
NtST

PUBLICATIONS
i -iyV.V .^i?. V .;,. f

:. i-V^-.y; K'P^^'^J-'^ *'2*VSff:^f5rii.'

j^ llC^n ^"'*^^ ^*^*^^ Department of Commerce

I^J123 1 National Institute of Standards and Tectinology

NATL INST. OF STAND & TECH R.I.C.

A111D3 MS3S37

NIST Technical Note 1283

A Programmer's Reference Manual

for CFAST, the Unified Model of

Fire Growth and Smoke Transport

Walter W. Jones and Glenn P. Forney

_:^,^a5r ^Ulr

100

.U5753 ;

#1283

1990

bi^i.

NAnONAL IN^m^o OF,f^ARDS &

Research Information Center

Gaithersburg, MD 20899

OCfO

'u.

NIST Technical Note 1283

A Programmer's Reference Manual
for CFAST, the Unified Model of
Fire Growth and Smoke Transport

Walter W. Jones
Glenn P. Forney

Center for Rre Research
National Engineering Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899

November 1990

O ,—2^—, 1«

e

U.S. Department of Commerce
Robert A. Mosbacher, Secretary

National Institute of Standards and Technology
John W. Lyons, Director

National Institute of Standards

and Teclinology

Technical Note 1283

Natl. Inst. Stand. Technol.

Tech. Note 1283

104 pages (Nov. 1990)

CODEN: NTNOEF

U.S. Government Printing Office

Washington: 1990

For sale by the Superintendent

of Documents

U.S. Government Printing Office

Washington, DC 20402

CONTENTS

1. INTRODUCTION 1

1.1 The Consolidation Process 3

1.2 Overview 5

2. STRUCTURE OF CFAST 7

2.1 Subroutine Structure 7

2.2 Program Suite Structure 10

2.3 Directory Structure 10

2.4 Network Access 12

3. UPDATING THE MODEL 13

3.1 Tools and File Types 16

3.2 Rebuilding CFAST 21

3.3 Merging Corrections 24

3.4 The control program DSOURC 26

4. PROTOCOL AND INITL\L SERVICES 35

5. DESCRIPTION OF THE DATA FILES USED BY CFAST 39

APPENDIX A : PARAMETERS READ BY "NPUTQ" 41

A.1 Version and Title 43

A.2 Time Specification 43

A3 Ambient Conditions 45

A.4 Floor Plan Data 47

A.5 Connections 48

A6 Thermophysical Properties of Enclosing Surfaces 51

A7 Fire Specifications 52

A.8 Species Production 57

A.9 Files 58

A 10 Graphics Specification 60

All Mechanical Ventilation 69

A12 Miscellaneous 71

Appendix B: LABELLED COMMON BLOCKS DOCUMENTATION 73

B.l Parameter header file, CPARAMS.INC 73

B.2 Definitions of the variables CFAST.INC 75

B.3 Intermodule communication through PARAMS.INC 78

B.4 Thermophysical properties passed through THERMP.INC 79

B.5 The physical environment set by the data copy routine 79

B.6 Shell and program environment, CSHELL.INC 82

B.7 Setting the precision for the model, PRECIS.INC 83

Appendix C: DEPENDENCY CHART OF ROUTINES - WHO CALLS WHOM 84

iii

Appendix D: INTERFACE PROTOCOL - ROUTINES ALPHABETICALLY LISTING
FUNCTION 95

REFERENCES 100

LIST OF FIGURES

Figure 1. Subroutine Structure and Interaction. 8

Figure 2. Routine SOLVE Computations. 9

Figure 3. Overall Program Structure. 10

Figure 4. Basic Directory Structure of CFAST. 11

Figure 5. Network Usage. 12

Figure 6. File Types Used To Maintain CFAST 17

Figure 7. Revision control history. 18

Figure 8 Pyrolysis rate for LFMAX=6. 56

Figure 9. Node arrangement for example 2. 72

Figure 10. Solver Array Structure. 80

IV

Introduction

A Programmer's Reference Manual for CFAST,
the Unified Model of Fire Growth and Smoke Transport

Walter W. Jones

and

Glenn P. Forney

Center for Fire Research

National Institute of Standards and Technology

This document describes the unified model of fire growth and smoke spread, CFAST. This paper

documents the internal structure of the model and details the method of modifying the model, together

with examples. The intent is to provide a framework and methodology for maintenance of the model,

together with a method of updating it. The reader is assumed to have a working knowledge of

programming, software maintenance and modeling of physical phenomena.

1. INTRODUCTION

CFAST is the model that will be used by the Center for Fire Research for applications

involving predictions of fire growth and smoke transport. It is not yet in the Hazard

Methodology suite, but has been designated for release two. This manual describes the basis

and philosophy behind the software implementation of CFAST. The name CFAST is used in

two different ways, as a suite of programs and as the program for modeling fire and smoke
transport. The primary programs in the CFAST suite are the data editor CFIN for entering

data, CFAST for modeling fire and smoke transport, CF_PLT for displaying plots of data, and

CF_RPT for displaying reports.

This manual also describes procedures for updating CFAST. These procedures were

developed to allow several people to work simultaneously and cooperatively on the model.

The authors have tested this concept by merging changes each made into one version. The
primary goal is to describe the philosopy behind the development of the unified model and

detail the information that is crucial to making changes in the model. The internal structure

A Programmer's Reference Manual for CFAST, ...

is from the FAST project, as are the physical routines. Thus this information is available in

the references and is not detailed here.

CFAST is the result of a merger of ideas that came out of the CCFM.VENTS [1]

and the FAST[2] development projects. Some of the issues addressed in the consolidation

of FAST and CCFM.VENTS are discussed in section 1.1. The organization of the FAST
suite of programs illustrated later in figure 3 remains the same in CFAST. However, the

internal structure of these programs has been modified to incorporate the concepts used by

CCFM.VENTS.

CFAST is a zone model, and as such there are limitations to its applicability. Within

this context, the model can be revised, improved, and moved to other platforms than the one

on which it was originally developed. Presently, CFAST runs on MSDOS^ compatible

computers. There are several incentives to "port" it to other platforms. First, programs that

run on several platforms tend to be more robust. This is due to the fact that subtle errors in

a program missed by one compiler are often caught by another. Second, other platforms such

as UNIX workstations, are generally much faster than most MSDOS compatible computers.

The main stumbling block to porting CFAST to other platforms is the hardware dependent

nature of graphics libraries. DEVICE, the graphics library used by CFAST to display

graphical representations of room fires supports several display devices but at present does

not include the Apple Macintosh or any UNIX workstation. A test version of DEVICE has

been enhanced to support XI 1^. By having an Xll driver, DEVICE will run on any UNIX
workstation that supports Xll. This includes most UNIX workstations on the market today.

Additions for the Macintosh and other platforms are in the planning stage.

CFAST is not a final product, and as such the structure of the model, the modules

associated with it, and the procedure for modification will change. The overall philosophy of

its design and updating procedures should remain intact. It is intended that substantial

revisions along these lines would be accompanied by appropriate revision documents.

In most cases it will be modified and used on a single computer. However, the intent

of the structures described in this document is to provide a flexible environment for

cooperative research by a group working on the model on a network. So the instructions will

be given as if a single user were present, but the same statements will apply to the network

environment as well. The differences will show up in the make files^, where explicit

1 The use of company names or trade names within this manual is made only for the purpose of identifying computer hardware

or software products. Such use does not constitute any endorsement of those products by the National Institute of Standards

and Technology.

2 Xll is a vendor independent method for displaying screen graphics. This protocol allows one to compute graphical displays

on one computer and display them on another.

3 A make file contains a collection of rules that are used by the tool MAKE to rebuild a software project. Using MAKE
allows one to update software efficiently since only the subroutines that actually change need to be re-compiled.

Introduction

references will occur to the network as well as the local environment. Since it has been

tested in both environments, it is fair to say that the procedures work.

CFAST is a consolidation of the model E\ST, and the concepts behind the CCFM
work. These programs work on a variety of computers from basic PC's to super computers.

Clearly the numerical portions run significantly faster on the latter than on the former. The
only real restriction is that the platform must support a standard FORTRAN compiler, and

basic graphics concepts. The methodology described in this document is aimed at maintaining

a relatively sophisticated model which includes the phenomena now extant, plus algorithms

under development, as well as phenomena which we can envision in the future. As an

evolutionary product, the computer requirements will increase over time. Although not an

explicit requirement at this time, it is the authors' intentions to require an unsegmented

memory scheme after the first release of this model. Such a requirement precludes some
computer platforms that have been usable in the past. However, it is a relatively simple

matter, given the structure of the model and protocol, to trim the kernel so that it will once

again operate on such platforms.

1.1 The Consolidation Process

The ideas and structures behind the design of the CCFM.VENTS software were

examined so that CFAST could take advantage of the lessons learned during CCFM.VENTS'
development. The basic thrust of most of these ideas was to promote flexibility of the

software design. For example, a programming style was defined so that a program's precision

could be changed. Also, rules for accessing global or common data were set up to make it

easier to install new physical algorithms. Some of these issues addressed in the

CCFM.VENTS, FAST consolidation process are discussed in more detail below.

common block access Low level physical routines should not have access to the

global data structures contained in labeled common blocks. All data that is used or set by

these routines nominally should be passed through the subroutine's argument list.

CCFM.VENTS used this technique, FAST does not. It was not practical to incorporate such

a scheme into CFAST. Instead, each physical routine was modified so that it could only

reference, but not modify, common block variables. A tool, comcheck [3], was developed

to identify common block variables that a subroutine changes. The common blocks in CFAST
now serve as a consistent environment available to all routines.

variable precision CCFM.VENTS was coded using a programming style that allowed

for easy conversion between single and double precision. FAST was modified by in-

corporating this style, CFAST can now be switched between single and double precision.

This involves changing two lines in a make tile and re-building the program. A make
program, along with other development tools for generating versions of CFAST are discussed

in sections 3.1-3.3. A few simple rules for writing software outlined in section 3.4 need to be

followed in order to switch precision. A complication of this conversion was the necessity of

A Programmer's Reference Manual for CFAST, ...

keeping certain routines in single precision since they accessed single precision graphics library

routines that could not be converted to double precision.

software tools Software tools to find text differences and to examine program

structure were developed during the CCFM.VENTS project. These programs were enhanced

during the CCFM.VENTS/FAST consolidation project. The difference program, fdifT, was

modified to make use of the fact that it was examining FORTRAN programs. The program

structure tool, roadmap, was enhanced to work in an MSDOS environment. Another tool,

comcheck, was developed to examine data structures found in common blocks. These tools

are documented in reference [3].

data copy The solver arrays used in CCFM.VENTS and FAST have a well defined

structure. For example for the first room, in CCFM.VENTS Y(l) = relative pressure, Y(2)
= layer height, Y(3) = upper layer mass, Y(4) = lower layer mass. An analogous array, P,

exists in CFAST The 'Y' array is not used directly by physical routines in CCFM.VENTS.
Rather a data copy is invoked that transfers information from the array Y to the environment

variables that the physical routines access. This process of copying data makes it easier to

change the formulation of the predictive equations, since all required changes can be made in

a few routines. A data copy procedure also allows one to isolate further the physical routines

from the data structures. The concept has been incorporated in CFAST. The control

programs SOLVE and DSOURC invoke the procedure which make the environment available

through the CENVIRO include file.

report generation CCFM.VENTS had a scheme for producing output reports from a

history file. FAST did not have such a module. A routine CF_RPT has been incorporated

into CFAST The purpose of it is to allow output from a simulation to be produced from an

archived history file without having to re-run the model that produced the original calculation.

history file format FAST stores the entire Common Block whenever an entry in the

history file is produced. CCFM.VENTS stores a few setup variables at the beginning and the

"solver" variables whenever an entry in the history file entry is requested. The advantage of

the CCFM.VENTS method is that much less storage is required to archive scenario

calculations. CFAST uses the former since many other programs depend upon the history file

format. An alternate strategy is to compress binary history files. It has been found that these

files can be compressed from 20 to 95 percent.

solver The solvers used in CCFM.VENTS and FAST are different. A potential exists

for an improvement in the performance of CFAST by incorporating some of the solution

techniques used by CCFM.VENTS. These techniques will be tested in a subsequent project.

global error checking Any difference in a conserved quantity such as the total mass

from one time step to the next represents a good estimate of the global error. In general,

solvers for ordinary differential equations can only estimate and therefore reduce local error,

the error incurred since the last time step. This global error estimate is a good check on the

solver, and physical calculation routines. CCFM.VENTS calculates the total mass in all rooms

Introduction

of a simulation each time results are printed out. An equivalent capability exists in FAST,

although the energy is the quantity which is tracked. These are good checks on the equations

that are being solved. Once a model is operational, the calculation is extraneous. As such it

is not currently implemented in CFAST. However, since the purpose of making the CFAST
generally available is to allow researchers to change the internal structure such as the basic

equations that are being solved, this feature will be re-incorporated into CFAST.

data allocation The methods used by FAST and CCFM.\Ti;NTS to store program

variables differ. CCFTVI.VENTS allocates memory dynamically while FAST allocates it

statically. Dynamic memory allocation means that the memory used by a subroutine's

variables is allocated only when it is needed usually upon entering the subroutine. Memory is

usually released when control is returned to the calling routine. On the other hand, when
using static memory allocation, memory is reserved at the beginning of program execution

and is available throughout the entire run. The main effects of these two strategies are as

follows. First, the amount of memory necessary to run a static program is larger than a

dynamic one. Second, local subroutine variables'* in a dynamic program lose their values

across subroutine calls.

To convert a program from one that uses static to one that uses dynamic data

allocation, one must track down those subroutine variables whose values must be preserved

across subroutine calls. These variables are typically counters, variables that are incremented

each time a subroutine is called. If necessary, subroutine variables can be saved across

subroutine calls by putting them in FORTRAN SAVE statements. CFAST uses dynamic

memory allocation. There was a strong incentive to use this method since the size of the

executable was reduced by about 10%. The caveat to keep in mind is that routines should

not make the assumption that local data will be preserved. If local data must be preserved,

then the PARAMS or CENVIRO common block should be modified to keep the data. These

will be saved. Judicious use must be made of this facility, however, for CFR reserves the right

to incorporate routines at its discretion, and routines that clutter up the structure are not

likely candidates for inclusion.

1.2 Overview

Section 2 discusses the structure of CFAST and the environment used to develop it.

Section 3 discusses how to make changes in an orderly fashion. The control program is listed

viAth annotations, since this is crucial for anyone who wants to add (or delete) physical

routines. Section 4 presents material on protocols used by the CFAST suite of programs.

Section 5 documents the input process used by the routine NPUTP.

A subroutine variable is local if it only occurs inside the subroutine. Some examples of subroutine variables that are not local

are variables that occur in common blocks and variables that are passed through the subroutine's argument list.

A Programmer's Reference Manual for CFAST,

The appendices document various internal aspects of CFAST. Appendix A documents

the parameters read by the subroutine NPUTQ. Appendix B documents the global data

structures contained in the labeled common blocks. Appendix C shows how subroutines are

related. (This appendix was generated from the tool, roadmap.) Finally, Appendix D
documents the purpose of each routine. It forms a subroutine glossary.

structure of CFAST

2. STRUCTURE OF CFAST

There are four aspects of the structure of CFAST that will be discussed in this section.

These aspects are the subroutine, the program suite, the directory and the network structure.

These structural aspects are of interest to the person wishing to modify and to enhance the

model. The subroutine structure is the relationship of the various subroutines. That is, what

subroutines call what subroutines. The program suite is the relationship of the program

modules CF_in, CF_set, CFAST, CF_rpt, CF_plot, and CSHELL to one another. The
directory structure delineates the relationship amoung the subrountines and main programs.

It deals with the location of subroutines in which directories, based on which main modules

them. The network structure is a statement of the location of files that are a part of CFAST.

Some files are located on the file server^ and others are located on a local computer. By
keeping a common copy of a program on the file server, required changes to update the

program need only be made in one place. Keeping a program on several computers can result

in confusion as to who has the correct version. Further, our structure, and the way the

makefiles are structured, allows us to run the whole process on the server, on an individual

workstation, or in a mixed environment. The whole process is transparent to the developer.

The structures set up in this section will be used in section 3 to show how to make
changes in an orderly manner. The techniques used here to develop CFAST can be applied

to other software development projects. The extra steps taken are especially important for

programming projects that involve several people over an extended period of time.

2.1 Subroutine Structure

The calling sequence for a suite of procedures defines their relationship to the calling

program and to order in which they are called. A detailed map of this information for the

model program, CFAST, is given in Appendix C. It was felt that the structural details of the

model portion of CFAST were most important since this is the program in the CFAST suite

of programs that is most likely to be modified. The subroutine structure of CFAST is

illustrated in figure 1. It was derived from Appendix C which was produced using roadmap

[3]. A document analogous to Appendix C can be produced for any other program in the

CFAST suite by using roadmap.

The model can be split into distinct parts. There are routines for reading data,

calculating results and reporting the results to a file or printer. The major routines for

performing these functions are identified in figure 1. TTie algorithms for those routines,

identified in figure 1 as physical routines or auxiliary physical routines, are documented in

reference [2]. These routines calculate quantities such as mass or energy flow at one

5 A file server is a computer that shares disk storage with other computers, usually over some type of network.

A Programmer's Reference Manual for CFAST, ..=

Main routine

Figure 1. Subroutine Structure and Interaction.

particular point in time for a given environment.

The routines SOLVE, DIFEQ and DSOURC are the key to understanding how the

physical equations are solved. SOLVE is the control program that oversees the general

solution of the problem. It invokes DIFEQ which calls DSOURC to solve the transport

equations. Then SOLVE does the mechanical ventilation (HVAC), conduction (CNDUCTO
and toxic dose (TOXIC) calculation. An outline of this solution process is illustrated in

figure 2. The problem that these routines solve is as follows. Given a solution at time (t)

what is the solution at time (t + At)? The transport equations are differential equations of

the form

dt (1)

where y is a vector function representing pressure, layer height, mass, etc. and f is a vector

function that represents changes in these values with respect to time. The term y^ is an initial

condition at the initial time t^. CEAST uses the subroutine DSOURC to compute the right

hand side of eq (1). DSOURC is discussed in section 3.5. The algorithm for advancing the

solution to the fire problem then is to solve the ODE for some time interval (t,t+At). This

computed solution is then used to solve the heat conduction and mechanical ventilation

problem over the same time interval.

structure of CFAST

Initializations

« S^ NSMAX to the number

of simulation seconds

• Set MAXINR to the nufTtier of

Inner iterations

» Set NX, the number of outer

Iterations, to .. + 1

• Set At^ to outer time step size

" Set the inner time step size, At

At.

'^'outer

outer

MAXINR

Repeat t^AXINR times

Advance the solution of the ordinary

differential equations from time t to t + At,,

by calling DIFEQ

Repeal NX tinnes

the heat

differential equation

,,
by calling CNDUCT.

' <
/ Advance the solution of the mechctnical \

I
ventilation calculation from t to t + At,

|

I by calling HVAC '""®'
i

Output Results

V

• Calculate Gas dosage by calling TOXIC

< Print Output to the terminal screen by calling RESULT

« Update graphics display by calling DISPLAY

« Copy data to the dump file by calling DUMPER

Figure 2. Routine SOLVE Computations.

Note that there are several distinct time scales that are involved in the solution of this

type of problem. The fastest will be chemical kinetics. We avoid that scale by assuming that

the chemistry is infinitely fast. The next larger time step is that associated with the flow field.

These are the equations which are cast into the form of ordinary differential equations. Then
there is the time scale for mechanical ventilation, and finally, heat conduction through objects.

This technique of splitting the solution into parts associated with a particular time scale is

called "time splitting." It is well established, and works quite well so long as one bears in mind

the fact that the time step must be smaller than the time scale associated with the "next"

phenomena. By way of example, chemical kinetics are typically on the order of milliseconds.

By choosing a time step of 0.1 s, we have satisfied the criterion that the chemistry is infinitely

fast. The transport time scale will be on this order. The mechanical ventilation and

conduction time scales are typically several seconds, or even longer.

A Programmer's Reference Manual for CFAST, ...

2.2 Program Suite Structure

I

keyboard/mouse Inputs

t

GD
text command file

1

GED
dump file

{ CF_PLT
J

f CF_RPT
J

Figure 3. Overall Program Structure.

The CFAST suite consists of several programs. Each one serves a specific function.

CF_IN is a program that solicits input from the user in a friendly manner using full screen

windowing techniques. This program creates a text file readable by CFAST. CFAST takes a

fire scenario created with CF_IN and predicts the environmental conditions over a period of

time. CFAST then stores the results in a history file that can be read by CF_PLT and

CF_RPT. CF_PLT generates plots of data that were previously generated by CFAST. These

routines can be run independently, or together though the CSHELL program. The
relationship between the programs in CFAST is illustrated in figure 3.

The current version of these programs run on a MSDOS compatible micro-computer.

It is planned to have CFAST run on other platforms such as the Macintosh or a UNIX work-

station. The planning for this "porting" process is underway.

2.3 Directory Structure

The model is organized by functional element. There is a directory entry for each

main module, as well as entries for common routines and utility functions. The present

10

Structure of CFAST

MODEL

routines used only by

CFAST

UB
routines used by CFAST.

CFJN. CF_PLT. CF_RPT
and CSHELL

INPUT

routines used only by

CF IN

HELP
routines to manipulate

help files

PLOT

routines used only by

CF PLT

SHELL
routines used only by

CSHELL

REPORT

routines used only by

CF RPT

EXEC

executable routines along

with data (lies

Figure 4. Basic Directory Structure of CFAST.

directory structure is illustrated in figure 4.

As it appears, this structure can occur on a single workstation, or on a single work-sta-

tion connected to a network. In the latter case a parallel structure would be on the network

and workstation and appropriate routines would be accessed from either place. This mode of

operation is transparent to the user.

Using the tool fdiff, many routines in CF_in, CFjplot and CFAST were identified as

being essentially identical. Routines that were identical were moved to a directory called LIB
(for library). These routines are accessible to other programs in the CFAST suite. This

allows required changes to be made in only one place, but even more importantly, only once.

If two routines had the same name but were different then the names of one or both the

routines were changed. This was done to avoid the confusion of having two routines with the

same name but serving different functions.

The directory CFASTUNPUT contains the routines used only by CF_in. The directory

CFASTyPLOT contains the routines used only by CF_plot. The directory CFAST\MODEL

11

A Programmer's Reference Manual for CFAST,

contains the routines used only by CFAST. Any routines that are used by two or more

programs in the CFAST suite are contained in the directory CFASTOLIB. The directory

CFAST\SHELL contains the routines for the shell program, CSHELL, and auxiliary programs

for accessing and displaying the data structures.

2.4 Network Access

The basic strategy for storing files is to keep a master copy of CFAST on a network

file server. Any person wishing to modify a CFAST routine gets a base copy from the

network and modifies it on a local workstation. The master copy of CFAST remains un-

changed. Only a single developer has access to this local version, which may then be modified.

Such an implementation allows several people to work on CFAST without interference.

Typically, the developer may modify only a few routines. The next section discusses

techniques that take advantage of this fact when building a new version of CFAST.

File server

The network file server contains a

base version CFAST consisting of

.NV and .SV log files

Networtted PC

Each network PC contains those .INS

and.SOR files checked out from the server

that are to be customized. It also contains

all .OBJ files

ethemet

Networked PC

Each user of a networked PC may work on

their own customized version of CFAST
without Interfering with others making

^changes

Figure 5. Network Usage.

The Strategy for storing CFAST files on the network is illustrated in figure 5.

12

Updating the Model

3. UPDATING THE MODEL

In general there are suggestions throughout this text on procedures to follow, and

techniques that should be used, and so on. For example, we discuss later how to modify (and

also what not to do to) the configuration file. In order to make the model more portable, and

easier to modify and test, we have incorporated a set of guidelines that must be followed.

The guidelines were developed so that several lines of development could take place

simultaneously, and still be integrated as a final product.

The points considered here are:

Naming conventions,

Data and parameter passing.

Variable and procedure (subroutine & function) names.

Physical routines, where they go and how to modify them,

Precision of data (internal), and

Multiple platforms.

naming conventions In general, variable and procedure names should reflect the

substance of the variable, or the use for a procedure. Given the limitation in names

prescribed by the ANSI FORTRAN standard [4], one has to use a judicious choice to

reflect the content of a variable or procedure. Indeed, the ANSI standard limits names to six

characters. As most compilers allow eight or more characters, we have used the long names,

although somewhat sparingly. However, in all cases, the names are unique within the first six

characters. Thus when moving the model to a compiler which strictly enforces the standard,

the model will still run correctly if variable names are truncated to six characters.

The environment common blocks contained in the include file CENVIRO.INC, can be

differentiated from the model data, by the stylized form of the variable names. All variables

begin with ZZ and are followed by a four character name, once again indicative of the

meaning of the variable.

data and parameter passing In general routines should not write to common block

variables. It is particularly important to observe this rule for the solver data structure, since it

can change without notice. The most common data that physical routines (PIR) will need can

be obtained from the environment common block, which is used in a read only mode.

Otherwise, data should be passed into the routine through the procedure header (calling

sequence or argument list), and results returned through the header. Some data, particularly

static data such a the total volume of a compartment, is not in the environment data. In these

cases the appropriate data can be obtained from the primary common blocks. The one
routine that normally writes to the common blocks is DSOURC, the control program. Thus

any model data that needs to be changed should be called here, and the data structures

13

A Programmer's Reference Manual for CFAST, ...

updated here. Following this convention will at least minimize the maintenance headache of

tracking errant data assignments.

variable and procedure (subroutine & function) names In most cases we have used

names which are six or fewer characters. This is in conformance with the ANSI standard for

FORTRAN. As mentioned above, there are a few cases where this would render the purpose

of the variable or procedure completely obscure. In those cases, we extended the name,

never exceeding eight characters. In all cases, though, the names are unique to the first six

characters. This rule must be followed!

physical routines, where they go and how to modify them A physical routine is one

that calculates a source term for the solver. In reference [2], these are eqs (1-4). All of these

routines are called through the control program DSOURC. In almost all cases, the data

needed and returned by the routine is passed through the procedure header. There is some
effort to make the code readable, so some of the information needed by the routine is

obtained directly by routine from the envrionment common blocks for time dependent data,

or the primary common block for static data.

Routines which incorporate time splitting are referenced in the main solver control

program (SOLVE). At present these latter constitute a very small set, namely DIFEQ (the

link to DSOURC), the mechanical ventilation (HVAC), the species report (TOXIC), and the

heat conduction routine (CNDUCT).

Any physical routine can be processed through DSOURC. Section 3.4 discusses this

routine. There are three sections. The first two calculate the actual physical source terms,

and the third sorts these forcing terms into the form necessary for the solver. The first

section is the fire itself, and the second section is everything else. This latter is a loop over

compartments, whereas the former is a loop over fire sources. If the PIR is associated with

the fire, then the first section is most appropriate, otherwise, the second section should be

utilized. There are two mechanisms for adding terms. The simplest is to calculate a local

variable, and then add it to the appropriate place in section three which sorts the terms for

the solver. Alternatively, one of the existing variables can be utilized. This is the preferred

way, but care must be taken in placing the initialization of such variables in appropriate

places. It won't do much good to add a source term if the variable is subsequently initialized

to some specific value, such as zero.

precision of data (internal) It was decided that is should be simple to switch between

single and double precision. This statement applies to variable names as well as function

names. The rationale is that although the normal operation will be single precision, one might

find that double precision is necessary for new algorithm development, or debugging purposes.

The conversion will be easy. The rules to achieve this are

14

Updating the Model

1. every subroutine should have an IMPLICIT statement at the beginning; IMPLICIT

REAL (A-H,0-Z) for the real version of CFAST and IMPLICIT DOUBLE PRECISION
(A-H,0-Z) for the double precision version.

2. Do not pass floating point constants to subroutines. Instead set a variable equal

to the constant and then pass that variable

3. All floating point constants used in the program should be of type double

precision, e.g. 1.0D0 not 1.0

4. For floating point variables do not over-ride the default type, i.e. variable names
beginning with i, J, ... N should always be of type integer.

5. When using intrinsic functions (SIN, COS) always use the generic form (not DSIN,

DCOS, DABS, etc.).

If the above guidelines are followed then to switch precision one simply changes every

statement of the form

IMPLICIT REAL (A-H,0-Z)

to

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

or visa versa. Implicit statements are contained in the include file, PRECIS.INC. The filter

file version, PRECIS.INS, is given by

%IF DOUBLE
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

%ELSE
IMPLICIT REAL <A-H,0-Z)

%ENDIF

There are two key words associated with this guideline that are used by the Olter process, that

is in the translation from .SOR files to .FOR files. They are DOUBLE and SINGLE.
Actually, SINGLE is simply the absence of DOUBLE, so is implemented as the ELSE clause

shown above. If the DOUBLE key is set when invoking FILT then PRECIS.INC will contain

the IMPLICIT DOUBLE PRECISION statement. Otherwise PRECIS.INC will contain the

IMPLICIT REAL statement. All routines that use any model data must follow this

convention. The single variable we found easiest to overlook is the XI in the CFTO common
block. It is the only real variable in that data structure. The way to check whether there is

access to the model data structures is to use COMCHECK [3].

multiple platforms There are three key words defined at present: IBMPC, MAC and

UNIX. Any code which might be sensitive to the computer platform should use such

dependent clauses. As other computers are utilized, this list will be expanded. Platform

dependent code is present in the routines TOUPPER and TOLOWER and in the

CPARAMS.INC include file. CPARAMS.INC contains a CHARACTER*! variable, HLSEP,
that is used to separate names within a full path name. FILSEP is 'V for the IBMPC, ':' for

15

A Programmer's Reference Manual for CFAST,

the Macintosh and T for UNIX machines. The graphics routines and code to open the

"terminal screen" for output are likely candidates for this type of enchancement in the future.

3.1 Tools and File Types

It was desirable in developing this model to avoid making software changes in a

haphazard manner. For example, it is easy to lose track of what changes were made to a large

file (say bigger than 5000 lines) when editing it directly. It is then hard to un-do these

changes if it is later discovered that they were incorrect and it is also difficult for more than

one person to work on a program at the same time. This section indicates how some of these

problems can be eliminated. The file types and tools used to convert between these file types

are illustrated in figure 6.

In order to maintain an orderly updating procedure, a revision control system is used.

The one described here is called the Polytron Version Control System, PVCS [5], but the

ideas are generally applicable to other such version control systems. The base version of each

routine is kept in a log file. The log file contains the current version, and deltas or change

images to get back to previous versions. In addition, there are comments which indicate the

reason for the changes. Also contained in the log file is an audit trail of who made changes

and when they were made. Such a facility allows one to revert back to an earlier version if

some side effect of a change produces incorrect results.

Log files, current versions and compiled code are kept together. If a network is being

used, then the log files will be on the network, but the current version under revision, as well

as the compiled code, will be in the current directory on the current workstation.

To facilitate an orderly update process, several tools that are described in this section

are used to convert from one file type to another. The file types that will be discussed are log

files, filter files, FORTRAN source files, object files and executable files. Software tools are

also described that convert from one file type to another. These tools are get, put, lilt [5],

f771 [6] and plink86 [7] Some of these tools and file types will be familiar to anyone

who has developed FORTRAN programs. Others were used in the CFAST project to allow

easier development in a multi-developer environment.

In order to understand the tools, we must first understand the nuance of the types of

files that are used. A log file contains a record of all changes made to a routine. The
developer "checks out" a log file to make changes. After being satisfied that the changes are

correct, the module is "checked in" as a new version. The original and the new version are

both contained in the log file for that routine. Someone else can then either check out the

original or revised version. Log files for these routines have the extension ,SV while log files

for include files have the extension .NV. Note that log files are not edited in the usual way
that one edits a FORTRAN program. Only the files that are checked out with the get tool

can be modified.

16

updating the Model

A log file is checked out using the tool

get. Changes are checked back in using the

tool put. Both of these tools are described in

the PCVS manual [5]. Again, similar tools

exist on other platforms. When a log file is

checked out using the get command it is con-

verted to a filter file. This will be either an

.SOR or .INS file. The files maintained in the

log file system contain editing codes. That is,

files checked out of the .SV and .NV log files

are .SOR and .INS files and it is these latter

that are actually maintained and edited.

However, they need to be converted prior to

actual use. The filt tool provides this service.

The makefiles which are discussed below

handle it transparently. The files become
.FOR and .INC files respectively. The .FOR
and .INC files should not be edited directly.

They are not maintained, nor saved.

An summary of several modifications of

the module PYROLS looks like that shown in

figure 7.

To check out a log file for the routine

HWIS contained in the program CFAST use

the command

get -L CFAST\LIB\HVVIS.SV

to obtain the filter file, HWIS.SOR. The '-L

option allows the checked out file to be

modified. HWIS is used by both CF_IN and

CFAST, so it is located in the LIB directory.

To preserve the structure, it should be checked

into the local CFASTO^IB directory. The
header of the log files looks like

Log files files with .NV and

.SV extensions

These files are used to nnaintaln a

. history of changes nnade to CFAST .

Check
Out

t
Check

In

Filter Files files with .SOR and \
.INS extensions

These files contain all versions of

CFAST. This now consists of single

and double precision but may later

include Macintosh and Unix versions.

Filter

/IFortran RIes files with .FOR and

.INC extensions

These files contain one version of

CFAST to be compiled by the

corrpller

Compiler

*
^'object Rte» files with .OBJ \

extensions

These files contain compilation

results generated by a

FORTRAN corrpiler.

Linker

/Executable RIes files with .EXE \
extensions

These files contain the program

that is to be run

Logfile: E:\LIB\hwis.sv
Workfile: hwis.sor
Owner: wuj

Last trunk rev: 1.2
Locks: wwj : 1.2
Rev count: 3

Figure 6. File Types Used To Maintain CFAST.

17

A Programmer's Reference Manual for CFAST,

Logfile: E:\LlB\pyrols.sv
Workfile: pyrols.sor
Owner: wwj

Last trunk rev: 1.2

Locks:

Rev count: 3
Attributes:

WRITEPROTECT
CHECKLOCK

NOEXCLUSIVELOCK
NOEXPANDKEYWORDS
TRANSLATE
COMPRESSDELTA
COMPRESSWORKIMAGE

Version labels:

Description:
for->sor for filtering; from 18.5

Rev 1.2

Checked in: 28 Mar 1990 08:55:22
Last modified: 13 Mar 1990 09:54:42
Author id: wwj lines deleted/added/moved: 39/41/0
change the calling procedure to pass new species production parameters
hcrtt, oxygen, ...

Rev 1.1

Checked in: 28 Mar 1990 08:53:46
Last modified: 07 Mar 1990 16:57:22
Author id: gpf lines deleted/added/moved: 29/39/0
1. convert to double precision
2. remove common block writes from source routines

(routines called by DSOURC)

Rev 1.0

Checked in: 28 Mar 1990 08:51:04
Last modified: 14 Dec 1989 16:45:36
Author id: wwj lines deleted/added/moved: 0/0/0
Initial revision.

Figure 7. Revision control history.

and what it looks like if two developers are working at the same time

Logfile: E:\LIB\hwis.sv
Workfile: hwis.sor
Owner: wwj
Last trunk rev: 1.2

Locks: wwj : 1.2

gpf : 1.1

Rev count: 3

There are three types of changes that one might expect to find in a software system

that is to be used on more than one platform. One is the global difference over the entire

model that can occur because of some decision in the way the model is to be operated. An

18

Updating the Model

example of this is using a model in single or double precision. Another difference is that

needed to port the model to another platform. A third would be change to include

enhancements, or to fix bugs. The latter would be incorporated by specific changes in the

modules. The second would be through different versions of the same program or library

tailored to run on different computer. The first would be by conditional clauses in the source.

Some of these are implemented by a technique known as filtering. Slight changes in the

software are usually required when a program is run on a different computer. For example,

the FORTRAN OPEN statement and floating point characteristics may be different in

different versions. The filter file can contain machine dependent or independent code within

"IP statements of the form

%IF DOUBLE

doiible precision dependent code

%ENDIF

The string, 'DOUBLE' is an example of a key. If this key is set when executing the filter

program then text between the %IF DOUBLE and %ENDIF statements will be copied to the

output files. The filter file for the routine is HWIS is given below.

%IF DOUBLE
DOUBLE PRECISION FUMCTION HWIS(T)

%ELSE
FUNCTION HWIS(T)

?iENDIF

INCLUDE 'PRECIS. INC
C

C FUNCTION CALCULATES ABSOLUTE VISCOSITY (PASCAL SECOND)
C BY INTERPOLATION FOR 200 TO 2000 DEG K.

C DATA FROM NASA TECH NOTE D-7488 BY POFERL, D. J. AND
C SVEHLA, R. ,1974 EXCEPT FOR THE VALUE AT 200 DEG K

C WHICH IS FROM THE CRC HANDBOOK OF CHEMISTR & PHYSICS,
C 66TH ED., 1985 PAGE F-42.

C

C T=ASSOLUTE TEMPERATURE IN DEGREES KELVIN
C

LOGICAL ERROR
DIMENSION V(19)

%IF DOUBLE
DATA V/13.1D0, 18. 4D0, 22. 7D0, 26. 500,29,900, 33. 1D0, 36. 2D0, 39. 1D0,

+ 41 .900,44.500, 47.000,49.400, 51. TDD, 54.000,56. 300,58.500,
+ 60.700,62.900,65.100/

%ELSE
DATA V/13. 1,18.4, 22. 7,26. 5, 29.9,33. 1,36.2,39.1, 41 .9

+,44.5,47.0,49.4,51.7,54.0,56.3,58.5,60.7,62.9,65.1/
%ENDIF

DATA ERROR/. TRUE./
C

I=T/100.D0 - 1.D0
IF<I .GE. 19)G0 TO 1

IF (I.LT.1) THEN
IF (ERROR) THEN

19

A Programmer's Reference Maniisal for CFAST, ...

WRITE(*,2) T

FORMAT (' OUT OF VISCOSITY INTERPOLATION RANGE = ',F10.3)

ERROR = .FALSE.
END IF

I = 1

END IF

T1 = 100.D0*(1.D0+FLOAT(I))
IM = I + 1

HVVIS = (V(I) + (VCIM) - V(I))*<T - T1)*0.01D0)*1.0D-6
RETURN
HWIS=V(19)*1D-6
RETURN
END

Using filters makes it easier to maintain multiple versions of a program within one file.

Filter files for CFAST routines have an extension of .SOR while filter files for include files

have a .INS extension. The filter keys presently used in CFAST are DOUBLE and IBMPC.
It is anticipated that other keys such as UNIX and MAC will be used in future versions of

CFAST These keys will denote sections of the programs that are specific to a UNIX
workstation and the Macintosh.

The key, DOUBLE, allows CFAST to be switched between single and double

precision. FILT is *he name of the program used to filter CFAST routines. FILT produces

FORTRAN routines with .FOR or .INC extensions. To obtain the double precision version

of HWIS use the command

FILT -KDOUBLE,IBMPC HWIS.SOR HWIS.FOR

The string '-K' followed by a list of keys (in this case DOUBLE and IBMPC) specifies the

keys to be set. This command copies the text contained in the filter file, HWIS.SOR, to the

FORTRAN source file, HWIS.FOR. This file is shown below. Notice that it looks similar

to HWIS.SOR except for the statements within the '%IF blocks. FORTRAN statements

bet%veen the %IF DOUBLE and %ELSE statements are copied to the output file while

statements between %ELSE and %ENDIF are not.

DOUBLE PRECISION FUNCTION KWIS(T)
INCLUDE 'PRECIS. INC

C

C FUNCTION CALCULATES ABSOLUTE VISCOSITY (PASCAL SECOND)
C BY INTERPOLATION FOR 200 TO 2000 DEG K.

C DATA FROM NASA TECH NOTE D-7488 BY POFERL, D„ J. AND
C SVEHLA, R. ,1974 EXCEPT FOR THE VALUE AT 200 DEG K
C WHICH IS FROM THE CRC HANDBOOK OF CHEMISTR & PHYSICS,
C 66TH ED., 1985 PAGE F-A2,

C

C T=ABSOLUTE TEMPERATURE IN DEGREES KELVIN
C

LOGICAL ERROR
DIMENSION V(19)
DATA V/13.1D0,1S.4D0,22,7D0,26.5D0,29.9D0,33.1D0,36.2D0,39.1D0,

+ 41 . 9D0, 44. 5D0, 47. ODO, 49. 4D0, 51 .7D0, 54.000,56. 3D0, 58. 5D0,
+ 60.7D0,62.9D0,65.1D0/

20

Updating the Model

DATA ERROR/. TRUE./

I=T/100.D0 - 1.D0

IF(I .GE, 19)G0 TO 1

IF (I.LT.1) THEN
IF (ERROR) THEN

WRITE(*,2) T

FORMAT (' OUT OF VISCOSITY INTERPOLATION RANGE = ',F10.3)
ERROR = .FALSE.

ENDIF

I = 1

ENDIF

T1 = 100.D0*(1.O0+FLOAT{I))
IM = I + 1

HWIS = (V(l) + (V<IM) - V(I))*(T - T1)*0.01D0)*1.0D-6
RETURN
HWIS=V(19)*lD-6
RETURN
END

The FORTRAN compiler translates files with .FOR and .INC extensions to object

files with .OBJ extensions. The .OB.T files are converted to an .EXE file using a linker. The
last two steps are the same in any programming project. It is important to understand why
the first two steps, i.e., using get and Hit, were taken in the CFAST development cycle. First,

log files allow one to keep track of changes made to a routine over a period of time. They

allow one to "back up" to earlier versions of the softv/are. They allow changes made by

several persons to be merged into one version less painfully. This has already been done
once. The two authors of this report each made changes to CFAST These changes were

later merged using the tool, VMRG. This tool automatically identified where we both made
change to the same line of code. This is called a collision. Only the "collisions" had to be

merged manually. The process of merging corrections is discussed in section 3.3.

Second, using filter files makes it easy to keep multiple versions of a program in one

file. This eases the maintenance burden of updating portions of a program that are common
to all versions, since the same changes do not have to be made in several places.

3.2 Rebuilding CFAST

A program has to be rebuilt after its source code has changed. The traditional method
for regenerating a program is to keep the entire program in one file. This would be over

9,000 lines of code in the case of CFAST A disadvantage of keeping the whole program in

one file is that the compiler would process every subroutine even though only a few may have

changed. This is needlessly inefficient since the edit-compile-link- run cycle would be much
longer than necessary. This c^-cle should be shortened as much as possible in order to

improve programmer productivity? . Two ways of doing this are to use faster computers and to

minimize unnecessary work by only compiling routines that have changed. The rest of this

section will concentrate on methods for accomplishing the latter.

21

A Programmer's Reference Manual for CFAST, ...

lb rebuild CFAST use the command

MAKE -F CFAST

The programming tool, MAKE [8], is used to rebuild (make) programs. It uses a set of

rules contained in a special file called a makefile to determine how to rebuild files that are out

of date. MAKE determines which files are out of date by examining modification times of

various files. These files are specified in the makefile?., in this case CFAST.MAK,

An example will help clarify the terminology. Suppose that HWIS.OBJ depends on
HWIS.SOR. That is, whenever HV\^S.SOR changes JHTWIS.OBJ needs to be regenerated.

This dependency relationship could be specified in a makefile as

HWIS.OBJ : HWIS.SOR
FILT HWIS.SOR KWIS.FOR
F77L HWIS.OBJ

The filt and f771 commands are executed whenever HWIS.SOR has been changed more
recently than H\^VIS.OBJ. This is an example of a specific rule. It only applies to one

particular file. General rules are used to specify bow to make files of one extension out of

another. For example, the following general rule could be used to make a .obj file out of a

.for file

.for.obj :

n7i$<

The character string '$<' is a macro used to specify the name of the routine to be compiled.

A list of general rules is contained in the file BUILTINS.MAK- Some of these rules are

given by

BUILTiNS.mak

This rule tells how to make a .SOR file frofli a .SV file
using POLYTRON PVCS with .sv files.
#
.sv.sor :

=get -q • w $<($2)

This rule says that a .FOR file should be created from
a .SOR file by using FILT

•son. for :

filt -kIBMPC,DOUBLE £*.sor $*.for

This rule says a .OBJ file should be created by
using the Lahey FORTRAN Compiler on a .FOR file.

.for.obj :

f77l $<

22

Updating the Model

.nv. ins :

=get -q -w $<($a)

. i ns . i nc :

=filt -kIBMPC.DOUBLE $*.ins $*.inc

END

Two rules in the above listing of BUILTINS.MAK invoke the tool filt. These tools are

configured to create double precision versions of CFAST routines. To create single precision

version remove the key, DOUBLE, by changing the respective commands

=filt -kIBMPQDOUBLE $*.sor $*.for

=filt -kIBMPQDOUBLE $*.ins $*.inc

to

=filt -kIBMPC $*.sor $*.for

=filt -kIBMPC $*.ins $*.inc

The file CE\STMAK contains a list of rules that specify which object files are

candidates for rebuilding. It also specifies how to build the program CE\ST from these

object files by using the linker, plink. The file CFAST.MAK is given by

.NOSHELL

.NOREMAKE

.LOGFILE .SV(.SOR -R)

.LOGFILE .NV(.INS -R)

.PATH.SV = .;..\LIB

.PATH.NV = ..\LIB

.PATH.SOR = .;..\LIB

.PATH. INS = ..\LIB

obi =cfast.obj initdi.obj
obia =$[s,",",$<ob1)]
obe =solve.obj lenoco.obj display. obj dsourc.obj difeq.obj toxic. obj

obea =$[s,",",$(obe)]

ob2 =disrad.obj toxicb.obj toxich.obj toxicr.obj ttcb.obj vwprt.obj wddraw.obj
ob2a =$[s,",",$(ob2)]

ob3 =dumper.obj entrfl.obj firplm.obj firrad.obj flow. obj writeot.obj
ob3a =$[s.",",$(ob3)]
ob4 =flwout.obj frflow.obj grafit.obj hsets.obj outpul.obj
ob4a =$[s,",",$(ob4)]
ob5 =palette.obj polnum.obj pyrols.obj result. obj stport.obj
obSa =$[s,",",$(ob5)]
ob6 =getview.obj bxblit.obj chemie.obj cnduct.obj convec.obj
ob6a =$[s,",",$(ob6)]
ob7 =loadin.obj loadup.obj nputo.obj nputp.obj nputq.obj disclaim. obj toupper.obj
obZa =$[s,",",$(ob7)]
ob8 =nputt.obj atmosp.obj convrt.obj datype.obj readop.obj readcf.obj openshel.obj
ob8a =$[s,",",$(ob8)]
ob9 =readas.obj readcv.obj readin.obj restrt.obj dreadin.obj sstrng.obj
ob9a =$[s,",",$(ob9)]
oba =disthe.obj gasload.obj diferr.obj inipar.obj setlut.obj f_info.obj
obaa =$[s,",",$(oba)]

23

A Programmer's Reference Manual for CFAST, ...

obb =resetlut.obj cnndline.obj readfcg.obj hvinit.obj mvout.obj bstrng.obj grquery.obj
obba =$[s, ",",$(obb)]

obc =hvac.obj hvmflo.obj hvtoex.obj hvfrex.obj hvsflo.obj hwis.obj
obca =$[s,",",$(obc)]
obd =hvfric.obi hvfan.obj hcltran.obj
obda =$[s,",",$(obd)]
obinc =cfast.inc display. inc params.inc precis. inc cparams.inc cfio.inc cshell.inc thermp.inc
obins =$[f,"",$(obinc),"ins"]

..\EXEC\cfast.exe: $(obinc) $(ob1) $(obe) $(ob2) $(ob3) $(ob4) $(ob5) $(ob6} $(ob7) $(ob8)
$(ob9) $(oba) $(obb) $(obc) $(obd)
PL I NIC <a<

file $(obla),dvblok.obj
allocate device, f77l,metddhf I, wndodgr
I ibrary device, f771 ,metddhf I , wndodgr

begin section preload file $(obea)
begin file $(ob2a)

file $(ob3a)
file $(ob4a)
file $(ob5a)
file $(ob6a)
file $(obca)
file $(obda)

section preload file $(ob7a)
file $(ob8a)
file $(ob9a)
file $(obaa)
file $(obba)
end

end
<

+mv cfast.exe ..\exec

$(ob1) $(obe) $(ob2) $(ob3) $(ob4) $(ob5) $(ob6) $(ob7) $(ob8) ... $(obd) : $(obinc)

$(obinc) : $(obins)

These make files were designed to cause make to search the local workstation first for

files in CFAST. If the necessary files were not found then make searches the network file

server. This allows customized versions of CFAST to be maintained on the local workstation

and commonly used routines to be used on the file server.

3.3 Merging Corrections

After two or more people have made changes and are satisfied that the changes are

correct it is necessary to merge these changes together into one working version. There are

two tools available to assist in this process. These tools are vdiff and vmrg. vdiff examines

two files reporting any differences in the files, vmrg takes two modified files along with the

base from which they were modified and produces one file that contain both sets of

corrections. Several things can happen to complicate the merger process. First, two people

may modify the same line of code. Second, one person may change a line of code that the

other person is depending on. The second problem is the more difficult to deal with since it

cannot be detected automatically. A solution to this type of problem depends upon effective

communication between persons making changes to the software.

24

Updating the Mode!

The first problem, two people changing the same line of code, can be detected

automatically by vmrg. It does this by highlighting the section of code modified by both

persons.

A simple example will help illustrate the point. Consider the following base version of

a routine, XYZ.

SUBROUTINE XYZ(A,B,C)
CALL SUB1(A,B)

C = A + B

WRITE(6,*)'heUo',A,B,C
RETURN
END

Assume that two persons produce the following two versions of the subroutine XYZ.
The first version is contained in the file XYZl.SOR and the second version is contained in

the file XYZ2.SOR.

SUBROUTINE XYZ(A,B,C,X,Y,Z)
CALL SUBKA.B)
C = A + B

CALL SUB2(X.Y,Z)
WRITE(6,*)'hello',A,B,C
RETURN
END

SUBROUTINE XYZ(A,B,C,Z,Y,X)
CALL SUBKA.B)
C = A + B

WRITE(6,*)'hello',A,B,C
Z = X + Y

WRITE(6,*)X,Y,Z
RETURN
END

To see the differences between these two routines use the command

VDIFF XYZl.SOR XYZ2.SOR

to obtain

XYZ1.F0R (08 May 1990 13:50:30)
XYZ2.F0R (08 May 1990 13:34:30)

+

___.

SUBROUTINE XYZ(A,B,C,Z,Y,X)
-

1 SUBROUTINE XYZ(A,B,C,X,Y,Z)
2 2 CALL SUBKA.B)
3 3 C = A + B

- 4 CALL SUB2(X,y,Z)
5 4 WRITe(6,*)'heUo»,A,B,C

+ 5 Z = X + Y
+ 6 WRITE(6,*)X„Y,Z

6 7 RETURN

====
7 8_ END

A Programmer's Reference Manual for CFAST, ...

To merge the two versions together use the command

VMRG -P XYZ.FOR XYZl.SOR XYZ2.SOR > XYZ.MRG

where '-P' and '> XYZ.MRG' indicate that the merged corrections are to be placed in the

file XYZ.MRG, XYZ.SOR is the base file and XYZl.SOR, XYZ2.SOR are the two versions

to be merged. The merged file is given by

»»»»» XYZ1.F0R
SUBROUTINE XYZ(A,B,C,X,Y,Z)

««««« XYZ2.F0R
SUBROUTINE XYZ<A,B,C,Z,Y,X)

CALL SUBKA.B)
C = A + B

CALL SUB2(X,Y,Z)
WRITE(6,*)'hello',A,B,C
Z = X + Y

WRITE(6,*)X,Y,Z
RETURN

END

Note that the subroutine statement in the two modified files was modified by both developers.

VMRG report this result by enclosing both version of the changes within the symbols

>>>>>>>>>>>>>>, <<<<<<<<<<<< and = = = = = = = = = =. The other

changes did not interfere with each other and were merged into one file. The resulting

merged file can now be checked back in to the log file using the put command.

3.4 The control program DSOURC

As discussed in section 2.1, DSOURC is the module that controls most of the model

calculations. SOLVE coordinates the time splitting technique, but most physical phenomena
are accessed by DSOURC. It is split into several parts. First, the plume(s) are calculated.

Then the fire model is done, depending on the type of fire. Then all other physical processes

are included, natural and forced flow, convective and radiative heating and so forth. The
module is tightly coupled with the solver and the physical routines. All routines from here on
down are accessed many times per simulation run, so some thought should be given to the

actual form of the routines that are to be included or changed. This portion of the model is

the real numerical implementation, and the execution time is very sensitive to the actually

coding of the software. What follows is an annotated form of the routine DSOURC.
Extraneous comments have been left out in order to shorten it somewhat.

SUBROUTINE DSOURC (TN, PDIF, C, D, PORC)

cormjon blocks go here, also miscellaneous definitions used in the code, mostly temporary variables

ifi

Updating the Model

fix local constants which are internal variables not set by the data copy routine

XHALF = .50D0

GAMMA1 = GAMMA - 1.0D0

ONEBTA = GAMMA1 / GAMMA

CV = CP / GAMMA
XXO = O.ODO
XX2 = 2.0D0
DO 4 I = 1, N

DO 1 K = UPPER, LOWER
QF(K:,I) = O.ODO
QFC(K,I) = O.ODO
QFR(K,I) = O.ODO

1 CONTINUE
HEATVF(I) = O.ODO

HEATUPCI) = O.ODO
HEATLP(I) = O.ODO
EME(I) = O.ODO
EMP(I) = O.ODO
EMS(I) = O.ODO

4 CONTINUE

invoke the data copy procedure to set up the environment

calculate the species transport - only for species present - note that stport

is needed here to get the mass of each layer

CALL STPORT (NETMAS, OLDMAS, NETFL, MASS, HWJ)

this is the pyrolysis rate for the fire, plus species production, assuning no
constraints

CALL PYROLS (STIME, EMP(LFBO), ..,)

diwy up the radiation from the lower plume to upper and lower portions

CALL DISRAD(HR(LFBO)-Z(LFBO),HF0T,AW(UPPER),CHIRAD.VIEWUP,VIEWLW)

this is the actual convective heat release rate after subtracting off heating of the plume

QHEATL = (QPYROL + CP*(TE-TL(LFB0))*EMP(LFB0))*(1-CHIRAD)

calculate the entrainment rate but constrain the actual amount of air that can
be entrained to that required to produce stable stratification this code
prevents the entrainment from exceeding that which would allow the plum the top
of the compartment

CALL FIRPLM (QHEATL, MAX(0. ,HR(LFBO)-HF0T-Z(LFBO)), EMP(LFBO),
. EMS(LFBO), EME(LFBO), LFPOS)

EME(LFBO) = MIN (EME(LFBO), QHEATL / ((TAMB<LFBO) + TG(LOWER)>*RGAS))
EMS(LFBO) = EMP(LFBO) + EME(LFBO>

constrain the species entrained into the plume based on actual available mass
in the lower layer

IF (LFBT.GT.I) THEN
DO 14 LSP = 1, 9

DMASS(LSP) = MASS(LOWER,LFBO,LSP) * (EME(LFBO)/OLDMAS(LOWER,LFBO))
14 CONTINUE

EME(LFBO) = O.ODO
DO 15 LSP = 1, 9

27

A Programmer's Reference Manual for CFAST, ...

EME(LFBO) = EME(LFBO) + DMASS(LSP>
15 CONTINUE

EMS(LFBO) = EMP(LFBO) + EME<LFBO)
END IF

now we start the actual calculation of source terms, first the fire is one of

two type, unconstrained(l) or constrained(2) - this first part only does the
lower plume, the upper plume and vent fires are done separately

IF (LFBT.EQ.1) THEN

a type 1 fire uses no kinetics - we assume all fuel burns, regardless

QPYROL = QHEATL / (1 .ODO-CHIRAD)
DO 8 LSP = 1 , NS

IF(.NOT.ACTIVS(LSP)) GO TO 8
K = UPPER
NETMAS(K,LFBO,LSP) = NETMAS(K,LFBO,LSP> + MFIRET(LSP)

add in the flow entrained by the plume(s)

NEWNET = EME(LFBO) * MASS(LOUER,LFBO,LSP) /

OLDMAS(LOWER,LFBO)
NETMAS(UPPER,LFBO,LSP) = NETMAS(UPPER,LFBO,LSP) + NEWNET
NETMAS(LOWER,LFBO,LSP) = NETMAS(LOWER,LFBO,LSP) - NEWNET

8 CONTINUE

ELSE

type 2 or later fire - include diffusion limited kinetics

CALL CHEMIE (QPYROL, EMP(LFBO), EME(LFBO), NETFUEL, LFBO, LOWER,

NETMAS, OLDMAS, CC02T, C0C02T, HCRATT,
OCRATT, CLFRAT, CNFRAT)

add in the species produced by the fire (see "allowed"); chemie has already
done the species production by burning within the plume, this is only a function
of pyro lysis

DO 9 LSP = 1, NS

IF (ACTIVS(LSP))
NETMAS(UPPER, LFBO, LSP) = NETMAS(UPPER, LFBO, LSP)

+ MFIRET(LSP)
9 CONTINUE

ENDIF

we have finished the lower plume calculation, so sum up the heat release
here we have the energy balance for the lower layer burning or total burning
if this is an unconstrained fire

QFR(UPPER,LFBO) = QPYROL * CHIRAD * VIEWUP
QFR(LOWER,LFBO) = QPYROL * CHIRAD * VIEWLW
QFC(UPPER,LFBO) = QPYROL * (1 .ODO-CHIRAD)
QF(UPPER,LFBO) = QFC(UPPER,LFBO) + QFR(UPPER,LFBO)
QF(LOWER,LFBO) = QFC(LOWER,LFBO) + QFR(LOWER,LFBO)
HEATLP(LFBO) = QF(UPPER,LFBO) + QF(LOWER,LFBO)

the following code is for a constrained fire only, that is one that can burn
in the upper layer, or in vents; if it is type one, then skip

IF (LFBT.LE.1) GO TO 6

the heat release into the upper layer is from two sources, first the burning
of a plume in the upper layer, and second a vent fire, which deposits all
of its energy into the upper layer of an adjacent compartment

28

Updating the Model

first do the plume in the upper layer; start with the fuel left over from
lower layer burning
umplm<:ep>,<es>,and <ee> are the counterparts to emp, ems and eme

UPLMEP = MAX (XXO, EMP(LFBO)-NETFUEL)

check if anything to burn

IF (UPLMEP. LE. XXO) GO TO 7

no view factor calculation in the upper layer - everything stays here

QHEATU = HCOMBA * UPLMEP + QHEATL
CALL FIRPLM (QHEATU, Z(LFBO), UPLMEP, UPLMES, UPLMEE, LFPOS)

CALL CHEMIE (QPYROL, UPLMEP, UPLMEE, NETFUEL, LFBO, UPPER,
NETMAS, OLDMAS, CC02T, C0C02T, HCRATT,

OCRATT, CLFRAT, CNFRAT)
QFC(UPPER,LFBO) = QFC(UPPER,LFBO) + QPYROL

QF(UPPER,LFBO) = QFC(UPPER,LFBO) + QFR(UPPER,LFBO)
HEATUP(LFBO) = QPYROL

now do the vent fires

note that sau to the ambient is very large (xlrg) so that there is not an

artificial constraint on the burning rate outside, this is set in the model

during initialization

7 CONTINUE

DO 5 I = 1, N

DO 5 J = 1, N

IF (NW(J,I).LE.0.OR.TU(J).LT.TGIGNT) GO TO 5

SAUK = 0.0

DO 2 K = 1, 4

SAUK = SAUK + SAU(J,I,K)

2 CONTINUE
IF (SAUK.GT.O.ODO) THEN

CALL CHEMIE (QPYROL, NETFL(J,I), SAUK, NETFUEL, I, LOWER,

NETMAS, OLDMAS, CC02T, C0C02T, HCRATT,

OCRATT, CLFRAT, CNFRAT)
HEATVF(I) = HEATVF(I) + QPYROL
QFC(UPPER,I) = QFC(UPPER,I) + QPYROL
QF(UPPER,I) = QFC(UPPER,I) + QFR(UPPER,I)

END IF

5 CONTINUE

now do all other source terms starting with the convective heat transfer

6 DO 100 I = 1,NM1

ACEILI = AR(I)
AUPPER = (BR(I) + DR(I)) * Z(I) * 2.0D0
AW(UPPER) = ACEILI + AUPPER
AFLOOR = AR(I)

ALOWER = MAX(XXO, (BR(I) + DR(I)) * (HR(I) - Z(I)) * XX2)
AW(LOWER) = AFLOOR + ALOWER
DO 11 J = 1, NWAL

TW(J) = TWJ(J,I,1)
EP(J) = EPW(J,I)

11 CONTINUE
TG(UPPER) = TU(I)
TG(LOWER) = TL(I)
QC(UPPER,I) = O.ODO
IF (SWITCH(1,I)) THEN

CALL CONVECd, TG(UPPER), TW(1), ACEILI ,QSCNV(1 , I),

QC(UPPER,I))

29

A Programmer's Reference Manual for CFAST, ...

ELSE
TW(1) = TG(UPPER)
TWJ(1,I,1) = TG(UPPER)

END IF

IF (SWITCH(3,I)) THEN

CALL C0NVEC(3, TG(UPPER), TW(3), AUPPER,QSCNV(3, I), QC(UPPER,I))
ELSE

TW(3) = TG(UPPER)
TWJ(3,I,1) = TG(UPPER)

END IF

QC(LOWER,I) = O.ODO
IF (SWITCH(2,I)) THEN

CALL C0NVEC(2, TG(LOUER), TW(2), AFL00R,QSCNV(2, I), QC(LOWER,I))
ELSE

TWJ(2,I,1) = TG(LOWER)
TW(2) = TG(LOWER)

END IF

IF (SWITCH(4,I)) THEN
CALL C0NVEC(4, TG(LOWER), TW(4), AL0WER,QSCNV(4,I), QC(LOWER,I))

ELSE

TW(A) = TG(LOWER)
TWJ(4,I,1) = TG(LOUER)

END IF

next is radiative heat transfer

CALL FIRRAD (TW, TG, AW, AR(I), EP, XHALF, QSRADW, QR, I)

hydrogen chloride adsorption - note that this is a wall term and thus different
than normal species production and destruction

IF (ACTIVS(6)) THEN
IF (SWITCH(I.I)) THEN

CALL HCLTRAN (UPPER, I .ACEILI ,TU(I),TW(1),HWJD0T(1, I),1,NETMAS)
END IF

IF (SWITCH(3,I)) THEN
CALL HCLTRAN (UPPER, I ,AUPPER,TU(I),TW(3),HWJDOT(3, I),3,NETMAS)

END IF

IF (SWITCH(2,I)) THEN
CALL HCLTRAN (LOWER, I ,AFLOOR,TL(I),TW(2),HWJDOT(2, I),2,NETMAS)

END IF

IF (SWITCH(4,I)) THEN
CALL HCLTRAN (LOWER, I ,AL0WER,TL(I),TW(4),HWJD0T(4, I),4,NETMAS)

END IF

END IF

once we do smoke agglomeration, it will be similar to the hcl above

IF (ACTIVS(9)) THEN
ENDIF

this is the end of the "other source terms" calculation

100 CONTINUE

now we do flow - first straight flow between compartments, upper to upper,
lower to lower, both ways

DO 203 I = 1, N

DO 203 J = 1, N

IF (NW(I,J).EQ.O) GO TO 203
DO 202 K = 1, 4

IF (IAND(FRMASK(K),NW(I,J)).NE.O) CALL FLOW (I, J, K, ...)
202 CONTINUE
203 CONTINUE

30

Updating the Model

now entrained flow - the result sau and asl do not include the pseudo plumes
themselves - first entrainment into the upper layer

DO 120 I = 1, N

DO 120 J = 1, N

IF <NW(J,I).EQ.O) GO TO 120

IF (J.EQ.N) THEN

TU(J) = ETA(I)
TL(J) = ETA(I)

ELSE IF (I.EQ.N) THEN

TU(I) = ETA(J)
TL(I) = ETA(J)

END IF

loop over vents between compartments (k =1->4)

DO 121 K = 1, 4

IF (IANO(FRMASK(K),NW(I,J)).EQ.O) GO TO 121

IF (SA(J,I,K).LT.0.0001DO.OR.TU(J).LE.TL(I)) THEN
SAU(J,I,K) = O.ODO

ELSE
zd is initialized to xlrg in the model for the outside - see above explanation

ZD = MAX(XXO,(HRP(I)-Z(I))-(HRP(J)-Z(J)))
CALL ENTRFL(TU(J), TL(I), SA(J,I,K), ZD, SAU(J,I,K))

END IF

121 CONTINUE
120 CONTINUE

now into the lower layer

DO 122 I = 1, N

DO 122 J = 1, N

IF (NW(J,I).EQ.O) GO TO 122

IF (J.EQ.N) THEN

TU(J) = ETA(I)
TL(J) = ETA(I)

ELSE IF (I.EQ.N) THEN
TU(I) = ETA(J)
TL(I) = ETA(J)

END IF

DO 123 K = 1, 4

IF (IAND(FRMASK(K),NW(I,J)).EQ.O) GO TO 123
IF (AS(J,I,K).LT.0.0001D0.OR.TU(I).LE.TL(J)) THEN

ASL(J,I,K) = O.ODO
ELSE

IF (J.LT.N.AND.I.LT.N) THEN
ZD = MAX(XXO,(HRP(J)-Z(J))-(HRP(I)-Z(I)))

ELSE

IJ = M!N(I,J)
JI = MAX(J,I)
ZD = MAX(XXO,HH(IJ,JI,K)-(HR(IJ)-Z(IJ)))

END IF

CALL ENTRFL(TU(I), TL(J), AS(J,1,K), ZD, ASL(J,I,K))
ASL(J,I,K) = MAX(XXO, ASL(J, I ,K)-MINMAS)

END IF

123 CONTINUE
122 CONTINUE

sort into source terms for the solver, i for compartment, J for source, k for vent

DO 10 1=1, NM1

OPRES = 1.0D0 / (P(I)+POFSET)
VU = P(I+N2)
VL = MAX(VR(I)-VU,PMIN(I+N2))

set SPIN,SMNET,SLIN,STIN,SUNET,SLNET to O.ODO

31

A Programmer's Reference Manual for CFAST, ...

GV = CNVG(I) * GAMMA1 / VR(I)

GTU = ONEBTA * OPRES * TU(I) / VU

GTL = ONEBTA * OPRES * TL(I) / VL

natural flow

DO 20 J=1,N
IF (NW(J,I).EQ.O) GO TO 20

IF (J.EQ.N) THEN

TU(J) = ETA(I)

TL(J) = ETA(I)
END IF

mass flux definitions for all cases

DO 30 K = 1, 4

if no flow, then forget it

IF (IAND(FRMASK(K),NW(I,J)).EQ.O) GO TO 30

SSIN = SS(J,I,K)
SSOT = SS(I,J,K)
SAIN = SA(J,I,K)
SAOT = SA(I,J,K)
ASIN = AS(J,I,K)
ASOT = AS(I,J,K)
AAIN = AA(J,I,K)
AAOT = AA(I,J,K)

the following rules are discussed in the references, but take care of the
problems due to the natural stack effect

case 1 - tu(i) > tl(i) > tu(j) > tl(j)

IF (TL(I).GT.TU(J)) THEN
INULU = O.ODO
INULL = O.ODO
INLLU = SSIN + SAIN
INLLL = ASIN + AAIN

case 2 - tu(j) > tu(i) > tl(i) - this is the opposite of the first case

ELSE IF (TL(J).GT.TU(I)) THEN
INULU = SSIN + SAIN
INULL = ASIN + AAIN
INLLU = O.ODO
INLLL = O.ODO

case 3 - otherwise

ELSE
INULU = SSIN + SAIN
INULL = O.ODO
INLLU = O.ODO
INLLL = ASIN + AAIN

ENDIF

now add up the mass flows into the proper parts

INUL = INULU + INULL

INLL = INLLU + INLLL
OTUL = SSOT + SAOT

OTLL = ASOT + AAOT

32

Updating the Model

SMNET
SUNET

SLNET

SMNET +

SUNET +

SLNET +

(INUL-OTUL) + (INLL-OTLL)
(INUL-OTUL) + (SAU(J,I,K)-ASL(J,I,K))
(INLL-OTLL) + (ASL(J,I,K)-SAU(J,I,IC))

now we can do enthalpy flow

pressure
SPIN = SPIN

+ (TU(I)-TAMB(I)) * (INUL-OTUL)
+ (TL(I)-TAMB(I)) * (INLL-OTLL)
+ (TU(J)-TU(I)) * INULU
+ (TL(J)-TU(I)) * INULL
+ (TL(J)-TU{I)) * INLLU
+ (TL(J)-TL(I)) * INLLL

upper layer temperature
STIN = STIN

+ (TU(J)-TU(I)) * INULU
+ (TL(J)-TU(I)) * INULL
+ (TL(I)-TU(I)) * SAU(J,I,K)

lower layer temperature
SLIN = SLIN

+ (TL(J)-TU(I)) * INLLU
+ (TL(J)-TL(I)) * INLLL
+ (TU(I)-TL(I)) * ASL(J,I,K)

30 CONTINUE

this concludes the "natural" mass flow

20 CONTINUE

add in the contribution from mechanical ventilation - forced flow

DO 50 J = 1, NEXT
IF (HVN0DE(1,J).EQ.I) THEN

SMNET = SMNET
SUNET = SUNET

SLNET = SLNET
SPIN = SPIN +

50

STIN

SLIN
END IF

CONTINUE

= STIN
= SLIN

+ HVEFLO(UPPER,J) + HVEFLO(LOWER, J)
+ HVEFLO(UPPER,J)
+ HVEFLO(LOWER,J)
(HVEXTT(J)-TU(I))*HVEFLO(UPPER,J)
(HVEXTT(J)-TL(I))*HVEFLO(LOWER,J)
(HVEXTT(J

) -TU(I))*MAX(XX0, HVEFLO(UPPER , J)

)

(HVEXTT(J)-TL(I))*MAX(XX0,HVEFLO(LOWER,J))

finally, include the plume contribution(s)

SUNET = SUNET + EMS(I)
SMNET = SMNET + EMP(I)
SLNET = SLNET - EME(I)

now put it all together for the solver

QUI = QF(UPPER,I) + QR(UPPER,I) + QC(UPPER,I)
QLI = QF(LOWER,I) + QR(LOWER,I) + QC(LOWER,I)

C(I) = (QUI + QLI + CP*(SPIN+EMP(I)*(TE-TAMB(I)))
+ CV*TAMB(I)*SMNET) * GV

D(I) = O.ODO
C(I+N) = (QUI + CP*(STIN+EMP(I)*(TE-TU(I)) +

EME(I)*(TL(I)-TU(I)))
- RGAS*(TU(I)-TAMB(I))*SUNET + VU*C(I)) * GTU

D(I+N) = O.ODO

33

A Programmer's Reference Manual for CFAST, ...

C(I+N2) = OPRES * (RGAS*TU(I)*SUNET - VU*C(I))
+ C(I+N)/TU<I)*VU

D(I+N2) = O.ODO
C(I+N3) =(QLI + CP*SLIN - RGAS*(TAMB(I)-TL(I))*SLNET +

VL*C(I)) * GTL
D(I+N3) = O.ODO

10 CONTINUE

done!!! repack the species for the solver - only the basic variables are in
the proper format - first "normal species" n2,o2,... then hcl deposition, which
acts like a species, that is, the hwjdot from hcltran is a loss term, then
smoke density which is an agglomeration, deposition effect

ISOF = N4

DO 40 LSP = 1, NS

IF(.NOT.ACTIVS(LSP)) GO TO 40
DO 41 I = 1, NM1

DO 41 K = UPPER, LOWER

ISOF = ISOF + 1

C(ISOF) = NETMAS(K,I,LSP)
D(ISOF) = O.ODO

41 CONTINUE
40 CONTINUE

42

go home

IF (ACTIVS(6)) THEN
DO 42 I = 1, NM1

DO 42 K = 1, NWAL
ISOF = ISOF + 1

C(ISOF) = HWJDOT(K,I)
D(ISOF) = O.ODO

CONTINUE
END IF

IF (ACTIVS(9))
END IF

THEN

RETURN
END

34

Protocol and Initial Services

4. PROTOCOL AND INITIAL SERVICES

Information is passed between the various subroutines and main modules by the use of

files and common blocks. The model has several common blocks associated with it. Of
interest to most programmers is the way the data are used in the model. However, there is

some other information which is made available and wdll be discussed first.

Each main module calls a set of routines which set up the physical environment for

the model. The routines are READOP and OPENSHEL. They perform a number of

housekeeping tasks. This information is related to the environment (computer platform) on

which the model is running.

First, the command line is interpreted, providing file names and options. Up to two

file names are available. The first entry is either an input file, or a configuration file. If it is

an input file, then the name is provided in the variable "NNFILE" in the shell common block.

It will not be opened. When a file is opened for input, the unit number lOFILI should be

assigned. If there is a valid output file, its name is provided in the variable "OUTFILE." It

will be opened, and the unit number is lOFILO. There is a default configuration file

CE^ST.CF which will be read unless an alternative is provided on the command line. A
configuration file name can be provided in place of the input file. In this case, the input file

will be fetched from the variable DFILE from within the configuration file. In any case, the

current configuration file will be named in CONFIG. Most modules will not run without the

configuration file.

Second, the options are stored in the shell common blocks. There are currently five

options available. All five are available to all modules. They are specified on the command
line by

- (or I) option.

An example is the option to prevent the header from printing. This would be

-N.

The five which are presently read and decoded are

1. Report type (Rnn)

2. Graphics card (Gt:nn)

3. No header (N)

4. Turn on error logging (L)

5. Pass an environment file (Ffilename) - only for the shell to pass an environment file

35

A Programmer's Reference Manual for CFAST, ...

These options are read and interpreted by the routine READOP.

The data file is opened by the input routine, NPUTP. It is closed by this routine after

all data has been read. There should be no units assigned, opened or closed while data

retrieval is in process. Thus data entry should be done within the scope of NPUTP or

NPUTQ only by these routines. Any data can be retrieved from the data files by NPUTQ. If

subsidiary information is needed, then a reference file name should be read and stored in a

variable kept in the PARAMS common block (or unlabeled common), and data fetches made
after the second exit from NPUTP. This precludes initialization of such data during the

geometry and fire specification process. The thermal properties are retrieved by the

initialization routines at this point (after the restart return).

New key words that are to be added to the data file are placed in NPUTQ. It is

important to follow the protocol as laid out therein, so that consistency checks can be

performed on the data. Any physical initialization that needs to be done should be included

in NPUTP, after the call to LOADIN. At this point, the model is completely set up. The
only data that is not done are the total masses of the upper and lower layers. This is deferred

to the originating routine. The name of the primary data file is in the variable NNFILE, but

is open at this point, and pointing to the end of NNFILE. NPUTP can be referenced twice if

a restart has been requested. In each case, NNFILE is closed prior to exiting.

In the process of inserting key words into NPUTQ, one will note that there are two

case statements (computed GO TO) for the key words. The first is for a normal start, and

the second is for a restart. In the latter case, some variables are not, and should not, be valid.

An example of the difference: the fire specification can change, but it makes no sense to

change the physical layout.

The next consideration is the setup provided for the physical system. Initialization is

done by CFAST, or INITFS in the case of the data editor. Both preset memory, and call the

routine NPUTP. NPUTP does the actual physical initialization. It in turn calls the routine

NPUTQ which reads the data files. Subsequently, the geometry, species and graphics

descriptors are set. Finally the environment is set by CFAST or INITFS. This includes

reading the thermophysical properties and assigning them to the correct boundary, and all

other auxiliary files as necessary. It is at this point that all the data files are closed, and the

unit lOFILI is available. It should be closed, opened to the appropriate file, and subsequently

closed.

There are several logical switches that are set, based on the problem to be solved.

The two most common are ACTIVS and SWITCH. The former is for active species. The
latter serves two purposes, for active conduction and for miscellaneous parameters.

If a species is being computed, for whatever reason, then ACTIVS will be TRUE,
otherwise it will be FALSE. This parameter is dimensioned to NS, the number of species

which CFAST will follow. They are documented in STPORT. The order is

36

Protocol and Initial Services

INDEX SPECIES APPLICABLE KEY WORD

1 Nitrogen none

2 Oxygen 02

3 Carbon dioxide none

4 Carbon monoxide CO

5 Water vapor none but HCR is related

6 Hydrogen chloride HCL

7 Unburned hydrocarbons none

8 Hydrogen cyanide HCN

9 Soot OD

10 Concentration time dose CT (not a species)

For each species that is tracked, the variable ACTIVS(i) is set to true. There are two types

of action that hinge on the setting of this variable. The first is in the availability and display

of species information. The second is in the packing used in preparing the source terms for,

and extracting them from the solver. The details of this activity are in the section on the data

copy and DSOURC routines.

The variable SWITCH is used in two places. The first is to specify which boundaries

in which compartments can conduct heat. The parameter is set in NPUTQ, but verified by

NPUTT. It can be set in NPUTQ if specified in the data file, but subsequently turned off by

NPUTT if the name of the boundary can not be found in the thermophysical database. When
the primary model is running, it will terminate if this latter condition is found, whereas the

data editor will distinguish between the boundary being considered adiabatic with the name
"OFF" and not found by "NONE." SWITCH is dimensioned NWAL by NR.

Since conduction is only allowed for NR-1 compartments, the last column can be used

for miscellaneous variables. Once again, the default is false, but if the appropriate key word

has been set, then the variable will be set to true.

(1,NR) - print the flow field and species - set in NPUTP; used only by the main model

(2,NR) - use the semi infinite slab approximation for heat loss by conduction

(3,NR) - CNVG(l) has been set - used in DSOURC for the pressure damping

(4,NR) - CNVG(2) has been set - changes error tolerance in the solver DIFEQ

The order of initialization is important. This is particularly true because of the caveat

above that input/output units should not be assigned during the primary initialization. First,

the main routine, CFAST or INITFS, initialize memory, and some physical constants such as

the gravitational constant. The main data file is then opened. If one can not be found, then

the model quits. The next step is to call NPUTP with the restart parameter of ISRSTR=1.

37

A Programmer's Reference Manual for CFAST, ...

NPUTP reads the header line to check for a correct file, then calls NPUTQ, with the

ISRSTR=1. NPUTQ does all of the actual data entry, via unit lOFILI. After control is

returned to NPUTP, physical initialization is done, for example setting the atmospheric

ambient, calculating the volume of the compartments, and so forth. Then the graphics

descriptors are read by LOADIN. These processes occur whether or not a restart will be

done. Then control is returned to the main module. Some additional processing takes place

to set the species of the ambient environment. If a restart has been requested, the

appropriate history file is read for the requested interval. NPUTP rewinds the input file and

once again calls NPUTQ, with ISRSTR=2. At this point there are some differences. Within

NPUTQ, the case statement (discussed above) prevents some parameters from being reset.

Units are specific to the operating system. There are two general input/output units

named lOFILI and lOFILO. In the current implementation they are numbered 1 and 6

respectively. Tliere are additional units as follows:

1) ISRSTR tells us if this is a normal input file, or a restart

=> MOST DATA HAS BEEN SET - DO INITIALIZATION ONLY
1 => IMPLIES A NORMAL READ, WITH OPEN
2 => IMPLIES AN UPDATE AFTER RESTART

2) files used

1 => CONHGURATION FILE, PRIMARY DATA RLE AND
DATA BASES - OPENED AND CLOSE BY EACH
ROUTINE

2=> HELP FILES
3 => LOG FILE - OPEN ALL THE TIME
9 = > RESTART AND DUMP HLE I/O & FONT HLES - BOTH

ARE OPEN INTERMITTENTLY

Initialization is complete, and we let the simulation begin.

38

Description of the data files used by CFAST

5. DESCRIPTION OF THE DATA FILES USED BY CFAST

There are two types of files used within the model. Most files are in ASCII format,

and can be listed with a "cat" or "type" command. The one file that is binary is the history file

used for saving the time histories of the variables. This latter file is not portable, whereas the

ASCII data file can be moved across platforms. The only comment on the binary file, is that

the order of variables is that in the common block "mocola." It is written by the routine

WRITEOT and read for restarts and plotting by DREADIN.

The remaining files are ASCII. They are

1. the main data file,

2. the thermophysical data file,

3. a file containing multiple objects,

4. a configuration file.

In addition, the model writes results to lOFILO, and this can be a file and printed or

examined later. It too will be in ASCII format. The other files shown in the configuration

file are not utilized at present. They are for future enhancement. In particular, the geometry

file will be for connecting walls for heat transfer between compartments, and the partition file

will be serve a similar purpose for destructible walls.

1. The main data file is free format. A key word must begin a line, and only the first five

characters are significant. The model will read and write 256 byte records, which is generally

long enough to keep all parameters. The detailed form of the file is given in Appendix A.

2. The format of the thermophysical data (default is THERMAL.DAT) file is

Name, conductivity, specific heat, density, thickness, emissivity, and seven
coefficients for hydrogen chloride deposition, reference [2].

There can be up to NTHMX of these entries. It too is free format.

3. For multiple objects, there is a separate file (default is OBJECTS.DAT) which contains

data for multiple objects. In the simplest case, the data appears very similar to the specified

fire within the model. There are entries for heat release, etc. However, there are also entries

for total mass, size, and so forth. The present version of the model does not use these

entries, but they are provided since that information will be necessary for including self

consistent burning objects. The format is

39

A Programmer's Reference Manual for CFAST, ...

1. Naitie up to 8 characters
2. Type (1->4), position (1->3), Csurface teniperature & flux for ignition>, total mass, gmw,

volitization temperature

<« the following are identical to the specified fire >»

3. Time interval (1->lfmax)
A. Pyrolysis rate (1->lfnnax+1)

5. Heat release rate (1->lfmax+1)
6. Area of the fire (1->lfniax+1)

7. Height of the base of the flame (1->lfmax+1)
8. Ratio of CO to co sub 2 in burning (1->lfmax+1)

9. Ratio of soot to co sub 2 in burning (1->lfmax+1)
10. Ratio of hydrogen to carbon in the fuel (1->lfmax+1)

11. Ratio of oxygen to carbon in the fuel (1->lfmax+1)
12. Factor for concentration time dose calculation (1->lfmax+1)

13. Ratio of hydrogen cyanide to fuel pyrolysis rate (1->lfmax+1)
H. Ratio of hydrogen chloride to fuel pyrolysis rate (1->lfmax+1)

4. The configuration file has the following format

1. heading key ($$CF$$)
2. version(i4), colors (11xi3), units (7xi3), remote file(i3), advanced features(ll)
4. thermal datafile (a60)
5. last written file from data editor (a60)

6. geometry file (compartments,...) (a60)

7. other objects file (adO)

8. partition properties file (a60)
9. path for executable, databases, ... (a64)

10. path for data - if blank use current path (a64)

The format used by the "read" statements is shown in parenthesis.

Although this file is in the ASCII format, it should not be edited directly. The routine

READCF which reads in the configuration file performs only rudimentary checks on the

information. Since path names, file names and other crucial data are specified, the wrong

information can cause disastrous results. If changes need to be made, then the pair of

functions, READCF, and MAKECF should be altered. The former reads the file, and the

latter writes the file. There are corresponding read/write lines in the two routines. For

changes made in one, there MUST be corresponding changes made in the other. This will

then keep the file format consistent.

40

Appendix A

APPENDIX A : PARAMETERS READ BY "NPUTQ"

The computer model requires a description of the problem to be solved. The
following description is for the input data used by the model. In general, the order of the

data is not important. The one exception to this is the first line which specifies the version

number and gives the data file a title.

The data are grouped as

Version and title (A.1)

Time specification (A.2)

Ambient conditions (A.3)

Floor plan data (A.4)

Connections (A.5)

Thermophysical properties of the enclosing surfaces (A.6)

Fire specifications (A.7)

Species production (A8)
Files (A.9)

Graphics specification (A. 10)

Mechanical ventilation (A.11)

Miscellaneous (A. 12).

The number of lines in a given data set will vary depending for example on the number of

openings or the number of species tracked. A sample input data file is given in Appendix A.

A number of parameters such as heat transfer and flow coefficients have been set within the

program as constants. Please refer to the section on source terms to ascertain the values for

these parameters.

Each line of the input data file begins with a key word which identifies the type of

data on the line. The key words which are currently available are

CEILI
CHEMI
CO
CT
CVENT
DEPTH
DUMPR
EAMB
FAREA
FHIGH
FLOOR
FMASS

specify name of ceiling descriptor(s)

miscellaneous parameters for kinetics

CO/CO2 mass ratio

fraction of fuel which is toxic

opening/closing parameter

depth of compartments

specify a file name for saving time histories

external ambient

area of the base of the fire

height of the base of the fire

specify the name of floor property descriptor(s)

pyrolysis rate

(N)

(5)

(lfmax+1)

(lfmax+1)

(Ifmax + 4)

(N)

(1)

(3)

(lfmax+1)

(lfmax+1)

(N)

(lfmax+1)

41

A Programmer's Reference Manual for CFAST, ...

FQDOT
FnME
HCL
HCN
HCR
HEIGH
HI/F

HVENT
INELV

INTER
LFBO
LFBT
LFMAX
LFPOS
MVDCT
MVFAN
MVOPN
OD
02
RESTR
TAMB
TIMES
WENT
VERSN
WALLS
WIDTH
WIND

heat release rate (lfmax+1)

length of time intervals (Ifmax)

hcl/pyrolysis mass ratio (lfmax+1)

hcn/pyrolysis mass ratio (lfmax+1)

hydrogen/carbon mass ration of the fuel (lfmax+1)

interior height of a compartment (N)

absolute height of the floor of a compartment (N)

specify vent which connect compartments horizontally (7)

specify interior node elevations (for ventilation ducts)

(2 X # of interior nodes)

initial height of the upper/lower interface (2)

compartment of fire origin (1)

type of fire (1)

number of time intervals (1)

position of the fire in the compartment (1)

describe a piece of (circular) duct work (9)

give the pressure - flow relationship for a fan (3 to 8)

Specify an opening between a compartment and ventilation system (5)

C/CO2 mass ratio

ratio of oxygen to carbon in the fuel

specify a restart file

ambient inside the structure

time step control of the output

specify a vent which connects compartments vertically

version number and title

specify the name of wall property descriptor(s)

v^idth of the compartments

scaling rule for wind effects

(lfmax+1)

(lfmax+1)

(2)

(3)

(5)

(3)

(fixed format 2)

(N)

(N)

(3)

The number in parenthesis is the maximum number of entries for that line. "N" represents the

number of compartments being modeled and "Ifmax" is the number of time intervals used to

describe the fire, detailed below in section A7. The outside (ambient) is designated by one

more than the number of compartments, N+1. So a three compartment model would refer to

the outside as compartment four.

Each line of input consists of a label followed by one or more alphanumeric

parameters associated with that input label. The label must always begin in the first space of

the line and be in capital letters. Following the label, the values may start in any column and

all values must be separated by either a comma or a space. Values may contain decimal

points if needed or desired. They are not required. Units are standard SI units. Most param-

eters have default values which can be utilized by omitting the appropriate line. These will be

indicated in the discussion. The maximum line length is 128 characters, so all data for each

key word must fit in this number of characters. For each entry which requires more than one

type of data, the first entry under the column "parameter" indicates the number of data

required.

42

Appendix A

A.l Version and Title

This line must be the first line in the file. It is the line that CFAST keys on to determine

whether it has a correct data file. The format is fixed, that is the data must appear in the

columns specified in the text.

Label Parameter Comments

VERSN (2)

Version

Number

The VERSN line is a required input.

The version number parameter specifies the

version of CFAST for which the input data file

was prepared. Normally, this would be 18. It

must be in columns 8-9.

Title The title is optional and may consist of letters,

numbers, and/or symbols that start in column 1

1

and may be up to 50 characters. It permits the

user to uniquely label each run.

Example:

VERSN 18 Simulation for Building XYZ

A.2 Time Specification

Label Parameter Comments Units

TIMES (5) The TIMES line is required data.

Simulation Simulation time is the length of time over which

Time the simulation takes place. The maximum value

for this input is 86400 seconds (1 day). The
simulation time parameter is required.

43

A Programmer's Reference Manual for CFAST,

Print

Interval

Dump
Interval

The print interval is the time interval between

each printing of the output values. K omitted or

less than or equal to zero, no printing of the

output values will occur.

The dump interval is the time interval between

each writing of the output to the history file.

The history file stores all of the output of the

model at the specified interval in a format which

can be efficiently retrieved for use by other

programs. Section A.9 provides details of the

history file. A zero must be used if no dump file

is to be used. There is a maximum of 50 intervals

allowed. If the choice of this parameter would

yield more than 50 writes, it is adjusted so that

this limit is not exceeded.

Display

Interval

Copy Count

Examples:

TIMES 360
TIMES 360 10 30
TIMES 900 30 10

The display interval is the time interval between

each graphical display of the output as specified

in the graphics specification, section A.10. K
omitted, no graphical display will occur. There is

a limit on the display of 50 for the

microcomputer versions and 100 for the

mainframe versions of FAST This parameter is

not adjusted; rather graphs will be truncated to

the first 50 or 100 points, respectively.

Copy count is the number of copies of each

graphical display to be made on the selected hard

copy device as specified in the graphics

specification, section 2.9. If omitted, a value of

zero (no copies) is assumed.

10

In the first example, a simulation time of 360 s is specified. The output values will not be

printed or stored in a history file. No graphical display of the output will occur. In the

second example, a 360 s simulation with printed output every 10 s and output to a history file

every 30 s is specified. No graphical display of the output values will be generated. In the

third example, all parameters are specified. A 900 s simulation with printed output every 30 s,

output to a history file every 10 s and a graphical display with no copies will occur every 10 s.

44

Appendix A

Note the free field format of these parameters -multiple spaces between parameters are

permitted.

A.3 Ambient Conditions

The ambient conditions section of the input data allows the user to specify the

temperature and pressure and station elevation of the ambient atmosphere, as well as the

absolute wind pressure to which the structure is subjected. There is an ambient for the

interior and for the exterior of the building. The key word for the interior of the building is

TAMB and for the exterior of the building is EAMB. The form is the same for both. The
key word for the wind information is WIND. The wind modification is applied only to the

vents which lead to the exterior. Pressure interior to a structure is calculated simply as a

lapse rate based on the NOAA tables [17]. For the exterior, the nominal pressure is modified

by

5(p) = C„ /)Vf where V = ^-

This modification is applied to the vents which lead to the exterior ambient. The pressure

change calculated above is modified by the wind coefficient for each vent. This coefficient,

which can vary from -1.0 to -1-1.0, nominally from -0.8 to +0.8, determines whether the vent is

facing away from or into the wind. The pressure change is multiplied by the vent wind

coefficient and added to the external ambient for each vent which is connected to the outside.

Label

TAMB
or EAMB

Parameter Comments

(3) These data are optional.

Ambient Ambient temperature is the temperature of the

Temperature ambient atmosphere. Default is 300.

Ambient The ambient pressure is the pressure of the

Pressure ambient atmosphere. Default is 101300.

K

Pa

45

A Programmer's Reference Manual for CFAST,

Station The station elevation is the elevation of the point

Elevation at which the ambient pressure and temperature

(see above) are measured. The reference point

for the elevation, pressure and temperature must

be consistent. This is the reference datum for

calculating the density of the atmosphere as well

as the temperature and pressure inside and

outside of the building as a function of height.

Default is 0.

m

WIND (3) This line is optional.

Wind Speed Wind speed at the reference elevation. The
default is 0.

m/s

Reference Height at which the reference wind speed is

Height measured. The default is 10 m.

Lapse Rate The power law used to calculate the wind speed

Coefficient as a function of height. The default is 0.16.

m

The choice for the station elevation, temperature and pressure must be consistent.

Outside of that limitation, the choice is arbitrary. It is often convenient to choose the base of

a structure to be at zero height and then reference the height of the building with respect to

that height. The temperature and pressure must then be measured at that position. Another

possible choice would be the pressure and temperature at sea level, with the building

elevations then given with respect to mean sea level. This is also acceptable, but somewhat

more tedious in specifying the construction of a building. Either of the these choices works

though because consistent data for temperature and pressure are available from the Weather

Service for either case.

Examples:

TAMB 300
TAMB 288 101000 200.

The first example sets the ambient temperature to 300 K, but leaves the ambient pressure at

101300 and the reference elevation at m. The second specifies a temperature of 15 C at

200 m and a pressure of 101000 Pa. In both of these cases the external ambient is set to the

same values. An example of different inside and outside values is a warm building in a winter

setting and might be described as

TAMB 288 101305 0.0
EAMB 270 101315 0.0

46

Appendix A

A.4 Floor Plan Data

The floor plan data section allows the user to portray the geometry of the structure

being modeled. The size and location of every room in the structure MUST be described.

The maximum number of rooms is dependent upon the local implementation of FAST
Usually a total of 10 rooms (plus the outdoors) is available for a single simulation. For the

PC versions, a maximum of six compartments (plus the outdoors) is allowed. Tne structure of

the data is such that the compartments are described as entities, and then connected in

appropriate wa}'s. It is thus possible to have a set of rooms which can be configured in a

variety of ways. In order to specify the geometry of a building, it is necessary to give its

physical characteristics. Thus the lines labelled HI/F, WIDTH, DEPTH AND HEIGH are all

required. Each of these lines requires "N" data entries, that is one for each compartment.

Label Parameter Comments Units

HI/F Floor Height The floor height is the height of the floor of

each room with respect to station elevation

specified by the TAMB parameter. The
reference point must be the same for all

elevations in the input data. The number of

values on the line must equal the number of

rooms in the simulation.

m

WIDTH Room Width Room width specifies the width of the room.

The number of values on the line must equal the

number of rooms in the simulation.

m

DEPTH Room Depth Room depth specifies the depth of the room.

The number of values on the line must equal the

number of rooms in the simulation.

m

HEIGH Room Height Room Height specifies the height of the room.

The number of values on the line must equal the

number of rooms in the simulation.

m

Example:

HI/F 0.0 0.0 0.0
WIDTH 6,1 4.6 4.6
DEPTH 9.1 14.3 4.3
HEIGH 3.6 2.4 2.4

47

A Pi'ogrammer's Reference Manual for CFAST, ...

This floor plan data specifies the sizes for a three room simulation with rooms sizes of 6.1 x

9.1 X 3.6 m, 4,6 x 14.3 x 2.4 m, and 4.6 x 4.3 x 2.4 m, respectively. All rooms are at the same

elevation at a reference height of 0.0 m.

A.5 Connections

The connections section of the input data file describes any horizontal or vertical vents

between rooms in the structure. These may include doors between rooms in the structure,

windows in the rooms (between rooms or to the outdoors), or vertical openings between

floors of the structure. Openings to the outside are included as openings to the room with a

number one greater than the number of rooms described in the floor plan data section.

Doors, windows, and the like are called horizontal vents because the direction of the vent, or

vent connection, is in the horizontal direction. The key word is HVENT Horizontal vents

may be opened or closed during the fire with the use of the CVENT key word. For vertical

vents, such as scuddles, the key word is WENT; at present there is not an equivalent

mechanism for opening or closing the vertical vents. The form for horizontal and vertical

vents is necessarily different.

Label

HVENT

Parameter Comments

(7) Required to specify connections between

compartments. No openings prevents flow. Each

HVENT line in the input file describes one

horizontal vent between rooms in the structure

(or between a room and the outdoors). The first

six entries on each line are required. There is an

optional seventh parameter to specify a wind

coefficient.

Units

First Room The first room is simply the first connection.

Second Room The second room is the room number to which

the first room is connected.

Vent Number

The order has one significance. The height of

the sill and soffit are with respect to the first

compartment specified.

There can be as many as four vents between any

two compartments. This number specifies which

vent is being described. It can range from one to

four.

48

Appendix A

Width

Soffit

The width of the opening.

Position of the top of the opening above the

floor of the room number specified as the first

room.

m

m

SIII

Wind

Sill height is the height of the bottom of the

opening above the floor of the room number
specified as the first room.

The wind coefficient is the cosine of the angle

between the wind vector and the vent opening.

This applies only to vents which connect to the

outside ambient (specified with EAMB). The
range of values is -1.0 to +1.0. If omitted, the

value defaults to zero.

m

WENT (3) Required to specify a vertical connection between

compartments. Each WENT line in the input

file describes one vertical vent between rooms in

the structure (or between a room and the

outdoors). There are three parameters, the

connected compartments, and the effective area

of the vent.

First Room The first room is simply the first connection.

Second Room The second room is the room number to which

the first room is connected.

The order has one significance. The height of

the sill and soffit are with respect to the first

compartment specified.

Area This is the effective area of the opening. For a

hole, it would be the actual opening. For a

diffuser, then the effective area will be somewhat

less than the geometrical size of the opening.

Examples:

HVENT 1
HVENT 1
HVENT 2

WENT 1

1 1.1
1 1.1
1 1.3
3.0

2.1 0.0
2.1 0.0
2.1 0.6

49

A Programmer's Reference Manual for CFAST, ..

Assuming the three room structure as described in the floor plan data section, the above

examples describe two openings 1.1 x 1.5 m between rooms 1 and 2 and between rooms 1 and

3. An 1.3 X 2.1 m opening between room 2 and the outside (room 4 for a three room
simulation) is raised 0.6 m off the floor of room 2.

HVENT 2 4 21. 3 2.1 0.61.0

This specifies vent #2 between compartment (2) and the outside, with a wind coefficient of

1.0, which implies that the vent is facing directly into the wind.

CVENT is a parameter which is used to open and close vents. It multiples the width

in the vent flow calculation. The default is 1,0 which is a fully open vent. A value of 0.5

would specify a vent which was hal^ay open.

Label Parameter Comments Units

CVENT (LFMAX+4) Specify closing value. Each CVENT line in the

input file describes one horizontal vent between

rooms in the structure (or between a room and

the outdoors).

First Room The first compartment.

Second Room The second room is the room number to which

the first room is connected.

Vent Number This number specifies which vent is being

described. It can range from one to four.

These parameters correspond to the first three

parameters in H\^NT.

Width Fraction that the vent is open. This applies to

(LFMAX+1) the width only. The sill and soffit are not

changed.

%

CVENT has a form similar to HVENT but in addition contains the opening data. The
additional data is in the same form as all the time dependent specifications, namely a value for

each endpoint in the heat release curve. The form is

CVENT C#l C#2 V# X X X x,...

By way of example, the default value for CVENT for the example show above with

LFMAX=5 would be

50

Appendix A

CVENT 1 2 1 1.0 1.0 1.0 1.0 1.0 1.0

and would specify that the first vent between compartments (1) and (2) would be open at all

times. Another example would be

CVENT 1 3 1 0.5 0.5 0.5 0.5 0.5 0.5

and would specify that the first vent between compartments (1) and (3) would be half open all

of the time. These fractions refer to the width given in the HVENT specification and for the

cases above would be 1.1 m.

A.6 Thermophysical Properties of Enclosing Surfaces

The thermophysical properties of the enclosing surfaces are described by specifying the

thermal conductivity, specific heat, emissivity, density, and thickness of the enclosing surfaces

for each room. If the thermophysical properties of the enclosing surfaces are not included,

FAST will treat them as adiabatic (no heat transfer). Since most of the heat conduction is

through the ceiling and since the conduction calculation takes a significant fraction of the

computation time, it is recommended that initial calculations be made using the ceiling only.

Adding the walls generally has a small effect on the results and the floor contribution is

usually negligible. Clearly, there are cases where the above generalization does not hold, but

it may prove to be a useful screening technique. Currently, thermal properties for materials

are read from a thermal database file unique to FAST. The data in the file for FAST simply

gives a name (such as CONCRETE) which is a pointer to the properties in the thermal

database. (For computers which do not support extensions, the ".DAT' is dropped.) For the

PC version, this is an installation parameter. All of these specifications are optional. The
thermal properties are assumed to be constant; that is, we do not account for the variation

with temperature or water content.

The thermophysical properties are specified at one condition of temperature, humidity,

etc. There can be as many as three layers per boundary, but they are specified in the thermal

database itself.

51

A Programmer's Reference Manual for CFAST, ...

Label Parameter Comments Units

CEILI (N)

WALLS (N)

FLOOR (N)

The label CEILI indicates that the names of

thermophysical properties on this line describe

the ceiling material. If this parameter is present,

there must be an entry for each compartment.

The label WALLS indicates that the names of

thermophysical properties on this line describe

the wall material. If this parameter is present,

there must be an entry for each compartment.

The label FLOOR indicates that the names of

thermophysical properties on this line describe

the floor material. If this parameter is present,

there must be an entry for each compartment.

Examples:

CEILI OFF
WALLS CONCRETE

REDOAK
CONCRETE

CONCRETE
CONCRETE

The corresponding thermal data base might appear as

CONCRETE 1.75 1000. 2200. 0.1500 0.94
BRICK 0.18 900. 790. 0.016 0.90
REDOAK 0.15 1300. 640. 0.025 0.99

The names of the materials can be any ASCII string up to 8 characters. So a valid name is

$%#@**% although this admittedly does not convey much information. The key word

"OFF' is used to tell the model not to compute the heat loss for the ceiling in compartment

(1). In this case the FLOOR parameter is not present at all, so there will be no heat transfer

through the floor in any room and the calculation will not be done for the ceiling in

compartment (1), where the key word "off is present. This is most useful for doing the heat

transfer calculation in the bum room and adjacent rooms and then turning it off in distant

compartments.

A.7 Fire Specifications

The fire specifications allow the user to describe the fire source in the simulation.

The location and position of the fire is specified along with the chemical properties of the

fuel. Finally, the fire is described with a series of mass loss rate, fuel height, and fuel area

52

Appendix A

inputs. All of these specifications are optional and each line requires a single number. The
defaults for the fire specification is a methane burner in the center of compartment (1). The
defaults shown for each key word reflect the values for methane.

Label Parameter Comments Units

LFBO

LFBT

Room of Room of fire origin is the room number in which

Fire Origin the fire originates. Default is 1.

Fire Type This is a number indicating the type of fire.

1 Unconstrained fire

2 Constrained fire.

LFPOS Fire

Position

The default is 1. See sections 4.5 and 5.5 for a

discussion of the implications of this choice.

The fire position is the area of the room in which

the fire originates and is one of the following

values:

1 Center of the room,

2 Corner of the room, or

3 Along a wall of the room, but not near

a corner of the room.

CHEMI (6)

Molar
Weight

The fire position is used to account for the

entrainment rate of the plume, which depends on

the location of the fire plume within the

compartment. Fire positions 2 and 3 should only

be used when the fire is very close to the corner

or wall respectively. The default is 1.

Chemical kinetics and miscellaneous parameters.

Molecular weight of the fuel vapor. This is the

conversion factor from mass density to molecular

density for "tuhc." Default is 16. It is used only

for conversion to ppm, and has no effect on the

model itself.

53

A Programmer's Reference Manual for CFAST,

Relative The initial relative humidity in the system. This %
Humidity is converted to kilograms of water per cubic

meter from the table from "Dynamical and

Physical Meteorology" by Haltiner and Martin

(1957)

Limiting The limit on the ratio of oxygen to other gases in %
Oxygen the system below which a flame will not burn.

Index This is applicable only to type (LFBT) 2 or later

fires. The default is 10.

Heat of Heat of combustion of the fuel. Default is

Combustion 50000000.

J/kg

LFMAX

Initial Typically, the initial fuel temperature is the same

Fuel as the ambient temperature as specified in the

Temperature ambient conditions section.

Gaseous Minimum temperature for ignition of the fuel as

Ignition it flows from a compartment through a vent into

Temperature another compartment. The default is the initial

fuel temperature.

Number of This is the number of time intervals for the mass

Intervals loss rate, fuel height and species inputs. The
mass loss rate, fuel height and species are entered

as series of points with respect to time. This is

referred to in this document as a specified fire.

A sufficient number of intervals should be

selected to provide a reasonable approximation

(using straight line segments) for the input

variables which specify the fire. A example of

this is shown in figure 8. The mass loss rates P^-

P7 are specified over the time intervals ly-lf,. The
number of points specified must be one greater

than the number of time intervals. For example,

if there are six mass loss points there should be a

total of five time intervals (or one interval

between every two consecutive points). The
maximum number of intervals allowed in version

18 of FAST is 21.

K

K

FTIME Time Interval Time interval is the time between each point

(LFMAX) (mass loss rate, fuel height and species) specified

for the fire. The total duration of the fire is the

54

Appendix A

sum of the time intervals. This time is indepen-

dent of the simulation time which is specified for

the TIMES label. If the simulation time is longer

than the total duration of the fire, the final

values specified for the fire (mass loss rate, fuel

height, fuel area, and species) will be continued

until the end of the simulation. The number of

values on the line must equal the number of tim.e

intervals specified by LFMAX, above.

FMASS Mass Loss

Rate

(LFMAX+1)

The rate at which fuel is pyrolyzed at times kg/s

corresponding to each point of the specified fire.

FHIGH Fuel Height The height of the base of the flames above the

(LFMAX+1) floor of the room of fire origin for each point of

the specified fire.

m

FQDOT Heat Release

Rate

(LFMAX+1)

The heat release rate of the specified fire. W

With the three parameters, the heat of combustion (HOC) from CHEMI, FMASS and

FQDOT, the pyrolysis and heat release rate are over specified. The model uses the last two

of the three to obtain the third parameter. That is, if the three were specified in the order

HOC, FMASS and FQDOT, then FQDOT would be divided by FMASS to obtain the HOC
for each time interval. If the order were FMASS, FQDOT and HOC, then the pyrolysis rate

would be determined by dividing the heat release rate by the heat of combustion. If only two

of the three are given, then those two will determine the third, and finally, if none or only one

of the parameters is present, the defaults shown will be used.

Example:

LFBO 1

LFBT 1
LFPOS 1
CHEMI 0.0
LFMAX 7
FMASS .014
FAREA .5
FHIGH .25
FTIME 20

0.0 10. 18100000. 300.

0014 .025 .045 .050 .0153 .0068 .0041
5 .5 .5 .5 .5 .5 .5
25 .25 .25 .25 .25 .25 .25

20. 50. 50. 100. 100. 400.

In the example, a specified fire (LFBT 1) originates in room number 1 (LFBO 1) in the

center of the room (LFPOS 1). A seven segment (LFMAX) fire is specified. The fuel burns

55

A Programmer's Reference Manual for CFAST, ...

0.10

o

0.05 -

200 400 600 300 1000 1200
TIME (s)

h h h U '5 'e

Figure 8 Pyrolysis rate for LFMAX=6.

with a heat of combustion of 18100000 J/kg. The initial relative humidity is 0%, the molecular

weight is 16 (zero is not allowed, so the default is used) and the limiting oxygen index is 10%.

Since the type of fire is 1, an unconstrained fire, this latter parameter has no meaning in this

context.

LFMAX 7
FMASS .014
FAREA .5
FHIGH .25
FTIME

.0014 .025 .045 .050 .0153 .0068 .0041

.5 .5 .5 .5 .5 .5 .5

.25 .25 .25 .25 .25 .25 .25
20. 20. 50. 50. 100. 100. 400.

In this example, the specified fire is constrained with a limiting oxygen index of 1%. Since

LFBO is not given, the default compartment (1) is used, and the position of the fire is in the

center of the room. The default heat of combustion of 50000000 kJ/kg is used.

56

Appendix A

A.8 Species Production

Species production rates are specified in the manner similar to the fire, entering the

rates as a series of points with respect to time. The species which are followed by FAST are

Carbon Dioxide

Carbon Monoxide

Concentration-Time Product

Hydrogen Cyanide

Hydrogen Chloride

Nitrogen

Oxygen
Soot (Smoke Density)

Total Unburned Hydrocarbons

Water

For a type one (LFBT=1) fire, only the concentration-time product of pyrolysate(ct),

hydrogen cyanide(hcn) and hydrogen chloride(hcl) can be specified. No other species are

followed. For a type two (LFBT=2) fire, nitrogen, oxygen, carbon dioxide, carbon monoxide,

soot, unburned fuel and water are followed. In all cases, the unit of the production rates is

kg/kg. However, the meaning of the production rates is different for the several types of

species. For either fire, the production rates for ct, hen and hcl are with respect to the

pyrolysis rate of the fuel. For the others, carbon monoxide, water, etc., the production rate is

specified with respect to the basic carbon production in the form of a ratio v^th carbon

dioxide. For carbon monoxide, for example, the specification will be CO/CO2. Thus we can

not consider a pure hydrogen flame, but this is unlikely in the situations of interest.

Label Parameter Comments Units

SPECIES (LFMAX+1) For each species desired a series of production

rates are specified for each of the time points

input for the specified fire. The program

performs a linear interpolation between these

points to determine the time of interest.

HCN, HCL Production Units are kilogram of species produced per

and CT Rate kilogram of fuel burned. The input for CT is the

of the Fuel kilograms of "toxic" combustion products

produced per kilogram of fuel burned.

kg/kg

57

A Programmer's Reference Manual for CFAST, ...

HCR

02

Production

Rate

of the Fuel

Production

Rate

of the Fuel

The mass ratio of hydrogen to carbon as it kg/kg

becomes available from the fuel. This parameter

affects primarily the rate of production of water.

The mass ratio of oxygen to carbon as it becomes kg/kg

available from the friel.

OD

CO

Yield

Yield

The ratio of the mass of carbon to carbon dioxide kg/kg

produced by the oxidation of the fuel.

The ratio of the mass of carbon monoxide to kg/kg

carbon dioxide produced by the oxidation of the

fuel.

A.9 Files

There are several files which FAST uses to communicate with its environment. They

are 1) a configuration file, 2) the thermal database, 3) a "history" file, and 4) a restart file.

The output of the simulation may be written to a disk file for further processing by programs

such as FASTpIot or to restart FAST At each interval of time as specified by the history

interval in the TIMES label, the output is written to the file specified. For efficient disk

storage and optimum speed, the data is stored in an internal format and cannot be read

directly with a text editor.

Label Parameter Comments Units

DUMPR Dump File The name specifies a file (up to 17 characters) to

which the program outputs for plotting are

written. Dump file is an optional input. If

omitted, the file will not be generated. Note that

in order to obtain a history of the variables, this

parameter must be specified and also the

historyer interval (under TIMES) must be set to

a non-zero value.

58

Appendix A

RESTR Restart

File

The name specifies a file (up to 17 characters)

from which the program reads data to restart the

model. This data must have been generated

(written) previously with the dump parameter

discussed earlier. A time step is given after the

name of the file and specifies at what time the

restart should occur.

THRMF Thermal The name specifies a file (up to 20 characters)

Database from which the program reads thermophysical

data. If this parameter is not specified, then

either the default (THERMAL.DAT) is used, for

the name is read from the configuration file.

DEFCG Configuration

File

The name specifies a file (up to 20 characters)

from which the program reads configuration

information data.

Example:

DUMPR FAST1.DAT
RESTR filename n
THRMF thermal. tpf

where "filename" was created in a previous run using the DUMP parameter, "n" specifies the

starting time and must be one of the times at which a history was generated. As an example,

if a data set were run with

VERSN 18 title. .

.

TIMES 360 60 10

DUMPR MYFILE

then every 10 s a snap shot of the time histories of all variables would be generated.

restart might be done at 300 seconds with the following

So a

VERSN 18 new title
TIMES 900 60

RESTRT MYFILE 300

with no requirement that the restart must be at the last liistory point. The only caveat is to

check the listings to be sure that a history was generated at the desired point. For those cases

where too many history intervals are requested, the interval is recalculated, and a message is

written to the output device.

59

A Programmer's Reference Manual for CFAST,

A.IO Graphics Specification

A graphics specification can be added to the data file. Details of the meaning of some
of the parameters is best left to the discussion of the device independent graphics software

used by FAST [2]. However, the information necessary to use it is straightforward. The
general structure is similar to that used for the building and fire specification. One must tell

the program "what to plot," "how it should appear," and "where to put it."

The key words for "where to put it" are

DEVICE where to plot it

BAR bar charts

GRAPH specify an x-y plot

TABLE put the data into a table

PALETTE specify the legend for CAD views

VIEW show a perspective picture of the structure

WINDOW the size of the window in "user" space.

The complete key word is required. That is, for the "where to put it" terms, no abbreviations

are allowed. Then one must specify the variables to be plotted. They are

VENT, HEAT, PRESSUR, WALL, TEMPERA, INTERR^
HP, CO2, CO, OD, O2, TUHC, HCN, HCL, CT

As might be expected, these are the similar key words to those used in the plotting

program, EASTplot. In this case, we have a reduced set. The application and use of EAST
and E\STplot are different.

For each key word there are parameters to specify the location of the graph, the colors and

finally titles as appropriate. For the variables, there is a corresponding pointer to the graph of

interest.

Tlie form of each "where to put it" variable is described below

Label Parameter Comments

DEVICE Plotting

Device

The Plotting Device specifies the hardware device

where the graphics is to be displayed. For the

PC version, this key word should be omitted. If

it must be included for compatibility reasons, set

it to 4. For other computers, it is installation

dependent. In general it specifies which device

will receive the output.

60

Appendix A

WINDOW (6) The window label specifies the user space for

placement of graphs, views,...

XI left hand side of the graph in any user desired

units.

Yb bottom of the graph in any user desired units.

Zf forward edge of the 3D block in any user desired

units.

Xr right hand side of the graph in any user desired

units.

Yt top of the graph in any user desired units.

Zb rear edge of the 3D block in any user desired

units. These definitions refer to the 3D plotting

block that can be seen. The most common
values (which are also the default) are

XI = 0.

Yb = 0.

Zf = 0.

Xr = 1279.

Yt = 1023.

Zb = 10.

This is not a required parameter; however, it is

often convenient to define graphs in terms of the

units that are used. For example, if one wished

to display a house in terms of a blueprint, the

more natural units might be feet. In that case,

the parameters might have the values

XI = 0.

Yb = 0.

Zf = 0.

Xr = 50.

Yt = 25.

Zb = 30.

61

A Programmer's Reference Manual for CFAST, ...

GRAPH (10) Up to five graphs may be displayed at one time

on the graphics display. Each graph is identified

by a unique number (1-5) and placed in the

window at a specified location. Xl,Yb,Zf,Xr,Yt

and Zb have a meaning similar to WINDOW.
However, here they specify where in the window
to put the graph.

Graph
Number

The number to identify the graph. Allowable

values are from 1 to 5. The graphs must be

numbered consecutively, although they do not

have to be given in order. It is acceptable to

define graph 4 before graph 2 but if graph 4 is to

be used, then graphs 1 through 3 must also be

defined.

XI Left hand side of the graph within the window in

the same units as that of the window.

Yb Bottom of the graph within the window in the

same units as that of the window.

Zf Forward edge of the 3D (three dimensional)

block within the window in the same units as that

of the window.

Xr Right hand side of the graph within the window

in the same units as that of the window.

Yt Top of the graph within the window in the same

units as that of the window.

Zb Back edge of the 3D block within the window in

the same units as that of the window.

Color The color of the graph and labels which is

specified as an integer from 1 to 15. Refer to

DEVICE (NBSIR 85-3235) for the colors cor-

responding to the values for the color.

Abscissa Title Title for the abscissa (horizontal axis). To have

blanks in the title, use the underscore character

62

Appendix A

Ordinate Title for the ordinate (vertical axis). To have

Title blanks in the title, use the underscore character

TABLE (7) Up to five tables may be displayed at one time on
the graphics display. Each table is identified by a

unique number and placed in the window at a

specified location. Xi,Yb,Zf,Xr,Yt and Zb have a

meaning similar to WINDOW. However, here

they specify where in the window to put the

table.

Table

Number
The table number is the number to identify the

table. Allowable values are from 1 to 5. The
tables must be numbered consecutively, although

they do not have to be given in order. It is

acceptable to define table 4 before table 2 but if

table 4 is to be used, then tables 1 through 3

must also be defined.

XI Left hand side of the table within the window in

the same units as that of the window.

Yb Bottom of the table within the window in the

same units as that of the window.

Zf Forward edge of the 3D block within the window

in the same units as that of the window.

Xr Right hand side of the table within the window in

the same units as that of the window.

Yt Top of the table within the window in the same

units as that of the window.

Zb Back edge of the 3D block within the window in

the same units as that of the window.

63

A Programmer's Reference Manual for CFAST, ...

VIEW (24) Up to five views may be displayed at one time on
the graphics display. Each view is identified by a

unique number and placed in the window at a

specified location. Xl,Yb,Zf,Xr,Yt and Zb have a

meaning similar to WINDOW. However, here

they specify where in the window to put the view.

View Number View number is the number to identify the view.

Allowable values are from 1 to 5. The views

must be numbered consecutively, although they

do not have to be given in order. It is acceptable

to define view 4 before view 2 but if view 4 is to

be used, then views 1 through 3 must also be

defined.

XI Left hand side of the view within the window in

the same units as that of the window.

Yb Bottom of the view within the window in the

same units as that of the window.

Zf Forward edge of the 3D block within the window
in the same units as that of the window.

Xr Right hand side of the view within the window in

the same units as that of the window.

Yt Top of the view within the window in the same

units as that of the window.

Zb Back edge of the 3D block within the window in

the same units as that of the window.

File File is the filename of a compatible "BUILD" file,

as discussed later.

Thinsform The Transform Matrix is a 16 number matrix

Matrix which allows dynamic positioning of the view

within the window. The matrix (100001000
10 1) would show the image as it would

appear in a display from BUILD.

64

Appendix A

PALETTE (15) The PALETTE label performs a specialized

function for showing colors on the views. A four

entry table is created and used for each type of

filling polygon used in a view. Up to five palettes

may be defined. Each palette is identified by a

unique number and placed in the window at a

specified location. XI, Yb, Zf, Xr, Yt and Zb
have a meaning similar to WINDOW. However,

here they specify where in the window to put the

palette.

Palette

Number
Palette number is the number to identify the

palette. Allowable values are from 1 to 5,

XI Left hand side of the palette within the window

in the same units as that of the window.

Yb Bottom of the palette within the window in the

same units as that of the window.

Zf Forward edge of the 3D block v/ithin the window

in the same units as that of the window.

Xr Right hand side of the palette within the window
in the same units as that of the window.

Yt Top of the palette within the window in the same

units as that of the window.

Zb Back edge of the 3D block within the window in

the same units as that of the window.

Color

and

Label

There are four pairs of color/text combinations,

each corresponding to an entry in the palette.

The color number is an integer from 1 to 15 and

the text can be up to 50 characters (but

remember the 128 character maxim.um). As

before, spaces are indicated with an underscore

character " ".

BAR (9) Up to five bar charts may be displayed at one

time on the graphics display. Each bar chart is

identified by a unique number and placed in the

65

A Programmer's Reference Manual for CFAST, ...

Bar Chart

Number

window at a specified location. Xl,Yb,Zf,Xr,Yt

and Zb have a meaning similar to WINDOW.
However, here they specify where in the window
to put the bar chart.

The number to identify the bar chart. Allowable

values are from 1 to 5.

XI Left hand side of the bar chart within the window
in the same units as that of the window.

Yb Bottom of the bar chart within the window in the

same units as that of the window.

Zf Forward edge of the 3D block within the window
in the same units as that of the window.

Xr Right hand side of the bar chart within the

window in the same units as that of the window.

Yt Top of the bar chart within the window in the

same units as that of the window.

Zb Back edge of the 3D block within the window in

the same units as that of the window.

Abscissa Title Title for the abscissa (horizontal axis). To have

blanks in the title, use the underscore character

Ordinate Title for the ordinate (vertical axis). To have

Title blanks in the title, use the underscore character

LABEL (10) Up to five labels may be displayed at one time on

the graphics display. Each label is identified by a

unique number and placed in the window at a

specified location. XI, Yb, Zf, Xr, Yt, and Zb
have a meaning similar to WINDOW. However,

here they specify where in the window to put the

label. It is assumed that time is always to be

displayed if any labels are present. To this end,

label 1 is always used for the time in the units

HH:MM:SS.

66

Label

Number

Appendix A

Label number is the number to identify the label.

Allowable values are from 1 to 5.

XI Left hand side of the label within the window in

the same units as that of the window.

Yb Bottom of the label within the window in the

same units as that of the window.

Zf Forward edge of the 3D block within the window

in the same units as that of the window.

Xr Right hand side of the label within the window in

the same units as that of the window.

Yt Top of the label within the window in the same

units as that of the window.

Zb Back edge of the 3D block within the window in

the same units as that of the window.

Text The text to be displayed within the label. To

have blanks in the title, use the underscore

character " ".

Anglel,

Angle2

Angles for display of the label in a right

cylindrical coordinate space. At present only the

first angle is used and represents a positive

counterclockwise rotation; set the second angle

to zero. Both angles are in radians.

In order to see the variables, they must be assigned to one of the above displays. This

is accomplished with the variable pointers as

(Variable) (nmopq) (Compartment) (Layer)

.

12345

Variable is one of the available variables VENT, HEAT, PRESSUR, W.AJ.L, TEMPERA,
INTERFA, N2, O2, CO2, CO, HCN, HCL, TUHC, HjO, OD, CT used as a label for the line.

The species listed correspond to the variable "SPECIES" in E\STplot. In the variable list of

FAST, all are contained in the variable TOXICT. (nmopqr) is a vector which points to

67

A Programmer's Reference Manual for CFAST,

index display in

(1) n -> bar chart
(2) m -> table
(3) o -> view
(4) p -> label
(5) q -> graph

respectively. These numbers vary from 1 to 5 and correspond to the value of "n" in the

"where to put it" specification. Compartment is the compartment number of the variable and

Layer is "U" or "L" for upper and lower layer, respectively.

Examples:

WINDOW -]LOO 1280 1024
GRAPH 1 250. 170. 0. 1220. 900.
LABEL 1 970. 960. 0. 1231. 1005
LABEL 2 690. 960. 0. 987. 1005
LABEL 3 90. 920. 0. 730. 1020
LABEL 4 400. 610. 0. 687. 660.
LABEL 5 400. 270. 0. 687. 320.
TEMPERA 1 1 U
TEMPERA 1 1 L

1100
10. 5 TIME CELSIUS
10. 15 00:00:00 0. 0,

10. 13 TIME_[S] 0. 0,

10. 4 Single_Compartment_demo 0. 0.

10. 1 U_layer_temperature .1 0,

10. 1 l_layer_temperature .0 0.

In this case, a new window is defined, along with one graph and five labels. Both temperature

variables are assigned to graph 1. One quirk is not obvious. It is assumed that time is always

to be displayed if any labels are present. To this end, label 1 is always used for the time in

the units HH:MM:SS. Graph 1 has the label "TIME" on the abscissa and "CELSIUS" on the

ordinate.

WINDOW -100 1280 1024 1100
GRAPH 1 120. 300. 0. 600. 920. 10. 3 TIME PPM
GRAPH 2 740. 300. 0. 1220. 920. 10. 3 TIME CELSIUS
LABEL 1 970. 960. 0. 1231. 1005. 10. 15 00:00:00 0.

LABEL 2 690. 960. 0. 987. 1005. 10. 13 TIME [S] 0.

LABEL 3 200. 050. 0. 520. 125. 10. 14 C0|d2|0 CONCENTRATION
CO 1 1 U

TEMPERA 2 1 U
TEMPERA 2 1 L

This file sets up two graphs with the CO data from the upper layer of compartment (1) in the

first graph and both the upper and lower layer temperatures displayed on the second graph.

WINDOW -100 1280 1024 1100
GRAPH 1 150. 300. 0. 620. 920. 10. 3 TIME PPM
LABEL 1 390. 960. 0. 651. 1005. 10. 15 00:00:00 0.

LABEL 2 110. 960. 0. 407. 1005. 10. 13 TIME [S] 0.

LABEL 3 200. 050. 0. 520. 125. 10. 14 0|D2|0 CONCENTRATION 0.

TABLE 1 700. 300. 0. 1200. 920. 10.

HEAT 10 1 U
02 10 1 1 U
TEMPERA 10 1 U
TEMPERA 10 1 L

68

Appendix A

Here the four variables HEAT, 02, and TEMPERATURE are displayed in table i and 02 is

shown in graph 1.

WINDOW -100 1280 1024 1100
VIEW 1 800. 390. 150. 1200. 900. 200. DEMOFA.DAT 1.41 .48 1.33 0...

VIEW 2 420. 200. 50 , 720. 500. 100. DEMOFA.DAT 1.53 -.46 1.21 0. .,

GRAPH 1 50. 290. 0. 300. 490. 10. 13 TIME PPM
GRAPH 2 150. 650. 0. 500. 850. 10. 13 TIME m!u-1
GRAPH 3 510. 690. 0. 740. 890. 10. 13 TIME CELSIUS
GRAPH 4 810. 120. 0. 1160. 320. 10. 13 TIME HEIGHT
LABEL 1 760. 960. 0. 1021. 1005. 10. 14 00:00:00 0. 0.

LABEL 2 50. 10. 0. 250. 70. 10. 2 TEST IN ONE ROOM 0.57079
LABEL 3 70. 960. 0. 367. 1005. 10. 13 FIRE~[Wr ~ 0. 0.

LABEL 4 480. 960. 0. 777. 1005. 10. 13 TIME [S] 0. 0.

LABEL 5 300. 960. 0. 475. 1005. 10. 14 ~ 0. 0.

TABLE 1 220. 50. 0. 520. 250. 10.

HEAT 5 1 U

OD 1 1 1 U
OD 2 2 1 U

CO 1 1 1 1 U
CO 2 1 U

TEMPERA 1 1 3 1 U

TEMPERA 2 1 U

INTERFA 1 1 4 1 U

INTERFA 2 1 U

Two views are specified, both emanating from the file "demofa.dat" with different transforms.

Four graphs, three labels and one table will be displayed. All variables will be taken from the

upper layer in compartment (1), and they will go to both views, in determining the hazard

calculation. The variables will also be shown in table 1 and in the four graphs, respectively.

A.ll Mechanical Ventilation

Label

MVOPN

Parameter

(5)

Compartment
Number

Comments

Connect a compartment to a node in the

mechanical ventilation system.

Specify the compartment number

Duct Work
Node Number

Corresponding node in the mechanical ventilation

system to which the compartment is to be

connected.

Orientation V for vertical or H for horizontal

A Programmer's Reference Manual for CFAST,

MVDCT

MVFAN

Height

Area

(9)

Node Number

Node Number

Length

Diameter

Absolute

Roughness

Flow

Coefficient

Area

Flow

Coefficient

Area

(9)

First

Node

Second

Node

Height of the duct opening above the floor of

the compartment.

Area of the opening into the compartment

Specify a piece of duct work.

First node number. This is a node in the

mechanical ventilation scheme, not a

compartment number (see MVOPN).

Second node number.

Length of the duct

All duct work is assumed to be circular. Other

shapes must be approximated by changing the

flow coefficient. This is done implicitly by

network models of mechanical ventilation and

forced flow, but must be done explicitly here.

Roughness of the duct.

Flow coefficient to allow for an expansion or

contraction at the end of the duct which is

connected to node number one. To use a

straight through connection (no expansion or

contraction) set to zero.

Area if the expanded joint.

Coefficient for second node.

Area at the second node.

Specify fan curve with power law coefficients.

There must be at least one coefficient.

First node in the mechanical ventilation system to

which the fan is connected.

Second node to which the fan is connected.

m

m

m

m

nr

70

Appendix A

INELV

Minimum
Pressure

Maximum
Pressure

Coefficients

(2xn)

Lowest pressure of the fan curve. Below this Pa

values, the flow is assumed to be constant.

Highest pressure at which the fan will operate. Pa

Above this point, the flow is assumed to stop.

At least one, and a maximum of five coefficients

to specify the flow as a function of pressure.

Specify interior elevations of the mechanical (#,ni)

ventilation nodes. All nodes can be specified, but

the exterior nodes, that is those connected to a

compartment, will be set to the compartment

elevation. The heights are absolute heights

above the reference datum specified by TAMB.
The heights are specified in pairs, the node

number followed by the height.

A.12 Miscellaneous

CNVG (3)

Approximate

Conduction

Convergence

Factor

Pressure

Damping

Diagnostic parameters

This is a logical switch. If set to zero, the usual

heat transfer through partitions is calculated. If

set to any non zero value then the semi-infinite

slab approximation is used.

Modifies the convergence criterion used by the

solver for the relative error at each time step.

Used to damp pressure fluctuations.

1.0

1.0

The diagnostic parameters must be used with extreme caution. These parameters can not be

set in the data editor for the main model. While running computations within the data editor,

the speed enhancement for the conduction can be utilized. Normally, a linear parabolic

equation is solved for the heat transfer through each partition. The solution is via a

successive over-relaxation technique. When the walls are thick, or the simulation time will be

very short it is reasonable to assume that the thermal wave will not reach the outside

boundary. In this case, there is an analytic solution to the conduction equation which can be

written in terms of the "error function," ERFC [9]. The other two parameters modify the

71

A Programmer's Reference Manual for CFAST, ...

convergence criteria used by the numerical solver. The default values are unity, and should

normally be left at those values.

Example 1

:

MVDCT
MVDCT
MVFAN
MVOPN
MVOPN
INELV

1 3 20
3 4 44
4 5

1 1 H

.15 .19E-

.2 .19E-
0.0 140.

1.

4 9 V 0. 2.5
3 4 5

3.30
0.0

.01767
0.0

0.
0.

0.140 3.170E-04 -1.803E-05 1.898E-07 -8.104E-10

7 8

Example 2

:

MVDCT
MVDCT
MVDCT
MVDCT
MVDCT
MVDCT
MVFAN
MVFAN
MVOPN
MVOPN
MVOPN
MVOPN
INELV

20.
20.
44.
40.
40.

8 40.
5 0.0

0.0
H 0.
H 0.
H 0.
H 0.

4

.15 .

.15 .

.2 .

.2 .

.2 .

.2 .

140.
140.
1.

19E-
19E-
19E-
19E-
19E-
19E-

0.140
0.140

3.30
2.94
0.0
.51
.51
.51

3

01767
01767

0.0
.03142
.03142
.03142

170E-04
170E-04

0.
0.
0.
0.

0.
0.

-1.803E-05
-1.803E-05

1.898E-07
1.898E-07

8.104E-10
8.104E-10

5 7 8

This describes a network which is shown in figure 9.

Compartment Compartment

Node Node Node Node

* Flow

Fan #2

Figure 9. Node arrangement for example 2.

72

Appendix B

Appendix B: LABELLED COMMON BLOCKS DOCUMENTATION

There are several common blocks in the suite of programs. They are used to pass

various kinds of information, and the data is grouped according to the use of the information.

The first set is the main data, which is the working data set. This data is saved by the history

subroutine "DUMPER." The second is the shell information which contains information

about the computer envirnoment. The third is used for thermophysical and other properties.

Finally, there is an unlabelled common block which contains the current environment. This

latter is set by the data copy routine.

The "logfiles" are specified by an "nv" extension, the base editing file by the "ins"

extension, and the actual files used during a compilation by the "inc" extension.

The name of the "include" files and the corresponding common blocks are

1. CPARAMS.INC
2. CFASTINC
3. PARAMS.INC
4. THERMRINC
5. CENVIRO.INC
6. CSHELL.INC
7. PRECIS.INC
8. CFIO.INC

parameter statements, i.e. nr=7,.,.

main common block (2) mocola and mocolb
intermodule communication

physical properties such as conduction

environment - set by the data copy routines

shell variables such as the screen colors

specify the precision of the floating point data

input/output buffers for the data editor

Note that the actual files are "ins" files. They are converted to "inc" files by the filt command.

This is an important step. The "inc" should never be edited directly. Several of the common
blocks require initialization. This is done with BLOCK DATA sub probprograms. They are

listed at the end of the PROGRAM GLOSSARY.

B.l Parameter header file, CPARAMS.INC

MARG maximum number of file name (arguments) on the command line

MAXFIL maximum number of history files that can be accessed in a session

MBR maximum number of branches

MCON maximum number of connections to a node
MDT maximum number of duets

MEXT maximum number of exterior nodes

MEAN maximum number of fans

MFCOE maximum number of fan coefficients

MFT maximum number of simple fittings

MNODE maximum number of nodes

73

A Programmer's Reference Manual for CFAST, ...

MOPT maximum number of options allowed on the command line

MXSLB maximum number of different materials in a wall

NOPTN number of options available in the plotting routine

NR maximum number of compartments

NN maximum number of nodes in a boundary (walls, ceilings and floor)

NT maximum number of equations to be solved

NTHMX maximum number of thermal deHnitions

NV maximum number of time intervals

NVAL maximum number of data points in a list of data

NVAR maximum number of different variables that can be plotted

NVM maximum number of curves that can be plotted simultaneous

NS maximum number of species to be tracked

NWAL number of discrete wall surfaces (ceiling, upper wall .,.)

UPPER,LOWER upper, lower layer pointers (=1,2)

and the current values

MARG = 3

MAXFIL = 10

MBR = MFAN+MDT
MCON = 3

MDT = 2*NR+2
MEXT = 2*NR
ME\N = 5

MFCOE = 5

MFT = 2*MDT
MNODE = 4*MDT
MOPT = 5

MXSLB = 3

NN = 36

NOPTN = 20

NR = 7

NS = 10

NT = 4*NR(MAIN EQU) + 2*NR*NS(SPECIES) * 4*NR(HCL) + 4*NR(SMOKE)
(or NT = 12*NR+2*NR*NS)
NTHMX = 56

NV = 21

NVAL = 250

NVAR = 21

NVM = 20

NWAL = 4

74

Appendix B

B.2 Definitions of the variables CFAST.INC

Variables in the common block mocola (CFAST.INC)

AA(NR,NR,4)
ACnVS(NS)
AnRED(NV)
AO(IFr)
APS(NR)
AR(NR)
AS(NR,NR,4)
ASL(NR,NR,4)
BnRED(NV)
BFLO(IB)
BR(NR)
BW(NR,NR,4)
CC02(NV)
CE(IB)

CO(IFT)
C0C02(NV)
CP
CRDATE(3)

flow from lower layer to lower layer (kg/s)

logical switch to tell which species are active (interacts with "allowed")

area of fire (m ^ 2)

area of simple fitting ift (m ^ 2)

current area of the specified fire (m ^ 2)

floor area of a compartment (in current version ceiling= floor)

flow from lower to upper layer (kg/s)

entrainment from upper into lower layer (kg/s)

burning rate (kg/s)

mass flow rate through branch ib (kg/s)

breadth of a compartment (m)

width of vent (m) (modified by qcvent)

net carbon production rate (fraction relative to co2)

effective mass flow coefficient for resistance branch ib

flow coefficient for simple fitting ift

relative co/co2 production rate

heat capacity of AIR at constant pressure (J/kg/K)

creation date of the model (day, month and year)

CW(MXSLB,NWAL,NR) specific heat of a thermal material

DA(ID)
DE(ID)
DELTAT
DFMAX(K)
DFMIN(K)
DL(ID)
DPZ(I,K)

DR(NR)
DUCTAR(ID)
EME(NR)
EMP(NR)
EMS(NR)
EPW(NWAL,NR)

area of duct id (m ^ 2)

effective diameter of duct id (m)

time step used by the model, currently 1.0 seconds

derivative of fan curve at hmax(k)

derivative of fan curve at hmin(k)

length of duct id (m)

hydrostatic pressure difference between node i and kth node

depth of a compartment (m)

absolute roughness of duct walls

plume entrainment rate (kg/s)

pyrolysis rate of the fire source (kg/s)

plume flow rate into the upper layer (kg/s)

emissivity of the interior wall surface (non)

FKW(MXSLB,NWAL,NR) thermal conductivity of a material slab

FLW(MXSLB,NWAL,NR) thickness of a slab (m)

G gravitational constant (9.806 m/s)

GAMMA Cp/Cy for air - 1.4

GMWF gram molecular weight (in grams, default ->16)

HCOMBA heat of combustion - initialization only

HCRATIO(NV) hydrogen/carbon ratio in the fuel - time dependent

HEATLP(NR) heat release rate in the plume in the lower layer (W)

75

A Programmer's Reference Manual for CFAST, ...

HEATUP(NR)
HEATVF(NR)
HFIRED(NV)
HFLR(NR)
HH(NR,NR,4)
HHP(NR,NR,4)
HL(NR,NR,4)
HLP(NR,NR,4)

heat release rate in the plume in the upper layer (W)
heat release in a vent (sum of all vents between compartments)

height of the base of the fire - time dependent (m)

absolute height of the floor of a compartment (m)

top of vent (soffit) - distance from floor (m)

absolute height of the soffit (m)

height of the sill relative to the floor (m)

absolute height of the sill (m)

HMAX(K),HMIN(K) max and min head pressure for fan(Pa)

HOCBMB(NV) heat of combustion of a specified fire (J/kg)

HR(NR) interior height of a compartment (m)

HRL(NR) absolute height of the floor (m)

HRP(NR) absolute height of the ceiling (m)

HVBCO(K,J) coefficients of fan curve polynomial

HVELXT(II) elevation of exterior nodes relative to station (m)

HVEXCN(MEXT,NS) species concentration at external nodes (kg/m^)

HVFLOW(I,J)
HVGHT(I)
HVNODE(I,J)
HVP(I)
HWJ(NW,NR)
IBRD(ID)
IBRF(IFr)

IC(I,K)

IDIAG
IHRED
IN(I,K)

ITMMAX
ITMSTP
IVERS
LCOPY
LDIAGO
LDIAGP
LEPW(NTHMX)
LFBO
LFBT
LFMAX
LFPOS
LIM02
LPRINT
MASS(2,NR,NS)
MAXCT
MnRET(NS)
MINMAS
MPRODR(NV,NS)

mass flow rate to node i from the jth node to which it is connected

elevation of node i

mapping between external and internal nodes (2,MNODE)
relative pressure at node i

hcl density on the wall (grams/m^, initialized to 0)

pointer to resistive branch with duct id

pointer to resistive branch with fitting ift

pointer to kth resistive branch connected to node i

not used

current interpolation time for specified fire - integer pointer

pointer to kth node connected to node i in hvac system

maximum number of time steps (#)
current time step (#)
current version (major version x100 plus "sub" version number)

number of "hard" copies for each graphics output - used for movies

history interval (#)
display (graphics) interval (#)
local emissivity

compartment of origin (1 to nr-1)

type of fire (1,2, ...)

number of intervals in a fire specification

position of the fire in a room (1 to 4) - affects entrainment only

limiting oxygen index in percent (default is 10%)
print interval

mass in a layer of species ns (1 to ns)

number of entries in the thermal database (max is 57 now)

mass release rate of species ns - transient

minimum mass in mass(...)

species production rate for specified fire - see tech ref for details

76

Appendix B

MPSDAT(3) date of this run (see also crdate and rundat)

N number of compartments in use (including the outside)

N2,N3,N4 n+l,2n+l,3n+l
NA(IB) starting node for branch ib

NBR number of branches

NCNODE(I) number of branches coonnected to hvac node i

NCONFG or 1 if a graphics descriptor is present

NDIV(MXSLB,NWAL,NR) number of interior nodes in a wall material (of mxslb slabs)

NDT number of ducts

NDUMPR or 1 if a history file specification is present

NE(IB) exit node number of branch ib

NEUTRAL(NR,NR) number of neutral planes for a vent - not very useful

NEXT
NF(IB)

NR\N
NFC(K)
NET
NLIST(NTHMX)
NLSPCT
NMl
NNODE
NOPNMX
NRESTR
NRFLOW
NSLB(NWAL,NR)
NSMAX
NW(NR,NR)
NWV(NR,NR)
ONTARGET(NR)
P(NT)
PA
PAMB(NR)

number of exterior nodes

if duct, fan number if a fan

number of fans

number of polynomial coefficients for fan k

number of simple fittings

list of thermal names used by the current thermal database

number of species in this run

actual number of compartments (N-1)

number of nodes in the hvac system

not used

restart time (0 means no restart)

not used

number of slabs in a particular wall

maximum simulation time (seconds)

switch for horizontal vents - coded for 1 to 4 by powers of 2

switch for vertical vents

absolute radiation from the upper layer to a target (less ambient)

solution vector of pressure, upper and lower temperature, volume

ambient pressure at the measured station

ambient pressure in a compartment prior to the fire

PMAX(NT),PMIN(NT) limits on the values in P(NT)
POFSET
PPMDV(2,NR,NS)
PREF
QC(2,NR)
QF(2,NR)
QnRED(NV)

a pressure offset to help solve the stiffness problem

mass concentration (kg/m "^
3)

default reference pressure (1.03 e+5)
net convective heat loss from a zone (Watts)

net heat generation rate of a fire into a zone (Watts)

heat release rate for specified fire

QMAX(K),QMIN(K) flow rate at hmax(k) and hmin(k)

QR(2,NR) net radiative loss from a zone (Watts)

QRADRL fraction of heat which leaves a fire as radiation

RA default station ambient (inside) density (kg/m ^ 3)

RAMB(NR) initial (ambient) mass density in a compartment

RELHUM initial relative humidity (default ->0%)

77

A Programmer's Reference Manual for CFAST, ...

RGAS "universal" gas constant

ROHB(IB) density of gases in branch ib

RR(ID) relative roughness of walls of duct id

RW(MXSLB,NWAL,NR) material density of a boundary slab (kg/m ^ 3)

SA(NR,NR,4) flow field upper to lower (kg/s)

SAL station elevation (m) - default to zero

SAU(NR,NR,4) entrainment rate into the upper layer

SIGM Stefan-Boltzmann constant (5.67x10-^ W/m^/K'*)

SS(NR,NR,4) flow field from upper to upper layer (kg/s)

STIME current simulation time (s) - corresponds to itmstp

SWITCH(NWAL,NR) logical switch for wall conduction - switch...,nr) is used for output

TA station ambient temperature (K)

TAMB(NR) ambient temperature in a compartment (K)

TBR(IB) absolute temperature of gases in branch ib

TE pyrolysis temperature of the fuel

TERRORS(NTHMX) code for errors in the thermal database

TFIRED(NV) time interval specification

TFIRET current time for interpolation

TFMAXT maximum time for the specified fire

TGIGNT ignition temperature for a well stirred gas - limits fires in vents

THDEF(NTHMX) logical for whether thermal name is correctly defined

THRMFILE*20 name of the thermal database

TOXICT(2,NR,NS) conglomeration of stuff for output - see Tech Ref.

TREF default reference temperature

TWE(NWAL,NR) temperature of the gas external to a compartment boundary

TWJ(NWAL,NR,NN) temperature profile in the boundaries (ceiling, floor, upper/lower wall)

VOL(IBR) volume of branch ibr

VR(NR) volume of a compartment

WAREA(NR,NR) area of a vertical vent

WINDC(NR) wind coefficient for a vent facing the outside

WINDPW wind power law coefficient

WINDRF wind reference height (m)

WINDV wind reference velocity at windrf

There is only one variable in the common block mocolb and it is the title of the data file:

TITLE(50) a character*! The value read from the first line of the data file

B.3 Intermodule communication through PARAMS.INC

The first set are in the unlabelled common, and are the intial and boundary conditions for the

physical routines.

78

I

Appendix B

EXxx exterior equivalents of ta, pa and ra: exta, expa, exra

ERA(NR),EPA(NR),ETA(NR) exterior equivalents of ramb, pamb, and tamb: era,epa,eta

EXSAL station elevation of the outside of the structure

ALLOWED(NS) which species can be set relative to the fuel

EXSET logical variable set if the external ambient has

been set separately from the internal ambient

MAPLTW(NWAL) mapping for the convective and radiative phenomena
QFR(2,NR) total radiative heat gain (+) or loss (-) by a layer

QFC(2,NR) " convective" "

QSCNV(NWAL,NR) convective flux to a wall (w/m^)

QDOUT(NWAL,NR) net heat loss on the back side of a wall (w/m^)

QSRADW(NWAL,NR) radiative fiux to a wall (w/m^)

QDIN(NWAL,NR) net heat gain to an interior side (exposed) of a wall (w/m^)

QCVENT(NR,NR,4,NV) opening parameter for a vent - this is a fraction which is 0.0->1.0

02N2(NS) ratio of oxygen to nitrogen in the ambient

HWJDOT(NWAL,NR) rate of deposition of hydrogen chloride to a wall surface (kg/s/m^)

The common block "params" contains interpolation variables. These are set in PYROLS.

HCRATT
ITERPT, ITIMEl, ITIME2 counters

TIMEIl, TIMEI2, TIMED actual interpolation values

B.4 Thermophysical properties passed through THERMP.INC

LRW(MXSLB,NTHMX) local mass density of a material slab

LNSLB(NTHMX) local number of slabs in a material (used in reading from the database)

LCW(MXSLB,NTHMX) local heat capacity

LFKW(MXSLB,NTHMX) local conductivity

LFLW(MXSLB,NTHMX) local thickness (m)

CNAME(NWAL,NR) name (pointer) of thermal property specfied for a boundary

B.5 The physical environment set by the data copy routine

The subroutines, SOLVE and DIFEQ, use the arra5^ P, to store the physical quantities

that are being modeled. This array contains the values of pressure, upper layer volume,

upper/lower layer temperature, upper/lower layer gas species mass and wall species density for

each compartment in the simulation. This structure is illustrated in figure 10. The solver

array, Y, in CCFM.VENTS has a similar structure.

79

A Programmer's Reference Manual for CFAST, ...

V. S

Data Structure

for Solver array

Size

'% ^\ ^^

N N N N

N - rumber of compaitments

NWAL-nunr^r of walls

NSPEC - number of species

Total

N*{4 + 2*NSPEC + NWAL)

This structure Is repeated

NSPEC times In the Solver

Data Structure

This structure Is repeated

NWAL times fn the Solver Data

Structure

Room1 ~

Room 2

RoomN

upper layer

lower layer

^ize

2

upper layer

lower layer
2

•

•

•

upper layer

2
lower iayer

Total 2N

Room1

Room 2

RoomN

Size

1

1

Total N

Figure 10. Solver Array Structure.

Many subroutines^ in CFAST require the information contained in the P array. If

this information is obtained directly, i.e. by accessing the P array in an assignment statement,

then whenever the structure of P changes, modifications will have to be made throughout

CFAST Some model changes that would alter the structure of the P array are use of layer

mass instead of layer temperature, use of the layer interface height instead of upper layer

The subroutines that use P may be identified by using the tool comchcck. This is how the DATACOPY routine was

implemented in CFAST.

80

Appendix B

volume or a change in the order of the variables. In order to minimize the work required to

implement such a modification in the structure of P, a data copy routine was written. This

routine copies data from the P array to a set of environment variables that physical routines

may then access. These variables are distinguished from other CFAST variables by beginning

with 'ZZ'. So whenever a change is made in P, only DATACOPY need be re-written.

DATACOPY is called by DSOURC and SOLVE to update the environment variables for a

given value of P.

Certain environment variables do not change througout a simulation. They do not

need to be updated each time DATACOPY is called. These variables end in 'MAX' or

MIN.' DATACOPY is called one time by NPUTP to set these variables.

DATACOPY is called with two arguments. The first argument is the solver array, P.

The second argument is a flag that determines which environment variables are set. If

CONSTVAR is passed then time independent variables are set. If ODEVARA is passed then

environment variables associated with pressure, layer volume or layer temperatures are set. If

ODEVARB is passed then the environment variables associated with gas or wall species are

set.

CONSTVAR, ODEVARA and ODEVARB are integer parameter variables defined in

CENVIRO.INC and set to 1, 2, 4 respectively. The subroutine call

CALL DATACOPY (P , ODEVAR+ODEVARB

)

causes all time dependent environment variables to be set. The subroutine call

CALL DATACOPY (P , CONSTVAR+ODEVAR+ODEVARB

)

causes all environment variables to be set. If CONSTVAR is the only flag passed to

DATACOPY in a call as in

CALL DATACOPY (DUMMY, CONSTVAR)

then the first argument is not accessed within DATACOPY. So it can be any "dummy"

variable, i.e., it does not have to be an array.

Time Independent Environment Variables - Set with CALL DATACOPY(P,CONSTVAR)

ZZTMIN(I) minimum temperature in Fth room
ZZTMAX(I) maximum temperature in I'th room
ZZVMIN(I) minimum volume in Fth room
ZZVMAX(I) maximum volume in Fth room
ZZPMIN(I) minimum pressure in Fth room
ZZPMAX(I) maximum pressure in Fth room

81

A Programmer's Reference Manual for CFAST, ...

ZZGMAX(I)
ZZGMIN(I)
ZZWMAX(I)
ZZWMIN(I)

maximum gas species amount in Fth room
minimum gas species amount in I'th room
maximum wail species amount in I'th room
minimum wall species amount in I'th room

Time Dependent Environement Variables - Set with CALL DATACOPY(P,ODEVARA)

The second index in the following environment variables denotes the layer. The upper

layer has an index of 1 while the lower layer has an index of 2. Parameters, UPPER and

LOWER are defined to 1 and 2 respectively in the include file CPARAMS.INC to make
environment variable access easier. For example, ZZTEMP(3,LOWER) contains the

temperature of the lower layer in the third room.

ZZVOL(I,L)
ZZHLAY(I,L)
ZZRELP(I)
ZZPABS(I)
ZZTEMP(I,L)
ZZRHO(I,L)
ZZMASS(I,L)
ZZQ(I,L)

ZZTIME(I)

volume of L'th layer in I'th room
height of Lth layer in I'th room
pressure relative to POFSET in I'th room

absolute pressure in I'th room
temperature of L'th layer in I'th room
density of L'th layer in I'th room
mass of L'th layer in I'th room
energy of Eth layer in I'th room
CPU time in seconds for I'th process.

Time Dependent Environment Variables - Set with CALL DATACOPY(P,ODEVARB)

ZZGSPEC(I,L,S)
ZZWSPEC(I,W)

concentration of S'th species in L'th layer in I'th room

concentration of species (currently HCl) in W'th wall in I'th room

B.6 Shell and program environment, CSHELL.INC

RUNDAT(3)

ADVFEA

SHELL
CF_EXIST
HEADER
VERSION
DLEN
PLEN

today's date (day, month, year) rundat is copied

to mpsdatas soon as the model kernel is started.

done in initfs and cfast body.

logical switch for availability of advanced

features in the data editor, such as ability to run

the model from the data editor, set colors, ...

logical - set to true is the shell is doing the procedure

logical - set to true if the named configuration file exists

name used in the first six characters of the configuration file

actual working version of the model - copied to ivers by initfs or cfast

number of characters in the database path - zero implies not used

number of characters in the data path - zero implies not used

82

i

Appendix B

UNITS(7) switch for units in sunit and cunit - see the

header in those routines for meanings of the

values

ICHDR,ICSUB,ICTXT,ICPRO,ICMSGJCHLP,ICBG,ICMBG,ICHBG,ICEBG,ICEMS
color settings used for the set and edit modules

input and output unit numbers - defined in the "initcs" block data

name of the thermophysical properties file

name of the configuration file

name of the output file (if appropriate)

name of the input file (if appropriate)

data file read in from the configuration file

restart file

MOPT allowed options (see the discussion in section 4)

type of graphics adaptor

name of the file containing other objects which can burn

current path, which can be different than the database and data paths

path where the data files are found

path for executables and databases

today's date in character format (see rundat)

geometry file - not used in this version - will be

for comparment interconnections

history file - set by nputq

used by the shell routine to pass the environment to cfast, cf_plot, ...

lOFILI, lOHLO
THRMnLE*60
CONnG*60
OUTnLE*60
NNnLE*60
DFILE*60
RnLE*60
OPTIONS*4
CARDTYPE*4
OnLE*60
CURRENT*64
PATH*64
DPATH*64
MPSDATC*8
GnLE,PnLE*60

DUMPF*60
PASSnLE*60

B.7 Setting the precision for the model, PRECIS.INC

This is not a common block. Rather it is the header used to set the precision of all

real (as opposed to integer) variables which are not strongly typed. See chapter 3, and in

particular section 3.3 for the use that is made of this header. It should preceed and

specification lines in any routine that will be performing physical calculations. All graphics

routines used single precision, and these variables should be so typed.

%IF DOUBLE
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

%ELSE
IMPLICIT REAL (A-H,0-Z)

%ENDIE

83

A Programmer's Reference Manual for CFAST,

Appendix C: DEPENDENCY CHART OF ROUTINES - WHO CALLS WHOM

This appendix contains information on how each subroutine and common block in

CFAST are related to each other. This information is essential to the person who wishes to

modify CFAST. For example, if one wishes to change the number of arguments in the calling

list of a subroutine one would need to know what subroutines call it.

The main heading, NAME, is given in bold text. Each entry has a description and up
to four sub-headings: CALLS, LIB,COMMONS and CALLED BY. The subheadings CALLS
and LIB are similar. They both list external references to NAME., i.e., what routines NAME
calls. The source code for the routines that are listed under CALLS appear in the same

computer file as NAME. On the other hand, the routines listed by the LIB sub-heading do

not. Some examples of routines that would appear under LIB are FORTRAN supplied

functions such as ABS, SORT, MOD, etc. The names listed next to COMMONS are the

COMMON blocks that appear in the routine NAME. The routines that are listed next to

CALLED BY are those routine that call NAME.

NAME description of NAME ...

CALLS:
LIB:

COMMONS:
CALLED BY:

SUBl, SUB2, ...

SUBA SUBB, .,

COMl, COM2,
SUBa, SUBb,

ic***********************************

*** PROGRAM MAP (1 LEVEL DEEP) ***

*** SOURCE ROUTINES ***

ROUTINE: ATHOSP
CALLED BY: INITAMB

ROUTINE: BSTRNG
CALLED BY: CMDLINE

ROUTINE: BXBLIT
LIB: COLOR
CALLED BY: DISPLAY

ROUTINE: CFAST
CALLS: CPTIME

NPUTP
LIB: DIFST
COMMONS»! BLANK CI

FILTYP PLYGON

DISCLAIM DISPLAY DUMPER
NPUTT OPENSHEL READOP
ENDDIS FLOAT I FIX

CENVIRO C0NFG1 C0NFG2
M0C01B M0C01D M0C01E MSKBD

CALLED BY: NONE - NO ROUTINES CALL CFAST

INITMM INITSPEC NPUTO
RESTRT RESULT SOLVE

INPUT1 INPUT2 M0C01A
PARAMS

84

ROUTINE: CHEMIE

CALLED BY: SOLVE

Appendix C

LIB: EXP MAX
CCWMONS: M0C01A M0C01B
CALLED BY: DSOURC

ROUTINE: CfDLINE
CALLS: BSTRNG
LIB: GETCL
CALLED BY: READOP

ROUTINE: CNDUCT
CALLS: CONVEC
LIB: ABS MAX
COMMONS: M0C01A M0C01B

MIN

M0C01D M0C01E

ROUTINE: CONSCHEK
COMMONS: CENVIRO MOCOlA M0C01B
CALLED BY: NONE - NO ROUTINES CALL CONSCHEK

ROUTINE: CONVEC
LIB: ABS
COMMONS: M0C01A
CALLED BY: CNDUCT

M0C01B
DSOURC

ROUTINE: CONVRT
CALLS: DATYPE
LIB: MIN

CALLED BY: READCV READ IN

ROUTINE: CPTIME
LIB: TIMER

CALLED BY: CFAST SOLVE

ROUTINE: DATACOPY
LIB: MAX MOD
COMMONS: CENVIRO MOCOlA M0C01B
CALLED BY: DSOURC INITAMB INITSPEC SOLVE

ROUTINE: DATYPE
CALLED BY: CONVRT

ROUTINE: DIFEQ
CALLS: DIFERR
LIB: ABS
CALLED BY: SOLVE

DFE MAX MIN SORT

ROUTINE: DIFERR
CALLED BY: DIFEQ

ROUTINE: DISCLAIM
COMMONS:
CALLED BY:

C0NFG1

CFAST
C0NFG2

ROUTINE: DISPLAY
CALLS: BXBLIT

TOXICB
GETVIEW
TOXICH

GRAF IT

TOXICR
INIPAR

VWPRT

0UTPU1 PALETTE RESETLUT

LIB: BOXPLT COLOR DEF3D DEVICE ENDFRM FLOAT FRAME

GRILAB HDCOPY IFIX INT LABEL LINWID MAX
MIN MOD MOUSE OF NEWFRM PLOTLN VIEWTR

COMMONS: CENVIRO DFLTS M0C01A M0C01B M0C02A M0C02B
CALLED BY: CFAST SOLVE

ROUTINE: DISRAD

85

A Programmer's Reference Manual for CFAST, ...

LIB: MAX HIN
COMMONS: M0C01A M0C01B
CALLED BY: DSOURC

ROUTINE: DISTKE
COMMONS: C0NFG1 C0NFG2 MOCOU H0C01B M0C01D M0C01E
CALLED BY: NPUTO

ROUTINE: DREADIN
CALLED BY: RESTRT

ROUTINE: DSOURC
CALLS: CHEMIE CONVEC DATACOPY DISRAD ENTRFL FIRPLM FIRRAD

FLOW HCLTRAN PYROLS STPORT

LIB: lAND MAX MIN
COMMONS: BLANK CO CENVIRO MOCOIA M0C01B PARAMS

CALLED BY: NONE - NO ROUTINES CALL DSOURC

ROUTINE: DUMPER
CALLS: LENOCO WRITEOT
LIB: CHAR MOD
CWMONS: C0NFG1 C0NFG2 INPUT1 INPUT2 MOCOIA M0C01B MSKBD
CALLED BY: CFAST SOLVE

ROUTINE: ENTRFL
LIB: MAX
COMMONS: MOCOIA M0C01B
CALLED BY: DSOURC

ROUTINE: FIRPLN
LIB: MAX
CALLED BY: DSOURC

ROUTINE: FIRRAD
LIB: MAX
COMMONS: MOCOIA M0C01B
CALLED BY: DSOURC

ROUTINE: FLOW
CALLS: FRFLOW
LIB: MAX MIN
COMMONS: BLANK CO CENVIRO MOCOIA M0C01B PARAMS

CALLED BY: DSOURC

ROUTINE: FLUOUT
COMMONS: MOCOIA M0C01B
CALLED BY: RESULT

ROUTINE: FRFLOU
CALLS: TTCB
LIB: MAX MIN SORT
CALLED BY: FLOW

ROUTINE: GASLOAD
CALLS: READCV
COMMONS: M0C02A M0C02B READiC READ2C
CALLED BY: LOAD IN

ROUTINE: GETVIEU
LIB: PLYGNS PLYPLT
COMMONS: M0C02A M0C02B
CALLED BY: DISPLAY

ROUTINE: GRAFIT
LIB: ABS BOXPLT CHPLOT DEFINE FLOAT FNUMBR INT

86

Appendix C

LABEL LINE LINWID LNPLO
UDCOUNT

COMMONS: DEVTYP GRFTYP
CALLED BY: DISPLAY

ROUTINE: GRQUERY
LIB: IAND QUERYGRA
COMMONS: C0NFG1 C0NFG2
CALLED BY: NONE - NO ROUTINES CALL GRQUERY

ROUTINE: HCLTRAN
LIB: ABS EXP LOG MAX

COMMONS: BLANK CO CENVIRO M0C01A MOCOl

CALLED BY: DSOURC

MIN PLYGON SIGN

S PARAMS

ROUTINE: HSETS
LIB: lAND

COMMONS: GRFTYP
CALLED BY: WDDRAW

ISHFT MOO

ROUTINE: HVAC
CALLS: HVFREX
COMMONS: M0C01A
CALLED BY: SOLVE

HVMFLO
M0C01B

HVSFLO HVTOEX

ROUTINE: HVFAN
LIB: FLOAT
COMMONS: M0C01A
CALLED BY: HVMFLO

MOCOl

B

ROUTINE: KVFREX
LIB: MIN
COMMONS: CENVIRO MOCOl

A

CALLED BY: HVAC
M0C01B

ROUTINE: HVFRIC
LIB: ABS
CALLED BY: HVMFLO

ROUTINE: KVINIT
LIB: FLOAT MAX MIN
COMMONS: BLANK CO CENVIRO MOCOl

A

CALLED BY: NPUTP
MOCOl B PARAMS

ROUTINE: HVMFLO
CALLS: HVFAN HVFRIC HWIS
LIB: ABS MAX SIGN
COMMONS: M0C01A M0C01B
CALLED BY: HVAC

ROUTINE: HVSFLO
LIB: MIN
COMMONS: M0C01A MOCOl

B

CALLED BY: HVAC

ROUTINE: HVTOEX
COMMONS: CENVIRO M0C01A
CALLED BY: HVAC

SORT

M0C01B

ROUTINE: HW!S
LIB: FLOAT
CALLED BY: HVMFLO

ROUTINE: INIPAR

87

A Programmer's Reference Manual for CFAST, ...

LIB: F RCOUNT
COMMONS: DFLTS PLTFLT PLTPAR
CALLED BY: DISPLAY

ROUTINE: INITAffi

CALLS: ATMOSP DATACOPY
LIB: MAX MIN
COMMONS: BLANK CO CENVIRO MOCOIA H0C01B PARAMS
CALLED BY: NPUTP

ROUTINE: IHITBK
COMMONS: INPUT1 INPUT2 MSKBD
CALLED BY: NONE - NO ROUTINES CALL INITBK

ROUTINE: INITCS
COMMONS: C0NFG1 C0NFG2
CALLED BY: NONE - NO ROUTINES CALL INITCS

ROUTINE: INITDI
COMMONS: DFLTS M0C02A M0C02B
CALLED BY: NONE - NO ROUTINES CALL INITDI

ROUTINE: INITNN
COMMONS: BLANK CO C0NFG1 C0NFG2 INPUTI INPUT2 M0C01A MOCOIB

M0C01D M0C01E MSKBD PARAMS
CALLED BY: CFAST

ROUTINE: INITSPEC
CALLS: DATACOPY TOXIC
COMMONS: BLANK CO CENVIRO C0NFG1 C0NFG2 M0C01A M0C01B M0C01D

M0C01E PARAMS
CALLED BY: CFAST

ROUTINE: LENOCO
CALLED BY: DUMPER RESTRT

ROUTINE: LOADIN
CALLS: GASLOAD LOADUP READAS READCV
COMMONS: DFLTS MOCOU MOCOIB M0C02A M0C02B READ1C READ2C
CALLED BY: NPUTP

ROUTINE: LOMM»
CALLS: READCV
COMMONS: READ1C READ2C
CALLED BY: LOADIN

ROUTINE: NVQUT
CALLED BY: NPUTO

ROUTINE: MPUTO
CALLS: DISTHE MVOUT
LIB: IAND ISKFT MVOLAST
COMMONS: BLANK CO C0NFG1 C0NFG2 MOCOIA MOCOIB PARAMS
CALLED BY: CFAST

ROUTINE: NPUTP
CALLS: HVINIT INITAMB LOADIN NPUTQ
LIB: ABS lABS MOD

COMMONS: BLANK CO C0NFG1 C0NFG2 MOCOIA M0C01B PARAMS
CALLED BY: CFAST

ROUTINE: NPUTQ
CALLS: READIN
LIB: lAND lOR MAX MIN READBF READFL READRS
COMMONS: BLANK CO C0NFG1 C0NFG2 INPUT1 INPUT2 MOCOU MOCOIB

88

Appendix C

M0C01D M0C01E MSKBD PARAMS
CALLED BY: NPUTP

ROUTINE: NPUTT
CALLS: READAS READ IN SSTRNG
LIB: CHAR FLOAT INT MAX MIN SORT
COMMONS: C0NFG1 C0NFG2 INPUT1 INPUT2 M0C01A MOCOIB

M0C01E MSKBD READIC READ2C
M0C01D

CALLED BY: CFAST

ROUTINE: OPENSHEL
CALLS: READCF SSTRNG
COMMONS: CONFGI C0NFG2
CALLED BY: CFAST

ROUTINE: OUTPUt
COMMONS: CENVIRO M0C01A
CALLED BY: DISPLAY

MOCOIB PLTPAR

ROUTINE: PALETTE
LIB: COLOR FILTYP
CALLED BY: DISPLAY

LABEL PLYGON

ROUTINE: PYROLS
LIB: MIN
COMMONS: M0C01A M0C01B
CALLED BY: DSOURC

ROUTINE: READAS
COMMONS: C0NFG1 C0NFG2
CALLED BY: LOAD IN NPUTT

ROUTINE: READCF

READ IN

COMMONS: C0NFG1 C0NFG2
CALLED BY: OPENSHEL

ROUTINE: READCV
CALLS: CONVRT SSTRNG
LIB: FLOAT IFIX
COMMONS: READIC READ2C
CALLED BY: GASLOAD LOAD IN LOADUP

ROUTINE: READIN
CALLS: CONVRT READAS SSTRNG
LIB: FLOAT IFIX MIN
COMMONS: READIC READ2C
CALLED BY: NPUTQ NPUTT

ROUTINE: REAOOP
CALLS: CMDLINE TOUPPER
LIB: DATE
COMMONS: C0NFG1 C0NFG2
CALLED BY: CFAST

ROUTINE: RESETLUT
CALLED BY: DISPLAY

ROUTINE: RESTRT
CALLS: DREAD IN LENOCO
LIB: MOD
COMMONS: M0C01A M0C01B
CALLED BY: CFAST

ROUTINE: RESULT

89

A Programmer's Reference Manual for CFAST, ...

CALLS: FLWOUT

LIB: lAND ISHFT MAX
COMMONS: CENVIRO M0C01A M0C01B
CALLED BY: CFAST SOLVE

ROUTINE: SETLUT
LIB: LOADPALE SETPALET
CALLED SY: NONE - NO ROUTINES CALL SETLUT

ROUTINE: SOLVE
CALLS: CNDUCT CPTIME DATACOPY DIFEQ DISPLAY DUMPER HVAC

RESULT TOXIC

LIB: FLOAT GRABKY MOO
COMMONS: BLANK CO CENVIRO M0C01A M0C01B PARAMS

CALLED BY: CFAST

ROUTINE: SSTRNG
CALLED BY: NPUTT OPENSHEL READCV READIN

ROUTINE: STPORT
LIB: lAND MAX
COMMONS: BLANK CO CENVIRO M0C01A M0C01B PARAMS
CALLED BY: DSOURC

ROUTINE: T01N>PER

LIB: CHAR I CHAR

CALLED BY: READOP

ROUTINE: TOXIC
LIB: MAX
COMMONS: BLANK CO CENVIRO M0C01A M0C01B PARAMS
CALLED BY: INITSPEC SOLVE

ROUTINE: TOXICB
LIB: COLOR FLOAT LABEL
COMMONS: M0C01A M0C01B M0C02A M0C02B
CALLED BY: DISPLAY

ROUTINE: TOXICH
LIB: CHRSET COLOR FLOAT LABEL LINE

COMMONS: M0C01A M0C01B
CALLED BY: DISPLAY

ROUTINE: TOXICR
LIB: COLOR FILTYP FLOAT LABEL PLYGON
COMMONS: M0C01A M0C01B M0C02A M0C02B
CALLED BY: DISPLAY

ROUTINE: TTCB
LIB: EXP MIN

CALLED BY: FRFLOW

ROUTINE: VUPRT
COMMONS: M0C01A M0C01B M0C02A M0C02B
CALLED BY: DISPLAY

ROUTINE: lODRAU
CALLS: HSETS
LIB: ABS COLOR COS HHDRAW ICHAR IDCHAR SIN

COMMONS: DEVTYP GRFTYP
CALLED BY: NONE - NO ROUTINES CALL WDDRAU

ROUTINE: URITEOT
CALLED BY: DUMPER

I

90

Appendix C

*** LIBRARY ROUTINES ***

ROUTINE: ABS
CALLED BY: CNDUCT CONVEC DIFEQ GRAF IT HCLTRAN HVFRIC HVMFLO

NPUTP WDDRAW

ROUTINE: BOXPLT
CALLED BY: DISPLAY GRAFIT

ROUTINE: CHAR
CALLED BY: DUMPER NPUTT TOUPPER

ROUTINE: CHPLOT
CALLED BY: GRAFIT

ROUTINE: CHRSET
CALLED BY: TOXICH

ROUTINE: COLOR
CALLED BY: BXBLIT DISPLAY PALETTE TOXICS TOXICH TOXICR WDDRAW

ROUTINE: COS
CALLED BY: WDDRAW

ROUTINE: DATE
CALLED BY: READOP

ROUTINE: DEF30
CALLED BY: DISPLAY

ROUTINE: DEFINE
CALLED BY: GRAFIT

ROUTINE: DEVICE
CALLED BY: DISPLAY

ROUTINE: DFE
CALLED BY: DIFEQ

ROUTINE: DIFST
CALLED BY: CFAST

ROUTINE: ENDDIS
CALLED BY: CFAST

ROUTINE: ENDFRM
CALLED BY: DISPLAY

ROUTINE: EXP
CALLED BY: CHEMIE HCLTRAN TTCB

ROUTINE: FILTYP
CALLED BY: BXBLIT PALETTE TOXICR

ROUTINE: FLOAT
CALLED BY: CFAST DISPLAY GRAFIT HVFAN HVINIT HVVIS NPUTT

READCV READ IN SOLVE TOXICB TOXICH TOXICR

ROUTINE: FNUNBR

CALLED BY: GRAFIT

ROUTINE: FRAME
CALLED BY: DISPLAY

91

A Programmer's Reference Manual for CFAST, ...

ROUTINE: F_RCOUIIT

CALLED BY: INI PAR

ROUTINE: GETCL
CALLED BY: CMDLINE

ROUTINE: fflABKY

CALLED BY: SOLVE

ROUTINE: GRILAB
CALLED BY: DISPLAY

ROUTINE: HDCOPY
CALLED BY: DISPLAY

ROUTINE: HHDRAU
CALLED BY: WDDRAU

ROUTINE: lABS
CALLED BY: NPUTP

ROUTINE: IAND
CALLED BY: DSOURC GRQUERY HSETS NPUTO NPUTQ RESULT STPORT

ROUTINE: ICHAR
CALLED BY: TOUPPER WDDRAW

ROUTINE: IDCHAR
CALLED BY: WDDRAW

ROUTINE: IFIX
CALLED BY: CFAST DISPLAY READCV READ IN

ROUTINE: INT

CALLED BY: DISPLAY GRAF IT NPUTT

ROUTINE: lOR

CALLED BY: MPUTQ

ROUTINE: ISHFT

CALLED BY: HSETS NPUTO RESULT

ROUTINE: LABEL
CALLED BY: DISPLAY GRAFIT PALETTE TOXICB TOXICH TOXICR

ROUTINE: LINE
CALLED BY: GRAFIT TOXICH

ROUTINE: LINUID
CALLED BY: DISPLAY GRAFIT

ROUTINE: LNPLOT
CALLED BY: GRAFIT

ROUTINE: LOADPALE
CALLED BY: SETLUT

ROUTINE: LOG
CALLED BY: HCLTRAN

ROUTINE: KAX
CALLED BY: CHEKIE CNDUCT DATACOPY DIFEQ DISPLAY DISRAD DSOURC

ENTRFL FIRPLM FIRRAD FLOW FRFLOW HCLTRAN HVINIT

HVMFLO INITAMB NPUTQ NPUTT RESULT STPORT TOXIC

i

92

Appendix C

ROUTINE: NIN
CALLED BY: CHEMIE CONVRT DIFEQ DISPLAY DISRAD DSOURC FLOW

FRFLOW GRAFIT HVFREX HVINIT HVSFLO INITAMB NPUTQ
NPUTT PYROLS READ IN TTCB

ROUTINE: NOO
CALLED BY: DATACOPY DISPLAY DUMPER HSETS NPUTP RESTRT SOLVE

ROUTINE: NOUSE_OF
CALLED BY: DISPLAY

ROUTINE: HVOLAST
CALLED BY: NPUTO

ROUTINE: NEUFRN
CALLED BY: DISPLAY

ROUTINE: PLOTLN
CALLED BY: DISPLAY

ROUTINE: PLYGNS
CALLED BY: GETVIEU

ROUTINE: PLYGON
CALLED BY: BXBLIT GRAFIT PALETTE TOXICR

ROUTINE: PLYPLT
CALLED BY: GETVIEW

ROUTINE: QUERYGRA
CALLED BY: GRQUERY

ROUTINE: READBF
CALLED BY: NPUTQ

ROUTINE: READFL
CALLED BY: NPUTQ

ROUTINE: READRS
CALLED BY: NPUTQ

ROUTINE: SETPALET
CALLED BY: SETLUT

ROUTINE: SIGN
CALLED BY: GRAFIT HVMFLO

ROUTINE: SIN
CALLED BY: WDDRAU

ROUTINE: SORT
CALLED BY: DIFEQ FRFLOW HVMFLO NPUTT

ROUTINE: TIMER
CALLED BY: CPTIME

ROUTINE: VIEUTR
CALLED BY: DISPLAY

ROUTINE: UDCOJNT
CALLED BY: GRAFIT

93

Appendix D

Appendix D: INTERFACE PROTOCOL - ROUTINES ALPHABETICALLY LISTING
FUNCTION

The following is an annotated list of routines used in the CFAST suite. If a routine is

specific to one topic, then it is listed at the end of the line (see the section on the directory

structure). Otherwise, it is a genera! purpose routine. If the module is a main program, then

the term "main" is used

ADD_COMOMP
ADD_THRM
ADD_VENT
ATMOSP
AUTOSC
AXSCAL
BSTRNG
BUBBLE
BXBLIT

C1R
C3R
CFAST
CFJN
CF_PLOT
CF_RPT
CF_SET
CHECKA
CHECKI
CHECKR
CHEMIE
CHGUNT
CKDUP
CLEARS
CMDLINE
CNDUCT
CONSCHEK
CONVEC
CONVRT
CPTIME
CSHELL
CUNITS
DATACOPY
DATYPE
DEFAULT
DEL_COMP
DEL_THRM
DEL VENT

add a comparment to the list (editor)

add a materia! to the tpp file (editor)

add a vent to the geometry (editor)

calculate the ambient atmosphere

automatic scaling of the axes

manual axes scaling (plot)

string search - see sstrng and reference [3]

bubble sort (plot)

bit blitter - used for erasing parts of a screen (mode!)

generate a single compartment case (input)

generate a three compartment case (input)

main model (model)

data editor (editor)

plotting routine (plot)

report generator (report)

set colors, units, ... (editor)

check validity of a character string (editor)

check validity of an integer (editor)

check validity of a floating point number (editor)

explicit species generation

change the effective units (editor)

check for duplicates in the list of variables (p!ot)

clear the screen

read and interpret the command line

heat conduction through objects

do conservation summations - compare over time

convective heat loss or gain

convert an ascii string to an integer and floating point number
return the total calculation (not simulation) time since tfie beginning

shell for CFAST (main)

part of chgunt - set the units (input)

copy the solver variables to the environment common blocks

figure out what the type of the ascii string is (integer,...)

list the defaults for plotting (plot)

delete a compartment from the list (editor)

delete a thermophysical property from the data base (editor)

delete a vent from the geometry section

95

A Programmer's Reference Manmai for CFAST, ...

DIFEQ
DiFERR
DiSAMB
DISCAL
DISCLAIM
DISFIR

DISGEN
DISGEO
DISHCL
D!SPfJ\Y

DISPRM
DISRAD
DISRE1
DISRE2
DISTH1

DISTH2
DISTHE
DORAPID
DOTENAB
DO_CVENT
DREADIN
DSOURC
DUMPER
ENTRFL
ERRMSG
FFILE

FiLESORT
FIRPLM
FIRRAD
FLOW.FRFLOW
FLWOUT
FJNFO
FJNF010
GASLOAD
GETLEG
GETVIEW
GOPAGE
GRAFIT
GRAFIT2
GRQUERY
GTRAILER
HCLTRAN
HEADING
HELP
HLPINS
HLPTXT
HLPXTND
HSETS

solver

error stop for difeq

display the ambient (editor)

display the calculation screen (editor)

disclaimer notice (not available)

display the fire specification (editor)

overview (editor)

geometry of the model (editor)

hydrogen chloride output (editor)

graphics output (mode!)

display the permanent colors, units, ... (editor)

divide up the radition into upper and lower zones

type one results (editor)

type two results (sub menu of disrel in the editor)

display thermophysical names used (editor)

display thermophysical database (sub menu od disthi in the editor)

print combined thermophysical data (disthi and disth2 for the model)

read channels from aa RAPID type data file (plot)

read tenability history files (plot)

modify the CVENT parameters (editor)

read a record (binary) of the history files - called by restrt

calculate the right hand side of the predictive equations

write to the history file

calculate vent entrainment

write an error message on the next to last line of the screen (editor)

grab a list of files, and choose one editor [3]

sort the list of files by name and extension - simple bubble sort (editor)

calculate the size, etc. of the plume from a fire

radiation transfer

vent flow

display the flow field (model)

get the version, run date, etc. of a dump (history) file

used by fJnfo - get the extra data for version 1 .0 of CFAST
read species information for the display routines (model)

get a legend lengthfor a plot (plot)

read a three dimensional view for display (model)

transfer to a section in the editor

modified version of GRAFIT from DEVICE [10] (model)

modified version of GRAFIT (plot)

get the graphics adaptor type

write a simple graphics descriptor file

hydrogen chloride deposition to walls

display top Sine of the edit screen (editor)

gel some help

check for available keywords (editor)

read the help file (unit 2), (editor)

extended help information (editor)

read the stroke definitions for characters from DEVFONT.nnn

96

Appendix D

HVAC
HVFAN
HVFREX
HVFRIC
HVINIT

HVMFLO
HVSFLO
HVTOEX
HWIS
(MOUSE
INIPAR

SNITAMB

INITFS

iNITMM
INITSPEC

LENGTH
LENOCO
LENOFF
LISTDEF
LISTOP

UST_CF
LIST_TPP

LOADIN
LOADUP
LOWERC
LSTFSL

LSTRNG
LSTVAL
UJNITS
MAKECF
MESS
MESSNS
MSGNR
MODTIM
MOUSE
MVOUT
NAILED
NEWFILE
NPUTKB
NPUTO
NPUTOR
NPUTP
NPUTQ
NPUTT
OPENFILE
OPENHELP
OPENSHEL
OUTFIL

run the mechanical ventilation model
caiculate a flow based on a tan curve

data copy from the compartment format into the ventilation format

duct friction factor

initialize the mechanical ventilation data structure

mass flow in the mechanical ventilation system

species flow in the mechanical ventilation system

data copy to the compartment format from the ventilation format

viscosity of air

mouse function call (in mouse.for)

labels, titles, units, and so on for graphics display routines

initialize the ambient conditions based on TAMB and EAMB
initialization routine (editor)

initialize main memoiy
initialize the species, based on the ambient conditions

function to calculate the length of a character string (plot)

length of the main common block (mocda) in words
display the length of the common block (main)

list the default settings (plot)

list options (plot)

display the current configuration file data (main)

list the thermophysical properties file (main)

read and sort out the graphics descriptors

read and sort out the graphics descriptors

convert ASCII characters to lower case

display a file name (actually and ascii string) (editor)

length of a string - similar to LENGTH (editor)

display a line (row) of values (editor)

set up the units matrix for conversion by CUNITS
write a configuration file

write a string to lOFILO

screen write in a window (MESSNR v^rites at the current cursor location)

send a message to lOFiLO without a <cr><!f> pair

modify the time intervals (editor)

grabms and all the other routines for accessing a mouse or trackball

display the mechanical ventilation information

write to lOFILO the tenability information for people nailed in place (report)

get the name of a data file (editor)

read the key board with messages displayed; filter special keys

write to lOFILO the general output (model)

same as NPUTO but specialized tor the report generator (report)

initialize the data in the model structures

read the main data file

read the thermophysical properties file

open a history file for reading, and get the version and creation date

open the help file (editor)

read the configuration file and set up the environment

display the list of configuration, data,... files (editor)

97

A Programmer's Reference Manual for CFAST,

OUT!
OUTPU
0UTPU1
OUTPU10

OUTR
PALETTE
PLOTIT
POLNUM
POSIT
PRMCLR
PRNTLIST
PRNTVALS
PUTLEG
PYROLS
OUiTFI

RANGE
RDCNL
RDPRSN
RDTENA
READAS
READCF
READCV
READiN
READIT
READKB
READMN
READOP
READPLOT
RESETLUT
RESTRT
RESULT
RSLT
RSMS
RUNFILE
SAVE
SAVRAP
SETAX
SETAXSN
SETCLR
SETEGA
SETLUT
SETUNT
SOLVE
S0LVEiT4
SSTRNG
SSTRNGP
STPORT
SUNITS

display a row of integer data (editor)

get a list of information from the main data structure

modified form of OUTPU - a single piece of data (model)

used by OUTPU (not OUTPUl) to return version 1.0 data

display a row of floating point data (editor)

show the palette for the binary decision trees (model)

simple text based plot (editor)

insert the compartment number in a 3D display of an object (model)

cursor position for menus (editor)

set the permanent colors (editor)

display a list of variables that can be accessed (plot)

list values of variables in the list of channels (plot)

put the legend on a piot (plot)

interpolating routine

quit, but check for modified files first (editor)

filter the range of data based on the units (editor)

read a RAPID channel

read a single person from a tenability history file

read a TENAB channel

read from lOFlU a single entry, in ASCII format

read the configuration file for OPENSHEL
convert data in CFIO to real and fixed format

read a line of ASCI! data and process it (calls readas, convrt,...)

convert a string into useful interger and floating point numbers
interface for low level keyboard read, mouse, and filter functions

allow a negative sign on data (not normally allowed) (plot)

read options, put into the environment CSHELL
read and sort information to place plots

reset the color palette for EGA and above
read an interval from a history file

write results from the mode! to lOFILO (model)

write results from the history file to lOFILO (report)

reset the mouse counters

save a main data file (editor)

save (write) an ASCII file (plot)

save (write) and ASCI! file in the RAPID format (plot)

set axes parameters, scale labels, ... (plot)

get axes parameters manually from the keyboard (plot)

set foreground and background colors (editor)

get the palette for color displays (ega and above) - save in order to restore

set the look up table - null procedure, but necessary for compatiblity

set units

top level of the solver for the predictive equations - calls difeq, hvac,.,.

top level of the solver for the predictive equations (editor)

parse a string

parse a string, and allow parenthesis as delimiters (piot)

species transport

set units

98

Appendix D

SWINDOW
TELLKEYS
TOPSCR
TOUPPER
TOXIC
TOXICB
TOXICH
TOXICR
TTCB
UP_FIRE
UP_VENT
VWPRT
WDDRAW
WHICHONE
WR_VENT
WRITEOT

save (in a buffer) a portion of a screen (plot)

tell what the function keys do (editor)

clear the top portion of a screen (BOTSCR clears the bottom) (editor)

convert ASCII from lower to upper case

calculate the parts per million of gases, and the concentration time dose
fill a table box (model) for doses and other such stuff

damping for the pressure fluctuations at very low pressure differences

go through the calculation of heat of combustion, pyrolysis rate, ...

calculate the constraints on the vents used for horzontal flow

calculate the window size for a view within a small window
draw the stroke characters (model)

command processor (plot)

write the vent parameters to a buffer for subsequent display

write one record of a history file

The following routines are not executed by any of the modules, but provide initialization of the

named common blocks, and are called block data statements. They must be included in the

appropriate makefile.

INITBK

INITDI

INITLV

INITUN

POSDAT
INITCS

NAILEDF
INITPL

initialize the CFIN common block

initialize the DISPLAY common block

for the labels in the editor in CFIN

initialization for the units in CFIN
data for cursor positioning by the routine POSIT
shell parameter initialization, such as Input/output unit numbers, CSHELL
zero the fed counters in the tenability data for the report generator

plot specification initialization, such as the graphics

output device,... in DFLTS, DFLTSl and

PLTFLT

99

A Programmer's Reference Manual for CFAST, ...

REFERENCES

[1] Forney, G. P. and Cooper, L. Y., The Consolidated Compartment Fire Model (CCFM)
Computer Application CCFM.VENTS - Part II: Software Reference Guide, Nat. Inst.

Stand, and Tech. Internal Report 90-4343 (1990).

[2] Jones, W. W, A Multicompartment Model for the Spread of Fire, Smoke and Toxic

Gases, Fire Safety Journal 9, 55 (1985); Jones, W. W. and Peacock, R. D., Refinement

and Experimental Verification of a Model for Fire Growth and Smoke Transport,

Proceedings of the 2nd International Symposium on Fire Safety Science, Tokyo (1989);

Jones, W. W. and Peacock, R. D., Technical Reference Guide for FAST Version 18 Nat.

Inst. Stand, and Tech. Tech. Note 1262 (1989).

[3] Forney, G. P. and Jones, W. W, Software Development Tools, Nat. Inst. Stand, and

Tech. Internal Report 90-4363 (1990).

[4] American National Standard Programming Language Fortran, X3.9-1978 (ISO

1537-1980 (e)), American National Standards Institute, New York, NY (1978).

[5] Polytron Version Control System User's Reference Manual, Sage Software,

Beaverton, OR (1989).

[6] F77L Fortran Reference Manual, Lahey Computer Systems Inc., Incline Village, NV
(1990)

[7] Plink86-I- User Manual, Phoenix Technologies LTD., Norwood, MA (1987)

[8] PolyMake User's Manual, Sage Software, Beaverton, Oregon (1989)

[9] Abramowitz, M and Stegun, I., Handbook of Mathematical Functions, National Bureau

of Standards Applied Mathematics Series 55 (1964).

[10] Jones, W. W. and Fadell, A B., A Device Independent Graphics Kernel, NBS
(U.S.) Internal Report 85-3235 (1985).

100

NIST-114A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

PUBUCATION OR REPORT NUMBER

NIST/TN-1283
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
November 1990

TITLE AND SUBTITLE

A Programmer's Reference Manual for CFAST, the Unified Model of Fire Growth and
Smoke Transport

5. AUTHOR(S)

Walter W. Jones and Glenn P. Forney

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Same as item #6

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOQRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

This document describes the unified model of fire growth and smoke spread, CFAST This paper

documents the internal structure of the mode! and details the method of modifying the model, together

with examples. The intent is to provide a framework and methodology for maintenance of the model,

together with a method of updating it. The reader is assumed to have a working knowledge of

programming, software maintenance and modeling of physical phenomena.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

compartment fires; fire growth; mathematical models; numerical models; software development

13. AVAILABIUTY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

104

IS. PRICE

ELECTRONIC FORM

^ U.S. GOVERNMENT PRINTING OFFICE: 1990— 281-557 207't3

NISTTechnical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-
veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special publications appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed un-

der a worldwide program coordinated by NIST under the authority of the National Standard Data
Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST
under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
understanding of the characteristics of the products. NIST administers this program as a supplement
to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-
ering areas of interest to the consumer. Easily understandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.
Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington. DC 20402.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed
by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; public distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

(formerly National Bureau of Standards)

Gaitfiersburg, MD 20899

Official Business

Penalty for Private Use $300

