Power Measurement System for 1 mW at 1 GHz

Fred R. Clague

Power Measurement System for 1 mW at 1 GHz

Fred R. Clague

Electromagnetic Fields Division
Center for Electronics and Electrical Engineering
National Engineering Laboratory
National Institute of Standards and Technology
Boulder, Colorado 80303-3328

[^0]National Institute of Standards and Technology Technical Note 1345 Natl. Inst. Stand. Technol., Tech. Note 1345, 32 pages (November 1990) CODEN:NTNOEF

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1990

[^1]
CONTENTS

Page

ABSTRACT v

1. INTRODUCTION 1
2. OPERATION 2
2.1 Initial Steps 2
2.2 Measurement 2
3. SYSTEM DESCRIPTION 6
3.1 Theory of Operation 6
3.2 Hardware 8
3.3 Software 8
4. ERROR ANALYSIS 9
4.1 Systematic Error Components 9
4.1.1 Voltmeter Uncertainty 9
4.1.2 Uncertainty in Thermistor Mount Effective Efficiency 11
4.1.3 Mismatch Uncertainty 11
4.1.4 Dual Element Error 12
4.2 Random Error 14
5. REFERENCES 15
APPENDIX A Instrument Specifications 16
APPENDIX B Software Listing 17

Abstract

An automated measurement system designed to measure power accurately at the level of 1 mW and at the frequency of 1 GHz is described. The system consists of commercial IEEE Std-488 bus-controlled instruments, a computer controller, and software. The results of a series of measurements are output to the computer display and, optionally, to a printer. The results are the mean of the measurement series and an estimate of the systematic and random uncertainty. The total estimated uncertainty for the average of six consecutive measurements of a nominal $1 \mathrm{~mW}, 1 \mathrm{GHz}$ source is typically less than 1 percent. The system can measure any power from 0.1 to 10 mW at any microwave frequency by making appropriate changes to the software and possibly, the hardware.

Key words: automated measurement; microwave; microwave power measurement; power; power measurement; power measurement system.

POWER MEASUREMENT SYSTEM FOR 1 mW at 1 GHz

Fred R. Clague
National Institute of Standards and Technology
Boulder, Colorado 80303

1. INTRODUCTION

This system is especially designed to accurately measure microwave power at the level of 1 mW and the frequency of 1 GHz . Specifically, it supports the calibration of the Wavetek $8502 \mathrm{~A}^{1}$ pulse power meter, which has a $1 \mathrm{~mW}, 1 \mathrm{GHz}$ calibrator output port. The manufacturer's specification on the power level of that output is ± 1.5 percent. Use of the system is not restricted to this specific application; relatively simple modifications to the software would make it possible to measure other power levels and frequencies.

The microwave power measurement method is based on the dc substitution technique. The system is implemented using a commercial version of the NIST-developed Type IV microwave power meter, a commercial coaxial thermistor mount, a digital voltmeter, and a dedicated computer controller. The Type IV power meter is not direct reading; the substituted dc power is calculated using readings obtained from the digital voltmeter. The computer controls the measurement process, calculates the results, and prints them out. The measurement results include an estimate of uncertainty for each data set. The automation also allows the implementation of a procedure that adequately corrects for thermistor mount drift caused by external temperature changes. The system is packaged in a combination operating/shipping case.

[^2]
2. OPERATION

2.1 Initial Steps

Before turning on the Type IV power meter be certain that the thermistor mount is connected to it. The output of the Wavetek 8502A calibrator is found to be more stable after a 2 hour warmup, rather than the 30 minutes specified by the manual. If possible, the 2 hour warmup period is recommended for both the 8502 A and the power measurement system. It is also recommended that the thermistor mount be attached to the calibrator output for at least 30 minutes before making the measurement. This will minimize the temperature drift of the mount, improving the measurement accuracy.

Before turning on the computer, load the disk marked "System and Program" in the drive, then turn on the power. The operating system will be automatically loaded. The computer screen will display the time and the several soft-key options: SET CLOCK, LOAD PROGRAM, and EXIT. (The soft keys, or function keys, are the set of eight dark grey keys along the top of the keyboard labeled F1 through F8.) Set the time if needed, and then press the LOAD PROGRAM soft key. The measurement program will be loaded and run.

2.2 Measurement

The first screen displayed by the program is shown in figure 2.1. To see instructions on how to operate the 8502 A (to turn the calibrator output on and off), press F1. To enter the serial number of the 8502A being measured, press F2; the serial number will then be printed with the measurement result. To change the number of repeated measurements to be averaged in a set (at least 6 to 10 is recommended), press F3. To begin the measurement set, press F4. To exit the program, press F5.

Figure 2.1. Screen display of the measurement menu.

Figure 2.2 shows the screen that appears when the first item is selected from the Measurement Menu. It gives brief instructions for manually controlling the 8502 A calibrator output based on information given in the instrument's operating manual. The four numbered steps shown on the screen should be carried out before proceeding with the measurement.

CONTROLLING 8SGEA CAL IERKTUR OUTPUT
Press the following 8502A front panel control keys in the sequence indicaled:

$$
\text { (1) }=^{\prime} \mathrm{CH}^{+} \text {, (2) } \sim^{\prime} M e n s^{\prime}:(3)-^{\prime} F 3^{\prime}, \quad \text { (4)-'F1' }
$$

Them, pressing the 6502A key '7' will turn the calibrator output ON, and pressing the B582A key 'CLEPR' will turn the calibrator sutput OFF.

For mare detait see 'Calibrator Dutput Level. Test' on page 6-2 of the 85024 manual.

CODIIION: Do not press any UNITS key when the mount is cornected to the calibrator. This will couse the calibrator 10 output 100 äd which might damage the aount:

Figure 2.2. Screen display of operating instructions for the calibrator output.

Figure 2.3 shows the screen that appears when F4 is pressed to start the measurement. Just before the message TURN RF ON (PRESS 8502A KEY '7') is displayed, the computer will beep once. At that point press key 7 on the 8502 A to turn the rf on and wait for a pair of beeps from the computer. The message will change to TURN RF OFF (PRESS 8502A 'CLEAR'). After pressing the CLEAR key, wait until a single beep sounds again, before pressing key 7 to begin the next measurement in the set. This sequence will be automatically repeated until all the measurements making up the set have been made.

Figure 2.3. Screen display while the measurement is made.

When the desired number of measurements is complete, the final screen that is displayed is shown in figure 2.4.

Figure 2.4. Screen display of the measurement results.

The upper part of the display summarizes each measurement in the set as explained in table 2.1 below.

Table 2.1. Explanation of the upper part of the measurement screen	
Column Heading	Explanation
NO.	Number of the power measurement.
POWER	Result of the power measurement in milliwatts.
PWR - 1 mW	Percent deviation of the measured power from 1 milliwatt.
V1	Power meter voltage with the rf off (see section 3.1).
Delta V	Change that occurs in the power meter voltage when the rf is turned on.
V1 Drift	Drift of V_{1} in $\mu \mathrm{V} / \mathrm{s}$ that occurred from the beginning of the measurement until it was complete. Note that if the drift is greater than $10 \mu \mathrm{~V} / \mathrm{s}$ the measurement should be repeated after waiting a period of time for the mount temperature to further stabilize.
Ref. Offset	The compensation element channel is used as the voltage reference; this column shows the voltage difference between the measurement thermistor channel and the compensation thermistor channel when the rf is off.

The final results are displayed on the screen below the horizontal dashed line. The explanation of each column is given in the following table.

Table 2.2. Explanation of the results section of the measurement screen	
Column Heading	Explanation
AVG PWR	Average power in milliwatts computed from the measured data set.
AVG - 1mW	Percent deviation of the average power level from 1 milliwatt.
MAX DEV	The maximum positive and negative deviations from 1 milliwatt.
STD DEV	The standard deviation of the individual measurements.
SYS UNC	The total calculated systematic uncertainty in the measurement.
TOT UNC	Total uncertainty; the systematic uncertainty plus three times the standard deviation of the mean.

3. SYSTEM DESCRIPTION

3.1 Theory of Operation

The NIST Type IV power meter is not a direct reading instrument. An external precision dc voltmeter must be connected to the power meter, and the power is calculated from the voltmeter readings. The power, P, is given by

$$
\begin{equation*}
P=\frac{1}{R_{0}}\left(V_{1}^{2}-V_{2}^{2}\right), \tag{3.1}
\end{equation*}
$$

where V_{1} is the output voltage without rf power, V_{2} is the voltage with rf power, and R_{0} is the operating resistance of the mount. Note that the so-called "bolometric power" is simply the change of the mount dc bias power as rf power is applied and removed.

It can be seen from eq (3.1) above that, as the rf power becomes small, V_{2} approaches V_{1}. Because of the uncertainty "magnification" that occurs in the computed difference of two nearly equal numbers, the power measurement uncertainty becomes very large as the power decreases. The solution to this problem is to measure the difference between V_{1} and V_{2} directly. This requires a reference voltage generator (RVG) which is set nominally equal to V_{1} and, in effect, stores V_{1}.

When an RVG is used, the expression for calculating power from measured voltages becomes,

$$
\begin{equation*}
P=\frac{1}{R_{0}}\left(2 V_{1}-\Delta V\right) \Delta V, \tag{3.2}
\end{equation*}
$$

where R_{0} and V_{1} were previously def ined, and ΔV is the change in the power meter voltage when rf is applied. In providing for a first-order correction of mount drift, the value of V_{1} and ΔV are estimated by assuming linear drift and measuring several other voltages while the rf is off, as shown in figure 3.1.

The diagram in figure 3.1 depicts the outputs of the power meter and RVG as a function of time while the rf is cycled on and off. The measurement sequence of five voltage and time readings used to calculate the power and correct for the mount drift is also shown. Note that the reference voltage generator is not set equal to V_{1}, nor is it constant with time. This is because it is convenient to use the compensation ele-

Figure 3.1. Measured power meter voltages vs time. ment of the mount, biased by the second power meter channel, as the reference voltage generator. Thus the RVG does drift during the measurement, but this change is also corrected, to first order, by the measurement series.

In terms of the measured voltages, the values to be used in eq (3.2) are given by,

$$
\begin{equation*}
V_{1}=V_{1 i}+\left(\frac{t_{3}-t_{1}}{t_{5}-t_{1}}\right)\left(V_{1 f}-V_{1 i}\right) \tag{3.3}
\end{equation*}
$$

and,

$$
\begin{equation*}
\Delta V=V_{2 x}-\left[V_{1 x i}+\left(\frac{t_{3}-t_{2}}{t_{4}-t_{2}}\right)\left(V_{1 \mathrm{txf}}-V_{1 x_{i}}\right)\right] . \tag{3.4}
\end{equation*}
$$

3.2 Hardware

The system block diagram is shown in figure 3.2. The input switching to the digital voltmeter (DVM) is done with the multiplexer internal to the DVM. The dual power meter also has an IEEE Std-488 bus interface with controlled output switching, but it is not used in this application. The specifications for the instruments are given in appendix A.

Figure 3.2. System block diagram.

3.3 Software

A software listing is included as appendix B. Comments at the beginning of the code define the variables (and their location) that one might want to change for other applications such as a different power level or a new mount calibration factor.

4. ERROR ANALYSIS

4.1 Systematic Error Components

The factors contributing to the total systematic uncertainty are:

1. Uncertainty in the dc voltage measurements.
2. Uncertainty in the thermistor mount effective efficiency calibration.
3. Mismatch uncertainty due to the source (8502A calibrator output) reflection coefficient and the thermistor mount reflection coefficient.
4. The "dual element substitution error" associated with the coaxial thermistor mount.
5. Type IV power meter uncertainty. There are four sources of possible error internal to the power meter. They are, the reference resistors, the operational amplifier open loop gain, input off set voltage, and input bias current. The Type IV error analysis [1] indicates that all of them are negligible compared to the four factors listed above.

The first four of these items will be considered individually in the following sections.

4.1.1 Voltmeter Uncertainty

The effect of uncertainty in the individual voltmeter readings can be determined by taking the total differential of the expression for power, eq (3.2),

$$
\begin{equation*}
\mathrm{d} P=\frac{2}{R_{0}}\left[\Delta V \mathrm{~d} V_{1}+\left(V_{1}-\Delta V\right) \mathrm{d} \Delta V\right], \tag{4.1}
\end{equation*}
$$

where, in terms of the measured parameters,

$$
\begin{gather*}
\mathrm{d} V_{1}=\left(1+T_{1 f}\right) \delta V_{1 i}+T_{1 f} \delta V_{1 f}, \tag{4.2}\\
\mathrm{~d} \Delta V=\delta V_{2 X}+\left(1+T_{2 f}\right) \delta V_{1 X i}+T_{2 f} \delta V_{1 X f}, \tag{4.3}\\
T_{1 f}=\frac{t_{3}-t_{1}}{t_{5}-t_{1}}, \tag{4.4}
\end{gather*}
$$

and,

$$
\begin{equation*}
T_{2 f}=\frac{t_{3}-t_{2}}{t_{4}-t_{2}} \tag{4.5}
\end{equation*}
$$

The quantities $\delta V_{1 i}, \delta V_{1 f}, \delta V_{1 X i}, \delta V_{1 X f}$, and $\delta V_{2 X}$, are the uncertainties in the measured values of $V_{1 i}$, $V_{1 f}, V_{1 X i}, V_{1 X f}$, and $V_{2 X}$. These uncertainties in the measured voltages are based on the voltmeter specifications, which are usually given in two parts as a fraction of reading term, α, and a fraction of full scale term, β. The general expression for the voltmeter uncertainty is given by,

$$
\begin{equation*}
\delta V=\alpha V_{\text {reading }}+\beta V_{\text {fullscale }} . \tag{4.6}
\end{equation*}
$$

Figure 4.1 shows the uncertainty in power measurement as a function of power level near 1 mW , as calculated using the above procedure (in the calculations, the sign of the independent terms are chosen to give the maximum contribution to the total uncertainty) for the voltmeter, power meter, and measurement configuration used in this system.

Figure 4.1. Power measurement uncertainty from the DVM.

4.1.2 Uncertainty in Thermistor Mount Effective Efficiency

This is the uncertainty of the NIST thermistor mount calibration. The NIST calibration also gives a value for the mount calibration factor C_{f}, which is the factor used in this measurement rather than effective efficiency alone, and is defined later in this section. The values listed on the report of calibration will, of course, be constant for any given mount, until the unit is recalibrated.

The thermistor mount should be recalibrated periodically.

4.1.3 Mismatch Uncertainty

The net power delivered to a termination by a source is given by,

$$
\begin{equation*}
P_{t}=P_{0} \frac{1-\left|\Gamma_{t}\right|^{2}}{\left|1-\Gamma_{g} \Gamma_{t}\right|^{2}}, \tag{4.7}
\end{equation*}
$$

where P_{Q} is the power the source would deliver to a nonreflecting termination, Γ_{g} is the generator reflection coefficient, and Γ_{t} is the termination reflection coefficient. Ideally, the calibrator should deliver a net power of 1 mW to the power detector being calibrated, but that can only be accomplished if the complex reflection coefficients of the power detector, generator, and calibrating thermistor mount are known, which is generally not the case. Assuming, then, that the calibrator output specification is the power delivered to a nonreflecting load, P_{0}, the measured output is given by,

$$
\begin{equation*}
P_{0}=\frac{P_{m}}{\eta_{m}} \frac{\left|1-\Gamma_{8} \Gamma_{m}\right|^{2}}{1-\left|\Gamma_{m}\right|^{2}} \tag{4.8}
\end{equation*}
$$

where P_{m} is the bolometrically measured power, $\boldsymbol{\eta}_{m}$ is the effective efficiency of the thermistor mount, Γ_{g} is the generator reflection coefficient, and Γ_{m} is the thermistor mount reflection coefficient. The denominator of eq (4.8) is the mount calibration factor,

$$
\begin{equation*}
C_{f}=\eta_{m}\left(1-\left|\Gamma_{m}\right|^{2}\right), \tag{4.9}
\end{equation*}
$$

so that eq (4.8) becomes,

$$
\begin{equation*}
P_{0}=\frac{P_{m}}{C_{f}}\left|1-\Gamma_{g} \Gamma_{m}\right|^{2} \tag{4.10}
\end{equation*}
$$

The value of Γ_{m} has been measured during the NIST calibration, but only an upper limit to the magnitude of Γ_{g} is known (from the source return loss specification). Thus, only the limits to the term involving the reflection coefficients are known,

$$
\begin{equation*}
\left(1-\left|\Gamma_{g}\right|\left|\Gamma_{m}\right|\right)^{2} \leqslant\left|1-\Gamma_{g} \Gamma_{m}\right|^{2} \leqslant\left(1+\left|\Gamma_{g}\right|\left|\Gamma_{m}\right|\right)^{2} \tag{4.11}
\end{equation*}
$$

so that P_{0} is also only known within the limits,

$$
\begin{equation*}
\frac{P_{m}}{C_{f}}\left(1-\left|\Gamma_{g}\right|\left|\Gamma_{m}\right|\right)^{2} \leqslant P_{0} \leqslant \frac{P_{m}}{C_{f}}\left(1+\left|\Gamma_{g}\right|\left|\Gamma_{m}\right|\right)^{2} \tag{4.12}
\end{equation*}
$$

This uncertainty in P_{0} is the mismatch uncertainty and its relative value is given to first order by,

$$
\begin{equation*}
\pm 2\left|\Gamma_{g}\right|\left|\Gamma_{m}\right| . \tag{4.13}
\end{equation*}
$$

The return loss specification on the calibrator output is greater than 25 dB , which results in a value for $\left|\Gamma_{g}\right|$ of ≤ 0.056. The value of $\left|\Gamma_{m}\right|$ for the thermistor mount provided is 0.019 ; together these give a mismatch uncertainty in P_{0} of ± 0.21 percent.

4.1.4 Dual Element Error

The power detector is a dual-element coaxial thermistor mount. Dual-element bolometer units are nonlinear with power level as a result of a dc-rf substitution error that arises because the two elements are not identical [2]. The error is of concern in this measurement because it is being made at 1 mW ,
while the NIST calibration of mount efficiency is done at 10 mW . The only way to determine the error magnitude is by direct measurement.

In this case, the method used was to connect the coax mount to one arm of a nominally equal power splitter (for this measurement, a waveguide "magic tee" in WR• 90), and a single-element waveguide mount to the other arm. The ratio of the two bolometric powers was determined at 10 mW and again at a randomly selected level between 10 mW and 0.1 mW . The change in the ratios as determined at the two power levels was a measure of the dual-element error.

Figure 4.2 shows results for two identical model waveguide mounts at 9.1 GHz . The increased spread of the data as the power level decreases is typical of bolometric measurements because of the small change in de power that occurs at low microwave power levels. The -10 dB point on the plot is approximately equal to 1 mW .

Figure 4.2. Change in the power ratio of 2 waveguide mounts vs power level.

Figure 4.3 is the result for a coax mount compared with one of the waveguide mounts. The change in ratio at the 1 mW level (-10 dB point) is about 0.035 percent. This is the uncertainty that can be expected in the effective efficiency and thus the power measurement at 1 mW , given the calibration is done at 10 mW .

Figure 4.3. Change in the power ratio of a coax mount to a waveguide mount vs power level.

4.2 Random Error

In section 2.2 , figure 2.4 shows the measurement screen. The last three columns under the Results section show the standard deviation, the systematic uncertainty, and the total uncertainty of that measurement set. The random contribution to the total uncertainty is chosen to be three times the standard deviation of the mean.

5. REFERENCES

[1] Larsen, N.T. A new self-balancing dc-substitution rf power meter. IEEE Trans. Instrum. Meas. IM-25: 343-347; 1976 December.
[2] Engen, G.F. A dc-rf substitution error in dual-element bolometer mounts. IEEE Trans. Instrum. Meas. IM-13: 58-64; 1964 June-Sept.

APPENDIX A

Instrument Specifications

1. Digital voltmeter: $61 / 2$ digit resolution; 3 volt dc range with 0.0025% of reading and 0.0002% of full scale accuracy; 300 mV dc range with 0.0035% of reading and 0.0013% of full scale accuracy; IEEE Std-488 bus; optional integrated reed relay multiplexer.

Note: meters with other dc ranges such as $100 \mathrm{mV}, 1$ volt, and 10 volts are also usable. For instance, a $61 / 2$ digit meter with 0.00034% of reading and 0.002% of full scale accuracy on the 100 mV range, 0.00024% of reading and 0.00033% of full scale accuracy on the 1 volt range, and 0.00023% of reading and 0.00016% of full scale accuracy on the 10 volt range, gives results comparable to the 3 volt -300 mV meter.
2. Multiplexer: integrated with the DVM (or separate unit); minimum 6 single-pole, single-throw contacts; maximum thermal off set of $3 \mu \mathrm{~V}$; IEEE Std- 488 bus.
3. Dual NIST Type IV power meter (or two single units).
4. Coaxial thermistor mount: type N male connector; temperature compensation thermistors; dc bias power $\approx 30 \mathrm{~mW}$; maximum $|\Gamma|<0.025$; NIST calibration at 1 GHz .
5. Computer controller: programmable in Hewlett Packard Work Station Basic version 5.13 ("Rocky Mountain Basic"), or TransEra "HT Basic" with IEEE Std-488 capability; IEEE Std488 bus.

APPENDIX B

Sof tware Listing

100	File $=$ = PWRM1" ${ }^{\text {a }}$ (Started:9001111632/FRC	
105	Rev $\$=$ " $9011210805^{\prime \prime}$! FRC 【 NTL author of the subprograms	
110	$!$ l Errors, Select_v, and Hp_3457	
115	1 l 1 l	
120	! This program application is the measurement of the 1 mw	
125	! calibrator output of the Wavetek 8501A peak power meter.	
130	!	
135	1	
140	1 NOTES:	
145	$!$	
150	! This version measures V1 and delta V with the compensation element	
155	! used as an RVG. It also calculates the measurement uncertainty.	
160	!	
165	- Total measurement uncertainty includes:	
170	! Mount calibration factor uncertainty of 00.5973\% (For 20054	
175	d with Cal Factor of 0.9897)	
180	1 and calculated mismatch uncertainty for the source (\|Gamma	<=0.056)
185	$!$ and the mount (\mid Gamma\|<=0.019) of 0. 0.21%.	
190	! The total is 0.8073\% plus the OVM and Type IV contribution.	
195	!	
200	!	
205	INSTRUMENTS CONTROLLEO: ADORESS	
210	! 1. HP3457A OVM 722	
215	! 2. HP2225A PRINTER 701	
220	!	
225	!	
230	! OESCRIPTION OF THE MAIN INITIAL VALUE VARIABLES:	
235	!	
240	! - - - . -	
245	! The following are in the labeled common named "/0vm/":	
250	$!$	
255	! ** "OVm_name§" - the OVM identifier (ie, HP3457A)	
260	!	
265	! * "PO" - power level in milliwatts. The measurement results are	
270	$!\quad$ compared with this value. Default setting is 1 mW .	
275	$!$	
280	! * "RO" - mount operating resistance in ohms. Normally 200 ohms	
285	1 for a coax mount and may be either 100 or 200 ohms for	
290	! a waveguide mount. Oefault setting is 200 ohms.	
295	!	
300	1 - - - - . - -	
305	! The following are in the labeled common named "/Mount/":	
310	$!$	
315	! * "Mount\$" - bolometer mount identifier (manufacturer,	
320	$!$ model, and serial number).	
325	1	
330	! * "Cf" - NIST measured mount calibration factor. Default setting	
335	! is 0.9897 for the supplied mount. Value must be changed	
340	! after mount replacement or recalibration.	
345	1	
350	l - - - -	
355	! The following are in the labeled common named "/Errs/":	
360	1	
365	l * "Cfu" - total quoted uncertainty of the NIST measured mount	
370	! calibration factor. Oefault setting is 0.5973\% for the	
375	1 supplied mount.	
380	,	
385	! * "Mmu" - calculated mismatch uncertainty. Default setting is	
390	! 0.21\% as indicated in the notes above.	
395	!	
400	! - - - - - - . . . -	
405	! The following is in the labeled common named "/Wavetek/":	
410	!	
415	1 "Sns" - records the serial number of the Wavetek meter	
420	$!$ being measured. It can be input before the measure-	
425	$!$ ment from an item on the initial menu.	
430	,	
435	!	
440	!	
445	1 Changing initial value of variables	
450	$!$	
455	! * These variables are initally defined in the subprogram "Set_up".	
460	1 To change them, move to the subprogram by executing, "EOIT S".	
465	$!\quad C h a n g e ~ t h e ~ v a l u e s ~ a s ~ n e e d e d ~ a n d ~ " R e-s t o r e " ~ t h e ~ p r o g r a m ~ i f ~ t h e ~$	
470	\boldsymbol{l} changes are to be permanent.	
475	$!$ l	
480	\downarrow	
485	! ** This variable is initally defined in the subprogram "Hp_3457".\|	
490	! If a different OVM is used, along with the name, the percent	


```
    P1=1000/R0*(2*V1c-(Ov2))*(Ov2) !Power in mw
    P1=P1/Cf lCal factor correction
    l
    GOSU8 Printout IPrint results
    SUQEXIT
    !Normal exit
    IPrintout
P:
Printout:
l
    IMAGE 30,5X,Z.60,5X,S2Z.30,8X,Z.60, 2X,30.30,5X,S20.0,8X, 20.30
    PRINT USING 925;N,P1,100*(P1-PO)/PO,V1c,Ov2*1.E+3,Ov1_dt,V1x*1.E+3
    RETURN !
    l
8ail_out:
                            |As it says
                            IOVM continue reading
    OUTPUT 722;"TRIG AUTO"
                TABXY(30, 1), CHR$(128);CHR$(136);
        PAUSE
        l
Exit:
                            !Finished
    SUBENO ! SUB Meas
    !
Rf:SUB Rf(On,Vt) !Turn rf ON/OFF
        IF On THEN
        OISP CHR$(129);" TURN RF ON (PRESS 8502A KEY '7') ";CHR$(128) !Tell operator
            8EEP 1000,.01 lGet his attention
            LOOP lWait for rf to be turned on/off
                CALL Ovm(V,T) !Read OVM
                    WAIT 1
            EXIT IF V }\V\\mathrm{ IIf rf is turned ON
            ENO LOOP
        ELSE
            OISP CHRS(129);" TURN RF OFF (PRESS 8502A 'CLEAR') ";CHR$(128) !Tell operator
            BEEP 1000,.01 lGet his attention
            WAIT . }
            BEEP 1000,.01
            LOOP lWait for rf to be turned on/off
                CALL Ovm(V,T)
                WAIT 1
            EXIT IF V<Vt
            ENO LOOP
        ENO IF
        OISP "n
    SUBENO
    l
Ovm: SUB Ovm(V,T)
lOVM reading
            SENO 7:UNL LISTEN }2
                            lGet dvm's attention
            TRIGGER 7 !trig to read
            ENTER 722;V
            T=TIMEOATE
                                    lRead OVM
                            Get the time
        SUBENO
        ! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
        !
    Init:SU8 Init
    |Initialize instruments
            !
            CLEAR }72
                            IClear 3457
            OUTPUT 722; "TERM SCANNER"
            !Connect input to scanner
            OUTPUT 722;"NPLC 10"
            !10 PLC
            OUTPUT 722;"OCV -1"
                        lAuto Range
            OUTPUT 722;"TRIG AUTO"
            l
            OUTPUT 722;"CHAN 1" lConnect for V1, floating DVM
            WAIT 1 lMake sure everything is settled
        SUBENO
        l * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
        !*
    H:SUQ Hdr
    b
        OPTION BASE 1
            CLEAR SCREEN
            l
            COM /Ovm/ PO,R0,A1,A2,A3,A4,A5, 81, 82, 83, 84, 85, R1, R2, R3, R4, R5
            COM /0vm/ Ovm_name$[40] [OVM IO
            COM /Mount/ Mount$[40],Cf lMount IO
            COM /Wavetek/ Sn$[7] lFor the serial number
            !
            PRINT TA&XY(1,1),CHR$(137)&"P W R_M T R 1"&CHR$(136)
```



```
            |
```



```
2855
2870
2875
2880
2885
2885
2890
2895
2900
2905
2910
2915
2915
2925
2930 1
2935 Exit:
2940 SUBENO
```


BIBLIOGRAPHIC DATA SHEET

Power Measurement System for 1 mW at 1 GHz
5. AUTHOR(S)

Fred R. C1ague
6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS) U.S. DEPARTMENT OF COMMERCE NATIOMAL INSTITUTE OF STANDARDS AND TECHNOLOQY BOULDER, COLORADO 80303-3328
7. CONTRACT/GRANT NUMBER
8. TYPE OF REPORT AND PERIOD COVERED
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)
U. S. Air Force

Logistics Command
Directorate of Metrology
Newark AFB, Ohio 43057
10. SUPPLEMENTARY NOTES
11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR LITERATURE SURVEY, MENTION IT HERE.)

An automated measurement system designed to measure power accurately at the level of 1 mW and at the frequency of 1 GHz is described. The system consists of commercial IEEE Std-488 bus-controlled instruments, a computer controller, and software. The results of a series of measurements are output to the computer display and, optionally, to a printer. The results are the mean of a measurement series and and estimate of the systematic and random uncertainty. The total estimated uncertainty for the average of six consecutive measurements of a nominal $1 \mathrm{~mW}, 1 \mathrm{GHz}$ source is typically less than 1 percent. The system can measure any power from 0.1 to 10 mW at any microwave frequency by making appropriate changes to the software and possibly, the hardware.
12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)
automated measurement; microwave; microwave power measurement; power; power measurement; power measurement system.

14. NUMBER OF PRINTED PAGES
32
15. PRICE

NIS Technical Publications

Periodical

Abstract

Journal of Research of the National Institute of Standards and Technology-Reports NIST research and development in those disciplines of the physical and engineering sciences in which the Institute is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs-Major contributions to the technical literature on various subjects related to the Institute's scientific and technical activities.
Handbooks-Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications-Include proceedings of conferences sponsored by NIST, NIST annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.
Applied Mathematics Series-Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.
National Standard Reference Data Series-Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NIST under the authority of the National Standard Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NIST by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW., Washington, DC 20056.
Building Science Series-Disseminates technical information developed at the Institute on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.
Technical Notes-Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST under the sponsorship of other government agencies.
Voluntary Product Standards-Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NIST administers this program as a supplement to the activities of the private sector standardizing organizations.
Consumer Information Series-Practical information, based on NIST research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.
Order the above NIST publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.
Order the following NIST publications-FIPS and NISTIRs-from the National Technical Information Service, Springfield, VA 22161.
Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)-A special series of interim or final reports on work performed by NIST for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form.
U.8. DEPARTMENT OF COMMERCE

National Insititute of Standards and Technology
(formerly National Bureau of Standerds)
325 Broadway
Boulder, Colorado $80303-3328$

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, $\$ 300$

[^0]: U.S. DEPARTMENT OF COMMERCE, Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, John W. Lyons, Director

[^1]: For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402-9325

[^2]: ${ }^{1}$ Certain commercial instruments and software products are identified in this document in order to adequately specify the instrument supported and the measurement system. Such identification does not imply recommendation or endorsement by NIST nor does it imply that the identified items are necessarily the best available for the purpose.

