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Abstract

The transmission/reflection and short-circuit line methods for measuring complex permit-

tivity and permeability of materials in waveguides and coaxial lines are examined. Equa-

tions for complex permittivity and permeability are developed from first principles. In

addition, new formulations for the determination of complex permittivity and permeabil-

ity independent of reference plane position are derived. For the one-sample transmis-

sion/reflection method and two-position short-circuit line measurements, the solutions are

unstable at frequencies corresponding to integral multiples of one-half wavelength in the

sample. For two-sample methods the solutions are unstable for frequencies where both

samples resonate simultaneously. Criteria are given for sample lengths to maintain stabil-

ity. An optimized solution is also presented for the scattering parameters. This solution

is stable over all frequencies and is capable of reducing scattering parameter data on ma-

terials with higher dielectric constant. An uncertainty analysis for the various techniques

is developed and the results are compared. The errors incurred due to the uncertainty in

scattering parameters, length measurement, and reference plane position are used as inputs

to the uncertainty models.

Key words: Calibration; coaxial line; dielectric constant; loss factor; magnetic materials;

microwave measurements; permeameter; permeability measurement; permittivity measure-

ment; reflection method; short-circuit; transmission; uncertainty; waveguide.



Chapter 1

Introduction

The goal of this report is to review and critically evaluate various transmission Hne measure-

ment algorithms for combined permeability and permittivity determination and to present

results and uncertainty analysis for the techniques.

There is continual demand to measure accurately the magnetic and dielectric properties

of solid materials. Over the years there has been an abundance of methods developed for

measuring permeability and permittivity. Almost all possible perturbations or variations

of existing methods have been proposed for measurements. These techniques include free-

space methods, open-ended coaxial probe techniques, cavity resonators, full-body resonance

techniques, and transmission-line techniques. Each method has its range of applicability

and its own inherent limitations. For example, techniques based on cavities are accurate,

but not broadband. Nondestructive techniques, although not most accurate, allow the

maintenance of material integrity. Transmission line techniques are the simplest of the

relatively accurate ways of measuring permeability and permittivity of materials. Trans-

mission line measurements usually are made in waveguide or coaxial lines. Measurements

are made in other types of transmission lines for special applications, but for precise mea-

surements, rectangular waveguides and coaxial lines are usually used. The three major

problems encountered in transmission line measurements are air gaps, half- wavelength res-

onances, and overmoding.

Coaxial lines are broadband in the TEM mode and therefore are attractive for permit-

tivity and permeability measurements. The problem with coaxial hues, however, is that

due to the discontinuity of the radial electric field, any air gap around the center conductor

degrades the measurement by introducing a large measurement uncertainty. Belhadj-Tahar

et al. [1] have attempted to circumvent these difficulties with the development of a tech-

nique for a plug of material at the end of a coaxial line. In Belhadj-Tahar's approach there

is no center conductor hole. However, higher modes are excited at the transition between

the plug and the center conductor which complicates the analysis. Due to the complexity

1



of the method it is not apparent at this tinne whether this approach wiU replace the more

traditional single-mode models.

Transmission line techniques generally fall into the following categories:

• Off-resonance waveguide and coaxial line, full scattering parameter, 2-port measure-

ments.

• Off-resonance short-circuit line, 1-port measurements.

• Open-circuit techniques.

• Resonant transmission-line techniques.

The topic of this report will be the first two categories. We will also examine direct in-

ductance measurement, which uses permeameter techniques. The off-resonance techniques

can be broadly grouped into two categories:

• Point-by-point or uncorrelated-point techniques.

• Multi-point or correlated-point techniques.

The point-by-point technique is at present the most widely used reduction technique and

consists of solving the relevant scattering equations at single points. Multi-point techniques

consist of solving the nonlinear scattering equations using nonlinear least square algorithms.

Due to their relative simplicity, the off-resonance waveguide and coaxial line transmis-

sion/reflection (TR) and short-circuit line (SCL) methods are presently widely used broad-

band measurement techniques. In these methods a precisely machined sample is placed in

a section of waveguide or coaxial line and the scattering parameters are measured, prefer-

ably by an automatic network analyzer (ANA). The relevant scattering equations relate

the measured scattering parameters to the permittivity and permeabiUty of the material.

One limitation of these techniques is that they require cutting of the sample and therefore

these techniques do not fall under the general category of nondestructive testing methods.

Another limitation is that these techniques require a small sample and therefore the res-

onance characteristics of large sheets of the material are not studied. Network analyzers

have improved over the last years to a point where broad frequency coverage and accurate

measurement of scattering parameters are possible. This broadband capability unearths

another limitation of present algorithms, that is, the instability of the measurement in the

vicinity of resonant frequencies.

In this report we assume that the materials under test are isotropic, homogeneous, and

in a demagnetized state. The solutions obtained in this re])ort are both single-frequency

techniques and multiple frequency techni([ues. For the TR measurement, the system of

equations contains as valuables the complex permittivity and i^ermeability, the two reference



plane positions, and, in some applications, the sample length. In the T/R procedure we

have more data at our disposal than in SCL measurements, since we have all four of

the scattering parameters. In SCL measurements the variables are complex permittivity

and permeability, sample length, distance from sample to short-circuit termination, and

reference plane positions. However, in most problems we know the sample length, reference

plane position, and distance from the reflector to the sample. In these cases we have four

unknown quantities (complex permittivity and permeabihty) and therefore require four

independent real equations to solve for these variables. These equations can be generated by

taking reflection coefficient data at two positions in the transnriission line, thus yielding the

equivalent of four real equations for the four unknown quantities. A problem encountered

in measurements is the transformation of S-parameter measurements at the calibration

reference planes to the air-sample interface. This transformation requires knowledge of the

position of the sample in the sample holder. Information on reference plane position is

limited in many applications. The port extension and gating features of network analyzers

are of some help in determining reference plane position, but do not completely solve the

problem. Equations that are independent of reference plane position are desirable.

Most of the present transmission-line techniques [2,3,4], with some variations, are based

on the procedure developed by Nicolson and Ross [5] and Weir [6] for obtaining 2-port,

off-resonance, broadband measurements of permeability and permittivity. In the Nicolson-

Ross-Weir (NRW) procedure the equations for the scattering parameters are combined in

such a fashion that the system of equations can be decoupled. This procedure yields an

explicit expression for the permittivity and permeability as a function of the S-parameters.

These equations are not well-behaved for low-loss materials at frequencies corresponding

to integral multiples of one-half wavelength in the sample. In fact, the NRW equations are

divergent, due to large phase uncertainties for very low-loss materials at integral multiples

of one-half wavelength in the material. Many researchers avoid this problem by mea-

suring samples which are less than one-half wavelength long at the highest measurement

frequency. The advantage of the NRW approach is that it yields both permittivity and per-

meability over a large frequency band. As a special case of the NRW equations, Stuchly and

Matuszewski [7] found solutions to the scattering equations for nonmagnetic materials and

derived two explicit equations for the permittivity. Delecki and Stuchly [8] have studied the

uncertainty analysis for infinitely long samples using the bilinear and Schwarz-ChristofFel

transformations. Franceschetti [9] was one of the first to perform a detailed uncertainty

analysis for TR measurements. Ligthart [10] developed an analytical method for permittiv-

ity measurements at microwave frequencies using an averaging procedure. In Ligthardt's

study, a single-moded cylindrical waveguide was filled with a homogeneous dielectric with

a moving short-circuit termination positioned beyond the sample. This study focused pri-

marily on single-frequency measurements rather than on broadband measurements.

The short-circuit fine (SCL) method was introduced by Roberts and von Hippel [11]

over fifty years ago as an accurate broadband measurement procedure. The SCL measure-



ment method uses data obtained from a short-circuit 1-port measurement to calculate the

dielectric and magnetic properties. SCL is useful when 2-port measurements are not possi-

ble, for example, in high temperature measurements [12] and remote sensing applications.

When an ANA is used, the sample is positioned in either a waveguide or coaxial hne and the

reflection coefficient is measured. The determination of the permittivity and permeability

usually proceeds by solving a transcendental equation that involves the sample length, sam-

ple position, and reflection coefficient. With modern computer systems, iterative solutions

of the resulting transcendental equations are easy to implement. However, they require an

initial guess. The resultant nonlinear equations have an infinite number of solutions due

to periodic functions. The physical solution can be determined by group delay arguments

or by measuring two samples with differing lengths. Much of the theory developed for the

SCL technique was developed for use with a slotted line. Present-day network analyzers

usually measure scattering parameters. Therefore in this report we derive equations from

a scattering approach.

The SCL method has endured over the years, and as a result there is an extensive

literature. In this report we attempt to review only the most relevant work on the subject.

Short-circuit line methods can be broadly separated into two- position techniques and two-

sample techniques. In the two-position technique 1-port scattering parameters are measured

for a sample in two different positions in the sample holder. In the two-sample technique two

samples of different lengths are machined from the same material and scattering parameters

are measured with each sample pressed against the short-circuit termination. Szendrenyi

[13] developed an algorithm for the case in which the length of one sample is precisely twice

the length of the other sample. In this special case, they found an explicit solution.

Mattar and Brodwin [14] have described a variable reactance termination technique for

permittivity determination. Maze [15] has presented an optimized-solution technique where

at each frequency scattering parameters are taken for various short-circuit termination

positions. Dakin and Work [16] developed a procedure for low-loss materials and Bowie

and Kelleher [17] presented a rapid graphical technique for solving the scattering equations.

Other authors have presented methods using measurements on two or more sample lengths

[18]. Most of the literature to date has focused on permittivity determination. In the

few works that have addressed the combined permeability and permittivity problem, many
details have been left unresolved.

Recently Chao [19] presented SCL measurements results with a slotted line and also

an uncertainty analysis for single frequency measurements. Chao found that accuracy was

reduced when the reflection coefficient is dominated by the front face contribution.

The SCL measurement may use either a fixed or movable short-circuit device. The
advantage of a moving short-circuit termination [2] is the possibility for making many sep-

arate measurements at a given frequency with the sample placed in either a high electric

or magnetic field region [15]. Generally, a maximum in electric field strength is advan-

tageous for permittivity measurements, whereas a maximum in magnetic field strength is



advantageous for permeability measurements.

When only permittivity is required, a single measurement at a given frequency suffices,

whereas when both permeability and permittivity are to be determined, it is necessary to

carry out two independent measuiements at each frequency. There are various contribu-

tions to the uncertainties in the SCL method. These uncertainties include network analyzer

uncertainties, sample gaps, wall and reflection losses, and measurement of sample dimen-

sions. There are also uncertainties in the location of the sample reference planes and in

the distance from sample to the short-circuit termination. The uncertainty in the network

analyzer parameters are sometimes documented by the manufacturer [3].

In this report we develop relevant equations from first principles. These equations apply

to ANA systems. We will examine the various approaches foi- combined determination of

permeability and permittivity, and study the uncertainty in the measurement process. The

special case of repeated measurements on a sample of fixed length is treated in detail.



Chapter 2

Theory for Coaxial Line and

Rectangular Waveguide

Measurements of Permittivity and

Permeability

2.1 Theory

The goal of this chapter is to present various approaches for obtaining both the perme-

abihty and pernnittivity from transmission line scattering data. In the TR measurement,

a sample is inserted into either a waveguide or a coaxial line, and the sample is subjected

to an incident electromagnetic field [see figure 2.1]. The scattering equations are found

from an analysis of the electric field at the sample interfaces. In order to determine the

material properties from scattering data, it is necessary to understand the structure of the

electromagnetic field in waveguides. In developing the scattering equations usually only

the fundamental waveguide mode is assumed to exist. In this report we develop the theory

for multimode solutions. However, the numerical algorithiTis presented will be valid only

for the fundamental mode.

2.1.1 Decomposition into TE, TM, and TEM Modes

In this section we briefly review the theory of modes in transmission lines. It is possible to

decompose the fields in a waveguide at a given frequency into the complete set of TE, TM,
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Figure 2.1: A dielectric sample in a transmission line and the incident and reflected electric

field distributions in the regions I, II, and III. Port 1 and port 2 denote cahbration reference

plane positions.

and TEM modes. In our model at hand we assume:

• There is a propagation direction in the guide which we call z.

• The cross-sectional area of the guide is perpendicular to z and constant throughout

the length of the guide.

Electromagnetic fields in a sourceless region satisfy

V X V X j5 = -3iJoV^l X H -^ k^E
,

V X V X ^ = jioVe xE-\- k^H
,

(2.1)

(2.2)

where k = —J7 is the wave number.

In this report we assume that there are no sources of electric and magnetic fields in the

guide [J — 0) and there no free charge build up (V • Z) = 0). Further we assumie that the

material parameters are not spatially dependent. However, step function discontinuities

are assumed to exist between the sample and air gap. The step function discontinuities in

the equations can contribute a delta function term in derivatives. With these assumptions,

the fields satisfy homogeneous Helmholtz equations,

V^H + k^H ^0 .

The time-dependent fields can be expanded in terms of modes

_,
'I

roo _,

ZTT J-oo

(2.3)

(2.4)

(2.5)



-, 1 roo ^ _,

^(^0 = TT dujJ2Hn{rT,^)exp{±jnz)exp{jujt)
, (2.6)

ZTT J-oo „

where rV is a transverse vector, En-,Hn are the amphtudes of the modes, and

7n = J.

^ /^fle/i f 27r

^ cL, VA
(2.7)

where ^oiln are the propagation constants in vacuum and material, respectively. Also

j = \/— 1, Ct;ac and Qa6 are the speed of light in vacuum and laboratory, u) is the angular

frequency, A„c is the cutoff wavelength of the nth mode, €„ and fig are the permittivity and

permieability of vacuum, e^ and fi*j^ are the complex permittivity and permeability relative

to a vacuum.

Since these modes satisfy a Sturm-Liouville problem, we know that the totality of these

waves forms a complete set of functions, and therefore an eigenfunction expansion property

exists for this system. The Laplacian separates in the coordinate systems used in this

report, and therefore the fields can be separated into transverse (T) and longitudinal (z)

components:

E = Et + EJ, (2.9)

H = Ht-\-HJ. (2.10)

The component E^ is the generator of the TM mode (see Appendix) and the H^ component

is the generator of the TE mode. Since the TE, TM, and TEM modes form a complete set

of functions, we can expand the transverse Fourier-transformed fields as

Erif^u) =
oo

Y^i^irE^M-lnZ) + E-TEexp{-fnZ)}ET{TE){rT)
n= l

oo

n=l

N-1

+ Y. i^iTEM^^Pi-lnZ) + E-TEMeW{lnZ)}ET(TEM){rT) ,
(2.11)

n=l

HT{r,u) =



OO 1

n=l ^nTE
OO 1

+ Y. -^ {^nTMexp(-7n2) - E't^j^ QXp{-inZ)}{z X ET(TM){rT))
n=l ^nTM

+ Yl \ -{^irEM^M-lnZ) - E^TEMe^P{lnZ)}{zX ET(TEM){rT)) (2.12)

where N is the number of disjoint conductors and (±) denotes forward and backward

travehng waves. The coefficients En depend on the transverse components, and the wave

impedances are

Ztm^ — . (2.13)

ZrE = '^ . (2.14)
In

Although the sums for the TE and the TM waves in eqs (3.11) and (2.12) approach oo,

in many problems of practical interest, some of the coefficients in the sums vanish. Two
or more modes may have the same eigenvalue; the eigenvectors in these cases are called

degenerate.

In order to solve eq (2.3) it is expeditious to break up the Laplacian into transverse and

longitudinal components.

V^E
vt: = VjE -\-

where

\/'E = V\E-\-—^
, (2.15)

^ = ^'S
.

(2.16)

and the transverse Laplacian satisfies by eq (2.3)

V\E = -{P + -f^)E = -klE ,
(2.17)

where k^ is the cutoff wavenumber. If e has a dependence on transverse coordinates in

terms of a step discontinuity, then 7 also has a transverse dependence. In Appendix A, the

details of the derivations of the fields are reviewed.

2.1.2 Imperfect Sample Geometry

In the case of perfect or near perfect samples and sample holders, 7 is independent of the

transverse coordinates and therefore different eigenfunctions for the transverse components

9



in the air and sample regions possess an orthogonality condition [see Appendix A]. In such

cases it is possible to match mode by mode, and the coefficients are decoupled. However,

when samples and sample holder are not perfectly formed or are slightly inhomogeneous,

both // and e have a weak dependence on the transverse coordinates of the guide and

therefore the different transverse eigenfunctions in the sample are not orthogonal to the

transverse eigenfunctions in the air section. The modes of imperfect samples cannot be

separated and matched mode by mode. The imperfections in the sample generate evanes-

cent waves at the sample-material interface. These modes may propagate in the sample,

but they decay exponentially outside of the sample.

For an imperfect sample, the fields in the regions I, II, and III are found from an

analysis of the electric field at the sample interfaces. We assume that the incident electric

field is the TEio mode in rectangular waveguide and TEM in coaxial line. As the wave

propagates from the air-filled region into the sample, some of the energy carried in the

wave will convert into higher order modes. However, it is necessary to consider only the

transverse components of the fields when matching boundary conditions. In the following

we assume that gaps or other imperfections can exist in and around the sample. We further

assume that the imperfections are such that the Laplacian can be separated into transverse

and longitudinal components. If the imperfections are azimuthally symmetric, then only

the H^ magnetic field component is assumed to exist. If we assume the vector component

of the normalized electric fields Ej, Eu, and, Em^ in the regions I, II, and III, we can

write for TV modes

N
El = exp(-7oiz) +5ne.xp(7^iz) + ^C,(i'T)exp(7oiz)]

, (2.18)
.^-— '

^=2' ^ '

incident wave evanescent

N
En = J][A(i'T)exp(-7„-,2) + E,{zt) expijrmz)] , (2.19)

2= 1

yV

Em = 52iexp(-7.:(2 - L)) -f J^ [F,(iT) exp(-7o,(^ - L))]
, (2.20)

^ -— ,=2^ '

transmitted wave evanescent

where d, Z),, Ei, F, are the modal coefficients, which may depend on the transverse

coordinates. Also 7oi, 7mt s^re the pro})agation constants of the ith. mode in vacuum and

material respectively. We assume that we are operating the waveguide at such a frequency

that only the fundamental mode is a propagating mode in the air section of the guide. The
other modes are evanescent in the air section of the guide, but may be propagating in the

material-filled section. There may be additional modes produced by mode conversion for

^TEM mode in a coaxial line or the TEio mode in a waveguide (with a time dependence of exp{jut]

suppressed)

10



the other components of the electric field, but these are not necessary for specification of

the boundary conditions.

In general, the amplitudes in eqs (2.18) to (2.20) are functions of the transverse coor-

dinates. To find the coefficients, it is necessary to match tangential electric and magnetic

fields at the interfaces and integrate over the cross- sectional area. Since different transverse

eigenfunctions in the air are not orthogonal to transverse eigenfunctions in the sample we

cannot separate a particular mode in the sample and match it to the analogous mode in

the air. The tangential electric field matching yields

N
Ski + (1 - Ski)ck = Yli^kjdj + AkjBj]

, (2.21)

N

[4 exp(-7,n^-L) + e^ exp(7,„fcL) = ^ Aj^fj , (2.22)

where Sij is the Kronecker delta and c, e, and / are the integrated coefficients, A'^ is the

number of modes, and A^j is the matrix of the coefficients of the integrated transverse

eigenfunctions. The transverse component of the magnetic field can be obtained from

Maxwell's equations using eqs (2.21) and (2.22). If we match the tangential magnetic field

components and integrate over the transverse variables we have

[-^4, + —(1 - SkiM = E ^-^kjd, -f /l,,e,]
, (2.23)

[-4-^^exp(-7,„^.L) + ^^e/,exp(7„,;^.L) = - J^^j/t/j— , (2.24)

where L is the sample length and

La^r = L + Lj + L2 (2.25)

These boundary conditions yield a linear system of equations for the coefficients. Various

cutoff frequencies and operating frequencies are given in tables 2.1 and 2.2.

The difficulties in solving the full mode problem in eqs (2.21) to (2.24) is that the coef-

ficients of the matrix A^j are not generally known precisely unless the complete boundary

value problem is solved for each sample. These coefficients are known only for simple,

well-defined geometries and not for samples with unknown air gaps or complicated inho-

mogeneities.

1]



Table 2.1: Cutoff frequencies for TE^o mode in rectangular waveguide.

EIA WR Band Cutoff frequency(GHz)

650 L 0.908

430 W 1.372

284 S 2.078

187 c 3.152

90 X 6.557

42 K 14.047

22 Q 26.342

Table 2.2: Rectangular waveguide dimensions and operating frequencies in air.

EIA WR Band a (cm) b (cm) TEio Operating frequency(GHz)

650 L 16.510 8.255 1.12 - 1.70

430 W 10.922 5.461 1.70 - 2.60

284 s 7.710 3.403 2.60 - 3.95

187 c 4.754 2.214 3.95 - 5.85

90 X 2.286 1.016 8.20 - 12.40

42 K 1.067 0.432 18.0 - 26.5

22 Q 0.569 0.284 33.0 - 50.0

12



2.1.3 Perfect Sample in Waveguide

As a special case of the formalism developed in the previous section we consider a perfect

sample in a perfect waveguide as indicated in figure 2.1. In this case no mode conversion

occurs because the eigenfunctions in the air and sample regions are orthogonal with respect

to cross-sectional coordinates. Therefore the modes may be decoupled and the evanescent

modes are not of concern. This is a special case of eqs (2.21) to (2.25). In this case we

need to be concerned only with the fundamental mode in the guide. The electric fields in

the sample region z G (0,L) for a coaxial line with a matched load and with the radial

dependence written explicitly are

El = -[exp(-7,~) + 5„ exp(7,c)]
, (2.26)

r

En = ^C2[exp(-7ir) + C3exp(7i;)] , (2.27)

^/// = -[.?2iexp(-7o(~~-^))]. (2.28)
/

When these equations are integrated over the cross-sectional surface area, the radial de-

pendence is the same for each region of the waveguide.

The constants in the field equations are again determined from the boundary conditions.

The boundary condition on the electric field is the continuity of the tangential component

at the interfaces. The tangential component can be calculated from Maxwell's equations

given an electric field with only a radial component. The higher modes in eqs (2.18) to

(2.20) are evanescent in the air-filled section of the guide. TM modes can be treated

similarly. The details of the boundary matching for the TExq case are described in a

previous report on dielectric materials [26,27]. The boundary condition for the magnetic

field requires the additional assumption that no surface currents are generated. If this

condition holds, then the tangential component of the magnetic field is continuous across

the interlace. The tangential component can be calculated from Maxwell's equations for

an electric field with only a radial component. For a 2-port device the expressions for the

measured scattering parameters are obtained by solving eqs (2.18) through (2.20) subject

to the boundaiy conditions. We assume that .SV2 = S-^. The explicit expressions for a

samjjle in a waveguide a distance L\ from the port-1 reference plane to the sample front

face and Lj from the sample back face to the port-2 calibration plane are related. The
.S-parameters measured l^y the device reference planes are related to the S- parameters at

the sample face 5" by [26]

:/

5=0,s'a> , (2.29)

'here
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$= exp(i</»i)

exp(i(/»2)
(2.30)

and (f)i
= J^qL\ and (/>2 = i7o^2- The S-parameters are defined in terms of the reflection

coefl&cient F and transnriission coefficient z by:

S\\ — Ri

S22 — R-i

S21 = R1R2

r(i -^')]

1-

r(i

T^z\

1- r^z\

.(i-n
1 - r2z2

where

Ri = exp(-7oLi)
,

(2.31)

(2.32)

(2.33)

(2.34)

i?2 = exp(-7oL2)
, (2.35)

are the respective reference plane transformations. Equations (2.31) through (2.33) are

not new and are derived in detail elsewhere [5,28]. We also have an expression for the

transmission coefficient Z:

We define a reflection coefficient by

z = exp(--iL)

E _ MO

r _ 7

7

70

MO

70

(2.36)

(2.37)

For coaxial line the cutoff frequency approaches 0, (cuc ^0) and therefore F reduces to

Cvac / Mr ,
-j^

(2.38)

Additionally, S21 for the empty sample holder is

S21 = i?ii?2exp(-7oi/a) (2.39)
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For nonmagnetic materials, eqs (2.31), (2.32), (2.33) contain e^, e^, L, and L^, and

the reference plane transformations /?i,i?2 a^s unknown quantities. Since the equations for

5i2 and 5*21 are theoretically equivalent for isotropic non-gyromagnetic materials, we have

four complex equations, eqs (2.31), (2.32), (2.33), (2.39), plus the equation for the length

of the air line (2.25), or equivalently, nine real equations for the six unknowns. However,

in many applications we know the sample length to high accuracy. For magnetic materials

we have eight unknowns. However, we have frequency data for each measurement. Since

the lengths are independent of frequency we have an over-determined system of equations.

This abundance of information will be exploited in the next chapter.

2.2 Permeability and Permittivity Calculation

2.2.1 Nicolson-Ross-Weir Solutions (NRW)

Nicolson and Ross [5], and Weir [6] combined the equations for Sn and 521 a-^d discovered a

formula for the permittivity and permeability. Their procedure works well at off-resonance

where the sample length is not a multiple of one-half wavelength in the material. Near

resonance, however, the solution completely breaks down. In the NRW algorithm the

reflection coefficient

Fi = .Y ± VX^ - 1 (2.40)

is given explicitly in terms of the scattering parameters where

1 - Vi Vo

and

Vi = 521 + 5ii , (2.42)

V2 - 521 - 5ii . (2.43)

Note that in the Nicolson-Ross solution the S-parameters must be rotated to the plane of

the sample faces in order for the correct group delay to be calculated. The correct root

is chosen in eq (2.40) by requiring |Fi| < 1. The transmission coefficient Zi for the NRW
procedure is given by

' l-(5ii + 52i)Fi
• ^'-^^^

15



If we define

then we can solve for the permeability

f^R = ^ ^ ^'
, (2.46)

where Aq is the free space wavelength and A^ is the cutoff wavelength. The permittivity is

given by

^« = 4llj5-[?V'"<?->l'l- (2.47)
/i^ A^ ZttL Zi

Equation (2.45) has an infinite number of roots for magnetic materials, since the log-

arithm of a complex number is multi-valued. In order to pick out the correct root it is

necessary to compare the measured group delay to the calculated group delay. The calcu-

lated group delay is related to the change of the wave number k with respect to the angular

frequency

'calc.group '

d
-L r^^rP 1

(2.48)

L . (2.49)
1 J^rP-r + / 2 df

C^ h>Rp 1

The measured group delay is

_ \ d(i)

'^meas.group 'Z 7f i
yZ-DUj

ZTT aj

where
(f)

is the phase of Z^. To determine the correct root, the calculated group delays

are found from eq (2.49) for various values of n in the logarithm term in eq (2.45), where

In Z = In \Z\ -\- j{0 + 2Trn), where n — 0, ±1, ±2 The calculated and measured group

delays are compared to yield the correct value of n. Many researchers think of the NRW
solution as an explicit solution; however, due to the phase ambiguity, it is not in the strict

sense. Where there is no loss in the sample under test, the NRW solution is divergent at

integral multiples of one-half wavelength in the sample. This occurs because the phase of

Sii cannot be accurately measured for small |5'ii|. Also in this hmit both of the scattering

equations reduce to the relation Z'^ —> 1 , which is only a relation for the phase velocity and

16



therefore solutions for e]^ and /.i^ are not separable. This singular behavior can be minimized

in cases where permeability is known a priori., as shown in previous work performed by

Baker- Jarvis [26].

For magnetic materials there are other methods for solution of the S-parameter equa-

tions. In the next section we will describe various solution procedures.

2.2.2 2-Port Solution Where Position is Determined Solely by

-L'airline a-nu L

In order to obtain both the permittivity and the permeability from the S-parameter rela-

tions, it is necessary to have at least two independent measurements. These independent

measurements could be two samples of different lengths, it could be a full 2-port measure-

ment, or it could be a 1-port SCL measurement of the sample in two different positions in

the line. In the full S-parameter solution we solve equations that are invariant to reference

planes for e and //. A set of equations for single-sample magnetic measurements is

p2 _ ^2
SuS22 - S2iSn = exp{-2jo{La>r - L)} _ -p3„2 , (2.51)

{S2, + S,2)/-2 = exp{-'Jo{La^r " ^
) }J^^^ " (2-52)

Equation (2.51) is the determinant of the scattering matrix.

Iterative Solution

Equations (2.51) and (2.52) can be solved iteratively or by a technicjue similar to the NRW
technique. In an iterative approach, Newton's numerical method for root determination

works quite well. To solve the system it is best to separate the system into four real

equations. The iterative solution works well if good initial guesses are available.

Explicit Solution

It is also possible to obtain an explicit solution to eqs (2.51) and (2.52). Let x — {S2\S\2 —

5ll522)exp{27o(La^>-'^)} and y = {(52i -f 5i2)/2} exp{7o(Lazr - ^)}, then it can be shown

that the physical roots for the transmission coefficient are

Ml \
^)-,.
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The reflection coefficient is

72

(2.54)
1

The ambiguity in the plus-or-minus sign in eq (2.54) can be resolved by considering the

reflection coefficient calculated from 5ii alone

a(Z2 - 1) ± ya2Z'i + 2Z2(25„ - a^) + q2
'^=- ^

25„Z^
• <^-^^'

where a = exp (— 270I/1). The correct root for Fa is picked by requiring IFsl < 1. Note

that an estimate of Lx is needed in eq (2.55). If r2 is compared with Fa then the plus-

or-minus sign ambiguity in eq (2.54) can be resolved and therefore F2 is determined. The

permeability and permittivity are then

^^R = -|^^(ln Z + 27rjn)
, (2.56)

1 - 1 2 7o^

The correct value of n is picked using the group delay comparison as described in the

Nicolson-Ross-Weir technique. At low frequencies the correct roots are more easily identi-

fied since they are more widely spaced.

2.2.3 Two Samples of Different Length

Solutions for the material parameters exist when scattering parameters on two samples of

differing lengths are measured. Let us consider two samples, one of length L and one of

length a^L as indicated in figure 2.2.

For independent measurements on two samples where |52i| > —50dB over the frequency

band of interest we use only 821 measurements. The measurements obtained on the two

samples are designated as 521(1) and 52i(2) for first and second measurements:

5'2i(i) = exp{-7o(Latr - L)]YZr^ifY ' (2.58)

Z°'Ul — F^)
521(2) = exp{-7o(LatV - QiL)}

^ _ ^2aiY'^
' (^"^^^

wnere

Z = exp(-7L)
, (2.60)
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Port 1

(first measurement)
calibration pluiu

Port 2

illhiarioii [Miilli

Sample 2

(second measurement)

Figure 2.2: A dielectric sample in a transmission line for two sample magnetic measurements

anc

Z""' =exp(-ai7l) (2.61

The reflection coefficient is given by eq (2.37). Equations (2.58) and (2.59) can be solved

iteratively for c\ and \.l'^.

This solution is unstable for low-loss materials at certain frequencies if the sample

lengths, L and q.\L, are related so that both materials resonate at a certain frequency

simultaneously. Also with this technique two-sample length measurements are required,

and this increases the uncertainty.

2.3 Measurement Results

The measurement consists of inserting a well-machined sample into a coaxial line or waveg-

uide and measuring the scattering parameters. For waveguide measurements it is important

to have a section of waveguide of length about two free space wavelengths between the coax-

to waveguide adapter and the sample holder. This acts as a mode filter for filtering out

higher evanescent modes. There are many roots to the equations for the permeability and

permittivity and caution must be exercised when selecting out the correct root. At lower

frequencies (< 1 GHz) the roots are usually more widely spaced and therefore root selec-

tion is simplified. Another approach to root selection is the measurement of two samples

of differing lengths where the results compared to determine the correct root.
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— Iterative
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Frequency (GHz)
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Figure 2.3: e'^ of a loaded polymer in a X-band waveguide will! the full S-parameter iterative

technique.

2.3.1 Measurements without Gap Corrections

Various measurements have been made in waveguide and coaxial line. Some of the results

of these measurements are reported in figures 2.3 through 2. 11 foi- the full S-parameter

technique and in figures 2.15 and 2.16 for the two-sami:)le length met hod. The measurements

reported in this section are not corrected for ga]:»s around the sample. The effect of the air

gaps is to measure values of tlie mateiial parameters that are lower than the actual values.

In th(^ next section we will discuss ways (;l mitigating the effects of air gaps.

2.3.2 Effects of Gaps between Sample and Waveguide

Gaps between the sample holder and sam])le eilJier may be coirected with the formulas

given in the appendix or a conducting paste can be api)lied 1o \\\c external surfaces of the

sample that are in contact with the sample holder before insertion into the sample holder.

In figure 2.17 we show a measurement of a nickel-zinc ferrite with and without a gap-filling

grease. The dielectric loss factor is increased slightly by the ga]:) filling. We suspect that

part of this increase is due to the finite conductivilA' of the conducting grease.

20



9.6 10.2

Frequency (GHz)

10.8 11.4

Figure 2.4: e^ of a loaded polymer in a X- band waveguide with the full S-parameter

iterative technique.
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Frequency (GHz)
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Figure 2.5: /x'^ of a loaded polymer in a X-band waveguide with the full S-parameter

iterative technique.
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Figure 2.7: e^ of a ferrite in a X-band waveguide with the full S-parameter iterative tech-

nique.
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Figure 2.8: c'l^ of a Ccnilc in a X-banrl waveguide with tiie full S- parameter iterative te.h-

nique.
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Figure 2.9: ///^ of a ferrite in a X-band waveguide with the full S-parameter iterative

technique.
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Figure 2.10: ^/'/j of a feirite in a X-hand waveguide with the fuh S-paranieter iterative

technique.
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Frequency (GHz)

Figure 2.11: c'p^ of a loaded j^olyiner in coaxial line with ih(> lull S-parain(?ter iterative

technique.
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Frequency (GHz)

Figure 2.12: e^ of a loaded polymer in coaxial line the full S-pararncter iterative technique.
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Figure 2.13: //^ of a loaded polymer in coaxial line with the full S-parameter iterative

technique.
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Figure 2.14: /i'^ of a loaded polymer in coaxial line with the full S-parameter iterative

technique.
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Figure 2.15: e^ of a loaded polymer in a X-band waveguide with TR method for two sample

technique, for three different samples.
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Figure 2.16: ^^ of a loaded polymer in a X-band waveguide with TR method for two

sample technique, for three different samples.
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Figure 2.17: The dielectric and magnetic parameters of a nickel-zinc ferrite in a coaxial hne

from 1 MHz to 10 GHz with the full S-parameter iterative technique.
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2.4 Permeameter

In the past permeameters have been used for high permeability materials. Rasmussen [29],

Hoer [30], Powell [31], and Goldfarb [32] have all described various permeameter setups.

In this section we wish to review the theory behind the permeameter.

If a toroidal sample is inserted into an azimuthal magnetic field region, the inductance

is changed. If the inductance of the empty sample holder is compared to the inductance of

the filled holder then it is possible to extract the complex permeability of the material.

Consider a toroid of inner diameter a and outer diameter b and height h. The material

contributes an inductance of [32]

K =«^
, (2.62)

Ztt

and the inductance of the air space is

i„ = f^shM^ , (2.63)
27r

The net change in the sample inductance when the sample is inserted into the holder is

AL = Lm-La, (2.64)

and therefore

27rAL

The magnetic loss may be obtained from consideration of the core loss AR or resistance

"« =
^ofhHb/a)

(2.66)

These equations are a special case of the scattering equations for short-circuit line (see

eq (4.7)) in the limit as cu -4- and through use of relation H^f, = Ep/Z.
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2.5 Uncertainty of Combined Permittivity and Per-

meability Determination

In this section an uncertainty analysis is presented. The sources of error in the permeability

and permittivity TR measurement include

• Errors in measuring the magnitude and phase of the scattering parameters,

• Gaps between the sample and sample holder,

• Sample holder dimensional variations,

• Uncertainty in sample length,

• Line losses and connector mismatch, and

• Uncertainty in reference plane positions.

A technique for correcting errors arising from gaps around the sample is given in Ap-

pendix B [33,34,35]. Gaps between holder and sample either may be corrected using the

formulas given in the appendix or conducting liquid solder can be painted on the external

surfaces of the sample that are in contact with the sample holder before insertion into the

sample holder, thereby minimizing gap problems. The formulas given in the literature gen-

erally under-correct for the real part of the permittivity and over-correct for the imaginary

part of the permittivity. We assume that all measurements of permittivity have been cor-

rected for air gaps around the sample before the uncertainty analysis is applied. In order

to evaluate the uncertainty introduced by the measured scattering parameters and sample

dimensions, a differential uncertainty analysis is assumed applicable with the uncertainty

due to Sii and ^21 evaluated separately. We assume that the S-parameters are functions

of Sij{\Su\, \S21\1 Oil, 021 ,L,d). We assume that the total uncertainty in e^, where d is

the air gap between the sample and waveguide. We assume that the uncertainties for the

physically measured parameters are

At',R
(2.67)

(2.68)
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where a = 11 or 21, A^ is the uncertainty in the phase of the scattering parameter, A|5a| is

the uncertainty in the magnitude of the scattering parameter, Ad is the uncertainty in the

air gap around the sample, and AL is the uncertainty in the sample length. The derivatives

with respect to air gap, de'j^jdd, have been presented previously [26]. The uncertainties

used for the 5-parameters depend on the specific ANA used for the measurements. This

type of uncertainty analysis assumes that changes in independent variables are sufficiently

small so that a Taylor series expansion is valid. Of course there are many other uncertainty

sources of lesser magnitude such as repeatability of connections and torquing of flange bolts.

Estimates for these uncertainties could be added to the uncertainty budget.

2.5.1 One Sample at One Position

For the uncertainty analysis it is necessary to take implicit derivatives of the S-parameter

equations with respect to the assumed independent parameters. It is assumed that the

functions are analytic over the region of interest with respect to the differentiation variables.

The independent variables are assumed to be |52i|, |5ii|, ^n, ^215 a-nd L. The derivatives

of the S-parameter eqs (2.31) through (2.33) can be found analytically

dSn dZ__de^ dZ dfi*j^ dSu. dV de}^ dT_d^
^

^521 . dZ de'j^ dZ dfi'j^ dS2i . dT dt\ dV dfi'j^ ^
dz ^de'j.diSul dfi},d\Snr dr^de'^d\Su\ df^^^diSuV

' ^'
^

dS2ir dZ dt*p, dZ dfi*ji
^ ,

8821
^

dT de}^
^

dV d^)^
^ _

We can rewrite eq (2.69) - (2.72) as

,dS\i dZ dSu dT de'j^

^ dz de]^ ^ or de^j^'dlS^l^
" V '

A

,dSn dZ dSu dT , dup , .„ ^ , .
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dSndZ_ dSii dV de]^

^ dZ de*j^^ dV de*j^' d\S2^
^

'-

V
'

A

dSudZ_ dSn or dfi%

^ dz dii'j,
^ dv dfi*J d\s^\ ~ °

'

^^•'^^^

^^

V
'

B

^ dZ de% ^ dT de*J 5|5ii|
» V '

c

dS2id^ dS2i dT dfx*^

^ dz dii},
^ ^r^^^ 4s\^ " °

'

^^•'^^^

•>

^
'

D

dS2^dZ_ dS2i dT de*ji

^ dZ deji
^ dT 'd^' d\S2i\

^
^ V

'

D

where we have defined parameters A, B^ C, and D. If we let

we can solve for the derivatives that have been taken with respect to the independent

parameters in eqs (2.73)- (2.75):

de'k exp(j^n)

d\Sn\ [A-^]

31
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df^h C de*j,

dSn DdSr, '

de*R BF-DE
dL ~ BC-AD '

df^R _E-A'-^
dL B

- . 9 1

^'^

9f^R

den

de*R - .15 1

^'^

9f^*R

dSu
(
i + r2z2)(z2-i)

dT (i-r2Z2)2

dSu 2zr(r2 - 1)

dZ (i-r2Z2)2
'

dS2i (:L_r2)(z2r2 + i)

dZ (i-r2Z2)2

dS2i 2zr(z2 -
1)

dT (i-r2Z2)2
'

dT 7o/i/feo/^oi^^

de% 7(7 + 7o/^r)^
'

dT 6|, ar 2707

dz

dL
~ -7exp(-7X)

,

dZ Lfx

de'k 2^
exp( 7L)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)
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Figure 2.18: The derivative of e'^ by |52i| vs L/X^ with e^ = (5.0,0.02), ^^ = (2.0,0.03).

27
exp(-7L) (2.95)

The measurement bounds for S-parameter data are obtained from specifications for a

network analyzer. The dominant uncertainty is in the phase of 5'n as
| Sn |—> 0. The

uncertainty in |52i| is relatively constant until |52i| < -50 dB, when it increases abruptly.

The various derivatives are plotted in figures 2.18 through 2.27.

In figures 2.28 through 2.31 the total uncertainty in e^ and /i^ computed from 5*21

and 5ii is plotted as a function of normalized sample length. For low-loss and high-loss

materials at 3 GHz with various values of e^ and the guided wavelength in the material

given by

Am
27r

a;
2(vVi+?^^+£0,,/ _ f

27rv
2

^* V Ae )

(2.96)

In figures 2.28 through 2.31 the error due to the gap correction is not included, nor

are there uncertainties included for connector repeatability or flange bolt torquing. The
maximum uncertainty for low-loss materials occurs at multiples of one-half wavelength.

Generally, we see a decrease in uncertainty as a function of increasing sample length.

Also, the uncertainties in the S-parameters have some frequency dependence with higher

frequencies having larger uncertainties in phase.
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Figure 2.19: The derivative of e^ by ^21 using ^21 vs L/Xm with e^ = (5.0,0.01), /z^

(2.0,0.03).

Figure 2.20: The derivative of e'^ with respect to ^21 using S21 with e^ = (5.0, 0.01), /x^

(2.0,0.03).
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Figure 2.21: The derivative of e'^ with respect to L using S21 with e^ = (5.0,0.01), /ij^

(2.0,0.03).

Figure 2.22: The derivative of e^ with respect to L using S21 with e^ = (5.0,0.01),//^

(2.0,0.03).
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Figure2.23: The derivative of e'^^ with respect to |5n| with e^ = (5.0,0.01),^]^ = (2.0,0.03).

Xm

Figure 2.24: The derivative of e'^ with respect to |5ii| with ej^ = (5.0,0.01),//^ = (2.0,0.03).
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Figure 2.27: The derivative of e'^ with respect to L using Su with e^ = (5.0, 0.01),//^ =

(2.0,0.03).
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Figure 2.28: The relative uncertainty in e';^(c<;) for a low-loss material as a function of

normalized length, with /^|j = (2,0.05), e^ = (10,0.05) and (5,0.05).
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Figure 2.29: The relative uncertainty in fJ-'nii^) for a low-loss material as a function of

normalized length, with ^^ = (2,0.05), e^ = (10,0.05) and (5,0.05).

0.080

0.008,

1 I r , —^ ^
.

- -

- -

- -

- -

- -

/

/^ «; = (10.0.5)

^ \ /i; = (2,05)

-

'/
A

_^
^

«; = (5,0.5)w\V.o^ /^;= (2.0.5)

1 1

1 2 3

UK

Figure 2.30: The relative uncertainty in e^((^) for a high-loss material as a function of

normalized length, with /xjj = (2,0.5), e^ = (10,0.5) and (5,0.5).
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Figure 2.32: The real part of the relative permittivity £7^(0;) for a nickel-zinc compound
with uncertainties.
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Figure 2.33: The imaginary part of the relative permittivity e^(u;) for a nickel-zinc com-
pound with uncertainties.
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Figure 2.34: The real part of the relative permeaDiUty //^(u;) for a nickel-zinc compound
with uncertainties.
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Figure 2.35: The imaginary part of the relative permeabihty yu'^(u;) for a nickel-zinc com-
pound with uncertainties.
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In figures 2.32 through 2.35 a measurement of a nickel-zinc ferrite compound is given

with associated uncertainties. Uncertainties increase at high and low frequencies. At

high and low frequency extremes the uncertainties in phase increase. Also, the scale is

logarithmic which distorts the lengths of the error bars.

2.5.2 Two Samples of Differing Lengths

Another method to determine permittivity and permeability is the measurement of two

samples with differing lengths. The advantage of this method is that each sample resonates

at a different frequency and therefore ^n can be appreciable over the entire frequency band.

We assume the S-parameters are functions of Stj{\Smn\t^mrf, Li, L2). The parameters

used for measurements on materials of low to medium loss are

S2U,) = f^^ .
(2.9V)

since it is acceptable down to -40 dB. We assume that the lengths of the samples are Li

and Z/2 = aLi. Due to the two lengths, there are transmission coefficients for each sample

Zi = exp(-7Li)
, (2.98)

Z2 = exp(-a7Li) . (2.99)

The relevant partial derivatives of eqs (2.97) are:

]
+

5521(1) .dZ, d(-R
+

5Zi dl^R

dZ, ^dt*R 51521(1) d^R d 521(1)1

5521(1) dT d^R
+

dv df^h

dT ^de*j. ^l'S'21(l) df^R d 521(1)

= exp(.idi)
I

(2.100)

5521(2) ^ 5^2 de*ji dZ2 5//^ 552i(2) . 5r 5e^ dT d^'k i ^n ^2 101)
5Z2 ^5e^5|52i(i)r5/i|,5152i(i)r dT ^5e^5|52i(i)| 5/x|,5|52i(i)r '^' ^

552i(i|.5Zi _5e^ 5Zi 5/i^ 552i(i) 5r dt)^ dT dn*j^ ^
5Zi ^56^51521(2)1 5/i|,5|52i(2)r dT ^5e^5|52i(2)| 5/i|,5|52i(2)r '^' ^
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dS2i(2)^dZ2 de\ 5^2 dji^^

dZ2 dt*j^d\S2i(2)\ dii)^d\S2i(2)\

dS2i{2) r dT de)^
^

dV dfx*j^

+
dT dc*j^ d\S2i(2)\ dn*jid\S2i{2)\

exp(j^2) . (2.103)

We can rewrite eqs (2.100) through (2.103) as

dS2i(i)dZi dS2i(i) dT _ ^e^

> V ^

, ,
^521(1) az ^521(1) ar a^^

+ Wj7 ;j * + ^r Vv ^]7i r
= exp06'i), 2.104)

. dS2i(2)dZ2 dS2i(2) dV de}^

aZ2 de), dV de),' d\S2,(,)\

,dS2U2) dZ2 dS2U2) dT , 5ur

B2

^521(1)^^1 ^521(1) ^r de}^

5Zi aej, dT de'j,' d\S2ii2)\
' V '

,552in) dZi dS2Ui) 9T , 5ud

aZi a/i^ 5r a^l^' a|52i(2)|
"

V
'

Si
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^521(2) dZ2 5521(2) ^r ^
de*j^

dZ2 de*j^ dV <9e^ d\S2\(2)\
V '

,dS2i(2) dZ2 dS2i(2) dT , 5wr ,.„ ,

+ /y ;. . + ^F^^-Vi 3r/^ = exp0^2
,

2.107

^ V '

S2

where we have defined parameters Aj, Bi, A2^ and B2- Also for the relevant derivatives

with respect to length, we find

dS2i{i)dZi 5521(1) ^r dt*ji

^ dZi dc*j^ dT de*ji ' dL^
•>

^ '

5521(1) aZi 5521(1) dT d^i*j^ 5521(1) aZi , .

^^-^Z^TWr ~^^Wn 5l7 + "5Zr5Z7 " ^ ' ^^'^^^^

5521(2)5^2 5521(2) 5r 5e;^

^ 5Z2 5e^ 5r de*J dL,
V '

A2

5521(2) 5Z2 5521(2) 5r 5//^ 552i(2) 5Z2 _
"^

; 5Z2 5/^1,^ dT d^rJ dL, ^ dZ2^ 5Li
""•

^ ^

We now can solve for the derivatives that have been taken with respect to the indepen-

dent parameters in eqs (2.104) through (2.107)

dt*j^ B2exp{je,)
^2. no)

5|52i(i)| A,B2-B,A2 '

df^h ^ A2 de*j^

5|52i(i)| B2 |52i(i)|

5e^ Biexp(j^2)

(2.111)

(2.112)

5|52i(2)| A2B,-B2A,
'

(2.113)
5//^ Ai 5e^

5|52i(2)| ^1 |'5'21(2)|
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dL^ B1A2-A1B2

dL, Bi

>'21(2)

''21(2)

dS2^.)
^
{\^V'Z}){Z}-\)

dz, [i-vzfy

552i(.) 2Z,r(Z?-l)

5r {x-V'zfY

2

5r e^ 5r
,

2707

(2.114)

(2.115)

^21(1)
3^=J|5.„„|^^^, (2.117)

^=;|5.H.,l3|5f^, (2.118)

^ = ;|5.,,|^^, (2.119)

(2.120)

(2.121)

(2.122)

+
. , \. , (2.123)

dfi'pi Unde'j^ (7 + 7o//)2

_^_^exp(-7L), (2.124)

_ = ^exp(-,L), (2.125)

^ = ^exp(-,L). (2.126)

In figures 2.36 through 2.37, the total uncertainty in e^ and fi*j^ computed from S21 is

plotted as a function of normalized sample length, for low-loss and high-loss materials at 3

GHz with various values of e*j^.

When the length of one sample is twice the length of the other sample, we see instability

at frequencies corresponding to nXm/2. Generally, we see a decrease in uncertainty as a
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Figure 2.36: The relative uncertainty in €/^(u;) for a low-loss material as a function of

normalized length for the case when Li = O.5L2 for two different permittivities.

function of increasing sample length. Also, the uncertainties in the S-parameters show

some frequency dependence. In figure 2.37 the ratio of sample lengths is \/2- In this case

we see greater stabihty over the frequency range than in the case where the range is 0.5.

Resonances in the solutions will occur when L = 77.A,n/2 and aL = mA^/2 simultaneously,

where m is an integer.
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Figure 2.37: The relative uncertainty in e'f^{tj) for a low-loss material as a function of

normalized length for the case when L] = 2Lj for two different permittivities.
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2.6 Uncertainty in Gap Correction

The correction for an air gap between the wall of the sample holder and sample is very-

important for measurements of high permittivity materials. In addition, the uncertainty

in the gap correction is very important for high permittivity materials and may actually

dominant the uncertainties of the measurement. In appendix C the gap correction is worked

out in detail. In this section the uncertainty in the gap correction will be worked out.

2.6.1 Dielectric Materials

Waveguide Gap Uncertainty

The uncertainty due to an air gap between sample and holder can be calculated from the

partial derivatives of e^ with respect to sample thicknesses, d. The relevant derivatives for

waveguide are given by

de'^R
, r

1

dd
-«^6-(6-^)4^J

"^^[&-(&-^)4hP

Coaxial Gap Correction

For coaxial line the relevant derivatives are given by

de' , 1

^^cR _ ^ \ , ^/2 ^2

9^cR ^ _ ,1 J r
1

, _^

(2.127)

dd--'-^S-{h-d)e'^^Y-
^^-'^^^

dR, ''-^R,{Ls - 4^Ii) + '''^^i?2(i^3 - e'^^L.y
'

^^-^^^^

- CfiTTTT T-T-T + ^R-^r h—T^, '
(2-130)

de" 1 L

+ TT^] (2-132)

49



2.6.2 Magnetic Materials

Waveguide Gap Uncertainty

The uncertainty due to an air gap between sample and holder can be calculated from the

partial derivatives of fi}i with respect to gap thicknesses, d. The relevant derivatives for

waveguide are given by

^ = <'-"-'^ (2.133)

'-W
= -""4 f^-'^^)

Coaxial Gap Correction

For coaxial line the relevant derivatives are calculated using

Ki =ln7?2/^i , (2.135)

A'2 = ln/?3//?2
,

'

(2.136)

K3 = \nRjRs, (2.137)

A'4 = ln/?4/7?i
,

(2.138)

foilas lonows

du'rR 1
r /

J'^4 ^^1 A'3,M = Rj<;^-^'-"T. + 7^ + ^ + 7^1 • (2.140)

w: = "-"RM

'

'2.141)
L2 -'1-2^^2

d^^'cR II J<^

OR. - ^<-7^ • ^'-'''^

2.6.3 Higher Order Modes

The field model assumes a single mode of propagation in the sample. Propagation of higher

order modes becomes possible in inhomogeneous samples of high dielectric constant due

to changes in cutoff. Air gaps also play an important role in mode conversion. Generally,

the appearance of higher order modes manifests itself as a sudden dip in |5n|. This dip

is a result of resonance of the excited higher order mode. We can expect point-by-point

50



TR models to break down near higher order mode resonances for materials of high dielec-

tric constant or inhomogeneous samples. Optimized, multi- frequency solution techniques

fare better in this respect. The characteristic of the higher order modes are anomalies in

the scattering matrix at and around resonance. Higher order modes require a coupling

mechanism in order to begin propagating. In waveguide and coaxial line the asymmetry

of the sample promotes higher order mode propagation. In order to minimize the effects

of higher order modes, shorter samples can be used to maintain the electrical length less

than one-half guided wavelength. Also well machined sample are important in suppressing

modes. Higher order modes will not appear if the sample length is less than one-half guided

wavelength of the fundamental mode in the material.

Mode Suppression

It is possible to remove some of the higher order modes by mode filters. This would be

particularly helpful in cylindrical waveguide. One way to do this is to helically wind a fine

wire about the inner surface of the waveguide sample holder, thus eliminating longitudinal

currents and therefore TM modes. Another approach is to insert cuts in the waveguide

walls to minimize current loops around the waveguide.
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Chapter 3

Optimized Solution

3.1 Introduction

As indicated in the previous chapters, various numerical strategies have been employed for

reducing 1-port and 2-port scattering data for both nonmagnetic and magnetic materials.

The vast majority of the work in this area has involved the determination of permittivity

and permeability by the reduction of scattering data frequency by frequency, that is, by the

explicit or implicit solution of a system of nonlinear scattering equations at each frequency

(see [11,33]; as an example of a multifrequency approach see Maze et al.[15]).

What is lacking in the literature are practical, robust, numerical reduction techniques

for more accurate determination of permittivity and permeability in transmission lines.

Reliable broadband permeabihty and permittivity results for low-loss, medium-to-high di-

electric constant materials are hard to obtain with transmission line techniques. Coaxial

line measurements are particularly hard to obtain due to air gap influences and overmod-

ing. Traditional transmission line numerical techniques have difhculties to an extent that

render these techniques of limited use for low-loss materials and for high dielectric constant

materials. Difficulties arise with these methods for magnetic materials in that numerical

singularities can occur at frequencies corresponding to integral multiples of one half wave-

length. These instabilities arise from the fact that for low-loss materials both S21 and 5ii

become equations for the phase velocity, and the permittivity and permeability therefore

enter as a product. These instabilities limit the acquisition of precise broadband dielec-

tric and magnetic results in the neighborhood of a resonance. Another problem pertains

to high dielectric constant materials. High dielectric constant materials are usually hard

to measure since the theoretical models are limited to a single, fundamental mode and

the data contain both fundamental and higher order mode responses. Further, point-by-

point reduction techniques for magnetic materials contain large random uncertainties due
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to the propagation of uncertainties through the equations. For nonmagnetic materials the

propagation of errors is less of a problem.

In our search for better reduction techniques we have found that nonlinear optimization,

which minimizes the squared error, are a viable alternative solution. Optimization-based

data reduction has an advantage over point-by-point schemes in that correlations are al-

lowed between frequency measurements. In nonlinear regression, if deemed appropriate, it

is not necessary to even include Su data in the constraint equations. Another advantage

of regression is that constraints such as causality and positivity can be incorporated into

the solution.

This chapter presents a method for obtaining complex permittivity and permeability

spectra from scattering parameter data on isotropic, homogeneous materials using nonlin-

ear regression. We solve the scattering equations in a nonlinear least-squares sense with

a regression algorithm over the entire frequency measurement range. The complex per-

mittivity and permeability are obtained by determining estimates for the coefhcients of

a truncated Laurent series expansion for these parameters consistent with linearity and

causality constraints. The procedure has been successfully used for accurate permittivity

and permeability characterization of a number of different samples where point-by-point

schemes have proven to be inadequate. The details of the numerical method have been

presented in [36]. The problem applied to microwave measurements is presented in this

chapter. The method can easily be extended to the analysis of multi-mode problems and the

determination of experimental systematic unceitainty. The novel features of our algorithm

are:

• The algorithm finds a ''best fit" to the 2-port scattering equations using a nonlinear

least-squares solution for tlie permittivity and permeability.

• The algorithm uses fitting functions that satisfy causality requirements.

•

•

The numerical technique allows slight variations in the sample and reference position

lengths to compensate for measmement errors and sample imperfections.

The method allows the de-emphasis of frecpiency points with large phase uncertainty.

• Statistics related to the solution parameters are automatically generated.

• The technique can force positivity of the fit functions.

• It is possible to determine both complex permittivity and permeability from measure-

ments of a single scattering parameter on a 1-port or a 2-port taken over a frequency

band.
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3.2 Model for Permeability and Permittivity

In the optimization procedure the S-parameter eqs (2.31) through (2.33) for single-mode

problems, or eqs (2.21) through (2.24) for problems with higher order modes are solved for

the material parameters by the optimization routine. For higher order mode problems the

matrix elements Aji^ in eqs (2.21) through (2.24), which corresponds to the voltage in each

mode, can be determined by the optimization routine. However, we usually consider only

the primary mode.

The unknown quantities are Li, Z/2, L, A^, and /i/^(cj) and e/^(i^). Some of these parame-

ters, such as the lengths and cutoff wavelength, are known accurately within measurement

uncertainty. Obviously the parameters of interest cannot be allowed to vary into non-

physical realms. The problem is to use an optimization routine to determine the model

parameters that are consistent with the scattering data and the physics of the problem.

3.2.1 Relaxation Phenomena in the Complex Plane

The numerical model requires an explicit functional form foi' /zj^ and ej:j to reproduce the

four S-parameters consistent with the data, for all the ii frequency observations.

The general form for ^^(cj) and e*j^{oj) should be causal see Appendix C; that is, it must

satisfy a Kramers-Kronig relation. If the zeros and poles of a complex function are known

over the complex plane, the function itself is known.

The Laplace transform of the real, time-dependent permittivity satisfies

oo

e(r,5) = / t{r,t)e-'\li . (3.1)
JO

For stability, there can be no poles in the right-half side of the 5-plane. Since e{t) is real

it can be shown that the poles and zeros are confined to the negative real 5-axis of the

s-plane, and the poles which are off the real s- axis must occur in complex conjugate pairs

[37].

Assuming linear response a constitutive relationship in an isotropic medium between

the displacement and electric fields is

D{x,t) = toE{xJ)^t^ r G[T)E[xA-T)dT . (3.2)

With this definition the permittivity is

/•oc

e*j^[u) = ]+ G{T)e-^-'dT . (3.3)

The response function G'(r) for an incident electric field can sometimes be represented as

a series of damped sinusoids of the form
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Git) = ^/l„exp(-(a„ + j6„)0 (3.4)

We assume that the material parameters can be adequately modeled by a series of sim-

ple poles. The terms e~""' relate to relaxation and the terms e"-'''"' relate to resonant

phenomena. Since the Laplace transform of eq (3.4) is

G{s) = J2Ar,
1

S -\- an -\- jbn
(3.5)

for stability (no increasing time domain exponentials) there can be no poles or zeros in the

right half-side of the 5-plane [37], [38]. In order to maintain the reality of e(s), any poles

off the imaginary axis in the lu-plane must be conjugate poles of the form lo = ja-^h where

a and h are real, positive numbers as indicated in figure 3.1. These conjugate poles are of

the form —^ T + ^ T' (3-6)
s -\- a -\- JO s -\- a — JO

and are related to resonant phenomena.

We assume that the permittivity can be expressed as

. n U'-^ + Pn) n

1

+
1

JLV + (In + jbn JiO + (In - jhn
(3.7)

Here Zn and pn are the zeros and poles due to damped exponentials respectively, (a„ ikjhn)

are the complex conjugate poles, and C is a complex constant.
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Figure 3.1: Poles (Xj and zeros (O) in the complex s-plane and conjugate poles off the real

s-axis.

For more complicated polarization phenomena other relations for permittivity could be

used. For a continuous distribution of relaxation times

Jo 1 + LO'^T'^

e" = [e(0) - e^]
cjTy(r)

di

(3.8)

(3.9)
/o l+u;2r2

where y{T) is a distribution function. Various expressions for y yield various relations for

permittivity. Presently we use eqs (3.11) and (3.12) in our calculations. The Havriliak-

Negami model for materials assumes a single nonsimple pole on the negative, real s-plane

axis:

-R C +
A

(.3.10)
(l + [j|BH'-)'3

'

where (3 and a are in the interval [0, I] and B is real. Limiting cases of this model are

(1) the Cole-Davidson model when a = 0; this model works well for some liquids and

solid polymers, (2) the Cole-Cole model when /i = 1; this model has been used to describe

relaxation behavior of amorphous solids and many liquids. A simple Debye model {13 = \

and c<; = 1) is very limited and works well only for materials that contain a single relaxation

time in the frequency range of interest.

Heterogeneous materials and polymers usually have a very broad relaxation spectrum

and as such have a response of the form of a powei' law such as s'"'. This behavior can be

obtained from the Cole-Davidson model when \B\lj >> 1.

In our present algorithm we assume a more general model than the single Debye relax-

ation model a truncated Laurent series is used for /i^(u;) and e/^(cj). This expansion has
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generally yielded excellent results

fi'j,{u) = Ao+
'

+ I , (3.11)

e},{Lo) = Do+ . ^ ")'
I

+ .. ^ f'l ., , (3.12)

where Bi are real numbers. The pole information yields constraints on the constants used

in the Laurent series expansion. For example, it is required that Bi is a real number.

For a typical measurement on a network analyzer there may be 400 frequency points and

at each point all four scattering parameters are taken. The problem is overdetermined since

for n frequency measurements, if we assume known lengths, there are Sn real equations

for the unknown quantities in the Laurent series. This over determination can be used

at frequencies in the gigahertz range to find corrections to sample position and cut off

wavelength.

The approach for determining the complex parameters Aj, Bj is to minimize the sum
of the squares of the differences between the predicted and observed S-parameters,

mm E4-4II , (3-13)

where the measured vectors are denoted by S^j = {Sij{L0-i),Sij{uj2), , Sij{uJn)) and where

Pij is the predicted vector. Hence, the problem consists of finding the norm solution to

these equations.

3.3 Numerical Technique

3.3.1 Algorithm

The solution currently uses a software routine called orthogonal distance regression pack

ODRPACK [39] developed at the National Institute of Standards and Technology. This

routine is an extended form of the Levenberg-Marquardt approach. This procedure allows

for both ordinary nonlinear least-squares, in which the uncertainties are assumed to be

only in the dependent variable, and, orthogonal distance regression, where the uncertain-

ties appear in both dependent and independent variables. First-order derivatives for the

Jacobian matrices can be numerically approximated (finite difference approximation) or

can be user-supplied analytical derivatives. The procedure performs automatic scaling of

the variables if necessary, as well as determining the accuracy of the model in terms of ma-

chine precision. The trust region approach enables the procedure to adaptively determine

the region in which the linear approximation adequately represents the nonlinear model.
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Iterations are stopped by ODRPACK when any one of three criteria are met. These

criteria are: (1) the difference between observed and predicted values is small, (2) the

convergence to a predicted value is sufficiently small, and (3) a specified fimit on the

number of iterations has been reached.

Initial guesses for e^ and /i|j are obtained from explicit solutions of Stuchly [7] or Weir

[6]. The most significant input parameters for modeling permittivity and permeability are

the initial values for Ai and Bi. Sensitivity to the initial solution for these parameters is

discussed below. All additional parameters are initialized to 0.

When measurements of length and scattering parameters of a sample are taken, there

are systematic uncertainties.

An orthogonal distance regression model provides the modeler with the additional abil-

ity to assume that the independent variable, in this case, frequency, may contain some

uncertainty as well. Allowances for these types of uncertainty can, in some cases, greatly

improve the approximation. For this model and the samples tested, the errors in the in-

dependent variables are sufficiently small that an ordinary least-squares approximation is

adequate.

Model parameters such as sample length, sample position in the waveguide, and cutoff

wavelength could contain a systematic uncertainty. These parameters were allowed to

vary over a limited region, and the optimization procedure chooses optimum values for the

parameter. This procedure assumes that systematic measurement errors can be detected by

the routine. For example, inserting a sample into a sample holder introduces an uncertainty

in the sample position Li, so we include with Lj an additional optimization parameter fin

in Ri to account for positioning uncertainties,

Rx =exp(-7o[Ii+/?Li]) . (3.14)

Also for R2

i?2=exp(-7,[L2 + M) . (3.15)

The routine requires that the length corrections be within a prescribed range which repre-

sents physical measurement uncertainty. The length of the sample L is completely deter-

mined by

L = La^r ' {Ll + ^2 + /?Ll + /3l2 ) (3.16)

and is also implicitly parameterized by the values of /Sn and fii2.

Due to inaccuracies in machining of the sample holder there is an uncertainty in the

cutoff wavelength of the guide. We account for this by the introduction of an additional

optimization parameter Ac —> A^-f/^A- We constrain this variation to be within measurement

accuracy.

The model can use various combinations of the available data to estimate both the

relative permeability and permittivity from scattering data. For example, ^21 or Sn alone
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Figure 3.2: Predicted (solid line) and observed (dots) parameters for a barium titanate

compound (a) and cross-linked polystyrene in (b).

can be used to obtain both permeability and permittivity. This can be contrasted with

point-by-point techniques where both ^21 and 5ii are required. Also, magnitude alone

can similarly be used. Magnitude data have the advantage of requiring no reference plane

rotation.

The technique works well for short-circuit line measurements. For short-circuit lines it

is possible with this technique to obtain both the complex permittivity and permeability

from a single broadband measurement on one sample at a single position in the line.

3.3.2 Numerical Results

The model predictions are formed by inserting eqs(.3.11) and (3.12) into (2.31) and (2.33)

or (4.7) and then finding the unknown coefficients in the equations for e^ and //^ that

produces the least square error. In figure 3.2 the experimental results are given for a

barium titanate compound and cross-linked polystyrene. These samples required 21 and

40 iterations respectively.

The difference between the predicted S-parameter and the observed values reveals the

presence of systematic uncertainty, as shown in figure 3.3, in the automatic network analyzer

(ANA). Additional tests revealed the source of the systematic error did not appear to be

related to the material tested in the waveguide. In fact, uncertainties produced for the cross-

linked polystyrene sample closely resemble the S-parameter data for an empty waveguide;
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Figure 3.3: Systematic uncertainty as indicated by the residual plot (the difference between

the observed and predicted values) for the case on an empty waveguide. The solid line is

at residual.

we conclude therefore that much of the systematic error is due to calibration uncertainty

and joint losses at connector interfaces. For the barium titanate compound sample there

is both the fundamental mode response and smaller resonances related to higher-order

modes. As shown in figure C.l, the model interpolates a fundamental mode. This raises

the possibility of extending the model to incorporate higher-order modes by extending the

theoretical formulation of the problem.

It is easy to move the sample in the holder inadvertently when connecting the sample

holder to the port cables. Positioning errors of the sample in the air line can result in large

error in computed material parameters. The numerical algorithm can adjust for positioning

errors by adjusting L^ or L2 slightly. The effects of positioning error can be seen in figure

3.4.

In this example the routine predicted that the position of the sample was off by 0.8

mm.
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a glass sample (a) with positioning error for Li and (b) the solution when the algorithm

adjusts for the positioning error.

3 4 Permittivity and Permeability

3.4.1 Measurements

In this section we present the measured and calculated permittivity and permeabihty.

Cross-hnked polystyrene and the barium titanate compound are nonmagnetic and therefore

/z^ = 1 . Comparison of the optimized solution to a point-by-point solution is shown in figure

3.5. In figures 3.6 through 3.9 results for four samples are given.

As a check we made an independent measurement of the barium titanate compound in

an X-band cavity where the results were e'j^ = 269 at 10 Ghz. This result can be compared

to the results in figure 3.6. Finally a result of another barium titanate compound is given

below.

3.4.2 Robustness of the Procedure

Since the transmission coefficient contains a periodic component, there is more than one

solution to the system of equations. Each root of the equation has a neighborhood around

which convergence will occur for initial guesses in that region. The robustness of a mathe-

matical procedure is related to how well the algorithm treats the neighborhood around the
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(b), point-by-point method (. . . .), optimized solution ( ).

62



ErS-

9 10 11 12

Frequency (GHz)

9 10 11 12

Frequency (GHz)

13

8 9 10 11 12 13

Frequency (GHz)

8 9 10 11 12 13

Frequency (GHz)

Figure 3.7: Permittivity and permeability for a loaded-polymer, point-by-point method (.

. . .) , optimized solution ( ).

. GC

9 10 11

Frequency (GHz)

12

Figure 3.8: Real part of permittivity for a barium titanate compound (o o o) cavity

(. . .) optimized solution.

63



0.01

0.009 —

0.008 -

4^
c
o
O)
c
2

0.007

0.006 -

52

0.005 -

(/)

o 0.004 -

0.003

0.002

0.001

9 10 11

Frequency (GHz)

Figure 3.9: Imaginary part of permittivity for a barium titanate compound

and ..." optimized solution.

o o o -cavity

correct root. The existence of alternative optima in the mathematical model requires an

accurate initial guess in order to converge to the correct solution. Typically convergence

occurs after about seven iterations. The use of constraints and the large number of equa-

tions enhances the uniqueness of the solution by reducing the dimensions of the solution

space.

In point-by-point methods the correct solution is selected from the infinity of possible

roots by calculating the slope of the phase curve and comparing the measured and calculated

group delays. A group delay constraint is also used as a way of determining the physical

solution.

The numerical effectiveness of the entire permeability and permittivity calculation de-

pends on the robustness of the ODRPACK procedure and, more significantly, the robustness

of the mathematical model. For the samples used in this study, the robustness of the proce-

dure depended on the sample. For the materials with low dielectric constant the procedure

readily determined a solution for a variety of input values with a large radius of conver-

gence. For materials with higher dielectric constant, the procedure often converged quickly,

although the existence of alternative local optima in the mathematical model required some

testing to make sure that the converged root was the correct root.
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3.5 Discussion

An optimization approach to the solution of the scattering equations appears to be a viable

alternative to point-by-point techniques. The technique allows a stable solution for a broad

range of frequencies. The method works particularly well for short-circuit line measure-

ments. Unlike the point-by-point short-circuit method which requires measurements on

two samples or in two positions, the optimized solution can obtain complex permittivity

and permeabihty on a single sample at a single position.

The reflection [Sn) data are usually of lesser quality than the transmission data (52i)

for low-loss, low- permittivity materials. Therefore Su need not be included in the solution

for low-loss materials. However, reflection data Su and ^22 are very useful in determining

the position of the sample in the air line as indicated in figure 3.7. The technique was

successful for many isotropic magnetic and relatively high dielectric constant materials.

The addition of constraints to the solution is powerful in that it further limits the possible

solution range of the system of equations and enhances the uniqueness of the solution. The
use of analytic functions for the expansion functions allows a correlation between the real

and imaginary parts of the permittivity and permeability. The results shown in figures

3.5 through 3.6 indicate that the method can be used to reduce scattering data of fairly

high dielectric constant materials. In fact, in some cases the optimized procedure yields

solutions when the point-by-point technique fails completely.

Why does an optimization approach, in many cases, reliably reduce data on higher

dielectric constant materials {e'j^ > 20), whereas point-by-point techniques generally fail?

Scattering data for higher dielectric constant materials contain responses to both primary

mode and higher order modes. As indicated in figure 3.2 for the barium titanate compound,

the optimization routine selects the primary mode data and places less weight on the higher

mode resonance data.

The optimized technique can be used to treat problems where sample lengths, sample

holder lengths, and sample positions are not known to high accuracy. Permittivity and

permeability can be found from the equations without specifying either sample position or

sample length. This result could find apphcation to high-temperature measurements.

Higher-order modes propagate in samples when two conditions are met. The frequencies

must be above cutoff in the sample, and there must be inhomogeneities or asymmetries in

the sample to excite the higher order modes. Higher-order modes can be incorporated

into this type of model by letting the optimization routine select the power in each mode.

Higher-order mode models are a subject of our current research.
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Chapter 4

Short-Circuit Line Methods

4.1 Theory

In this section we review the mathematical formahsm for short-circuit measurements. We
consider a measurement of the reflection coefficient (5ii for a shorted two-port) as a function

of frequency. We begin with a mathematical analysis of the electromagnetic fields in the

sample. The details of the field model have been presented previously [26] and only the

most essential details will be presented here.

Assumptions on the electric fields in regions I, II, and III shown in figure 4.1 may be

made as follows: (1) only the dominant mode is present in the waveguide; (2) the materials

are homogeneous and isotropic; (3) only transverse electric fields are present. Under these

conditions the electric fields in these regions may be expressed as:

Ei = exp(-7o2) + 5ii exp(7o2)
, (4.1)

En = C-iexpi-jz) -{- Csexpi^z) , (4.2)

Em = C4exp(-7o(~- - L)) + C5exp(7o(,^ - L)) . (4.3)

We wish to determine the coefficients in eqs (4.1) through (4.3) by imposing boundary

conditions on the system of equations. The boundary conditions are:

• Tangential component of the electric field is continuous at sample interfaces.

• Tangential component of the magnetic field is continuous at sample interfaces.

• The electric field is null at the short-circuit position (perfect reflect).
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x = o X = L

Figure 4.1: A transmission line with a short-circuit termination.

Expressions for the coefficients in eqs (4.1) through (4.3) are presented in reference [26].

Matching boundary conditions of the field equations at the interface and the reflect

yields an equation for the permittivity and permeability in terms of the reflection coefficient,

P — S\i = Cj. With the sample end face located a distance AL from the short,

Su P =

where

-2;g^+[((5+l) + ((^- l)/?^]tanh7L

2;5+[((5 + l)-((^-l)/?2]tanh7L

/^
=

lo^^

anc

(^ = exp(-27„AL) .

In terms of hyperbolic functions

tanh7Z/ + /?tanh7oAL — /?(1 -f /?tanh7L tanh7oAL^
Su =

tanh7L + /?tanh7oAL + /?(1 + /9 tanh 7L tanh7oAI)

(4.4)

(4.5)

(4.6)

(4.7)

S\\ for a matched two-port can be obtained as a special case from eq (4.4) by letting ^ -^ 0.

Although in the derivation of eq (4.7) it is assumed that the sample plane coincides

with the measurement calibration plane, this is not the case in general; however, we can

transform the reference plane position by a simple procedure. To accomplish this, we write

the most general expression for the reflection coefficient as
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'S'll(t7-ans) — RiSn , (4-8)

where Smrans is the reflection coefficient at the cahbration reference plane position,

/?i =exp(-7,Li)
, (4.9)

and Li is the distance from the cahbration plane to the sample front face. Equation (4.8)

transforms the reflection coefficient from the calibration plane to the plane of sample front

face. It is of interest in many applications to eliminate the distance Li from eq (4.8). This

can be accomplished by measuring 5*11 of the empty sample holder,

Sn(eTnpty) = - exp{-2-fo[Li + AL + L]) = -exp{-2foLa^r) , (4-10)

and therefore the ratio of the filled to empty holder reflection coefficient is

|^Hl!:^ = _exp(27o[AL + L])5n • (4.11)

If both the permeability and the permittivity are required, measurement data for two

different short-circuit positions are needed. Note that standing waves can be formed in the

region between the sample and short-circuit and between the calibration plane and sample

front-face. Therefore certain frequencies, depending on sample length and the other lengths,

will give better results for permittivity and other frequencies better results for permeability.

The position of the short-circuit is a low electric field and high magnetic field region and

a position A/4 from the short- circuit is a high electric field and low magnetic field region.

Therefore as frequency permits, for permittivity measurements the sample should be moved

away from the short-circuit termination. Permeability in isolation can be obtained with

the sample at the short-circuit position. Of course when an ANA is used measurements

will be taken at many combinations of field strengths and therefore the uncertainty will

vary with frequency.

4.1.1 Two Samples of Different Lengths

It is possible to solve for the permeability and permittivity when the scattering parameters

with samples of two differing lengths are measured. To see this, let us consider two samples,

one of length L and one of length aL as indicated in figure 4.2.

Then for independent measurements on the two samples we have

and
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Port1

Short-Circuit

Sample 2

Figure 4.2: A transmission line with a short-circuit termination in two sample magnetic

measurements.

Z = exp(-7l) • (4.13)

The reflection coefficient V is given by eq (2.37). The scattering l-port parameter is given

by
Y _ 72a

'5'll(2) =
J _ p^2a •

^^-^^^

Therefore we can solve for Z in eq (4.12),

$'ii(i) ~ r

5'ii(i)r -

1

(4.15)

and substitute it into eq (4.14) to obtain

r- 5ii(i)-r

5n(i)r-l

a

'->11(2)
-
1-r 5ii(i)-r

5ii(i)r-i

1
°'

(4.16)

Equation (4.16) is solved iteratively for T and then Z is found from eq (4.15). The permit-

tivity and permeability can then be obtained, if we define

1
r

1 w ^12
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Figure 4.3: A transmission line with a short-circuit termination for two-position measure-

ments.

€/?
=

. 1

a!

1

.

A2-

f^R

1 + r

(i-HAx/A-^

(4.18)

(4.19)

where Aq is the free-space wavelength and A^ is the cutoff wavelength. Equation (4.17)

has an infinite number of roots for magnetic materials because the logarithm of a complex

number is multi-valued. In order to pick out the correct root it is necessary to compare

the measured to the calculated group delay.

4.1.2 Single Sample at Two Short- Circuit Positions

It is possible to obtain an exphcit solution to eq (4.4) when measurements at two different

short-circuit positions are taken. The explicit solution is obtained by solving eq (4.4) at a

given short-circuit position (position 1) for tanh7L and then substituting this expression

into eq (4.4) at another short-circuit position (position 2) as indicated in figure 4.3.

For two different short-circuit positions at the same frequency we obtain pi and p2 for

positions 1 and 2:
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^' -2/? + [(<5i
- 1 )/^2 _ (^, + 1 )] tanh 7L

'

^ ^ ^

^ 2/?<S2-P2 + l) + (<^2-lOTtanh7L
^2 _2/^ + [(^2-l)^'-(<^2 + l)]tanh7L ' ^ ^

where (5i,^2 denote the phases calculated from eq (4.6) for AZ/i,AZ/2 respectively. These

equations yield

tanh7L = — ^^ '^ '

, (4.22)^

/?2(/>i + l)(^i-l) + (l-/>i)(^i + l)
'

^ ^

7 = — tanh"
2^(^i + P + 2n7rj

, (4.23)
L/^2(/«i + l)('^i-l) + (l-pi)((5i + l)

where n is an integer. Since the arctangent is multi- valued, the correct value of n is

determined from the group delay arguments given in section 3.2.1. Also

n2 ^ ^liHPl - P2) + P\P2 + 1 - 2/)2) - {^2{P\{P2 - 2) + 1 ) + ^2 - Pi)
,^ ^^.

^liHPl - P2) + Plp2-\-\ +2/>2)-(<^2(/>l(/>2+2) + l)+/92-/5l) '

Once ^ is known, eqs(4.22) and (4.24) can be used to find permittivity and permeability.

4.2 Measurements

In the SCL technique the scattering parameter Su is measured broadband, with the sample

at a given position in the sample holder. The distance from the sample to the short-circuit

termination must be known to a high degree of accuracy. If both permeability and the

permittivity are required then the sample must be moved in the line and the S-parameters

again taken.

Depending on the position of the short-circuit, the sample may be immersed in either a

region of high electric field or high magnetic field. A strong electric field is advantageous for

permittivity determination, whereas a strong magnetic field is advantageous for permeabil-

ity determination. Generally, the sample end will be in a region of high magnetic field when

the sample is in closest physical contact with the short. It is possible to take advantage

of the fluctuating electric and magnetic field distributions when performing permittivity

and permeability measurements. When taking broadband measurements on an ANA it is

possible to predict when the sample is immersed in the various field strengths. Then one

can select the measurements to be used for permittivity and permeability calculations [35].

Measurements were made on an ANA for various samples. Using eq (4.4) we obtain

the permittivity and permeability which are shown in figures 4.4 and 4.5.
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Figure 4.5: /x^ without gap correction using SCL for a loaded polymer mixture.
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4.3 Uncertainty of Short- Circuit Line Measurements

For magnetic materials it is necessary to make two independent measurements at a given

frequency. Independent measurements can be obtained either by measuring samples of two

different lengths or by taking measurements of a given sample at two locations in the line.

The special case of measurement of two samples of varying lengths (Li, L2) can be obtained

from the solution presented below by substituting L —+ Li, 70 —> 7 and AL -^ L2 — Li.

The uncertainty involved in two position measurements is explored in this section. The
uncertainty incurred with the equations expounded in this report is estimated. The sources

of uncertainty in the SCL measurement include

• Uncertainties in measurements of the magnitude and phase of the scattering param-

eters.

• Gaps between the sample and sample holder.

• Dimensional variations in the sample holder.

• Uncertainty in sample length.

• Short-circuit and line losses and connector mismatch.

• Uncertainty in positions of the reference plane and sample in holder.

Adjustment for errors due to gaps around the sample is obtained from equations avail-

able in the literature [33,34,35]. The formulas given in the hterature generally under-correct

for the real part of the permittivity and over-correct for the imaginary part of the permit-

tivity. All measurements of permittivity are assumed to have been corrected for air gaps

around the sample before the following uncertainty analysis is applied.

In order to evaluate the uncertainty introduced by the measured scattering parameters,

we assume that a differential uncertainty analysis is applicable. This assumption implies

that uncertainties are of small enough magnitude so that a local Taylor series can be applied.

We assume that a Taylor series approximates deviations of the function from a given point.

We assume that the worst case uncertainty due to the S-parameters and sample lengths

can be written

A4 1 dt'n

A6^_ 1

11

Al^nl + U^A^n + ^A^ + h^A^ , (4.25)

'R
^l^nlV+I^A^n) +r-^AL] ^ [^Ad] , (4.26)

73



where A^ is the uncertainty in the phase of the scattering parameter, A|5ii| is the un-

certainty in the magnitude of the scattering parameter, Ac/ is the uncertainty in the air

gap around the sample, and AL is the uncertainty in the sample length. The gap correc-

tion uncertainty is given in [26]. The uncertainties used for the S-parameters depend on

the specific ANA used for the measurements. In general uncertainties due to flange bolt

torquing and connector repeatability must be added to these uncertainties.

Let us define the variables

a = tanh7L
, (4.27)

6 = tanh7oAL. (4.28)

We wish to obtain explicit relations for the derivatives of e^ and /x^ with respect to inde-

pendent variables |5'ii(,)| and ^,, i = 1,2. We define 5ii(i) as the reflection at short position

1 and 5ii{2) as the reflection at short position 2. Next define

^ _ tanh 7L + /g tanh 70AL - i3{l -\- /3 tanh 7L tanh 70AL) _ ^ _ ^
. 29)

•^ ~ tanh7L + /3 tanh7oAL -1-/9(1 -I-/? tanh7Ltanh7oAL ) "~ '
^'

^

We assume the following as independent variables 5ii(z), i = 1, 2, L, AL, and d. Derivatives

of eq (4.29) with respect to the independent variables can be found analytically. By the

chain rule we have

rdldadj_ df 3/3 d^)^ r^^^ a/ djd de*j^

^ „ ' V ^ '

ai a2

This equation is evaluated at position one.

rdldadj_ df 8(3 dfi*ji r^^^ a/ d/3 de}^

V
^ ' s ^ '

This equation is evaluated at position two. The four derivatives can be written

^^ J/""
I

+ «2^||^ = exp{jerr,)S,,r,
, (4.32)

^i j/""
I

+ fe2 .|f^ ,

= eM30m)62,m , (4.33)

where Si^rn is the Kronecker delta function.
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At the first position the derivatives with respect to length are

.dldadj_did^ dji^ didad^ didi ^ , ^^^. .,.,.

ha (97 d^^ji d/3 dti*ji^^ dL ha d^ c^e^ 3(3 5e^^" dL OadL '
^ '

or

dup de}> df da ^
, ^

and for the second short-circuit termination position

, dup ,
dcp df da ^

, ^

The derivatives with respect to the distance from the sample back face to the short-circuit

termination can similarly be calculated

hadjdfi*ji d(3 di^^ji^"^ dAL had-fde}, d^df'J'^dAL db dAL ' ^
'

diin dt), df db _
""'dAL^'^'dAL^MdAL-^' ^^-^^^

and for the second short-circuit position

, du*r> , de*ri df db ^ /, ^^x

The derivatives can be calculated explicitly to yield

da

1 - (3^Unh-foAL

X

tanh -fL-\- 13 tanh 70AL -\- l3{l -\- (3 tanh 7L tanh 70AL

tanh7L -|- ^tanh7oAL -\- P{1 -\- ^ tanh 7// tanh7o/>)

(tanh iL + 13 tanh 70AI + /?(1 -f /? tanh 7L tanh 7oAL)2

(1 +;5'tanh7oAL)
,

(4.40)

db

f3- ^H&nh-fL
)

tanh jL-{- 13 tanh 70AL -\- (3{l -\- (3 tanh 7L tanh 70AL

tanh7L 4- /?tanh 70AL -|- /?(1 + y5 tanh 7L tanh 70Z/)

(tanh 7L + /3 tanh 7oAI - /?(1 +/? tanh 7L tanh 7oAL)2

{f3-^f3Ha,nh-fL), (4.41)
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tanh7oAL — 1 — 2/?tanh7Ltanh7oL

tanh7l + /5tanh7oAL + /?(1 + /5tanh7L tanh7oAL'^

tanh7iy + /5 tanh7oAL + /5(1 + ^tdLnhjL tanh7oL)

(tanh7L + ^tanh7oAL - /3(1 + ^ tanh7L tanh7oAL)2

(tanh 7oAL + 1+2/? tanh 7L tanh 70AL) . (4.42)

The following derivatives will be needed in the forthcoming analysis

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)
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Figure 4.6: A plot of the derivative of e^ with respect to l^nl as a function of the distance

from the short-circuit termination for the case of thin samples L <C A^.
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^l'S'ii(i)|
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^^i'k

d\Su(i)\
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'
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Q2 ^4
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exp{j92)ai
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In figures 4.6 and 4.7 de*fi/d\Sii\ is plotted as a function of the distance from the short

circuit termination. We see that in the case of electrically thin samples the minimum
uncertainty occurs when the second sample measurement is at Ao/4 from the short-circuit

termination. As shown in figure 4.7, this is not the case for samples that are not electrically

thin.
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from the short-circuit termination for the case of long samples L « A^.
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Chapter 5

Discussion

We have presented an overview of the theory and the measurements for both the TR
method and the SCL method for dielectric and magnetic materials. In addition, relevant

uncertainty analyses have been developed. Equations were presented for TR and SCL
measurements that are reference plane invariant. These equations can be solved either by

iteration or explicitly.

There are two common problems in the data reduction techniques for transmission

line measurements. These problems are the existence of higher mode resonances and the

problem that for low- loss materials the solution of the equations become ill-conditioned at

integral multiples of one-half wavelength in the sample. The one-half wavelength instability

occurs because the phase of Sn contains a large uncertainty when |5ii| -^ and also

because the equations in this limit yield only the phase velocity. For dielectric and magnetic

measurements, the uncertainty is a function of the sample length. In general for low-

loss materials, samples long in relation to wavelength give more accurate results, however

overmodes may be produced. Thus for broadband measurements of low-loss low-dielectric

materials, it is preferable to use longer samples. However, with lossy materials, very long

samples result in only front face reflection information and the results have a relatively large

uncertainty. For relatively lossy materials, sample lengths on the order of one attenuation

length are optimum. Longer samples allow the propagation of higher order modes, and

therefore higher mode responses will be contained in measured scattering data. However,

the uncertainty in the spectrum between over-moded resonance regions will be lower for

longer samples than for electrically short samples.

For thicker samples the problem is more complicated and a knowledge of the uncertainty

analysis is important for interpreting the results. For permeability measurements in a short-

circuit line the numerical reduction procedure becomes divergent when there is an integral

multiple of one-half wavelength in the sample. For TR and SCL measurements we can

summarize our conclusions as follows
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• For SCL measurements, length of samples should be such that |5n| > —20 dB.

• The one-sample techniques appear to allow a better reduction of the scattering data.

• The optimized solution and the reference plane invariant solution appear to be the

most accurate and stable methods. However, local minima have to be avoided.

• The short-circuit line is a simple way to obtain permittivity and permeability simul-

taneously. For low-loss materials it does suffer from numerical instabilities.

• In SCL permittivity measurements, minimum uncertainty is obtained when the sam-

ple is A/4 from the short. This is only true for electrically thin samples.

• Minimum uncertainty magnetic measurements can be made for single frequency mea-

surements by taking one measurement at a maximum electric field position and an-

other measurement at a maximum magnetic field position.

The various TR and SCL techniques are compared in table 5.1 and 5.2.
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Table 5.1: Dielectric and magnetic TR measurement techniques compared.

Technique Applicability Strong Points Weak Points

Pull 2-port, one sample Dielectric Requires one sample

Full 2-port, one sample Magnetic Requires one sample Unstable at nAm/2

NRW Technique Magnetic Simple Solution Unstable at nAm/2

Two-Position Technique Magnetic Doesn't exist for TR techniques

Two sample technique Magnetic Stable over all frequencies Requires two samples

Multi-point techniques Magnetic Very stable non-global minima

Table 5.2: Dielectric and magnetic SCL measurement techniques compared.

Technique Applicabihty Strong Points Weak Points

One-position Technique Dielectric Stable
—

Two-Position Technique Magnetic Requires only one sample Unstable at nAm/2

Two sample technique Magnetic Stable over all frequencies Requires two samples

Multi-point techniques Magnetic Very stable Alternative minima
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Chapter 7

Appendices

Appendix A

Magnetism in Matter

A.l Description of Magnetic Phenomena

The origin of magnetism is related to the electrostatic coulomb repulsion between electrons

and is intimately related to the spin and orbital angular momentum of electrons, nuclei,

and other charged particles. Stern and Gerlach proved the existence of discrete magnetic

moments by observing the deflection of silver atoms passing through a spatially varying

magnetic field. The quantum mechanical relation between magnetic moment and angular

momentum of an electron is rhj — —g-^J, where g is the Lande g-factor ^ 2.002319114,

j^ = 9.2742 X lO"'^^ [J — m^/W) is the Bohr magneton, J is the total quantum mechanical

angular momentum, e is the electronic charge, k is Planck's constant, and m is the mass.

The gyromagnetic ratio is defined as

magnetic dipole moment e
, , ,

l9 = —^ . 1 ^97^- (^•^)
angular momentum Im

There is a diversity of magnetic phenomena due to the existence of various couphng

schemes of angular momenta quanta. Types of magnetism include paramagnetism, which

is due to spin and angular momentum of individual electrons, diamagnetism which has its

origin in the orbital angular momentum of the electron, and ferromagnetism originates from

the formation of domains with each domain containing a large number of ahgned spins.

A. 1.1 Field Description of Electromagnetic Phenomena

It has been found that dielectric and magnetic phenomena are adequately described by a

set of field vectors. These vectors represent the electric field, E and magnetic field, H, the

displacement field, D, the induction field, B, the polarization field, P, and magnetization
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field M. Maxwell's equations define the spatial and temporal evolution of these field vectors.

Constitutive relations between field quantities and material properties are necessary to

describe electromagnetic phenomena. The displacement field is related to the electric field

by D =e -E, where e is the permittivity tensor. For linear materials the permittivity does

not depend on the field strength. The permittivity is a measure of electronic, ionic, and

dipolar polarization. The permittivity is frequency dependent with dipolar polarization

occurring below 10^° Hz, ionic polarization below 10^"^ Hz, and electronic polarization

above 10^"^ Hz. The permittivity of free space is cq — 8.85419 F/m. The magnetic field

is related to the induction field by B =/^ H, where ^ is the permeability tensor. The

permeability of a material is a measure of the degree to which it allows the penetration by

an external magnetic field. The permeability of free space is /Zq = ^tt X 10~^H/m. The
permittivity and permeabihty of free space are related to the speed of light in vacuum

c = Ij yJCQUo = 2.99792458 x lO^m/sec. The electric field may contain sources, so that

V E = p, where p is the free charge density. Induction fields are sourceless, expressed

mathematically by V • B = 0. For a charge e moving with velocity v through and electric

field E and magnetic field 5, the Lorentz force on the charge is F = e[E -\- {v x B)].

The electronic properties of isotropic substances can be described macroscopically by

scalar material properties in terms of the relative complex permittivity and permeability,

Cfi and ^^:

e = e - je" = (e^ - i4)eo = e^eo
,

(A.2)

fi = fi' - jn" = (^^ - JP-"r)pq = fiRf^o . (A.3)

The electric and magnetic fields are modified by the presence of matter in the space-

time region in and around the body. The presence of magnetism in matter is described

by the magnetization vector M which quantifies the number of magnetic dipoles per unit

volume. The magnetic field H is related to the induction and magnetic moment vectors by

H=—B-M, (A.4)

where /Iq is the permeability of free space. The magnetic field is also related to the mag-

netization field, M by a constitutive relationship in terms of the susceptibility Xm- For a

linear medium the relation is

M = XmH . (A.5)

The permeability and susceptibility are related through eqs (A.4) and (A.5)

fi = /io(l +Xm) • (A.6)

88



I

Similarly, the electric field is related to the displacement field (D) and the polarization field

(P)by

D = eoE^P = eE. (A.7)

It is useful to define a constitutive relation between polarization and electric fields using

the electric susceptibility (Xei)

P = toXeiE , (A.8)

and therefore

e-eo(l+Xe/) • (A.9)

A. 1.2 Types of Magnetism

Magnetic materials are classified by the values of permeability.

• diamagnetic /i' < //q,

• paramagnetic // > ^^o,

• ferromagnetic //' >> /ig.

The susceptibilities of the various classes of magnetic phenomena are

• diamagnetic Xm < 0,

• paramagnetic Xm > 0,

• ferromagnetic Xm >> 0.

Due to the complicated quantum-mechanical origin of magnetism with various competing

effects, it is not always possible to classify a material into one of the categories. For example,

a ferrite may be diamagnetic in X-band and paramagnetic at lower frequencies.

A. 2 Paramagnetism

Paramagnetism arises from the alignment of individual spins and angular momentum of

particles in external magnetic fields. Paramagnetism is an interaction between the tendency

for the electron spins to be aligned with the field on the one hand and thermal agitation

which tends to randomize the spins on the other hand. Paramagnetic phenomena in in-

sulators is temperature dependent and follows Curie's law. In metals paramagnetism is

strongly influenced by the conduction electrons and has minimal temperature dependence.

Paramagnetic materials are primarily the rare earth and transition ions with incomplete

atomic shells. There are two types of paramagnetism
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• Spin paramagnetism,

• Orbital paramagnetism.

Spin paramagnetism is due to alignment of electron spins and is only slightly tempera-

ture dependent. Spin paramagnetism or Pauli paramagnetism occurs in metals. Orbital

paramagnetism, caused by alignment of orbital magnetic moments, is strongly temperature

dependent. This type of paramagnetism occurs in insulators.

A. 2.1 Diamagnetism

Diamagnetism is the magnetic effect that is due to orbital angular momentum effects. Lai^-

mor diamagnetism occurs in filled-shell insulators. The origin of diamagnetism in materials

is the orbital angular momentum of the electrons in applied fields. Diamagnetic materials

have a negative susceptibility and generally it is not sensitive to temperature variations

at least for nonsuperconducting materials. Diamagnetic materials do not have a strong

magnetic response.

A. 2. 2 Ferromagnetism

In ferromagnetic materials, spin coupling allows regions of aligned spins to be formed, called

domains. In each domain the spins are more or less aligned. However, adjacent domains as

a whole may be arranged in a random fashion. As a magnetic field is applied the domains

more or less align with the field.

The difference between paramagnetism and ferromagnetism is that in the case of the

former, spins interact minimally, whereas in ferromagnetism the spins strongly interact

to cause alignment. Ferromagnetic materials can exist in a nonmagnetized state since

magnetic energy is at a minimum when the domains are randomly situated or in a state of

maximum entropy. This random arrangement of domains is possible because it is found in a

detailed analysis that it is energetically more favorable for many ferromagnetic materials to

be magnetically neutral. The boundaries between the oriented spin regions, called domain

walls require energy for formation. There is a detailed balance between the magnetic

field energy caused by alignment of spins in a domain on the one hand and the energy

required for domain wall formation on the other hand. Dipolar energy is decreased by wall

formation, but exchange energy is increased by the Pauli exclusion principle. Domain walls

are normally of 0.01 - 10 /.t m thick and can deform under applied fields or mechanical

stresses.

As the temperature increases in a ferromagnetic material the kinetic energy can over-

whelm the magnetic energy and the preferential alignment of spins can be broken. The
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Figure A.l: Lattice structure of antiferromagnetic and ferrite materials. In one lattice the

spins are up and in the other lattice the spins are down.

temperature where the kinetic thermal energy becomes predominant over the magnetic

energy is called the Curie temperature.

If a ferromagnetic material is immersed in an increasing external field its magnetization

increases. However as the external field is removed the magnetization curve does not

necessarily follow the reverse curve back to the initial state; rather a sHghtly different curve

is followed.

This phenomenon is called hysteresis and is caused by the irreversible movement of the

domain walls. The irreversibility is caused by defects in the domain wall lattice. Thus, fer-

romagnetic behavior depends on the past history of the sample and is not totally reversible.

Materials with large hysteresis effects are called hard and materials with small hysteresis

effects are called soft.

A. 2. 3 Ferrites and Antiferromagnetism

Antiferromagnetism is a property possessed by many transition elements and some metals.

In these materials the atoms form an ordered array with alternating spin moments so as

to give zero for the net magnetic moment of the materiah Antiferromagnetic materials are

composed of two interpenetrating lattices. Each lattice has all spins more or less aligned,

but the lattices as a whole are inverse structures as indicated in figure A.l.

Antiferromagnetic materials do not generall\' support permanent magnetization and do
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not have a strong magnetic response to an applied field. Ferrite materials also consist of two

overlapping lattices whose spins are oppositely directed, but with a larger magnetic moment
in one lattice than the other. Since spin angular momentum is not canceled totally between

the lattices these materials have a magnetic response to an applied field. The magnetic

response increases with temperature. Antiferromagnetic materials are paramagnetic above

the Neel temperature.

Most ferrites are mixtures of oxides such as magnetite of the generic form XO.Fe203
where X is a divalent metallic ion such as Fe (magnetite), Ni (nickel ferrite), Cu (copper

ferrite), Mg (manganese ferrite), Co (cobalt ferrite), or Li (lithium ferrite). There are

also many other spinel class ferrites that contain additional components, for example, zinc

and aluminum. The spinels have either a normal or an inverse lattice structure formed

by controlled quenching. Many ferrites have few free electrons and therefore are useful in

microwave frequency components since the absence of free electrons prevents eddy-current

losses that occur in conducting materials at high frequencies.

A.3 Equations of Motion for the Magnetization Vec-

tor

A. 3.1 The Torque Equation

In this section we will develop macroscopic equations of motion that underlie the coupling

of angular momentum and magnetic fields. As a model [22], we consider a spinning particle

exhibiting angular momentum J, immersed in a magnetic field. The presence of spin induces

a magnetic moment m = 7^ J, where the 7^ is the gyromagnetic ratio. The magnetic field

will interact with the angular momentum by inducing a torque r

f=f. (A,10)

We define a magnetic moment, rn = IgJ The equation of motion of the spin system in an

applied field B is

T = mxB, (A.ll)

or

^ = 7.(mx5). (A.12)

If we average over a significant number of these particles we obtain a macroscopic magnetic

moment
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M = Nm, (A.13)

where N = number of magnetic moments. We obtain the following equation of motion for

the magnetization

— = 7,//(Mx //) + -, (A.14)

where A is a constant and r is a characteristic relaxation time of the system. As we will

see in the next section it is possible to obtain a tensorial constitutive relation between H
and B by use of eq (A.14) for a magnetic moment in an external magnetic field. This

constitutive relationship will define the susceptibility and permeability tensors.

In real materials there always exists some dissipation due to damping. Dissipation

is caused by such effects as magnetic dipole radiation and magneto-elastic coupling with

lattice phonons. The effect of a dissipation torque can be modelled as a source term added

to eq (A.14). One approximation for the dissipation torque yields the Landau equation of

motion

^ = ^j,iM xH) + ^[M X (M X H)]
,

(A.15)
at \M\

damping

where a is a parameter that determines the damping. This can be reduced for small

damping to
—

*

—

*

^ = ^7,(M X i?) + -4-[iW X ^] . (A.16)
at \M\ dt

This equation is due to Gilbert [23] and neglects terms nonhnear in a. The damping

introduces a nonlinearity into the problem.

A.3.2 Magnetized Magnetic Material: The Polder Matrix

The constitutive relation between the induction field and the magnetic field in ferrite ma-

terials is represented by the Polder matrix. In order to derive an expression for the Polder

permeability tensor we use as a model a magnetic dipole of rpoment m, [22,24], in the

presence of an external magnetic field, H{t). The net torque experienced by the dipole of

magnetic moment rrid is

T = -^nndH{t) s'me
,

(A.17)

where 6 is the angle between the dipole axis and field. In the presence of a z-axis magnetic

field the dipole will precess with a characteristic Larmor frequency of cc'o = \lg\Hz where

"fg is the gyromagnetic ratio. There are also non-conservative frictional forces present to

damp the rotation.
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We will assume that in the presence of a time independent d.c. magnetic field in the

z direction (i^z), the magnetization is essentially at the saturated value M^. We further

assume a combined d.c. field and an alternating field /i, we obtain H{i) — //zCa+ Zi exp(ja;i),

where 63 is the unit vector in the z direction. The magnetic moment can be approximated

by M = M2e3 + mexp(ja;<), where M^ is time independent. When we substitute these into

eq (A. 16) we obtain a system of equations

jijjfh = ^fgMs{e3 X /i) + (u^o + i<^Q')(e3 x m) i- fn x hexp [juit)
,

(A.18)

where loq = —'fgH^ [25] and we assume |M |
== Ms ~ M^. In the analysis we will neglect

the last term in eq (A.18). If

then by substitution into eq (A.18)

m
2= 1

3

!= 1

jujrrij, = -(cjo -i- jujQ)my - /.i-fgMshy ,

(A.19)

(A.20)

(A.21)

Therefore

jwm, = .

JLOI.l-fgMs

my = jujfi-fgMs _ {loq -\- juja)ii'^gMs

2 y '

(A.22)

(A.23)

(A.24)

(A.25)

The system of eqs (A.24) through (A.25) for the linear susceptibility relation between
— —

*

M and H can be expressed as

/^

( ^
jn X

\

-J« \

0/

/ h,\ ( 'm-x \

111, (A.26)

where

(A.27)
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and

and

^M = -igMs . (A.29)

We can separate out the real and imaginary components to yield

^'

[u;2 _ ^2(1 ^ ^2)j2 ^ 4^2^2^2 '
^^^^)

'^ — [. .2 .2/1 , _2M2 , 1 .2 .2_2 '
^A.JZj

Note that we have assumed that the magnetization is at the saturated value Ms- That is

all of the magnetic moments are assumed to be aligned with the external field. This is not

always a good assumption. For this special case the Polder matrix is

\ + 1 -JAC \

(A.34)/^-/i(7 + \) = //
I

jK x + 1

\ J

We see that in the limit as //^ —> and M, -^ the off-diagonal components of the per-

meability tensor vanish and the diagonal components reduce to the isotropic permeability,

^= fi /, where / is the identity matrix.
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Appendix B

Fields in Waveguides

B.l Summary of Maxwell's Equations

Maxwell's equations are

V X E = -jioB
,

(B.l)

V X H = J-\-jljD
,

(B.2)

V-D=p, (B.3)

V • 5 = . (B.4)

The boundary conditions at material interfaces are

fix {E2~ El) -0 ,
(B.5)

nx{H2- Hi)^Js ,
(B.6)

n-{D2- Di) = n
,

(B.7)

77-(^2-A) = 0, (B.8)

where J^ is the surface current density and Q, is the surface charge density.
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B.2 Modes

B.2.1 TE Modes

The longitudinal coordinate is assumed to be z. If the H^ mode exists, it is the generator

of the TE mode [22]. The TE modes satisfy the boundary value problem,

{V^ + ^^n/^.(T£;)-0, (B.9)

where k\ = Iz^ -\- 7^^ are real, positive eigenvalues. The boundary conditions are

n (V//(,(7£;)))|o„ conductor = , (B.IO)

where n is the normal vector. Also

£;,(TE) = 0. (B.ll)

The other field components are then

^T(TE) = -^VTi/. ,
(B.12)

^c

Et(te) = —ZjEi^x Ht{te)) • (B.13)

B.2. 2 TM Modes

For the case of TM waves

{V2, + ^^n^^(TA/) = 0, (B.14)

where kl — h^ -\- 7^ are real, positive eigenvalues determined by boundary information on

the waveguide.

The boundary conditions are

E(z(TM))\on conductor = ,
(B.15)

//c(TA/) = . (B.16)

The other field components are

4(TA/) = -7^VTi?.
,

(B.17)

'^c

fh(TM) = ^
— (^x EriTM)) ^

(B.18)

l=j^k^-k^. (B.19)
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B.2.3 TEM Modes

The propagation of TEM modes are possible in addition to the TE and TM modes in

coaxial cable . The cutoff wave numbers for higher order TM waves in coaxial line are

given by the roots of:

Jn(kcRl) Jn[KcR4)

[22], and for TE waves in coaxial line by

KihR,) Kik^R,)

J'SKR^) J'nihRA.
= 0, (B.21)

where J and A'^ denote the Bessel functions of the first and second kind and Ri and R4 are

the inner and outer radii respectively. The cutoif wavelengths are given approximately by:

A, «-(7?4-/?i) 9 = 1,2,3,... . (B.22)

For example the TM mode cutoff frequency in 7 mm coaxial line for eq (B.22) is approxi-

mately 34 GHz.
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Appendix C

Gap Correction

C.l Frequency-Dependent Gap Correction

C.1.1 Waveguide

We consider a sample in a rectangular waveguide of dimensions a x b with a small gap (b-

d). The dielectric constant in the gap is eng and of sample tRs- The measured or observed

value is cro-

A transverse resonance condition yields [40]:

tan(/fcic^) + Xtan(fc2c(&-c?)) = , (C.l)

where

k\c = y/^Rs — ^Ro ,
(C-2)

Clab

k^c = y^Rg ~ ^Ro 1
(C-3)

Clah
^

and

^ _ ^\/^R9^^Ro_
(C A:)

^Rg y/^Rs — ^Ro

For our case of waveguide {b — d) ^ 2.54 x 10~^ m and b = 0.01016 m. Equation (C.l)

must be solved by iteration, but for low frequencies and low dielectric constants we can

obtain a approximate solution. This equation reduces to Westphal's equation, [34] in the

appropriate low frequency limit.
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Figure C.l: Sample in waveguide with air gap.

C.1.2 Coaxial Line

For coaxial line the matching of transverse impedance yields the resonance condition [40]:

ct(a;2,a;i) = Xct(a;2,a;3)
,

(C5)

where

^1 = Mc-f^l ?

^2 = k\cR2
^

X2 = k2ctl\
1

X3 = A;2c-tL2 •)

(C.6)

(C.7)

(C.8)

(C.9)

and X^ kici and K2C are given in the previous section. The functions ct are defined as

J,{x)No{y) - N^{y)Jo{x)
ci{x,y)

Mx)No{y) - No{x)Jo{y)
'

(CIO)

where Jq, Ji, A^o^ and A^i are the Bessel functions of zero and first order of the first and

second kind respectively.
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C.2 Frequency-Independent Approaches

Various researchers have approached the gap problem by representing the sample with air

gap as a layered capacitor [33,34,41]. This approach assumes that the gaps between trans-

mission hne and sample are effectively modeled by a set of capacitors in series. Champlin

[41] approached the problem using as a starting point the perturbation formula developed

by Schwinger [42]. By substituting into the perturbation formula approximations to the

field distribution in the various regions, they obtain an estimate for the effective permit-

tivity. Their answer turns out to be fully equivalent to the capacitor model of Westphal

[34]. Champlin showed that Bussey's theory [33] is the first two terms in an expansion of

Westphal [34] and Champlin's models.

The capacitor model is frequency independent and thus is strictly valid only at lower

frequencies and dc. We expect the capacitor model to break down at higher frequencies

because the wavelength decreases with increasing frequency to a point where multiple

scattering dominates. In order to account for multiple scattering, it is necessary to develop

a theory that is frequency dependent.

C.2.1 Coaxial Capacitor Model for Dielectric Materials

Consider a capacitor consisting of layers of dielectric and layers of air in a coaxial line

[43,44]. The dimensions are shown in figure C.2.

We treat the system as capacitors in series, so

± = 1 + L + L. (C.12)
m L'l U2 L/3

We know that for a coaxial Hne the electric field distribution is given by

Er = -^
,

(C.13)
ln(^)r'

and the voltage between the conductors is given by

V = - [ E{r)dr . (C.14)
Ja

The capacitance of a coaxial line of length L is given by

c = ^; (C.15)
^^ Ri

thus, for a system of three capacitors in series we have

ln§^ In^ Inf^ Inf^ ,^ ^—^ =^ + -^ + -^, (C.16)
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Figure C.2: A coaxial sample in holder with air gaps near conductors with diameters

denoted by D,.

where e'c e^ are the corrected and measured values of the real part of the permittivity and

e'j is the real part of the permittivity of the air gap

e„D =
2
3

-cR 12 J 2 o,/ J J \ fill r'2\T

^cR — /2 / 2 9 ,/ I I \
.111 / 2 1 / 2

An approximate expression is given by

I2

^3 - ^mR^\

where

tan(Sc - tan^7n[l + C/?";-] ^

L2

/ ,
^2

, ,
^4

/ 1

^3

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)
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Ec'/Em'

0.4045

Figure C.3: The gap correction calculated for various values of e'^, where R2, R\ are the

radii of the inner conductor and sample respectively.

/., = In
R4

7^
(C.22)

Equation (C.18) breaks down when e^^ > L3/L1. An example is plotted in figure C.3 for

a 7 mm coaxial line.

C.2.2 Rectangular Waveguide Model

For the case of a rectangular guide of short dimension b with sample thickness d and lon^

dimension 61 and sample thickness d\ the F-plane gap correction is

^(M4« - Cr - Cr) + cli^R + Cr
-cR bH^R - '2Cr + C'h + 1 )

- -2bd{e'^R - Cr + C'«) + d^e'l^ + 4^^)
'

(C.23;

dbel
-cR n^R - 2eU + C'h + 1) - 2^(6:^^ - eU + Cr) + ^J'iCR + Cr)

' :c.24:

,03



C.3 Gap Correction for Magnetic Materials

C.3.1 Coaxial Line

For the calculation of the gap correction for the permeability a pure inductance model is

useful. We model the transmission Hne as

a series of inductors for the E-field gap

Lira ^ i^c ~T Liair i (L.^OJ

where c, m, and air denote corrected vaUie. measured vahie. and air space. Therefore the

corrected value is

Lc — Lrn - iaiT (C.26)

The inductance is the flux penetrating the circuit divided by the current flowing in the

circuit

4>

1 = 7' (C.27)
/

where

Ampere's law is

which yields

Therefore

so

=
I
BdS . (C.28)

Hdl^l, (C.29)

B, = ^. (C.30)
Z7rr

(/)= — /L//ln6/a
,

(C.31)
27r

L = —fi'\nb/a . (C.32)
'Itt

Therefore we can write for the corrected permeability

''=«
=

hHwi^
• ^^-^^^

Gap corrections are given in figures C.4- C.7. The corrections for permeability in coaxial

line are much less than for permittivity. This is due to the fact the azimuthal magnetic
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Figure C.4: Corrected permeability and permittivity as a function of inner conductor gap

for a 7 mm sample. The gap around the outer conductor is assume to be zero. In this case

the uncorrected (measured) was /.//^ = 5, e'^ = 5.

_2
CO>
D
0)

O
<D
I—
1..

O
O

10 15

Gap ()im)

Figure C.5: Corrected permeabiHty and permittivity as a function of inner conductor gap

for a 7 mm sample. The gap around the outer conductor is assume to be zero. In this case

the uncorrected (measured) was ///^ = 25. r'/^ = 25.
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1^Re

20 25

Gap (p.m)

Figure C.6: Corrected permeability as a function of inner conductor gap for a 7 mm sample.

The gap around the outer conductor is assume to be zero. In this case the uncorrected

(measured) was iJ,'i^
= 50.

225
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200

10 15 20 25

Gap (jim)

Figure C.7: Corrected permeability as a function of inner conductor gap for a 7 mm sample.

The gap around the outer conductor is assume to be zero. In this case the uncorrected

(measured) was fi'p^ = 200.
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field is continuous across the discontinuity, whereas the radial electric field is discontinuous

across the discontinuity.

(C.35)

C.3.2 Waveguide

E-plane Gaps

For magnetic materials in waveguide for the TEio mode the E- plane gap is less severe than

the H-field gap. The corrections can be obtained using inductances in series. These are

H-plane gaps

For the long width of the waveguide there is a discontinuity in the magnetic field for the

TEio mode. The corrections can be obtained using inductances in parallel. We assume a

long waveguide width of 6] and sample width di

bU^^U - -MnR + ^Cr + 1 )
- -^bM^i^ - ^U + ^Cr) + dU^^'^R + A:

II

f^cR

(C.38;

dib^l^'^^R

biii^'lR
- 2^'^^ + /u:;2« + 1)

- 2bMf,'i^ - fiu + <2^) + d'.if^'^^ + <2^)
•

(C.39:

C.4 Gap Correction Formulas Derived Directly From

Maxwell's Equations

Consider Maxwell's equations in a coaxial line

V xE = -jujB . (C.40)
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The radial electric field is discontinuous at the air gap interface, but the displacement

vector D is continuous across the interface. Also H^ is continuous across the interface,

whereas B is discontinuous. Let us assume that there are no sources so that J = 0. Then,

we can write eq (C.40) as

V X — = -jujfiH . (C.41)
6

If we now average eq (C.41) over the cross-sectional area of a coaxial hue, we obtain

27r / V X —dr = -juj27t f fiHdr . (C.42)
J a C J a

Continuity of the displacement field and tangential magnetic field and the fact that Dr oc

1/r and H^ oc 1/r is imposed and integrations are performed. Comparing these results

to an effective medium equation, we obtain the same form as the previously developed

capacitor and inductance models for the corrected permittivity and permeability:

\u^ In^ \n^ \n^—^ = —!^ + —r^ +^ , (C.43)
1 ^c "^1

fi'^j,[\n R,/R,] = fi[f, In R^/R^ + [In R^/ R, + In RJR:,] . (C.44)

The analogous calculation can be performed for waveguide. These effective media formulas

are the Voigt approximation for the permeability (layers in series) and the Reuss approxi-

mation (layers in parallel) for the permittivity. The previously developed capacitor model

can be derived directly from Maxwell's equations.

From the perspective of Maxwell's equation the limitations of the capacitor and induc-

tance models can be assessed. In order for these models to apply, we assume that

• The fundamental mode is the only propagating mode.

• The air gap and sample are azimuthally symmetric.

The air gap modifies the modal structure in the waveguide. The model assumption that

only a TEM mode is propagating in a coaxial line with an air gap around the sample

becomes less and less valid as the air gap increases in size. In fact, since the phase velocity

in the air gap region is much larger than the phase velocity in the sample, a distortion of

the wave can be expected. Longitudinal components of the electric field and therefore TM
modes will form as a result of an air gap if above cutoff. If the air gap or sample are not

azimuthally symmetric, H^ is no longer the only nonzero magnetic field component. This

asymmetry will allow higher order TE modes to propagate, when they are above cutoff.

When the assumption that the only propagating mode is the fundamental mode breaks

down, equations of the same form as eqs (C.43) and (C.44) hold with the logarithmic

constants replaced by more complicated expressions.
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C.5 Mitigation of Air Gap Effects

It is possible to minimize the effects of air gaps by placing a conducting material in the air

gap. This material may be a conducting paint, indium-gallium solder alloy, or a conducting

grease. The conducting material will change the line impedance and line loss to a degree.

However, for relatively small gaps, the improvements in dielectric and magnetic property

measurements far outweigh any changes in line impedance. The loss measurement will be

influenced by this procedure. Application of the conducting material is an art.
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Appendix D

Causal Functions and Linear

Response

D.l Introduction

We call a temporal function causal if it is for all times less than 0. The goal of this section

is to review the basic mathematics used to describe causal systems.

In the analysis to follow we assume that an impulse is applied to a system at ^ = 0.

We can model a linear system by an input function /(i), an output function g{t), and an

impulse response function a{t). It is possible for either or both of f{t) and a{t) to be causal.

A more general approach would be to study nonlinear response with linear response as a

very special case. Linear response theory is usually valid when the underlying probability

density function can be approximated as an equilibrium distribution.

If both f{t) and a{t) are causal, the linear response is given by [45]

g{t) = f f{T)a{t - T)dT . (D.l)

In this case, the output is a convolution over all past times. If only f{t) is causal then

roo

g{t)= / f{T)a{t - r)dT . (D.2)

We assume that a{t) = for t < 0. The interpretation of the function f{t) can be obtained

from the relationship
/oo

f{T)8{t-r)dr. (D.3)
-oo
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If we identify the left side of eq (D.3) as the response function, then the impulse response

a{t) is delta function in the special case of no distortion. Of course, in real systems the

impulse response will be broader than a delta function.

We can define the step response function h{t] as

dh(t - t)

and it is assumed that h{0] = 0. If we use the step response for g{t) in eq (D.l) we obtain

g[t) = f{0)h{t) +
J^

Jj-lh{t-T). (D.5)

D.2 Transfer Functions

If we send a signal exp{jiot) into a system, the response of the system is called the transfer

function and is denoted by S. The transfer function is defined as the Fourier transform of

the impulse response function

/oo
a[t)e''^'dt . (D.6)

-oo

As a consequence of the reality of a[t), S[—uj) = S*{uj). If F{io) is the Fourier transform

of f{t) we have, using the inverse Fourier transform

1
/-oo

g{t) = —P / F{u)S{u)e^-'du; . (D.7)

D.3 Kramers-Kronig Relations

The real and imaginary components of any causal function are related by a dispersion rela-

tion. The complex permittivity is a causal function whose real and imaginary components

are related by the Hilbert transform [45]

^rM - Croo = / ^ n dO
,

(D.8)
TT Jo U^ — U)^

4V)=-^r!<fc5^.<». (0,,
TT Jo 0^ — U)^

The following summarizes some of the features of the Kramers-Kronig relations:

• The Hilbert transform relates real and imaginary components of a causal function.
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• Direct solution requires complete data, over full spectrum for one component.

• Equation (D.8) can be thought of as an integral equation for the unknown component

when there are some data for the other component.

Another form of the dispersion relations is

e^{io) - e [uJo) = —P r, p.lO)

e.(^)-eK) = P
-f,

TT^ r, (D.ll

where P denotes principal value.
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