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rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in

the development of technology . . . needed to improve product quality, to modernize manufacturing processes,

to ensure product reliability . . . and to facilitate rapid commercialization ... of products based on new scientific

discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's

competitiveness; advance science and engineering; and improve public health, safety, and the environment. One

of the agency's basic functions is to develop, maintain, and retain custody of the national standards of

measurement, and provide the means and methods for comparing standards used in science, engineering,

manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal

Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and

applied research in the physical sciences and engineering, and develops measurement techniques, test

methods, standards, and related services. The Institute does generic and precompetitive work on new and

advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
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I. Introduction

The High-dimensional Empirical Linear Prediction (HELP) Toolbox is an optimization tool designed specifically to

meet the requirements of test and measurement engineers. For many electronic devices and instruments, it is not

physically or economically feasible to perform exhaustive testing. Therefore, test engineers must formulate abbreviated

test plans that are economical to execute but still yield accurate measures of the overall performance of the tested

products. The HELP Toolbox incorporates a new approach for optimizing the testing of electronic devices and

instruments. The method, high-dimensional empirical linear prediction, is currently being used by mixed-signal

integrated circuit manufacturers to reduce the costs of testing their products, and it is also being used at the National

Institute of Standards and Technology (NIST) to reduce customer's costs for selected calibration services. Examples

of products that can benefit from this approach range from multi-range precision instruments to programmable filters

to integrated circuit analog-to-digital (A/D) and digital-to-analog (D/A) converters. However, devices that are

completely digital (digital inputs as well as outputs), are not supported.

The approach is based on a simple mathematical model that relates the device response at all candidate test conditions

to a set of underlying variables. Once an accurate model has been developed, algebraic operations on the model are used

to:

a) select an optimal set of test points that will minimize the test effort required to

achieve a specified level of confidence,

b) estimate the parameters of the model from measurements made at the selected

test points,

c) predict the response of the device at all candidate test points (from

measurements made at the selected test points) as a basis for accepting or

rejecting units, and

d) compute statistical intervals (uncertainty bounds) for the predicted response,

and test the validity of the model, on-line.

The entire process including model development can be performed with the HELP Toolbox, a NIST-developed

graphical software package for use with MATLAB®^ specifically tailored to this application. While a general

understanding of the underlying principles is desirable, no mathematical programming is required of the operator.

HELP places special emphasis on empirical modeling using measurement data collected previously on devices similar

to the units under test. Empirical models require no detailed knowledge of the internal device architecture, yet they can

be both accurate and efficient.

In addition to test optimization, the Toolbox is also useftil for exploring the structures that underlie the behavior of tested

devices. For example, it can reveal how many variables are actually needed to explain the behavior, and what their

characteristic signatures look like. It can warn production engineers when the manufacturing process undergoes hidden

changes, and it can even be used to help diagnose the likely causes.

While the Toolbox is intended for production testing applications, it is not designed for on-line use. Models are

developed and tested within the Toolbox off-line, usually from empirical data on representative test units, and an optimal

set of test points is selected. Once created, the models and test point vectors can be exported to the test system's on-line

processor which then drives the testing and calculates the predicted global responses of test devices from on-line

t In order to describe the procedures discussed in this paper, commercial products are identified. In no case does

such identification imply recommendation or endorsement by the National Institute of Standards and Technology or

that the materials or equipment specified are necessarily the best available for the purpose.
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measurements at the selected test points. The required calculations can be executed very quickly with any up-to-date

personal computer or workstation.

The Toolbox software has been developed using the MATLAB programming environment and consequently requires

that MATLAB be installed on the host processor. While detailed knowledge ofMATLAB is not required, the user will

benefit from some familiarity with it.

Chapter II of this user's manual provides general background on the theory and algebraic tools that form the basis for

the Toolbox, while chapter III gives a description of the Toolbox menus and variables that are available to the user.

Brief descriptions of the software architecture, subroutines and the global variables that are used are found in chapter FV.

Finally, section V takes the user through several typical modeling and analysis situations involving two different

products, the first a multirange precision instrument, and the second an integrated circuit A/D converter. Real

measurement data are used in both examples.
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II. Empirical Linear Modeling: An Overview

1. The Need for Efficient Testing

Testing is a critical step for assuring the quality of electronic devices. For complicated devices, the cost of testing is

quite significant and may exceed 20 percent of the purchase price of a device. Efficient yet reliable testing strategies

can therefore result in substantial savings. On the other hand, it is important to assure the quality of every individual

device. This need obviously rules out statistical techniques such as deciding about the quality of an entire lot of devices

fi-om the results of testing a sample: Every device must be tested in some form.

For efficient testing strategies, the key observation is that the number of test points is often much larger than the number

of parameters that is expected to determine device behavior. For example, a 13 -bit A/D converter has 2'^ = 8192

possible test points. However, only a few dozen parameters are expected to determine the behavior for such a device.

In fact, examining the circuit topology often results in an overestimate for the number of device parameters, due to

production processes in which components are manufactured simultaneously. If device behavior is determined by a

relatively small number of parameters, it should also be possible to predict its behavior and to decide about the quality

of a device from a reduced set of measurements.

Efficient testing strategies try to identify the parameters that govern the error behavior of a device type and build a

mathematical model for it. For a given new device, these parameters are then determined from measurements at a

reduced set of test points, and the mathematical model is used to compute the device response at all test points. This

approach raises the issues of how to construct the model, how to assess its accuracy, how to select an optimal

measurement subset, how to find device parameters from the subset of measurements, and how to assess the reliability

of a decision about the quality of a device that has been reached in this way.

2. Linear Models

We consider a device whose behavior can be exhaustively measured at m different test points. (If the test space is

continuous, m represents some reasonably dense sampling of that space.) The actual behavior at each of these test points

differs from the nominal one by a quantity that is here called the device response. The goal of linear modeling is to

produce a "condensed" description of the response patterns of a device and to use this to predict the response of an

individual device from a suitably selected set of test points with known reliability. We assume that the set of m
candidate test points is specified a priori; we do not consider here how it should be chosen.

We denote the true device response by the column vector y with m components, the measured device response by y

,

and the vector of measurement errors by e'. Then the equation y-y + e' holds. It is assumed that any measurement

bias has been identified and corrected beforehand; therefore, the averages of the elements of e' for a very large number

of repeated measurements are zero. For the same reason, some information about the size of e' , such as the (order of

magnitude of the) standard deviations, is expected to be known. The units at each test point should be chosen such that

the uncertainties across the test-point set are as similar in magnitude as possible. This step may require that the data be

renormalized from test point to test point. If this is not done, then test points with data that are particularly large in

magnitude, due to large test-point standard deviation, will have a stronger influence on the test outcome than other

points.

In linear modeling, it is assumed that the true device response of any fixed device can be expressed in the form

y = Ax + R . Here A is an tn^n model matrix. It is specific to the device type and incorporates information that

depends on the device design, its components, its production process, etc. The n^\ vector, x , consists of parameters

that are specific to an individual device. R denotes a remainder term. At the outset, neither the matrix A nor the

number n of its columns is known.

The parameter vector jc sometimes has some actual physical meaning. For instance, it may reflect some properties of

the components of a device. In this case, some nonlinear model can often describe the true response, and b\ linearizing
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about the nominal behavior, a linear model is obtained. Models that are derived on the basis of such considerations are

called physical models.

In other cases, the columns of A represent typical response patterns that are based on engineering considerations. For

example, they may describe contributions from single bit errors or simple superposition errors for A/D converters, with

the components of x describing the contribution from each response pattern to the actual device response. Models that

are derived in this form are called a priori models.

If the components of A are determined purely empirically from the responses of a "modeling set" of devices that have

been tested exhaustively, the result is called an empirical model. Typically, the model matrix A in this case is not

uniquely determined, the parameter vector jc has no clear meaning, and statistical methods have to be used to construct

the model [1].

If combinations of these approaches are used, the result will be called a mixed model.

The Toolbox has provisions for incorporating physical and a priori model information with empirical information to

construct mixed models. However, the main focus of the Toolbox is on empirical linear models and their use. In such

cases, new devices must be sufficiently similar to the devices in the modeling set, and the modeling set must be

sufficiently homogeneous in this respect.

To be able to work with a linear model, the remainder term y is lumped together with the measurement error e' . The

result is denoted by e . This model error is treated as a random quantity, and its statistical properties must therefore be

determined. Thus, the linear model can be described by the equation y = Ax + e

.

3. Construction of Empirical Linear Models

To construct an empirical model, we assume that an m^p mafrix of modeling data A is given. Its columns are vectors

of complete measurements, one for each of the p devices in the modeling set. We want to extract an n-dimensional

approximation of these response patterns, i.e., an mxn model mafrix A such that the columns of A can (nearly) be

expressed in terms of the columns of A . There may also be an additional set of validation data, i.e., q empirical vectors

of exhaustive measurements in a mafrix Y that are to be used to assess the quality of the model.

The number of parameters, n, must be determined along with the model matrix, A . This number should be kept small,

but it should be large enough to explain all but a small portion of a typical device response. The choice of « depends

on the amount of noise included in the modeling data. One expects to obtain the columns of the model matrix A as

linear combinations of the modeling data in ^ .

In order to construct an empirical model mafrix from the mafrix of modeling data A , the Toolbox first computes its

singular value decomposition A =USV^ [2]. Here U has size wxp with orthonormal columns, V has size pxp with

orthonormal columns, and the matrix S -Ai2i%(s^,S2,...,Sp) contains the singular values 5, that are non-negative and

decreasing. One then chooses the model matrix as A = Uy, consisting of the first n columns of the left orthogonal factor

U . It is known that no model matrix with n columns gives a better approximation of the modeling data A with respect

to a number of approximation criteria. The columns of f/, can be viewed as the principal patterns in the device

behavior, and the numbers 5, describe the size of the contributions of these patterns.

The key problem now is the choice of «, the number of parameters. This choice is usually based on the sequence

Sy,Sj,.... The reason is that when the model A that is computed in this form is fitted to the modeling data, the mean

squared sizes of the residuals are given by
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These numbers are expected to be smaller than the residuals for new devices, but the bias can be corrected. There may

also be a validation set available, i.e., an m'xq matrix Y of complete measurements for q devices.

To choose n, one begins with a visual inspection of a plot of the singular values, s^ . Such a plot sometimes reveals an

"elbow", i.e., a fairly steep decline of the s, up to a value s,, , followed by a nearly flat part. This characteristic may

become more visible if the logarithms of the 5, are plotted. The latter plot is sometimes called a log of eigenvalue

(LEV) plot and is provided by the Toolbox. It is recommended [3] to choose n such that the first value of the "flat"

portion is still included. It may also occur that the LEV plot has a "step" shape. In that case, the parameters up to and

including the bottom of the step should be chosen.

For a selection of n that can be justified more rigorously under certain statistical assumptions, one sets

( V

Q(n) = ^'>" / fornix,!,.. .,p-\.

i>n

The number Q(n) is never larger thanp-n, which is the dimension ofthe set of residuals of modeling data from a model

with n parameters. It can be viewed as a statistical estimate of the dimension of the set of residuals. Thus, if Q{n) is

small, the residuals "look" as if they are concentrated on a low-dimensional set. One should then increase the number

of parameters m order to capture the few additional patterns that appear to dominate the residuals. On the other hand,

the Q(n) will decrease for large n. The Toolbox plots the Q(n) in the Q-Max plot, and the recommendation is to pick

the value of « for which the plotted quantity is maximal or the smallest value for which it reaches a plateau.

A third procedure for choosing n consists of selecting this number such that the expected residuals at individual test

points for new devices are sufficiently small. For many applications, this criterion reflects the ultimate goal of achieving

a given level of accuracy with the minimum number of parameters or test points. Based on the modeling set data, the

Toolbox computes and plots an estimate of the root-mean-square residuals c(n) that would result from fitting a new

device to models with n parameters for n = 1,2,.... This computation is essentially the quantity

c(n) = j ? y :sf ,

'(m-n)(p-n);^ '

up to a small bias correction. Under certain statistical assumptions, c(n) can be shown to be the expected root mean

squares (rms) of residuals for new devices, if these were to be described by the same ^-dimensional model. Tlie Toolbox

plots c(n) in the RMS Residuals plot. One can choose n such that the plotted quantity is no greater than a

predetermined required uncertainty. If there is no clear choice, the plot can be used to predict the effect of changing

the number of parameters. The plot will always indicate that increasing n decreases the size of the residuals. However.

for large n, only more noise will be captured and predicted by the model. It should be kept in mind that the c(n)

computed in this way are estimates of the residuals that would occur if all test points were used to estimate the model

parameters, x . For a reduced set of measurements, the rms residuals can be expected to be somewhat larger.

If a validation set, Y , is available, the Toolbox can give more accurate estimates of the residuals that occur when a

reduced set of measurements is used. In this case, the Toolbox displays (in the Valid. Error Stats. dispia>' box) the

maximum, minimum and rms residual error that occurs when the selected /7-column model is used with a subset of/:

selected test points (see section II.6) to estimate the responses at all m test points. The displayed statistics are computed
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from all p devices in the validation set. The validation set can be used in this way to explore the tradeoffs between

model size, /?, and the size k of the reduced measurement set, and the errors that result.

In practice, the recommendations from the three plots are often not consistent or not clear. The Q-Max plot will usually

give a maximum, but it may be much too large. This case may correspond to a fairly even decline in the RMS Residuals

plot and to the absence of an elbow in the LEV plot. From numerical experiments, it appears that not much can be

gained by increasing the number of parameters in such a case. The recommendation then is to choose the smallest value

ofn that one is still comfortable with [3]. There are a number of other graphical or statistical routines available in the

Toolbox, but in an unclear situation these just add to the confusion.

+ *****)(!* + + )(:******!):***!(!************** HELP Toolbox *****************************************

Modeling data are loaded into the Toolbox via the [Data Sets] menu. There, the measurement data can be split

between data designated for the modeling set and data for the validation set. If the data need to be normalized,

an mxl normalization vector must be entered [Data Set/Load Data File/Normalization Vector], whereupon the

user is cued to choose which data sets (modeling or validation or both) are to be normalized.

To construct an empirical model matrix from a previously loaded matrix of modeling set data ^, the [Parameters

and Test Points] menu is used (section II.3). The [Modeling Set Decomposition] submenu is used to perform the

singular value decomposition (SVD), producing the left singular matrix, U , from which the first n significant

columns will be chosen. To determine and select the best choice for n based on the SVD of the modeling set, the

[Parameter Selection Plots] submenu is used. The three diagnostic plots are found there. The effects of a given

choice of /I can subsequently be tested via the validation set using the procedures outlined in section 11.5, Assessing

the Model.
4::t:!|c4::|c:(::|:t************************************************************************************

4. Construction of Physical, A Priori and Mixed Models.

Physical models are usually developed outside of the HELP Toolbox and then imported. For example, a physical model

of an electronic circuit could be developed through a sensitivity analysis using a circuit simulation tool such as SPICE.

Such a model might be comprised of vectors of partial derivatives of the circuit response errors with respect to the

electrical parameters (resistors, capacitors, transconductances, etc.) that define the circuit, evaluated at their nominal

values for each candidate test point.

A priori models, also developed outside the HELP Toolbox, are usually based on engineering considerations that go

beyond the scope of this discussion. However, for both physical and a priori models, it is often true that these will not

be complete enough to explain the behavior of the modeled devices with accuracy sufficient for all applications. This

is due to approximations in the modeling caused by nonlinear behavior, lack of detailed knowledge, unmodeled

interactions among the components, effects of unmodeled parasitics, etc. In addition, it is often the case that the

resulting models are not full rank, i.e., two or more of the columns may be linearly dependent. For example,

components in cascaded gain stages give rise to identical or collinear sensitivity vectors. When the model A is not fiill

rank, there will be ambiguity in the determination of the corresponding parameter vector, x . While this may not present

any problems for subsequent response predictions, it could cause problems if the parameter estimate Jc is used in

trimming procedures, i.e., to determine how much adjustment a component requires to bring the circuit response within

specifications. The rank of a physical or a priori model can be checked using the Toolbox by performing an SVD on

it, and looking at the diagnostic plots. The LEV plot will show an abrupt knee at n corresponding to actual rank; if «

is less than the number of parameters in the model, then some of the parameter vectors are not independent. Note that

if it is important to preserve the physical or engineering meaning of the final model, the SVD should only be used as

a diagnostic rank test, and SHOULD NOT be used to create a new model from the physical ox a priori model. This is

because the vectors of the U matrix model that results from the SVD are each weighted combinations of the original

vectors.

The accuracy of physical or a priori models can be improved while maintaining their descriptive advantages by

augmenting them with empirical model data to produce a mixed model. To create an appropriate mixed model, an
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empirical model, A^ = {a^, a^^ ^en, 1 with n^ columns is first developed from modeling set data as described in the

previous section (II. 3). The vectors of the empirical model are each orthogonalized to the n2 vectors of the physical

or a priori model, A^ = [a^, a^^ •• a^n, 1 , using the method of Gram-Schmidt orthogonalization:

aLa.
a„i = «„ -y «// "pj ^here a,j =^^ . and A,, = [a„, a„, ... a ].

7=1 / PJ

The new orthogonalized empirical model, A^ , describes only the behavior present in the modeling set that is not

described by the physical or a priori model. An w x( ^2 + "i ) mixed model A^ is produced by augmenting A with

A„: A^=[A^ AJ.

*************************************** jjj^Lp Toolbox ***************************************

To create a mixed model in the Toolbox, first create the desired empirical model. Next, load in a previously

created physical or a priori model using the [Data Sets/Load Data File/Full Model] menu. Orthogonalize the

empirical model to the full model (physical or a priori) using menu item [Data Sets/Orthogonalize Modeling Set).

Append the desired number of columns of the orthogonalized empirical model to the full model using the menu
selection [Params and Test Pts/Modeling Set Decomposition[ and then [Params and Test Pts/Select Number of

Parameters]. Be sure the "Append" box is selected, as opposed to the "Replace" box.

********************************************************************************************

5. Assessing the Model

Suppose a linear model y-y + e = Ax + e for the measured device response is given, with m test points, n device

parameters, an /wx« model matrix A , and model error e . Then the statistical properties of the model error, e , are of

interest. These properties are used to decide if the modeling data are adequately described by a linear model, to give

bounds for the accuracy of prediction of new devices, and to detect devices for which the model is not adequate.

We first discuss the case where there is also a validation set, in the form of an m'xq matrix, Y . In this case, one fits Y
to the ^-dimensional model, using ordinary least squares. The residuals fi-om this fit are the columns of a matrix, R

,

that has the same dimensions as Y .

From the matrix of residuals, R , the Toolbox computes the estimated standard deviation, d , corrected for degrees of

freedom and for prediction variance, as follows:

where y'j are elements of Y , and y'j are elements of the matrix of predicted values, and P^j contains the prediction

variance components [4]. (For this purpose, the number of selected test points should be m ~ see box below.)

One should first check to see if a is approximately the size expected, i.e., on the order of the measurement standard

deviation for the validation set data. If it is substantially larger, it should at least agree with the value c(n) returned

by the RMS Residuals diagnostic plot that was computed when the model was created. If a is much larger than c(n) ,

it can be concluded that the validation set contains information that was not present in the modeling set. Plots of the

residual vectors that comprise R may reveal certain devices in the validation set that do not adequately conform to the

model. If a agrees reasonably well with c(n) but is substantially larger than the measurement standard deviation, this

is an indication that the model could be improved by choosing a larger value for n. The decision to increase n will

probably depend on whether or not the residuals are small enough to be acceptable. To decide this, a more accurate

estimate of the expected performance of the model should be made after the test-point selection process (see
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section II. 6), when the effects of a reduced set of test points are included. For most cases, the final decision about the

model dimensions and composition should be based on the uncertainty bounds that are produced. These can be

computed for the validation set and are discussed in section II. 7.

*************************************** jjELp Toolbox *************************************

For most purposes, the rms residuals value returned in the Valid. Error Stats, box can be used as a good

approximation for a . The two will differ slightly because the rms residuals value has not been corrected for

degrees of freedom and prediction variance. Since both quantities, a and rms residuals, are computed from

predictions y , they are dependent on the number of test points that have been chosen. To compare these values

with the expected value for d , and with the value c(n) given in the rms residuals diagnostic plot, ALL test points

should be selected. To get a better estimate of the actual errors that will result from the model in use on test

devices, only the REDUCED set of test points should be used.

********************************************************************************************

If there is no validation set available, one can use c(n) to get a rough estimate of the size of the residuals. These results

will only be approximate though since they do not take the reduced test points into account, and they are subject to the

other approximations noted above.

When the model from the modeling data is used to predict the behavior of a new device under test, the uncertainty

associated with this prediction comes from several different sources. These sources are the estimation error for the

model (due to the fact that the modeling set data themselves contain measurement noise), a truncation error for the

model (due to the fact that the true device behavior in all likelihood is determined by more than just n parameters),

another truncation error for the device under test (since it is not expected to really fit any model with only n parameters),

and fmally the measurement error for the device under test. Only the last error varies if a device under test is measured

repeatedly. However, it can be shown that the truncation errors and the estimation errors can also be freated as if these

were random quantities. What makes these behave differently than just measurement errors is the fact that they contain

multiplicative effects on the overall prediction error. The truncation error that occurs during the model construction

has a stronger effect on the overall prediction error if the device itself differs substantially from its nominal behavior.

Essentially, a device that is very close to its nominal behavior will be predicted very accurately by ahnost any linear

model. This effect can be analyzed mathematically and is taken into account by the Toolbox algorithms.

6. Selecting a Reduced Test-Point Set

Suppose a linear model, y = y + e = Ax + e ,forthe measured device response is given; with m test points, n device

parameters, an m^n model mafrix A , and model error e . We assume that the model matrix has been determined from

a modeling set as outlined above; thus the matrk A now has orthonormal columns. We want to choose a reduced test-

point set / , i.e. a subset of the set of all test points (1,2, ..., m) such that the device behavior can be predicted reliably

at all m test points from measurements at the test points in /

.

Once / has been chosen, an estimate, x , of the device parameters is found from the measurements at the test points

in J with the method of least squares, and the predicted device behavior, y , is computed. The differences between

the estimate, y , and the measured behavior, y , then depend on the error vector, e , and on the choice of test-point set,

/ . Recall that e incorporates both measurement errors and errors that are due to the use of a linear model. One would

like to select / automatically and efficiently such that these differences are small with high reliability. This is a

problem from experimental design [5].

In order to discuss the test-point selection method, let us assume that the elements of e have homogeneous variances,

i.e., that its standard deviations are the same at all test points and that these errors are uncorrelated. Both assumptions

are questionable, since the measurement uncertainties are usually not exactly the same at all test points even after

changing units, and since the entries of the vector e may include remainder terms that come from fitting the measured

response to the model. Such remainder terms will always be correlated. However, the effects of violating these

assumptions can be analyzed and controlled.
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Suppose a subset / with k> n elements is desired. The Toolbox can select these test points automatically, using a

method that employs two phases. In the first phase, a minimal subset of « test points is determined by applying the well-

known QR factorization with column pivoting [2] to the transpose of the model matrix, A . The first phase can be

summarized as follows: The first test point that is selected corresponds to the row of A that has the largest norm. All

other rows are orthogonalized with respect to this row (a suitable multiple of this row is subtracted fi-om all other rows

such that each result is perpendicular to the row that was chosen first), and their norms are recomputed. The test point

corresponding to the largest remaining norm is chosen next, and the process is repeated until n test points have been

selected. At this point, all remaining rows have norms equal to zero, and the first phase is over. In the second phase,

k-n additional test points are selected. To explain the second phase, let us assume that the "minimal" reduced test-

point set that was the result of the first phase is to be used for predicting the behavior of the entire device. This

prediction will amplify the measurement errors at the selected test points, and the amplification factors (prediction

variances) can be computed for each test point that has not been selected. (At the reduced test-point set, these

amplification factors are equal to 1 at this stage, since the predictions there agree with the measurements.) Of those test

points that have not yet been selected, the one with the largest prediction variance is included in the reduced test-point

set. The prediction variances then are recomputed and the procedure is repeated, adding one test point at a time until

the desired model size has been reached. We now delete all rows of A except those that correspond to the reduced test-

point set / . The result is the reduced model matrix A with k rows and n columns.

There are several possible optimality criteria for the choice of the reduced test-point set / . These all can be interpreted

as attempts to make some kind of confidence set for the prediction y as small as possible (minimizing its volume, its

diameter, etc.). It turns out that the first phase of the selection method that is given above tries to minimize the volume

of such a confidence set. The second phase tries to minimize the diameter of another type of confidence set. Thus, the

two phases do not pursue the same optimality criterion. However, it is known that in certain limiting cases the two

criteria are equivalent. There is also strong numerical evidence that the two stages are compatible. Moreover, the test-

point sets that are found with this method usually are also very good selections for all sorts of other optimality criteria.

Theoretically, an optimal reduced test-point set for any optimality criterion could be found by searching through all

possible subsets, computing the relevant performance criterion, and selecting the best. However, the enormous size of

the set of all possible test-point sets makes this approach completely unfeasible. For example, if a device has m = 200

test points and the reduced set is to have ^ = 30 test points, then the number of candidate subsets is equal to the binomial

coefficient

("200^
= 4x10".

l30j

It is clearly impossible to examine them all. Thus, approximate methods must be used. Even iterative methods that

have been developed specifically for experimental design purposes are usually too expensive for problems that

come from linear modeling. Then "one-pass" methods that build up the reduced test-point set, / , in a single sweep

are the only alternatives remaining. The method that is used by the Toolbox is of this type. Numerical evidence

shows that the results of the method are usually not optimal, but that the reduced test-point set that is chosen here is

better than 99.98 percent or so of all possible choices and that it cannot be improved by much.

7. Prediction and Decision for New Devices

When the Toolbox has constructed a model and determined its properties, it is ready to use measurement data from a

new device, taken at the reduced test-point set, to predict its measured behavior at all test points. The parameter vector,

jc , is first estimated from the reduced measurement data y using the least squares method

x = [A^Ay'A^y.

From the estimate, Jc , the predicted behavior, y , at all test points is given by

y - Ax .
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*************************************** JJELP Toolbox ***************************************

Parameter vector, x , and prediction, y , are automatically computed for vectors in the validation set when the

[Assess ModelA'^alidate Model] menu item is selected. When measurement data on a device under test is available

at the selected test points and has been loaded into the Toolbox, then x and y are automatically computed when

the [Assess Model/Predict Calibration] menu item is selected. A plot of y can be obtained from the

[PlotA^alidation Analysis/Response Predictions] or [Plot/DUT Analysis/Response Predictions] menu items.

********************************************************************************************

Along with this prediction, some information about the measurement uncertainty at each test point is also needed. The

predicted behavior, together with an uncertainty estimate for the prediction, is used to decide whether the behavior of

the device is within specified tolerance bounds.

It may happen that a device under test cannot be well described by a given linear model, since its error patterns include

features that were not identified from the modeling set. This may occur, e.g., if a production method is changed, if

components in a device are replaced, or simply if measurements at the device under test are performed with less

precision. The result will show up in a larger than expected error at any test point. Such errors are called non-model

errors. Referring back to section II.5, non-model errors are indicated when the residuals of the new device are

significantly greater than a , after correcting for degrees of freedom. The Toolbox has a procedure that incorporates

the effects of non-model error into the calculated uncertainty bounds, based on the size of the residuals at the measured

test points only. Consequently, the bounds are designed to contain the true measured response with specified

confidence, even when the model fits rather poorly.

It is assumed that the upper and lower tolerance bounds for an acceptable device are in the form oftwo vectors of length

m. A device is acceptable if its measured behavior at each test point is within the corresponding bounds. The Toolbox

computes prediction intervals for the measured values. (Prediction intervals are computed statistical bounds around the

predicted values that are asserted to bound the measured behavior with a given confidence. Note that since measured

behavior is true behavior plus measurement noise, the prediction intervals bound true behavior with even greater

confidence.) These intervals are calculated from the residuals at the reduced test points as

where r^ is the standard deviation of the residuals at the measured test points given by

k-n \ti~yj-yjf'

such that y' is the estimate of the device response at the reduced test points, where P^ is the /wx 1 prediction variance

coefficient vector given by

and r,_„/2 is the l-(a/2) quantile of the Misfribution with k-n degrees of freedom. The Toolbox uses a coverage

probability l-(a/2) = 0.9545. Note that the square root operation is performed element-by-element in the above

prediction interval calculation.

It is assumed here that these residuals at the measured test points can be treated as normally distributed random variables

and include a "representative" sampling of the non-model error that exists, as well as the contributions from

measurement noise, model truncation, etc. Tests of these intervals on several examples of real measurement data

indicate that they tend to be somewhat conservative, i.e., 95% intervals typically bound 96% to 97% of the

measurements.

These individual intervals can therefore be treated as type A measurement uncertainties [6] that would occur if the
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device under test was tested exhaustively. If one decides to reject a device as soon as its prediction interval extends

beyond the tolerance bound at any test point, no more than a fraction of about a /2 = 0.0227 of all "bad" devices will

be accepted, that is, the type-I error probability is about a/2.

The rationale behind the decision procedure is equivalent to making the hypothesis that a device is "bad", the null

hypothesis [5]. This hypothesis means that the data have to prove that a device is good, not that it is bad. If the device

under test were bad, its measured behavior would exceed the specified tolerance bounds at no less than one test point.

The probability that its prediction interval at this test point is within both tolerance bounds is at most a 12 and is much

smaller if the behavior exceeds the tolerance bound substantially. Thus, even if a bad device exceeds the tolerance

bounds at only one test point, it will escape detection with a probability of no more than a 12.

A set of individual prediction intervals for a particular device does not contain all measured values for this device with

probability 1- a , nor does a fraction of 1- a of these intervals contain the measured behavior for this device. Intervals

that come with a guarantee that they predict the measured behavior for all test points for all but a small fraction of

devices under test are called simultaneous prediction intervals and must be wider than individual intervals. The Toolbox

computes such intervals with the same specified coverage probability 1-a for the new device. These bounds are just

the predicted values plus or minus a suitable larger /-quantile times the standard deviations that are also computed for

individual prediction intervals. These values are typically about twice as wide.

In simulations, it is observed that a larger portion of unacceptable devices is identified correctly than the advertised

fraction 1- a /2. This observation is true regardless of the proportion of bad devices in the set that is under test. The

reason is that many bad devices will in fact be identified almost certainly, since their behavior exceeds the bounds

somewhere substantially. The decision procedure is designed to work reliably even for "marginal" devices. Since

the prediction intervals are adjusted for each device under test by means of the standard deviation of the residuals,

"bad" devices are still reliably identified if non-model errors appear, and the coverage probability of individual

prediction intervals does not decrease. However, simultaneous prediction intervals are observed to be less reliable

in the presence of non-model errors or increased measurement uncertainties. That is, their coverage probability may
be less than the advertised value 1-a if there are non-model errors or if the measurement uncertainty for devices

under test increases.

Along with a large fraction of bad devices, a certain fraction of acceptable devices will also be rejected. In fact, a

device that is just barely within the tolerance bounds will be rejected with probability close to 1-a , since it is

almost indistinguishable from a "bad" device. The occurrence of such type-II errors is in the nature of statistical

decision procedures. If the measurement uncertainty is increased for devices under test or if non-model errors

appear, the probability of type-II errors will also increase. The resuh is a larger overall proportion of devices that

are rejected, even if their true quality does not change. An indicator for this phenomenon is a value for rj^ that is

substantially and consistently larger than unity, approaching and exceeding 2. This result may indicate that the

model is truly no longer adequate and suggests that it be tested against a new validation set or that a new model be

buih.
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III. Software Description

1. Introduction

The purpose of the High-dimensional Empu-ical Linear Prediction (HELP) Toolbox is to provide test engineers and

technicians with a tool to help select optimal testing strategies for complex electronic devices and instruments in a

very user-friendly manner. The software has been developed using the MATLAB® programming environment. It

is designed for use without detailed knowledge of the theory and mathematics governing empirical linear prediction.

The menus are set up for use in a general sequential, top-down, left-to-right fashion. User prompts and data-entry

windows aid the user in following the correct sequence in developing and analyzing models.

The software has evolved through several generations of programs and subroutines to its present form. Originally,

the software consisted of numerous subroutines requiring a great deal of mathematical knowledge to proceed

sequentially through formulation of model and application and analysis of the model using empirical data. The

present HELP Toolbox consists of a main program controlling the main HELP window and menu system with

numerous subroutines that are called by the main program. The subroutines control graphical user interfaces (GUIs)

that help the user move through the menus and includes additional subroutines that perform some of the

mathematical algorithms. Most of the mathematics is contained within the main program; however, a few of the

previously developed routines were maintained separately for ease of development.

2. Toolbox Architecture

The design of the HELP Toolbox incorporates what is known as the "switchyard" technique for developing GUIs.

The switchyard technique is a programming device whereby if/elseif conditional structures are used to create

separate sections of code that are accessed by calling the main program with a particular flag set. The flag triggers

the running of the desired switchyard section. Fig. 3.1 shows the general switchyard structure of the program.

Define a function called help22 with one input argument.

If there are no input arguments, set action = 'start'.

function help22(action);

if nargin<l,

action = 'start';

end

global (list of global variables) Assign all the global variables

if strcmp(action,'start'), This is the first switchyard section of code labeled 'start'.

Initialize HELP Window and menu system.

elseif strcmp(action,'load_mbv'), This is the second switchyard section labeled 'Ioad_mbv'.

Perform some operation.

elseif ... Numerous additional switchyard sections of code.

elseif strcmp(action,'help').

Bring up Help Window.

elseif strcnip(action,'done'),

Close HELP Window and clear all global variables.

end

Figure 3.1. Switchyard Structure of the HELP Toolbox Main Program
~~

When the HELP Toolbox main program is run from the MATLAB command window with no input arguments (no

flags set), the program initializes the HELP Toolbox window with all its menus and graphical components and

declares all the global variables used by the Toolbox. Selecting one of the Toolbox menus will call the main

program again, this fime, with one of the switchyard flags set. The appropriate switchyard section of code will run.
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performing the task requested. All global variables operated upon by the code, are saved and accessible to each

subsequent call of the program.

The switchyard technique is the recommended method of developing multiple MATLAB routines that are to be

controlled using a common GUIt. One characteristic of this programming method is that each switchyard section is

not directly able to communicate with other sections without the use of global variables because each section is

called with a separate nmning of the program. Manipulation of handle graphics allows the user to pass input

parameters into a switchyard section but variables cannot be directly passed between sections of code. (Handle

graphics is an object-oriented graphics system that provides the individual components necessary to create and

manipulate computer graphics.) In order for variable values to pass between switchyard sections, the variables must

be defined as global within all programs in which the programmer desires to maintain common variable values (see

Local and Global Variables in the MATLAB Users Manual). Assigning numerous global variables has advantages

and disadvantages. A disadvantage is that if a user assigns one of the HELP Toolbox global variables to be global

within the MATLAB command window and then inadvertently changes the value of a global variable within the

MATLAB command window, subsequent Toolbox commands using that variable will be affected (adversely). On
the other hand, assigning global variables gives the user the power to access many parameters within the MATLAB
command window, providing broad analysis capabilities to the HELP Toolbox. Taking advantage of global

variables within the MATLAB command window requires the user to have some knowledge ofMATLAB.

As mentioned above, the HELP Toolbox software consists of a main program and several types of subroutines that

are called by the main program. There are subroutines that create data input windows to pass data into the Toolbox.

There are subroutines that create error and information wmdows to help guide the user through the HELP
procedures. There are also subroutines that perform the mathematical computations required by the procedures. All

the subroutines are invisible to the user. Only their effects are visible. That is, the user sees the graphical user

interface windows that appear and the user sees the model-related parameters that appear on the front panel of the

main HELP window.

Figure 3.2. Typical Input Box from HELP Toolbox Containing Various Graphical Components

The subroutines that use graphical wmdows to input data or display error messages or information are programs that

manipulate handle graphics. They create graphical objects with assigned properties such as pushbuttons, radio

buttons static and dynamic text objects, and sliders. Fig. 3.2 shows an input box from the HELP Toolbox that

contains static and dynamic text boxes, radio buttons and a pushbutton.

3. Glossary of Variables

3.1. Global Variables Used in the HELP Toolbox

ADAT
AFULL
ARED

Data Set (any data loaded mto HELP Toolbox later to be assigned to specific variable)

Full Model (mxn)

Reduced Model (kxn)

t See the workbook for the 1995 MATLAB Conference Tutorial entitled "Building a Graphical User Interface with

MATLAB."
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ATRAIN Modeling Set (mxp) used to develop a device model

AVAL Validation Set (mxq) used to test the device model

BINTIMEA Upper bound for Simultaneous Measurement Prediction Interval (mxr)

BINTIVAL Upper bound for Simultaneous Validation Prediction Interval (mxq)

BINT2MEA Lower bound for Simultaneous Measurement Prediction Interval (mxr)

BINT2VAL Lower bound for Simultaneous Validation Prediction Interval (mxq)

IINTIMEA Upper bound for Individual Measurement Prediction Intervals (mxr)

IINTIVAL Upper bound for Individual Validation Prediction Intervals (mxq)

IINT2MEA Lower bound for Individual Measurement Prediction Intervals (mxr)

IINT2VAL Lower bound for Individual Validation Prediction Intervals (mxq)

INDV Index showing which columns of Data Set are to be assigned to the Validation Set

INTB Absolute bound for Simultaneous Validation Prediction Interval (mxq)

INTBM Absolute bound for Simultaneous Measurement Prediction Interval (mxr)

INTI Absolute bound for Individual Validation Prediction Intervals (mxq)

INTIM Absolute bound for Individual Measurement Prediction Intervals (mxr)

NMFACTORM Nonmodel Factor for the Reduced Measurement Data (rx 1

)

NMFACTORV Nonmodel Factor for the Validation (qx 1)

NORM_VEC Normalization Vector (mx 1) used to normalize the Modeling Set and Validation Set

PREDVARVEC Prediction Variance Coefficients used to produce prediction intervals

PRl Pivot Vector (kx 1) (lists test points selected for the Reduced Model)

RESMEAS Residual Errors (kxr) (columns correspond to the Reduced Measurement Data)

RESVAL Residual Errors (mxq) (colimins correspond to the Validation Set)

SELECT_MOD_VECS Index of Modeling Set vectors for plotting (rx 1

)

SELECT VAL EXTRACT Indices of vectors from the validation set used to create reduced measurement data

SIGMA_MM
SIGMA_MV
STDHAT
S_SVD
TOTAL MEA OUT B

TOTAL MEA OUT I

U SVD

XHATMEAS
XHATVAL
YHATMEAS
YHATVAL
YMEAS

Standard deviation of the measurement noise for the Reduced Measurement Data (rx 1)

Standard deviation of the measurement noise for the Validation Set (qx 1)

Nonmodel estimate ofmeasurement noise (scalar)

(Absolute values of) Singular values of the Modeling Set (nx 1)

Number of measurements from validation set that lie outside simultaneous prediction

intervals

Number of measurements from validation set that lie outside individual prediction

intervals

Left Singular Matrix (mxn) computed from singular value decomposition (SVD) of

Modeling Set. Columns are linear combination of columns from Modeling Set. Full

Model is subset of this raafrix.

Parameter Coefficient Vectors for Measurement Data (nxr)

Parameter Coefficient Vectors for Validation Set (nxq)

Response Predictions (mxr) (columns correspond to Reduced Measurement Data)

Response Predictions (mxq) (columns correspond to Validation Set)

Reduced Measurement Data (kxr) (measurements at only the reduced test points)

3.2. Important Variable Dimensions

k

m
n

P

q
r

Number of test points selected for Reduced Model

Number of test points in Full Model (candidate test points)

Number of parameters selected for the model

Number of Modeling Set vectors

Number of Validation Set vectors

Number of Reduced Measurement vectors
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3.3. HELP Toolbox Front Panel Parameters

Figure 3.3 shows the HELP Toolbox front panel displaying parameters from a particular modeling situation. The
Data Set parameters give the row and column sizes for a matrix of data loaded into the Toolbox (using the menu
selection [Data Sets/Load Data File/Modeling Set and Validation Set]) to be divided into a modeling set and a

validation set. The user is prompted to select which columns of the data set is to be separated from the modeling set

data and placed into a validation set.

The Modeling Set parameters show the row and column sizes for data placed into

the modeling set when data are loaded for modeling set and validation set or when
data are loaded for modeling set only.

The Validation Set parameters show the row and column sizes for data placed into

the validation set when data are loaded for modeling set and validation set or when
data are loaded for validation set only.

The Full Model parameters show the row and column sizes for the fiill model. A
frill model can be created by algebraically manipulating the modeling set using

three sequential menu selections: (1) [Params and Test Pts/Modeling Set

Decomposition], (2) [Params and Test Pts/Select Number of Parameters], and (3)

[Params and Test Pts/Test Point Selection/...]. Also, data can be loaded into the

Toolbox to be used as a frill model using the menu selection [Data Sets/Load Data

File/Full Model].

The Rows-parameter under the Reduced Model label shows the number of test

points selected from the full model to be used for the reduced model. The test

points can be selected optimally using the menu selection [Params and Test Pts/Test

Point Selection/Prediction Variance Optimization]. They can be selected manually

using the menus [Params and Test Pts/Test Point Selection/Test Point

Assignment/...]. Or they can be selected using a combination of optimally and

manually selected points (if, for instance, the user wants to select the points

optimally but force several additional points to be selected) using the menu
selection [Params and Test Pts/Test Point Selection/Combined Optimization and

Assignment]. The column size for the reduced model is always the same as the

column size for the frill model.

The validation error statistics are produced by applying the validation set to the

model using the menu selection [Assess Model/Validate Model]. The Valid. Error

Stats parameters show the root mean square value, the maximum value, and the

minimum value of the residual errors. The residual errors equal the measurement

minus the prediction at each of the candidate test points.

Data Set

Rows

Columns

309

126

Modeling Set

Rows

Columns

309

100

Validation Set

Rows

Columns

309

26

Full Model

Rows 309

Columns 32

Reduced Model

Rows 120

Valid. Error Stats

I
-: RMS 0.03774'^

Max 0.5217'^

Mm -0 20067

Figure 3.3. HELP Toolbox

Parameter Display Panel

The DUX Error Stat RMS-parameter shows the root mean square value of the residual errors produced from

applying measurement data from a device under test (DUT) to the model. The residual errors for the DUT equal the

measurement minus the prediction at only the reduced test points. DUT measurement data can be loaded into the

Toolbox using the menu item [Data Sets/Load Data File/Reduced Measurement Data] or it can be artificially

produced by extracting the selected test points from one or more columns of the validation data using the menu item

[Data Sets/Load Data File/Extract Reduced Meas. from Validation].
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IV. Description of Toolbox Menus

Introduction to the Menus and Variables

The HELP Toolbox is a graphical-user-interface (GUI)-based software package for use with MATLAB® that

facilitates the modeling and analysis required for testing and calibration of complex systems. High-dimensional

empirical linear prediction requires a large number of device data sets for a common device or system, with each

data set covering the identical measurement points, referred to as the candidate set of test points. (Note: Physical

and a priori models may be used in place of empirical models but it has been experimentally found that empirical

models are more robust.) The large number of data sets is termed the modeling set or training set. It is used to

construct a linear model, referred to as the system model. The modeling set must be collected externally and loaded

into the Toolbox. The modeling set is manipulated and operated upon algebraically within the Toolbox to produce

the device or system model. The modeling allows for characterization of the device or system at all points within

the candidate set of test points using measurements taken only at a subset of those candidate test points. Response

predictions can then be made at the full set of candidate test points based upon measurements at the subset of test

points. Various statistical analyses may be performed within the Toolbox to determine accuracy of the model,

confidence bounds, etc.

The HELP Toolbox menu operations function in a general sequential manner from left to right, and top down, across

the GUI window. The Toolbox is intended to be driven via the mouse or hotkeys with subsequent user-prompted

keyboard entries for appropriate input. There are seven main menu headings, each containing sub-menus. The

menus are, from left to right. Data Sets, Params and Test Pts, Assess Model, Quality Control, Plot, Help, and Exit.

Figure 4. 1 displays the Toolbox window with its menus and display panel (with a blank application screen). The

panel displays various parameters relating to the user's current session of modeling and analysis. Some of the

parameters are the sizes of the data set loaded into or derived within the Toolbox, the modeling set, the validation

set, the fiill model, and the reduced model. The Toolbox panel also shows some error statistics obtained from

applying the model to the validation set and the device under test (DUT).

The software for the HELP Toolbox consists of a main program and various subroutines that are accessed from the

main program. Selection of a particular menu heading corresponds to execution of a section of code from the main

HELP Toolbox program. Within the section of code executed, various variables are created and operated upon. The

variables within the Toolbox code very often are mnemonic to the parameters they represent, unlike the variables

within the mathematical overview presented in section IL Table 3.1 presents the mapping from the variable names

in the mathematical overview to the variable names in the software.

1. Data Sets.

Data sets are used for many purposes within the HELP Toolbox. Typically, a set of empirical data in mafrix form is

loaded into the Toolbox as a modeling set, sometimes called a training set, to be algebraically transformed into the

system model. Another mafrix may be loaded into the Toolbox to serve as validation data (to test the model) once

the model has been developed. If the magnitudes of the data are not close in size, then yet another data set, in the

form of a vector, possibly consisting of tolerance data, may be loaded into the Toolbox to normalize the modeling

and validation sets. (Normalization can be critical for producing prediction intervals, i.e., predicted uncertainties,

that meet required specifications.) Additionally, variables created through operation of the Toolbox can be easily

saved to the computer disk via the Data Sets menu. The Toolbox can load and save files in both ASCII text format

and MATLAB binary format. MATLAB allows the loading of ASCII files with comma-, space-, or tab-delimited

data. Files that are saved in the ASCII format are space-delimited. The MATLAB binary format is much more

efficient and so the user may wish to use the binary format for larger data files. By convention, MATLAB binary

files should use the '.mat' extension.
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Table 4.1. Correspondence between Mathematical Overview Variables and Toolbox Variables

Math Toolbox Description

A AFULL mxn linear system model (called the full model)

u, AFULL first n columns (mxn) of L'' {A equals U^ during empirical modeling)

A ARED kxn reduced model matrix (called the reduced model)

A ATRAIN mxp matrix of training data (called the modeling set)

Y AVAL mxq matrix of validation data (called the validation set)

c(n) c root mean squares of residual errors (used to determine n)

e mx 1 device measurement errors (measured - true)

it k

number of reduced test points selected for the model, i.e., m>k; generally selected

such that k is 2 to 5 times n

m m number ofmeasurement points (referred to as test points)

n n number of parameters in the model

P P number of training data sets

J PRl kx 1 vector of reduced test points (called the pivot vector)

q q number of validation data sets

Q(n) q Q-Max value (used to determine n)

r r number of devices under test (DUTs)

RESMEAS kxr matrix ofDUX errors (measured - predicted)

RESVAL mxq matrix of device errors (measured - predicted)

R mxn remainder term

S s pxp diagonal matrix of singular values

S_SVD px 1 column vector of singular values

a STDHAT mx 1 estimate of the rms of the residual errors in the validation set

u U_SVD mxp left singular matrix of orthogonal columns

V' V pxp right singular matrix

XHATMEAS nxr matrix of parameter vector estimates for the devices under test

XHATVAL nxq matrix of parameter vector estimates for the validation set

X nx 1 true parameter vector (parameters are specific to a device)

X nx 1 estimate of the parameter vector

YHATMEAS kxr prediction of device responses for the devices under test

YHATVAL mxq prediction of device responses for the validation set

y YMEAS kxr matrix of (reduced) measured responses for the DUTs
y mx 1 measured device response

y mx 1 true device response

y mxl estimate of the device response

y' kxl estimate of the device response at reduced test points

1.1. Load Data File.

This menu item allows data files in either MATLAB binary or ASCII text format to be loaded into the Toolbox

envirormient. The file must be assigned the status of one of the variables listed as options in the sub-menu (listed

numerically below as 1.1.1. through 1.1.8.). The front panel on the Toolbox window displays the sizes of the data

sets loaded into the Toolbox. Note that if data are loaded into the Toolbox for the modeling set and validation set

and some of the data are set aside for validation, then the displayed sizes of the modeling and validation sets should

add column-wise to equal the size of the data set displayed in the front panel. Note also that the full and reduced

models are used in combination to 'form' the system model used to characterize the device or instrument under

consideration. The rows of the reduced model correspond to the reduced set of test points which, when measured
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for a particular device, can be used with the system model to predict the response of the device at all of the candidate

test points contained in the full model. The sizes of all the data sets are interrelated so that the sizes of the data sets

not specifically listed within the front panel of the Toolbox window may be known by the sizes of the listed

variables. In parentheses next to each menu heading below is listed the corresponding variable size.

For each of the sub-menu items below, a window will pop up prompting the user to state whether the file to be

loaded is a MATLAB binary file or an ASCII text file. (The user may cancel at this point in order to make this

determination.) Next, another window pops up asking for the name of the file to be loaded. Note that a MATLAB
binary file must be of the formfilename, mat, while an ASCII text file may have any extension or no extension.

1.1.1. Modeling Set (mxp) and Validation Set (mxq).

This menu item allows the data loaded from the selected file to be split by columns into two parts, a modeling set,

from which to build a model, and a validation set, to test the model. After selecting the file to be loaded, the user is

asked if some of the data are to be set aside for validation. If so, the user is asked whether the column indices are to

be selected via a file (containing a vector of indices) or manually by typing the desired indices into an input box.

The data file may contain 2-D or 3-D matrices.

To construct an empirical model from the modelmg set, we assume that the modeling set that has been loaded is an

mxp mafrix. Its columns are vectors of exhaustive measurements, one for each of the p devices in the modeling set.

The modeling set loaded into the Toolbox will be used to construct the system model. See section 2. Parameters and

Test Points.

1.1.2. Modeling Set Only (mxp).

This menu selection designates that all the data loaded into the Toolbox from the selected file will be used for the

modeling set. The modeling set can be manipulated algebraically to produce fiill and reduced models. The data file

may contain 2-D or 3-D matrices (as produced within MATLAB).

1.1.3. Validation Set Only (mxq).

This menu selection designates that all the data from the selected file will be used for model validation once full and

reduced models are obtained. The data file may contain 2-D or 3-D matrices (as produced within MATLAB).

1.1.4. Full Model (mxn).

This menu selection designates the data from the selected file to be assigned to the full model. A reduced set of test

points must subsequently be selected to form a reduced model.

1.1.5. Reduced Model (kxn).

This menu selection designates the data from the loaded file to be assigned to the Reduced Model. The user must

also load a Full Model into the Toolbox in order to make predictions on device behavior using the Toolbox.

1.1.6. Reduced Measurement Data (Rxr).

Once Full and Reduced Models have been developed within or loaded into the Toolbox, measurements

corresponding to the reduced test points from the Reduced Model can be measured and loaded into the Toolbox and

used to predict the responses at the entire set of candidate test points. These data are referred to as Reduced

Measurement Data.

1.1.7. Normalization Vector (mxl).

In a typical modeling case, it is helpful to normalize the Modeling Set and Validation Set to the tolerances required

for the particular needs of the user. This step is especially true if different test points have different measurement

uncertainties. Assignment of data using this menu item allows a Normalization Vector to be loaded into the
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Toolbox for such a purpose. The user has the option of normalizing both the Modeling Set and the Validation Set or

either set separately (normally both sets should be normalized). Descriptors directly below the Modeling Set size

and Validation Set size on the front panel of the Toolbox indicate whether data has been normalized.

1.1.8. Extract Reduced Measurement from the Validation Set (rxn).

This option allows the user to artificially fabricate Reduced Measurement Data from the Validation Set. The user is

prompted to select which vectors from the Validation Set are to be used to fabricate the Reduced Measurement Data.

The user must have already loaded a Validation Set. Use of this option will write over any previously loaded

Reduced Measurement Data.

1.2. Clear Current Data.

This menu item clears the Toolbox of all current data previously loaded into the Toolbox or previously computed

within the Toolbox. It clears all global variables as well as the plot in the Toolbox Window and the parameter values

displayed on the front panel.

Note that many variables are created as global variables within the HELP Toolbox program so that they may be

passed between subroutines as the user progresses through the HELP modeling and analysis. The user should be

aware when creating global variables within the MATLAB Command Window that the names below are used by the

Toolbox and if changed could produce false modeling results.

Global Variables within the HELP Toolbox

ADAT
AVAL
BINT2VAL
irNT2VAL
INTI

NORM_VEC
RESVAL
SIGMAMV
TOTAL_MEAS_OUT_I
YHATMEAS

AFULL
BINTIMEA
IINTIMEA
INDV
INTIM
PREDVARVEC
SELECT_MOD_VECS
STDHAT
USVD
YHATVAL

ARED
BINTIVAL
IINTIVAL
FNTB
NMFACTORM
PRl

SELECTVALEXTRACT
SSVD
XHATMEAS
YMEAS

ATRAIN
BINT2MEA
IINT2MEA
INTBM
NMFACTORV
RESMEAS
SIGMA_MM
TOTAL_MEA_OUT_B
XHATVAL

The variables shown above are defmed in section 1.3. below and in a glossary in section III. 3.

are also described in Table 4.1 in the introduction to this section.

Some of the variables

Additionally, a creative MATLAB user can make use of the global variables to access the Toolbox parameters

within the MATLAB programming environment to increase the analysis capabilities of the Toolbox. To access the

global variables, the user must enter a global statement within the MATLAB programming environment including

the variables of interest (see MATLAB documentation on global variables).

1.3. Save Variable.

This menu item allows variables created within the HELP Toolbox to be saved to the disk as ASCII text files. The

variables permitted to be saved and their corresponding filenames are listed below. In each case, a window pops up

in which the user may name the saved file. The default filename will appear in the filename block. The user may
type any name in place of the default name as well as select the desired directory in which to locate the saved file.

The user should take care to name/locate the file uniquely so that subsequent saves do not overwrite a needed file.

1.3.1. Modeling Set (atrain.txt) (mxp).

This menu item allows the user to save the Modeling Set to the computer disk. The Modeling Set is sometimes

referred to as training data.
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1.3.2. Validation Set (aval.txt) (mxq).

This menu item allows the user to save the Validation Set to the computer disk.

1.3.3. Full Model (afull.txt) (mxn).

This menu item allows the user to save the Full Model to the computer disk.

1.3.4. Reduced Model (ared.txt) (kxn).

This menu item allows the user to save the Reduced Model to the computer disk.

1.3.5. Reduced Measurement Data (ymeas.txt) (rxn).

This menu item allows the user to save the Reduced Measurement Data to the computer disk.

1.3.6. Pivot Vector (test points indices, prl.txt) (rxl).

This menu item allows the user to save the Pivot Vector to the computer disk. The Pivot Vector maps the reduced

test points back into the Full Model (and therefore defines which points are to be measured for the device imder test

(DUT)).

1.3.7. Validation Parameter Coefficients (xhatval.txt) (nxq).

This menu item allows the user to save the Validation Parameter Coefficients to the computer disk. The parameter

coefficients for each vector in the Validation Set determine the contribution of each parameter in the model to the

predicted response of the device represented by that validation vector.

1.3.8. Measurement Parameter Coefficients (xhatmeas.txt) (nxr).

This menu item allows the user to save the Measurement Parameter Coefficients to the computer disk. The

parameter coefficients for each vector within the Reduced Measurement Data determine the contribution of each

parameter in the model to the predicted response of the measured device.

1.3.9. Validation Response Predictions (yhatmat.txt) (mxq).

This menu item allows the user to save the Validation Response Predictions to the computer disk. The Validation

Response Predictions are predicted responses at all candidate test points for each vector in the Validation Set, based

only upon knowledge of the reduced test points contained within the Validation Set for the particular device and the

Full and Reduced Models. The model does not use the knowledge of the remaining measurements for each device

contained withm the Validation Set. See section II. 7. on page 2.7 and following for details.

1.3.10. Measurement Response Predictions (yhatmeas.txt) (mxr).

This menu item allows the user to save the Measurement Response Predictions to the computer disk. The

Measurement Response Predictions are predicted responses at all the candidate test points for each measurement

vector loaded, based upon the reduced test points represented in the Reduced Model. The Full and Reduced Models

are used to produce the predictions.

1.3.11. Validation Residual Errors (resval.txt) (mxq).

This menu item allows the user to save the Validation Residual Errors to the computer disk. The Validation

Residual Errors are differences between the measured and predicted responses at all points for each vector in the

Validation Set.
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1.3.12. Measurement Residual Errors (resmeas.txt).

This menu item allows the user to save the Measurement Residual Errors to the computer disk. The Measurement

Residual Errors are differences between the measured and predicted responses at the reduced test points for each

vector of measurement data.

1.3.13. Individual Validation Prediction Intervals (iintlval.txt,iint2val.txt).

This menu item allows the user to save the Individual Validation Prediction Intervals to the computer disk.

Individual Prediction Intervals provide a 95.45 percent bound for the predicted response at each test point produced

using the HELP Toolbox. A 95.45 percent bound is a bound for which each prediction point has a 95.45 percent

probability of falling within the upper and lower bound values. This corresponds to coverage of two standard

deviations (2-sigma) for a normal distribution. The default filename containing the "1" stores the upper bound and

the filename containing the "2" stores the lower bound.

1.3.14. Individual Measurement Prediction Intervals (iintlmea.txt,iint2mea.txt).

This menu item allows the user to save the Individual Measurement Prediction Intervals to the computer disk.

Individual Prediction Intervals provide a 95.45 percent bound for the predicted response at each test point produced

using the HELP Toolbox. A 95.45 percent bound is a bound for which each prediction point has a 95.45 percent

probability of falling within the upper and lower bound values. This corresponds to coverage of two standard

deviations (2-sigma) for a normal distribution. The default filename containing the "1" stores the upper bound and

the filename containing the "2" stores the lower bound.

1.3.15. Simultaneous Validation Prediction Intervals (sintlval.txt,sint2val.txt).

This menu item allows the user to save the Simultaneous Validation Prediction Intervals to the computer disk.

Simultaneous Prediction Intervals provide a 95.45 percent bound for the predicted response at all test points

produced using the HELP Toolbox. A 95.45 percent bound is a bound for which there is a 95.45 percent probability

that none of the predicted points lies outside. This corresponds to coverage of two standard deviations (2-sigma) for

a normal distribution. The default filename containmg the "1" stores the upper bound and the filename containing

the "2" stores the lower bound.

1.3.16. Simultaneous Measurement Prediction Intervals (sintlmea.txt,sint2mea.txt).

This menu item allows the user to save the Simultaneous Measurement Prediction Intervals to the computer disk.

Simultaneous Prediction Intervals provide a 95.45 percent bound for the predicted response at all test point produced

using the HELP Toolbox. A 95.45 percent bound is a bound for which all prediction points taken together have a

95.45 percent probability of falling within the upper and lower bounds. This corresponds to coverage of two

standard deviations (2-sigma) for a normal distribution. The default filename containing the "
I " refers to the upper

bound and the "2" to the lower.

1.4. Orthogonalize Modeling Set.

This menu item is useful for assigning a specific set of model vectors to the Full Model and using empirical vectors

to augment the assigned vectors. For instance, if the user wanted to assign a set of Rademacher vectors to the Full

Model in order to model an Analog-to-Digital Converter (ADC), and augment the set of Rademacher vectors with

some measurement data taken from the ADC, the user would load the set of Rademacher vectors into the Full Model

using the menu item [Data Sets/Load Data File/Full Model]. The user would then load the measurement data into

the Modeling Set using the menu item [Data Sets/Load Data File/Modeling Set Only]. The user would next

orthogonalize the Modeling Set to the Full Model using this menu item, i.e., [Data Sets/Orthogonalize Modeling

Set]. The next step in the process would be to select parameters for the model using the menu item [Params and

Test Pts/Make Parameter Selection]. When the input box appears into which the user will enter the desired number

of parameters, the user must be sure the new vectors for the model are appended to the existing Full Model

consisting of the Rademacher vectors, by pressing the radio button labeled "Append".
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2. Parameters and Test Points.

This menu selection allows the user to mathematically manipulate the matrix of data referred to as the modeling set.

The user must produce a full model and a reduced model before he can predict device behavior. Together, the full

and reduced models are referred to as the system model because both are required to take a reduced set of device

measurements and predict device behavior at all candidate test points.

Selecting model parameters and test points corresponds to selecting the number of unknowns and the number of

equations, respectively, in a system of simultaneous linear equations. The user must first determine how many
unknowns (model parameters) to use in the system of equations and then establish an appropriate number of

equations (test points) to accurately solve the system.

2.1. Modeling Set Decomposition.

This menu item performs the computations necessary for selecting the parameters for the system model. The

computations performed are also necessary to the algorithms that correspond to the parameter selection plots used to

help select parameters. Therefore, this menu item must be selected prior to attempting to use any of the parameter

selection plots and prior to selecting parameters or test points.

A singular value decomposition (SVD) is performed on the modeling set, Y . The SVD factors the modeling set

into three matrices, Y = USV^ , where f/ is a matrix of orthogonal column vectors that span the same space as the

modelmg set matrix, 5 is a diagonal matrix of singular values, and V is an orthogonal matrix that is not used by

the Toolbox. The singular values give a quantitative description of how much information from the modeling set is

contained in successive vectors of the matrix U . The singular values (and thus the columns of C/^ ) are in

decreasing order accordmg to their contribution to the information contained in the modeling set.

2.2. Parameter Selection Plots,

This menu item allows the user to determine the number of parameters significantly affecting device behavior. The

number of parameters selected becomes the number of columns in the full and reduced models. The user has several

parameter selection plots available (listed below) along with a plot of the singular values (in the Plot menu) in order

to make an appropriate parameter size selection. Selecting n parameters corresponds to assigning the first n columns

of the matrix U (see Modeling Set Decomposition) as the fiill model.

2.2.1. Diagnostic Plots.

This menu item plots the Log of Eigenvalues (LEV) Plot, the RMS of Residual Eigenvalues Plot, and the Q-Max
Plot (see comments on each below), with a brief note to help in determining the number of parameters for the model.

In practice, the recommendations from the three plots are sometimes inconsistent or unclear. The Q-Max Plot will

usually give a maximum, but it may be too large. This may correspond to a fairly even decline in the RMS of

Residual Eigenvalues Plot and to the absence of an elbow in the LEV Plot. From numerical experiments, it appears

that not much can be gained by increasing the number of parameters in such a case. The recommendation then is to

choose the smallest number of parameters that provide sufficient accuracy in the prediction. There are a number of

other plots available in the Toolbox, but in an unclear situation they may just add to the confusion. The three plots

that are combined in 2.2.1. as well as others are described individually below.

2.2.2. Scree Plot (Eigenvalues).

The eigenvalues are the squares of the singular values (see Modeling Set Decomposition). A typical plot contains an

"elbow", i.e., a fairly steep decline up to a particular eigenvalue, followed by a flat part. It is recommended that the

user include all parameters up to and including the first eigenvalue in the flat region.
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2.2.3. Log of Eigenvalues (LEV).

The LEV Plot is simply the log of the Scree Plot with similar selection characteristics. The LEV Plot may contain

an "elbow" as in the Scree Plot or it may have a "step" shape. In that case, the parameters up to and including the

bottom of the step should be selected.

2.2.4. Fraction of Variation Explained.

This plot shows the fraction of the cumulative variation explained with increasing parameter selections. The user

could use this plot to determine what percentage of information existing within the modeling set is contained in a

ftiU model of a certain number of parameters. This plot can be used in conjunction with the Scree Plot to show what

percentage of information is "drowned out" by the noise.

2.2.5. RMS of Residual Eigenvalues.

This plot shows the root mean square of the residual eigenvalues. It allows the user to choose the number of

parameters such that the expected residuals at individual test points for new devices are sufficiently small. The user

can choose the number of parameters such that the plotted quantity is no greater than a predetermined required

uncertainty. The plot can alternatively be used to predict the effect of changing the number of parameters. The plot

will always indicate that increasing the number of parameters decreases the size of the residuals. However, as the

number of parameters grows large, the model may capture more noise.

2.2.6. Q-Max Plot.

This plot shows a statistical estimate for the dimension of the residuals of training data from a model with n

parameters. The number of parameters selected should correspond to the maximum value of the plot or the smallest

value for which the plot reaches a plateau.

2.3. Select Number of Parameters

Once the user has used the Parameter Selection Plots to determine the desired number of parameters, selecting this

menu item produces a pop-up window in which the user can enter the desired number of model parameters.

2.4. Test Point Selection.

For a given number of model parameters, test points must be selected to solve the system of equations. Based upon

experience with empirical model building, the Toolbox authors suggest using a quantity of test points equal to two to

five times the number of model parameters. The test points can be chosen arbitrarily by the user or selected using

the prediction variance optimization routine described below.

2.4.1. Prediction Variance Optimization.

Optimally select test points to be included in the reduced model by computing the ratio of the variance of the

prediction to the variance of the measurement noise at all points and choosing the test point with the highest ratio

value to be included in the reduced model. This ratio will change after each additional test point so the ratio is

recalculated for each iteration until the desired reduced model size is established (see above theory).

2.4.2. Test Point Assignment.

This menu item allows the user to assign specific test points to the reduced model. The vector of the assigned test

points is referred to as the pivot vector.
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2.4.2.1. Assign Test Point File.

This menu item allows the user to load a file into the Toolbox environment to specify which of the candidate test

points are to be used in the reduced model. The file must contain a vector of indices, the largest of which must be

less than or equal to the number of candidate test points.

2.4.2.2. Manual Entry.

The user may use this menu item to manually type into a data entry window the indices of the test points to be

included in the reduced model. The largest entry must be less than or equal to the number of candidate test points.

2.4.3. Combined Optimization and Assignment.

This menu selection allows the user to use both optimally select test points and manually select test points. The first

n points selected optimally are selected using the QR factorization. Additional optimally selected test points are

selected using prediction variance optimization. Manually assigned points are selected in addition to the optimal

points and may repeat points selected optimally. Upon selection of this menu item, the user must choose how many
optimal points are to be selected and type into the input window the indices of the test points that are to be manually

assigned. Press the OK button and the Toolbox will produce the appropriate model.

3. Assess Model.

This menu item computes the response predictions for either the validation set or the reduced measurement data

(evaluating actual or simulated Device Under Test (DUT)). The validation error statistics and the DUT error

statistics are displayed on the front panel of the HELP Toolbox. Also, the Plot menu item will allow the user to

display the predicted response, actual response (for the case of validation), and residual errors.

3.1. Validate Model.

Predict the response at all candidate test points in the validation set based on calculations using only the reduced

model points extracted from the validation set and compute the residual errors (measured response - predictions) at

all candidate test points for each vector/data set within the validation set.

3.2. Predict Calibration.

Predict the response at all unmeasured candidate test points and compute the residual errors (measured response -

predictions) for all measured points. Reduced measurement data for calibration can be loaded into the Toolbox

environment via the [Load Data] menu item.

3.3. Multiple Model RMS Error Results.

This menu item computes the rms of the residual errors produced for applying numerous models to the validation

set. The Toolbox will prompt the user for a vector of parameter sizes and a vector of test-point sizes which the user

is interested in testing. A matrix will be generated in which for each combination of parameter size and test-point

size, the corresponding rms of the residual error will be computed for each validation vector. Combinations with

more parameters than test points will be ignored by the software. The user may look at a plot of the results to

determine optimal model sizes with respect to rms error values. Note that this menu item may take many minutes or

even hours depending on the number of parameter and test pomt combinations and depending on the computer

system used.

4. Quality Control

Once device predictions are made using a constructed model, it is desirable to know the uncertainty associated with

the prediction. This menu item allows the user to compute prediction intervals around the predictions that provide

95.45 percent bounds (coverage of twice the standard deviation of a normal distribution).
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4.1. Individual Prediction Intervals.

This menu item allows the user to compute prediction intervals for each test point represented within the system

model.

4.1.1. Validation.

Compute an interval around each predicted response for the validation set that has a 95.45 percent statistical

probability of containing the measured value. The prediction intervals (and thus the model) can be tested by

checking to see what percentage of the measurements at points not included in the reduced model fall inside and

outside of the prediction intervals. At least 95.45 percent of the points should lie within the intervals. Note that this

check of the model and intervals assumes that the data in the modeling and validation sets are statistically

representative of the system under test.

4.1.2. Measurement.

Compute an interval around each response prediction that has a 95.45 percent statistical probability of containing the

measured value. The Reduced Measurement Data consist of measurements at a subset of all candidate test points

represented in the Full Model.

5. Plot

View plots of quantities previously created within or loaded into the HELP Toolbox.

5.1. Measurement Vectors.

Allows the user to select vectors from one of several sets to plot. The user must enter the indices corresponding to

the columns of the set that the user desires to plot. The user must enter an index or set of indices that are contained

within the data set or an error will occur. The user may choose to plot multiple vectors horizontally on top of one

another or vertically as separated columns. The user may also select between the plotting of normalized or

unnormalized data.

5.1.1. Modeling Set.

Plot columns from the modeling set.

5.1.2. Model Vectors.

Plot columns from the frill model.

5.1.3. Validation Set.

Plot columns from the validation set.

5.1.4. Reduced Measurement Data.

Plot columns from the reduced measurement set.

5.2. Normalization Vector.

Plot the vector used to normalize the modeling set and validation set. This vector will typically be a tolerance or

uncertainty vector for the modeled device.
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5.3. Singular Values.

Plot the singular values produced from performing a singular value decomposition on the modeling set. This plot

gives an indication of the contribution of successive parameters to the model.

5.4. Validation Analysis.

This section allows the user to plot vectors computed from applying the model to the validation set. Prior to

plotting from the validation analysis sub-menu, the user must have created frill and reduced models from data loaded

into the Toolbox or loaded them into the Toolbox directly, and then performed a validation of the model using a

validation set that was loaded into the Toolbox.

5.4.1. Response Predictions.

Plot the response predictions computed for the validation set. The user must select the validation vector(s) for which

the corresponding response predictions are to be plotted. The user has the option of plotting normalized or

unnormalized data.

5.4.2. Residual Errors Statistics.

When the user validates the model, error statistics are computed for the predictions made at the total candidate set of

test points based only on the reduced test points.

5.4.2.1. Residual Errors.

Plot the residual errors (measurement-prediction) computed for the validation set. The user must select the

validation vectors for which the corresponding residual error vectors are to be plotted. The user has the option of

plotting normalized or imnormalized data.

5.4.2.2. True Maximum Per Device.

Plot the maximum of the residual errors computed for each validation vector.

5.4.2.3. True Minimum Per Device.

Plot the minimum of the residual errors computed for each validation vector.

5.4.2.4. Absolute Maximum Per Device.

Plot the absolute maximum computed for each validation vector.

5.4.2.5. RMS Per Device.

Plot the root-mean-squares of the residual errors computed for each validation vector.

5.5. Analysis of DUX.

5.5.1. Response Predictions.

Plot the response predictions for the reduced measurement data. The user must select the measurement data vector

for which the corresponding response predictions are to be plotted. If measurement data for a single device under

test has been loaded into the Toolbox, the user must enter 1. The user may also select between plotting of

normalized or unnormalized data.
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5.5.2. Residual Error Statistics.

5.5.2.1. Predicted Residual Errors.

Plot the predicted residual error for the reduced measurement data. The user must select the measurement data

vector for which the corresponding predicted residual error vector is to be plotted. If measurement data for a single

device under test has been loaded into the Toolbox, the user must enter 1 . The user may also select between the

plotting of normalized or unnormalized data.

5.5.2.2. RMS Per Device.

Plot the root-mean-squares of the predicted residual error for the reduced measurement data.

5.6. Parameter Coefficient Vector.

5.6.1. Validation.

Plot the parameter coefficient vector computed for the model for the particular validation vector selected by the user.

5.6.2. Measurement.

Plot the parameter coefficient vector computed for the model and particular reduced measurement vector selected by

the user.

5.7. Prediction Variance Vectors.

Plot the prediction variance vectors produced successively by selecting test points for the reduced model.

Successive vectors decrease in magnitude. The maximum value for all previously unselected test points corresponds

to the next test point selected in the optimal test point selection process.

5.8. Prediction Intervals.

5.8.1. Individual.

Plot 2-sigma (95.45 %) individual prediction intervals for a validation vector or a reduced measurement vector. The

user may plot the intervals either normalized or unnormalized and either separately or with the predictions added to

the prediction intervals. In all cases, the predictions are plotted to allow the user to view the coverage probability.

The exact coverage percentage may be obtained by defining the variable TOTAL_MEAS_OUT_I global within the

MATLAB command window. This gives the number of predictions not covered by the prediction intervals. To
obtain the percentage, take 1 minus the ratio of this number to the total number of predictions and multiply by 100.

5.8.1.1. Validation.

Select the validation vector for which individual prediction intervals are plotted.

5.8.1.2. Measurement.

Select the measured data vector for which individual prediction intervals are plotted.

5.9. Multiple Model RMS Error Results.

Plot rms error results for the models tested with the menu item [Assess Model/Multiple Model RMS Error Results].

5.10. Control Plot Axes.

This menu item allows the user to control the range for the x- and y-axis settings.
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5.11. Hold Plot Axes.

Fix current plot axes so that plots may be placed on the same axes. The command does not freeze the axes, but

rather flexibly allows multiple plots on the same axes. Once Hold On is selected, Hold Off must be selected prior to

viewing a new plot separately.

5.11.1. Hold On.

This menu item causes all subsequent plots to be placed on the same axes.

5.11.2. Hold Off.

This menu item causes subsequent plots to clear previous plots before displaying.

5.12. Grid

Place a grid on the plot axes.

5.13. Clear Plot

Clear the plot axes.

5.14. Print Figure.

Print a plot of the current figure.

5.15. Print Bitmap of Entire Window.

Print a bitmap of the entire HELP Toolbox Window (everything below the menu labels).

6. Help.

Call the HTML navigator and the HTML help pages for the HELP Toolbox.

7. Exit

Exit the HELP Toolbox.
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V. HELP Toolbox Tutorial

1. Example: Modeling an Analog Instrument with an Empirical Model

To start the HELP Toolbox from within the MATLAB® Command Window, type

»help22

The High-dimensional Empirical Linear Prediction Toolbox window will appear. As you browse the

Toolbox, you will see the menu headings [Data Sets], [Params and Test Pts], [Assess Model], [Quality

Control], [Plot], [Help], and [Exit]. Each of these main menu items has corresponding submenus. (For the

sake of clarity and consistency, all references to menu labels are enclosed by square brackets.)

To begin using the HELP Toolbox, we must load some previously collected data into the Toolbox. Select the menu
item [Data Sets/Load Data File/Modeling Set and Validation Set].

You will be prompted to select the file format for the file you wish to enter.

Select MATLAB® Binary Format (*.mat). Within the Load Data Window that pops up, change the folder directory

to C:\HelpData\792A (or where ever the data exist). Select the filename "m792_309.mat" by single-clicking the

filename and choosing the "Open" button or by double-clicking the filename.

You will see the size of the data file displayed as 309 rows and 126 columns. This is referred to as a matrix

of size 309x 126. You will next be asked if you would like to assign some of the data for model validation.

Choose the "Yes" button. Then, within the prompt window, select the button labeled "Manually". Place your

cursor in the light blue box, click the mouse, and type "[101:126]" (without the quotes). Choose the "OK" button.

This tells the Toolbox to select the lOT' through the 126"' vectors from the data set and assign them to the

validation set. You will see the sizes of the modeling and validation sets displayed as 309 x 100 and
309x26, respectively. Notice underneath both the modeling set sizes and validation set sizes, there are text

objects labeled "Unnormalized". This informs the user that neither matrix has been normalized.

Select the menu item [Data Sets/Load Data File/Normalization Vector] in order to normalize the modeling and

validation sets to a calibration tolerance vector. Choose MATLAB® Binary Format (*.mat). Change the folder

directory to C:\HelpData\792A. Select the filename "fluk_792.mat". Note that when the user selects MATLAB
Binary File type, the Toolbox looks specifically for *.mat files so the ".mat" extensions are not listed in the

directory window.

Another small window will appear asking if you would like to normalize the modeling and validation sets.

Normalize both the modeling and validation sets by choosing the "Both" button.

After choosing the "Both" button, you will notice the text object labels change to "Normalized". Any
subsequent normalization of the modeling and validation sets will not change this normalization flag so pay

attention to the normalization flag prior to using it.

Now that you have a modeling set, you are ready to build an empirical model. Keep in mind that the goal

is to build a model that characterizes the device or instrument of interest with as few test points as

necessary to achieve the accuracy and confidence levels desired.

Select the menu item [Params and Test Pts/Modeling Set Decomposition].

This performs a factorization of the modeling set so that the column dimension of the model may be

reduced.

Next, select the menu item [Params and Test Pts/Parameter Selection Plots/Diagnostic Plots].

The plots shown within the Toolbox give some graphical information helpful in determining the desired

number of parameters for the model. The interpretation of these plots is discussed in the section III.
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Description of Toolbox Menus and Variables. The Toolbox window with the plots displayed is shown in

Figure 5.1 . Next, we will select 20 parameters for the model.

Determining the desired number of parameters for a model can depend on the user's definition of an

acceptable error level for the device under test. It is often beneficial to construct many models with

differing numbers of model parameters and look at the resulting errors. Next we consider the effects of

varying the number of test points selected for the model. A general guideline is to select test points totaling

between two and five times the number of parameters chosen. Having an overdetermined system (more

test points than parameters) helps to reduce the measurement noise and flag errors in the model and/or in

the device under test. Given that there must be significantly more test points than model parameters,

adding additional parameters to the model will require a greater number of test points. Since reducing the

number of test points is the means by which the cost of testing is lessened, this reduction in model size

must be weighed with the user's error requirements.

Select the menu item [Params and Test Pts/Select Number of Parameters]. An input box will appear. Click on the

blue area of the input box, type "20", and press the "OK" button.

Notice on the fi-ont panel that a full model of size 309^20 has been created.

The next step is to choose a set of test points for the model so select the menu item [Params and Test Pts/Test Point

Selection/Prediction Variance Optimization]. An input box containing a slider will appear. Enter the value "80"

into the blue area showing the slider value or move the slider until "80" appears, and press the "OK" button.

You have just selected 80 test points creating a Reduced Model of size 80x20. Notice that the number of

rows for the Reduced Model displays "80" on the fi"ont panel.

Next validate the model by selecting the menu item [Assess Model/Validate Model].

Notice that the Validation Error Statistics are filled in on the fi-ont panel. Recall that you set aside some of

the initial data for validation. This portion of the data was not used in creating the model.

Plot the first vector in the Validation Set using the menu item [Plot/Measurement Vectors A^alidation Set]. Click on

the blue area, enter " 1 " to select the first validation vector, and press the "OK" button. Next we want to plot the

predicted response for the first vector in the Validation Set right on top of the present plot so hold the current axes in

place by selecting [Plot/Hold Plot Axes/Hold On]. Then select [PlotA^alidation Analysis/Response Predictions],

enter "1" in the blue area (because we want the first vector again), and press the "OK" button. Plot the Residual

Errors on the same plot by selecting [PlotA^alidation Analysis/Residual Error Statistics/Residual Errors]. Select

[Plot/Hold Plot Axes/Hold Off] to free the plot axes for later plots.

This plot now shows the set of measurements represented in the first validation set, the predictions based

on measuring only the 80 test points selected, and the residual errors for those predictions. Figure 5.2

shows an image of the Toolbox window with all its parameters displayed on the front panel and the plots

displayed in the graph portion of the window.

Suppose you want to determine whether the model accurately characterizes a validation device. This

determination can be made using prediction intervals.

Compute prediction intervals by selecting the menu item [Quality Control/Individual Prediction

Intervals/Validation]

.

Plot the prediction intervals for the first validation set using [Plot/Prediction Intervals/IndividuaWalidation]. Click

in the blue area, type a " 1 " and press the "OK" button. Select [Plot/Control Plot Axes], change the x-axis range to

[0 50], and press the "Apply" button.

The prediction intervals can be seen to be about plus and minus 20 percent of the tolerance (normalization

vector) about the predictions. Figure 5.3 contains a picture of the intervals with the modified x-axis.
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The errors produced from applying the model to the validation set may be observed using any of the menu items

under the label [PlotA^alidation Analysis/...].

The previous model was constructed using arbitrary selections from the data for various parameters, such

as modeling and validation set divisions, model parameters, and test points. Next, we will construct a

model usmg statistical and engineering criteria for making such selections, as required to properly apply

the HELP approach. The modeling and validation sets will be selected according to time of measurements

so as to place broad parameter variability in both sets. The number of parameters will be varied to

investigate the errors produced over varying numbers of model parameters.

Select [Data Sets/Clear Current Data] from the Toolbox menu. Notice that the entire plot portion of the window is

cleared and all parameter listings in the front panel of the window are set to zero. Additionally, the normalization

flags for the modeling and validation sets are reset to "Unnormalized". Now reload the same data set using [Data

Sets/Load Data File/Modeling Set and Validation Set]. Select MATLAB Binary Format (*.mat) for the type of file

to be loaded. Find the file under C:\HelpData\792a\M792_309.mat. Again, recall that all ".mat" extensions will be

hidden because the Toolbox is looking specifically for these files. Select the filename "m792_309.mat" by either

double clicking the filename or choosing the "OK" button.

You will see the size of the data file displayed as 309x 126. Next we will assign a more appropriate portion

of the data for model validation than previously assigned.

Choose the "Yes" button. Then, withm the prompt window, select the button labeled "Manually". Place your

cursor in the light blue box, click the mouse, and type "[1:5:126]" (without the single quotes)(square brackets

indicate a vector or matrix and may be omitted if no comma is needed to separate elements). Choose the "OK"

button.

This tells the Toolbox to separate every fifth vector from 1 through 126 from the data set and assign it to

the validation set. You will see the sizes of the modeling and validation sets displayed as 309x 100 and

309x26, respectively. Again, notice underneath both the modeling set size and validation set size, there are

text objects labeled "Unnormalized". This informs the user that neither matrix has been normalized.

Select the menu item [Data Sets/Load Data File/Normalization Vector] in order to normalize the modeling and

validation sets to a calibration tolerance vector. Choose MATLAB Binary Format (*.mat). Change the folder

directory to C:\HelpData\792a. Select the filename "fluk_792.mat" either by selecting the file and clicking on the

"OK" button or double-clicking the filename.

Normalize both the modeling and validation sets by choosing the "Both" button.

After choosing the "Both" button, you will notice the text object labels change to "Normalized".

Select the menu item [Params and Test Pts/Modeling Set Decomposition].

This performs a factorization of the modeling set so that the column dimension of the model may be

reduced.

Next, select the menu item [Params and Test Pts/Parameter Selection Plots/Diagnostic Plots].

The plots shown within the Toolbox give graphical information helpfiil in determining the desired number

of parameters for the model.

Select the menu item [Params and Test Pts/Select Number of Parameters]. An input box will appear. Click on the

blue area of the input box, type "25", and press the "OK" button.

Notice on the front panel that a full model of size 309x25 has been created.

Now select the menu item [Params and Test Pts/Test Point Selection/Prediction Variance Optimization]. An input

box containing a slider will appear. Enter the value "80" into the blue area showing the slider value or move the

slider until "80" appears, and press the "OK" button.

You have just selected 80 test points creating a Reduced Model of size 80x25.
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Next validate the model by selecting the menu item [Assess ModelA'^alidate Model].

Notice that the Validation Error Statistics are filled in on the front panel. (Recall that you set aside some of

the initial data for validation.)

Note that the RMS, Max, and Min for the residual errors are 0.041 152, 0.50888, and

-0.21042, respectively.

Now, look at the true maximum, true minimum, absolute maximum, and rms of the residual errors from the

validation set using the menu item [PlotA^alidation Analysis/Residual Error Statistics/. . .]. Next hold the plot axes

fixed and plot all the plots on top of each other for comparison and contrast by selecting [Plot/Hold Plot Axes/Hold

On] after the first plot. Remember to select [Plot/Hold Plot Axes/Hold Off] afterwards to release the plot axes. The

Toolbox window containing these plots is shown in Figure 5.4.

Next, create reduced measurement data fi-om the validation set using [Data Sets/Load Data File/Extract Reduced

Meas. from Validation]. Click in the blue text field, type "1
", and hit "OK". Another window will pop up to make

sure you want to overwrite any existing reduced measurement data. We have not yet assigned any reduced

measurement data ... hit the "OK" button. Predict the measurement response using [Assess Model/Predict

Calibration]. Note the DUT Error Stat on the front panel contains a value. Take a look at the measurements by

selecting [Plot/Measurement Vectors/Reduced Measurement Data]. Click on the mouse in the blue area, type "1"

(there is only one reduced measurement vector), and press the "OK" button. Hold the plot axis using [Plot/Hold

Plot Axes/Hold On]. Plot the predicted response using [Plot/Analysis of DUT/Response Predictions]. Click on the

blue text filed, enter "1", and hit "OK". The actual measurements are shown as light blue circles and the predictions

are displayed as a red curve. Plot the predicted residual errors using [Plot/Analysis of DUT/Residual Error

Statistics/Predicted Residual Errors]. Click in the blue text field, type "1", and hit "OK". The entire window
containing these plots is shown on the following page. Select [Plot/Hold Plot Axes/Hold Off] to release the plot

axes. Figure 5.5 shows the Toolbox window containing the plot created.

Now go back and create a model of size 80x32 and compare the residual statistics.

Select [Params and Test Pts/Select Number of Parameters]. Enter "32" m the blue area. Be sure to check the

"Replace" button within the parameter selection box so that instead of appending vectors to the present model, a

new model is created. Note on the front panel that the Reduced Model row-size, the Valid. Error Stats, and the

DUT Error Stat are all set to zero, indicating that a new reduced model must be selected. To choose a new set of

reduced test points, select the menu item [Params and Test Pts/Test Point Selection/Prediction Variance

Optimization]. An input box containing a slider will appear. Move the slider until the value "80" appears or enter

"80" into the blue text-input area. Then press the "OK" button.

You have just selected 80 test points creating a reduced model of size 80x32.

Next, validate the model usmg [Assess Model/Validate Model].

Now the RMS, Max, and Min are 0.040057, 0.5 1302, and -0.2 11 88, respectively. The changes in the RMS
(slight decrease), Max, and Min are all negligibly small.

Next, create reduced measurement data from the validation set using [Data Sets/Load Data File/Extract Reduced

Meas. from Validation]. Click in the blue text field, enter "1", and hit "OK". Again, you will be asked if you are

sure you want to overwrite already-existing reduced measurement data. Hit the "OK" button. Predict the

measurement response using [Assess Model/Predict Calibration]. Again, try plotting the reduced measurement

vector, the predicted response, and the predicted residual errors using [Plot/Measurement Vectors/Reduced

Measurement Data] and [Plot/Analysis of DUT/...].

Repeat the procedure with 40 model parameters and 80 test points. Increasing the model size to 80x40 produces

RMS, Max, and Min of 0.038099, 0.49591, and -0.21158, respectively. The RMS error value continues to decrease,

but very slowly. Next, select the menu item [Params and Test Pts/Parameter Selection Plots/Diagnostic Plots].
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These plots give graphical information to enable the user to determine the desired number of parameters

for the model. We will choose 32 parameters for the model and investigate what happens when the

number of reduced test points is varied.

Select the menu item [Params and Test Pts/Select Number of Parameters]. An input box will appear. Click on the

blue area of the input box and type "32". Remember to select the "Replace" button instead of "Append" so that we
create a new model. Press the "OK" button. Next, select the menu item [Params and Test Pts/Test Point

Selection/Prediction Variance Optimization]. An input box containing a slider will appear. Enter the value "70"

into the blue area showing the slider value or move the slider until "70" appears, and press the "OK" button.

The Toolbox front panel should display the fiill model size as 309x32 and the number of rows for the

reduced model as 70.

Next validate the model by selecting the menu item [Assess ModelA^alidate Model].

Note that the RMS, Max, and Min for the residual errors are 0.040624, 0.51887, and

-0.20719, respectively.

Now, look at the validation analysis plots using the menu item [PlotA'^alidation Analysis/...]. Again, try holding on

the plot axis to place the plots on top of each other for comparison and contrast by selecting [Plot/Hold Plot

Axes/Hold On] after the first plot. Remember to select [Plot/Hold Plot Axes/Hold Off] before proceeding to a

different set of plots.

Take a look at the measured values (validation) and prediction on the same plot. Select [Plot/Measurement

VectorA^alidation Set]. Enter a "1" in the blue area. Select [Plot/Hold Plot Axes/Hold On] to fix the plot axes.

Select [PlotA^alidation Analysis/Response Predictions] and enter a "1" in the blue area. Select [PlotA/^alidation

Analysis/Residual Error Statistics/Residual Errors] and enter a " 1 " in the blue area. You have plotted the

measurements, predictions, and residual errors for the first validation vector based on a model of size 70x32.

Now create reduced measurement data from the validation set using [Data Sets/Load Data File/Extract Reduced

Meas. from Validation]. Click the mouse in the blue text field, enter "1
" to use the first validation vector, and hit

the "OK" button. This operation exfracts the 70 selected test points from the first vector in the validation set and

uses it as a device under test. Selecting the menu item [Assess Model/Predict Calibration], the Toolbox predicts the

response at all 309 points using only knowledge of the 70 selected measurement points. Now plot the reduced

measurement vector using [Plot/Measurement Vectors/Reduced Measurement Data]. Click the mouse in the blue

text field, enter "1", and click on the "OK" button. Fix the plot axes using [Plot/Hold Plot Axes/Hold On]. Now
plot the predicted response for the DUT using [Plot/Analysis of DUT/Response Predictions]. Click in the blue text

field, enter "1", and hit "OK". The light blue circles are the actual measurements at the 70 selected points and the

red curve is the predicted device response at all 309 points based on knowledge of only the 70 measurements. Plot

the predicted residual errors for the DUT using [Plot/Analysis of DUT/Residual Error Statistics/Predicted Residual

Errors]. Again, click in the blue text field, enter "1" (there is only one DUT vector), and hit "OK". The Toolbox

window containing plots of the reduced measurement data, the predicted response, and the predicted errors is shown

in Figure 5.6.

Now go back and select 80 test points for a reduced model of size 80x32 and compare the residual

statistics with those of the 70x32 model.

Select [Params and Test Pts/Test Point Selection/Prediction Variance Optimization]. Enter "32" in the blue area.

Next, validate the model using [Assess Model/Validate Model].

Note that the RMS, Max, and Min for the residual errors are 0.040057, 0.51302, and

-0.21 188, respectively. The RMS and Max values have improved only slightly.
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Again, try all the plotting combinations for the residual errors using [PlotA'alidation Analysis/Residual Error

Statistics/. . .]. Plot a validation vector with its response prediction and residual error.

Next, create reduced measurement data using [Data Sets/Load Data File/Extract Reduced Meas. from Validation].

Click in the blue text field, enter "1", and hit "OK". Hit "OK" again. Predict the measurement response using

[Assess Model/Predict Calibration]. The RMS of the predicted errors is displayed on the front panel as 0.037182

which is comparable to the value of 0.040057 for the RMS of the errors for the validation set.

Next, select 90 test points test points for the model using [Params and Test Pts/Test Point Selection/Prediction

Variance Optimization]. Validate the model using [Assess ModeWalidate Model]. Increasing the model size to

90x32 produces RMS, Max, and Min of 0.039182, 0.51244, and -0.20298, respectively. The RMS error value has

decreased with more test points. Again, create a reduced measurement vector using [Data Sets/Load Data

File/Extract Reduced Meas. from Validation], predict the calibration using [Assess Model/Predict Calibration], and

check out the error statistics. Note that the RMS of the predicted residual errors for the DUT is 0.039039.

Try 120 test points. The RMS, Max, and Min are now 0.037744, 0.52174, and -0.20067, respectively. Look at the

residual errors for the validation set using [PlotA^alidation Analysis/...]. Create reduced measurement data from the

first column of the validation set using the menu item [Data Sets/Load Data File/Extract Reduced Meas. from

Validation]. Enter "1" in the blue text field and press the "OK" button. A prompt-window will appear to confirm

the overwrite of any pre-existing Reduced Measurement Data. Press "OK" again. Perform mathematical analysis

on the reduced measurement data using the menu item [Assess Model/Predict Calibration]. The RMS of the

predicted residual errors for the DUT is 0.044293.

Now try using 309 test points (the complete set). The RMS, Max, and Min of the residual errors for the validation

set are now 0.035487, 0.42446, and -0.20529, respectively. The residual errors continue to decrease with the

addition of more test points. Now create reduced measurement data using [Data Sets/Load Data File/Extract

Reduced Meas. from Validation]. Note that this is theoretically not reduced measurement data since all points are

included in the model. There are no savings in measurements with this model! ! ! The RMS of the predicted residual

errors is 0.04446.

Select the entire validation set as the reduced data set by using [Data Sets/Load Data File/Extract Reduced Meas.

from Validation]. Click in the blue area and enter "1 :26" to select all validation vectors, and press the "OK" button

twice. Then evaluate all the vectors by selecting [Assess Model/Predict Calibration]. Notice that the DUT Error

Stat value is 0.035487, identical to the Valid. Error Stats RMS value. This should be the case since the calculation

used the entire data set in both analyses.

2. Example: Modeling a 10-Bit Analog-to-Digital Converter with Empirical and Mixed Models

To start the HELP Toolbox from within the MATLAB® Command Window, type

»help22

The High-dimensional Empirical Linear Prediction Toolbox window will appear. As you browse the

Toolbox, you will see the menu headings [Data Sets], [Params and Test Pts], [Assess Model], [Quality

Control], [Plot], [Help], and [Exit]. Each of these main menu items has corresponding submenus. (For the

sake of clarity and consistency, all references to menu labels are enclosed by square brackets.)

To begin using the HELP Toolbox, load some previously collected data into the Toolbox. Select the menu item

[Data Sets/Load Data File/Modeling Set and Validation Set].

You will be prompted to select the file format for the file you wish to enter.

Select MATLAB*^ Binary Format (*.mat). Within the Load Data Window that pops up, change the folder directory

to C:\Help2Data\inll0. Select the filename "Add 0.mat" by single-clicking the filename and choosing the "Open"

button or by double-clicking the filename.
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The Toolbox is looking for *.mat files so the .mat extension will not appear within the directory menu.

You will see the size of the data file displayed as 1024 rows and 89 columns. This is referred to as a matrix

of size 1024x89. You will next be asked if you would like to assign some of the data for model validation.

Choose the "Yes" button. Then, within the prompt window, select the button labeled "Manually". Place your

cursor in the light blue box, click the mouse, and type "[3:3:89]" (without the single quotes). Choose the "OK"

button.

This tells the Toolbox to select every third vector from three through 89 from the data set and assign them

to the validafion set. You will see the sizes of the modeling and validation sets displayed as 1024^60 and

1024x29, respectively. Notice underneath both the modeling set sizes and validation set sizes, there are

text objects labeled "Unnormalized". This informs the user that neither matrix has been normalized.

Select the menu item [Params and Test Pts/Modeling Set Decomposition].

This performs a factorization of the modeling set in order to reduce the column dimension of the model.

Next, select the menu item [Params and Test Pts/Parameter Selection Plots/Diagnostic Plots].

The plots shown within the Toolbox give graphical information helpful in determining the desired number

of parameters for the model. Figure 5.7 shows the Toolbox window containing these plots. All three

diagnostic plots are in agreement that about 8 to 12 parameters should model this data. Intuition might tell

us that we need at least 1 parameters. Try 8 first.

Select the menu item [Params and Test Pts/Select Number of Parameters]. An input box will appear. Click the

mouse in the blue text field of the input box, type "8", and press the "OK" button.

Notice on the front panel that a full model of size 1024x8 has been created.

Next, select the menu item [Params and Test Pts/Test Point Selection/Prediction Variance Optimization]. An input

box containing a slider will appear. Enter the value "40" into the blue area showing the slider value or move the

slider until "40" appears, and press the "OK" button.

You have just selected 40 test points to go along with the 8 parameters, for a 40x8 Reduced Model.

Next validate the model by selecting the menu item [Assess ModelA^alidate Model].

Notice that the Validation Error Statistics are filled in on the front panel. The RMS, Max, and Min for the

residual errors are 0.021283, 0.096661, and -0.083969, respectively.

Now, look at the true maximum, true minimum, absolute maximum, and rms of the residual errors from the

validation set using the menu item [PlotA^alidation Analysis/Residual Error Statistics/...]. Try holding on the plot

axis and plotting all these plots on top of each other for comparison and contrast by selecting [Plot/Hold Plot

Axes/Hold On] after the first plot. Remember to select [Plot/Hold Plot Axes/Hold Off] before trying a new plot.

Figure 5.8 shows the Toolbox window containing these plots. Compare the statistics contained within the

front panel of the Toolbox window with the values plotted.

Take a look at the measurement (validation) and prediction on the same plot. Select [Plot/Measurement

VectorA^alidation Set]. Select the "Unnormalized" button then click the mouse in the blue text area, enter a " 1
", and

select the "OK" button. Select [Plot/Hold Plot Axes/Hold On] to fix the plot axes. Select [PlotA'alidation

Analysis/Response Predictions], select the "Unnormalized" button, click the mouse in the blue text area, enter a " 1

",

and select the "OK" button. To add the residual errors to the same plot, select [PlotA^alidation Analysis/Residual

Error Statistics/Residual Errors], select the "Unnormalized" button, click in the blue text area, enter a " 1
", and press

"OK". Remember to select [Plot/Hold Plot Axes/Hold Off] prior to creating any new plots.

You are looking at the measurements and predictions for the first validation vector based on a model of

size 40x8. If the user does not selects the "Unnormalized" button when plotting any of the parameters, the

Toolbox will inform the user that the data has not been normalized and that unnormalized data will be

plotted.
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Next, create reduced measurement data using [Data Sets/Load Data File/Extract Reduced Meas. from Validation].

Click the mouse in the blue text field, enter " 1
", and press the "OK" button. Again, press the "OK" button, this time

to allow overwrite of data (no data presently exists to overwrite). Predict the measurement response using [Assess

Model/Predict Calibration]. Take a look at the measurements by selecting [Plot/Measurement Vectors/Reduced

Measurement Data]. Click the mouse in the blue text field, type "1" (there is only one reduced measurement

vector), and press the "OK" button. Hold the plot axis on using [Plot/Hold Plot Axes/Hold On]. Plot the predicted

response using [Plot/DUT Analysis/Response Predictions]. Click on the blue text field, enter "1", and press "OK".

Plot the predicted residual errors produced from applying the model to the reduced measurement data on the same

axes with the menu item [Plot/DUT Analysis/Residual Error Statistics/Predicted Residual Errors]. Again, click on

the blue text field, enter "1", and hit "OK". Remember to select [Plot/Hold Plot Axes/Hold Off] prior to the next

plot.

The light blue circles are the actual measurements at the 40 selected test points. The red curve contains the

predicted responses at all 1024 points. The light blue circles are the predicted residual errors at the 40

selected points. Figure 5.9 shows the Toolbox window containing these plots. Now go back and create a

model of size 40x 10 and compare the residual statistics.

Select [Params and Test Pts/Select Number of Parameters]. Enter "10" in the blue area. Be sure to check the

"Replace" button within the parameter selection box so that instead of appending vectors to the present model, a

new model is created. Select 40 test points for the model using [Params and Test Pts/Test Point Selection/Prediction

Variance Optimization]. Enter 40 in the blue text field and hit "OK". Next, validate the model using [Assess

ModeL'Validate Model].

Note that the RMS, Max, and Min for the residual errors are 0.02095, 0.082252, and -0.084122,

respectively. The RMS and Max values decreased but the Min actually became larger in absolute terms.

Again, try plotting the residual errors in all forms using the menu item [PlotA^alidation Analysis/Residual Error

Statistics/...].

Next, create reduced measurement data using [Data Sets/Load Data File/Extract Reduced Meas. from Validation].

Click the mouse in the blue text field, enter " 1
", and select the "OK" button. Another window will appear that asks

the user to verify the overwrite of any existing reduced measurement data. Select the "OK" button. Predict the

measurement response using [Assess Model/Predict Calibration].

The RMS value of the predicted errors is displayed on the front panel as 0.015105.

Repeat the procedure with 12 model parameters and 40 test points. Increasing the model size to 40x12 produces

RMS, Max, and Min of 0.021253, 0.080644, and -0.086893, respectively.

The RMS error value has increased in this case so that more model vectors is not better. The model is now
including more noise per parameter vector than true information.

Create a reduced measurement vector using [Data Sets/Load Data File/Extract Reduced Meas. from Validation].

Click the mouse in the blue text field, enter "1", and select the "OK" button. Next check out the error statistics.

Note that the RMS of the predicted residual errors for the DUT is 0.015547, which is comparable to the RMS of the

error for the validation set.

Now that several empirical models have been built and tested, we shall build and test a mixed model. The

normal empirical modeling procedure takes many empirical vectors and creates a model of linear

combinations of all or nearly all of the vectors in the modeling set. This approach cannot be used if the

user wants to evaluate a particular vector corresponding to a physical or a priori characteristic of a device.

In this case, the physical or a priori vector or vectors of interest are assigned to the full model. The same

modeling set is then used to augment the full model according to the normal empirical modeling procedure.

Load a full model (previously created and located on the computer disk) into the Toolbox by selecting [Data

Sets/Load Data File/Full Model]. Press the button labeled "MATLAB Binary Format (*.mat)". Change the folder
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directory to C:\HelpData\InllO, choose the file named "radlO.mat", and press the "OK" button. (Note that the .mat

extension does not appear in the directory menu.)

The front panel now displays the fiill model size as 1024x 10.

Plot the fiill model usmg [Plot/Measurement Vectors/Model Vectors]. Click on the blue area in the window that

appears and enter [1:10], press the "Vertical" button and the "Unnormalized" button and then press the "OK" button.

Do not plot the test points on this plot (they do not correspond to the new model). You will see the first 10 vectors

from the set referred to as Rademacher vectors. Notice that the last few vectors are difficult to view at the current

axis resolution. To get a better view of the last few vectors select [Plot/Control Plot Axes], change the x-axis range

to [0 16] and the y-axis range to [0 200] in the window that appears, and press the "Apply" button and then the

"Close" button.

Figure 5.10 shows the model vectors as plotted in the Toolbox window. The set of Rademacher vectors is

a set of orthonormal vectors that characterize binary behavior. We are going to orthogonalize the

(empirical) modelmg set to the Rademacher vectors in the full model and augment the model.

Select the menu item [Data Sets/Orthogonalize Modeling Set]. Hit the "OK" button in the window that appears.

The modeling set has now been orthogonalized to the full model. This changes the modeling set! If the

user desires to perform any additional mixed modeling, the full model must be reloaded into the Toolbox.

If the user wants to perform additional empkical modeling, the modeling set must be reloaded and all

HELP steps must be followed.

Select [Params and Test Pts/Modeling Set Decomposition] and then [Params and Test Pts/Select Number of

Parameters]. Click in the blue area, enter "6", (make sure the "Append" button is selected,) and press the "OK"

button.

This sequence adds six linear combinations of empirical vectors to the Rademacher vectors to form a

mixed model of size 1024x16.

Select 40 test points for the model using the menu item [Params and Test Pts/Test Point Selection/Prediction

Variance Optimization]. Enter 40 into the blue text field and press the "OK" button.

The front panel in the Toolbox wmdow displays the full model size as 1024 rows and 16 columns and the

number of reduced rows as 40.

Validate the model using [Assess ModeWalidate Model].

Note the error statistics that are displayed in the front panel. The RMS, Max, and Min of the residual

errors are 0.02095, 0.085391, and -0.083079, respectively.

Look at the residual error plots using [PlotA^alidation Analysis/Residual Error Statistics/. . .].

Create reduced measurement data using [Data Sets/Load Data File/Extract Reduced Meas. from Validation]. Click

in the blue text field, enter " 1
", and hit the "OK" button. Another window will appear asking the user to verify the

overwrite of any existing reduced measurement data. Hit the "OK" button. Predict the measurement response using

the menu item [Assess Model/Predict Calibration].

The front panel displays the RMS of the predicted residual error as 0.015228.

Plot the reduced measurement data using [Plot/Measurement Vectors/Reduced Measurement Data]. Hold the plot

axes using [Plot/Hold Plot Axes/Hold On]. Plot the predicted response using [Plot/Analysis of DUT/Response

Predictions]. Click on the blue area, type "1", and press the "OK" button. Use [Plot/Control Plot Axes] to get a

better look at how the predictions line up with the measurements.

Construction and testing of several model sizes is recommended in order to evaluate the decreased errors

against the increased measurement costs as more test points are required. Table 5.1 shows the RMS, Max,

and Min residual error sizes for the various models that have been constructed thus far as well as a 40x 13

mixed model created with the same ten Rademacher vectors fixed in the full model. The user must reload
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the full model to produce this second mixed model. However, the user must NOT reselect [Data

Sets/Orthogonalize Modeling Set]. Selecting this menu item changes the modeling set prior to construction

of the model, and the same model is not produced as if the user had started from scratch and produced a

40x 13 mixed model. Rather, the user should proceed to the menu item [Params and Test Pts/Modeling Set

Decomposition]. If the sequence is confiising, reload all data sets and begin again. Note that the 40x 13

mixed model produces much smaller errors than the 40x 16 mixed model. This is because most of the

information contained in the empirical data set is contained within the set often Rademacher vectors and

going beyond three additional empirical vectors adds predominantly noise to the model.

Statistics Empirical Models Mixed Models

Model Size 40x8 40x10 40x12 40x16 40x13

ValRMS 0.021283 0.020950 0.021253 0.020950 0.020277

ValMax 0.096661 0.082252 0.080644 0.085391 0.092211

ValMin -0.083969 -0.084122 -0.086893 -0.083079 -0.094547

DUTRMS 0.015105 0.015547 0.015228 0.013931

Table 5.1 Error Statistics for Several Models

The Toolbox contains additional functions helpful in determining the appropriateness of a particular model.

The [Quality Control] menu heading allows the user to compute individual and simultaneous prediction

intervals for either the validation set or, more importantly, the device under test. The Toolbox computes 2-

sigma prediction (uncertainty) intervals for all points that are predicted.
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NISTTechnical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute is

active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement methodology and the basic technology

underlying standardization. Also included from time to time are survey articles on topics closely related to

the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) devel-

oped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports, and

other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical

properties of materials, compiled from the world's literature and critically evaluated. Developed under a

worldwide program coordinated by NIST under the authority of the National Standard Data Act (Public

Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published

bimonthly for NIST by the American Chemical Society (ACS) and the American Institute of Physics (AIP).

Subscriptions, reprints, and supplements are available from ACS, 1 155 Sixteenth St., NW, Washington, DC
20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test methods, and

performance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of

a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the

subject area. Often serve as a vehicle for final reports of work performed at NIST under the sponsorship of

other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce
in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized

requirements for products, and provide all concerned interests with a basis for common understanding of

the characteristics of the products. NIST administers this program in support of the efforts of private-sector

standardizing organizations.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22 1 61.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves as the

official source of information in the Federal Government regarding standards issued by NIST pursuant to

the Federal Property and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 1 1717 (38 FR 12315, dated May 11, 1973) and Part 6 of

Title 15 CFR (Code of Federal Regulations).

NIST Interagency or Internal Reports (NISTIR)—The series includes interim or final reports on work

performed by NIST for outside sponsors (both government and nongovernment). In general, initial

distribution is handled by the sponsor; public distribution is handled by sales through the National Technical

Information Service, Springfield, VA 22161, in hard copy, electronic media, or microfiche form. NlSTlR's

may also report results of NIST projects of transitory or limited interest, including those that will be

published subsequently in more comprehensive form.
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