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FOREWORD

Between 1967 and 1975, the author conducted the calibration services for instrument current
transformers at the National Bureau of Standards (now National Institute of Standards and
Technology), and upgraded the facilities used in those services. In addition, he developed and
implemented a new measurement service for low-value ac resistors. Much of the material included
in this Technical Note derives from work during that period. Remarkably, the field has not
changed dramatically over the intervening years.

The period from about 1958 to 1970 saw renewed interest in transformer-like devices as solutions
to a variety of electrical measurement problems, and development programs were undertaken at a
number of national laboratories and universities. Many of these led to new types of devices having
vastly improved accuracy, making it possible to scale and measure impedances, ac voltage and
current, and power and energy, with unprecedented accuracy. During this period, an ongoing
collaboration between P. N. Miljanic of the Institut Nikola Tesla in Belgrade, Yugoslavia and N.
L. Kusters and W. J. M. Moore of the National Research Council (NRC) in Ottawa, Canada, led to
the development of the modern current comparator. This represented a new class of transformer-
like devices with remarkably increased accuracy over conventional current transformers. O.
Petersons, also with NRC during part of that time, extended and applied the work of that group,
particularly to the field of high voltage measurements. Many of these developments were
available to the author as he began the design of the new measurement services at NBS. Around
1968 Petersons left NRC to take a position at NBS and the author was fortunate to have him as a
mentor during the first few years of his career. Many of the ideas and approaches set forth in this
document, especially regarding magnetic shielding and the use of equivalent circuits, can be traced
to his influence. The work was performed under the supervision of B. L. Dunfee, who provided a
supportive, nurturing work environment for which the author has ever since been thankful. In
addition, colleagues D. Flach and R. Kahler were partners during part of this work, and contributed
their own diligence and insights. Of course, any errors or omissions in this document are solely
the author’s responsibility.
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TRANSFORMER-LIKE DEVICES FOR HIGH-ACCURACY AC CURRENT
MEASUREMENTS

T.M. Souders

National Institute of Standards and Technology, Gaithersburg, MD 20899

ABSTRACT

A theoretical and practical framework is presented to aid in the design, fabrication, and testing of
transformer-like devices for use in high-accuracy ac current metering applications. Current
transformers, two-stage current transformers, and current comparators are discussed, as well as
related devices that use passive and active error correction techniques. Transformer theory is
developed in terms of simple electromagnetic theory and practical equivalent circuits. Magnetic
design equations are presented and the measurement of relevant magnetic properties is discussed.
Sources of error and their mitigation are covered in detail, including errors caused by
magnetizing currents, winding and core inhomogenieties (so-called magnetic errors), and
circulating capacitive currents. Calibration methods and current transformer testing are also
covered.

KEY WORDS: ac current measurement; current comparators; current transformers; current
transformer testing; error sources; equivalent circuits; magnetic shielding; transformer design
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1. INTRODUCTION

Instrument current transformers are used to scale ac currents to levels that are most appropriate
for measurement. Today, most modern electronic instrumentation is voltage-based: Current is
measured by first passing it through an impedance of known value, and the resulting voltage
drop becomes the quantity that is actually measured (see fig. 1). Most often the impedance is a
low inductance four-terminal resistor, although mutual inductors and even capacitors are
occasionally used for ac measurements. To achieve the highest accuracy, the impedance value is
generally selected to give an rms voltage level in the range of 0.1 V to 1 V. However at current
levels greater than about 1 A, it becomes increasingly difficult to use resistors because of
problems of power dissipation and residual inductance. For example, if the voltage drop is
maintained at 1 V, then one watt of power dissipation is required for every ampere of measured
current. Furthermore, the residual inductance associated with any resistor design causes phase
errors (between input current and output voltage) that become unacceptably large at high
currents (i.e., low resistance values) and high frequencies. Fortunately, pre-scaling the current to
be measured can minimize these problems.

Figure 1.1. Current Measurement Using Voltage-Based Instrumentation

Current transformers are typically used for this purpose since they are capable of reasonably high
ratio accuracies with relatively low power dissipation over a wide range of current ratios. The
current flowing in a load (or burden, ZB) connected to the secondary winding of a current

transformer is nominally equal to the current in the primary or driven winding, times the inverse
turns ratio. Consequently, under the conditions given above, a current transformer having an
inverse turns ratio of N will reduce the power dissipation in the resistor by a factor of 1/N for a
fixed voltage. Even higher accuracies are achievable using feedback amplifier techniques or
transformers with two or more stages. For the special case in which the current in question is
being compared with a standard, known current of the same frequency, then current comparators
can be used.

This technical note presents a theoretical and practical framework to aid in the design,
fabrication and testing of current transformers and current comparators for use in high accuracy
metering applications.

1.1 The Ideal Transformer

Real transformers are designed to approximate the properties of an ideal transformer as
represented in fig. 1.2. The ideal transformer is a device having two magnetically coupled but
galvanically isolated windings designated primary and secondary, with NP and NS turns
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respectively. The windings themselves of the ideal transformer have zero impedance, and are
perfectly coupled, so that the ratios of the voltages (or currents) appearing at the terminals are
exactly equal to the turns ratio (or inverse turns ratio) as indicated in the figure. When
impedance, ZB, is connected to the secondary winding, it follows then that the impedance as
measured from the primary terminals is multiplied by the square of the turns ratio.

Figure 1.2. The Ideal Transformer

1.2 Transformer Error and its Representation

The error, , of a current transformer is a complex quantity that expresses the degree to which the
true primary-to-secondary current ratio differs from the inverse turns ratio:

    j
N

N

N

N

I

I

P

S

P

S

S

P  11
'

, (1.1)

where  and  are the in-phase and quadrature error components, respectively. The notation I’S is
used to indicate that the actual secondary current differs from the idea secondary current, IS, that
is shown in fig. 1.2.

In real transformers, the driving voltage that supports the secondary current is induced by the ac
flux in the magnetic core linking the windings. However, to sustain the ac flux a magnetizing
current must link the core; i.e., the net difference between the primary and secondary ampere-
turns must not be zero. By definition though, the net ampere-turns of an ideal transformer is zero
(IPNP - ISNS = 0) as stated above; consequently it is this residual magnetizing current that is
responsible for the major error associated with current transformers. By using toroidal cores with
high magnetic permeability, the magnetizing current can usually be kept small, but it cannot be
reduced to zero. The equivalent circuit shown in fig. 1.3 can be used to accurately represent this
error source, along with other characteristics of real transformers such as finite winding
impedances. Here ZP and ZS represent the so-called leakage impedances that characterize the
primary and secondary windings, and Zm is the magnetizing impedance, a characteristic of the
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core and winding that ultimately determines the size of the magnetizing current, Im. Note that
the magnetizing current is shunted away and current I’S is the actual current delivered to the
secondary burden. In practical designs, Zm is large compared to ZS and ZB, so that Im is small
compared to IS, and the resulting transformer error is small. These concepts will be developed
more fully in subsequent chapters, and the quantities Zm and Im will be related to the underlying
physics involved.

Figure 1.3. Equivalent Circuit of Two-Winding Transformer

For now, we can solve the circuit equations from fig. 1.3 to obtain the transformer error as
defined in (1.1) above, in terms of the circuit parameters. Thus we have

)for(1
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1'
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m
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m
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SS ZZZ

Z

ZZ
I

Z

ZZ
II 
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



 























 , (1.2)

and combining (1.2) with (1.1) we get the transformer error as

m

BS

Z

ZZ 
 . (1.3)

1.3 Other Error Sources

While the magnetizing current is the predominant source of error in a simple current transformer,
it is not the only source. So-called magnetic errors arise when the windings link the core
unequally (see chapter 7), and capacitive errors arise when capacitance between or across
windings shunts part of the current away from the core (see chapter 8). For current comparators
and multistage current transformers, these become the dominant sources of error. Subsequent
chapters will explore these error sources in depth, and will present approaches for their
mitigation. Note however that the type of equivalent circuit shown in fig. 1.3 cannot easily
represent either of these error sources, and it will only be used to represent errors caused by
magnetizing currents.
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1.4 Notation

Fig. 1.4 shows the notation that will be used throughout this document to indicate the relative
placement of windings and cores, and the polarity of windings designated by dots placed at one
end of each winding. There are two governing rules:

1. Only windings shown above a given core link that core.
2. Polarity: For all currents entering corresponding terminals of windings linking a

common core, the direction of flux induced in the core is the same. This causes all
characteristic impedances to be positive.

Figure 1.4. Notation of Cores and Windings

Therefore, in fig. 1.4, the primary, secondary and tertiary windings all link core 2, but only the
primary and secondary windings link core 1.

2. PHYSICAL INTERPRETATION OF TRANSFORMER ERROR

Two laws of electromagnetic theory govern the fundamental principles of current transformers
and current comparators: Faraday’s Law of Induction and Ampere’s Circuital Law. Together
with the common formula for the inductance of a winding on a toroidal core of square cross
section, Faraday’s law can be used to calculate the error of a current transformer caused by
magnetizing current. Fig. 2.1 represents a current transformer consisting of a magnetic core
wound with a primary winding of NP turns and a secondary winding of NS turns connected to a
burden. The supplied primary current enters the marked primary terminal, and in accordance
with Le Chatelier’s principle of least action, the resulting secondary current leaves the marked
secondary terminal, thus minimizing the net flux in the core and the net ampere-turns linking the
core. If we think of the net ampere-turns as a net current, im, flowing in the secondary winding,
then we have

SSSPPm NNiNii /)( ' . (2.1)

In a current transformer, im is called the magnetizing current.
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Figure 2.1. Current Transformer with Square-Cross-Section Toroidal Core (1/2 shown)

From Faraday’s law, the voltage induced in the secondary winding is given by

dt

di
L

dt

d
NdlEv m

SSSS  


, (2.2)

where vS is the induced voltage (V),
ES is the electric field intensity along path of the winding (V/m),
dl is an element of length of the path of the winding (m),
 is the magnetic flux in the core (Wb), and
LS is the inductance of winding (H).

The standard units of measurement are shown in parentheses, and the lower case notation used in
(2.1) and (2.2) denotes time-domain variables. Transforming to the frequency domain, (2.2)
becomes

mSS ILjV  . (2.3)

In a current transformer, the induced secondary winding voltage, VS, supports the voltage drop
across the burden impedance and the secondary winding leakage impedance, ZS. (The leakage
impedance of a winding consists of the winding resistance, and the component of inductive
reactance whose flux does not link other windings). Therefore,

)('
SBSS ZZIV  . (2.4)

Combining (2.3) and (2.4) gives the following expression for the magnetizing current:
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From (2.5), the transformer ratio is then given by
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and comparing (2.6) with (1.1) we see that

S

BS

Lj

ZZ





 . (2.7)

If we call impedance jLS the magnetizing impedance, Zm, then we arrive at the same error
expression that is given by the equivalent circuit, i.e., (1.3). Furthermore, we see that the
magnetizing impedance can be calculated from the simple formula for the inductance of a
winding on a toroidal core as shown in fig. 2.1:

)(
2

2
0 wR

R

ANk
L Sm

S 



, (2.8)

where LS is the inductance of the winding (H),
km is the relative permeability of the core material (dimensionless),
 is the permeability of free space (410-7 Wb/A-m),
NS is the number of turns of the secondary winding,
A is ithe effective cross sectional core area (m2),
R is the mean radius of the core (m), and
w is the width and height of the core (m).

In practice, the magnetizing impedance is not a pure inductance but includes a resistive
component that reflects the losses in the core material. At low frequencies, the losses are
typically small and (2.7) gives a good approximation for the error.

From a practical standpoint, the formula given in (2.8) can be used for most common core
configurations since it is reasonably accurate for any rectangular core cross section in which the
ratio of height to width is at least 0.5.

Before moving on to the next section, note that the transformer error given in (2.7) is only
dependent on the parameters of the secondary circuit.

3. THE CURRENT COMPARATOR

In many applications, it is useful to be able to accurately compare a current with a reference
current when the two currents are of different magnitudes. Such needs arise, for example, in
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many types of bridge circuits as well as in apparatus for testing current transformers. The simple
current comparator shown in figs. 3.1a and 3.1b is often used in these applications. Historically,
the current comparator was described as early as 1917 by Baker [27], and was later rediscovered
and improved upon by Obradovic, Miljanic and Spiridonovic in 1957 [25] and by Kusters and
Moore in 1961 [23]. Subsequent collaborations between Miljanic, Kusters and Moore led to
many further developments and improvements (see [4] for a thorough description of this work).

The currents being compared are carried by two ratio windings as shown, with opposing
polarities, and a third detection winding is used to indicate when ampere-turn balance is
achieved, i.e, when the complex ratio of the two currents is exactly equal to the inverse turns
ratio of the comparator. Under this condition, the flux in the core is zero, and therefore no
voltage is induced in the detection winding. In some applications, one of the currents is adjusted
by known amounts to bring about the null condition, while in other applications the number of
turns in one or both windings is adjusted for the same purpose. Since there is no flux in the core
at balance, there are no voltages induced in the windings and no magnetizing current is present;
consequently, no power is transferred from primary to secondary circuit, as is the case with
current transformers. Instead, the power dissipated in the secondary circuit of a simple current
comparator is totally supplied by the source of the secondary current.

Figure 3.1a. Simple Current Comparator

These principles are embodied in the equivalent circuit shown in fig. 3.2. This circuit is similar
to the current transformer equivalent circuit of fig. 1.3 with the addition of another ideal
transformer to represent the placement and action of the detection winding. Since the detection
winding is used to detect the presence of a magnetizing current, the upper winding of the second
ideal transformer is connected across the magnetizing impedance, and the turns ratio of this
transformer represents the ratio of the secondary winding to the detection winding. When the
voltage at the detector is zero, the voltage across the magnetizing impedance, and consequently
the magnetizing current, must also be zero. Under these conditions, the actual secondary current,
I’S, equals the ideal secondary current, IS. As noted earlier however, magnetic and capacitive
errors also contribute to the overall accuracy of a current comparator, and these error sources are
considered in detail in subsequent chapters.
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Figure 3.1b. Schematic Representation of Simple Current Comparator

Figure 3.2. Equivalent Circuit of a Simple Current Comparator

Physically, the current comparator is often thought of as an embodiment of Ampere’s Circuital
Law: The line integral of the magnetic field intensity, H, around a closed path is equal to the sum
of the currents that are enclosed by that path. Although the rationale is a bit tenuous, it proceeds
as follows. If the path taken is that of the magnetic core, and the currents are the primary- and
secondary-winding currents flowing in opposition through NP and NS turns, respectively, this
gives

SSPP
S

ININIdH    , (3.1)

where dℓ is an element of length of the path (m) and
s indicates summation over any surface enclosed by the line integral.

In a current comparator, the line integral is estimated via a detection winding that densely and
uniformly covers the core (unlike that illustrated in fig. 3.1a, where, for clarity, the detection
winding is shown covering only a portion of the core).
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If it is assumed that the flux density, B = km0H, is constant over the core’s cross section, then
(3.1) can be written in terms of magnetic flux as

 
Sm

Idl
Ak


0

1
, (3.2)

where km is the relative permeability,
0 is the permeability of free space,
A is the cross sectional area of core, and
 Is the magnetic flux.

For regular toroidal cores and uniformly distributed windings, we can make the further
simplifying assumption that the flux is constant over the path of the core, giving


Sm

I
Ak

R

0

2




, (3.3)

where R is the radius of the toroidal core.

Meanwhile, the detection winding voltage can be expressed in terms of the magnetic flux in the
core from Faraday’s law as

 
dt

d
NdlEv DDD


. (3.4)

(Note that the line integral in (3.4) follows the path of the detection winding around and around
the core cross-section ND times. Although this path eventually traverses the core, it is not the
same as the line integral of (3.1) which for simplicity is assumed to follow the core path itself. If
the same path were used in both, a less restrictive argument could be made, however with the
expense of greater complexity.)

For sinusoidal signals (3.4) becomes

 DD NjV  , (3.5)

and combining (3.5) with the frequency-domain counterpart of (3.3), we get


S

Dm
D I

R

NAk
jV





2
0 . (3.6)

Therefore, the detection winding voltage is directly proportional to the net ampere-turns that link
the core, i.e., that pass through the core window. The condition of ampere-turn balance that
occurs in simple current comparators when the primary and secondary ampere-turns are equal
and opposite, is indicated by a null voltage at the detection winding.
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From the equivalent circuit of fig. 3.2, we can see that the open-circuit voltage at the detector is
given by

2

''' )()(
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Dm
SSPP
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mSS
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 . (3.7)

Substituting into (3.7) the formula for magnetizing impedance derived previously (see (2.8))
gives the same expression for detection winding voltage as shown in (3.6). Therefore the
equivalent circuit is consistent with the physical interpretation given above. The quantity

  2/ SDm NNZ in (3.7) is called the sensitivity of the detection winding. Under the various

assumptions made above, the sensitivity to ampere-turns in the primary winding is the same as
the sensitivity to ampere-turns in the secondary winding, as (3.7) and (3.6) suggest; and in fact
the accuracy of the current comparator depends on this equality. However, so-called magnetic
errors can arise when the assumptions are not strictly valid, and the result is that the sensitivity is
somewhat different for the primary and secondary windings. The subject of magnetic error and
its mitigation is treated in chapter 7.

3.1 The Compensated Current Comparator

One drawback of the simple current comparator is that the leakage impedances of both ratio
windings can be significant loads for the respective current sources. If the current comparator is
being used to calibrate a current transformer for example, the source of secondary current is
actually the secondary winding of the transformer under test, and the secondary leakage
impedance of the current comparator adds a significant burden to the test transformer that will
affect its error.

Figure 3.3 Compensated Current Comparator

The so-called compensated current comparator [11] shown in fig. 3.3 minimizes this problem for
the secondary circuit. This circuit has an additional core that creates a transformer stage capable
of transferring power across the core from the primary to secondary circuit. In operation, a
compensation winding added to the detection core carries the magnetizing current, Im1, of the
transformer stage as shown, so that the voltage, VS, of the secondary current source at detector
balance is given by:
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CmS ZIV 1 , (3.8)

where ZC is the leakage impedance of the compensation winding. This is more apparent from the
equivalent circuit shown in fig. 3.4. When the secondary current source is adjusted to achieve a
null on the detector, no current flows through the magnetizing impedance, Zm2, of the detection
core. Therefore, current I’m1 that flows through the leakage impedance, ZC, of the compensation
winding, exactly equals the magnetizing current Im1, and the secondary current I’S exactly equals
the ideal secondary current, IS.

Figure 3.4 Compensated Current Comparator: Equivalent Circuit

At detector balance, the equivalent load seen by the secondary current source is:

1

1 )(

m

CBS

S

Cm

S

S
L

Z

ZZZ

I

ZI

I

V
Z


 , (3.9)

which is normally quite small as compared to a load of ZS which would exist for a simple,
uncompensated current comparator. Applications of the compensated current comparator will be
discussed in chapters 6 and 9.

4. MAGNETIC DESIGN EQUATIONS AND THE MEASUREMENT OF MAGNETIC
PROPERTIES

4.1 Hysteresis, Permeability and Core Loss
The so-called hysteresis loop of a magnetic core reveals several important characteristics that
must be considered when selecting the cores to be used in transformers or current comparators.
The magnetic field intensity, H, in a magnetic core is a memoryless linear function of the current
linking the core. However, the magnetic flux density, B, is only linearly proportional to the
current when the core is a non-magnetic material, i.e., when the permeability is that of free
space, 0. Otherwise, depending on the type of magnetic material used, the magnetic flux
density is a nonlinear and non-unique function of current (or magnetic field intensity).
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Figure 4.1 Hysteresis Loop

These relationships are illustrated with the B/H curve or hysteresis loop shown in fig. 4.1, which
is typical of the magnetic cores used in most current transformers and current comparators. By
definition, the slope of the curve, i.e., B/H, is the magnetic permeability, km0, where km is the
relative permeability. As the current increases from zero, the permeability has an initial value
that increases as the current gets larger, until a point at which it begins to decrease, ultimately
reaching a value of 0 as the current becomes very large. If the current is then cycled back
through zero to a large negative value, and so on for a periodic signal, the memory effect of the
hysteresis loop is manifested.

Several important points are illustrated here. First, since the permeability is a nonlinear function
of current, we can expect the resulting magnetizing current of a transformer (as described in
(2.5)) to contain harmonic components even when the primary current is strictly a single tone
sinusoid. However, because of the symmetry of the hysteresis loop, only odd harmonics will
normally appear. (If the core has residual dc magnetization though, the loop will become
asymmetric and even harmonics will also be generated.) Second, the relative size of the
magnetizing current, and hence the error, varies depending on the flux density in the core (see
section 4.2). Third, if the peak flux density becomes too large, the core “saturates,” the
permeability plummets and the error increases dramatically (see section 4.2). Fourth, the
hysteretic property of the B/H curve suggests that energy is being used to magnetize the core,
which results in core loss. In fact, for repetitive signals, e.g., sinusoids, the total energy per unit
core volume per cycle is equal to the area enclosed by the loop. The resulting core loss is
represented in an equivalent circuit as a parallel loss component of the magnetizing impedance.
Finally, the initial state of magnetization affects the overall size and symmetry of the B/H curve
(and the harmonic content as noted above) and demagnetization may be required to achieve the
initial state of zero magnetization that is assumed in fig. 4.1 (see section 4.5).
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4.2 Magnetic Flux Density and Saturation Flux Density

In order to estimate the size of magnetizing currents in transformer designs and hence the errors
that result, it is necessary to know the magnetic flux density that can be expected in the cores.
For toroidal cores, the magnetic flux density may be calculated in terms of the secondary current,
secondary leakage impedance and burden, as follows. From (2.2), the frequency domain
relationship between secondary winding voltage, VS, flux, , and flux density is given by

ABjNjNV SSS   , (4.1)

where NS is the number of turns in the secondary winding and
A is the effective cross sectional area of the core.

Rearranging (4.1) yields

ANf

V
jB

S

S

2
 , (4.2)

and combining this with (2.4) gives the magnetic flux density as

AfN
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)(' 
 . (4.3)

With IS expressed in amperes, the impedances in ohms, and A in squared meters, B is given in
tesla or Wb/m2. Note that 1T equals 104 gauss, with gauss being the unit more commonly used
by manufacturers of magnetic cores.

If VS is assumed to be the rms value of the secondary voltage and Bsat is the saturation flux
density, then the largest secondary voltage that can be sustained, VSmax, is obtained from (4.2) as

2
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BANfj
V


 . (4.4)

4.3 Magnetizing Impedance and Magnetizing Impedance per Turn-Squared

As noted in chapter 2, the principal component of the magnetizing impedance, Zm, associated
with a winding on a core is the self-inductance of the winding. So again, for toroidal cores the
magnetizing impedance is given by:
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jLjZ mm
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




  . (4.5)

This expression ignores the contribution of core loss, which is typically rather small at low
frequencies.
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The impedance given in (4.5) corresponds to a particular number of turns, N, of the winding. For
design purposes, it is usually more convenient to characterize the core itself by its magnetizing
impedance per turn-squared, given by:

R

Akf
j

N

Z mm 0

2


 . (4.6)

While the expressions of (4.5) or (4.6) are critical to the selection of cores and the number of
turns to use in a transformer design, they only provide approximate estimates of device
performance. As noted above, they ignore contributions such as core loss, and the values for the
parameters on which they depend are usually typical values taken from data sheets. To get a
more accurate estimate of the performance one is likely to achieve once a core has been selected,
it is certainly advisable to measure the magnetizing impedance per turn-squared directly. Such a
measurement is simple to perform with the setup shown in fig. 4.2.

Figure 4.2 Test Setup to Measure Magnetizing Impedance per Turn-Squared (left), and its Equivalent
Circuit (right)

With this setup, two windings are placed on the core under test. The first, with N1 turns, carries
the excitation current that is measured in terms of voltage V1 across the series ac resistor. The
second winding of N2 turns, produces the induced voltage, V2. The current is adjusted to give the
desired magnetic flux density test condition, which is indicated per (4.2) by voltage, VS = V2 , and
then the two voltages are recorded. The magnetizing impedance per turn-squared is given as:

1

2

21
2
2

1

V

RV

NNN

Zm  . (4.7)

By using two windings, this approach makes it possible to measure the impedance per turn-
squared independent of the leakage impedance of either winding. The values for N1 and N2 are
selected for convenience of measurement, but some care should be taken to distribute each
uniformly around the core.

4.4 Detection Sensitivity for Current Comparators, and Tuned Detection

The function of a current comparator is to detect the condition of ampere-turn balance among the
ratio windings. As discussed in chapter 3, ampere-turn balance is sensed by a detection winding
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placed on the detection core. The main parameter of interest in selecting the detection core and
number of detection winding turns is the detection sensitivity, i.e., the detection winding voltage
produced per ampere-turn of unbalance. Referring to fig. 3.2, any ampere-turn unbalance gives
rise to the magnetizing current, Im, which flows through the magnetizing impedance, Zm.
Therefore, the detection voltage, VD, is given by:

S

mmD
D

N

ZIN
V  . (4.8)

The detection sensitivity, ZD-S, is then:
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Z  , (4.9)

since ImNS is the ampere-turn unbalance. For toroidal cores, we combine (4.9) with (4.6) to
yield:

R

AkfN
jZ mD

SD
0 . (4.10)

If 4.10 is expressed in terms of winding density, i.e., the number of turns in the detection
winding per unit length of core circumference, DT, then we have [4]:

AkDjZ mTSD 0 , (4.11)

where )2/( RND DT  . Expressed in this way, we see that the sensitivity does not depend on

the diameter of the core, but only on the winding density and the cross sectional area of the core.

As previously noted, the magnetizing impedance is primarily inductive at lower frequencies, and
so the detection sensitivity is also primarily inductive as the imaginary term in (4.10) implies.
This makes it possible to increase the detection sensitivity by tuning the circuit with a capacitor
across the detection winding as shown in fig. 4.3.

Figure 4.3 Tuned Detection Circuit (left), and Equivalent Circuit (right)
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The sensitivity is greatest when the capacitance is given by

22)( DZL

L
C





, (12)

where L is the inductance of the detection winding, )2/()( 2
0 RANk Dm  , and the leakage

impedance, ZD, is assumed to be resistive [4].

4.5 Core Demagnetization

Figure 4.4 Core Demagnetization

At the beginning of this chapter, it was noted that dc magnetization of a core affects the size and
shape of the B/H curve, which in turn can affect the overall error performance of the device. To
remove residual magnetization, it is necessary to raise the ac winding voltage to the point that the
core saturates, and then reduce the voltage slowly to zero. This process is indicated in fig. 4.4.
The voltage must not be switched off before it reaches zero, since the resulting transient may
remagnetize the core.

5. WINDING TECHNIQUES AND THE ESTIMATION OF LEAKAGE IMPEDANCES

There are three basic choices to be made in designing the windings of a current transformer or
current comparator: the number of turns, the wire size, and the winding layout. These choices
directly affect the winding’s magnetizing impedance, its current carrying capacity and leakage
impedance, as well as the resulting magnetic and capacitive errors.

5.1 Number of Turns and Wire Size

The first consideration when selecting the number of turns and wire size to use must be the
current carrying capacity required of the winding. Generally, for windings that carry little or no
current such as detection, compensation or tertiary windings, self-heating is of little concern;
however for the main ratio windings it becomes paramount. While the amount of power
generated in a winding is of course the square of the winding current times the winding
resistance, the temperature buildup is more difficult to calculate since it depends on how readily
heat can be removed from the winding. However, for most practical cases a rule-of-thumb of
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240 amperes per cm2 of wire cross-section should be acceptable. This applies to devices with
multiple windings in a reasonably ventilated space maintained at room temperature. Table 5.1
presents the approximate current carrying capacity of several wire sizes based on this rule. Of
course, a heavier wire (i.e, smaller wire gage) than shown in Table 5.1 can be used, and may be
appropriate to achieve the desired resistance for the winding.

Table 5.1
Approximate Current Carrying Capacity of Selected Wire Sizes

Wire Size (AWG) Current Carrying Capacity (A)

#12 7.9
#15 4.0
#18 2.0
#20 1.2
#24 0.49

The number of turns to use for a winding depends on the type of winding. For a detection
winding, the required sensitivity dictates the number of turns needed, as discussed in section 4.4.
For tertiary or compensation windings, the number of turns is usually selected to match that of
the secondary winding, and the wire size for these is usually selected to give the lowest
resistance that can be achieved in a single-layer winding, although in some cases multi-layer
windings may be required. The effects of the resistances of these windings on the device error
are given in chapter 6. For the secondary windings of transformer stages, the required
magnetizing impedance sets the lower bound for the number of turns (see sections 1.2, 3.1, 4.3
and chapter 6), but other considerations such as saturation flux density can dictate a larger
number (see section 4.2). Of course, the number of turns selected for the secondary winding
must give an integer number of turns for the primary winding, to achieve the desired turns ratio.

5.2 Winding Layout

As seen in previous chapters, the error of a transformer stage that results from magnetizing
current is only dependent on the number of turns of the secondary winding. Therefore, it is
usually preferable to have a fixed number of turns for the secondary winding since this practice
keeps the error constant over all available ratios. Multiple ratios are then accommodated via the
primary winding. In chapter 7, we will see that winding uniformity is important in minimizing
so-called magnetic errors, so it is also important to distribute the turns of a winding uniformly
around the core, preferably in one layer. This also makes it easier to calculate errors due to
circulating capacitive currents as discussed in chapter 8. The preference for single-layer
windings has two reasons: interwinding capacitance is greatly increased in multi-layer windings,
leading to larger capacitive errors; and the leakage inductance of a winding increases
substantially with multiple layers since flux between the layers does not link all of the turns. The
leakage inductance is also greater in the outer winding, since the flux in the space between
windings does not link the inner one at all. Therefore, it is common practice to make the
secondary the inner winding, thus minimizing its leakage impedance and the resulting error that
it causes in conjunction with the magnetizing impedance. The reactance of a single layer
secondary winding is then usually negligible at lower frequencies. For multi-layer windings
though, the reactance can be the dominant source of leakage impedance, especially at higher
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frequencies. Also, the leakage reactance of the primary (outer) winding is relatively larger. Note
that it is experimentally difficult to measure the individual leakage impedances of each winding,
except for their dc resistive components. Therefore they must be estimated analytically
whenever it is likely that the reactances will be significant. Of course, the resistive components
can be readily estimated from the resistance per unit length of the wire (available from wire
tables) and the length of wire in the winding. Formulae for calculating leakage reactances can be
found in [1,19].

For multi-ratio devices, a series-parallel arrangement of the primary winding as illustrated in fig.
5.1 can be used to advantage. The winding is divided into P individual sections of Q turns each,
with the sections wound side-by-side such that the core circumference is filled by the P sections.
To achieve the lowest available ratio, NS/NP, all P sections are connected in series. Higher ratios
are available by connecting the sections in series-parallel combinations as shown in the figure.
For the example in the figure, P is 8 and Q is 30. If the secondary winding has 240 turns, then
the arrangement in the figure can give four ratios: 1/1 (240/240), 2/1 (240/120), 4/1 (240/60), and
8/1 (240/30). Note that for a fixed secondary current level, the primary current increases in
proportion to the turns ratio, but the current flowing in each of the P sections is constant
regardless of ratio and the power dissipation in the winding is also constant. Furthermore, the
ampere-turn current distribution in the winding does not change from ratio to ratio, so that any
magnetic error (see chapter 7) that exists should be independent of ratio as well. This method
minimizes the total number of turns required in the primary winding, and requires wire of only
one size. In addition, the primary leakage impedance simply scales inversely with the square of
the ratio. The drawbacks of the series-parallel approach are that the available ratios are limited,
and procedures used to make the necessary connections are more complicated than is otherwise
required.

Figure 5.1 Series-Parallel Arrangement for Primary Winding (one example)

5.3 The “Single-Turn” Problem

As an N-turn winding progresses around the circumference of the core, it not only links the flux
in the core N times, but it also links once any flux in the window of the core. Flux in this region
is extraneous and will induce an additional voltage in the winding that is unwanted. Such flux
often represents spurious mutual coupling to external circuit elements, e.g., currents in
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conductors leading to or from the device in question, and as such will induce a voltage that is
coherent with the flux in the core. For ratio windings, an induced voltage is usually
inconsequential if it is small with respect to the normal voltage appearing across the burden (for
secondary windings) or at the source (for primary windings). However, for the detection
winding of a current comparator, the voltage represents a direct error, and for tertiary and
compensation windings that operate at low voltages, it can create problems as well. The solution
to the problem is to add a single return loop around the window that cancels the single turn of the
winding, as illustrated in fig. 5.2.

Figure 5.2 Solution for “Single-Turn” Problem

5.4 Turns Counting

Somewhat surprisingly, it isn’t necessarily easy to make an error-free count of the number of
turns that are being manually applied to a core. Ten turns are easy to count, but 100 turns
requires some care, and 1000 turns is even more difficult. After the turns are applied, it is
important to verify the count or else the device may be useless. The setup shown in fig. 5.3 is
useful for this purpose.

Figure 5.3 Turns Counting Circuit
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In the figure, NX represents the number of turns in the winding to be counted and NC represents
the number of turns, presumed known, of another winding placed on the same core. The
winding under test is excited by a source, and the voltage across each winding is accurately
measured. For the results to be accurate, NC should be readily countable, but no smaller than 10;
the test frequency should be chosen such that

XXmx ZNZ 10 , (5.1)

where Zmx is the magnetizing impedance of the winding under test at that frequency
Zx is the leakage impedance of the winding under test,

and V1 should be set high enough that V2 is readily measurable with uncertainty less than
1/(10NX). The number of turns in the test winding is then given by:
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where round[*] represents the nearest integer value of *. Clearly, as NX approaches 1000 or
more, the demands on the voltmeter’s accuracy become critical. If a voltmeter with sufficient
accuracy is not available, then it becomes necessary to create a bridge circuit in which the
voltage ratio is compared with the programmable voltage ratio of an accurate, inductive voltage
divider.

6. PASSIVE AND ACTIVE CORRECTION TECHNIQUES

As we saw in earlier chapters, the ratio accuracy of a simple two-winding current transformer is
limited by the inherent magnetizing impedance of the secondary winding. The result is that a
small portion of the secondary current is shunted away from the burden. A number of
approaches have been proposed to minimize this error, and these are generally based on adding
“corrective” cores and windings, or on the use of feedback amplifiers, or more often, on
combinations of both approaches.

6.1 Passive Two-Stage Current Transformers

The addition of a second core and winding as illustrated in fig. 6.1 creates a so-called two-stage
transformer [10, 26]. As the figure illustrates, the primary and secondary windings link both
cores, but the tertiary winding only links core 2. The second stage consisting of core 2 and the
tertiary winding, senses the ampere-turn difference of the first stage, i.e., the magnetizing
current, and under the proper conditions produces a tertiary current that is very nearly equal to it.
Therefore, the sum of the secondary and tertiary winding currents is very nearly equal to the
ideal secondary current. For the second stage to produce an accurate correction however, the two
stages must have separate burdens, or the common burden must be very small. The equivalent
circuit of fig. 6.2 illustrates the case in which there are two separate burdens, designated ZB1 and
ZB2. Note that the equivalent circuit is simply the equivalent circuit of a simple current
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Figure 6.1 Two-Stage Current Transformer with Separate Burdens

transformer (stage 2) embedded in the equivalent circuit of another simple current transformer
(stage 1), and the primary current of stage 2 is the magnetizing current of stage 1. A solution of
the network equations for fig. 6.2 gives the following expression for the transformer ratio,
defined as the ratio of the primary current to the sum of the actual secondary and tertiary
currents:
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Figure 6.2 Two-Stage Transformer with Separate Burdens: Equivalent Circuit

Therefore, the ratio error as defined in section 1.2 is approximately equal to minus the product of
the ratio errors of the individual stages. Brooks and Holtz first described the two-stage current
transformer [26] in 1922. In their application, two separate windings of a wattmeter constituted
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the two burdens, and the wattmeter responded to the sum of the two currents, thus providing a
more accurate reading than was attainable with a conventional wattmeter and single-stage
transformer.

Figure 6.3 Two-Stage Transformer-Scaled Resistor

Fig. 6.3 illustrates another application of the two-stage transformer with separate burdens that
has been used successfully by the author and others. For the case in which ZB2 is approximately
equal to ZB1, this is a simple but very accurate way to produce a lower-valued trans-resistance
from a larger-valued 4-terminal resistor. Here, the output voltage is given by:
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where   112 BB ZZ and 1 and 2 are as defined above.

Although simple, this circuit can be quite accurate and exhibit wide bandwidth; furthermore,
reasonable resistance values (0.1 to 1.0 ohm) can be used for good ac accuracy.

Figures 6.4a and 6.4b Two-Stage Transformer with Single Burden: Equivalent Circuits

Also, the power dissipated in the output resistor is only Np/Ns times the power dissipated in an
un-scaled resistor of the same value. The accuracy of a two-stage transformer degrades usually
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when a single burden is shared by both stages. The corresponding equivalent circuit is shown in
figs. 6.4a and in a reduced form in 6.4b.

Figure 6.4c Two-Stage Transformer with Single Burden: Final Equivalent Circuit

Finally, following a Y transformation, the equivalent circuit in fig. 6.4b yields that shown
in fig. 6.4c,

With the usual assumption that the burden and leakage impedances are small with respect to the
magnetizing impedances, the circuit of fig. 6.4c yields the following transformer ratio:
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Note that the effect of the second stage in this case is to essentially eliminate the contribution of
the secondary winding leakage impedance to the error, while leaving the contribution due to the
burden untouched. Therefore, unless the burden impedance is very small, the two-stage
transformer with common burden is not in itself a very useful circuit.

6.2 Active Two-Stage Transformers

The use of feedback amplifiers can minimize the previously discussed errors in two-stage
transformers caused by the burden impedance. A simple example is shown in fig. 6.5. Here, the
effective burden as seen by the transformer is reduced by the amplifier gain, G, and the output
voltage is given by:
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Figure 6.5 Two-Stage Transformer with Feedback Amplifier

For high-accuracy applications, this circuit requires that the amplifier gain be quite high at the
frequencies of interest. Furthermore, the amplifier must be capable of handling the full
secondary current as well as the full power dissipated in the burden. These requirements are not
often easy to meet in practice.

Figure 6.6 Amplifier-Aided Two-Stage Transformer

The amplifier-aided two-stage transformer circuit shown in fig. 6.6 minimizes all of these
problems [10]. In this case, the first stage supplies the main current and power to the burden,
while the amplifier is used to reduce the burden as seen by the second stage, and to sum the
tertiary current with the secondary current in the burden. The value of the current delivered to the
burden is given (with the usual assumptions) by:
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where the second stage burden, ZB2, is:
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The resulting transformer ratio is then:
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Both of the error terms are of second order, so there is no first-order dependence on the amplifier
gain, unlike the example of fig. 6.5. In addition, the last error term should be essentially constant
over a wide range of frequencies since the magnetizing impedance, Zm2, increases as the
amplifier gain is rolling off with frequency. Because the feedback of this design is directly
coupled rather than magnetically coupled as with some other designs, it is inherently quite stable
at large open loop gains. A potential drawback however is that any dc offset in the amplifier will
produce an unwanted dc current in the burden.

6.3 Active Current-Comparator Correction Circuits

Other correction circuits are based on the current comparator. For example, the self-balancing
current comparator developed by O. Petersons [16] combines a feedback amplifier with the
compensated current comparator of section 3.1 to produce a nearly ideal transformer ratio. The
circuit is shown in fig. 6.7 and its equivalent circuit is given in fig. 6.8. Here, the amplifier
produces a compensation winding current, IC, that balances the current comparator. The current
IC is summed with the secondary current, I’S, in the burden, establishing a nearly ideal current
ratio. A solution of the network equations derived from fig. 6.8 gives the following transformer
ratio (see [16]):
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Note that in designs where the first error component of (6.8) is negligibly small, (6.8) becomes
essentially the same as (6.9). The magnetically coupled feedback of this design requires care in
stabilizing the amplifier, and a wideband operation is difficult to achieve.

Figure 6.7 Self-Balancing Current Comparator
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Figure 6.8 Self-Balancing Current Comparator: Equivalent Circuit

The next example, the Miljanic-So-Moore circuit [3], looks at first like the self-balancing current
comparator; however, the feedback is via an excitation winding on the core of the first - or
transformer – stage as seen in fig. 6.9. With sufficient gain, this winding provides just the right
magnetizing current to the first stage to cause a nearly perfect secondary current to be developed.
The feedback current is returned with the opposite polarity through the detection winding. Since
the detection winding has the same number of turns as the excitation winding, the excitation
current produces no flux in the detection core, and the only source of flux in that core is any
imbalance in the primary and secondary ampere-turns. The equivalent circuit of fig. 6.10 is
rather complicated, but serves to illustrate the operation of the circuit. For sufficient high
amplifier gain, the only remaining error in this circuit is caused by the flow of the excitation
current through the leakage impedance of the detection winding. The resulting voltage drop
must be offset by a slight error in I’S that flows through Zm2, the magnetizing impedance of the
detection winding. This error is given by:

 

21 mm

BSD

ZZ

ZZZ 
 . (6.10)

Figure 6.9 Miljanic-So-Moore Circuit
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Figure 6.10 Miljanic-So-Moore Equivalent Circuit

As (6.10) indicates, the error is inversely proportional to the magnetizing impedance of the
detection winding and directly proportional to the detection winding leakage impedance. Since

the former is proportional to 2
DN and the later to DN , it is reasonable to make the number of

turns of the detection winding, and hence the excitation winding also, as high as practicable.
This circuit has the advantage that no dc current is introduced into the burden.

6.4 Construction of Two-Stage Transformers and Compensated Current Comparators

A typical physical arrangement of the cores and windings for two-stage transformers as well as
compensated current comparators is illustrated in fig. 6.11.

Figure 6.11 Construction of Two-Stage Transformers and Compensated Current Comparators

Note that core 2 is shown enclosed in a magnetic shield. The purpose of this is discussed in
detail in the following chapter. Although this general method of construction is the most widely
used today, the early papers of Miljanic, Kusters and Moore [4, 17, 18, 20] propose another
method which combines the function of core 1 with that of the magnetic shield. Most today
agree that the construction shown in the fig. 6.11 leads to more effective magnetic shielding.
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Figure 6.12 Cascading Two-Stage and Amplifier-Aided Two-Stage Transformers

6.5 Ratio Cascading

In some cases where large ratios are needed, it is preferable to achieve the desired ratio by
cascading two (or more) devices as illustrated in fig. 6.12. The benefit of this approach is that
fewer turns are required for the windings of each device, resulting in smaller physical size and
lower capacitive errors. In the example shown, a simple two-stage transformer with a ratio of
NS1/NP1 is cascaded into an amplifier-aided two-stage transformer having a ratio of NS2/NP2, and
the resulting composite ratio is the product of the two: (NS1NS2)/(NP1NP2). Note that the tertiary
winding of the upper transformer cascades into a tapped section of NP2 turns of the tertiary
winding of the lower transformer. This assures that the equivalent burden on the second stage of
the upper transformer is appropriately small, and that the correction current of that stage is
weighted appropriately in the lower transformer. Similar cascading approaches can be used
when the lower device is a current comparator, either simple or compensated.

7. MAGNETIC ERROR: ITS MEASUREMENT AND MITIGATION

In previous chapters, it was assumed that the primary and secondary windings couple equally to
the tertiary winding of a two-stage transformer, or to the detection winding of a current
comparator. In fact, this is never quite true: the coupling is dependent on the physical
distribution of windings, and on the homogeneity of the magnetic properties of the core. For
devices in which care has been taken to make the windings uniform, and high quality cores are

used, the magnetic error can usually be held to a level of about 510 . To achieve higher
accuracies, some type of magnetic error mitigation must be employed. As a result of magnetic
error, the sensitivity of a detection winding is somewhat different to ampere-turns in the primary
winding as it is to ampere-turns in the secondary winding, as illustrated in fig. 7.1. Therefore,
under the simple conditions shown in fig. 7.2, the detector voltage will not be zero, i.e.,
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Figure 7.1 Unequal Sensitivities Due to Magnetic Error

Figure 7.2 Manifestation of Magnetic Error

7.1 Source of Magnetic Error

The cause of magnetic error is illustrated in fig. 7.3, which shows a section of a magnetic core
with detection winding, and another concentrated winding represented by a single turn.

Figure 7.3 Source of Magnetic Error
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Although a detection winding is used in this example, the same principles hold for the tertiary
winding of a two-stage transformer, or for that matter, any third winding that is intended to be
linked equally with the main (primary and secondary) ratio windings.

In a current comparator, the detection winding would normally be connected to a detector, and
the single-turn winding would represent a section of either of the ratio windings through which a
current would pass. To understand magnetic error though, it is conceptually easier to imagine
the reciprocal network in which the detectors and sources are interchanged as indicated in fig.
7.3. (Although reciprocity does not strictly hold for magnetic devices based on nonlinear core
materials, it is a reasonable approximation for our purposes here). Imagine then that a sinusoidal
current is passed through the detection winding, causing magnetic flux in the core as shown. If
the core and detection winding are reasonably uniform along the path of the core, nearly all of
the flux is contained within the core; however, because of small non-uniformities, small amounts
of flux may leave and reenter the core as illustrated by . When the loop is positioned as
shown, it does not link this leakage flux; but when the loop is rotated to another position on the
core, all of the flux is linked. Thus from Faraday’s law the difference in induced voltage between
the two positions is:

   dt

d
daB

dt

d
dlEV

S

D . (7.2)

Invoking the reciprocity theorem, if the current is instead passed through the loop and the loop is
moved around the core, then the same voltage change, VD, as given in (7.2) will appear across
the detection winding. This suggests that two windings carrying the same but opposing current
will not necessarily produced the hoped-for null at the detection winding, indicating the presence
of magnetic error.

7.2 Test Method for Magnetic Error

The arguments just presented suggest a simple and quite effect test method for magnetic error, as
illustrated in fig. 7.4.

Figure 7.4 Test Method for Assessing Magnetic Error

It is implemented as follows: After the detection (or tertiary) winding is in place (with or
without a magnetic shield as discussed below), two concentrated bundles of wire, each with the
same number of turns, are loosely wound on the core, so that they can be moved along the core
independent of each other. They are then connected in series opposition and energized by a
current source. The current is set so that the ampere-turns of each winding (I N in the figure) is
the same as will exist in the ratio windings of the completed transformer or current comparator.
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As the detection winding voltage is monitored, the two bundles are moved independently to
different positions around the core to find the maximum voltage, VD, that occurs. The magnetic
error is then given by:

SD

D
m

ZNI

V



 , (7.3)

where ZD-S is the sensitivity of the detection winding as discussed in chapter 4. This
measurement will almost surely give a worst-case estimate of the magnetic that will be
encountered when the ratio windings are applied, assuming some minimal care is taken to
distribute the windings uniformly. Much has been written on the subject of magnetic error [4, 9,
21], and numerous test methods have been described, but in the author’s view this simple test is
the most relevant and effective one available. For completeness however, it is worth noting that
another, less significant mechanism for magnetic error has been described by O. Petersons [9],
and this source requires a different type of test for detection and measurement.

7.3 Magnetic Shielding to Reduce Magnetic Error

If the level of magnetic error thus measured exceeds the design requirements, the error can be
substantially reduced by the use of a magnetic shield. The concept of magnetic shielding of cores
to reduce the errors in transformer-like devices was first described by A. M. Thompson in his
classic paper of 1958 [24]. The idea seems to have been discovered independently but somewhat
later by Miljanic, Kusters and Moore [21], and it was this group that led to its widespread use in
current comparators.

As illustrated in fig. 7.5, a magnetic shield consists of a hollow toroidal box of high-permeability
magnetic material that encloses the detection winding. By intercepting the errant elements of
magnetic flux that were shown in fig. 7.3, a magnetic shield ensures that loops representing the
ratio windings always link the entire flux, , regardless of orientation around the core.

Figure 7.5 Use of Magnetic Shield to Reduce Magnetic Error
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The requirements for a magnetic shield are as follows: (1) All closed loops on the Toroidal
surface must be low reluctance, and (2) All closed loops penetrated by the core must be high
impedance. Therefore, toroidal half-shells (fig. 7.6) must have an electrically insulated barrier
between them, and the barrier must be thin and widely overlapping to minimize the reluctance
between them.

Figure 7.6 Magnetic Shield – ½ of Shield Shown to Illustrate Cross Section

The shield design shown in fig. 7.6 meets these requirements and is quite effective. (Note that
only half of the shield is shown to reveal the cross section.)

The material forming the box is typically 0.125 cm mumetal, with mumetal-welded seams. After
fabrication, the box should be annealed to achieve the maximum permeability. An insulating gap
of about 0.05 cm is left at the outer overlap of the two half-boxes, and it should be filled with a
flexible insulator to ensure that no contact is possible between these two sides. Otherwise, closed
loops around the minor circumference of the core could be short-circuited and rule 2 above
would be violated. On the other hand, the gaps should be kept small so that rule 1 is obeyed. If
the height of the overlapping region is very large with respect to the dimension of the gap, then
the reluctance around the minor circumference of the toroid will be low. Such a shield remains
effective for all frequencies at which the permeability remains high. Eventually however, eddy
current losses in the material reduce the effective permeability of such shields to the point that
they are no longer useful.

Figure 7.7 Eddy Current Shield – ½ of Shield Shown to Illustrate Cross Section
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To achieve useful magnetic shielding at higher frequencies, eddy current shields can be used. As
shown in fig. 7.7, these are toroidal boxes made of high-conductance, non-magnetic metals, and
work by excluding flux penetration. Flux entering a high-conductivity shield with thickness
greater than the skin depth of the material generates eddy currents that oppose the flux, and this
phenomenon is responsible for their effectiveness. In this case, all closed loops on the toroidal
surface should ideally have low resistance, and like the magnetic shields previously considered,
all closed loops penetrated by the core must be of high resistance. These two requirements are of
course in conflict for loops around the minor core circumference. The second requirement must
be strictly met to avoid a shorted turn which would be totally unacceptable; therefore the first
requirement can only be met for most but not all loops. By allowing a large overlap region
however, such shields are still quite effective at higher frequencies.

The skin depth, , for non-magnetic metals is given by:
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where f is the frequency, and  is the resistivity in - m. For copper, this gives a skin depth of
0.065 m/s1/2 per root Hertz. At 60 Hz, the skin depth for copper is 0.84 cm, which requires a
fairly bulky shield to be effective; however at 10 kHz it is only 0.65 mm, and reasonably
lightweight shields are effective at that frequency. Fortunately, many magnetic shields remain
effective at frequencies of 1 kHz or higher.

Eddy current shields like that shown in fig. 7.7 present some construction difficulties because at
least one seam must be joined after the shield parts are assembled around the core. While three of
the seams can be welded (e.g., with copper) before final assembly, the last seam must be sealed
afterwards, with a lower temperature procedure. Either low-temperature lead-tin solders or other
solders such as Wood’s metal can be used.

Table 7.1 lists approximate values for the lowest magnetic error achievable with different
configurations. In all cases, it is assumed that the windings are each uniformly distributed in one
layer on a high permeability core (except for the last case in which an air core is usually used).

Table 7.1 Lowest Achievable Magnetic Error for Different Configurations

Configuration Minimum Magnetic Error, m

No Shielding 10-5

Single Magnetic Shield 10-7

Eddy Current Shield 10-6

Magnetic and Eddy Current Shields 10-8

Superconducting Shield (dc only) 10-10

Note that exceptional shielding can be achieved with a combination of magnetic and eddy
current shields. For a thorough discussion of shielding and the use of combination shields, see
[4, 9].
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8. Calculation and Management of Capacitive Errors

Because capacitance is unavoidably associated with the windings of transformer-like devices,
small amounts of current are shunted away from windings, and are directed from one winding to
another. One effect is that the current entering one terminal of a winding is generally not the
same as the current leaving the other terminal. Another effect is that the current ratio of the
device is changed by the flow of capacitance currents. Both of these effects are dependent on the
driving voltages behind the capacitive currents, which in turn are dependent on the network
impedances and particularly the burden. It is apparent then that precision measurements will
require that the current ratio be well-defined. This means:

1. Specifying the terminals where the currents are defined,
2. Specifying the terminal voltages, and
3. Specifying the burden.

If the current ratio is thus defined and if the winding geometries are relatively simple, then it is
possible to calculate the expected capacitive errors. The general approach, first outlined by P.
Miljanic [19], is as follows:

1. First, assume that the principle of superposition is valid,
2. Locate a likely source of capacitance and estimate its value,
3. Express the voltage across the capacitance as the product of a winding current and

impedance,
4. Calculate the resulting capacitive current and multiply by the number of turns it links

(when it is not included in the defined current) or shunts (when it is included),
5. Divide the results by the main ampere-turns to get the component of capacitive error,

and
6. Evaluate the sign of the error (i.e., via factor kC, below).

In some cases, it is useful to incorporate electrostatic shields in transformer designs to help
manage capacitive errors. Such shields, made from metal foil or conducting paint or epoxy, help
in defining and redirecting capacitive currents. Once capacitive errors have been calculated or
measured, it is almost always possible to minimize the error by introducing another (discrete)
capacitance in the network that produces an equal and opposite effect.

8.1 Evaluation of Sign Factor, kC

To begin the process of calculating capacitive errors, we will start with the last item in the list
above, evaluating the sign of the error. Once a capacitive current has been identified, the sense
of its effect on the overall ratio error of the device is determined by the turns that it links or
bypasses. Although it is a good practice for the designer to work this out to his or her own
satisfaction, we reduce the problem here to a selection of four possibilities listed in Table 8.1.
For a current to be included in the defined current, it must flow into (or out of) the defining
terminal for that defined current. Some examples given below will help to clarify this point.
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Table 8.1 Evaluation of Sign Factor, kC

Winding Conditions kC

Secondary Capacitance current is included in the defined IS but does not flow

through all NS turns

+1

Capacitance current is not included in the defined IS but links at least

some of secondary turns

-1

Primary Capacitance current is included in the defined IP but does not flow

through all NP turns

-1

Capacitance current is not included in the defined IP but links at least

some of primary turns

+1

8.2 Calculating Capacitive Errors: Examples

The following examples illustrate how the six steps given above are used to calculate capacitive
errors. In Miljanic’s paper [19], examples of simple current comparators with unshielded
windings are given, and the reader should consult that paper for those applications. Most of the
examples given here represent devices with transformer stages, i.e., two-stage transformers and
compensated current comparators, and in many cases electrostatic shields are used, with the
shields being at different potentials with respect to that of the defining terminal. Such conditions
can occur in some transformer-ratio-arm bridge applications, as well as in current transformer
testing. In all of the examples, the winding in question is assumed to be uniformly distributed in
one layer, and the dotted terminal is assumed to be the terminal where the current is defined. The
examples do not include compensation windings, detection windings or tertiary windings since
in operation these winding are usually at zero, or at least constant potential everywhere, and are
therefore rather easy to shield to prevent the flow of capacitive currents. Of course, the designer
should verify this for the particular circuit in question before dismissing these windings as
sources of capacitive error. When electrostatic shields are used, capacitive currents can flow
between shields, or from the shields to ground. This needs to be considered by the designer also,
since it could cause additional currents to be directed to or from the defined terminals. If all of
the shields are at ground or virtual ground potential, this problem is eliminated since the voltage
differences between shields and to ground are then all zero.

8.2.1 Transformer or Compensated Current Comparator: Secondary Shield Connected
to Defined Terminal

This example is illustrated in fig. 8.1. The capacitive error considered here is due to the
distributed capacitance between the winding and the shield. Differential elements of
capacitance, dC, are illustrated along with differential elements of the resulting capacitive
current, dI. These are given by:

CdjVdIdN
N

C
Cd N

S

SS  and , (8.1)

where CSS is the total capacitance between the secondary winding and its shield, which is readily
measured if the shield is disconnected.
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Figure 8.1 Capacitive Current in Secondary Winding of a Transformer or Compensated Current
Comparator, with a Shield Connected to the Defined Terminal

Since this example involves the secondary winding of a device that transfers power to a burden,
the voltage, VS, at the unmarked terminal (with respect to the voltage at the marked) is –ISZB. At
any point along the winding, the voltage is given by:

  SSBSS

S

N ZIZZI
N

N
V  . (8.2)

The first term within the brackets represents the voltage induced in the winding, and the second
term represents the voltage drop caused by the flow of the current through the distributed leakage
impedance of the winding. Since the winding is assumed to be uniform, the resulting voltage
diminishes linearly from the unmarked to the marked terminal. The absolute value of VN is used
in (8.1) because the sign information is applied separately via factor kC. Note that the capacitive
current flows from the shield to the winding and returns to the shield at the marked terminal.
Since the current links some of the winding but never enters or leaves the marked terminal to be

included in the defined current, the value for kC is –1, which in (8.4) is represented as 
Ck . The

net ampere-turns that excites the core is increased (adding to the effective excitation current),
and as a result the secondary current is reduced by the same amount. In equation (8.3), the
effective ampere-turns produced by the capacitive current is calculated by integrating the product
of the differential currents and the number of turns they each link. (The use of a simple
integration is of course an approximation because the turns have both discrete and continuous
properties.)
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If we divide the results from (8.3) by the ideal secondary current, IS, and include the sign factor
we have
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Therefore, the current ratio is given by
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In this case, the capacitive current causes additional ampere-turns to excite the core, and in
response the secondary winding current is reduced by the same amount, causing the current ratio
to increase.

8.2.2 Transformer or Compensated Current Comparator: Secondary Shield Grounded;
Marked Terminal at Virtual Ground

This example illustrates how a simple modification of the last example causes a significant
change in the size of the error, as well as a reversal of the polarity. In this case shown in fig. 8.2,
the shield is connected to ground while the marked terminal is brought to a virtual ground as
often occurs when a compensated current comparator is used. Although the capacitive currents
appear to flow just as in fig. 8.1, there is an important difference: The current flows from ground
into the winding while shunting parts of it, and exits the marked terminal to return to ground
elsewhere in the circuit. Therefore, the conditions in the first row of Table 8.1 apply, and the
sign factor, kC, is +1.

Figure 8.2 Capacitive Current in Secondary Winding of a Transformer or Compensated Current
Comparator, with a Grounded Shield and Marked Terminal at Virtual Ground

The values for dC, dI and VN are as before in (8.1) and (8.2). Since in this example the
capacitive current is part of the defined secondary current but does not link all NS turns, we
calculate the ampere-turns that are lost. Therefore, the net ampere-turns is given by
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and
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This gives the current ratio as
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8.2.3 Transformer or Compensated Current Comparator: Turn-to-Turn Capacitance of
Secondary Winding

In the previous two examples, the winding-to-shield capacitive error was evaluated, but another
source of capacitive error also exists for these two examples.

All windings have capacitance between the individual turns as indicated in fig. 8.3, and the
resulting error must also be evaluated. If the windings are uniformly distributed and the
capacitance, CS-T, between turns is constant, then it is easy to show that the equivalent circuit at
the bottom of fig. 8.3 is valid, in which a lumped CS-T appears across the winding terminals.

In this case, the capacitance CS-T is not readily measured directly, but it can be estimated by
measuring the capacitance between two isolated turns having the same geometry and spacing.

Figure 8.3 Turn-to-Turn Capacitance of Secondary Winding

For this example, kC is –1 since the current is not included in the defined IS, and the secondary
winding voltage is

  SSBSSS ZIZZIV  , (8.9)

and the equivalent net ampere-turns is given by

  STSEQ NCjVIN   . (8.10)

The resulting error is:
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Note that shunt capacitance causes a negative ratio error. This means that it is possible to offset
positive capacitive errors as in the example of section 8.2.2 by introducing additional shunt
capacitance across the winding.
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8.2.4 Transformer or Compensated Current Comparator: Primary Shield Grounded;
Marked Primary Terminal at Virtual Ground

This example is the primary-winding equivalent of the example shown in section 8.2.2, and is
illustrated in fig. 8.4.

Figure 8.4 Capacitive Current in Primary Winding of a Transformer or Compensated Current Comparator,
with a Grounded Shield and Marked Terminal at Virtual Ground

Note that the capacitive current flows from the shield to the winding and returns to the shield via
a ground elsewhere in the circuit. Additional ampere-turns are added, and the current is not
included in the defined primary current; therefore, from the last row of 8.1 we see that kC is +1.
As before, the differential current and capacitance are:
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The voltage drop along the winding includes a component due to the primary leakage
impedance, ZP, and one due to the reflected impedance of the secondary circuit, ZX, as follows:
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The equivalent ampere-turns linking the core is:
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and the resulting error is:
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Therefore, the current ratio is similar to that of the corresponding example with the secondary
winding treated in section 8.2.2. Likewise, when the shield is connected to the marked primary
terminal, the resulting error is:
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which also corresponds to the secondary winding example in section 8.2.1.

8.2.5 Transformer or Compensated Current Comparator: Turn-to-Turn Capacitance of
Primary Winding

In this last example, the effect of turn-to-turn capacitance associated with the primary winding is
considered, as illustrated in fig. 8.5.

Figure 8.5 Turn-to-Turn Capacitance of Primary Winding

Here, the voltage, V, across the winding, and thus across the lumped capacitance, CP-T, is:

XP ZIV  , (8.17)

where ZX is the same as in the previous example above. Since the capacitive current is included
in the defined primary current but shunts some (or in this case all) of the primary turns, the sign
factor, kC, is –1 from Table 8.1, and the equivalent ampere-turns is:

  PTPEQ NCjVIN   . (8.18)

This gives an error of:
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which is also similar to the corresponding case involving the secondary winding.

8.3 Trimming of Capacitive Errors in Transformers or Compensated Current
Comparators

As suggested previously, some capacitive errors can be trimmed by adding shunt capacitance
across the winding. In almost all cases, a similar approach can be found, possibly using an
inverting amplifier, to trim the errors. In any case, the value of the trimming capacitance can be
calculated using the formula given in the examples above, or in some cases the value can be
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determined directly via a measurement as illustrated in fig. 8.6. In the author’s experience, the
calculated values can be relied upon with an uncertainty of better than 10 percent, assuming that
the windings and shields are reasonably uniform around the core.

Figure 8.6 Trimming Capacitive Error in a Two-Stage Transformer or Compensated Current Comparator

The figure shows a procedure for trimming the capacitive error discussed in section 8.1, in which
the secondary marked terminal is at virtual ground and the secondary shield is grounded. As
noted before, such an error can be trimmed with the appropriate capacitance connected across the
secondary winding, as indicated by trimmer capacitance, CT, in the figure. The procedure is to
connect the secondary winding in series opposition with the tertiary (or compensation) winding,
as shown, and to excite the windings with an appropriate voltage source. (Since the winding is
being excited from an external voltage source in this case, the capacitive currents flow
differently than in the example of section 8.1; nevertheless, the resulting errors are the same.)
The outer core (core 1), will be excited and the magnetizing current flowing in the secondary
winding returns through the tertiary or compensation winding. If no capacitive currents flow,
then core 2 will experience zero net ampere-turns, and thus no flux will be present. However,
the excitation of the first core will cause capacitive error current to flow to the shield, returning
via the ground connection. The net ampere-turns of the capacitive error current will then create
an imbalance in core 2, inducing voltage in the tertiary (or compensation winding) that is
detected as shown. If the trimmer capacitance is connected, then compensating ampere-turns are
created, and a value can be found that balances the detector. This method requires that the
tertiary or compensation winding have the same number of turns as the secondary winding,
which is usually the case. As show, the accuracy of the method is limited by the voltage drop in
the tertiary or compensation winding caused by the magnetizing current flowing through the
tertiary or compensation winding leakage impedance, ZT or ZC. Since the source voltage is
equivalent to the secondary winding voltage in operation, the magnetizing current can be
expressed as:
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and the voltage drop across the tertiary winding is:
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The voltage induced in the tertiary winding by the capacitive error current, CIS, is:
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where ZSens is the sensitivity of the tertiary winding. Equating (8.21) with (8.22), we get the
minimum detectable capacitive error:
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Since (8.23) is inversely proportional to test frequency until leakage inductances and eddy
current losses begin to dominate, it is usually possible to perform the test at a frequency for
which C is no greater than 10-6. This source of uncertainty can be eliminated if the test device is
a compensated current comparator, and the detector is connected across the detection winding
instead of the compensation winding.

Once the capacitive error from the secondary winding has been compensated with the method
just discussed, the primary winding can be compensated with a similar procedure. See [10] for
more details.

8.5 Additional Comments on Capacitive Errors

As noted in section 8.2, both the sign and magnitude of capacitive errors may be different for
simple current comparators versus the examples given here. In addition, the errors of unshielded
windings will also differ. The methods given here and in [19] however should allow the
designer to evaluate the errors for many different configurations, so long as the geometry is
simple and well known. It should also be reiterated that careful attention be paid to the exact
way in which the device will be used, since the complete circuit in which the device will be
embedded determines the voltages that will appear at different terminals. Finally, great care
should be taken to avoid capacitive coupling from the ratio windings to sources of power-line
voltage. The currents thus generated can cause large errors if the circuit itself is being operated at
power-line frequency, and can cause “beating” at the difference frequency if another operating
frequency is used. A characteristic of these errors is that they are inversely proportional to the
level of the test current, being proportionately larger at low test currents.

9. CURRENT TRANSFORMER TESTING

An important application of current comparators and two-stage transformers is in the testing of
simple instrument current transformers that are used for metering purposes. When used for this
purpose, the two-stage transformer or current comparator serves as a standard device whose ratio
is compared to that of the transformer-under-test.

Today, most standards that are used for testing current transformers fall into two different
categories: transformer-like standards, and compensated current comparators. They both have the
advantage that they impose very little burden on the transformer under test. This is important
because the errors of simple transformers are quite dependent on the burden that they supply (as
indicated in (1.2)), so it is customary to test them with the same burden that they experience in
the field. Therefore, the residual burden imposed by the test circuit must be smaller than any
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burden that may be specified by the test requirements. The two types of standard devices are not
interchangeable however. Each type requires a different measuring circuit to make the
comparison between the standard device and transformer under test. The two approaches are
discussed below.

9.1 Transformer Testing Using a Standard Transformer

Transformer-like standards are devices that can maintain high accuracy while supporting a
burden. Examples include the active two-stage transformers and active current-comparator
correction circuits discussed in section 6.2 and 6.3, respectively. The normal two-stage
transformer can also be used so long as the tertiary winding is only connected across the
measuring resistor, R, in fig. 9.1. In all cases, the ratio of the standard transformer is chosen to
be nominally equal to that of the test transformer, i.e.,
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Figure 9.1 Transformer Testing with a Transformer-Like Standard

Under this condition, the difference between the two secondary currents, IX is small and flows
through a low impedance circuit where its in-phase and quadrature components are measured
with respect to the standard secondary current, ISS. The equivalent burden, ZB’, imposed by the
measuring circuit on both the standard and test transformers is
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where R is the impedance of the measuring circuit.

Many different types of measuring circuits can be used for this application, and a few
possibilities are considered next.
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Figure 9.2 Test Set Based on Measurement of Error Current Through a Small Resistance

In fig. 9.2, the error current flows through a low valued (1 ) resistor, and the voltage drop
across the resistor is measured in terms of the voltage drop across another low valued (0.1 )
resistor that carries the secondary current of the standard transformer. An electronic vector
voltmeter circuit is used to resolve the in-phase () and quadrature () components of the error
voltage. Although the accuracy of the two resistors has only second order importance, they must
have reasonably low reactance at the operating frequencies of interest.

Figure 9.3 Test Set Based on Measurement of Error Current in a Current Comparator Winding

The circuit shown in fig. 9.3 illustrates another way in which the error current can be measured.
It incorporates a simple current comparator and a G-C current injection network [4, 11, 18].
Here the error current is directed into a low-impedance winding of a simple, unshielded current
comparator where it is compared with the adjustable current set by the programmable
conductance, G, and capacitance, C. Complementary, selectable reference voltages across these
elements assure that the adjustable current is proportional to the secondary current, ISS, and that
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both polarities are accommodated. The current is adjusted to reach a null on the detector.
Assuming that the standard transformer has negligible error, that 0.1(G+jC)<<1, and that the
leakage impedance of winding n1 is negligibly small, the transformer error is then given by:
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2

11.0εx . (9.3)

At detector balance, the voltages across the windings n1 and n2 are small, assuring that the
burden imposed by the test circuit is small, and that the expression in (9.3) remains accurate. By
providing selectable turns ratios, n1/n2, via additional windings, the circuit can accommodate
different ranges of transformer error.

Other test set designs suitable for use in the example of fig. 9.3, as well as the compensated
current comparator example discussed next, can be found in [6, 11].

9.2 Transformer Testing Using a Compensated Current Comparator

As noted in section 3.1, the compensated current comparator [20] is used to detect ampere-turn
balance among its primary, secondary and compensation windings while imposing minimal
burden on the external circuit. To bring this condition about in a transformer test circuit, the
error current must be injected from a current source as shown in the example of fig. 9.4.

Figure 9.4 Transformer Testing with a Compensated Current Comparator

In this example, the current from a G-C network of the type shown above is pumped into node M
to balance the detector. With sufficiently high output impedance and compliance voltage, the
current pump can overcome the voltage that exists at node M while the current comparator is still
unbalanced. Assuming that the current comparator has negligibly small error, the error of the
transformer under test is given by:

 CjGAX   1.0 , (9.4)
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where A is the current gain of the current pump.

As noted previously, other balancing networks such as those described in [6, 11] can be used in
place of the G-C network and current pump shown here.

9.3 Secondary Feed with a Compensated Current Comparator

As previously noted, the voltage across the compensation winding of a compensated current
comparator is effectively zero when the comparator is balanced, thus eliminating the comparator
circuit as a source of burden for the test transformer. No power is transferred between the two
secondary circuits; instead, the power required to energize the secondary circuit of the current
comparator is supplied via the comparator’s transformer stage. Alternatively, the power supply
can be placed in the secondary circuit of the current comparator, and the transformer stage can be
used as a supply transformer to provide the primary current for both devices. This is illustrated in
fig. 9.5. With this approach, a separate, high current supply transformer is not needed; however,
the transformer stage must be designed so that it can support the large secondary winding voltage
that is usually required in this application for large turns ratio, NS/NP. This voltage is given by:
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where ZPX and ZPS are the primary leakage impedances of the current comparator and test
transformer respectively, ZSX and ZSS are the respective secondary leakage impedances, and ZPL is
the impedance of the external primary circuit. For large ratios where the primary current is high,
the inductive component of ZPL becomes the dominant term in (9.5). For example, if the turns
ratio is 200 and the inductance of the primary circuit is 2 H, the voltage due to this term alone
will exceed 150 V at 60 Hz with a primary current of 1000 A.

Figure 9.5 Transformer Testing with Compensated Current Comparator Using Secondary Feed
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It should also be noted that a larger voltage will increase the capacitive errors associated with the
secondary winding, as noted in chapter 8.

9.4 Testing Transformers with Ratios Less Than Unity

Some commercial multi-range transformers can accommodate ratios as low as 0.05 (e.g., 0.25
A/5 A). A standard transformer or compensated current comparator with matching ratios faces
serious capacitive errors: Since the secondary windings must have enough turns to support a
reasonable burden, the primary windings have an unusually large number of turns to
accommodate the low ratios. Whether primary or secondary feed is used, a large voltage can be
expected across the primary winding of a conventional current comparator because the reflected
secondary circuit impedance is multiplied by the square of the turns ratio. This, in conjunction
with the large number of turns, can produce unusually large capacitive errors. For this reason, a
special comparator circuit has been designed to accommodate low-ratio test transformers [12].
In that design, the test set is moved from the secondary to the primary circuit in an effort to
minimize the secondary circuit impedance. An alternative design shown in fig. 9.6 was
developed many years ago by the author, but not hitherto published. In this design, the
transformer stage of the current comparator is physically separated from the current comparator
function, so that they no longer share common windings. With this approach, it is possible to use
far fewer turns for the current comparator itself, noting only that the ratios must match, i.e.,
NPT/NST=NPC/NSC. Because the job of transferring power falls only on the separated current
transformer, nearly all of the required voltage appears across its primary winding and not that of
the current comparator. With shields placed as shown, all of the resulting capacitive currents are
captured and measured by the current comparator windings. By grounding the primary circuit,
virtually no current flows between the shields.

Figure 9.6 Special Purpose Compensated Current Comparator for Ratios Less Than Unity

9.5 Measuring the Test Transformer Burden

Since the errors of current transformers are dependent on the burdens they encounter, a
measurement of the test burden is important in transformer testing. The standard approach for
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this measurement is to connect a resistor of known value across the secondary terminals of the
test transformer and to note the change in indicated error as the test circuit is rebalanced. The
resistor shunts a portion of the test secondary current away from the measurement node, which is
proportional to the burden. Assuming that the resistor, r, is large enough that it has negligible
effect on the burden, this measurement gives:

 rZ B , (9.6)

where  is the change in complex ratio error. A resistance value of 1000  is usually suitable
for most measurements.

10. CALIBRATION METHODS AND DETERMINATION OF UNCERTAINTIES

There are three general methods for determining the errors of current transformer-like devices.
First, the errors can be estimated using the design equations presented in earlier chapters, along
with measurement or estimation of the relevant parameters such as leakage and magnetizing
impedances, maximum magnetic errors, and capacitive errors. Second, the errors can be
measured directly in terms of a reference standard device, using comparison techniques like
those discussed in chapter 9 and in [5]. For comparison techniques appropriate for current
comparators, see [4, 18]. Finally, absolute calibrations of transformers and current comparators
can be made using various step-up techniques. These require two or more devices and usually
bootstrap from simple calibrations of their 1/1 ratios to build up the calibrations of all the higher
ratios in multiple steps. Examples of these approaches can be found in [2, 4, 10, 18].

A typical circuit for calibrating the base 1/1 ratio of a current transformer is illustrated in
fig.10.1. The same circuit can be used for two-stage transformers and for active correction
devices that behave as current transformers, e.g., the devices discussed in section 6.2 and 6.3.
Related circuits can be used for current comparators, although auxiliary sources are usually
required [4, 18].

As shown in the figure, the difference between the primary and secondary currents flows through
winding n2 of the measuring circuit, where it is balanced with the current generated from the
admittance network of the test set.

Figure 10.1 Calibration of the 1/1 Base Ratio of a Transformer
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By placing the 0.1  resistor of the test set on the primary side of the ground connection, it does
not contribute to the burden seen by the test transformer.

The calibration of the 1/1 ratio can be used as the starting point for a step-up calibration
procedure as previously noted, or it can be used to corroborate error calculations made via the
design equations. For devices that have fixed secondary windings, the errors due to magnetizing
impedance and secondary-winding capacitances should not change with changes in ratio.
Similarly, for devices that use the series-parallel configuration for the primary windings
discussed in section 5.2, or devices that have very effective magnetic shielding, the magnetic
errors should also remain unchanged with changes in ratio. Under these conditions, the
capacitive errors associated with the primary windings should be the only errors that change
when the ratio is changed. Therefore, the measurement of the 1/1 ratio is indicative of the major
error contributions at all ratios. In [2], Corney presents a formula to estimate the change in
capacitive error when switching from the series to the parallel connection for transformers using
a series-parallel primary configuration.

For many applications, error calculations that have been corroborated with 1/1 ratio
measurements are sufficient. However, when the highest level of certainty is required, step-up
procedures must be used. These are typically rather difficult and tedious to perform, and require
additional test devices and equipment. The simpler step-up procedures require two multi-ratio
test devices with appropriate ratios, and intercomparison circuitry [2, 10], while still relying on
certain minimal assumptions. For example, in [10] the two test devices are compared using a
simple current comparator having only three ratios (1/1, 2/2 and 2.5/1). Strong arguments can be
made that its errors are negligibly small. The most rigorous step-up procedures require at least
three test devices, along with multiple sources and balances [4, 18], and are rarely warranted.
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