¹ 2.03x10 ⁻¹ 4.52x10 ⁻¹ 4.52x10 ⁻¹ 4.08x10 ⁻¹ 4.73x10 ⁻¹ 6.72x10 ⁻¹ 3.66x10 ⁻¹ 4.98x10 ⁻¹ 8.59x10 ⁻¹ 8.59x10 ⁻¹ -3.08x10 ⁻¹ -7.01x10 ⁻² 5.30x10 ⁻²
4.3	2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320	5.55x10 ⁰ 1.26x10 ² 1.07x10 ² 5.67x10 ² 1.15x10 ³ 1.01x10 ³ 4.58x10 ³ 7.97x10 ³ 1.51x10 ⁴ 2.57x10 ⁴ 1.49x10 ⁴ 3.68x10 ⁴ 6.40x10 ⁴	-2.26x10-1 -6.65x10-1 -4.48x10-1 -5.59x10-1 -5.53x10-1 -3.34x10-1 -4.50x10-1 -4.45x10-1 -4.48x10-1 -5.60x10-1 -3.32x10-1 -3.31x10-1 -3.39x10-1	2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440	5.06x10 ⁴ 7. ⁴ 0x10 ⁴ 8.37x10 ⁴ 8.42x10 ⁴ 6.75x10 ⁴ 1.79x10 ⁴ 1.73x10 ⁴ 4.28x103 1.25x10 ² 5.96x101 2.95x10 ⁰ 1.31x10 ⁰	-5.50x10 ⁻¹ 0.0 0.0 -3.39x10 ⁻¹ -7.79x10 ⁻¹ -7.71x10 ⁻¹ -8.89x10 ⁻¹ -8.87x10 ⁻¹ -4.43x10 ⁻¹ -4.48x10 ⁻¹ -12.0x10 ⁻¹ -5.56x10 ⁻²

Table 2 continued

C B	O2 and	(cm ⁻¹)	K	a	v (cm ⁻¹)	K	a
	15μ	580 590 600 610 620 630 640 650 650 660 670 680 690 700	1.69x10 ² 9.38x101 4.27x101 8.89x101 3.44x10 ² 4.25x103 2.34x103 8.31x103 1.84x104 3.65x104 1.49x104 9.49x103 4.50x103	-6.34x10 ⁻¹ -3.00x10 ⁻¹ -3.88x10 ⁻¹ -6.50x10 ⁻¹ -2.06x10 ⁰ -6.04x10 ⁰ -2.34x10 ⁰ -3.34x10 ⁰ -4.13x10 ⁰ -5.29x10 -3.52x10 ⁰ -3.13x10 ⁰ -2.93x10 ⁰	710 720 730 740 750 760 770 780 790 800 810 820 830	2.67x10 ³ 1.15x10 ³ 5.32x10 ² 2.85x10 ² 1.53x10 ² 1.36x10 ² 4.89x101 2.46x101 8.16x100 5.96x100 2.15x100 5.65x10 ⁻¹ 6.96x10 ⁻²	-3.65x10 ⁰ -3.35x10 ⁰ -3.08x10 ⁰ -2.67x10 ⁰ -2.09x10 ⁰ -2.87x10 ⁰ -3.27x10 ⁰ -3.66x10 ⁰ -2.77x10 ⁰ -2.83x10 ⁰ -1.67x10 ⁰ -9.84x10 ⁻² 2.14x10 ⁰

TABLE 3

Values of $\int A_v dv$ determined for the various layers in the atmosphere as a function of the product of pressure, P, in millimeters of mercury and the mass, m, expressed as a fraction of the atmosphere traversed.

Pm (mm Hg)	2µ Band	2.7µ Band	4.3µ Band	15µ Band
0.019 0.076 0.171 0.304 0.475 0.684 0.931 1.22 1.90 2.30 2.74 3.21 3.72 4.28 4.86 5.49 6.16 6.86 7.60 17.1 30.4 47.5 68.4 93.1 122.154.190.230.274.321.372.428.486.549.616.1000000000000000000000000000000000	$\begin{array}{c} 1.11\\ 1.74\\ 2.32\\ 2.86\\ 3.39\\ 3.90\\ 4.40\\ 5.36\\ 5.82\\ 6.28\\ 6.74\\ 7.19\\ 7.63\\ 8.07\\ 8.50\\ 8.93\\ 9.35\\ 9.77\\ 10.2\\ 14.3\\ 18.1\\ 21.7\\ 25.3\\ 28.7\\ 32.1\\ 35.4\\ 38.6\\ 41.7\\ 44.8\\ 47.9\\ 51.0\\ 53.9\\ 56.9\\ 59.8\\ 62.6\end{array}$	5.92 9.96 13.6 17.1 20.3 23.5 26.5 32.4 35.2 37.9 40.6 43.2 45.8 48.3 50.8 53.3 55.7 58.1 60.4 82.5 102. 118. 134. 147. 159. 170. 180. 188. 196. 203. 209. 215. 220. 224. 228.	19.7 33.6 45.3 55.4 64.0 71.2 77.4 87.5 91.7 95.4 98.8 $102.$ $105.$ $108.$ $110.$ $112.$ $115.$ $117.$ $119.$ $134.$ $143.$ $150.$ $156.$ $160.$ $164.$ $167.$ $170.$ $172.$ $176.$ $177.$ $179.$ $181.$ $182.$ $184.$ $185.$	7.5 12.8 17.7 21.2 26.4 30.4 34.2 41.4 44.8 48.0 51.1 56.9 59.7 62.3 64.9 67.4 69.7 72.0 91.2 105. 115. 123. 130. 136. 142. 147. 151. 155. 159. 162. 166. 169. 171. 174.
760.	68.2	236.	188.	178.

Figure 1. The total absorption of the 2.0 μ band of CO $_2$ as a function of the pressure in an isothermal atmosphere.

Figure 2. Atmospheric absorption of the 2.7μ band of CO₂ is shown as a function of pressure. The data obtained from the balloon flight of Murcray et. al. are represented by x. An isothermal atmosphere is assumed.

Figure 3. Atmospheric absorption of the 4.3μ band of CO₂ is shown as a function of pressure. The data obtained from the balloon flight of Murcray et. al. are represented by x. An isothermal atmosphere is assumed.

Figure 4. The total absorption of the 15μ band of CO_2 as a function of the pressure in an isothermal atmosphere.

I S. DEPARTMENT OF COMMERCE Luther H. Hodges, Secretary

ATIONAL BURFAU OF STANDARDS.

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

- ope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and the Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. ral, each section carries out specialized research, development, and engineering in the field indicated by 1. A brief description of the activities, and of the resultant publications, appears on the inside of the uver.

MASHINGTON, D.C.

Conctricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. University of trics. High Voltage.

biology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Union of Scale. Volumetry and Densimetry.

Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Le liation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Le nic Instrumentation. Neutron Physics.

Materials. Applied Analytical Research. Crystal Chemistry.

t anics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion rols.

ty ers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Charac-testion. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research.

Hurgy. Engineering Metallurgy. Microscopy and Diffraction. Metal Reactions. Metal Physics. Electrolysis metal Deposition.

Constallography. Crystal Growth. Physical Properties. Class. Solid State Chemistry. Crystal Growth. Physical Properties.

Inding Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. s and Safety Standards. Heat Transfer. Inorganic Building Materials. Metallic Building Materials. lied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Op-ns Research.

a Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. incering Applications. Systems Analysis.

tomic Physics. Spectroscopy. Infrared Spectroscopy. Far Ultraviolet Physics. Solid State Physics. Electron sics. Atomic Physics. Plasma Spectroscopy.

rumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instrus. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Ele-terrory Processes. Mass Spectrometry. Photochemistry and Radiation Chemistry.

ODice of Weights and Measures.

LOULDER, COLO.

Progenic Engineering Laboratory, Cryogenic Equipment, Cryogenic Processes, Properties of Materials, Cryonin Technical Services.

CENTRAL RADIO PROPAGATION LABORATORY

Lnosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Re-ch. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Vertical mondings Research.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics. Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Fre-to nuy Utilization. Modulation Research. Antenna Research. Radiodetermination.

L per Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. High Latitude Ionosphere Mysics. lonosphere and Exosphere Scatter. Airglow and Aurora. lonospheric Radio Astronomy.

RADIO STANDARDS LABORATORY

R dio Physics. Radio Broadcast Service. Radio and Microwave Materials. Atomic Frequency and Time-Interval Joan ards. Radio Plasma. Millimeter-Wave Research.

Circuit Standards. High Frequency Electrical Standards. High Frequency Calibration Services. High Frequency dance Standards. Microwave Calibration Services. Microwave Circuit Standards. Low Frequency Calibration rvices.

