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COAXIAL INTRINSIC IMPEDANCE STANDARDS

Robert T. Adair
and

Eleanor M. Livingston

This paper discusses how impedance standards are derived from the

basic definition of impedance, constructed and used in metrology
with coaxial air- line systems. Basic transmission line equations
are reviewed with emphasis given to intrinsic or derived standards
for obtaining the impedance in low- loss transmission line systems.
A brief description is given of how impedance standards are used
to calibrate the vector automatic network analyzer, and specifi-
cally, the six-port system automatic network analyzer used at the

National Institute of Standards and Technology for calibration
services in the radio frequency, microwave, and millimeter wave
areas. Measurement uncertainties are given for 7 mm coaxial
devices measured with the National Institute of Standards and
Technology six-port system. The resolution of our six-port system
is several orders more precise than that of the present impedance
standards from which it is calibrated. Required improvements in
the physical dimensions of air- line standards which permit the

automatic network analyzer's capability to be more fully utilized
are given.

Key words: automatic network analyzer; calibration services;
coaxial line; impedance; intrinsic; measurement uncertainties;
metrology; microwave; radio frequency; reflection coefficient;
scattering parameters; six-port systems; standards; transmission
line; 7 mm coaxial devices.

1.0 INTRODUCTION

Although the resolution of today's state-of-the-art automatic network

analyzers (ANAs) is approximately two orders of magnitude greater than what

can be used, the measurement accuracy of these ANAs have been limited because

of the lack of well-defined impedance standards. Impedance is one of the

basic electrical parameters used to describe and quantify electrical systems

and components. Historically, impedance standards have been one of the most

important and widely used standards in radio frequency (rf ) , microwave (/iw)
,

and millimeter wave (mmw) metrology. Sections of precision air line are the

basis for calculable impedance standards. They are nearly reflectionless and

represent the ultimate in adherence to design principles in maintaining a



constant characteristic impedance (Z^) throughout the precision air- line

sections. Today, ANAs are widely used in metrology because of their

versatility, sensitivity, resolution, and potential accuracy. Moreover, their

accuracy is directly dependent upon the quality of the impedance standards

used to characterize and evaluate the system parameters of the ANAs. There-

fore, it is necessary to develop, characterize, and propagate a new class of

rf, juw, and mmw impedance standards.

2.0 GENERAL BACKGROUND

Coaxial impedance standards can be used from dc to above 60 GHz , but are

widely used from audio frequencies up through 50 GHz. Propagation is

ordinarily restricted to the TEM (transverse electromagnetic) mode. Impedance

(Z) in a linear constant-parameter system can be defined [1,2] as the ratio of

the phasor equivalent of a steady-state sine-wave voltage or voltage-like

quantity (driving force) to the phasor equivalent of a steady- state sine -wave

current or current-like quantity (response). The real part of impedance is

the resistance (R) . The imaginary part is the reactance (X) . For dc and low

frequencies below a few megahertz, impedances are easily modeled as shown in

Figure 1 by discrete parameters. However, at higher frequencies, such

impedances are more difficult to define since they do not maintain their low

frequency characteristics and therefore have to be represented as distributed

parameters for a unit length of line as shown in Figure 2.

I:,

0' Z|„- E,„

Z

n
^{ >{ E

out \

Figure 1. Typical discrete -parameter circuit
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Figure 2. Equivalent circuit of a transmission line showing distributed
circuit parameters in discrete form per unit length of line.

In the rf, /zw, and mmw frequency ranges where the wavelengths are

relatively short, the electric and magnetic fields vary over small distances.

For coaxial transmission line systems, the electric field is restricted to the

region between the inner and outer conductors. When the dominant mode is the

TEM mode, the electric fields are radial and the magnetic fields concentric

circles. The impedance can be defined as the ratio of the electric field to

the magnetic field as they cross a plane perpendicular to the direction of

propagation [3]. This impedance is often called the intrinsic or

characteristic impedance of the device and is designated Z^ . The term

"intrinsic" or "derived" is used to describe the impedance of a device by

itself and is determined by the physical properties of that device [4] . In

the case of a coaxial transmission line, Z^ is determined from the diameters

of the inner and outer conductors.

Finally, definitions [1] of accuracy, precision and resolution are

presented as follows: accuracy - the degree of correctness with which a

measured value agrees with the true value; precision - the degree of mutual

agreement among individual measurements, namely repeatability and reproduci-

bility; resolution - the degree to which nearly equal values of a quantity can

be discriminated.



3.0 BASIC TRANSMISSION LINE EQUATIONS

Traveling waves are set up when voltage, £,„, is applied to the input of a

transmission medium and input current, I|„, flows in the line as shown in

Figure 2 [5] . If the transmission line is sufficiently long then Z, Y, L, R,

G, and C are defined as uniformly distributed constants of the complex series

impedance Z in ohms, complex shunt admittance Y in Siemens, inductance L in

henries, dc resistance R in ohms, series conductance G in Siemens and capaci-

tance C in farads, respectively, per unit length. These components are shown

in Figure 2 and presented for a coaxial transmission line in Figure 3. The

series resistance and inductance are shown in the equivalent

Center
Conductor

^Dielectric

Figure 3. Distributed inductance, resistance, conductance,
and capacitance of a coaxial transmission line.

circuits in Figure 2 and can be distributed equally or unequally in the trans-

mission line [6]. Under these conditions, Z^ of the line is equal to Z.^ where

z,, = E,yi,, = Jin. (1)

Since Z = R + jwL

and Y = G + jwC,

then
R + jwL

G + jwC
(2)



The input voltage, E^^ , requires a finite time to propagate along the

transmission line. The complex propagation constant, 7, [6] describes the

effect of the transmission line on the propagation of the traveling voltage

wave where a = attenuation constant in nepers per unit length and /3 - phase

constant in radians per unit length.

7 = yZY = J(R + jwDCG + jwC) = a+j^. (3)

The velocity of propagation [7] of the voltage wave is the phase

velocity, u^, where

i/p = w/^ = 27rf/^. (4)

The voltage and current at any distance, i, along the line are given

respectively by E^ = Ei^e"'"^ and I^ = I.^e'"^ , and they are related by the

characteristic impedance, Z^, of the line:

Z = E e-''Vl e-^*. (5)in ' in \ -^ /

Standing waves [6] result when we do not have the ideal transmission line

terminated in its characteristic impedance, Z^ . A portion of the incident

voltage wave is reflected at the line's terminating load, Z|_ , and reacts or

interferes with the incident wave to set up a standing wave as shown in

Figure 4. The reflected wave carries energy that is not delivered to the

load. Reflection coefficient, T [3], is the term used to quantify this

reflected voltage wave. Its magnitude is the ratio of the amplitude of the

reflected voltage wave, E^, to that of the incident voltage wave, E|

.

Thus |r| = EyEj. (6)

The complex reflection coefficient can be expressed in terms of Z^ and Z^ [3].
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Figure 4. Incident and reflected wave of a transmission line terminated in a

mismatched condition showing the resulting standing wave.

Thus

or

r = (z, - z,)/(z, + zj

r= |r| A
where is the angle by which the reflected wave is displaced from the

incident wave.

Equation (7) can be rewritten in a different form which is also useful:

(7)

(8)

z, = z„ (1 + D/d - D (9)

Voltage standing wave ratio (VSWR) is defined as the resultant peak-to-

trough variation of the amplitude of the periodic standing wave created when a

line is not terminated in Z^, . Specifically, VSWR, p, is the ratio of E^^^ to

E^jin of the standing wave [8]. VSWR can be expressed in terms of F, so

p = (1 + |r|)/(i - |r|) (10)



Equation (10) can be solved for |r| and yields a useful equation for

calculating |r| from VSWR:

I

^ VSUR - 1
' I VSWR + 1

• ^-^^^

Return loss, RL, is the ratio of the incident power, P., to the reflected

power, P^ , at a point on the transmission line, expressed in decibels.

Pi
RL = 10 log -p^. (12)

r

Equation (12) can also be expressed in terms of |r| and VSWR:

RL = 20 log -r^ = 20 log ^f^^. (13)

4.0 THE MEASUREMENT OF IMPEDANCE

Historically, slotted lines and reflectometers have been the most

accurate means available to measure impedance.

Precision slotted transmission lines [6] are excellent means of impedance

measurement. They are designed to measure the standing-wave pattern of the

electric field intensity as a function of the longitudinal position along a

line. They determine the maximum and minimum magnitudes of voltage from which

VSWR is calculated. A matched impedance standard (such as a sliding load) is

used to calibrate (or evaluate) the slotted line since any residual VSWR due

to the slotted line must be separated from the value measured by the slotted

line. The impedance of the device under test (DUT) can then be calculated.

However, the effects of connectors on the measurement results cannot be

separated from those of the slotted line or of the DUT.

Tuned reflectometers [9,10] and untuned (broadband) reflectometers [11]

are typically more precise (and more complex) than slotted lines for measuring

the magnitude and phase of the characteristic impedance. Their use requires a

precision section of transmission line, a precision quarter-wave short-circuit



termination, and a precision quarter-wave offset open-circuit termination as

the impedance standards. Very precise measurements can be performed on these

systems but typically these are performed manually and hence are time-

consuming and cumbersome.

Current and future methods of precise impedance measurements most

certainly lie in the realm of the computer-controlled ANA. In order to treat

the difficult area of rf
,

/iw, and mmw parameters more effectively both

magnitude and phase information is included. The following discussion is

based on the vector ANA rather than the scalar ANA. The recent publication of

the IEEE standard on network analyzers [12] is proof of the wide acceptance

and present use of vector ANAs for the major portion of complex measurements.

The National Institute of Standards and Technology (NIST) has done

considerable work in the design, development, and refinement of the six-port

automatic network analyzer [13,14]. The six-port ANA incorporates two six-

port reflectometers , one on either side of the measurement insertion point.

The high precision and resolution of these systems demands a more accurate

standard than those currently available. The absolute accuracy of the

impedance standards used to calibrate these systems appears to be the limiting

factor in ANA measurement abilities.

Several commercially available ANAs demonstrate excellent complex

measurement capabilities, and they also require more accurate standards than

those currently available. See for example, [15,16].

5.0 TYPICAL IMPEDANCE STANDARDS

Important impedance standards can be placed into three major categories:

(1) matched terminations; (2) mismatched terminations; and (3) precision

sections of air-dielectric transmission lines.

Matched terminations are designed and constructed to match as precisely

as possible the characteristic impedance of the system in which they are to be

used. These are usually broadband devices. They can be fixed or they can be

adjustable terminations such as sliding loads [17, 18].

Mismatched terminations designed for specific values of impedance mis-

match are available. They are used to test the measurement system's ability



to correctly measure impedances other than the characteristic impedance of the

system. These terminations [19] typically fall into three categories:

(1) short-circuit terminations (either flat or quarter-wavelength)
; (2) open-

circuit terminations (either flat or quarter -wavelength offset), and (3) mis-

matches with fixed precise values of VSWR such as 1.2, 1.5, and 2.0. These

standard mismatch terminations furnish precisely calculated values of reflec-

tion coefficient magnitude and phase. When connected to the system of

interest they provide a means of testing the measurement system's- accuracy

.

Precision air-dielectric transmission line sections, commonly called "air

lines," provide calculable values of Z^ based on physical dimensions of the

individual air lines [20], The dimensions of interest for ideal coaxial

transmission lines are (1) the inner diameter, D, of the outer conductor and

(2) the outer diameter, d, of the inner conductor. Figure 5 shows the

relationship of the conductor's dimensions to the characteristic impedance of

a coaxial transmission line [20].

7 ~ 60 p„ D

Figure 5. Dimensional relations for an ideal coaxial air line,

The following equations provide a rapid and accurate means of determining

the electrical parameters of precision, air-dielectric, coaxial transmission

lines. For a dielectric medium of air, the relative permeability, n, = fi^, and



the relative permittivity, e^ = 6^ . When the line can be considered lossless

(R = G = 0), eq. (2) becomes

Z„ = yiTc" (14)

where L = (nJ27r) in (D/d)

and C = (27reJ(€/eJ/(£n(D/d)).

Then Z„ « (60/ye7) £n(D/d ) ,

where Z^ is in ohms. The value of the coefficient of £^(D/d) has been

determined at NIST to seven decimal places [20], so

for /i„ = 47r X 10"^ H/m,

and e„ = 8.854 192 x 10"'' F/m,

then Z„ = (59.958 4916/767) £n(D/d) Q. (15)

For e^ = 1.000 649,

Z„ = 59.939 0446 £n(D/d)

.

(16)

The value of e^ is computed from the refractive index of air [17] for ambient

conditions of 23°C, 50% relative humidity and an atmospheric pressure of

1.013 25 x 10^ Pa (760 Torr) . The value of e^ varies as a function of the

ambient conditions. For example, in Boulder, Colorado, where the atmospheric

pressure is 0.903 92 x 10^ Pa (678 Torr), the value for e, becomes 1.000 558.

Accurate, stable impedance standards are critically needed to character-

ize, calibrate, and support all ANAs including six-port ANAs . The equations

above help to illustrate the requirements for precision in the physical

dimensions of impedance standards, to produce the corresponding electrical

precision for the new generation of ANAs.

10



6.0 BASIC DESCRIPTION OF SIX-PORT ANAs

Single-port and six-port ANAs can be assembled from readily available

commercial components and instruments. Typical port configurations are shown

in Figure 6. The basis of the system can be thought of as a directional

coupler and three voltage probes connected as shown in Figure 7.

in

"in

One-Port Device

"in
Y/2 Y/2

Port 1

Two-Port Device

"out

U .
Port 2

Figure 6. Typical circuit port configurations

G>

voltage probes

000
Port 1 . A . .

A ,

6 6

X9
directional

coupler

^yVA^

Port 2

Figure 7. Basic six-port network analyzer
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A six-port network analyzer is a linear passive microwave network with

several ports. It is used to measure power and F. These parameters are

measured at one port when a signal is applied to a second port, and the

remaining sidearm ports are terminated with power detectors. The power and

the reflection coefficient at the measurement port are calculated from the

sidearm power detector readings. Usually four sidearm detectors are used, so

the network has six ports in all and is called a six-port reflectometer . A

typical six-port network analyzer consists of components such as directional

couplers or probes that couple in different ways to the incident and reflected

waves in a transmission line. Other designs are reported in the literature

[22].

When power detectors are connected to each of the ports as shown in

Figure 8, this device becomes a vector network analyzer. A major advantage of

this technique is that both amplitude and phase information can be obtained

from only amplitude information from the set of power detectors.

Power Detectors

From
Signal
Source

Measurement Port

Power Detectors

Figure 8. Single six-port vector network analyzer
for measuring one-port parameters.
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7.0 DUAL SIX-PORT ANA CALIBRATION TECHNIQUES

The addition of a second six-port reflectometer to the system, as shown

in Figure 9, provides the means to measure two-port parameters in addition to

one-port parameters. Suitable six-port calibration techniques have been

sought for the past decade. Many techniques have been developed by many

different scientists [23-30] to calibrate six-port reflectoraeters . As in most

other developing technologies, the more we learn the more insights we have in

ways to improve upon previous work.

Signal Input Signal Input

H Measurement L
Ports I I

Figure 9. Dual six-port vector network analyzer for
measuring two-port parameters.

Two distinctly preferred techniques for the calibration of six-port ANAs

have evolved from the research work in this area: (1) the Thru-Reflect-Line

(TRL) technique and (2) the Line-Reflect-Line (LRL) technique [31]. The LRL

technique has been expanded from (1) the One -Line Technique to (2) the Two-

Line Technique to (3) the Five -Line Technique [32].

Typically, the procedure for calibration of a dual six-port ANA consists

of observation and analysis of the six-port's response to a set of suitably

chosen, known excitation and reflection conditions at the measurement ports.

This procedure yields a series of complex simultaneous equations which are

then solved for the desired parameters in terms of scattering parameters [24]

13



8.0 NEED FOR MORE PRECISE IMPEDANCE STANDARDS

The advances in technology and metrology over the past decade have

greatly improved the measurement capabilities and performance of ANAs . The

precision and resolution of the current state-of-the-art computer-controlled

network analyzers are sufficient to detect and quantify the effects of indi-

vidual circuit components. The component of variation due to inadequacies of

coaxial connectors and waveguide flanges can be seen and isolated from the

rest of the measurands . The difficulty lies in the fact that the certifiable

absolute accuracy of tnese ANAs is approximately two orders of magnitude less

than their precision, based upon present impedance standards. Also, greatly

improved connectors are becoming available. Table 1 summarizes the improve-

ments in coaxial connectors over the past four decades [33]. The newer high-

precision connectors allow more precise measurements than were possible in the

past, and therefore require more accurate impedance standards than those

currently available. Impedance standards with reflection coefficients less

than 0.0002 are needed if ANA accuracies with two additional orders of

magnitude are to be achieved.

TABLE 1

Summary of the improvement in connector performance over the past four decades.

Connector

Type

Approximate

Date of

Introduction

VSWR at

5 GHz
(Typical)

Approximate
Maximum Usable

Frequency (GHz) Symmetrical

Well-Defined

Mating Plane

GR874 1948 1.035 7 Yes No

OR 900 1963 1.005 8.5 Yes Yes

Free. N 1967 1.02 18 No No

APC7 1968 1.007 18 Yes Yes

APC 3.5 1976 1.006 32 No No

K2.92 1983 1.01 40 No No

PC 2.4 1986 1.01 50 No No

PC 1.85 1987 < 1.016 65 No No

14



9.0 DEPENDENCE OF COMPUTED ELECTRICAL IMPEDANCE UPON PHYSICAL DIMENSIONS

Lengths of precision air-dielectric coaxial transmission lines have

constant impedance and are nearly reflectionless . They actualize ideal design

principles and are the bases for calculable impedance standards. The elec-

trical performance of these air lines depends primarily on the diameters of

the two conductors as illustrated in Figure 5. The effect of irregularities

in the diameters of these conductors on the characteristic impedance of a 50 H

coaxial line can be computed from AZ^/Z^, . Differentiation of (15) yields

AZo AD
_
Ad 1

Z^ ' D d ' £n (D/d) '

where AZ^ is the change in characteristic impedance, D is the inner diameter

of the outer conductor, AD is the deviation of D, d is the outer diameter of

the inner conductor, and Ad is the deviation of d [34] .

The currently achievable dimensional tolerances in the fabrication of

coaxial conductors in various sizes are listed in Table 2. The desired

dimensional tolerances and frequency ranges are also listed. Table 3 shows

typical and desired dimensional tolerances of coaxial conductors. The effect

of air-line conductor's dimensional tolerances on Z^ and on |r| can be

determined with equations (16) and (7), respectively (assuming that Z^ is

constant), and with the dimensional tolerances found in Table 3.

The outer conductor tolerances, AD, are added to the outer conductor

dimension, D, and the center conductor tolerances, Ad, are subtracted from the

center conductor dimension, d, to obtain the "worst- case" effect on Z^ of the

precision air-line impedance standards. Equation (16) then takes the

following form for these calculations:

Z„ = 59.939 0446 £n
[
(D+AD)/(d- Ad) ] . (18)

Table 4 is a tabulation of the changes in Z^ and |r| as a function of AD and

Ad for 14 mm, 7 mm, and 3 . 5 mm air lines, respectively, using a value of 50 n

for Z, .

15



TABLE 2

Summary of precision impedance standards (coaxial air lines) characteristics.

Air-Line Diameter

(mm)

Connector

Type

Frequency Range

(GHz)

Tolerance (uin.)*

Typical Desired

14

7

7

3^

3.5

2.92

2.4

1.85

PC 1.85

N
PC 7

SMA

PC 3.5

K

PC 2.4

PC 1.85

0-8.5

0-18

0-18

0-25

0-32

0-40

0-50

0-65

100-200

250-500

100-200

100-500

100-200

50-100

100-200

15-25

15-25

15-25

10-20

10-20

25-50

10-20

5-15

TABLE 3

Typical and desired dimensional tolerances in the fabrication of precision coaxial air-line

conductors, where D is the inner diameter of the outer conductor and d is the outer

diameter of the inner conductor.

Air-Line

Diameter (in.)*

Dimensions (in.)

(Typical) (Desired)

14 mm
D = 0.562 500*

d = 0.244 255

7 mm
D = 0.275 591

d = 0.119 670

3.5 mm
D = 0.137 795

d = 0.059 835

2.4 mm
D = 0.094 490

d = 0.041 064

Ad = +0.000 100*

AD = ±0.000 200

Ad = +0.000 100

AD = ±0.000 200

Ad = +0.000 100

AD = ±0.000 200

Ad = +0.000 100

AD = ±0.000 200

+ 0.000 015*

±0.000 025

+ 0.000 015

±0.000 025

+ 0.000 010

±0.000 020

+ 0.000 010

±0.000 020

*Note: Dimensions are those given by the manufacturers and are not converted to SI

to avoid round-off errors.
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TABLE 4

Calculated characteristic impedance (Z^), reflection coefficient magnitude ( F ), and return

loss (RL) for precision 14 mm, 7 mm, and 3.5 mm coaxial air lines using ideal, existing and

desired fabrication tolerances for conductor diameters D and d.

D = Inner diameter of outer conductor,

d = Outer diameter of inner conductor.

Z,, = 59.939 0446 In (D + AD/d - Ad).

r = (z„ - 50.000 ooo)/(z„ + 50.000 ooo) .

RL = Return Loss = 20 log (1/ T ).

D d

Tolerance (in.) (in.)

AD
(Min.)

Ad
(urn.)

^0
n r

RL
(dB)

14 mm diameter air line

Ideal 0.562 500 0.244 255

Typical 0.562 700 0.244 155

Desired 0.562 525 0.244 240

+ 200

+ 25

-100

-15

49.999 85

50.045 71

50.006 20

0.000 001

0.000 457

0.000 062

120.0

66.8

84.2

7 mm diameter air line

Ideal 0.275 591 0.119 670

Typical 0.275 791 0.119 570

Desired 0.275 616 0.119 655

+ 200

+ 25

-100

-15

49.999 95

50.093 54

50.012 90

0.000 0005

0.000 935

0.000 129

126.0

60.6

77.8

3.5 mm diameter air line

Ideal 0.137 795 0.059 835

Typical 0.137 995 0.059 735

Desired 0.137 815 0.059 825

+ 200

+ 20

-100

-10

49.999 73

50.186 92

50.018 45

0.000 003

0.001 866

0.000 184

110.5

54.6

74.7
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Figure 10 illustrates the relative resolution and uncertainties of the

NIST six-port ANA measurements of |r| on 7 mm coaxial devices. The random

uncertainty includes the effect of the connectors on the standards and on the

DUT. The resolution for the measurement of |r| by the NIST six-port ANA

ranges from a value of 0.000 02 at 2 GHz to a value of 0.000 05 at 18 GHz.

The desired |r| of 0.0002 for the new generation of precision coaxial air

lines is compared to the value of |r| of 0.001 for the existing air- line

impedance standards. The present estimated uncertainty in the measurement of

|r| by the NIST six-port ANA is a few parts in 10^.

The total uncertainty, U^., is the sum of the random and systematic

uncertainties. The NIST six-port ANA value of Uj for the measurement of |r|

of 7 mm coaxial devices can be determined using the equation

Ut = 3L3, +fV + A. (19)

S|«j|gT is the random uncertainty associated with the calibration of the NIST

dual six-port ANA and is given as one standard deviation. S^ is the standard

deviation computed from n connections of the DUT, and A represents the system-

atic uncertainty of the NIST six-port ANA. Three standard deviations are

taken as the overall random uncertainty; hence the factor of 3.

Typical values of Uj, S|^isj, and A are plotted in Figure 10. Values of S^.

are not plotted since they are frequency dependent and are different for each

DUT. Typical values of S, range from 0.0001 at 1 GHz to 0.001 at 18 GHz under

normal conditions

.

The measurement of conductor diameters to achieve the desired accuracy is

typically a tedious and difficult process. Air gauges [35,36], capacitance

gauges [37], and laser micrometer gauges [38] provide excellent techniques to

measure these diameters, but a nxomber of problems must be solved during the

measurement process. These include mechanical standards of diameter, un-

certainties in the measuring system, measurement environment, and handling

techniques, all of which directly affect the measurements.
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Uncertainty (A)
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I
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Six-Port ANA'

Note: S„ is the connector standard deviation

based on n connections during the calibration
—

of the device under test (DUT). S^^ is not shown

on this graph since it is different for each DUT.
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Frequency (GHz)
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Figure 10. Values of reflection coefficient magnitude versus frequency
for existing and desired precison 7 mm coaxial air- line
impedance standards. Typical NIST six-port ANA resolution
and uncertainties for reflection coefficient measurements on
7 mm coaxial devices are also included.
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10.0 SUMMARY

Transmission line concepts are used in electronic measurement systems to

provide an integral, vital part of rf, /iw, and mmw measurements. Precision

sections of coaxial air-dielectric transmission lines are the most precise

impedance standards in existence [39]. They are necessary for the calibration

and support of ANAs which now make up a majority of the active measurement

systems. The accuracy and capability of ANAs depend directly upon the

precision and accuracy of the physical dimensions of these air lines. The

electrical parameters of these impedance standards are calculated from their

physical properties and dimensions, and consequently depend directly upon the

quality of their fabrication and the measurement of their physical properties.

The results presented in this report are best shown in terms of the

parameter of interest which must be improved to achieve these goals -- the

reflection coefficient of the impedance standard. The degree of improvement

in the reflection coefficient is directly dependent upon improvements in the

physical dimensions of the impedance standards. Data which quantitatively

define the degree of uncertainty in reflection coefficient produced by

specific values of uncertainty in each physical dimension of the impedance

standard are presented.

11.0 CONCLUSIONS

The resolution of state-of-the-art ANAs now is approximately two orders

of magnitude greater than their accuracy. Therefore, significantly greater

accuracies in impedance standards than those currently available are needed to

use the full capability of these ANAs. Impedance standards with reflection

coefficients of less than 0.0002 are required to utilize the existing ANA

resolution. The dimensional tolerances of the impedance standards necessary

to achieve this level of reflection coefficient are now known, as presented in

this document. Thus, a new generation of impedance standards which will

provide the required accuracy and precision not currently available in the

impedance standards of today must be developed. The results presented in this

report provide a quantitative analysis of the methods needed to achieve the

full capability of the present ANAs.
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