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ABSTRACT

The energy parameter B used in the strong blast wave

equations is calculated for monatomic and diatomic gases.

Three geometries, spherical, cylindrical, and plane are

considered. Comparisons are made with previously published

values of B. Tables and curves of the distribution functions

are given for each case. The equations of the blast waves,

in the similarity solution, are compiled for the six cases.

An application of the analysis of a cylindrical blast wave

from an exploding wire is given.
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THE ENERGY PARAMETER B FOR STRONG BLAST WAVES

DONALD L. JONES

1. Introduction

The theoretical treatment of strong spherical blast waves,

assuming similarity, has been made by Taylor . This work was

extended by Sakurai y to the case of cylindrical and plane blast

waves. Although Taylor developed some approximate solutions

for monatomic and other gases, the main emphasis in these analyses

has been on solutions for air, a diatomic gas.

In the present work, three ideal situations have been com-

puted which differ in the geometry of their initial conditions.

Energy is instantaneously released: (1) at a point to produce a

spherical shock wave, (2) along a line to generate a cylindrical

shock, and (3) over a plane to yield a plane shock. The shock

disturbance is assumed to be similar at all times, changing only its

linear dimensions with increasing time. It is also assumed that

-1-
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the gases are perfect, with constant specific heat ratios.

Energy losses from ionization and radiation are neglected.

Under these assumptions the distance R of the shock

front from its initial position is related to the time

by the expression

1 f E V2 c
* --

(
—

)
H° CD

c [ *0 J

where E is the energy released, p is the ambient density

ahead of the shock, c is a numerical constant equal to

5/2, h/2, or 3/2 for spherical, cylindrical, or plane shocks

respectively. B is a numerical constant depending upon the

geometry of the shock wave and the specific heat ratio y

In spite of the idealizations, equation (l) describes

2 3
real explosions of exploding wires '

, cylindrical charges

k 5
of high explosives , and even atomic bombs. In order to

compare experimental results with theory using equation (1),

the value of B is needed with a precision at least as great
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as that of the experimental data. For the present work

three significant digits are adequate. The precision

claimed for the previously published values for B is

three digits also. However, it will he demonstrated that

few were correct to more than two digits and one was not

correct even in the first digit.

A table of values of B, calculated by the author,

with a precision of three digits, is given for each

geometry and for both diatomic and monatomic gases. The

blast wave expressions for each of the six cases are

compiled in Appendix A. This report constitutes the

more complete discussion referred to in an earlier pub-

lication *-

2 . Procedure

Taylor , in his original work, gives a thorough dis-

cussion of the similarity method. It is sufficient here to

* The author is indebted to N. Gerber, BRL, Aberdeen Proving
Ground, Maryland, for pointing out an error in the previous
publication.
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indicate that the assumption of similarity is consistent

with the equations of motion and continuity and with the

equation of state of a perfect gas. The conditions at

the shock front are given by the familiar Rankine-Hugoniot

relations. Distribution functions are developed as a

convenient method for representing the pressure, density

and flow velocity at all points in the blast wave.

In the computation of the parameter B, it is first

necessary to integrate the differential equations of the

distribution functions given in Appendix C. Graphs and

tables of the solutions of these equations are shown in

Appendix B for each of the six cases. The abscissa 7] is

the ratio r/% where R is the distance from the origin to

the shock front and r is an intermediate point. The dis-

tribution functions f, to, and t are all dimensionless

functions of T. The function f is related to the pressure

ratio across the front; $ is the density ratio 5 and tp is

related to the radial velocity of the front. It should be
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noted that the given boundary conditions in Appendix C

are correct only for strong shocks, i.e., for which the

pressure ratio across the front exceeds 10. As shown

in Appendix C, B is the integral of a geometry dependent

function of the distribution functions. Following Taylor,

B is found by evaluating first the differential equations step

by step and then numerically integrating from the table

obtained

.

7
A Runge-Kutta integration technique given by Gill

was used to evaluate the differential equations of the

distribution functions. Gill developed the method for

automatic computation, the main advantage being that only

one set of values at the boundary is required to initiate

the computation. The boundary conditions at the shock front

provide the necessary initial values. One change in the

method of Gill was required since the present computations

were performed with a floating point machine, whereas his
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technique contained a means of reducing rounding errors

8
on a fixed point computer. Obitts has determined that

the use of floating point arithmetic reduces the accumu-

lation of rounding error within a step, so that the

application of a bridging term as developed by Gill would

be unnecessary.

In computing the tables of the distribution, functions

the procedure followed was to select an arbitrary interval

for An and compute the table from *R = 1 to 11 = 0. Then

the interval was halved and a new table was computed. If

the new table agreed with the previous table to six sig-

nificant digits the last table computed was accepted as

correct. If such agreement did not exist another table

was computed. This procedure was repeated until the desired

agreement was obtained.

The tables of the distribution functions in Appendix B

are not nearly as complete as the original tables calculated

for this work; many intermediate values are not listed. It
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was necessary to use an interval of 0.0005 in T] to obtain

an adequate precision in the integration of the differen-

tial equations for the distribution function graphs.

The differential equations of the distribution

functions are quite well behaved, as evidenced by the

graphs in Appendix B. Also, the computer word length is

in excess of ten digits, while the distribution function

tables are only required to be accurate to six digits at

most. These two facts, when coupled with the relatively

*

short length of the tables (~ 2000 entries), allow a

straight-forward evaluation of the distribution functions

without the serious loss of accuracy from truncation and

round-off that often plagues numerical evaluation of dif-

ferential equations.

Preliminary computations of B were made on an IBM

650 computer, but the large number of calculations re-

quired in the step by step computations indicated the need

for a faster machine. Subsequently the program was placed
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on a CDC 1906 computer and all computations were performed

with that equipment.

The computed values of B for the six cases considered

are shown in Table 1.

TABLE 1 - ENERGY PARAMETER B

Spherical Cylindrical Plane

v = 7/5 5-33 3.9^ 1.22

v = 5/3 3.08 2.26 O.678

Once B is known accurately it is a simple matter to

apply equation (l), its derivative, and the Rankine-Hugoniot

relations to compute the theoretical time, velocity, pressure,

and temperature for a shock front propagating in a known

gas. The theoretical values can then be used to compare with

experimental data or to predict experimental parameters.

Equations for these computations are given in Appendix A. These
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equations are grouped according to the geometry of the shock

and further subdivided, as necessary, into monatomic and

diatomic gases.

If the distance of a shock front from the origin is

measured as a function of time, application of the equations

in Appendix A allow determination of the energy in the shock,

the front velocity, particle velocity immediately behind the

front, and the pressure and temperature in the shock front.

3« Discussion

Since the initial work of Taylor on spherical blasts,

several others have made further calculations on the spheri-

cal as well as cylindrical and plane blast waves. A list of

authors and the B values they have obtained is shown in

9
Table 2. The entries listed for Sakurai were calculated

from his published J values. Harris developed an approxi-

mate method for calculating B for any y, but even for

V = 5/3 his values are in error by more than 20 o/o. The

values listed for Sedov are obtained from graphs and the

* The author is indebted to Dr. H.T. Yang for calling his
attention to this work and also to reference 12.
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spherical case appears closely related to the work of

Taylor

.

When the computed values of B in Table 1 are com-

pared with the previously published values some discrep-

ancies appear. For the plane shock wave with v = 7/5*

13
the value of 2.0U given by Lewis et al " disagrees with

our value by 67 0/0. This deviation probably resulted

from a mistake in their integrand of B. Their equation

y
(2k) contained a term ( ) which should have been

r ! 1
"

1^
. In the cylindrical case Lin's value of

LV(Y-1)J

3.85 for Y = 7/5 gives a disagreement of 2.3 0/0. Presum-

ably this was caused by inadequate evaluation of the

distribution function differential equations. The agree-

ment with the B values from Taylor for the spherical shocks

is remarkable in view of the fact that his were made with-

out the aid of an electronic computer.
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4. Application

We can now apply the equation for cylindrical shocks to the case
of an exploding wire in air. Radius- time observations of the shock
wave were made simultaneously on three frequencies with the microwave
Doppler technique" as shown on the left in Fig. 1. The data for each
frequency, scaled from these traces, are given in Table 3.

TABLE 3 - Shock Wave Data

X = 3.0 cm X = 1.2 cm X = 0.81+ Cm

R cm t usee R cm t usee R cm t u sec

3.00 7-27

3.75 9.68
if. 50 12.82

5-25 21.14

• 329 1.38
.629 1.80

.929 2.24
1.23 2.78
1.53 3-21
1.83 3.43
2.13 4.49

2 A3 5.22
2.73 6.05
3.03 6.99
3-33 7.94
3.63 9-97
3.93 10.16
If.23 11.27
4.53 12.42
4.83 13.96
5-13 15.60
5-^3 17.88
5-73 20.15
6.03 22.89
6.32 25.67
6.62 28.17
6.92 31.13
7.22 34.91
7.52 39.32
7.82 44.65

1.26 2.55
1.47 3.07
1.68 3.42

I.89 3.86
2.10 4.42

2.31 4.87
2.52 5.50
2.73 6.10
2.94 6.83
3.15 7.45
3.36 8.33

3.57 8.99
3.78 9.96

3.99 10.80
4.20 11.83
4.41 12.72
4.62 13.82
4.83 14.99
5.04 16.09
5-25 17-27
5.45 18.60
5.69 19.96
5.88 21.38
6.O9 22.90
6.30 24.56
6.51 25.86
6.72 27.51
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The air density p , as determined from the ambient

k -3
pressure of 30 cm.Hg. is 4.63 x 10 gm cm . We now go

to Appendix A, to the column for cylindrical shocks in

a diatomic gas. The value of the parameter B is 3«94«

The time-radius equation is

1

1 . E x
~2 2

t = 2 fe~) R <A1 >

Since* the parameter B, the energy E, and the ambient

2
density p are all constants, a graph of R as a function

of time will yield a straight line with slope

1

» - 2(5-) • (2)
^0

The measured slope of the straight line portion of the

8 2-1
curve in Fig. 1 is 1.99 x 10 cm sec . Upon solving equation
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(2) for E, the energy in the shock is found to be

182.5 joules cm of wire length. Examination of Fig. 1

shows that the data follow the straight line for only part

of the shock trajectory. The positive curvature at the

beginning results from the finite time of the delivery of

energy to the shock during the explosion of the wire. The

negative curvature later represents departure of the shock

trajectory from the strong blast relation.

After finding the energy in the shock the velocity U

at any point can be calculated from relation (A3)

" = (— ) R •

CA3)

For instance, when the radius is 3-93 cm the velocity is

b -1
25.5 x 10 cm sec and the particle velocity immediately

behind the shock front is 5/6 U, or 21.2 x 10 cm sec
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The expression for pressure at the shock front is

:

P = 7/6 R-
2
5- {Ah)

-1- vo

7 2
giving a value of 2.28 x 10 dynes cm" or 22.6 atmospheres

at the radius 3*93 cm. At the radius 5.5 cm where the shock

trajectory diverges from the strong blast relation the pressure

is 12.6 atmospheres.

Calculation of the temperature with expression (A5) gives

a temperature of 1130°K at the radius 3 -93 cm.

In assuming the specific heat ratio v to be constant, the

effects of excitation, dissociation, and ionization have been

neglected. These effects are such that they can decrease V

to below 4/3- If for a given geometry of shock the value of B

is available for several values of V, the correct value of B

could be estimated. Careful experiments could, at least in

principle, determine the value of B experimentally by making

use of equation (1) and the fact that quite precise values of

the energy E can be known.
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Figure 1. Oscilloscope traces of microwave Doppler measurements
of the expanding cylindrical shock front from a wire
explosion, are shown on the left. A plot of the square
of the radius of the ionization front with time is on
the right. The straight line portion of the plotted
points represents agreement with the theory. This
explosion was made in air at a pressure of 30 cm Hg.
The energyReleased into the k cm long, 18 mil copper
wire was 500 joules per centimeter of wire length.
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APPEND1X B

Distribution Function Curves and Tables
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APPEHDLX C

Blast Wave Distribution Functions and the B Integral

SPHERICAL

= 4n r r i
. f + aj£ ^ ti
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with 71 = £
R

where R = distance from explosion to shock front

and r = distance from explosion to intermediate point

Boundary conditions at shock front
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CYLINDRICAL CASE
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with \ R and r same as spherical case

Boundary conditions at shock front
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PIANE CASE
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Boundary conditions at shock front
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