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Cryogenic Temperature Measurement with Platinum

Resistance Thermometers -Is Fixed-Point Calibration Adequate?

by

Robert J. Corruccini

ABSTRACT

An analysis of extensive calibration data for strain-free

"capsule" -type platinum resistance thermometers indicates that

the above question can be answered affirmatively for temperatures

down to 14°K. For such thermometers, interpolation can be

performed by a numerical procedure that makes use of similarities

in the form of the departures of various thermometers from

Matthiessen's rule. Where thermometers of more rugged con-

struction or lower purity are concerned, the data needed to answer

the question are not available. However it is suggested that the

answer may still be "yes" provided the thermometers are sufficiently

uniform in their characteristics.

Text of a paper presented by invitation at the 7th I. S. A. Aero-Space

Instrumentation Symposium, Dallas, Texas, May 2, 1961.
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INTRODUCTION

When an instrument is to be calibrated for use over a wide

range of conditions, it is generally thought to be advantageous on

grounds of convenience to represent its behavior by some simple

mathematical formula. Then, the number of calibration points to be

measured need not exceed the number of constants in the formula,

whereas, lacking such a formula, many closely-spaced calibration

points may have to be measured.

Thus in platinum resistance thermometry, the Callendar-van

Dusen equation is used in the range, 90. 18° to 273. 15°K. This

equation is as follows:

w = 1 + a t-5 -^--1 (-— -6 -±— -1
ioo j v ioo y ^ v ioo j v ioo

(1)

Here w is the reduced resistance R /Rn » t is Celsius temperature,

and a, 6 and (3 are constants. Attempts to find a similar analytical

representation covering the entire useful range down to 10°K have

been unsuccessful, due to the w - t relation becoming increasingly

sensitive to impurities and lattice defects with decreasing tempera-

ture. Consequently it is customary to calibrate between 10° and

90. 18 °K at intervals of a few degrees. The Heat Division, of the

National Bureau of Standards, Washington, D. C. , in making such

calibrations takes sixteen points in this interval.

INTERPOLATION METHODS

1 Cragoe's Z function. In recent years a number of

attempts have been made to overcome the above difficulty, starting

with a proposal by Cragoe based on the assumption that the function

Z, defined as (R - R
T
)/(P.

?
- R ), is practically the same for all
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thermometers. Here, R is the resistance at temperature, T°K,

while R and R are the resistances at calibration points T. and T .

If R and R are determined for a given thermometer, then its

resistance -temperature relationship can be constructed if a reference

table of Z vs. T is available. However, errors up to several

hundredths of a degree commonly result from this procedure using

strain-free laboratory thermometers and taking T. as the boiling

point of hydrogen (about 20 °K) and T as the boiling point of oxygen

(about 90°K). This has not been regarded as acceptable, inasmuch

as such thermometers can have stability and precision of the order of

a millidegree. The worst errors occurred below 50 °K.

Now, it is easy to show that applicability of Cragoe's function

would be consistent with the empirical rule of Matthiessen,

P = p. + p (2)
i o

in which p is the resistivity of a particular sample, p. is the "ideal"

resistivity, a temperature -dependent function which is the same for

all platinums, and p is the "residual" resistivity, a temperature-

independent component. The residual resistivity tends toward zero

as the crystalline perfection of platinum is increased by purification

and annealing. In general this rule is a useful approximation, but

it must be modified in order to obtain a more accurate representation.

2. Kohler's deviation term. A general treatment of

deviation from Matthiessen' s rule has been given by Kohler , who

has shown that the deviations must be positive. By introducing

certain assumptions about the electron distribution function, he

obtained for the additional resistivity the term,

pa
= pqp„p n

-/(pp^ + qp
4
)«A O 1 O 1
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This term is an approximation, and the parameters, p and q, may-

be functions of temperature and cannot be readily calculated at

present from theory. In Fig. 1 is shown schematically the forms

of the three components of the resistivity on this model. Inspection

of resistance -temperature data for various metals including

platinum indicates that the deviation term of Kohler is qualitatively

of the right form to represent the departures from Matthiessen's

rule.

In order to apply this deviation term to resistance thermometer

data in a simple way, it is necessary to assume that p and q are

constants and to transform the modified Matthiessen rule into an

3expression for the reduced resistance. This was done by Schultz

with the result,

w = w. + w (1 - w.) (1 + A) (3)
1 o 1

in which w. = p., /p. w =p /p „- . _ and A = aw./(l+cw.).
i i T i, 273.15, o o 273.15 i i

The constants, a and c, can be evaluated for each thermometer by

calibration at two temperatures, T and T , °K. Then

c = (A - A w /w )/w (A - A ) (4)
1 <L ll i2 ll i. 1

a = A, ( 1 + cw..)/w._ (5)

The subscripts, 1 and 2, indicate values at the temperatures, T

and T .

Because of the theoretical basis of formula (3) it is

reasonable to expect that it should be applicable over the whole range

of temperatures. Thus we might hope to obtain a good fit over all

temperatures up to ambient by taking T and T» as before at about

20° and 90°K, respectively. The reduced residual resistance, w ,
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can be obtained by a measurement at the boiling point of helium,

4. 2°K, since w. is negligible there. Inasmuch as the resistance

at the ice point, 273. 15°K, is also required, application of eq. (3)

involves measuring four fixed points.

An unfortunate aspect of this method is the fact that there is

no unambiguous way of establishing the function, w. vs. T, the

reduced resistance of hypothetical pure and perfect crystalline

platinum. Customarily this function is calculated from the w - T

relation of the most pure sample for which one has data, using the

assumption that A for this sample is zero. When applied in this way,

eq. (3) is found to provide a good fit to strain-free laboratory

thermometers down to about 50 °K. Between this temperature and

20°Kthe errors are as large as several hundredths of a degree.

Thus, while eq. (3) is applicable with fair accuracy over a much

wider range than Cragoe's function, it also fails to represent

thermometers in the region below 50 °K within the accuracy of which

they are capable.

Obviously a better result could be obtained by narrowing the

temperature range. For example, the reduced resistance could be

taken relative to the oxygen point rather than the ice point, which

would permit locating T_ between 20 and 90 °K. Then a better fit

would surely be obtained below 90 °K. However, this would amount

to using Kohler's deviation term as if it were an empirical function.

If empirical methods are to be employed, then another one may be

mentioned which possesses greater flexibility and requires fewer

calibration points than does eq. (3).

4, 5.
3. Three -point empirical method. This method makes

use of the fact that deviations of various thermometers from a Z

function are similar in form. This is illustrated in Fig. 2 which
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shows resistance deviations of a group of thermometers from the Z

function of one of the group. That is, we have plotted for any
»

thermometer, "X", the quantity, R - R , where

R R
i _ / 2X IX \R
X=

R
1X

+ P -R, A )
<RA " R

1A' = R1X + (R
2X " R 1X»

ZA (6)

2A 1A 7

Here, the subscript "A" denotes the thermometer from whose

calibration the reference function Z was derived. T^ and T were

taken as 20° and 90 °K, respectively. If one of the error curves of

representative shape is adopted as a reference standard, then it can

be scaled up or down to provide an approximation to the error curve

of any other thermometer. Let us designate the thermometer used

to provide the error function as "B". Then the scaling factor is

derived from a comparison of the errors of X and B at some third

calibration point, T,. The value of resistance calculated in this

way, R'' , is given by
.A.

I

RX= R
X -(

R

R
'

3X

-R
3X

)
(R B-V <7 >

X 3B 3B

From the appearance of figure 2 it might be thought that in

order to obtain the best results between 20 and 90 °K, T should be

taken midway between, or at about the triple point of oxygen, 54 °K.

Indeed a very satisfactory result is obtained in this way. However,

nearly as good a result is obtained by using the ice point as T .

The latter is much to be preferred on grounds of experimental ease.

The worst temperature errors between 20° and 90°K occur just above

20 °K and, consequently, a result far superior to either of the above

is obtained by locating T at about 30 °K.
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The results of some calculations along these lines are

summarized in table I. These were performed on a group of thirty-

five closely similar strain-free laboratory thermometers that had

been calibrated on the NBS provisional temperature scale. Their

a values all exceeded 0. 003924, and their w values lay between
o

0. 0004 and 0. 0007. It will be noted that the region, 20 to 90°K,

could be fitted within a few millidegrees. It would seem pointless

to wish for better accuracy than this inasmuch as the uncertainty of

the relationship of the NBS provisional scale to the absolute thermo-

dynamic scale of temperature is of the order of 0. 01 degree. For

comparison, the errors using Cragoe's function or eq. (3) with the

same thermometers approached 0. 02 degree.

The calculations of table I have been described more fully

5
elsewhere . It is important to emphasize the close similarity of

the thermometers used in this evaluation. A few tests of eq. (7)

that have been made using thermometers of lower purity (a < 0. 003920

and w > 0. 002) not only show a great deterioration in accuracy below
o

90°K but also suggest that eq. (7) has less advantage over Cragoe's

function when applied to thermometers that differ so greatly. On

the other hand the region above 90 °K is much less sensitive to

variations in quality of the platinum. Here eq. (7) is fully adequate

and can perform the same function as the Callendar-van Dusen

equation with one less calibration point.

CONCLUSIONS

We can now attempt to answer the question posed in the title.

Our conclusions will rest on the foregoing analyses of strain-free

laboratory thermometers. Unfortunately, many users are concerned

with a different class of platinum resistance thermometers in

which the necessity for achieving ruggedness or speed of response
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has dictated a mode of construction in which the platinum is more

constrained. Also, the platinum in such thermometers is often

somewhat less pure. Sufficient calibration data on such thermo-

meters are not available to permit giving a definite answer regard-

ing them. However, the following inferences about them can be

drawn from the studies of strain-free laboratory thermometers.

1. ) The answer to the question in the title is "yes", with the

qualification that some restriction of the thermometer characteristics

may be necessary, and that this restriction must be made more

stringent the greater the desired interpolation accuracy.

2. ) For interpolation accuracy of a few millidegrees from 20 °K

upwards, the three -point empirical method can be used. Apparently,

the range of a values of the thermometers should not exceed about
-6 -4

2x10 and the range of w values should not exceed about 2x10
o

3. ) If the desired accuracy is only a few hundredths of a degree,

then perhaps a tenfold greater range of values of a and w can be

permitted. As the thermometers are allowed to become more

diverse, the advantage of the three -point method over Cragoe's

function will probably become less marked, and particularly so if

T_ lies outside the range of use of the thermometers. Eq. (3) may

be useful where it is necessary to cover both a wide range of

thermometer characteristics and a wide range of temperatures.

4. ) Whatever interpolation method is chosen, optimum results

will be obtained only if the reference functions to be used - R . ,' A
R_, Z, and possibly even w. - have been derived from thermometers
B i

having characteristics similar to those being fitted.
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TABLE I

Summary of Interpolation Errors

Equation T T T Interval Max. error Average of max.
Used Examined in interval errors of 35

thermometers

6

°K

20

°K

90

°K °K

20 to 90

deg

0.016

deg

0.005

7 20 90 273. 15 20 to 90

90 to 273. 15

.006

.009

.003

.002

7 20 90 50 20 to 90 .005 .002

6 30 90 30 to 90 .010 .003

30 90 273.15 20 to 30 .024 .007

30 to 90 .004 .0013
90 to 273. 15 .009 .002

7 20 90 30 20 to 30

30 to 90

.003

.003

.0012

.0012

7 20 50 30 20 to 30

30 to 50

.002

. 002
.0008
.0003

90 50 20 to 30 .015
30 to 50 .002
50 to 90 .001

005
0002
0002

7 14 20 90 14 to 20 . 005 .003

7 10 20 90 10 to 20 . 023 .009

7 90 200 273. 15 90 to 273. 15 .0006
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p.

Po

100 200 300
K

Fig. 1-Schematio representation of the "ideal" or lattice resistivity

(Pi), the residual resistivity (p ), andKohler's deviation

term (p^) for a metal. The magnitudes of p Q and p^ have

been exaggerated relative to p^.
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