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Abstract
A procedure for calculating transition probabilities for one electron atoms using the fully relativis-
tic Dirac wave function is described in this technical note. Transition probabilities are calculated

for Hydrogen transitions between states with n < 6, and presented in the appendix.




I. INTRODUCTION

A fortran program was written to compute transition probabilities for one electron atoms
using the fully relativistic Dirac wave function. The program can evaluate any transition
where the sum of the principal quantum numbers for the initial and final states is less than
about 80. The transition rate [';s to go from the initial state ¢,(r) with energy E, to final
state ¢o(r) with energy E; is given by {1-3]

L = (aw/2m) [ [{g2(r)]a- e[ go(r))[* a2, 1)

where o is the vector whose components are the Dirac matrices, & is the fine-structure
constant, k is the photon wave vector, and € is the photon polarization vector. The photon
energy is

hw = By — Ey. (2)

The Dirac wave functions can be expressed as follows
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Where the functions x* and x~ are two component spinors.
When e**7 is expressed as an expansion in spherical harmonics it can be shown [1-3] that

equation (1) can be expressed as a sum of products of functions

Tz = 20w(2j5 + 1) Z (Bz(rcl, Ka, L) Ri(e) + BQ(—K.;, K2, L)Ri(m))
L
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where ! and j are quantum numbers associated with orbital angular momentum and total

angular momentum respectively, and & is related to [ and j by

j= |.~a|—% and
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The function B(ki, k2, L) is defined as follows,

B(ky,k2,L) = (_1)(iz+t+§)\J (20 + 1);2(?1 1))(2}3 +1)
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The Wigner 3-j and Wigner 6-j symbols in equation (6) have closed form expressions {7].

Let J =L+ + I3, then B*(x1,%2,L) = 0 for odd J and
(2L + 1) (2L + 1)L+ 1) [(L+ &) + 82+ 1)K + 5 — L)‘ .
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where and are respectively Wigner 3-j and Wigner 6-j symbois.
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when J is even [1].
The radial integrals Ry(e} and Ry (m) corresponding to the allowed electric and magnetic
multipole moments for the transition are

Ri(e) = % [(Fz(r)Gl(r) - Gg(T)F](T))L(L + D)jr(kr) +

(k1 + &2)(1*"2(?)01(7‘) — Go{r)Fy (r)) (rd;ij;,(kr) -I—jL(k'r)) l
Ru(m) = (x1+52) [ dr k) (Fg(r)Gl(r) + Gg(r)Fl(r)), ®)

where Fi(r), F3(r), Gi(r) and Gy{r) are the radial parts of the wave function defined in
equation (3), and j.(r) are spherical Bessel functions.

Scofield provides a more complete derivation of equation (4) and the definitions in equa-
tions (6) and (8) in reference [3).

Numerical evaluation is structured around equation (4). Prior to performing the sum, the
functions B?(x,, ks, L) are tabulated and separately, Ry(e) and Ry(m)} are also tabulated
for all values of L in the sum. The energies of the two states are computed from equation
(11) described in the next section where the radial functions F(r) and G(r) are discussed;
w is computed from equation (2).

After the sum in equation (4) is computed the value 'y is scaled by the reduced mass

ratio —=B— where my and m, are the nuclear mass and the electron mass respectively.
N
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II. THE Ry(e) AND R;(m) INTEGRALS

The radial wave functions F(r) and G{r) are computed recursively following Appendix

A in reference [4].
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The energy of the bound-state is
E=+v1-a? (11)
The coefficients C'me) and Cém“} are defined recursively by the equations
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The Rr(e) and Rz(m) integrals are performed numerically, using Gauss-Laguerre quadra-

ture which approximates integrals of the form [5]

./Dw z%e¢ " f(x)dx {13)

Both the exponential term and the fractional power of 7%, in equation (9) can be ab-

sorbed into the weight factor, so that evaluation of Rp(e) and Rp(m) requires either
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f(z) ~ jr(kr)P(z), or f(z) ~ E%E—f‘ﬂ-P(x) where P(z) is a polynomial. Moreover, since
the wavelength of radiation for hydrogenic transitions is large compared to the Bohr radius,
we expect that j; (kr) and the derivative to be well approximated by the first couple of terms
in the Taylor series in regions where the wave functions are appreciable. Therefore f(z) is
to good approximation simply a polynomial and since Gauss-Laguerre integration exactly
evaluates a polynomial of order 2m —1 with m knots, highly accurate integration results can
be obtained when the number of knots is the sum of the two n, values in equation (9) plus
a constant (12 in this case). In practice, small variations in the number of knots indicate
that our choice of knot number generates transition probabilies good to at least 10 digits
over transitions between states where both principal quantum numbers are less than 40.

All Gaussian quadrature schemes choose the m knots to be the roots of an orthogonal
polynomial of degree m. The root finding algorithm used in this program fails when m > 95.
For this reason the sum of the two values of n, in equation (9) must not be greater than
about 80.

The values of spherical Bessel functions j.(kr) at the knots are computed recursively in
the stable direction going from large L downward using Miller’s method [6]. In this approach
a guess is made for the value of ji(kr) for values of L somewhat larger than the maximum
value desired. Recurrence relations for the spherical Bessel function then step downward in
L to L = 0 where the exact value is known. If the original maximum value of L is large
enough, the values produced using the downward recurrence at lower values of L are directly
proportional to the correct values, and knowledge of the exact value at L = 0 allows the
constant of proportionallity to be determined. Rescaling the tabled values then generates
the table of j;(kr).
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Appendix A: Table of Transition Probabilities for Hydrogen

The table below provides transition probabilities in Hertz for fine structure transitions in

Hydrogen through n < 6 The atomic mass was 1.0078250321 AMU.




transition rate/transition rate{transition rate
ls% 2p% 626482607.00 ls% Qp% 626494236.00 ls% Sp% 167251765.00
13% Bp% 167251326.00 13% 4p% 68186317.40 13% 4p% 68185609.30
ls% 5;0% 34375152.50 ls% 5;0% 34374660.00 15% 69; 19728237.80
ls% Sp% 19727908.60 23% 3p% 22447988.20 23% Sp% 22449083.00
25y 4ps 9668046.04|2s1 4py 9668339.74 23% 5p:2_; 4948324.58
23% Sp% 4948438.61 23% ﬁp:_; 2858331.76 23% Gp% 2858386.37
2p§; 33% 4209659.65 2p% 3s 1 2104596.86 2p% 3d% 64650898.90
2p% 3d§ 10775136.90 2py Bd% 53877072.60 2p§ 43% 1719000.45
2p§; 4s§ 859410.93 2p3 4d§ 20625192.20 2p% 4d§; 3437496.42
2p% 4d% 17188279.10 2pg 983 859196.94 2p% 53% 429554.59
Zp% d% 9425363.31 2p% 5d§ 1570871.66 2p% 5d% 7854783.94
2p% 63% 490062.52 2p% 6s 1 245006.41 2;0% ﬁdg 5144980.72
2p3 ﬁdg 857482.92 Qp% Gdg 4287663.85|3s 1 4p% 3065039.74
33% 4p;2 3065217.09 33% 5p3 1637691.42 33% 5p% 1637758.34
33% Gp% 955079.63 33% ﬁp% 9556111.99 3p% 45% 1223772.46
Bp% 43% 611824.69 3p% 4d§ 7037596.66 Bp% 4d% 1172542.86
3p% 4d§ 5864673.81 Bp% 551 603198.36 Bp% 551 301571.13
3p_2§ 5d§ 3391477.00 Sp% 5d% 565246.73 3p% 5d% 2826268.54
3p§s 6s1 338151.22 Sp% 63% 169060.23 3p% 6d§ 1877787.93
3pg ﬁdg 312963.94 3p% Gd% 1564851.13 Sdg 4p% 312799.86
3d% s 34753.98 3d%4p% 347592.59 Sd% 4f% 13787949.40
3d§ fg 919194.57 3d% 4f% 12868844.00 3d% 5;0% 134589.59
3ds 5 3 14953.74{3d3 5p, 149559.57|3ds 5f7 4542144.19




transition rate|transition rate|transition rate
3d% 5fs  302807.29 Sdg Sf% 4239379.4113ds 6p; 70420.77
30‘.% 6p3 7824.18(3dy 6p) 78253.43 3d% 6 f% 2146034.86
3d§ 6 5 143067.54 Sd% 6 fg 2002989.84 43% Spg 737159.14
4sy 5py  T37205.16|4sy 6py  445610.50/4s3 6py 44563112
4ps 5sy  430099.22|4p; 5sy  215029.15)4ps 5ds  1485778.34
4py 5d;  247632.93|4p: 5d; 1238135.6114ps 651 238852.00
dp; 653 119415.62|4p; Sd% 862191.17|4p3 Sd% 143699.41
dp; 6d3  718493.39 4d§ 5pg  169620.91|4ds 5p; 18846.01
4ds 5py  188485.39\4ds 5f; 2584411.60|4ds 5fs  172294.46
4d§ Sf% 2412123.52 4dg ﬁp% 84755.43 4d% 6;0% 9416.90
4d% 6p1 64181.21 4d% Sf% 1286982.51 4d;s Gf% 85798.63
4d% Gf% 1201190.73 4f% Sd% 48074.58 4f% Sds 2403.67
4fs Sdg 50479.79 4f§ 5gg  4254173.90 4f% 59;  151934.49
4fs 5gz 4102251694 f7 6ds 20428.90 4f% 6els 1021.42
4fs Sd% 21450.98|4f7 6g0  1372778.80 4f'_; 69z 49027.54
4 f% 6g; 1323757.13|5s3 ﬁpg 242945.70 581 6p1  242961.55
Spg 6s;  178801.61(5py 653 89392.60 5p% ﬁd% 449482.39
5py 6dy 74914.89|5py 6da  374561.87 5d% 6ps 86343.65
5d3 bp3 9593.38|5ds 6py 95945.64[5ds 6f;  723255.40
5ds 6fs 48217.24/5ds 6f5  675038.13 5fz 6ds 37219.66
5f3 6ds 1860.94/5f; 6dy  39081.66(5f 695 1105692.38
Sf% 693 39489.03 5f% 6g; 1066205.00 593 Sf% 11057.13
593 63 31591|5g; 6fs  11373.19[5gs 6hy 1644831.07
5gg 6hg 36551.75|5g7 6hy 1608281.86




