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PHASE CHARACTERISTICS AND TIME RESPONSES OF UNKNOWN LINEAR SYSTEMS
DETERMINED FROM MEASURED CW AMPLITUDE DATA

M. T. Ma and J. W. Adams
Electromagnetic Fields Division

National Institute of Standards and Technology
Boulder, CO 80303

Abstract

An alternative but simpler technique for calculating the complete
time and frequency characteristics of an unknown linear system from
the measured amplitude response to cw excitations is described. The
associated system transfer function so determined may or may not be at
minimum phase. A comparison of the time responses shows the worst
case. Results also indicate that the susceptibility of the minimum-
phase system to damage by pulsed excitation is the greatest during the
initial period of excitation.

Key words: all-pass function; Hilbert transform; Laplace transform;
minimum phase; non-minimum phase; system transfer function; time
response

.

1. INTRODUCTION

The time response of a linear system to a given excitation (whether it
be cw or pulse) can be uniquely determined, if the transfer function of this
system is known, by use of the inverse Laplace transform. However, for
complicated systems involved in practical applications, the system transfer
function may be unknown. The time response of such a system to pulsed
excitations can be obtained only by sophisticated time -domain measurements
or by derivations using measurements of the amplitude and phase responses to
cw excitations. These measurement results can then be used to assess (a)
whether or not the system may survive an assumed pulsed excitation, and (b)
if not, what hardening is required for the system to withstand the threat.
Such time -domain or frequency- domain phase measurements typically require
expensive equipment and special considerations on radiation hazards and
regulatory compliance (if performed outdoors). On the other hand, taking cw
amplitude responses of the same complicated system due to low levels of
escitation is relatively easy and less costly. If the measured cw amplitude
could be used to predict the system's phase and thus its transfer function,
the time response to a general excitation could then be determined.

In this report, we present an alternative but simpler technique to
determine the time and frequency characteristics of an unknown, linear
system, based only on a given set of cw amplitude responses. The associated
system transfer function so determined may or may not be at minimum phase.
The time responses corresponding to the minimum phase and non-minimum phases
thus obtained can then be used to assess the susceptibility of the system to
damage by pulsed excitations. The theoretical background of relationship
between the amplitude and phase of a minimum-phase transfer function is

outlined in section 2. The conventional numerical approach practiced in the
past for calculating the phase information and the time response of the
linear minimum-phase systems from the measured cw amplitude, and the
accuracy involved in this process are reviewed and discussed in section 3.



Our new approach for obtaining a set of transfer functions (both minimum and
non-minimum phases) and the corresponding impulse responses directly from
the given cw amplitudes is presented in section 4. This technique does not
require knowledge of the necessary phase information. Of course, this phase
information is automatically obtained after the system's transfer function
is determined. It can also be determined analytically, if it is required,
even before the minimum-phase transfer function is obtained. Physical
meanings of the minimum-phase results are discussed. A few examples with
various orders of transfer functions and existing measured data to
demonstrate this idea are given. Energy contents associated with the system
are discussed in section 5. Some concluding remarks and extensions for
future work are presented in the final section.

2. THEORETICAL BACKGROUND

A well designed, stable, linear system with time- invariant and lumped-
constant elements exists only when its transfer function H(s) has no poles
in the right half of the complex frequency s-plane. In other words, H(s) is

analytic in Re(s) > 0, where Re stands for the "real part of" [1]. We
address only the stable system in this report, because otherwise the system
is not useful in application. In general, H(s) is a rational function of s

or a ratio of two polynomials with the degree of the numerator polynomial
lower than the degree of the denominator polynomial. When this transfer
function is evaluated at the real radian frequency s = jw, H(jw) is a
complex function of to. It then consists of a real part R(w) and an
imaginary part X(w) , or a magnitude |H(w)| and a phase 6 (to) . That is,

H(jco) = R(w) + j X(w) = |H(jw)| e"J* (w)
, (1)

where the convention of assigning a minus sign to the phase is adopted. The
magnitude function |H(jw)| may also be expressed in terms of the attenuation
function a(a>) :

|H(j»)| = e-
Q(w)

. (2)

When H(s) is analytic, the real and imaginary parts of H(jw) are
related by the Hilbert transform pair [2],

X(c) = - ** r Hr^T dy,

and (3)

R(«) = 1 r f (Y)
2 dy.

In other words, if one part is given or specified, the other part can be
uniquely determined by performing one of the integrals shown in (3). The
complex function H(jw) is then completely obtained. In practice, however,
(3) is not useful because we cannot just measure R(w) or X(w)

.



If, in addition, H(s) has no zeros in Re(s) > 0, the transfer function
is said to be at minimum phase, herein denoted by H (s) . Under this

condition, the attenuation and phase functions are related by another pair
of Hilbert transforms [2, 3]:

, n ^n
l

H (jy) I

-oo J -oo J

and

a(W ) = a(0) - f IT y(y2
(Y)

. „*)
dy. (4b)

Equation (4b) shows that the attenuation function can be determined
completely from a given phase function only when a(0) is also known. But,
for our application, only (4a) is useful because we assume that the
magnitude (or attenuation) function is given. Once & (w) is determined, the
entire complex H (jw) is obtained from (1), because |H (jo) | or a(w) is

already known. The impulse response of the system is then traditionally
calculated by the inverse Fourier transform,

h (t) = 7T r H (» e
jWt

dt. (5)
-oo

The system's time response to a general excitation can subsequently be
computed by the convolution integral h (t)*e(t) , where e(t) is an arbitrary

excitation, cw or pulse, applied to the system. The success of determining
the time response in this case is based on the assumption that the system's
transfer function is at minimum phase.

3. CONVENTIONAL APPROACH

Since the type of integral in (4a) is considered extremely difficult to
calculate, the approach has been to apply another transformation known as
the Wiener-Lee transform [2] to a(w) or |H(ja>)|, and then to use numerical
procedures [4] to obtain the necessary 6 (w) , H(ja>) , and h(t) .

When the Wiener-Lee transform [2],

w = - tan(5/2), (6)

is applied, we are able to transform the entire u> range, (-°°, °°) into (-n,
n) for 5. Because of this transformation, the original attenuation and
phase functions, q(w) and 9 (u>) , will become respectively a' (8) and #'(5).

Furthermore, since the attenuation function a(w) = - in|H(jw)| = - -z in

[R 2 (co) + X 2 (w)] is an even function, and the phase function 6 (u>) =

tan [X(w)/R(tc>) ] is an odd function, of u> in (-«, °°) ,
their respective

transforms a' (5) and 0'(8) are also even and odd functions of 8 in {-n , n)

.

As such, they may be expanded into Fourier series,



a' (8) = an + a, cos 8 + ... + a cos n5 + ....
1 n '

and (7)

6' (8) = b, sin 5 + ... + b sin n5 + ... ,

1 n '

where the expansion coefficients are determined by

a„ - -^ J* a' (8) dS, a = - J
n

a' (8) cos n8 dS
, (8a)

2n J n 7r
-7T -7T

and

b = - J
n

6' (8) sin nS dfi . (8b)n 7T
-7T

When the system under consideration is such that h(t) is causal [h(t) =
when t < 0] , as is usually so in practice, it is known that a and b areJ r n n
simply related by [2]

b = - a . (9)n n v '

Therefore, the determination of a from (8a) automatically yields b , which

in turn gives 6' (8), 6 (w) , and thus H(jw) . The impulse response is then
obtained from (5).

The justification for using the Wiener-Lee transform and the derivation
as outlined above seems reasonable and straightforward. The important
question we should ask is then: if the integral in (4a) is difficult to
compute before the Wiener-Lee transform is applied because the given |H(jw)|
or a(w) are very complicated, is it much simpler to compute the Fourier
series expansion coefficients a as required in (8a) after the Wiener-Lee

transform is used? If so, what kind of penalty is paid in terms of the
final accuracy? After all, the entire procedure requires (i) conversion of
the given a(a>) data into a' (8) ,

(ii) numerical computation of a from a' (5) ,

(iii) construction of a set of 6' (5) by including a finite number of terms
in the Fourier sine series of (7) with b = - a

,
(iv) numerical

determination of H(jw) based on the given attenuation data and the newly
retrieved phase data, and (v) numerical computation of h (t) by performing

the discrete inverse Fourier transform. Each of these five steps involves
approximations and thus introduces inaccuracies.

4. AN ALTERNATIVE BUT SIMPLER APPROACH

Here, we review modern passive network theory together with a re-

examination of the Hilbert transform (4a) to assess whether or not a simple
and analytical method may be devised to handle the problem at hand without
going through unnecessary numerical procedures. Since H(s) for the system
under study is a rational function of s, the square of the magnitude of
H(jw)

,
|H(jw)| 2

, is a ratio of two polynomials of even order in w. As such,



the numerator and denominator polynomials in |H(jw)| 2 may contain one or
more, or any combination, of the following elementary factors:

(i) u>
2 + a 2

and (10)
(ii) w 4 + bw 2 + c 2

,

where a, b, and c are real numbers. In addition, since |H(ju>)| 2 > for all
w, we require, for the factor (ii) in (10),

b 2 < 4c 2
. (11)

The number of the above elementary factors contained in |H(jw)| 2 depends on
the complexity of the transfer function being studied. The first-order
transfer function has just one factor in form (i) in the denominator of
|H(jw)| 2

, and its numerator is a constant. For a second-order transfer
function, the denominator of |H(jw)| 2 contains a factor in form (ii), or two
factors in form (i), and the numerator has either a factor in form (i) or a
constant. For a third- order transfer function, the denominator can be
expressed as a product of form (i) and form (ii) [or as a product of three
factors in form (i)], and the numerator as a factor of form (ii), form (i),
or a constant. Thus, for an nth- order transfer function, the denominator of

|H(jw)| 2 has a special form of polynomial such as w + a , u
n ~" +

a
n./

n - 4
. . .+ a

Q , and the numerator is an even polynomial o/the order

of (2n - 2) or lower.

When the magnitude function |H(jw)| can be described by a mathematical
expression, H(s) can be deduced directly and exactly from it in a
straightforward manner [5], without having to find the phase function first.
For example, consider the simplest, first-order case described by

|H(>| 2 =
^ 2 \ a2 , a > 0. (12)

We can use the relationship, |H(jw)| 2 = H(s)H(-s)| . , to obtain
s - jw

H(s)H(-s) =
T
^L_ = ___1___

, (13)

yielding

H
m
(s) = l/(s + a), (14)

which has a simple pole (s = -a) on the left-hand real axis. Since it has
no zeros , the transfer function in this particular form is automatically at
minimum phase. The associated impulse function is then determined directly
by the inverse Laplace transform as h (t) = exp(-at), t > without having

to find the phase function first. It can readily be verified that (14)
indeed gives |H(jw)| 2 in (12). Note that the other factor (-s + a) in (13)
is not allowable in H(s) because the resulting system will then be unstable.



The expression in (12) may represent the output of a low-pass filter
with its maximum at u = and with its half -power (or 3 dB) point at u> = a.

This same parameter "a" is also the decay rate of the time response.

Clearly, the phase function associated with the system's transfer
function in (14) is,

0(w) = tan
_1

(w/a)

.

(15)

If, however, the phase information is desired before the system transfer
function in (14) is obtained, it can also be found analytically by the
following procedure. Since

o(w) = - in |H(jw)| = - \ in |H(jw)| 2 =
J

in(u> 2 + a 2
), (16)

the required phase function for the minimum-phase case, in accordance with
(4a) , is

a r \ ^ f
00 in(y 2 + a 2

) dy _ <±> r°° in(y 2 + a 2 )dyH" } ~ n J 2(y 2
- w 2

)
" n J

y
2

- w 2

= tan"V/a), (17)

which agrees with (15) . The last step in (17) is achieved by using the
definite integral [6]:

r in(p 2 + q 2x 2
) dx n . -1, ah v , . n /1QN

g
2x 2 -h 2

=
^h

tan
<Ji>' P>^g' h>0 - < 18 >

Another method for getting h (t) is through the inverse Fourier

integral given in (5), since we already know the complex H (jw) = |H (jw)

|

exp[-jfl(w)]

.

That is

,

h (t) = ^ r H (J«) eJ Wt du> = r1 T |H (J«) |
J [wt

"
$ ( " } ] dc

m Z7T J m J 27r J
' m J

1 r«o cos \cot - 6 (u>) 1 du>

'7T
J (w 2 + a 2

)
1
/
2

1 r«> a cos(cc)t) du> 1 r<» cj sin(c^t) du>J. pco a cos (cot) dcc> ip00

"
7T i W 2 + a 2

7T ^ u>
2 + a 2

1 -at 1 -at -at /ion
2 e + X e = e

» ( iy )



which is the same as obtained above by a much simpler procedure (inverse
Laplace transform). The last line in (19) results from the application of
the following two integrals [6]:

r cos (ax) dx _ _n -aB ,

x 2 + B 2 ~ 2/3
e and

r<» x sin(ax) dx
J x 2 + B 2

n -aB
"2 e

Re(B) > 0.a > and Re(B) > 0. (20)

This method of inverse Fourier integral is the one used in the numerical
approach discussed in the last section.

We wish to note another important point about the transfer function.
Even though the particular form in (14) is taken for analysis, it does not
necessarily imply that the system under study is minimum phase. In fact,
the original unknown system may possibly be represented by many transfer
functions with non-minimum phases, because a product of H (s) and an all-

pass function yields a transfer function with non-minimum phase but still
with the same I H( ico) 1

2
. That is, H (s) = H (s) H (s) , where H (s) is the

i \j / i ' n ma n
non-minimum-phase transfer function, and H (s) is the all-pass function

a

defined as

H (s) = n (s - a )/ n(s + a ), (21)

with each zero in the right-half s -plane the mirror image of the
corresponding pole in the left-half s-plane [5]. In (21), the symbol II

denotes successive product, and the parameter a. is either positive real or

complex. When a. is complex, (21) must also have another complex conjugate

factor. The fact that |H (ju>)| 2 = 1 explains why |H (ju))| 2 = |H (jw)| 2
.

3. in m

The corresponding impulse response is then

h (t) = h (t) * h (t), (22)
n m a

where h (t) is the inverse Laplace transform of H (s) , and * represents
cl 3.

convolution integral. For example, consider the case with a = 1 and H (s) =

(s - 2)/(s +2). We then have h (t) = e"
t

, t > 0, and

h (t) = h (t)*h (t) = h (t)*[S(t) - 4e"
2t

]n ma m L J

= h (t) - r(t), t > 0, (23)

where

r(t) = 4e"
t
*e"

2t = 4(e
-t

- e"
2t

). (24)



Since r(t) > for all t > , we conclude that h (t) < h (t) . This implies

that, for this particular example, if the minimum-phase system can survive a
threat from a given pulsed excitation, the non-minimum-phase system can also
successfully withstand the same threat.

Before we proceed with an example of a second-order transfer function,
we note that the impulse response h (t) given in (23) can also be obtained

by first performing a partial fraction expansion of H (s)

,

n

H (s) = H (s)H (s) = t
—-

-,

" - rr = ~~*
. + —7S7 , (25)n m v ' a v

' (s + l)(s +2) s+1 s+2 v/

and then doing an inverse Laplace transform [7] to get

h (t) = -3e
_t

+ 4e"
2t

= h (t) - r(t)

.

(26)n v ' m v '

We will now present another example using a second-order transfer
function whose squared magnitude is given by

co
2 + 1

w 4 + w 2 + 16 '|H(»I 2 = ,,4 T ,,2 I ,c , (27)

a plot of which is shown in figure 1 with its resonant frequency at to
2 = 3

and with a half -power bandwidth of Au> 2 = 12.689. From (27), we have

H(s)H(-s) =
s4 _ s2

-
16

=
(g2 + 3g + 4)(s2 _ 3g + 4) , (28)

thus yielding the minimum-phase transfer function

H (s) = 2 I t TZ / > (29)m v ' s z + 3s + 4 ' v '

and the simplest possible non-minimum-phase transfer function

H (s) = 2~1X
1
J. / ( 3 °)n v /

s-^ + 3s + 4 v '

As a check, both (29) and (30) give the same |H(jw)| 2 in (27). Of course,
the other possible non-minimum-phase transfer functions having the same
|H(jw)| 2 in (27) are the product of H (s) in (29) [or H (s) in (30)] and the

all-pass function H (s) in (21).
cl

The phases associated with the transfer functions given in (29) and
(30) are respectively

(w) = tan"
1
[3w/(4 - w 2

) ] - tan"
1
(w), (31)



and

9 (w) = tan"
1
[3w/(4 - w 2

)] + tan'^u). (32)

The impulse responses of (29) and (30) can be determined, respectively,
to be [7]

h (t) = e'
L5t

(cos 1.32288t - 0.37796 sin 1.32288t), (33)m

and

h (t) = e~
1,5t

(- cos 1.32288t + 1.88982 sin 1.32288t)
n

= h
m
(t) - r(t), (34)

where

r(t) = 2e"
1 - 5t

(cos 1.32288t - 1.13389 sin 1.32288t) >

in < t < 0.54634. This means that h (t) < h (t) shortly after an
n v ' m v ' J

excitation is applied to the system. The minimum-phase response will not
underestimate the system behavior.

Thus, we have shown once again that (i) the minimum -phase transfer function
for an unknown system and the resultant impulse response can be determined
directly from the given |H(jw)| 2 without having to obtain the associated
phase function, and (ii) the minimum-phase time response h (t) so determined

is the most conservative estimate as far as the initial threat to the system
by an excitation is concerned.

The phase function corresponding to the minimum phase can also be
determined from (4a) before its transfer function in (29) is obtained. We
begin with the denominator of (27)

,

w 4 + w 2 + 16 = (w 2 + af)(w 2 + a 2
,) , (35)

where a\ and a\ are a complex conjugate pair. Even though it is

straightforward to determine a\ and a 2
, [in this case, a\ = (1 + jj63)/2, and

a 2
= (1 - j J 63)/2 ]

, we only need to know, as shown later, a
x
a 2 and a

x
+ a 2 .

We know from (35) that a\ + a\ = 1 and a\a\ = 16. We obtain a
x
a 2 = 4, and

(a x + a 2 )
2 = a\ + a% + 2a x a 2 =1+8=9, ora 1

+a 2 =3. Then we have

in|H(jw)| = - | in(w 2 + a?) - | in(w 2 + a|) + | in(w 2 + 1). (36)

Applying (4a) we obtain

0(w) = 6 1 (o)) + 6 2 (u) - 8 3 (u>), (37)



where, with the aid of (18),

in(y 2 + a\) .

M«>) = *Z r —^2 ^2— dy = tan" (w/ai ), (38)n
Q y w

in(y 2 + a 2
,) ,

M") = ^ r y2 . ^2 dy = tan" (»/a2 ), (39)

and

a / n w f°° ln(v 2 + 1) ^_ -1. . .....

M") = ~
J y2 . w 2 dy = tan (w)

.

(40)

However

,

! (w) + # 2 (w) = tan (u)/a
1 ) + tan (w/a 2 )

tan [ (a 2 + a 2 )w/(a 1
a 2 - o>

2
)

]

= tan"
1
[3w/(4 - u>

2
)] . (41)

Thus , we have

0(w) = tan"
1
[3w/(4 - w 2

)] - tan'V), (42)

which checks with (31)

.

The impulse response given in (33) can also be obtained by the inverse
Fourier integral method, as we demonstrated in the first example for the
first-order transfer function, with a much more involved procedure.

We make two comments about the examples presented above. First, in
obtaining (38) and (39), we have extended the application of (18) to the
case with a complex number for p. Evidently, (18) is still valid as long as
a complex conjugate pair appears together. This is certainly satisfied in
our study since the given |H(jw)| 2 is a rational function of w 2

.

Second, the variable o> has been used loosely as frequency. In (27) we
have identified u>

2 = 3 (or u> = J 3) as the resonant frequency for the second-
order case. Strictly speaking, u> should be treated as the normalized radian
frequency. It can be translated into any frequency of interest by a simple
frequency transformation [5],

w' = Aw, (43)

where A is a normalization constant.

10



If, for example, the actual resonant frequency occurs at J 3 MHz, we
then use A = 2tt(10) 6 to translate u> = J 3 to u>' = J 3 x 27r(10) 6

. Substituting
u> = u>' /A into (27) gives a new squared magnitude function,

A 2
(cj'

2 + A 2
) , (44)

I

g O')| 2 - ,y 4 + A 2
u>'

2 + 16A 4

yielding the |G(jw')| 2 vs w' 2 curve identical to that shown in figure 1.

The corresponding minimum-phase transfer function, impulse response, and
phase function then become respectively:

A(s' + A)

nT ' s'
G-(s') - .?'; 3L-+ 4A» •

<45)

-1 SAr
g (t) = A e • (cos 1.32288At - 0.37796 sin 1.32288At), (46)

and

0(w') = tan'^Aw'/OA 2 . w ' 2
)] - tan'V' /A) . (47)

The same principle and procedures apply to higher-order cases. The
results on extracting H (s) , h (t) , and 6 (w) from a given |H(jw)| 2 and the

procedures involved, as demonstrated in the two examples, are exact, and no
approximations have been exercised. Approximations are needed only when an
analytical expression for |H(jw)| 2 is unknown. In practice, when only the
measured data of |H(jw)| are available, all we have to do is to obtain an
experimental curve for |H(jw)| 2 and then to approximate it with a
realizable, mathematical expression. By realizability , we mean (i) |H(jw)| 2

= N(c<; 2 )/D(w 2
) > for all w, (ii) the numerator and denominator polynomials,

N(w 2
) and D(w 2

) are in even orders of to with some restrictions on their real
coefficients, and (iii) the degree of N(w 2

) is lower than the degree of
D(w 2

) by at least 2. This can be achieved by the available approximation
theory and curve -fitting techniques. In fact, this is the only step
involving approximations. The remaining procedures will be exact.

The last example to demonstrate the applicability of the approach
presented in this section is now given, and is based on the measured data
shown in figure 2 (solid curve) . The data represent normalized, vertically
polarized electric fields reflected from a helicopter when it is irradiated
by an impulse. By examining the solid curve in figure 2 more carefully, we
notice at least three resonant frequencies at 16.5 MHz, 25.6 MHz, and 54.3
MHz. Obviously, this system is too complicated to be represented by a

simple second-order transfer function. However, for demonstration purpose,
we only consider the most important resonant frequency at 25.6 MHz. This
means that we treat the dashed curve in figure 2 as "the given" one, and
then try to approximate it by a second-order transfer function with minimum
phase in the form of

H (s) = B/(s 2 + as + b), (48)

where B, a, and b are three unknown constants to be determined.

11



From (48) , we have

"

H
m ( J w) l

2
= w * - (2b ^a 2

) u>
2 + b 2 • < 49 >

which has the resonant frequency at u>% = b - a 2 /2.

Expressing (49) in terms of u> gives

l

Hm(»l 2 ~
u < - ill a,

2 + b 2 ' < 50 >

Two essential conditions are then imposed on (50)

:

<4 = b - a 2 /2 = (2tt x 25.6 x 10 6
)
2

, (51)

and

|H (jw )l
2 = 532 (° r 34.48 dB as given in fig. 2) (52)

A third condition may be imposed at either (i) 20 MHz or (ii) 30 MHz.
Indeed, any other condition based on a physical reasoning may be used. If
we choose (i) with w a

= 2n x 20 x (10) 6 = 1.2566 x 10 8
, and use

|H
m (jWi)|

2 = 13 2 (or 22.28 dB as indicated in fig. 2), (53)

we have the solutions from (51) , (52) , and (53)

:

B = 13.5185 x 10 16
, a = 0.1584 x 10 8

, b = 2.5998 x 10 16
. (54)

The |H (jw)| 2 in (50) with the values of B, a, and b given in (54) is

plotted in figure 2 as the curve marked with dots. Not surprisingly, the
frequency region from 10 MHz to 25.6 MHz is very accurately matched to the
dashed curve, while the frequency region greater than 25.6 MHz is not.

If we choose (ii) for matching at 30 MHz (which is a 3-dB point), we have
w 2

= 1.8850 x 10 8
. The condition

|H
m (j^ 2 )

|

2 = 53 2 /2 (or 31.48 dB), (55)

with (51) and (52), yields

B = 51.1874 x 10 16
, a = 0.5906 x 10 8

, b = 2.7616 x 10 16
. (56)

The |H (jw)| 2 in (50) with this new set of B, a, and b values is presented

in figure 2 as the curve marked with crosses. Here we see a better
approximation for frequencies higher than the resonant frequency, but a

poorer approximation for lower frequencies.
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Even though these two approximations may not be wholly satisfactory,
they are still considered effective because the complicated experimental
curve is approximated by a simple second-order transfer function. A higher-
order (4th or 6th) transfer function, or even a different kind of a second-
order transfer function such as H (s) = B(s + c)/(s 2 + as + b) with an

additional control parameter c will certainly give a better approximation.
The use of higher-order transfer functions and additional control parameters
should be topics for future work. The objective of this report is primarily
to demonstrate the feasibility of solving this kind of problem with a
simpler approach.

The impulse responses for the two approximations under discussion are:

(i) with the matching point at 20 MHz,

h ,(t) = 8.4347 x 10 8 e"
ait sin ^t, t > 0, (57)ml

with ai = 0.0792 x 10 8
, and fi 1

= 1.6104 x 10 8

and

(ii) with the matching point at 30 MHz,

h
m2

(t) = 31.0755 x 10 8 e"
a2<:

sin /3 2 t , t > , (58)

with a 2
= 0.2953 x 10 8

, and 2
= 1.6354 x 10 8

.

The normalized time responses are shown in figure 3 with curves marked
respectively with dots and crosses, along with the normalized measured time
response (the unmarked curve). On the first look, the predicted minimum-
phase time responses clearly do not agree well with the measured curve.
This implies that the actual system (helicopter plus its attached
instruments and equipment) may have a non- minimum-phase transfer function
with one or more zeros in the right half s -plane. This fact is also
indicated by the initial negative response appearing in the experimental
curve. On the other hand, the general shape of a damped sinusoid with a

_ Q _ O

period between 3 . 84 x (10) and 3.90 x (10) seconds agrees well with the
shape of the experimental curve. In addition, the rate of decay for h «(t)

with a 2
= 0.2953 x 10 8 also approaches the experimental curve. This

indicates that matching at 30 MHz not only improves |H (jw)| 2 at higher

frequencies, but also yields a better approximation to the measured time
response. This is desirable because the receiving antenna used in the
actual measurement also works more accurately in the upper frequency range

.

The corresponding phases are:

e 1 (u>) = tan"
1
[0.1584 x 10 8 w/(2.5998 x 10 16

- u>
2

) ] , (59)

and

13



B 2 (u>) = tan
_1

[0.5906 x 10 8 w/(2.7616 x 10 16
- u>

2
) ] . (60)

5. CONSIDERATION OF ENERGY CONTENTS

To assess the ability of a system to withstand damage from an
excitation, it is often useful to compute the energy associated with an
impulse response. Indeed, if h(t) represents a voltage waveform across a 1

Q resistor, the quantity

E = J°°h
2 (t) dt (61)

equals the total energy delivered to the resistor by the excitation [2]

.

Equation (61) also represents the area under the curve h 2 (t).

The energy E may also be computed, in view of Parseval's theorem [2], by

E = ^ r |H(j")| 2 dw. (62)
-00

Since the minimum-phase impulse response h (t) and the associated non-

minimum-phase impulse response h (t) = h (t)*h (t) have the same |H(jw)| 2
,

XT m a.

their respective total energies [in < t < °°] are equal even though h (t) <

h (t) during the initial period near t = as demonstrated in section 4.

For the first example considered in section 4, we have

IH (jw)| 2 = l/(w 2 + a 2
), and h (t) = e"

at
.

i m \j /i / / m

The energy is then, from (62),

E - ^ r -a^-2 = i r -TW = V(2a) ; (63)
-00

or, from (61)

,

E = /VCt) dt = f°e-
Zat

dt = l/(2a). (64)m

Referring to the example with a non-minimum-phase impulse response presented

in (23), we have h (t) = e
_t

(with a = 1) , h (t) = 6(t) - 4e"
2t

, and h (t) =
\ / . m a n

-t -2t
h (t) * h (t) = -3e + 4e . The energy is then
m v ' a v bJ

2t nl -3t ,, -4t,
E =

J

N

°°h 2 (t) dt = f°(9e'
Zt

- 24e"-
3t

+ 16e
C

) dt
n

14



= 1/2 = l/(2a) with a = 1, (65)

which is indeed the same as in (63) and (64)

.

For the second example as given in (27) , we have

do a*dw
„ _ _1 f<o (u>

2 + l)do) 1 r«>
1 1 r<»

1

= 2, J
m w * + u>* + 16 " * J 2(«» + ^) * J

2(w2 + ^
= | {aj/J^! + at/J/8t) = 5/24, (66)

where

a, - LLi/lM _ and /Ji
_ Lij!63

(6?)

The same result can be obtained by computing

E = fV(t) dt or E = fV(t) dt, (68)

where h (t) and h (t) are given respectively in (33) and (34).

For our third example involving experimental data, the energies are:

(i) when the frequency point is matched at 20 MHz,

E, = f° h 2
1
(t) dt = 2.229 x (10) 10

,1 £ ml ' \ / .

and (ii) when the frequency point is matched at 30 MHz,

E 2 = rV
2
(t) dt = 7.978 x (10) 10

,

where h -, (t) and h
?
(t) are given respectively in (57) and (58).

6. CONCLUSIONS

We have shown an alternative and simpler method to determine the
complete transfer function (including the associated phase information) and
the impulse response for an unknown linear system from a given cw amplitude
response, without having to retrieve the phase function first. The
solutions (both minimum and non-minimum phases) are exact only if an
analytical expression for the cw amplitude response is known. If not,
approximations can be used to derive a realizable squared magnitude
describing the cw system response. The remaining procedures for obtaining
the complete system characteristics are exact. Three examples, using known
analytical expressions and measured data for the cw magnitude, have been
examined and shown to validate the proposed technique. We also have shown
that the minimum-phase time response represents the most conservative

15



estimate as far as the response to an initial threat to the system by an
excitation is concerned. Examination of the basic properties of transfer
functions with higher orders and with different forms for each order, and
study of accuracies involved in the approximation (when the measured data
are available) to cover more complicated cases should be topics for future
research.
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