CRYOGENIC TEMPERATURE MEASUREMENT WITH PLATINUM RESISTANCE THERMOMETERS: IS FIXED-POINT CALIBRATION ADEQUATE?

BY ROBERT J. CORRUCCINI
Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of non-periodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 ($1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 ($1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (Includes Titles of Papers Published in Outside Journals 1950 to 1959) ($2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.
Cryogenic Temperature Measurement with Platinum Resistance Thermometers — Is Fixed-Point Calibration Adequate?

Robert J. Corruccini
NBS Boulder Laboratories

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature. They are for sale by the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C.
Cryogenic Temperature Measurement with Platinum Resistance Thermometers—Is Fixed-Point Calibration Adequate?*

by

Robert J. Corruccini

ABSTRACT

An analysis of extensive calibration data for strain-free "capsule"-type platinum resistance thermometers indicates that the above question can be answered affirmatively for temperatures down to 14°K. For such thermometers, interpolation can be performed by a numerical procedure that makes use of similarities in the form of the departures of various thermometers from Matthiessen's rule. Where thermometers of more rugged construction or lower purity are concerned, the data needed to answer the question are not available. However, it is suggested that the answer may still be "yes" provided the thermometers are sufficiently uniform in their characteristics.

* Text of a paper presented by invitation at the 7th I.S.A. Aero-Space Instrumentation Symposium, Dallas, Texas, May 2, 1961.
INTRODUCTION

When an instrument is to be calibrated for use over a wide range of conditions, it is generally thought to be advantageous on grounds of convenience to represent its behavior by some simple mathematical formula. Then, the number of calibration points to be measured need not exceed the number of constants in the formula, whereas, lacking such a formula, many closely-spaced calibration points may have to be measured.

Thus in platinum resistance thermometry, the Callendar-van Dusen equation is used in the range, 90.18° to 273.15°K. This equation is as follows:

\[w = 1 + \alpha \left[t - \delta \left(\frac{t}{100} - 1 \right) \left(\frac{t}{100} \right) - \beta \left(\frac{t}{100} - 1 \right) \left(\frac{t}{100} \right)^3 \right] \] (1)

Here \(w \) is the reduced resistance \(\frac{R_t}{R_0} \), \(t \) is Celsius temperature, and \(\alpha, \delta \) and \(\beta \) are constants. Attempts to find a similar analytical representation covering the entire useful range down to 10°K have been unsuccessful, due to the \(w - t \) relation becoming increasingly sensitive to impurities and lattice defects with decreasing temperature. Consequently it is customary to calibrate between 10° and 90.18°K at intervals of a few degrees. The Heat Division, of the National Bureau of Standards, Washington, D. C., in making such calibrations takes sixteen points in this interval.

INTERPOLATION METHODS

1 Cragoe's Z function. In recent years a number of attempts have been made to overcome the above difficulty, starting with a proposal by Cragoe\(^1\) based on the assumption that the function \(Z \), defined as \(\frac{(R - R_1)}{(R_2 - R_1)} \), is practically the same for all
thermometers. Here, \(R \) is the resistance at temperature, \(T^\circ K \), while \(R_1 \) and \(R_2 \) are the resistances at calibration points \(T_1 \) and \(T_2 \). If \(R_1 \) and \(R_2 \) are determined for a given thermometer, then its resistance-temperature relationship can be constructed if a reference table of \(Z \) vs. \(T \) is available. However, errors up to several hundredths of a degree commonly result from this procedure using strain-free laboratory thermometers and taking \(T_1 \) as the boiling point of hydrogen (about 20\(^\circ\)K) and \(T_2 \) as the boiling point of oxygen (about 90\(^\circ\)K). This has not been regarded as acceptable, inasmuch as such thermometers can have stability and precision of the order of a millidegree. The worst errors occurred below 50\(^\circ\)K.

Now, it is easy to show that applicability of Cragoe's function would be consistent with the empirical rule of Matthiessen,

\[
\rho = \rho_i + \rho_o
\]

in which \(\rho \) is the resistivity of a particular sample, \(\rho_i \) is the "ideal" resistivity, a temperature-dependent function which is the same for all platinum, and \(\rho_o \) is the "residual" resistivity, a temperature-independent component. The residual resistivity tends toward zero as the crystalline perfection of platinum is increased by purification and annealing. In general this rule is a useful approximation, but it must be modified in order to obtain a more accurate representation.

2. Kohler's deviation term. A general treatment of deviation from Matthiessen's rule has been given by Kohler, who has shown that the deviations must be positive. By introducing certain assumptions about the electron distribution function, he obtained for the additional resistivity the term,

\[
\rho_\Delta = pq\rho_o\rho_1/(p\rho_o + q\rho_i).
\]
This term is an approximation, and the parameters, p and q, may be functions of temperature and cannot be readily calculated at present from theory. In Fig. 1 is shown schematically the forms of the three components of the resistivity on this model. Inspection of resistance-temperature data for various metals including platinum indicates that the deviation term of Kohler is qualitatively of the right form to represent the departures from Matthiessen's rule.

In order to apply this deviation term to resistance thermometer data in a simple way, it is necessary to assume that p and q are constants and to transform the modified Matthiessen rule into an expression for the reduced resistance. This was done by Schultz with the result,

$$ w = w_i + w_o (1 - w_i) (1 + \Delta) \tag{3} $$

in which $w_i = \rho_i / \rho_i, 273.15$, $w_o = \rho_o / \rho_{273.15}$ and $\Delta = aw_i/(1+cw_i)$. The constants, a and c, can be evaluated for each thermometer by calibration at two temperatures, T_1 and T_2, °K. Then

$$ c = (\Delta_1 - \Delta_2 w_{i1}/w_{i2})/w_{i1} \ (\Delta_2 - \Delta_1) \tag{4} $$

$$ a = \Delta_2 (1 + cw_{i2})/w_{i2} \tag{5} $$

The subscripts, 1 and 2, indicate values at the temperatures, T_1 and T_2.

Because of the theoretical basis of formula (3) it is reasonable to expect that it should be applicable over the whole range of temperatures. Thus we might hope to obtain a good fit over all temperatures up to ambient by taking T_1 and T_2 as before at about 20° and 90°K, respectively. The reduced residual resistance, w_o,
can be obtained by a measurement at the boiling point of helium, 4.2°K, since \(w_1 \) is negligible there. Inasmuch as the resistance at the ice point, 273.15°K, is also required, application of eq. (3) involves measuring four fixed points.

An unfortunate aspect of this method is the fact that there is no unambiguous way of establishing the function, \(w_1 \) vs. \(T \), the reduced resistance of hypothetical pure and perfect crystalline platinum. Customarily this function is calculated from the \(w - T \) relation of the most pure sample for which one has data, using the assumption that \(\Delta \) for this sample is zero. When applied in this way, eq. (3) is found to provide a good fit to strain-free laboratory thermometers down to about 50°K. Between this temperature and 20°K the errors are as large as several hundredths of a degree. Thus, while eq. (3) is applicable with fair accuracy over a much wider range than Cragoe's function, it also fails to represent thermometers in the region below 50°K within the accuracy of which they are capable.

Obviously a better result could be obtained by narrowing the temperature range. For example, the reduced resistance could be taken relative to the oxygen point rather than the ice point, which would permit locating \(T_2 \) between 20 and 90°K. Then a better fit would surely be obtained below 90°K. However, this would amount to using Kohler's deviation term as if it were an empirical function. If empirical methods are to be employed, then another one may be mentioned which possesses greater flexibility and requires fewer calibration points than does eq. (3).

3. Three-point empirical method.\(^4, 5\). This method makes use of the fact that deviations of various thermometers from a \(Z \) function are similar in form. This is illustrated in Fig. 2 which
shows resistance deviations of a group of thermometers from the Z function of one of the group. That is, we have plotted for any thermometer, "X", the quantity, $R'_{X} = R_{1X} - R_{X}$, where

$$R'_{X} = R_{1X} + \left(\frac{R_{2X} - R_{1X}}{R_{2A} - R_{1A}} \right) (R_{A} - R_{1A}) = R_{1X} + (R_{2X} - R_{1X})Z_{A} \quad (6)$$

Here, the subscript "A" denotes the thermometer from whose calibration the reference function Z was derived. T_{1} and T_{2} were taken as 20° and 90°K, respectively. If one of the error curves of representative shape is adopted as a reference standard, then it can be scaled up or down to provide an approximation to the error curve of any other thermometer. Let us designate the thermometer used to provide the error function as "B". Then the scaling factor is derived from a comparison of the errors of X and B at some third calibration point, T_{3}. The value of resistance calculated in this way, R''_{X}, is given by

$$R''_{X} = R'_{X} - \left(\frac{R'_{3X} - R_{3X}}{R'_{3B} - R_{3B}} \right) (R'_{B} - R_{B}) \quad (7)$$

From the appearance of figure 2 it might be thought that in order to obtain the best results between 20 and 90°K, T_{3} should be taken midway between, or at about the triple point of oxygen, 54°K. Indeed a very satisfactory result is obtained in this way. However, nearly as good a result is obtained by using the ice point as T_{3}. The latter is much to be preferred on grounds of experimental ease. The worst temperature errors between 20° and 90°K occur just above 20°K and, consequently, a result far superior to either of the above is obtained by locating T_{3} at about 30°K.
The results of some calculations along these lines are summarized in table I. These were performed on a group of thirty-five closely similar strain-free laboratory thermometers that had been calibrated on the NBS provisional temperature scale. Their \(\alpha \) values all exceeded 0.003924, and their \(w_0 \) values lay between 0.0004 and 0.0007. It will be noted that the region, 20 to 90°K, could be fitted within a few millidegrees. It would seem pointless to wish for better accuracy than this inasmuch as the uncertainty of the relationship of the NBS provisional scale to the absolute thermodynamic scale of temperature is of the order of 0.01 degree. For comparison, the errors using Cragoe's function or eq. (3) with the same thermometers approached 0.02 degree.

The calculations of table I have been described more fully elsewhere. It is important to emphasize the close similarity of the thermometers used in this evaluation. A few tests of eq. (7) that have been made using thermometers of lower purity (\(\alpha < 0.003920 \) and \(w_0 > 0.002 \)) not only show a great deterioration in accuracy below 90°K but also suggest that eq. (7) has less advantage over Cragoe's function when applied to thermometers that differ so greatly. On the other hand the region above 90°K is much less sensitive to variations in quality of the platinum. Here eq. (7) is fully adequate and can perform the same function as the Callendar-van Dusen equation with one less calibration point.

CONCLUSIONS

We can now attempt to answer the question posed in the title. Our conclusions will rest on the foregoing analyses of strain-free laboratory thermometers. Unfortunately, many users are concerned with a different class of platinum resistance thermometers in which the necessity for achieving ruggedness or speed of response
has dictated a mode of construction in which the platinum is more constrained. Also, the platinum in such thermometers is often somewhat less pure. Sufficient calibration data on such thermometers are not available to permit giving a definite answer regarding them. However, the following inferences about them can be drawn from the studies of strain-free laboratory thermometers.

1.) The answer to the question in the title is "yes", with the qualification that some restriction of the thermometer characteristics may be necessary, and that this restriction must be made more stringent the greater the desired interpolation accuracy.

2.) For interpolation accuracy of a few millidegrees from 20°K upwards, the three-point empirical method can be used. Apparently, the range of α values of the thermometers should not exceed about 2×10^{-6} and the range of w_0 values should not exceed about 2×10^{-4}.

3.) If the desired accuracy is only a few hundredths of a degree, then perhaps a tenfold greater range of values of α and w_0 can be permitted. As the thermometers are allowed to become more diverse, the advantage of the three-point method over Cragoe's function will probably become less marked, and particularly so if T_3 lies outside the range of use of the thermometers. Eq. (3) may be useful where it is necessary to cover both a wide range of thermometer characteristics and a wide range of temperatures.

4.) Whatever interpolation method is chosen, optimum results will be obtained only if the reference functions to be used - R_A, R_B, Z, and possibly even w_i - have been derived from thermometers having characteristics similar to those being fitted.
TABLE I

Summary of Interpolation Errors

<table>
<thead>
<tr>
<th>Equation Used</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>Interval Examined</th>
<th>Max. error in interval</th>
<th>Average of max. errors of 35 thermometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>20</td>
<td>90</td>
<td></td>
<td>20 to 90</td>
<td>0.016</td>
<td>0.005</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>90</td>
<td>273.15</td>
<td>20 to 90</td>
<td>0.006</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90 to 273.15</td>
<td>0.009</td>
<td>0.002</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>90</td>
<td>50</td>
<td>20 to 90</td>
<td>0.005</td>
<td>0.002</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>90</td>
<td></td>
<td>30 to 90</td>
<td>0.010</td>
<td>0.003</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>90</td>
<td>273.15</td>
<td>20 to 30</td>
<td>0.024</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 to 90</td>
<td>0.004</td>
<td>0.0013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90 to 273.15</td>
<td>0.009</td>
<td>0.002</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>90</td>
<td>30</td>
<td>20 to 30</td>
<td>0.003</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 to 90</td>
<td>0.003</td>
<td>0.0012</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>50</td>
<td>30</td>
<td>20 to 30</td>
<td>0.002</td>
<td>0.0008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 to 50</td>
<td>0.002</td>
<td>0.0003</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>90</td>
<td>50</td>
<td>20 to 30</td>
<td>0.015</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 to 50</td>
<td>0.002</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 to 90</td>
<td>0.001</td>
<td>0.0002</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>20</td>
<td>90</td>
<td>14 to 20</td>
<td>0.005</td>
<td>0.003</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>20</td>
<td>90</td>
<td>10 to 20</td>
<td>0.023</td>
<td>0.009</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>200</td>
<td>273.15</td>
<td>90 to 273.15</td>
<td>0.0006</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Fig. 1-Schematic representation of the "ideal" or lattice resistivity (ρ_i), the residual resistivity (ρ_0), and Kohler's deviation term (ρ_Δ) for a metal. The magnitudes of ρ_0 and ρ_Δ have been exaggerated relative to ρ_i.
Fig. 2. Resistance errors for some representative thermometers using eq. (6) with $T_1 = 20^\circ$, $T_2 = 90^\circ$K.
THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Office of Weights and Measures.

BOULDER, COLO.

