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NIST High-Accuracy Sampling Wattmeter

Abstract - A high-accuracy sampling wattmeter was developed at the National Institute of

Standards and Technology (NIST) to investigate the feasibility of using waveform sampling

techniques for making very accurate power measurements at frequencies from 50 Hz to 1000 Hz.

The goal of this effort was to develop an instrument having a full scale measurement uncertainty

over these frequencies of less than ±50 juW/W. The prototype instrument that came out of the

development was used to demonstrate the accuracy achievable with the digital sampling method.

The new high-accuracy sampling wattmeter was built around a wideband instrument developed

earlier at NIST. The new wattmeter uses 16-bit analog-to-digital (A/D) converters and includes

a two-stage current transformer in one of the input modules. This wattmeter operates with

asynchronous sampling as did the previous wattmeter. The high accuracy is achieved by

approximately synchronizing the interval over which samples are taken with the period of the

input signal. Special care was taken to design input stages with a flat frequency response and low

temperature sensitivity. The wattmeter has been calibrated using the NIST Audio-Frequency

Power Bridge. The two instruments agreed to better than ±50 juW/W, of full scale, over the

50 Hz to 1000 Hz frequency range at a wide range of power factors.

1 . Introduction

The NIST High-Accuracy Sampling Wattmeter (HASW) was designed and fabricated at the

National Institute of Standards and Technology (NIST) to meet the need for a high-accuracy

(±50 jnW/W) power measurement of low-distortion power signals in the power frequency range

(fundamental frequency of 50 Hz to 1 kHz) and to examine to what level of uncertainty the

sampling method for power measurement can be extended. The operation and the performance

of the HASW is described in this report. It is a second generation instrument, which uses portions

of an earlier 12-bit Wideband Sampling Wattmeter [1,2]. This report also describes the changes

made to the Wideband Sampling Wattmeter. The power measurement technique used in the new

instrument is basically the same as that used in the earlier wattmeter: dual-channel sampling using

commercial track-and-hold (T/H), analog-to-digital (A/D) conversion, real-time multiplication,

and microcomputer control. The reports on the earlier wattmeter [1,2] should be used to

understand the operation of those portions of the new wattmeter that were not changed and are not

described in this report.

The HASW uses two opto-isolated plug-in input modules (channels) to sample the input voltage

and current signals at sampling rates up to 75 kHz, using 16-bit A/D converters. A high-speed

digital multiplier-accumulator is used to calculate the power in real time from a large number of

1



input signal samples. The real-time multiplier-accumulator, together with the microcomputer,

allows the wattmeter to calculate the power by averaging a large number of samples. The
wattmeter has a relatively constant uncertainty for signal frequencies from 50 Hz to 1 kHz. The
wattmeter response for higher frequencies is primarily limited by the response of the input

modules. A feature unique to the earlier wideband sampling wattmeter, and used on this new
wattmeter, is the use of programmable time-delay circuits to compensate for differential time delay

between the two input channels.

Section 2 describes the basic operating principles of the HASW. A brief description is given of

the various circuit operations. Section 3 provides a detailed description of the new hardware that

was designed and fabricated to achieve the performance of the new wattmeter. It also describes

the changes that were made to the hardware of the earlier wattmeter that was not completely

replaced. Schematics and the operation of the circuits are given for the new hardware: the

amplifier and current-converter module, amplifier and voltage-converter module, and the

multiplier-accumulator board. Schematics and explanations are also given for the following

changes in the old hardware: the direct-memory-access (DMA) board and the frequency counter

and programmable time delay board. Section 4 describes the changes to the software that were

necessary for control of the new wattmeter. Section 5 describes the performance of the new

HASW based on the comparison of its power measurement readings with the NIST Audio

Frequency Power Bridge [3]

.

2. System Operation

2.1, Power Sampling Basics

Periodic power signals with a voltage at time t of v(t), a current of i(t), and having a period of T
seconds contain an average power, P, of

jviOKOdt. (1)
T

Sampling wattmeters calculate the average power by performing the integration numerically,

eq (2). The input voltage and current waveforms are sampled simultaneously, converted to digital

values, and the product of their digital values, the instantaneous power, is calculated. The

average power is computed by averaging many samples of instantaneous power. If the voltage

at time r^ is denoted as v(rj and the current as i(tj, then the approximate average power, W,

is given by

1

""'

P . W = -J2 v(t^) i(t^)

,

(2)



where n is the number of samples used in the average. The major error in determining the power,

W, comes from the limitations inherent in the sampling process, and the imperfections of the

hardware used to make the measurements [4 to 7]. Section 5 discusses the errors due to

limitations of the hardware.

2.2. General Operation

This Section presents a brief description of the principle blocks of the HASW, and how they

perform the power measurement operations. Drawing 1 is a simplified block diagram of the

HASW. The voltage and current signals are sampled and converted to 16-bit digital quantities in

the two input modules. The input signals are also scaled to produce the two opto-isolated analog

outputs, trigger 1 and trigger 2 signals. The two 16-bit digital samples are sent to the multiplier-

accumulator and to the DMA circuit, and the two trigger signals are sent to the interval control

circuitry. The interval control circuit synchronizes the summation period with the input signals

and generates the sample command pulses that control the sampling rate. Although the summation

interval is synchronized with the input signals, the sample command pulses are not. The sampling

pulses are derived from a fixed, crystal-controlled oscillator, and their repetition rate can be

selected by the front panel keyboard. The microcomputer controls the summation interval, reads

the data from the multiplier-accumulator, calculates the average power, displays the results and

the wattmeter parameters, and interfaces with the operator through the keyboard. The summation

interval is controlled to preserve high accuracy independent of the input signal frequency and of

the sampling rate.

The programmable delay circuit enables setting a time difference between the voltage- and current-

sample command pulses. The delay compensates for the differences in response of the two input

channels and preserves the sampling accuracy. The DMA circuit saves 4096 samples of the two

input signals. These samples are used for calculating the average and rms voltage and current.

3. Hardware Changes^

This section describes the operation and the performance of the new hardware and the changes

that were made to the existing hardware. It also provides schematics and explanations for the

various circuits. The new hardware (Drawing 1) consists of the amplifier and the 16-bit voltage-

converter module, the amplifier and the 16-bit current-converter module, and the multiplier-

accumulator board. The existing hardware to which changes were made are the DMA board and

the frequency counter and programmable time delay board. The modifications to the earlier two

^ This document reports on equipment developed at the National Institute of Standards and Technology.

Certain commercial components are identified in order to adequately describe the design and operation of the equipment.

Such identification does not imply recommendation or endorsement by the National Institute of Standards and

Technology nor does it imply that the components are necessarily the best available for the purpose.



12-bit input modules to enable their use with the new HASW are also described. The last part of

this Section discusses the efforts to reduce the induced noise and to improve the system

performance, including the layout of the ground planes, the opto-isolation of the input module's

front end, and the independent power supplies.

3.1. Amplifier and Conversion Modules

The current and voltage-input modules provide the interface and the impedance transformation for

converting the analog voltage and current signals into 16-bit binary digital words. Drawing 2

shows the basic block diagram of the current-input module. Each of the modules includes a

mother board, a plug-in A/D converter card and a plug-in clock-synchronizer card. Both modules

have input voltage ranges of 255 V rms, 127 V rms, and 3 V rms (±4.5 V peak). The current-

input module includes a two-stage current transformer and a current-to-voltage (I/V) converter

card that give it additional current ranges of 5.5 A rms, 1.1 A rms, and 50 mA rms.

The voltage attenuators and the two-stage transformer and I/V converter card have an output

signal in the range of ±4.5 V peak. This signal is buffered with a unity-gain instrumentation

amplifier. The output of the amplifier is connected to the A/D converter and to the opto-isolation

amplifier. The isolated analog output is used to synchronize the sampling summation interval with

the input signal (trigger 1 or trigger 2). Drawings 2, 3, and 4 show that the front end of the input

module is opto-isolated from the main system. This feature reduces the noise introduced by any

ground loop currents, enables the front end to float to the potential of the input power signals, and

separates the noisy oscillator synchronizer circuit from the front end.

The plug-in A/D converter cards holds the A/D converter, the 4.5 V dc reference voltage, two

DC/DC converters for ±5 V dc, the data latch, and the circuitry for the delay and the strobe

signals to the mother board. The plug-in clock-synchronizer card (Drawing 5) includes an

oscillator and a synchronizing circuit. The clock-synchronizer provides the clock pulses to the

A/D converter board. The synchronization circuit allows for the option of synchronizing the Hold

command to the A/D converter with the rising edge of the clock signal, in response for each

Sample (SMPL) command input initiated by the frequency counter and programmable time-delay

board.

3.1.1. Voltage Inputs

The voltage-mode specifications for the voltage- and the current-input modules are the same.

Table 1 gives a summary of the features for the voltage inputs.

Referring to Drawings 6 and 7, the calibration (±4.5 V peak) input is protected by a 1/16 A fuse

because it is connected directly to the input of the instrumentation amplifier. The two other

voltage inputs are not protected, assuming that the RC voltage attenuators at the input to the

instrumentation amplifier, the 200 Q resistor in series with the output of the instrumentation



amplifier, and the two limiting diodes across the input to the A/D converter provide sufficient

protection.

Table 1 Voltage-Input Module Features

Input Range Input Impedance

±4.5 V peak 5 X 10'2 Q 6 pF

127 V rms 100 kQ 10 pF

255 V rms 100 kQ 10 pF

3.1.1.1. The Attenuator

Each of the two voltage attenuators (Drawing 8), are resistor-capacitor (RC) dividers. The

resistors of both voltage dividers were selected so that the input impedance of the attenuator is

about 100 kQ at dc. The resistors have a specified temperamre coefficient of 10 (/xQ/Q)/°C, the

capacitors have a specified temperature coefficient of 30 (/xF/F)/°C, and the adjustable capacitors

are piston-air capacitors. The adjustable capacitors are used to give a flat response over the

frequency range of interest. The capacitors are adjusted so that the wattmeter gives the same

reading for a 4 kHz input voltage as for a 50 Hz input voltage.

3.1.1.2. Instrumentation Amplifier

The instrumentation amplifier (Drawing 8), U19, serves as a unity-gain buffer to drive the analog

input of the A/D converter and the analog opto-isolated amplifier, Ul . U19 was selected because

of its good temperature stability, low noise, low offsets, high common-mode rejection ratio

(CMRR) and high input impedance (noise = 0.3 /^Vpp, Vos = 0.05 mV, los = 10 nA,

AVos = 0.5 ixVrC, CMRR = 120 dB, bandwidth = 1 MHz, differential input

impedance = 5 x 10'-^Ql|6 pF, and common-mode input impedance = 2 x 10'^ Q||1 pF). Even

though the bandwidth of U19 is only 1 MHz, it is adequate for analog input signals in the 50 Hz
to 1 kHz range.

For testing purposes, jumpers can be used to change the normal signal flow in the input modules.

With various jumpers, the front-end signal can bypass the instrumentation amplifier, the input

ground of the instrumentation amplifier can be connected or separated from its output ground, and

the input to the A/D converter can be shorted to its input ground. For normal operation the front-

end signal passes through the instrumentation amplifier, and the input and output ground of the

amplifier are connected to the A/D analog ground. To enable offsetting the instrumentation

amplifier, U19, from the front panel, a plastic rod connects the offset potentiometer's PI setting

screw to the front panel.



3.1.1.3. A/D Converter Cards

Two pairs of plug-in A/D converter cards (Drawings 6, 7) were fabricated. One pair uses

ADC4203 A/D converters from Analogic, and the other pair uses CS5101 A/D converters from

Crystal. The ADC4203's maximum sampling rate is 40 k samples per second while the CS5101
can be operated at up to 80 k samples per second. To enable the A/D converters to operate at

their maximum sampling rates, the ADC4203 needs a 4 MHz clock and the CS5101 needs an

8 MHz clock. The plug-in clock-synchronizer card provides the clock pulses. For each A/D
converter type, the appropriate crystal oscillator is plugged into the clock-synchronizer card.

Each pair of converters uses the same input signals from the mother board and generate similar

output signals (16-bit two's complement data and strobe signals). The analog input voltage to the

A/D converters is protected by two clamping diodes Dl and D2.

The converter cards include: a ±5 V power supply, a 4.5 V reference source for the A/D
converters, and the circuitry needed for data latching and generating the strobe signals.

A. Timing Signals

The two timing signals to the A/D converter board, CLK and HOLD, are generated by the clock-

synchronizer card (Drawing 5). By placing the clock-synchronizer card away from the A/D
converter card and eliminating a common ground between these cards by opto-isolation, the clock

noise induced on the input signal is reduced considerably. The falling edge of the Hold signal

places the internal track-and-hold circuit of the A/D converter in the hold mode and initiates an

analog-to-digital conversion cycle. The CLK signal is a TTL-level square wave signal. The

signal is fed into the clock input of the A/D converter to synchronize its conversion cycle. The

frequency of the CLK signal is determined by the crystal oscillator chip used (Drawing 5, Ul).

For the ADC4203 A/D converter, a 4 MHz oscillator is used. For the CSS 101 A/D converter,

an 8 MHz oscillator is used.

B. Output Data and Signals

The two output control signals from the A/D converter card, EOC-OUT and CLKl, (Drawings 6

and 7) indicate the end of a conversion cycle. On the rising edge of CLKl the 16-bit data from

the A/D board is latched into registers U7 and U8 on the mother-board. The rising edge of EOC-

OUT signals the system that the data are ready to be read. The EOC-OUT signal and the data are

passed to the system's multiplier-accumulator board via opto-isolators (U5, U9 to U17).

C. The 4.5 V DC Reference Source

The voltage reference circuit recommended by Crystal was implemented on the A/D converter

boards. The value of the dc reference source (4.5 V) determines the maximum analog input signal

level (±4.5 V peak) and the scale of conversion. The dc reference-source output impedance and



regulation frequency response matches the power input impedance of the A/D converter. This

impedance matching reduces the noise induced in the conversion from changes in power consumed

by the A/D converter during the conversion cycle.

D. The CS5101 A/D Converter Card

The CS5101 converter (Drawing 7) clocks the 16-bit two's complement data serially (the most

significant bit first and the least significant last) through the output SDATA during conversion.

The output SCLK provides 16 synchronized pulses for latching the data. Two shift registers, U5
and U6 in cascade, provide a 16-bit shift register to collect and store the data for each conversion.

The output SDATA is connected to the input of the shift register and output (SCLK) is connected

to the clock input of the two shift register devices. After the data are stored in the 16-bit shift

register, the output TRKl goes from high to low, signaling the end of conversion and that the data

are ready to be read. The output TRKl is inverted and fed to the one-shot U4A. At the end of

conversion, U4A provides the CLKl and the EOC-OUT signals to latch the data into the registers

on the mother board and to signal the multiplier-accumulator board that the data are ready to be

read.

E. The ADC4203 A/D Converter Card

The ADC4203 A/D converter (Drawing 6) latches the 16-bit two's complement data into an

internal tri-state buffered register. The outputs of the shift register, U6, provide the pulses for

retrieving the data. The output EOC\ is connected to the input of U6 and the master clock signal,

CLK, is connected to the clock input of U6. At the end of conversion, the output EOC\ goes

from high to low for a period of about 24 master clock cycles. The output CO of U6 is connected

to the input RD\ to enable the internal register of the A/D converter. The outputs C3 and C6
provide for CLKl and EOC-OUT output signals.

3.1.2. Current Inputs

Table 2 gives a summary of the features of the current-mode inputs available on the current-input

module. All three current-input ranges are fuse protected. The input impedance of each of the

three ranges is the resistance of the corresponding protection fuse measured at room temperature.

Table 2 Current-Input Module Features

Input Range Input Impedance

50 mA 6.12 Q (0.1 A fuse)

1.1 A 85 mQ (1.5 A fuse)

5.5 A 34 mQ (6 A fuse)



3.1.2.1. Two-Stage Input Transformer

The two-stage input transformer is used to scale down the input current to ±50 mA full scale.

The output current of the transformer is fed into the I/V converter card. The use of a two-stage

transformer [8] reduces the error introduced by scahng down the input current. The benefits of

using an input transformer are the isolation that it provides and the ease of use by eliminating the

need for a low-value, high-power shunt resistor. The disadvantage is that the module can not

measure dc current. Drawing 9 shows the schematic representation, the equivalent circuit, the

construction of the two-stage transformer, and some set-ups for measuring the two-stage

transformer parameters.

Two identical torus-shaped cores with a square cross section (core one and core two) having the

Magnetics model number AK026 50103-4F, and a torus-shaped magnetic shield box with a square

cross section, made of a high-permeability material, were used for fabricating the two-stage

transformer. Table 3 gives the dimensions of the components used to make the transformer.

Table 3 Dimensions of Transformer Components

ID OD Height

Core 2.00"

(50.8 mm)
3.00"

(76.2 mm)
0.50"

(1.27 mm)

Case 1.94"

(49.3 mm)
3.13"

(79.5 mm)
0.63"

(1.60 mm)

Shield 1.38"

(35.1 mm)
3.50"

(88.9 mm)
0.75"

(1.91 mm)

The tertiary winding (100 turns of a 16-gauge wire) and the cascade winding (one turn of a 20-

gauge wire) were wound on core two, then core two was placed into a two-part magnetic shield.

To eliminate the shield from forming a closed one-loop winding, the inner diameter of the two

halves of the shield are isolated as indicated in Drawing 9 by a bigger gap. Core one was placed

on top of the magnetic shield and the secondary winding (100 turns of 18-gauge wire) was wound

around core one, core two, and the magnetic shield. The two primary windings were wound over

the secondary winding. One primary winding is for the 5.5 A range (one turn formed from five

turns wired in parallel), and the other is for the 1.1 A range (five turns of 14-gauge wire). The

scale-down ratios of the 1.1A and the 5.5A input ranges are 20:1 and 100:1, respectively.

To confirm that the tertiary and the secondary windings both have the same number of turns, the

two windings were connected in series to a source in a manner that their flux contributions cancel

(Drawing 9). Because of the construction of the transformer (the windings of the secondary

include the winding of the tertiary), the tlux through the tertiary is very small when both windings
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have the same number of turns. Therefore, a voUmeter connected across the tertiary should

measure a small reading. By adding or subtracting one mrn from the secondary, it can be verified

whether the number of turns is equal.

To cascade the input transformer to an external two-stage transformer for increasing the range of

the current to be measured, the secondary and the tertiary windings of the external transformer

can be connected to the one-turn primary and to the one-turn cascade winding of the input

transformer. Because the cascade winding is a one-turn winding, it can be combined only with

the one-turn primary winding (range 5.5 A) of the input transformer. The magnetic shield is

connected to the front panel through the connector labeled Trans. Guard. Grounding this

connector reduces the capacitive coupling of common-mode signals to the wattmeter.

The two-stage transformer is connected such that the current to be scaled, /^, is applied to the

primary of the transformer and the scaled output current is the sum of the currents in the

secondary, /^, and the tertiary, I,, windings. The scaling ratio ideally should be the ratio of the

number of turns of the primary, A^^, to the number of turns of the secondary winding, A^^ which

is equal to the number of turns of the tertiary winding. A',. The scaling error of the two-stage

transformer, e, is the deviation of the ratio from this ideal. This error is given as

N
^ TV

The scaling error can be calculated by using the equivalent circuit [8] to calculate the sum of the

secondary and tertiary currents. The sum is given as

^s -^, =^p^(l -^.^,)' (4)

where e, and e^ are the error if the secondary or the tertiary windings were used separately and

are given by

Z +Z..

(5)

and

£ =
s

^s ^ ^M

^.;

£, =
^,^^.2

t

^.2
(6)

Z, and Z, are the impedances of the secondary and tertiary windings, Z„,; and Z„^ are the magnetic

impedances of core one and two, and Z/,; and Z^2 ^^^ ^^e burden impedances for the secondary and

tertiary windings. The magnetic impedances are described below.

It should be mentioned that the errors introduced by the various capacitances (between the

9



windings and the windings to the ground) and the eddy current were not considered. To take

those errors into consideration a more elaborate equivalent circuit is needed.

From eqs (5) and (6) it is clear that the scaling error can be reduced by shorting the outputs of the

secondary and the tertiary, reducing the winding resistances (the real part of Z^ and 2^), and

choosing cores that yield a high magnetic impedances (Z^,!, 2.^ [8].

The magnetic impedance is a fiinction of the core dimensions, the frequency, and the relative

initial permeability and is given by

'^m _ 4TilO"V^f*>

A^' /

(7)

where Z,„ is the magnetic impedance, A'^ is the number of turns, /x is the initial permeability, A is

the cross section of the core, o) is the input signal frequency, and / is the mean path length of the

magnetic flux inside the core. Assuming the relative initial permeability, jw, is 6 x lO'^, the input

signal frequency, o), is 60 Hz, and the number of turns, A'^, is 100, then by eq (7) the calculated

magnetic impedances of the two-stage input transformer, Z^,, and Z^^j , are about 200 Q. After

fabrication, the resistances of the windings and the magnetic impedances of the transformer were

measured for frequencies of 50 Hz, 1 kHz and 10 kHz and the measured values are about two

times the calculated values. The dc resistance of the secondary is about 0.3 Q and that of the

tertiary is about 0.1 Q. The measured impedance values and scaling errors are shown in

Drawing 9 and summarized in Table 4.

As can be seen from Table 4, the scaling errors caused by the winding resistance are negligible.

For 1 kHz and higher frequencies, the errors caused by the stray capacitances and the eddy

current are probably dominant and much more than those caused by the winding's impedance.

Table 4 Magnetic Impedances and Scaling Error

Freq.

(Hz) (Ohms)

Zm2

(Ohms)

Scaling Error

(parts in 10^)

50 450 433 0.2

Ik 2.5 k 2.5 k negligible

10 k 12 k 12.5 k negligible

3.1.2.2. I/VCard

A schematic of the current-to-voltage (I/V) converter circuit is shown in Drawing 10. The basic

I/V circuit, shown in Figure 1, consists of the feedback resistor and capacitor, /?y. and Cy,

10



a compound amplifier (identical amplifiers Al and A2), the resistive attenuator Rj and R2, and

the RC attenuator R„ and C„. The resistive attenuator is necessary to prevent oscillations and its

attenuation should be set to the lowest possible ratio that gives a minimum reduction in the

compound amplifier's gain, as explained below.

K2> OUT

Figure 1 Simplified Diagram of Current-to-Voltage Converter.

The transfer function G of the I/V converter relates the output voltage, V^^,, to the input current,

/,„ , as Vg^i = G /,„ . An approximation of G is given by

1 +y
O)

G ^ - R.
w, P (1 -j 0.5 (X) R^ 6)

1 + / 0) R, C,

P^O)/ 0), p

(8)

where o) is the input signal frequency, 0)^ is the unity gain frequency of Al and A2, 6 is the

incremental capacitance added to the lower portion of the RC attenuator, R^ and Q are the values

of the upper and the lower portions of the RC attenuator, and p is given by

R.

P
=

R, +R.
(9)

The approximation for G is valid provided that o), 6, and p are such that

((jiRCy«\, 6 « C , and —1 O)

P ^ W,
« 1 (10)

The first factor of the expression for G represents the effects of the feedback capacitor, Q The

second factor describes the effects of the finite bandwidth, o), , of the amplifiers Al and A2 and
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the resistive attenuator, Rj and R2. In the frequency range that satisfies the third inequality

in eq (10), the denominator and numerator of this factor cancel each other and the response from

this factor is very close to the dc gain, which is Rf. The third inequality of eq (10) also indicates

that the frequency range for a flat response increases as the value of the divider ratio, p, goes

higher. For the HASW design, p was set to the value of 0.001. The third factor of the

expression for G represents the effect of unbalancing the RC voltage divider by adding a small

capacitance, 6, in parallel to its lower portion (small meaning that the second inequality of eq (10)

is satisfied). The first and third factors show that Q and 6 produce very similar effects on the

transfer function; thus, either approach can be used to adjust the time delay of the circuit. Since

the RC voltage attenuator is a part of both the current and voltage sections of the current-input

module, the method used for the HASW was to use the feedback capacitor, Cp to adjust the time

delay of the current inputs and the RC voltage attenuator to adjust the time delay of the voltage

inputs. It was found experimentally that the overall response of the HASW is best if Cf is set to

15.9 nF.

3.1.3. Clock-Synchronizer Card

The clock-synchronizer card (Drawing 5) supplies the A/D converter with the master clock pulses.

By plugging the proper oscillator into the card, it supplies a 4 MHz clock to the A/D board with

the ADC4203 converter or 8 MHz to the A/D converter with the CS5101 converter. The other

function of the board is to synchronize the input sample (SMPL) command from the frequency

counter and the programmable time-delay board with the master clock. When jumper JM3-4 is

set for the synchronizing (SYNC) mode, for each SMPL command a synchronized positive HOLD
pulse is emitted, signaling the A/D converter to start a conversion. The resolutions of the A/D
converters are verified for the SYNC and the unsynchronized (DIR) modes. Both A/Ds

converters produce a smaller spread in the codes under the DIR mode. For that reason the board

is set to the DIR mode.

The clock-synchronizer board is plugged into the lower side of the mother board. It is thus

shielded from the A/D converter by the systems ground plane, as part of the efforts to minimize

the induced noise to the analog-to-digital conversion portion of the input modules. To eliminate

more noise induced by the oscillator, this board's ground is separated from the A/D converter

board's ground, and the master clock and the HOLD command are transferred to the mother board

via opto-couplers.

3.1.4. Scale Factors

The analog input voltages or currents are transformed into a voltage, V^^, which is applied to the

A/D converter for conversion to a corresponding digital word. Each voltage input has a particular

gain, G^, and each input current has its particular transconductance, Q . The 16-bit number A^

is the digital value of V^,, scaled to the reference voltage, V^^^, by the A/D converter. For

numerical calculation, A'^ has to be multiplied by a scale factor, S, to determine the value of the
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analog input signal. The input current, /,„ , is given by /,„ = Si N and the input voltage,

Vi„ , is given by V;„ = S^ N. For the HASW the approximate scale factors in terms of the least

significant bit (Isb) of the converter are given by

' 2"-' G

4.5 1

il5
(11)

and

S. =
V

,/ 1 _, 4.5 1

2" ' G 2'^ G

The approximate scale factors for the various ranges are given in Table 5

.

Table 5 The Approximate Scale Factors

(12)

Input Range Approximate Scale Factor

Voltage Cal., 4.5 V 137.5 ixNIXsh

127 V 5.488 mV/lsb

255 V 10.985 mV/lsb

Current Cal., 50 mA 2.29 M/lsb

1.1 A 45.8 M/lsb

5.5 A 229 M/lsb

3.2. Multiplier-Accumulator Board

The multiplier-accumulator board multiplies the digitized current and voltage values and sums the

resultant products. At the end of the hardware accumulation period, the sum is stored in a latch

and an interrupt is sent to the microcomputer. Drawing 11 shows a general block diagram of the

multiplier-accumulator board and Drawing 12 shows a second block diagram with more details

of the sequencer, which controls the operation of the multiplier-accumulator, and additional details

of the extended accumulator. The circuits are shown in Drawings 13, and 14. The hardware

accumulation period is controlled by the terminal count, TC, signal produced by the frequency

counter and programmable time-delay board. The multiplying and summing of the sampled data

is controlled by the pulses generated by the sequencer. The arithmetic operations are carried out

in a high-speed multiplier-accumulator (LSI device TDCIOIOJ). This device contains a 16-bit by

16-bit multiplier, a 35-bit accumulator, and an internal latch.
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The multiplier-accumulator board has four modes of operation. The mode controls which data

are multiplied and summed on the board. Depending on the mode, the board accumulates either

power products, voltage values, current values, or sample counts. The operation of the

sequencer, the extended accumulator, and other support circuitry on the multiplier-accumulator

board are described in the following sections.

3.2.1. The Sequencer

The sequencer controls the operation of the multiplier-accumulator board by generating a series

or cycle of pulses after receiving a start sequence pulse, SEQ, from the end-of-conversion

combiner circuit. The sequencer produces three different pulse cycles, depending on the terminal

count (TC) pulse from the frequency counter and programmable time-delay board. The initial

cycle starts the hardware accumulation period by clearing the accumulator, R3 (Drawing 12), and

latching into it the first product of the sampled data of the new accumulation period. The normal

cycles that follow each of the next data conversions add the product of the sampled data to the

accumulator, R3. Upon receipt of the TC pulse, the sequencer generates the terminal cycle that

adds the last product of the hardware accumulation period into the accumulator, R3, latches the

accumulator data into the buffer register, R7, and sends an interrupt to the microcomputer. The

sequencer starts the next hardware accumulation period at the next data conversion by generating

the initial cycle pulses.

The timing diagram (Drawing 15) of the sequencer shows three cycles, the first one is the last

normal cycle (designated by N-1) of a hardware accumulation period, the second (designated by

N) is a terminal cycle and the third one is the initial cycle (designated by 1) of the next

accumulation period. As can be seen, for every cycle the train of pulses, CO to Cll, are initiated

by the SEQ signal. The TC signal, together with the CEOC signal, control the initiation of a

terminal cycle followed by an initial cycle of the next hardware accumulation period. The

differences between the three different cycles is related to the control signals LTC, ACC, TSL,

and the conditional signals, CCn, that are also produced by the sequencer. The LTC signal is

derived from TC and CEOC signals and it controls the terminal cycle by enabling the various

conditional pulses CCn that latch the data accumulated during the hardware accumulation period

into the buffer register, R7, which is accessible by the microcomputer. The ACC signal is

initiated by the falling edge of the LTC signal, and by going low, it enables the initial cycle to

clear the accumulator, R3. The TSL signal controls data multiplexing of the common outputs of

the least significant product (LSP) buffer and register R5. This multiplexing enables either the

output data of register R5 to be latched into register R2 or enables the data in the accumulator,

R3, to be latched into the buffer register, R7.

Two shift registers connected in series, R8, that are clocked by an 8 MHz oscillator, are used to

generate the positive pulse train, CO-Cll . Each of the Cn pulses has a duration of 250 ns and the

time difference between the rising edge of each successive pulses is 125 ns. The CCn (conditional)

pulses, which are derived from the Cn series, are generated only during the terminal cycle for
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latching the content of the accumulator, R3, into the buffer register, R7, (multiplier-accumulator

output data latch).

3.2.2. The Extended Accumulator

The internal accumulator, R3 (Drawing 12), of the multiplier-accumulator device TDCIOIOJ is

35 bits wide. It can only accumulate the sum of sixteen 16-bit by 16-bit products when each

multiplicand has the maximum value in two's complement notation before overflowing. To

overcome this limitation an accumulator extension was added. To implement the extension, it is

necessary to detect the overflows and the underflows of the accumulator, R3, and to increment

or decrement accordingly an external binary counter. An overflow is characterized by the

transition from high to low of the two most significant bits (P33, P34) of R3 and an underflow

is characterized by the transition from low to high of the same bits. The two D flip flops, U21

A

and U21B, hold the previous values of bits P33 and P34. By connecting the outputs of U21A and

U21B, and the inverse of bits P33 and P34 into the input of the NAND gate, U23A, its output will

switch from high to low when an overflow of R3 occurs. Similarly, by connecting the inverted

outputs of the D flip flops, U21A and U21B, and the bits, P33 and P34, to the input of U23B, its

output will switch from high to low when an underflow of R3 occurs. U24, U25, and U26 are

three 4-bit up/down binary counters cascaded together to form a 12-bit binary counter. The

counter is enabled whenever an underflow or overflow occurs by connecting the output of the

NAND gate U31B to the ENT and ENP inputs of the first counter, U24. The U/D input of all

the counters is connected to the output of the NAND gate, U23B, thus counting up when an

overflow occurs and counting down when an underflow occurs. The count-up or down occurs on

the rising edge of the C7 pulse of the sequencer. At the beginning of each hardware accumulation

period, the sign of R3 has to be transferred to the extension. To accomplish this, all the data

inputs of the three counters are connected together through NAND gate buffer, U31C, to the MS
bit, P34 of R3. During the first cycle of every hardware accumulation period the ACC signal is

low, thus enabling storing the product in R3, and also loading the value of bit P34 into the

extension counters on the rising edge of the C7 pulse. To get the right values, the extension

should never overflow or underflow. Adding 12 bits to the accumulator, R3, brings the total

capacity to 47 bits and that enables it to sum at least 65,536 16-bit by 16-bit products without

overflow or underflow.

3.2.3. End-of-Conversion Combiner Circuit

The end-of-conversion (EOC) combiner circuit (Drawing 16) enables the use of two different input

modules with different A/D conversion times. When a sequence of a sample SMPL command

followed by an end-of-conversion (EOC) signal from each input module are detected by this

circuit, it sends the output signals, SEQ and CEOC, to the sequencer circuit, and the DMA-EOC
signal to the DMA board, to indicate that a pair of 16-bit sampled data are ready.
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3.2.4. Interface with Microcomputer

At the end of each hardware accumulation period the buffer register, R7, of the multiplier-

accumulator board (Drawing 12) interrupts the microcomputer to retrieve its contents, which is

a 47-bit two's complement number. These data are stored in six 8-bit registers (five

AM25LS2520 and one 8212). Since the data bus is 8 bits wide, the microcomputer must address

R7 six times, and reconstruct the data based on the retrieved byte's addresses. To change the

mode of operation of the multiplier-accumulator board, the microcomputer writes the new mode
byte into the mode-latch register, R6. Table 6 summarizes the addresses of registers R6 and R7.

The addresses of the registers comprising R7 are listed from the least significant byte (LSB) to

the most significant byte (MSB).

Table 6 Addresses for Buffer Register, R7 and Mode-Latch Register, R6

Register R7

Read Address

Component

Drawing 13

OEO Hex LSB U20

0E2 Hex U19

0E4 Hex U18

0E6 Hex U17

0E8 Hex U28

OEA Hex MSB U27

Register R6
Write Address

Component

Drawing 13

0E4 Hex U5

3.2.5. Mode Control

The multiplier-accumulator board (Drawings 12, 13) can operate in four modes designated 0, 1,

2, and 3. The mode controls which data are latched into registers R4 and R5 on the rising edge

of the CO pulse at the beginning of each multiply accumulation cycle. Table 7 summarizes the

values of the data that are latched into R4 and R5 for each mode. For power measurement the

system uses mode 0, which is the default mode when the system is powered up. The mode can

be changed by the front panel keyboard. When the system detects a mode-change request, an 8-bit

word is written into register R6.
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Table 7 Mode Summary

Mode R4 latched data R5 latched data

16-bit channel 1 data 16-bit channel 2 data

1 Numerical value 1 16-bit channel 2 data

2 16-bit channel 1 data Numerical value 1

3 Numerical value 1 Numerical value 1

The quantity measured depends on the mode of the multiplier-accumulator board. For mode

the output reading is power; for mode 1 the output is the average of the channel two signal level;

for mode 2 the output is the average of the channel one signal level. For mode 3 the output is the

numerical value 1 , which indicates that the frequency counter and programmable time delay board

is measuring the same number of samples during each multiply and accumulation period as the

multiplier-accumulator board. Modes 1 and 2 are used to measure the offsets of the input

modules.

3.3. Noise Considerations

In this section, some design features of the system that are associated with the effort to reduce

noise will be addressed: the ground planes, opto-isolation, and power supplies.

3.3.1. Grounding

There are six principle ground planes in the HASW system (Drawings 4, 17, and 18). Five of

them follow the main blocks of the system: the microcomputer, the voltage-module digital

circuitry, the voltage-module analog circuitry, current-input-module digital circuitry, and the

current-input module analog circuitry. The sixth ground is the chassis ground. Some grounds

are connected together at selected locations to reduce noise.

The six ground planes are referenced by the following names:

a. The chassis ground (CHS GND).

b. The system ground plane (SYS GND).

c. The voltage-input module digital ground plane (DGTL GND).

d. The voltage-input module analog ground plane (ANLG GND).

e. The current-input module digital ground plane (DGTL GND).

f. The current-input module analog ground plane (ANLG GND).

The CHS GND consist of the cabinet and the case of all the assemblies that are located within it.
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This ground is connected to the ground pin of the power plug. The SYS GND is the ground plane

of the microcomputer mother board and the plug-in boards (Drawing 18). The SYS GND and the

CHS GND are connected together at the point where the microcomputer power supply crate is

attached to the cabinet. Each of the input modules include three ground planes, the ANLG GND,
and the DGTL GND of that module, and the SYS GND. All the input module components that

are powered from the main system share the SYS GND. The DGTL GND and the ANLG GND
of each input module are isolated from the CHS GND and from the SYS GND. The DGTL GND
and ANLG GND of each module are isolated from the DGTL GND and ANLG GND of the other

module. This isolation is achieved by using separate linear power supplies for each module

(Drawing 4). The DGTL GND and the ANLG GND of each input module are connected together

at one point on the back of the plug-in A/D converter card through jumper JP3 (Drawings 6

and 7). Using one point of connection is done to minimize the induced noise from the digital

circuitry into the analog circuitry and particularly into the analog section of the A/D converter.

3.3.2. Optical Isolation

The two dotted lines through the opto-isolators, shown on the input module block-diagram

(Drawing 3), indicates the boundary between the isolated analog front-end of the input module and

the digital circuitry that interfaces directly with the microcomputer system. The opto-isolators,

while transferring the digital and the analog signals, serve as high-impedance isolators that reduce

the ground-loop currents. Another benefit of the opto-isolation is the convenience in use of the

HASW due to the ability of the front-end input modules to float at the potential of the monitored

system. The maximum allowable voltage difference between the front end and the system ground

is 500 V.

3.3.3. Power Supplies

Every power supply common is cormected to, and thus associated with, a ground plane

(Drawings 4, 18).

The ±15 V SYS AC/DC converter common is connected to the SYS GND and supplies power

to the system side of the opto-isolated analog amplifier Ul.

The -f 5 V SYS AC/DC converter common is connected to the SYS GND and it supplies power

to

1. the EOC one-shot and associated components,

2. the clock-synchronizer card, and

3. the system side of the opto-isolators.

For each input module, the common of a ±15 V ANLG AC/DC converter is coimected to the

ANLG GND of the input module and it supplies power to

1. the instrumentation amplifier, U3,
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2. the current-to-voltage converter card (only on the current-input module),

3. the isolated input of the opto-isolated analog amplifier, Ul, and

4. the A/D converter card.

For each input module, the common of a ±5 V DGTL AC/DC converter is connected to the

DGTL GND of the input module and it supplies power to

1. the data latch, R2,

2. the isolated-input front-end side of the opto-isolators, and

3. the digital circuits on the A/D converter card (the data latch Rl, and the time

delay and associated components).

The use of separate power supplies for the analog and the digital circuits of each of the input

modules serves to reduce the noise induced onto the analog input signal and into the analog section

of the A/D converter.

3.4. Other Hardware Changes

3.4.1. 12-bit Input Modules

Two changes were needed to allow the previous 12-bit input modules to operate in the 16-bit

environment. The first was to change the A/D converter output data into a 16-bit integer. The

second was to change the 12-bit two's complement integer into a 16-bit integer by connecting the

most significant bit (of the 12-bit integer) to the five edge-connector pins corresponding to the five

upper bits of the 16-bit integer.

3.4.2. DMA Board

The DMA board was originally built to accommodate 16-bit integers, except that its four most

significant bits were connected together to accommodate the older 12-bit modules. The only

change necessary was connecting each of those four bits separately to the 60-pin edge connector.

3.4.3. Frequency Counter and Programmable Time-Delay Board

The frequency counter and programmable time-delay board (Drawings 19, 20) provides the

Sample SMPL command pulses to the two input modules. To allow for differential time delays

between these modules, the two pulses can be shifted relative to each other. Previously, the board

could shift the channel-one sample command -60 ns to 200 ns relative to the channel-two sample

command. This range was sufficient for the 12-bit input modules but not for the new 16-bit

modules. The new modules require a relative time shift of about 800 ns. To achieve this longer

delay, an additional programmable delay was introduced ahead of the two output programmable-

delay components, PTTL-DL60-1 and PTTL-DL15-16, which were already implemented on the

board. The output of the D flip flop, U9A, is connected to the input of the shift register, U39.
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A 6 MHz clock is connected to the clock input of U39. The delay between consecutive outputs

of the shift register is thus 166.6 ns. The outputs of the shift register are connected to the inputs

of the multiplexer, U40. By setting switch SW2, a delay between 166.6 ns to 1333.3 ns can be

selected. The table in Drawing 19 summarizes the switch, SW2, setups for the different delays

and how to select the two channels.

4. Software Changes

The software in the HASW is a minor revision of the previous software used in the Wideband

Sampling Wattmeter. This earlier software is extensively described in an NBS Technical Note

[2] . The software description here will highlight the changes made in the two upgrades that have

occurred to the software since that description. The first upgrade was to accommodate the

addition of an IEEE 488 interface to the earlier wattmeter and the change in microcomputer used

to control the wattmeter. The second software upgrade was the one made to accommodate the

changes made for the HASW upgrade. The software is written in a combination of Pascal and

assembly language. The assembly language software provides the interface to the hardware for

the Pascal routines. Assembly routines are used to set and read the hardware registers and to

respond to the interrupts. The Pascal routines provide the main control software of the wattmeter.

4.1. Software Changes for IEEE 488 Interface

The IEEE 488 interface is provided by the ZT 85/38 Multibus to IEEE 488 interface card from

Ziatek Corp. The IEEE 488 address of this board is set via a dip switch on this board. Assembly

language routines initialize and interface with this board, and Pascal routines read commands sent

to the wattmeter and respond with wattmeter data and status.

As part of this general software upgrade, additional measurement capabilities were added to the

earlier wattmeter, including direct access to the DMA contents as well as four additional

measurement functions. Two arrays of the measurement values saved in the DMA can be sent on

the IEEE 488 interface to an attached computer for further analysis. The number of values sent can

be selected to be from 1 to 4096. The new measurement functions are energy, energy count, and clip

count for channel 1 and channel 2. A new parameter was added in connection with the energy

function, the clock correction factor. This factor corrects for the error in the frequency of the crystal

that controls the sampling rate. The energy is displayed in Joules and the energy count gives the

number of samples used in the currently displayed energy measurement. The two clip counts give

the number ofDMA stored values, which are at either the positive or negative saturation level. If

these counts are not zero, then the measurement results are in error due to amplitude clipping of the

input signals by the analog-to-digital converters.

The way many operational parameters are set via the software has been modified to make the control

of the wattmeter easier. These modifications include the way the scale factors and delay times are
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newset for the two channels and the way functions are displayed on the wattmeter display. Also, ..^,.

parameters have been added to control the way measurement data are sent over the IEEE 488

interface.

Tables IEEE 488 Commands

Char Function

A

B

C

D

E

F

G

H

Up(l)

Down (i)

Left (-)

Right (-)

Home

Run

FUp (Ft)

FDown(Fl)

I na

J na

K DumpArl

L DumpAr2

M

P

ResetE

FullReset

Q na

R na

S (488Sing)

T na

V na

w na

Char Function

a na

b (Ar2End)

c (MChlSF)

d na

e (Ar2End)

f (SampFreq)

g na

h na

i (IntgPer)

J (ArlBeg)

k (ArlEnd)

1 na

m (DispP)

P na

q (488Cont)

r (ShuntR)

s (Send488)

t (TrigLev)

V (MCh2SF)

w (Source)

Char Function

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

.(Dec)

CR

LF

The following discussion describes the commands that can be sent over the IEEE 488 interface bus

to control the wattmeter. The control is similar to the way the wattmeter is controlled via the
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24-button keyboard on the front panel of the wattmeter. Table 8 gives the function of each

alphanumeric character sent over the IEEE 488 interface bus. Characters with a function "na"

have no affect, those marked in a box have the same affect as the corresponding ones entered from

the keyboard, and those with functions in parentheses control the state of the software as described

below.

Table 9 Selection Menu and Default Values

Top of List

Sample Pulse Sample Freq. 300 kHz

Pulse Width LOO/xs

Conv Cmd Delay ns

Clock Cor 1097 fxs/s

Synchronization Multiplexer 4.68 kHz

Trigger Level 0.0 V
Trigger Delay 1 sample

Integration Hardware Accum.

MA Mode Power

Scale Factor Shunt Res 1.0

Ch 1 Scale Factors (12 Chan 1 SF's)

Ch 1 Delays (12 Chan 1 Delays)

Ch 2 Scale Factors (12 Chan 2 SF's)

Ch 2 Delays (12 Chan 2 Delays)

Display Display Delay 1000 ms

Display Ix (10 Disp Func)

DMA Param DMA Trigger TC
DMA Truncation None

DMA Ave (Blank)

Set Array Lim Array 1 Beg Oloc

Array 1 End 5 1oc

Array 2 Beginning 4096 loc

Array 2 End 4101 loc

Set 488 Ix = Disp x (20 Disp Func)

Set State (See text)
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The wattmeter parameters are set by changing the state of the wattmeter and entering the

appropriate data for the current state. From the front-panel keyboard the current state can be

determined by observing the 32-character display and using the arrow keys to change the state.

Table 9 shows the display messages, the sequence of state selections and the default values of the

corresponding parameters. Up, Down arrows move from top to bottom in Table 9 and Left, Right

arrows move between columns. The list wraps at the top and bottom, i.e. , an Up arrow at "Top

of List" moves to "Set State" and a Down arrow at "Set State" moves to "Top of List."

The wattmeter state also can be set via the IEEE 488 interface by using the same sequence of

commands. The command "E" sets the state to the "Top of List" state. Then, a sequence of

arrow commands ("A", "B", "C", or "D") will change the wattmeter state to the desired

parameter entry. The parameter value can be changed by entering the proper numeric value or

using additional arrow entries, as is appropriate for the specific parameter. A quicker method of

changing to some states is to first send the "EA" command, which changes the wattmeter to the

"Set State" state. The next character changes the wattmeter to the state given in parentheses in

Table 8. As an example, in Table 8, the lower case letter "c" is next to the function MChlSF,
which means to modify the channel 1 scale factors. Thus, to change to the state for modifying

the channel 1 scale factors, the command "EAc" is sent.

There are two fomiats for data transferred from the wattmeter via the IEEE 488 interface. The first

format is used for the data dumped from the wattmeter display. These data are sent as a string of 32

characters followed by a CR and LF. Since these data are first written to the display, it can be seen

during the transmit process. The second format is used for the hex data from the two DMA arrays.

These data are sent as a string of 29 characters followed by a CR and LF. Each of these strings

contains the data for six aiTay locations. Each location is represented as four hex characters followed

by a space. The hex code used is to 9 for the first 10 numbers and :, ;, <, =, >, and ? for A, B, C,

D, E, and F respectively.

The wattmeter originally was controlled by an 8086 microprocessor on an Intel SDK-86 computer

board. As part of the upgrade to add the IEEE 488 interface to the wattmeter, the control was

changed to an Intel 86/12A Multibus microcomputer, which also contains an 8086

microprocessor. This change required the re-addressing of the programmable peripheral interface

(PPI) device and the interrupt handler device.

4.2. Software Changes for HASW Upgrade

The software upgrade for the changes to convert the Wideband Sampling Wattmeter to the HASW
involved the differences with the new multiplier-accumulator board. The multiplier-accumulator,

(MA) mode setting is accommodated as is the reading of the larger hardware accumulator, 47 bits

vs 35 bits. Also, the allocation of time between the number of hardware accumulations and the

number of software accumulations is changed. Depending on the MA mode, the wattmeter

calculates and displays the input power, the average of the channel 1 inputs, the average of the
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channel 2 inputs, or the ratio of the number of samples counted by the frequency control and

programmable time delay board and the number of samples counted by the multiplier-accumulator

board. This last measurement should always be the numerical value 1 for a properly operating

wattmeter.

5. Performance

The critical factors that are of interest for the performance of the HASW are the noise level,

frequency response, and temperature coefficients of the input circuitry. The noise levels of the

input circuitry were measured by applying a constant dc signal or a short circuit to the voltage-

and current-input modules and then recording the range of digital codes generated by the modules.

The final design achieved an approximate noise level of plus/minus one code width. The data

shows about 60 percent of the output at one code, 15 percent to 25 percent at each of the adjacent

codes, and 1 to 2 percent at plus and minus two codes. Figure 2 shows a typical distribution of

codes for 100 samples of the voltage-input module with the input terminal shorted. Similar results

are observed for the current-input module.

Codes

Figure 2 Typical Distribution of Voltage Codes for Shorted Input.

The frequency response of the two input modules was determined using sine waves from a

standard commercial calibrator, and using an ac/dc thermal voltage-converter comparator to

measure the amplitude of the test signals. Figure 3 shows the frequency response of the current-

input module and Figure 4 shows the frequency response of the voltage-input module. The

frequency response of the 255 V range is marginal for achieving the project goal of an uncertainty

less than ±50 /aW/W of full scale. Attempts will be made to reduce the errors for this input range
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by redesigning the attenuator for this range. The other ranges have errors that are well within the

uncertainty goal.
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Figure 3 Frequency Response of Current-Input Module.

Figure 4 Frequency Response of Voltage-Input Module.
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The power frequency response was measured using the NIST Audio-Frequency Power Bridge [3].

Figure 5 shows the typical results for calibration of the HASW for power measurements. This

graph shows the power errors for unity and zero power-factor lead and lag signals with voltage

and current amplitudes of 120 V and 1 A. These results show that the power uncertainty goal of

less than ±50 juW/W of full scale range was achieved.
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Figures Frequency Response of Power Measurements.

The temperature sensitivities of the two input modules were measured for a temperature change

of about 25 °C, from 10 °C to 35 °C. Table 10 shows the results of these tests. The first three

rows are the results obtained for the voltage-input module and the last two rows show the results

obtained for the current-input module. The temperature sensitivities range up to 2.6 parts in

10V°C for the voltage-input module and up to 3.6 parts in 10V°C for the current-input module.

Based on these data, the expected power temperature sensitivity is about 5 parts in 10V°C.

However, each of the module sensitivities were measured independently, so no information was

obtained to determine the temperature sensitivity of the phase of each module. Thus, the power

sensitivity may be significantly larger, particularly for low power-factor signals.
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Table 10 Temperature Sensitivities for the Input Modules in parts in 10^/°C

Range 50 Hz 400 Hz IkHz

3 V 0.9 2.6 2.6

120 V 2.1 2.3 -1.3

240 V 0.4 1.1 1.6

1 A 2.5 2.5 2.9

5 A 3.6 3.2 2.9
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Appendix - Drawings

The following drawings show the parts of the wattmeter that were changed during the upgrade

from the NIST Wideband Sampling Wattmeter to the NIST High-Accuracy Sampling Wattmeter.

Drawing 1 Basic Block Diagram of HASW Al
Drawing 2 Basic Block Diagram of Converter Modules A2
Drawing 3 Block Diagram of Amp/Data Converter Modules A3
Drawing 4 Block Diagram & Power Supply A4
Drawing 5 Clock-Synchronizer Board A5
Drawing 6 ADC Board 1 (Analogic) A6
Drawing 7 ADC Board 2 (Crystal) A7
Drawing 8 16-bit Amp/Data Curr. & Volt Conv Modules, Mother Board A8
Drawing 9 Current Transformer Schematic A9
Drawing 10 Current-to-Voitage Converter Board AlO
Drawing 11 Multiplier-Accumulator - Block Diagram 1 All

Drawing 12 Multiplier-Accumulator - Block Diagram 2 A12
Drawing 13 16-bit Mult-Acc Board - Part A and Part B A13

Drawing 14 16-bit Mult Ace Board - Board Layout Schematic A14
Drawing 15 Sequencer Timing Diagram A15

Drawing 16 End-of-Conversion Combiner Circuit A16
Drawing 17 Ground Connection Schematic A17

Drawing 18 System Power Supply Block Diagram A18
Drawing 19 Time Delay Extension A19
Drawing 20 Frequency Counter and Programmable Time Delay Board A20
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other government agencies.
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