Technical Note

BIBLIOGRAPHY ON DIRECTION FINDING AND RELATED IONOSPHERIC PROPAGATION TOPICS
1955-1961

OLAF D. REMMLER
THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of non-periodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 ($1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 ($1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (Includes Titles of Papers Published in Outside Journals 1950 to 1959) ($2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.
ABSTRACT

This bibliography is an outgrowth of a conference held at the University of California at Los Angeles in June 1960 to discuss the aspects of long-range high-frequency radio propagation that affect radio location and direction finding, and the related problems of measurement and analysis. A group of the papers presented at the conference was published in the Radio Propagation Section (Section D) of the Journal of Research of the National Bureau of Standards, May - June issue, 1961. In connection with the conference the Numerical Analysis Research Staff of UCLA prepared a bibliography of published work on the conference subject covering the period 1955-1959. For this Technical Note the UCLA bibliography has been edited and extended to include some papers published in 1960 and the first half of 1961. This compilation, though by no means exhaustive, includes over 850 titles on direction finding and related topics ranging from instrumental details through observations and data analysis to theories of propagation.
Bibliography on Direction Finding and Related Ionospheric Propagation Topics (1955-1961)

Introduction

In June 1960 a conference on transmission problems related to high-frequency direction finding was held at the University of California at Los Angeles under its sponsorship and in cooperation with the Office of Naval Research. The purpose of the conference was to discuss the aspects of long-range high-frequency radio propagation that affect radio location and direction finding, and the related problems of measurement and analysis. A group of the papers presented at the conference was published in Radio Propagation, Section D of the Journal of Research of the National Bureau of Standards (Volume 65D, Number 3, May-June 1961).

In connection with the conference the Numerical Analysis Research Staff of the University of California at Los Angeles prepared a bibliography of published work on direction finding and related topics for the period 1955-1959, which formed the basis for this Technical Note. For the present work the UCLA bibliography was edited and extended to include some of the papers published in 1960 and the first half of 1961 as well as some earlier ones which came to the editor's attention.

The selection of titles to be included in this bibliography was based on a rather broad interpretation of direction finding and related topics. The topics range from instrumental details through observations and data analysis to theories of propagation. Such breadth of coverage militates against exhaustiveness especially in fields not closely related
to direction finding in the narrow sense of the term. Nevertheless it is hoped that a representative sample of papers from these fields has been included; at least enough to suggest some new approaches or solutions to some users of the bibliography. The editor would appreciate comments on the work, particularly in regard to serious omissions, new developments, or errors of citation. These will be collected for use if future supplements or revisions are decided upon; the communications would probably influence the decision.

The bibliography was brought up to date principally by searching all issues of Electrical Engineering Abstracts from January 1960 through July 1961 under the relevant subjects. In addition, certain recent bibliographies and the reference files of some NBS personnel were searched for pertinent titles. The bibliographies on radio wave propagation edited by Wilhelm Nupen and listed under his name were particularly useful. Another important source was the Backscatter Literature Survey prepared by Hagn, Nielson, and Smith. Their contributions and those of the NBS personnel whose files were opened to the editor are gratefully acknowledged.

References to individual articles have been confined to the period 1955 through about mid-1961, unless the article was a review of the field. General works such as bibliographies, proceedings of conferences, surveys, and textbooks were included as far back as about 1940 in order to provide access to the earlier literature. Such general works were accepted with an even broader interpretation than the individual articles; some indication of their usefulness is given by mentioning the number of references, the inclusion of abstracts and so forth.
During World War II both sides did extensive work on radio direction finding, the results of which were largely classified. Since then much of the literature and many of the original laboratory reports have been declassified. Some bibliographies and surveys of this literature are listed herein under the name of the country in which the research was carried out. A more complete bibliography and a discussion of some of the wartime work is given in a paper by K. A. Norton entitled "Radio Wave Propagation During World War II" published in Proc. IRE for May 1962. The editor is grateful to Mr. Norton for providing a copy of this paper prior to its publication.

Since the principal emphasis was to be on long-distance propagation, only a few papers on tropospheric propagation have been retained. These include some papers indicating the magnitude of tropospheric refraction and some whose theory or techniques could be applied to long distance direction finding. A recent tropospheric bibliography is listed under R. L. Abbott.

"A Survey and Bibliography of Recent Research in the Propagation of VLF Radio Waves" by James R. Wait was published as NBS Technical Note No. 84 in May 1960. Therefore the present listing includes only references to later published works not included in his bibliography.

The titles are arranged alphabetically by the first author's name and when there is more than one author by the names of the co-authors. When there is more than one paper by the same author, or authors, the arrangement is chronological. Occasional titles are listed under the institution or organization issuing them. Similar articles by the same author but published in different journals have sometimes been included for the convenience of users having access to only one of the journals.
The abbreviations of the names of periodicals are mostly those used by Chemical Abstracts. The titles of articles in foreign journals are given in English followed by the original journal citation in transliteration and an indication of whether the journal or article has been translated (when such information was available). No attempt has been made to give the complete citation of the article in the translated journal since this usually agrees with the original except for pagination. Whenever possible the citation includes volume number, issue number, month and year to assist the user in locating references even when there is a typographical error in one of these.

Since there are over 850 titles in the bibliography, a group of code letters was devised to classify the articles according to broad subject and type. Opposite each author's name there is a key consisting of a year and from one to three letters indicating the most important categories into which the paper can be classified. In most cases the year of publication is given in the key. However, for conference proceedings the year of the conference is usually given in the key and the year of publication in the citation. For translated textbooks the key shows the year of publication in the original language and the citation the year of publication in English.

A list of the categories and some of the topics placed in each is given below. It should be noted that the selection of categories was most frequently based on the title and abstract of the paper and often on the title alone. Despite these shortcomings, it is hoped that by merely scanning the keys the user will be able to find the types of articles in which he is interested.
I would like to thank Mrs. Dorene Briels for her help in preparing the card file of references used to bring this bibliography up to date. I am especially grateful to Mrs. Marion Andrews for checking many of the citations, merging the card file and the original list while typing the manuscript, and patiently making corrections on the copy.

O. D. Remmler

Editor
Letter Key for Bibliography on Direction Finding and Related Topics

List of Topics Included in Categories

<table>
<thead>
<tr>
<th>Letters(s)</th>
<th>Category</th>
<th>Kind of Topics Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bibliographies</td>
<td>Bibliographies; Literature Surveys; Articles known to contain many references</td>
</tr>
<tr>
<td>C</td>
<td>Conferences</td>
<td>Proceedings of conferences, meetings, symposia</td>
</tr>
<tr>
<td>S</td>
<td>Surveys</td>
<td>Surveys; reviews; monographs</td>
</tr>
<tr>
<td>Te</td>
<td>Texts</td>
<td>Textbooks</td>
</tr>
<tr>
<td>M</td>
<td>Miscellaneous</td>
<td>Manuals; handbooks; theses; project reports; general works other than those above</td>
</tr>
<tr>
<td>D</td>
<td>Direction Finding</td>
<td>Specifically concerned with direction finding or angle of arrival in the narrow sense of the term</td>
</tr>
<tr>
<td>A</td>
<td>Antennas</td>
<td>Especially narrow beam; steerable; scanning; phased arrays; interferometers; azimuthal or vertical</td>
</tr>
<tr>
<td>N</td>
<td>Navigation</td>
<td>Aircraft navigation, collision avoidance and landing systems; space vehicle tracking; aircraft tracking; shipboard navigation</td>
</tr>
<tr>
<td>P</td>
<td>Propagation</td>
<td>Ionospheric theories; refraction or bending; scattering; interference; fading; reflection; ground constant measurements; atmospheric measurements; ionospheric measurements and characteristics; ray tracing; directional propagation theories</td>
</tr>
<tr>
<td>Letters(s)</td>
<td>Category</td>
<td>Kind of Topics Included</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>R</td>
<td>Radar</td>
<td>Especially when concerned with determining azimuth or elevation; radar techniques or instrumentation of possible use in direction finding systems</td>
</tr>
<tr>
<td>I</td>
<td>Instrumental</td>
<td>Instruments; measuring systems and techniques; instrument testing and checking; errors in systems; directional navigation aids; phase measurement; antenna pattern measurements</td>
</tr>
<tr>
<td>O</td>
<td>Observational</td>
<td>Ionospheric data or measurements; both azimuthal and vertical direction of arrival measurements; backscatter; properties of earth or atmosphere; analysis of author's observations</td>
</tr>
<tr>
<td>St</td>
<td>Statistical</td>
<td>Statistical theory; statistical analysis of observations; statistical methods</td>
</tr>
<tr>
<td>Th</td>
<td>Theoretical</td>
<td>Physical theories; fundamental principles; non-statistical mathematical derivations; calculations based on theory; analysis of other author's observations; relation of theories to observations; theory of antennas</td>
</tr>
</tbody>
</table>
DISTRIBUTION OF TITLES AMONG CATEGORIES

Total Number of Titles - 856

<table>
<thead>
<tr>
<th>Letter</th>
<th>Category</th>
<th>Number of titles with letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bibliographies</td>
<td>24</td>
</tr>
<tr>
<td>C</td>
<td>Conferences</td>
<td>18</td>
</tr>
<tr>
<td>S</td>
<td>Surveys</td>
<td>54</td>
</tr>
<tr>
<td>Te</td>
<td>Texts</td>
<td>15</td>
</tr>
<tr>
<td>M</td>
<td>Miscellaneous</td>
<td>11</td>
</tr>
<tr>
<td>D</td>
<td>Direction Finding</td>
<td>159</td>
</tr>
<tr>
<td>A</td>
<td>Antennas</td>
<td>158</td>
</tr>
<tr>
<td>N</td>
<td>Navigation</td>
<td>54</td>
</tr>
<tr>
<td>P</td>
<td>Propagation</td>
<td>393</td>
</tr>
<tr>
<td>R</td>
<td>Radar</td>
<td>66</td>
</tr>
<tr>
<td>I</td>
<td>Instrumental</td>
<td>282</td>
</tr>
<tr>
<td>O</td>
<td>Observational</td>
<td>190</td>
</tr>
<tr>
<td>St</td>
<td>Statistical</td>
<td>37</td>
</tr>
<tr>
<td>Th</td>
<td>Theoretical</td>
<td>232</td>
</tr>
</tbody>
</table>

Total Number of Letters Used - 1693
Bibliography on Direction Finding and Related Ionospheric Propagation Topics (1955-1961)

Abbott, R. L.
Bibliography of tropospheric radio wave scattering.

Adcock, F.
Radio direction finding in three dimensions.

Adachi, S., and Y. Mushiake
Studies of large circular loop antennas.

Adachi, S., and Y. Mushiake
Directive loop antennas.

AGARDograph 34

Aggarwal, K. K.
Statistical analysis of fading on short wave transmissions.

Agy, V., K. Davies, and R. Salaman
An atlas of oblique-incidence ionograms.
Agy, V., and K. Davies
Ionospheric investigations using the sweep frequency pulse technique at oblique incidence.

Aksenov, V. I.
On the scattering of electromagnetic waves from sinusoidal and trochoidal surfaces of finite conductivity.
Radiotekhnika i Elektronika 3, No. 4, 459-466 (Apr. 1958).
(In Russian). Translation in Radio Engineering and Electronics.

Aksenov, V. I.
Experimental investigation of electromagnetic wave scattering from periodically uneven surfaces.
Radiotekhnika i Elektronika 5, No. 5, 782-795 (May 1960).
(In Russian). Translation in Radio Engineering and Electronics.

Albrecht, H. J.
Analysis of ionospheric paths in long-range propagation.

Albrecht, H. J.
Applying the chordal-hop theory of ionospheric long-range propagation of echo-signal delay.

Alcock, G. Mck.
The prediction of maximum usable frequencies for radio communication over a transequatorial path.

Al’pert, Ya. L.
Certain problems in ionospheric physics. Electron density fluctuations and radio wave scattering.
(In Russian).
Al'pert, Ya. L.
A short sketch of present ideas on the propagation of radio waves in the ionosphere.

Al'pert, Ya. L., V. L. Ginzburg, and E. L. Feinberg
Radio propagation.
Gos. Izdat. Tekhniko-Teoreticheskoi Literatury, 883 pp.,
124 tables, 128 figs., 373 references (1953). (In Russian).

Ament, W. S.
Reciprocity and scattering by certain rough surfaces.
IRE Trans. on Antennas and Propagation AP-8, No. 2,

Ancker, C. J., Jr.
Airborne direction finding -- the theory of navigation errors.
IRE Trans. on Aeronaut. Navigational Electronics ANE-5,
No. 4, 199-210 (Dec. 1958).

Anderson, J. T.
Determination of the orbit of an artificial satellite.

Anderson, L. J.
Tropospheric bending of radio waves.

Anderson, R. E.
Bearing memory improves direction finder.

Anderson, R. E., and A. D. French
Tracking Pioneer IV beyond the moon.

The CAA doppler omnirange.
Anderson, W. L., N. J. Beyers, and R. J. Rainey 60-P, Th, O
Comparison of experimental with computed tropospheric refraction.

Appleton, E. V. 59-P, O, Th
The normal E region of the ionosphere.

Appleton, E., and A. J. Lyon 57-P, Th
Studies of the E layer of the ionosphere - I. Some relevant theoretical relationships.

Appleton, E., and A. J. Lyon 61-P
Studies of the E layer of the ionosphere - II. Electromagnetic perturbations and other anomalies.
J. Atmospheric and Terrest. Phys. 21, Nos. 2/3, p. 73 (June 1961).

Arnolds, R. 60-R, I
Radar display transmission by line storage.
Electronik 9, No. 6, 171-178 (June 1960). (In German).

Aronov, I. A., and G. Kh. Novik 59-I
Electronic phasemeter with a range -180° to + 180°.
Translation in Instrum. Constr.

Arsac, J. 57-A, Th
Application of mathematical theories of approximation to aerial smoothing in radio astronomy.

Arsac, J., and J. C. Simon 57-P
Fluctuation problems in long distance propagation.
Onde Elect. 37, No. 362, 495-497 (May 1957). (In French).

Ashbrook, F. M., and D. D. Stevenson 60-N, I
The Navy's portable satellite tracking stations.
IRE Trans. on Space Electronics and Telemetry SET-6, No. 1, 41-45 (Mar. 1960).
Ashton, W. F.
Fixed-coil display system for data extraction.

Ashwell, G. E., and C. S. Fowler
Phase-measuring equipment for VLF propagation investigations.
Electronic Technol. 37, No. 7, 252-255 (July 1960).

Badessa, R. S., V. J. Bates, et al
Phase stabilization techniques for electronically scanned arrays.

Baechle, J. R., and R. H. McFarland
A flush-mounted runway antenna for use with the F.A.A. directional glide-path.

Bagaryatskii, B. A.
Radar reflections from aurorae.

Bailey, A. D.
An application of the principle of least squares in automatic radio direction finding.

Bailey, A. D., J. D. Dyson, et al
See Illinois, U. of
Bailey, A. D., and R. L. Sydnor 58-St, I, D
An investigation of signal amplitude to bearing deviation correlation as a function of time in high frequency radio direction finding.

Bailey, D. K. 58-P
The effect of echo on the operation of high frequency communication circuits.

Bailey, D. K., R. Bateman, and R. C. Kirby 55-S
Radio transmission at VHF by scattering and other processes in the lower ionosphere.

Bailey, V. A. 58-P, Th
Some methods for studying wave-propagation in a uniform magnetoionic medium.

Bain, W. C. 55-P, O, D
On the rapidity of fluctuations in continuous-wave radio bearings at high frequencies.

Bain, W. C. 56-I, Th, D
The theoretical design of direction finding systems for high frequencies.

Bain, W. C. 56-I, D
Adcock direction finder. Polarization errors due to aerial bending.

Bain, W. C. 56-I, D
Possible errors of a particular wide-aperture direction-finder.
Bain, W. C.
Fluctuations in continuous-wave radio bearings at high frequencies.

Bain, W. C.
The angular distribution of energy received by ionospheric forward scattering at VHF.

Bain, W. C.
The received-amplitude distribution produced by radio sources of random occurrence and phase.

Bain, W. C.
Directional observations on delayed signals on an ionospheric forward-scatter circuit.

Bain, W. C.
Phase difference observations at spaced aerials and their application to direction finding.
J. Research NBS **65D** (Radio Prop.), No. 3, 229-232 (May-June 1961).

Bain, W. C.
Studies of ionospheric forward scattering using measurements of energy distributions in azimuth.

Bain, W. C., and C. B. I. Glass
The polarization of very long radio waves reflected from the ionosphere at oblique incidence.

Bain, W. C., and E. Golton
Some effects of the ionosphere on signals from earth satellites.
Bakhareva, M. F. 59-P, Th
The correlation between waves of different frequencies travelling through a layer of statistically inhomogeneous medium.

Ball, C. O., and W. D. White 60-A, I
Simulation tests on an interference rejection antenna system.
IRE Int. Conv. Record 8, pt. 8, 3-9 (1960).

Balser, M. 57-P
Some observations on scattering by turbulent inhomogeneities.

Bandyopadhyay, P. 57-P
Models of the lower ionosphere as may be inferred from absorption results.
Indian J. Phys. 31, No. 6, 297-308 (June 1957).

Banerji, R. B. 55-St, O
The autocorrelogram of randomly fading waves.

Baranul'ko, V. A. 60-P, O
The transmission of signals during storms.

Barber, N. F. 56-P, St
A correlation treatment of fading signals.

Barber, N. F. 57-I, D
Correlation and phase methods of direction finding.

Barber, N. F. 58-A, I, D
Optimum arrays for direction finding.
Barber, N. F.
Design of 'optimum' arrays for direction finding.
Electronic and Radio Engr. 36, No. 6, 222-232 (June 1959).

Barber, N. F., and D. D. Crombie
VLF reflections from the ionosphere in the presence of a transverse magnetic field.

Barton, D. K.
Sputnik II as observed by C-band radar.

Bass, F. G., and V. G. Bocharov
On the theory of scattering of electromagnetic waves from a statistically uneven surface.
(In Russian). Translation in Radio Engineering and Electronics.

IGY observations of F-layer scatter in the Far East.
J. Geophys. Research 64, No. 4, 403-405 (Apr. 1959).

Bates, H. F.
Direct H.F. backscatter from the F region.

Bates, R. H. T.
Random errors in aperture distributions.

Baur, K.
A contribution to the theory of the goniometer and coordinate transformer.
Frequenz 10, No. 7, 213-221 (July 1956). (In German)

Baur, K.
Direction finding deviation of a 6-mast Adcock.
Nachrtech Z.9, No. 7, 299-305 (July 1956). (In German).
Baur, K. 56-I, D
The total error of an Adcock direction finding system.

Baur, K. 56-I, D
An investigation of the sensitivity of the direction finder
Telegon III with and without rectification.

Baur, K. 58-I, D
Improvement of readings on a two-channel visual direction finder.
Telefunken Ztg. 31, 97-99 (June 1958). (In German).

Baur, K. 60-I, Th, D
The theory of the general Adcock direction-finder.

Baur, K. 60-I, D
The wave analyzer: A device for simultaneous DF of
several incident wave trains.

Beale, E. M. L. 61-St, O, D
Brooke variance classification system for DF bearings.
J. Research NBS 65D (Radio Prop.), No. 3, 255-261
(May-June 1961).

Beale, E. M. L. 61-St, O
Estimation of variances of position lines from fixes with
unknown target positions.
J. Research NBS 65D (Radio Prop.), No. 3, 263-273
(May-June 1961).

Bean, B. R., and B. A. Cahoon 59-P, Th
Effect of atmospheric horizontal inhomogeneity upon ray tracing.
J. Research NBS 63D, (Radio Prop.) No. 3, 287-292
Bean, B. R., J. D. Horn, and L. P. Riggs 60-P, Th
Refraction of radio waves at low angles within various air masses.

Beckmann, B., and K. Vogt 55-P, O
Observations of shortwave back-scatter with commercial telegraphy signals.

Beckmann, B., and K. Vogt 56-P, I, O
The measurement of the scattering coefficient in the back-scattering of short-wave telegraphy signals.

Beckmann, B., and K. Vogt 57-A, I
The gain of a directive receiving aerial for short-wave back-scatter.

Beckmann, P. 57-P, Th
A new approach to the problem of reflection from a rough surface.

Beckmann, P. 57-P, Th
The reflection of electromagnetic waves from rough surfaces.

Beckman, P. 58-R, P
Height errors in radar measurements due to propagation causes.

Beckmann, P., and K. H. Schmelovsky 58-P, Th
Concerning an integral occurring in investigations of fading phenomena.
Bell, J.
Correlation between fading signals. Instrument for determining correlation coefficient.

Bennington, T. W.
Equatorial ionospheric effects. Post-sunset fading on long-distance radio circuits.

Benoit, R. C., Jr., and F. Coughlin, Jr.
New trends in directional communications.

Benoit, R. C., Jr., and F. Coughlin, Jr.
Designing RDF antennas.
Electronic Ind. 18, No. 4, 77-83 (Apr. 1959).

Berbert, J. H.
Effect of tracking accuracy requirements on design of minitrack satellite tracking system.

Berman, A., and C. S. Clay
Theory of time averaged product arrays.

Besag, P. L., and J. T. Anderson
Determination of the orbit of an artificial satellite.

Beynon, J. G., and G. M. Brown, Editors

Beynon, W. J. G., and G. M. Brown
IGY instruction manual: the ionosphere.
A study of noon F2 ionization in relation to geomagnetic coordinates.

Bhargava, B. N. 59-P
Annual wave in the worldwide F region ionization.

Bibl, K. 60-P, O
Experimental proof of focusing at the skip distance by backscatter records.

Bibl, K. 60-P, O, Th
Dynamic characteristics of the ionosphere and their coherency with the local and planetary magnetic index.

Bjelland, B., O. Holt, B. Landmark, and F. Lied 59-P
The D region of the ionosphere.

Blakely, J. R. 55-I, D
U. S. Coast Guard automatic direction finder model RD 132.

Blasi, E. A., and R. S. Elliott 59-A, Th
Scanning antenna arrays of discrete elements.

Blume, S. 60-A, Th
Experimental and theoretical investigations on plane surface aerials.

Bogush, A. J., Jr. 60-A, I
Fresnel region boresight methods.
Bolgiano, R., Jr.
Discussion of the Wheelon paper 'Radio frequency and scattering angle dependence of ionospheric scatter propagation at VHF'.

Bolgiano, R., Jr.
The role of turbulent mixing in scatter propagation.

Bolie, V. W.
Electromagnetic propagation in an almost homogeneous medium.

Bond, D. S.
Radio direction finders.

Booker, H. G.
A theory of scattering by nonisotropic irregularities with application to radar reflection from the aurora.
J. Atmospheric and Terrest. Phys. 8, 204-221 (1956).

Booker, H. G.
Turbulence in the ionosphere with application to meteor trails, radio star scintillation, auroral radar echoes and other phenomena.

Booker, H. G.
Concerning ionospheric turbulence at the meteoric level.

Booker, H. G.
Phenomena of radio scattering in the ionosphere.
Booker, H. G.
The use of radio stars to study irregular refraction of radio waves in the ionosphere.

Borowski, S., S. Jasinski, and S. Manczarski
Doppler effect in ionospheric propagation.
Arch. Electrotech. (Warsaw) 5, No. 2, 343-353 (1956).
(In Polish).

Bowen, K. C.
Sources of error in U-Adcock HF direction finding.

Bowhill, S. A.
The fading of radio waves of frequencies between 16 and 2400 c/s.

Bowhill, S. A.
Ionospheric irregularities causing random fading of VLF.

Bowhill, S. A.
The distribution of the fade lengths of a randomly fading radio signal.

Bowhill, S. A.
Diversity effects in long distance high frequency radio pulse propagation.

Bowhill, S. A.
Statistics of a radio wave diffracted by a random ionosphere.
Bowles, K. L., R. Cohen, G. R. Ochs, and B. S. Balsley 60-P, O
Radio echoes from field-aligned ionization above the magnetic equator and their resemblance to auroral echoes. Letter to the Editor.
J. Geophys. Research 65, No. 6, p. 1855 (June 1960).

Box, G. E. P., and J. S. Hunter 57-St
Multi-factor experimental designs for exploring response surfaces.

Bracewell, R. N. 56-A, Th
Two-dimensional aerial smoothing in radio astronomy.

Bracewell, R. N. 58-A, Th
Antenna tolerance theory.

Bracewell, R. N. 61-A, Th
Interferometry and the spectral sensitivity island diagram.

Bracewell, R. N. 61-A, Th,I
Tolerance theory of large antennas.

Bracewell, R. N., and G. Swarup 61-A, I
The Stanford microwave spectroheliograph antenna, A microsteradian pencil beam interferometer.

Bramley, E. N. 55-P, O, D
Some aspects of the rapid directional fluctuations of short radio waves reflected at the ionosphere.
Bramley, E. N. 55-P, O, D
Some comparative directional measurements on short radio waves over different transmission paths.

Bramley, E. N. 56-I, D
HF bearing variations on an Adcock direction-finder.

Bramley, E. N. 56-P, O, D
Directional observations on H. F. transmissions over 2100 KM.

Braude, S. I. 58-P, St
Distribution of scattering elements for propagation of radio waves over an agitated sea surface.

Braude, S. I. 59-P, Th
Fresnel coefficient for rough terrain.

Braude, S. I., and F. G. Bass 58-P, St
Feasibility of determining distribution functions of scatterers on an agitated sea surface by the radar method.
Braun, A. F.
Technique and problems of target-following radar.

Bray, D. W., and P. H. Kirchner
Antenna patterns from the sun.

Bray, W. J., J. A. Saxton, R. W. White, et al
VHF propagation by ionospheric scattering and its application to long-distance communications.

Bremmer, H.
On the theory of fading properties of a fluctuating signal imposed on a constant signal.

Brennan, D. G.
The extrapolation and interpolation of spatial correlation functions.

Brennan, L. E.
Angular accuracy of a phased array radar.

Briggs, B. H.
A study of the ionospheric irregularities which cause spread-F echoes and scintillations of radio stars.

Brockman, M. H., H. R. Buchanan, et al
Extra-terrestrial radio tracking and communication.

Brodzinsky, A.
Electronic landing aids for carrier aircraft.
Broersma, C. B.
Recent developments in ship direction-finders and course beacons.
(In Dutch).

Brookner, E., and J. Flink
Coherent enhancer for pulse radar applications.
IRE Int. Conv. Record 8, pt. 8, 240-253 (1960).

Broussaud, G., and E. Spitz
Superdirectivity. Supergain.
(In French).

Brown, A. K.
Abstracts of articles on irregularities and horizontal motions of irregularities in the ionospheric F-region.

Brown, A. K.
Abstracts of articles on ground backscatter propagated by the ionosphere.

Brown, G. H.
Pattern synthesis - simplified methods of array design to obtain a desired directive pattern.

Brown, J. N.
Automatic sweep frequency ionosphere recorder model C-4.

Bryhni, O.
Measurements on receiving aerials for television and meter-waves.
(In Norwegian).
Buchholz, L.
Tuning conditions and maximum sensitivity of Bellini-Tosi radio direction finders.
Elektrotek. T. 69, No. 5, 49-54 (1956). (In Norwegian)

Budden, K. G.
'The waveguide mode' theory of the propagation of VLF radio waves.

Budden, K. G.
Effect of small irregularities on the constitutive relations for the ionosphere.

Budden, K. G., and P. C. Clemmow
Coupled forms of the differential equations governing radio propagation in the ionosphere II.

Budejicky, J.
Methods of observing the solar radiowave radiation.
Slaboproudy Obzor. 20, No. 7, 435-444 (July 1959).
(In Czech.).

Bullington, K.
Radio propagation fundamentals.

Burkard, O.
A general formula for the morning F2 ionization at European stations.
Geofis. pura. e appl. 37, 207-210 (July 1956/II).
(In German).

Burkard, O.
A new F-layer model.
Geofis. pura e Appl. 37, 145-164 (1957/II).

Burkard, O.
Model of the ionosphere.
Naturwissenschaften 45, No. 21, 507-525 (Nov. 1958).
(In German).
Byatt, D. W. G. 59-N, I, D
 The Marconi automatic plotter.

Bystrom, A., R. V. Hill, and R. E. Metter 60-A, I
 Ground-mapping antennas. With frequency scanning.
 Electronics 33, No. 19, 70-73 (May 6, 1960).

Carlin, P. W. 59-I, P
 A technique for displaying the time variation of the spectral
 distribution of the fading fluctuations and Doppler shifts of
 ionospherically-propagated ground backscatter in selected
 small range intervals.
 Radio Propagation Laboratory, Stanford University,
 Technical Report No. 5 (July 1959). (Contract Nonr 225
 (33) NR 087 090).

Carr, J. W. 59-A, I
 Broad-band radio frequency interferometer.
 IRE Trans. on Instrumentation I-8, No. 2, 39-43
 (Sept. 1959).

Carswell, I., and C. Flammer 57-I
 Ground antenna phase behavior in a differential phase
 measuring system.

Carter, P. S., Jr. 57-N, D
 Study of the feasibility of airborne HF direction-finding
 antenna systems.
 IRE Trans. on Aeronaut. Navigational Electronics ANE-4
 No. 1, 19-23 (Mar. 1957).

Carter, P. S., Jr. 60-A, Th
 Mutual impedance effects in large beam scanning arrays.
 IRE Trans. on Antennas and Propagation AP-8, No. 3,
Cartwright, D. G.
Direction-finding on diffuse sources of electromagnetic radiation.

Chapman, J. H., K. Davies, and C. A. Littlewood
Radio observations of the ionosphere at oblique incidence.

Chapman, S.
The electrical conductivity of the ionosphere: a review.
Nuovo Cimento Suppl. (Ser. 10) 4, No. 4, 1385-1412 (Oct. 1956).

Chapman, S., and K. Davies
On the approximate daytime constancy of the absorption of radio waves in the lower ionosphere.

Charp, S.
A rapid statistical data processing system for radio propagation research.

Chen, K.
Plasma sheath surrounding a conducting spherical satellite and the effect on radar cross section

Cheng, D. K., and M. T. Ma
A new mathematical approach for linear array analysis.

Cheng, D. K., and M. T. Ma
A new mathematical approach for linear array analysis.
Chernov, L. A.
Wave propagation in a random medium.

Chikhachev, B. M.
Periodic variations of refraction of radio waves in solar radiations.

Christiansen, W. N.
Development of highly directive aerials in radio astronomy.

Christiansen, W. N., N. R. Labrum, et al
The crossed-grating interferometer: A new high-resolution radio telescope.

Clark, C.
Motion of sporadic-E patches determined from high frequency backscatter records.

Clark, C., and W. W. Peterson
Motion of sporadic-E patches determined from high-frequency backscatter records.

Clark, F. J.
Radar beacons for I.R. B.M./I.C.B.M.

Clarke, C.
DF aerial system for decimeter wavelengths.
Electronic Radio Engineer 34, No. 7, 238-245 (July 1957).
Clarke, C.
Electronic Technol. 37, No. 5, 197-204 (May 1960).

Clarke, C., and V. A. W. Harrison
Low-frequency direction finder.

Cleaver, R. F., P. Sothcott, and F. J. Robinson
An automatic radio triangulation system.

Clemmow, P. C., and M. A. Johnson
A contribution to the theory of the motion of weak irregularities in the ionosphere.

Clergue, J.
An auto-follow system with discontinuous inputs.

Collins, D. J., and J. E. Smith
A system for providing a precise vector voltage.

Cook, C. E.
Pulse compression -- Key to more efficient radar transmission.

Cooper, D. C., and J. W. R. Griffiths
Video integration in radar and sonar systems.

Cosgriff, R. L., W. H. Peak, and R. C. Taylor
Cottony, H. V., and A. C. Wilson
A high-resolution rapid-scan antenna.

Cox, J. W., and K. Davies
Oblique incidence pulse transmission

Crisses, B., and J. Gnessin
Portable loop homing antenna.

Crombie, D. D.
Doppler spectrum of sea echo at 13.56 Mc/s.

Crombie, D. D.
Difference between the east-west and west-east
propagation of VLF signals over long distances.
J. Atmospheric and Terrest. Phys. 12, Nos. 2/3,

Crombie, D. D.
On the mode theory of VLF propagation in the presence of
a transverse magnetic field.

Crowder, H. A.
Ground clutter isodops for coherent bistatic radar.

Cufflin, M. H.
Aerial calibration by solar noise using polar display.
Marconi Rev. 23, 33-44 (1st qtr 1960).

Cutler, B. and L. Sanders
Regal - An advanced approach and landing system.
IRE Trans. on Aeronaut. Navigational Electronics,
ANE-7, No. 2, 135-142 (June 1959).
Dagg, M.
Diurnal variations of radio-star scintillations, spread F and geomagnetic activity.

Dasgupta, S. and Y. T. Lo
A study of the coma-corrected zoned mirror by diffraction theory.

Davids, N., and R. W. Parkinson
Wave solutions for critical and near critical coupling conditions in the ionosphere.

Davies, D. E. N.
A fast electronically scanned radar receiving system.

Dausin, L. R., K. E. Niebuhr, and J. J. Nilsson
The effects of wide-band signals on radar antenna design.

Dax, P. R.
The statistics of radar video after linear and nonlinear mixing.

de Bettencourt, J. T., and W. A. Whitcraft
Long range meteoric echoes via F-layer reflection.

deBey, L. G., D. Comstock, et al
High resolution angle transducer and encoder.

de Faymoreau, E.
Experimental determination of TACAN bearing and distance accuracy.
DeFeiter, L. D.
Design and results of the observation programme of the Ionospheric Research and Radio-Astronomy Department of the Netherlands P. T. T.
(In Dutch).

Denisov, N. G.
The interaction of extraordinary and ordinary waves in the ionosphere and the effect of multiplication of reflected signals.

Denisov, N. G.
On the influence of the reflection region on radiowave scattering in the ionosphere.

Desirant, M., and J. L. Michiels, Editors
Electromagnetic wave propagation.

DeSize; L. K., and B. A. Woodward
An investigation of the feasibility of obtaining a constant beamwidth Luneberg lens.

de Voogt, A. H.
Ionospheric models as an aid for the calculation of ionospheric propagation quantities.

Dieminger, W.
Experiments on pulse propagation at oblique incidence.
(In French).
Dieminger, W.
Ground scatter by ionospheric radar.

Dieminger, W., and H. G. Moller
Echo sounding experiments with variable frequency at oblique incidence.

Dinter, K.
Long-distance transmission of angular values of a uniformly rotating wave. (Bearing transmission of radar aerials).

Dlugatch, I.
Optimizing antenna switches and phasers.

Dobrott, D., and A. Ishimaru
East-west effect on VLF mode transmission across the earth's magnetic field.

Dolukhanov, M. P.
Radiowave propagation.

Dolukhanov, M. P.
Investigations in the USSR on radio-wave propagation over the earth's surface.
Dominici, P.

Backscatter sounding data on 18.6 Mc/s obtained at Torrechiaruccia (S. Marinella, Roma) from August 23, 1947 to January 31, 1958.
Centro Radioelettrico Sperimentale "G. Marconi", Rome, Italy.

Dominici, P.

Backscatter sounding data on 22.3 Mc/s obtained at Torrechiaruccia (S. Marinella, Roma) from February 1, 1958 to August 31, 1958.
Centro Radioelettrico Sperimentale "G. Marconi", Rome, Italy.

Donnellan, J. R.

A spiral doublet scanning array.
IRE Trans. on Antennas and Propagation AP-9, No. 3, 276-279 (May 1961).

Drabowitch, S.

Some applications of signal theory to aerials.

Drachev, L. A.

Measurement of the variation of the phase path of a signal reflected from the ionosphere.

Drachev, L. A., and Yu. V. Berezin

Influence of large irregularities of the F2 layer on the reflection coefficient of radio waves.

Drane, C.

Phase modulated antennas.
Drummond, J. E.
The connection between ionospheric patterns and field strengths reflected on the ground.

Dueno, B.

Dueno, B.
Peculiarities and seasonal variations of transequatorial backscatter echoes as observed at Mayaguez, Puerto Rico.
J. Geophys. Research 65, No. 6, 1691-1704 (June 1960).

Dueno, B.
Sporadic-E as observed from Mayaguez, P. R. by backscatter sounders.
Research Report No. 3, Contract AF 49(638) 172, Univ. of Puerto Rico, Mayaguez, Puerto Rico, AFOSR-35.

Duncan, R. A.
The equatorial F-region of the ionosphere.
J. Atmospheric and Terrest. Phys. 18, Nos. 2/3, 89-100 (June 1960).

Dungey, J. W.
The influence of the geomagnetic field on turbulence in the ionosphere.
J. Atmospheric and Terrest. Phys. 8, Nos. 1/2, 39-42 (Jan.-June 1956).

Dungey, J. W.
Convective diffusion in the equatorial F region.
J. Atmospheric and Terrest. Phys. 9, Nos. 5/6, 304-310 (July-Dec. 1956).

Dunn, J. H., and D. D. Howard
Precision tracking with monopulse radar.
Dyson, J. D.
The unidirectional equiangular spiral antenna.

Earp, C. W.
The practical evolution of the commutated aerial direction-finding system.

Easton, R. L., and J. J. Fleming
The Navy Space Surveillance System.

Eastwood, E.
Aerial investigations using natural noise sources.
Marconi Rev. 23, 2-20 (1st qtr 1960).

Ebert, W., H. Ehlers, and R. Dobiasch
Ionospheric propagation of long and medium waves. (A review of the work of the European Broadcasting Union).

Eckart, G.
On the relationship between the distribution of intensity in radiating systems and their directional characteristics.

Eckart, G.
USW fading and its analysis.
Z. angew. Phys. 8, No. 8, 407-416 (Aug. 1956). (In German)

Edelberg, S., and A. A. Oliner
Mutual coupling effects in large antenna arrays. I. Slot arrays.
Edelberg, S., and A. A. Oliner
Mutual coupling effects in large antenna arrays. II.
Compensation effects.
IRE Trans. on Antennas and Propagation AP-8, No. 4,
360-367 (July 1960).

Edwards, L. C., and D. A. Hedlund
COZI (Communication zone indicator) oblique incidence
ionospheric sounding using normal communication
transmissions.
IRE Trans. on Commun. Systems CS-8 No. 3, 160-164
(Sept. 1960).

Edwards, L. C., H. Hoogasian, and D. E. Linsday
Ionospheric propagation studies. Final scientific report,
part 1, covering 15 June 1957 to 15 September 1959.

Egan, R. D.
Anisotropic field-aligned ionization irregularities within
the ionosphere near the magnetic equator. Technical
Report 1, prepared under National Science Foundation
Grant Y 22-10/309, Radio Propagation Laboratory,
Stanford University, Stanford, California (30 Dec. 1959).

Egan, R. D., and A. M. Peterson
The influence of sudden ionospheric disturbances on
backscatter sounding, paper presented at 6th AGARD
Ionospheric Research Committee Meeting on Disturbances
of Solar Origin on Communications, 15-18 May, 1961,
Naples, Italy. Work supported by National Science
Foundation Grants Y 22-10/309 and NSG-8727, Radio
Science Laboratory, Stanford University, Stanford, California.

Egan, R. D., and A. M. Peterson
Backscatter observations of sporadic-E. Technical
Report 2, prepared under National Science Foundation
Grant Y 22-10/309, Radioscience Laboratory, Stanford
University, Stanford, California (30 May 1961).
Egan, R. D., D. S. Pratt, et al 60-P, O
Fixed frequency backscatter, IGY project 6.12, National Sciences Foundation Grant Y-6. 12/62 Radio Propagation Laboratory, Stanford University, Stanford, California. Data Summary 1 (30 June 1958); Data Summary 2 (10 Sept. 1958); Data Summary 3 (15 Apr. 1959); Data Summary 4 (29 Dec. 1960).

Ehrenspeck, H. W. 60-A, I

Ehrenspeck, H. W., and H. Poehler 59-A, Th, I

Electronic Scanning Symposium, Apr. 29-May 1, 1958 58-C

Elektronik 60-I

Ellis, F. 60-I

Ellis, G. R. A. 56-P

Ellis, G. R. A. 60-O

Ellis, G. R. A., and D. G. Cartwright 59-P, O
Ellis, G. R. A., D. G. Cartwright, and J. R. V. Groves 59-P, O
Spaced observations of radio noise from the outer atmosphere.

Ellis, R. E., and W. C. Rohlman 59-R, I
Amplitude-modulated video integrator.

Ellyett, C. D., and J. M. Watts 59-S
Stratification in the lower ionosphere.
2 tables, 149 ref.

Elvey, C. T., and L. Owren 59-P, O
Fixed frequency backscatter measurements - Alaska.

Enomoto, H. 58-P, Th
A new theory of scatter propagation.

Erukhimovitch, Yu. A. 58-I, D
The influence of asymmetry on the working of a radio direction-finder.

Erukhimovitch, Yu. A. 59-I, D
The principles involved in the construction of an automatic radio direction-finder.

Erukhimovitch, Yu. A. 60-I, D
Some problems of direction finding of interfering radio waves.
Evans, J. V.
The electron content of the ionosphere.

Fal'kovich, S. E.
The potential accuracy in determining the angular coordinates in radar systems.
Radiotekhnika i Elektronika 4, No. 1, 142-144 (Jan. 1959).
(In Russian). Translation in Radio Engineering and Electronics.

Falnes, P.
Radio direction-finding at Norwegian Coastal Radio Stations.
(In Norwegian).

Design of height diversity UHF direction finders.
Tele-Tech 15, No. 6, 90-92, 193-197, 200-203 (June 1956).

Applying the Doppler effect to direction finder design.
I and II.
Electronic Ind. 16, No. 1, 75-77, 147 (Jan. 1957); 16, No. 2, 66-67, 124-128 (Feb. 1957).

Farmer, J. C., and M. F. Whitney
A survey of data handling for air traffic control.

Fejer, J. A.
The interaction of pulsed radiowaves in the ionosphere.
Fejer, J. A.
Scattering of radio waves by an ionized gas in thermal equilibrium.

Fielding, C. C., and J. G. Gibbs
Semi-automatic flight control using extracted radar data.

Fink, C.
The directional coupler antenna.

Fischer, H. J.
Operational range problems for active and passive location methods.

Fitzgerald, R. T., H. C. Brown, and M. D. Reed
Radio collision-avoidance systems for aircraft.

Foldes, P., and S. G. Komlos
Theoretical and experimental study of wide-band paraboloid antenna with central-reflector feed.

Forbes, G. R.
An endfire array continuously proximity-coupled to a two-wire line.

Franklin, R. G., and D. L. Birx
A study of natural electromagnetic phenomena for space navigation.
Freres, C. H.
Observations of arrival angles of meteor burst signals at 46.6 Mc/s.

Fricke, H.
Goniometer measuring arrangements for high frequencies.

Fricke, H.
Frequency-independent measurement of complex quotients with the Goniometer.
Elektrotech. Z. (A) 81, No. 12, 422-427 (June 6, 1960). (In German).

Fulton, B., O. Sandoz, and E. Warren
The lower frequency limits for F-layer radio propagation.

Gabler, H., G. Gresky, and M. Wachtler
The analysis of radio navigational bearings when rotary fields arise.

Gabler, H., and M. Wachtler
A new method for determining the components of direction-finding signals from coherent waves.

Galejs, J.
Space-to-ground transmission beyond the line-of-sight distance.
IRE Trans. on Space Electronics and Telemetry SET-5, No. 4, 179-185 (Dec. 1959).
Gardner, F. F.

Gehrels, E.

George, S. F., and A. S. Zamanakos

Germany, WWII Research

Gershman, B. N., V. L. Ginzburg, and N. G. Denisov

Gething, P. J. D.
Influence of ionospheric conditions on the accuracy of high frequency direction finding. J. Research NBS 65D (Radio Prop.), No. 3, 225-228 (May-June 1961).
Gibbons, J. J., B. Ramachandra Rao
Calculation of group indices and group heights at low frequencies.

Gibbons, J. J., and A. H. Waynick
The normal D region of the ionosphere.

Gillmann, H.
Optimum utilization of the P. P. I. radar display using a transmission system with frequency compression.

Goddard, E. G.
Sferics monitoring system.

Goddard, B. R., A. Watkinson, and B. Y. Mills
An interferometer for the measurement of radio source sizes.

Golay, M. J. E.
The application of radio interferometry to extra-terrestrial metrology.

Goldstein, H., and B. Cutler
The AN/MSN-3: An automatic ground-controlled approach system.

Golton, E.
Skip-distance ray focussing in the ionosphere.
Radiation from slot arrays on cones.

The design and capabilities of an ionospheric radar probe.

Great Britain, WWII Research 46-C, D, N
I. E. E. Journal, 93, pt. IIIA, Nos. 5-10, 1946 is the continuation of the above.

Great Britain, WWII Research 47-C, D

Great Britain, WWII Research 47-C, D, N

Great Britain, WWII Research 47-S, B, P
R. L. Smith-Rose, Radio propagation research in the Department of Scientific and Industrial Research during the years 1937-46.

The scattering of 36 Mc/s radio waves by weak auroral ionization.
J. Atmospheric and Terrest. Phys. 18, Nos. 2/3 174-180 (June 1960).
Gregory, J. B.
Ionospheric reflections from heights below the E region.

Gregory, J. B.
The relation of forward scattering of very high frequency
radio waves to partial reflection of medium frequency waves
at vertical incidence.

Gregory, J. B.
Medium frequency observations of the lower ionosphere
during sudden disturbances.

Greif, R., and F. R. Huber
Transmitting, receiving and DF antennas for air-traffic
control in the ranges 100-156 Mc/s and 235-470 Mc/s.

Grierson, J. K.
The design criteria of a common aerial system for
simultaneous transmission and reception of VHF signals.

Grineva, K. I.
Surface-wave aerial with a tilting beam.
Translation in Radio Engineering.

Groginsky, H. L.
Position estimation using only multiple simultaneous range
measurements.
IRE Trans. Aeronaut. Navigational Electronics ANE-6,

The effect of inhomogeneities in the ground on direction
finding equipment readings.
Grosskopf, J., and K. Vogt
The polarization direction finder.

Gudmandsen, P.
Propagation of radiowaves beyond the horizon.

Guier, W. H., and G. C. Weiffenbach
A satellite doppler navigation system.

Gusev, V. D.
Some problems concerning the scattering of radio waves in the ionosphere.

Structure and motion of large inhomogeneities in the F2 layer of the ionosphere.

Hagfors, T.
Investigation of the scattering of radio waves at metric wavelengths in the lower ionosphere.

Hagfors, T., and B. Landmark
Main physical problems in connection with ionospheric scatter transmission.

Hagfors, T., and B. Landmark
The background signal in ionospheric scatter transmission.
Hagfors, T., and B. Landmark
Simultaneous variation of amplitude and phase of Gaussian noise, with applications to ionospheric forward-scatter signals.

Hagn, G. H., D. L. Nielson, and F. H. Smith
Backscatter literature survey (includes about 400 titles and abstracts). Published by Stanford Research Institute (Project No. 3311) Menlo Park, California in June 1961.

Haigh, J. D.
Radiolocation techniques (including direction finding).

Hajos, Z.
Phasemeter for 0.1 to 6 Mc/s.
Slaboproudy Obzor. 21, No. 3, 140-144 (Mar. 1960).
(In Slovak).

Hakura, Y.
Polar cap blackout and auroral zone blackout.

Hansen, R. C.
Tables of Taylor distribution for circular aperture antennas.

Hansen, R. C.
Gain limitations of large antennas.
IRE Trans. on Antennas and Propagation AP-8, No. 5, 490-495 (Sept. 1960).

Hansford, R. F. (editor)
Radio aids to civil aviation.
Harang, L., and K. Pedersen 56-P, O
Drift measurements of the E-layer.

Harang, L., and J. Troim 59-P, O, D
Determination of the direction of arrival of auroral echoes.
J. Atmospheric and Terrest. Phys. 13, Nos. 1/2,

Harkin, B. 56-St, D
The expected error of a least squares solution of location
from direction finding equipment.

Harrington, R. F. 60-A, Th
Effect of antenna size on gain, bandwidth and efficiency.
J. Research NBS 64D (Radio Prop.) No. 1, 1-12

Harrington, R. F. 59-P, Th
On scattering by large conducting bodies.
IRE Trans. on Antennas and Propagation PGAP-7, No. 2,

Harrington, R. F. 61-A, Th
Sidelobe reduction by uniform element spacing.
IRE Trans. on Antennas and Propagation AP-9, No. 2,

Harrison, C. W., Jr. 61-A, Th, D
Antenna coupling error in direction finders.
J. Research NBS 65D (Radio Prop.) No. 4, 363-369
(July-Aug. 1961).

Hart, R. G. 60-S, N
A historical survey of radio and radar aids to aircraft navigation.

Hartsfield, W. L. 55-P, O
Observation of distant meteor-trail echoes followed by ground scatter.
Hatch, J. F., and D. W. G. Byatt 58-I, D
Improvements in HF direction finding by automatic time averaging.
Marconi Rev. 21, No. 128, 16-29 (1st qtr. 1958).

Hatch, J. F., and D. W. G. Byatt 59-I, D
Direction finder with automatic readout.

Hayden, E. C. 58-Th, I, D
Some basic problems in the determination of the direction of arrival of radio waves.

Hayden, E. C. 61-I, D
Instrumentation for propagation and direction-finding measurements.

Hayden, E. C. 61-P, O, D
Propagation studies using direction finding techniques.

Polarization fading over an oblique incidence path.

Hefley, G., R. H. Doherty, and R. F. Linfield 61-I, D
Initial results of a new technique for investigating sferic activity.

Hefley, G., R. F. Linfield, and T. L. Davis 61-I, D
The Ephi system for VLF direction finding.
Heisler, L. H., and J. D. Whitehead 60-P, O
F-region traveling disturbances and sporadic-E ionization.

Hemphill, A. A. 55-I, D
A magnetic radiocompass antenna having zero drag.
IRE Trans. on Aeronaut. Navigational Electronics
ANE-2, No. 4, 17-22 (Dec. 1955).

Hennies, S. R., and J. V. N. Granger 60-R, I
Broad-band frequency-scanning radar system.

Heritage, J. L., S. Weisbrod, and W. J. Fay 60-P, O
IRE Trans. on Antennas and Propagation AP-8, No. 1,

Herrinck, P. 59-P
Tides in the F2 ionospheric layer.

Hersch, W. 60-A, Th
The surface-wave aerial.

Hibberd, F. H. 55-P
Ionospheric self interaction of radio waves.
J. Atmospheric and Terrest. Phys. 6, No. 5, 268-279
(1955).

Hinckley, G. L. F. 60-R, N, I
An experimental system for automatic radar target detection
and digital coded plot extraction and transmission.
(Symposium on Data Handling and Display Systems for
Air Traffic Control).

Hines, C. O. 56-P, Th
Electron resonance in ionospheric waves.
Hines, C. O.
Motions in the ionosphere.

Hitchcock, R. J.
Aerial/propagation mismatch.

Hoffman, H., Jr.
Space vehicle electromagnetic communications and tracking.

Hoffman, M.
The utility of the array pattern matrix for linear array computations.
IRE Trans. on Antennas and Propagation AP-9, No. 1, 97-100 (Jan. 1961).

Hoffman, W. C.
A theoretical model for HF backscatter from the sea surface via the ionosphere.

Hoffman, W. C., editor
Statistical methods in radio wave propagation.

Hoffman, W. C.
Some statistical methods of potential value in radiowave propagation investigations.

Hoffman, W. C.
A possible mechanism for radiation and reflection from ionized gas clouds.
Honey, R. C. 59-A, Th, I
A flush-mounted leaky-wave antenna with predictable patterns.

Hopkins, H. G. 56-I, D
Direction finding plotting aid.
Wireless Engr. 33, No. 7, 173-175 (July 1956).

Hopkins, H. G. 60-N, I, D
Direction-finding experience and the performance of transmitting navigational aids.

Hopkins, H. G., and B. G. Pressey 58-I, D
Current direction-finding practice.

Horner, F. 57-P, O, D
Very-low frequency propagation and direction-finding.

Horner, F. 58-P, O
Polarization of atmospherics.
Nature 181, No. 4624, 1678-1679 (June 14, 1958).

Hougardy, H. H., and N. Yaru 58-A, D
Annular slot direction finding antenna.

Howard, D. D. 59-R, Th
Radar target angular scintillation in tracking and guidance systems based on echo signal phase front-distortion.

Hu, M. K., and Y. Y. Hu 59-A, Th
Successive variational approximation of impedance parameters in a coupled antenna system.
Hu, Y. Y.
A method of determining phase centers and its application
to electromagnetic horns.

Hulst, D.
Inverse ionosphere.

Hultqvist, B., and L. Liszka
Some characteristics of a swept frequency interferometer
for 35-65 Mc/s.
Annual Summary Report No. 1, Contract No. AF 61(514)
1314, Task 1, Kiruna Geophysical Observatory, Sweden,

Humby, A. M.
Equatorial sunset effect.

Huttley, N. A.
Use of tetrachoric cross-correlation in hypotheses
concerning auto correlated fading signals.
Statistical Methods in Radio Wave Propagation, 154-175,

Iden, F. W.
Glide-slope antenna arrays for use under adverse siting
conditions.
IRE Trans. on Aeronaut. Navigational Electronics **ANE-6**,
No. 2, 100-111 (June 1959).

Ierukhimovich, Iu. A. (See Erukhimovitch, Yu. A.)

Ignatov, V. S.
Instrumental errors of a differential phase shifter.
Translation in Radio Engineering.
Illinois, University of

Illinois, University of

Illinois, University of

Illinois, University of (Bailey, A. D., J. D. Dyson, et al

Ingalls, R. P., and M. L. Stone

International Symposium on Fluid Mechanics in the Ionosphere.

Ionescu, T. V.
I.R.E. standards on navigation aids.
Direction finder measurements, 1959.

Isbell, D. E.
Log periodic dipole arrays.

Ishimaru, A.
Aperture antenna synthesis and integral equations.

Ishimaru, A., and G. Held
Analysis and synthesis of radiation patterns from circular apertures.

Jackson, W. E.
Improvements on the instrument landing system.

Jacobson, M. J.
Analysis of a multiple receiver correlation system.

Jacobson, M. J.
Correlation with similar uniform collinear arrays.

Jahn, R.
Investigation of technical application of cylindrical surface wave aerials as radar aerials.
Nachrichtentechnik 9, No. 9, 418-426 (Sept. 1959). (In German).

Jancel, R., and T. Kahan
Analysis of the coupling of ordinary and extraordinary electromagnetic waves in a Lorentzian plasma and its application to the ionosphere.
Jancel, R., and T. Kahan 55-P, Th
Theory of coupling of ordinary and extraordinary waves in an inhomogeneous and anisotropic plasma and the conditions of reflection. Application to the ionosphere.

Japan, WWII Research 46-S, B, P

Jeffers, C. L., and S. W. Kershner 60-A, I
Design and performance measurements on a new anti-fade antenna for radio station WOAI.

Johler, J. R. 61-P, Th
Magneto-ionic propagation phenomena in low- and very-low-radio-frequency waves reflected by the ionosphere.

Johler, J. R., and L. C. Walters 59-P, Th
Propagation of a ground wave pulse around a finitely conducting spherical earth from a damped sinusoidal source current.

Johnson, C. M. 59-A, I, D
Bandwidth of ferrite phase shifters for phased array and direction-finding use.

Joint Technical Advisory Committee. 60-S
Jolliffe, S. A. W. 59-N, I, D
The place of VHF direction finders in air traffic control.
I and II,
Brit. Commun. and Electronics 6, No. 4, 270-275; No. 5,

Jolliffe, S. A. W. 59-I, D.
Some factors in the design of VHF automatic direction finders.

Jolliffe, S. A. W. 59-I, D
Operational applications of VHF direction finders.

Jones, J. P., P. E. Taylor, and C. W. Morrow 60-A, Th, B
Design techniques for a light weight high power spiral antenna.

Jones, R. E. 55-M
Ionosphere research.
Pennsylvania State College, Ionosphere Research Lab.,
Contract AF 19 (122-124, Final Report, March 25, 1949 -

Jones, W. B., and R. M. Gallet 60-P, Th
Ionospheric mapping by numerical methods.

Junker, W. E. 59-A, I
Design for dielectric lens.
Electronic Ind. 18, No. 11, 70-72 (Nov. 1959).

Kabanov, N. I. 60-S, P, O
Long-range short-wave scatter reflections from the ground.
(In Russian). Translation in Radio Engineering and
Electronics.
Kahan, T.

On the electrodynamics of turbulent ionized media.

Kahan, T.

Ionospheric turbulence and the propagation of electromagnetic waves.
Nuovo Cimento Suppl. (Ser. 10) 4, No. 4, 1352-1358 (1956). (In French).

Kahn, W. D.

Determination of corrections to Mark II minitrack station coordinates from artificial satellite observations.

Kaiser, J. A.

The archimedean two-wire spiral antenna.

Kallmann, H. K.

A study of the structure of the ionosphere.

Kallmann, H. K.

A new model of the atmosphere and ionosphere.

Kanaya, S., and K. Ueno

Propagation mechanism of high frequency waves related to the annular eclipse of April 19, 1958.

Karples, M., and E. G. Parker

An improved instrument low approach system compatible with TACAN.
Kasuya, I. 55-I, D

Kato, S. 57-P, Th
Horizontal wind systems in the ionospheric E region deduced from the dynamic theory of the geomagnetic q variation. Parts II and IV. J. Geom-Geoel 8, No. 1, 24-37 (1956); 9, No. 2, 107-115 (1957).

Kattner, G., and W. Rohrbeck 60-I, D

Katx, I., and L. M. Spetner 60-R, Th

Katzin, M. 57-P, Th

Katzin, M., M. Pezzner, B. Y. C. Koo, et al 60-P, O
The trade-wind inversion as a transoceanic duct. J. Research NBS 64D (Radio Prop.) No. 3, 247-253 (May-June 1960).

Kauvzor, R. 59-N, I

Kazantsev, A. N. 57-S, P, B
Kear, F. G., and S. W. Kershner 60-A, I
Determining the operational patterns of directional TV antennas.

Keen, R. 47-Te, D

The use of impulse response in electromagnetic scattering problems.

Kennedy, P. A. 56-A, O
Loop antenna measurements.

Khastgir, S. R. 58-P, O
Abnormal polarization of the atmospheric pulses reflected successively from the ionosphere.

Khastgir, S. R., and R. N. Singh 60-P, O
The size of the moving irregularities in the F-region and the spread angle of the radio waves scattered from them.

Kieburtz, R. B., A. Ishimaru, and G. Held 60-P, Th
The variational method for evaluation of scattering of electromagnetic waves by obstacles, I. Theory.

Kift, F. 58-P, O
Single hop propagation of radio waves to a distance of 5300 km.
Kift, F. 60-P, Th, O
The propagation of high-frequency radio waves to long distances.

Unequally-spaced, broad-band antenna.
IRE Trans. on Antennas and Propagation AP-8, No. 4,
380-383 (July 1960).

King, J. W. 58-P, O
The fading of radiowaves reflected at oblique incidence.

Kirkscether, E. J. 60-P, O
Ground constant measurements using a section of balanced
two-wire transmission line.
IRE Trans. on Antennas and Propagation AP-8, No. 3,
307-312 (May 1960).

Kitchen, F. A. 58-P, O, D
Direction finding observations on the 20 Mc/s transmission
from the artificial earth satellites.

Klauder, J. R. 60-R, Th, l
The design of radar signals having both high range resolutions
and high velocity resolution.

The theory and design of chirp radars.

Klauser, H. U. 60-S, A
Radar aerials and scanners.
Scientia Electrica 6, No. 2, 53-74 (June 1960).

Knight, P., and G. D. Monteath 60-A, Th
The power gain of multi-tiered VHF transmitting aerials.
Koch, G. F. 60-S, A
The different statements of Kirchhoff's principle and their application to electromagnetic wave diffraction patterns. I.

Koch, G. F. 60-S, A
The different statements of Kirchhoff's principle and their application to electromagnetic wave diffraction patterns. II.

Kokurin, Yu. L. 59-P, Th, O
Interference between the magneto-ionic components of a signal reflected from the ionosphere.

Komesaroff, M. M., and C. A. Shain 59-P, Th
Refraction of extra-terrestrial radio waves in the ionosphere.
Nature 183, No. 4675, 1584-1585 (June 6, 1959).

Korenberg, E. B. 59-A, Th
On some general properties of directivity of aerials.

Kosikov, K. M. 59-P, O
Oblique-return sounding and problems of radio communication and broadcasting over long distances.

Koster, J. R. 58-P, O
Radio star scintillation at an equatorial station.
Kovalev, V. P.
The measurement of phase differences (a review).

Kraus, J. D., R. T. Nash, and H. C. Ko
Some characteristics of the Ohio State University 360-foot radio telescope.
IRE Trans. on Antennas and Propagation AP-9, No. 1, 4-8 (Jan. 1961).

Ksienski, A.
Synthesis of nonseparable two-dimensional patterns by means of planar arrays.

Ksienski, A.
Equivalence between continuous and discrete radiating arrays.

Kuecken, J. A.
How solar noise calibrates radars.

Kuecken, J. A., and H. L. Pfizenmayer
A low sidelobe interferometer antenna.

Landmark, B. (See AGARDograph)

Lange, F. H.
Trends of development in modern radiolocation: Correlationary radiolocation systems.
Nachrtech Z. 11, No. 1, 2-7 (Jan. 1961). (In German).

Laport, E. A., and A. C. Veldhius
Improved antennas of the rhombic class.
Lawrence, R. S.
An investigation of the perturbations imposed upon radio waves penetrating the ionosphere.

Lawrence, R. S., J. L. Jespersen, and R. C. Lamb
Amplitude and angular scintillations of the radio source Cygnus-A observed at Boulder, Colorado.

Lawrence, R. S., J. L. Jespersen, and R. C. Lamb
Digital methods for the extraction of phase and amplitude information from a modulated signal.

Leadabrand, R. L.
Radar astronomy symposium report.

Leadabrand, R. L., L. Dolphin, and A. M. Peterson

Leichter, M.
Beam pointing errors of long line sources.

Lepechinsky, D.
Ionospheric radio.
Lepechinsky, D.
The magneto ionic theory and its results.

Levine, D.
Better resolution through PPI shading.
Electronic Ind. 18, No. 1, 103-105 (Nov. 1959).

Lewis, E. A., R. B. Harvey, and J. E. Rasmussen
Hyperbolic direction finding with sferics of transatlantic origin.

Linder, I. W.
Resolution characteristics of correlation arrays.

Lindsay, W. J., and D. S. Heim
Design for spinning goniometer automatic direction finding.

Linnes, K. W., W. D. Merrick, and R. Stevens
Ground antenna for space communication systems.
IRE Trans. on Space Electronics and Telemetry SET-6, No. 1, 45-54 (Mar. 1960).

Little, C. G., et al
Radio properties of the auroral ionosphere.
Quarterly Progress Reports Nos. 1-5, 7, 8, Geophysical Institute of the University of Alaska (1958).

Little, C. G., W. M. Rayton, and R. G. Roof
Review of ionospheric effects at VHF and UHF.

Liu, Y. J., and J. O. Campbell
Collision detection without range data.
Electronics 32, No. 30, 60-63 (July 24, 1959).
Lo, Y. T.
On the beam deviation factor of a parabolic reflector.

Loh, S. C.
The radiation characteristics of a sinuate antenna.

Longuet-Higgins, M. S.
The statistical analysis of a random, moving surface.

Longuet-Higgins, M. S.
Statistical properties of an isotropic random surface.

Lutz, S. G., F. A. Losee, and A. W. Ladd
Pulse phase-change signaling in the presence of ionospheric multi-path distortion.

Lux, P. A., H. M. Swarm, and D. D. McNelis
Determination of the optimum antenna pattern for a signal burst communication system.

Lyon, G. F.
The association of visible auroral forms with radar echoes.

Lyons, J. R., Jr.
Analyzing multipath delay in communications studies.
McCann, E., and H. H. Hibbs
Electrically small DF antenna.

McCracken, L. G.
Ray theory vs. normal mode theory in wave propagation problems.
IRE Trans. on Antennas and Propagation AP-5, No. 1, 137-140 (1957).

McCue, C. G.
HF direction finding observations on a transmitter of adjustable beam direction.

McCue, C. G.
High-frequency back-scatter observations at Salisbury, South Australia.

MacDonald, F. C., and A. Shapiro
Statistical analysis equipment for propagation research.

McKinley, D. W. R., and A. G. McNamara
Meteoric echoes observed simultaneously by back scatter and forward scatter.

McLeish, C. W.
Recording techniques for HF direction finding.

McLeish, C. W.
Measurements of coastal deviation of high-frequency radio waves.

McLeish, C. W., and R. S. Rogers
An investigation of high-frequency direction finding errors caused by nearby vertical reradiators.
A new antenna to eliminate ground wave interference in ionospheric sounding experiments.

MacMillan, R. S., W. V. T. Rusch, and R. M. Golden 60-A, I
A VHF antenna for investigating the ionosphere with horizontally polarized radio waves.

McNamara, A. G. 60-R, P, St
An analysis of some statistical properties of auroral radar reflections and their relationships to the detection capabilities of the radar.

Madden, R. 59-R, Th
The indeterminacy of measurements performed by radar equipment.

Madden, R. 60-R, Th
The indeterminacies of measurements using pulses of coherent electromagnetic energy.

Maeda, K., S. Kato, and T. Tsuda 59-P, Th
A theory of ionospheric radio wave scattering under the influences of ion production and recombination.

Maeda, K., and T. Sato 59-P, St
The F region during magnetic storms.

Maenhout, A. 57-O, D
Azimuth distribution of sferics received at Dourbes on kilometer waves.
Ciel et Terre, Brussels 73, Nos. 11/12, 499-505 (Nov. -Dec. 1957). (In French).
Mambo, M.
On difference of f_0F2 between June and December viewed from a world wide standpoint.

Manasse, R.
Maximum angular accuracy of tracking a radio star by lobe comparison.

Manning, L. A.
Survey of the literature of the ionosphere.
Stanford University Radio Propagation Laboratory,
650 pp. About 1400 abstracts arranged alphabetically by author. AD 75 477.

Manning, L. A.

Marcou, R. J., W. Pfister, and J. C. Ulwick
Ray-tracing technique in a horizontally stratified ionosphere using vector representation.

Mariani, F.
The world wide distribution of the F2 layer electron density.
Seasonal and non-seasonal variations and correlations with solar activity.

Markham, A. S.
Radio-compass testing with small shielded enclosures.
IRE Trans. on Aeronaut. Navigational Electronics ANE-6, No. 1, 4-8 (Mar. 1959).

Martin, E. J., Jr.
Radiation fields of circular loop antennas by a direct integration process.
Martyn, D. F.
The normal F region of the ionosphere.

Mattes, A.
Principles and characteristics of the long-base direction-finder.

Mattingly, R. L.
Non-reciprocal radar antennas.

Mattson, R. H., and S. H. Liu
Switching VHF power with silicon diodes.
Electronics 32, No. 25, 58-59 (June 19, 1959).

Meadows, R. W., and A. J. G. Moorat
The effect of the earth's magnetic field on absorption for a single hop ionospheric path.

Menzel, D. H., J. G. Wolbach, and H. Glazer
The E layer of the ionosphere. I. Physical theory. II. Statistical analysis.

Mercier, R. P.
The propagation of fading waves.
Phil. Mag. (Eighth Ser.) 4, 763-776 (June 1959).

Meyer, E., and P. Schnupp
Model experiments on electromagnetic reflected beam direction finding (radar) using ultrasonic waves (sonar).

Mezger, P. G.
Measurement on large parabolic mirrors at microwaves with radio-astronomical aids.
Middleton, D.
An introduction to statistical communication theory.

Miles, M. W.
Radio interferometers track airborne vehicles.
Electronic Ind. 17, No. 10, 94-95, 151-153 (Oct. 1958).

Millington, G.
The use of a horizontal dipole as a direction finding aerial.
Marconi Rev. 19, No. 122 (3rd qtr. 1956).

Millman, G. H.
Atmospheric effects on VHF and UHF propagation.

Minkovich, B. M.
The problem of quasi-optimum linear co-phased antennas with continuous current distribution.

Minnis, C. M.
The interpretation of changes in the E and F1 layer during solar eclipses.

Mitra, A. P.
Nighttime ionization in the lower ionosphere. I. Recombination processes. II. Distribution of electrons and positive and negative ions.

Mitra, S. K.
The upper atmosphere.
The Asiatic Society, Calcutta, 2nd ed. (Preface 1952) 713 pp., figs., tables, bibliog.
Mitra, S. N.
Solar eclipse of 30th June 1954 and its effect upon the ionosphere.
Indian J. Phys. 31, No. 6, 309-323 (June 1957).

Miya, K., M. Ishikawa, and S. Kanaya
On the bearing of ionospheric radio waves.

Miya, K., and S. Kanaya
On the lateral deviation of radio waves coming from Europe.

Miya, K., and M. Kawai
Propagation of long-distance high frequency signals.

Miya, K., and S. Matsushita
Recording type direction finder.

Miya, K., T. Sasaki, M. Ishikawa, and S. Matsushita
Direct vision type direction finder for high frequency.

Miya, K., T. Sasaki, and M. Ishikawa
Angles of arrival of a very-high-frequency signal in ionospheric forward propagation.

Miya, K., T. Sasaki, and M. Ishikawa
Observation of F-layer and sporadic-E scatter at VHF in the far east.

Miya, K., Y. Taguchi, and S. Tabuchi
Radio observations of the earth satellite 1957 alpha.
Montani, A.
Calculating the pattern for side-looking radar.
Electronic Ind. 18, No. 11, 94-95 (Nov. 1959).

Monteath, G. D., D. J. Whythe, and K. W. T. Hughes
A method of amplitude and phase measurement in the VHF-UHF band.

Montevecchi, V.
The reflected ray in radio links over sea or smooth plane earth.
(In Italian).

Moody, A. B.
Navigation using signals from high-altitude satellites.

Morgan, M. G.
A review of VHF ionospheric propagation.

Morgan, M. G.
A review of VHF ionospheric propagation.
Proc. I.R.E. 43, No. 6, p. 752 (June 1955) (Ltr. only).

Morris, D. W., and C. J. Hughes
Phase characteristics of radio signals received via the ionosphere.

Morris, D. W., and G. Mitchell
A multiple-direction universally-steerable aerial system for HF operation.

Muldrew, D. B.
An ionospheric ray-tracing technique and its application to a problem in long-distance radio propagation.
Mullally, R. F. 54-P, I
Graphical construction for ray tracing in the ionosphere.

Mullard 61-I
Non-linear effects in rotating coil P.P.I. displays.

Muller, H. G. 60-I
Methods of measurement in radioastronomy.

Muller, K. E., and G. Martin 60-A, Th, I
Common aerials.

Munro, G. H. 58-P, O
Travelling ionospheric disturbances in the F region.

Munro, G. H., and L. H. Heisler 56-P, O
Divergence of radio rays in the ionosphere.

Murty, Y. S. N., and S. R. Khastgir 60-P, Th, O
Polarization parameters of the downcoming radio wave.

Musil, J., and L. Obruca 60-A, Th, R
Design of a special-shape aerial for scanning radar.
Slaboprouduly Obzor. 21, No. 8, 484-490 (1960). (In Czech.).

Myers, J. J. 60-A, I
Antenna image quality evaluation. I. By an optical
simulation method.
IRE Trans. on Antennas and Propagation AP-8, No. 1,

Myers, J. J. 60-A, I
Antenna image quality evaluation. II. By a mechanical
observer.
IRE Trans. on Antennas and Propagation AP-8, No. 1,
Nakagami, M.
The m-distribution - A general formula of intensity distribution of rapid fading.

Neff, H. P., and J. D. Tillman
An electronically scanned circular antenna array.

Neubauer, F. R.
Methods for observation of solar radio emission.

Newman, M. M., J. R. Stahmann, and J. D. Robb
ADF interference blanker development
IRE Trans. on Aeronaut. Navigational Electronics ANE-5,
No. 2, 86-91 (June 1958).

Nielson, D., G. Hagn, L. Rorden, and N. Clark
An investigation of the backscatter of high-frequency radio waves from land, sea water, and ice.

Nilsson, N. J.
An application of the theory of games to radar reception problems.

Nomura, Y., S. Katanoi, Y. Echizenya, et al
Characteristics of F2 layer multiple reflections

The probability distribution of the amplitude of a constant vector plus a Rayleigh distributed vector.
Nupen, W.

Nupen, W.
Bibliography on meteoric radio wave propagation.

Obayashi, T.
A possibility of the long distance H.F. propagation along the exospheric field-aligned ionizations.

Obayashi, T.
A possibility of the long distance H.F. propagation along the exospheric field-aligned ionizations.

Ohio State University
Techniques for echo area determination.
Contract AF 33 (616) 5398, Antenna Laboratory, The Ohio State University Research Foundation, Columbus, Ohio (1 Feb. 1959). AD 211 860.

O'Kelley, H. E.
Tracking radar for Tiros weather satellite.
Electronics 33, No. 16, 57-60 (Apr. 15, 1960).

Omori, T.
Calculation of path difference between the direct wave and the wave reflected by a spherical earth.
Orsak, L. E., and D. W. Martin
Direction finding at low frequencies.

Ortner, J.
A study of transpolar high-frequency propagation.

Ortner, J., and A. Egeland
Extraordinary propagation conditions for ultrashort waves.

Ortwein, N. R.
An annotated bibliography of literature pertinent to tropospheric scatter propagation, 1945-1957.

Osetrov, B. I.
Some problems relating to the return-inclined sounding of the ionosphere.
Radiotekhnika 13, No. 12, 3-10 (Dec. 1958). English translation in Radio Engineering

Arctic propagation studies at tropospheric and ionospheric modes of propagation.

Palmer, D. S.
The effects of errors on the polar digram of a slot array.

Pappas, C. F., L. E. Vogler, and P. L. Rice
Graphical determination of radio ray bending in an exponential atmosphere.
Parthasarathy, R., R. P. Basler, and R. N. DeWitt
A new method for studying the auroral ionosphere using earth satellites.

Peaks, W.H.
Theory of radar return from terrain.
material published as Report 694-12, Contract AF 33 (616)
Antenna Laboratory, Ohio State University Research
Foundation, Columbus, Ohio (30 Apr. 1959). AD 216 416.

Peat, D.
An improved missile aerial stabilization system.
Brit. Commun. and Electronics 6, No. 12, 854-855
(Dec. 1959).

Peresada, V. P.
Application of Kotel'Nikov's theorem to the theory of aerials.
Translation in Radio Engineering.

Peresada, V. P.
Calculation of the radiation pattern of an aerial with a
non-plane wave incident upon it.
Translation in Radio Engineering.

Pennsylvania State College, Ionosphere Research Lab.
Survey of the literature of the ionosphere pertaining to
long waves.
Contract AF 19 (122) 44, Basic ionospheric research.

Peterson, A. M.
Ionospheric back scatter.

Peterson, A. M., R. D. Egan, and D. S. Pratt
The IGY three-frequency backscatter sounder.
Phillips, C. C., Sr.
A new approach to antenna beam shaping - the "coke-bottle" antenna.

Physical Society of London
Physics of the ionosphere: report of the Physical Society Conference on the physics of the ionosphere, held at Cavendish Laboratory, Cambridge, Sept. 1954.

Picinbono, B.
Modifications of the directivity due to the limiting of signals.

Measurement of ionospheric absorption

Pineo, V. C.
Off-path propagation at VHF.

Pitteway, M. L. V.
The reflection of radio waves from a stratified ionosphere modified by weak irregularities.

Poeverlein, H.
Field strength near the skip distance.
AD 59 400

Poeverlein, H.
Low-frequency reflection in the ionosphere. I and II.
Poeverlein, H.
Low and very low frequency propagation, AFCRC-TR-60-106.

Pohlmann, W., and R. Ehrmanntraut
A contribution to the definition of the bearing sensitivity of automatic visual direction finders.

Poincelot, P.
Reflection of a plane electromagnetic wave from an ionized medium.

Poincelot, P.
Reflection of radio signals from the ionosphere.
Ann. Telecommun. 11, No. 4, 70-80 (1956). (In French).

Poincelot, P.
Influence of collisions on ionospheric reflection.

Poincelot, P.
On ionospheric reflection in the presence of collision.

Poincelot, P.
Propagation of a plane electromagnetic wave across an ionospheric layer.
Academie des Sciences, Comptes Rendus 244, No. 25, 3045-3047 (June 1957). (In French).

Poincelot, P.
Influence of absorption on the reflection coefficient of the ionosphere.
Pokorny, F.
An automatic aircraft VHF direction finder.

Polk, C.
Transient behavior of aperture antennas.

Potter, N. S.
The optimization of astronautical vehicle detection systems through the application of search theory.

Powell, F. D.
An automatic landing system.

Pressey, B. G., G. E. Ashwell, and R. Roberts
Further studies of the deviation of low-and medium-frequency ground waves at a coast line.

Preston, G. W.
The search efficiency of the probability ratio sequential search radar.

Price, O. R., and R. F. Hyneman
Distribution functions for monopulse antenna difference patterns.

Proshkin, E. G., and B. L. Kashcheev
Investigation of the non-homogeneous structure of the F layer of the ionosphere.
Proshkin, E. G., and B. L. Kashcheev 57-P, 0
On the question of the fluctuations of electron concentration
in the F layer of the ionosphere.

Prosin, A. V. 60-P, Th
Cross distortion in multichannel FM links due to scattered
VHF propagation.
Translation in Radio Engineering.

Raburn, L. E. 60-A, Th, I
The calculation of reflector antenna polarized radiation.
IRE Trans. on Antennas and Propagation AP-8, No. 1,

Ranzi, I. 58-P, O
Backscatter ionospheric sounding experiments.

Ranzi, I. 61-P, O
Experiments on backscatter of HF radiowaves from open
and coastal sea.
Centro Radioeletrico Sperimentale "G. Marconi", Rome,

Ranzi, I. 61-P, O
Backscatter of HF radio waves from coastal and
continental ground reliefs.
Centro Radioeletrico Sperimentale "G. Marconi", Rome
Italy., Scientific Note No. 4, 6 pp. (Apr. 15, 1961).

Ranzi, I., and A. Porreca 58-P, O
The determination of skip distances by backscatter sounding.
(In Italian). English translation pp. 300-305.
Ramachandra-Rao, B., and E. Bhagiratha Rao 58-P, O
Horizontal ionospheric drifts in the F2 region at equatorial latitudes.

Ramachandra-Rao, B., and D. Murty Satyanarayana 58-P, I
A new continuous wave radio method for the study of ionospheric drifts.

Ramachandra-Rao, B., and M. Srirama Rao 58-P, O
Investigations of horizontal drifts in the E region of the ionosphere in relation to random fading of radio waves.

Ramachandra-Rao, B., and M. Srirama Rao 58-P, O
Investigation of magneto-ionic fading in oblique incidence medium-wave transmission.

Rastogi, R. G. 59-P
Magnetic control on the variations of the critical frequency of the F2 layer of the ionosphere.

Ratcliffe, J. A. 56-P, Th
Some aspects of diffraction theory and their application to the ionosphere.

Ratcliffe, J. A. 56-P
The information of the ionospheric layers F1 and F2.
J. Atmospheric and Terrest. Phys. 8, No. 4, 260-269 (1956).

Ratcliffe, J. A. 59-Te
The magneto-ionic theory and its application to the ionosphere.
Bibliography pp. 193-201.
Ratcliffe, J. A., editor
Physics of the upper atmosphere.

Rawer, K.
The ionosphere: its significance for geophysics and radio communications. Translated by Ludwig Katz.

Rawer, K.
The intensity of the so-called Pedersen ray.

Rawer, K.
The occultation of paths: an important phenomenon in ionospheric propagation.

Raytheon
Final Report on propagation equipment evaluation.
RADC-TR-56-49.

Read, R. B.
Two-element interferometer for accurate position determinations at 960 Mc.

Rehahn, J. P.
Techniques of radio-direction finders.

Rice, S. O.
Distribution of the duration of fades in radio-transmission. Gaussian noise model.
Rindfleisch, H. 56-I, D
The large scale (gross basis) direction-finder 'Wullenwever'.

Robieux, J. 59-A, P, Th
General laws of linkage between wave radiators. Application
to surface waves and propagation. I.

Robieux, J. 60-A, Th, I
General laws of linkage between wave radiators. Application
to surface waves and propagation. II.

Robieux, J. 60-A, P, Th
The general laws of connection between wave radiators.
Application to surface waves and to propagation. III.
(In French).

Robinson, B. J. 59-P, O
Experimental investigations of the ionospheric E-layer.

Roloff, H. A. 60-A, I
Telemetry receiving antennas at Cape Canaveral.

Ronchi, L., V. Russo, and G. Toraldo di Francia 61-A, Th
Stepped cylindrical antennas for radio astronomy.
IRE Trans. on Antennas and Propagation AP-9, No. 1,

Rosenfeld, A., and O. Lowenschuss 60-R, I
Scanning methods for satellite-borne radars.

Rosenthal, A. S. 59-I
Electronic surveying.
Ross, W. 49-S, P, D
Lateral deviation of radio waves reflected at the ionosphere.
RRB Special Report No. 19).

Ross, W., and F. Horner 52-S, I, D
The siting of direction finding stations.

Rotman, W., and A. Maestri 60-I
An electromechanically scannable trough waveguide array.

Rubin, A. I., J. P. Landauer, and H. Q. Totten 59-A, Th
Far field antenna pattern calculations by means of a
general purpose analog computer.

Rumi, G. C. 57-R, O
VHF radar echoes associated with atmospheric phenomena.

Ryle, M., and A. Hewish 60-A, Th, I
The synthesis of large radio telescopes.

Ryzhkov, Ye. V., A. I. Bukhterin, et al 59-I
A panoramic, automatic ionosphere station.

Salpeter, E. E. 60-P, Th
Scattering of radio waves by electrons above the ionosphere.
J. Geophys. Research 65, No. 6, 1851-1852 (June 1960).

Sandler, S. S. 60-A, Th
Some equivalences between equally and unequally spaced
arrays.
IRE Trans. on Antennas and Propagation AP-8, No. 5,
496-500 (Sept. 1960).
Sandretto, P. C.
Principles of electronic navigation systems.
IRE Trans. on Aeronaut. Navigational Electronics ANE-6, No. 4, 221-228 (Dec. 1959).

Sandretto, P. C.
Electronic navigation engineering.

Sato, T.
Disturbances in the ionosphere F2 region associated with geomagnetic storms. I. Equatorial zone. II. Middle latitudes. III. Auroral latitudes.
J. Geom-Geoel. 1. 8, No. 4, 129-135 (1956); II. 9, No. 1, 1-22 (1957); III. 9, No. 2, 94-106 (1957).

Scanlan, M. J. B.
Some measurements on radar aerials, using stellar noise.

Schmucker, G.
The Telefunken short-wave visual direction finder.

Schumann, W. O.
Influence of the earth's horizontal magnetic field on electric waves between the earth and ionosphere which run obliquely to the magnetic meridian.

Schunemann, R., and G. Pucher
Signal strength and fading of 10 CM waves as a function of aerial azimuth.

Schutloffel, E.
Considerations and electrical measurements in the design of the aerial at the Stockert Radio-Observatory.
Telefunken Ztg. 32, 93-98 (July 1959). (In German).
Investigation of rapid fading of radio signals at medium distances along the earth's surface.
Translation in Radio Engineering and Electronics.

Sen, A. K.
Studies on a rhombic antenna with cylindrical helices as the arms.

Sengupta, D. L.
On the phase velocity of wave propagation along an infinite yagi structure.

Sengupta, D. L.
On uniform and linearly tapered long Yagi antennas.
IRE Trans. on Antennas and Propagation AP-8, No. 1, 11-17 (Jan. 1960).

Senior, T. B. A.
Radio propagation over a discontinuity in the earth's electrical properties. I, II.

Shanks, H. E.
A new technique for electronic scanning.

Shapiro, M. L.
Interference from the ionosphere.
Electronic Ind. 18, No. 3, 76-78 (Mar. 1959).

Sharp, E. D.
A triangular arrangement of planar array elements that reduces the number needed.
Sharples, R. W.

Sharples, R. W.
A method of providing test signals of calculable strength for airborne radio direction finders.

Shearman, E. D. R.
Study of ionospheric propagation by means of ground backscatter.

Shearman, E. D. R.
The technique of ionospheric investigation using ground backscatter.

Shearman, E. D. R.
An investigation of the usefulness of backscatter sounding in the operation of H. F. broadcast services.

Shearman, E. D. R., and J. Harwood
Sporadic-E as observed by backscatter techniques in the United Kingdom.

Shearman, E. D. R., and L. T. J. Martin
Backscatter ionospheric sounder.
Wireless Engr. 33, 190-201 (Aug. 1956).

Shelton, J. P., and K. S. Kelleher
Multiple beams from linear arrays.

Shelton, P.
Application of frequency scan to circular arrays.
Shibata, H.
On the worldwide distribution of foF2.

Shimazaki, T.
The characteristics of the F2 regions as deduced from the
daily variations in the ionospheric layer.

Shimazaki, T.
Effect of the S current system on the ionospheric E and
F1 regions.

Shimazaki, T.
Dynamical structure of the ionosphere F2 layer.

Shimazaki, T.
Non-Chapmanlike variations in the ionospheric E and F1
layers. Effect of the S current system II.

Shimazaki, T.
A theoretical study of the dynamical structure of the
ionosphere.

Shmoys, J.
Long-range propagation of low-frequency radio waves
between the earth and the ionosphere.

Silberstein, R.
(Comments on) O. G. Villard, Jr., Stein and Yeh: Studies
of transequatorial ionospheric propagation by the scatter-
sounding method.
Silberstein, R.

Silberstein, R.

Silberstein, R.

Silleni, S.

Silverman, R. A.

Silverman, R. A.

Singh, B. N., and R. L. Ram

Singh, B. N., and R. L. Ram

Singh, R. N., and Y. S. N. Murty
Sinno, K. 55-P
Studies in the disturbances in F2 layer associated with geomagnetic disturbances.

Sinno, K. 56-P
On radio propagation disturbances.

Skolnik, M. I. 60-R, Th
Theoretical accuracy of radar measurements.

Smith, C. E. 51-Te, D
Theory and design of directional antenna systems.

Smith, E. K., Jr. 57-S
Worldwide occurrence of sporadic-E.

Smith, N. J., and P. F. Heggs 60-R, I
A cathode-ray-labelled plan display.
Mar. 1960, 4 pp. To be republished in 107B (1960)
(Symposium on Data Handling and Display Systems for Air Traffic Control).

Smith, N. J., and B. W. Oakley 60-R, I
Methods of extracting radar data for automatic processing.
Mar. 1960. (Symposium on Data Handling and Display Systems for Air Traffic Control). To be republished in
107B (1960).

Smith-Rose, R. L. 59-P
Long-distance propagation.
Smyth, J. B.
Space analysis of radio signals.

Sofaer, E.
Phase-coherent back-scatter of radio waves at the surface of the sea.

Sollenberger, T. E.
Multipath phase errors in CW-FM tracking systems.

Southworth, M. P.
Night-time equatorial propagation at 50 Mc/s: First results from an I. G. Y. amateur observing program.

Srivastava, S. S., and B. K. Gupta
Super refraction in South Arabian Sea.

Stanner, W.
The phenomenon of pulsation in direction finding.

Staras, H., and A. D. Wheelon
Theoretical research on tropospheric scatter propagation in the USA (1954-1957).

Stark, L.
A helical line scatter for beam steering a linear array.

Stegen, R. J.
Gain of Tchebycheff arrays.
IRE Trans. on Antennas and Propagation AP-8, No. 6, 629-631 (Nov. 1960).
Stein, S.
The role of ionospheric layer tilts in long-range HF radio propagation.

Stein, S.
The role of F-layer tilts in detection of auroral ionization.

Steiner, F.
Wide-base doppler very-high-frequency direction finder.

Steiner, F., and H. Stittgen
On the reduction of multipath direction finding errors by long base line systems.

Stevens, R. T.
Precision phasemeter for CW or pulsed UHF.

Stokes, H. S.
Improved localizer antennas for ILS systems.

Sueta, T.
A study on antennae for millimetre-wave grating spectrometer.

Sugar, G. R.
Some fading characteristics of regular VHF ionospheric propagation.

Swarup, G., and K. S. Yang
Interferometer phasing problems at microwave frequencies.
Swarup, G., and K. S. Yang
Phase adjustment of large antennas.

Swenson, G. W., Jr., and Y. T. Lo
The University of Illinois radio telescope.

Swerling, P.
Probability of detection for fluctuating targets.

Szyszkiewicz, J.
Schemes for detection of weak radar signals.
(In Polish with summary in English).

Tandberg-Hanssen, E.
Variations in the height of ionospheric layers during magnetic storms.

Tang, R.
A slot with variable coupling and its application to a linear array.

Tantry, B. A. P., and R. S. Srivastava
Polarization of atmospheric pulses due to successive reflections from the ionosphere.

Tao, K., K. Sawaju, and M. Yamaoka
Experiments of long distance ionospheric propagation on VHF.
Tarasenko, F. P.
The comparison of methods of radar reception from the point of view of information theory.

Tartakovskii, L. B.
The synthesis of a linear radiator and its analogy in the problem of wideband matching.

Tatarskii, V. I.
On the fluctuations in amplitude and phase of a wave propagating in a weakly inhomogeneous atmosphere.

Tatz, A., and F. H. Battle, Jr.
New glide-slope concepts for instrument landing guidance.

Taylor, T. T.
Design of circular apertures for narrow beamwidth and low sidelobes. (See also Hansen, R. C.).

Taylor, W. L.
VLF attenuation for east-west and west-east daytime propagation using atmospherics.

Taylor, W. L.
Daytime attenuation rates in the very low frequency band using atmospherics.
Thayer, G. D. 61-P, Th
A formula for radio ray refraction in an exponential atmosphere.

Thiessen, P. 59-A, St, O
The height-gain function of band IV receiving aerials using horizontal polarization.

Automatic recording of the direction of arrival of radio waves reflected from the ionosphere.

A highly directive rotating array for 16 Mc/s.

A survey of the present knowledge of sporadic-E ionization.

Thomas, M. C., Jr., H. B. Janes, and A. W. Kirkpatrick 60-P, O
An analysis of time variations in tropospheric refractive index and apparent radio path length.

Tischer, F. J. 60-N, P
Propagation-doppler effects in space communications.

Titheridge, J. E. 58-P, D
Variations in the direction of arrival of HF radio waves.

Titheridge, J. E. 59-P, Th
Ray paths in the ionosphere. Approximate calculations in the presence of the earth's magnetic field.
Tolstov, V. V.
Horizontal movements in the F layer of the ionosphere.
Radiotekhnika i Elektronika, No. 6, 760-763 (June 1958).
Translation in Radio Engineering and Electronics.

Toman, K.
The minimum-range equation and the maximum doppler-frequency shift for satellites.

Travers, D. N.
Spacing error analysis of the eight-element two-phase Adcock direction finder.

Travers, D. N.
The effect of the mutual impedance on the spacing error of an eight-element Adcock.

Travers, D. N., and W. M. Sherrill
Direction finding in a two-component field.
IRE Trans. on Antennas and Propagation AP-8, No. 5, 520-521 (Sept. 1960).

Trentini, G. v.
Guided wave structures for end-fire arrays.
(In German).

Trentini, G. v.
Plane aerial with periodically bent (zig-zag) conductor.
(In German).

Troost, A.
A new visual-indicating marine direction finder (Telegon 3).
Telefunken Ztg. 29, 109-116 (1956).
(In German).
Troost, A.
The physical properties of various cathode ray direction finders for short waves.
Telefunken Ztg. 31, No. 120, 84-89 (1958). (In German).

Tsuda, T.
The motion of irregularities in the ionosphere.

Tsunoda, K.
New type of Watson-watt direction finder simplified by applying automatic control.

Tveten, L. H.
Ionospheric motions observed with high-frequency backscatter sounders.

Twersky, V.
On a new scattering formalism for the macroscopic electromagnetic parameters.

Twersky, V.
United States, WWII Research

United States, WWII Research

United States, WWII Research

Keith Henney, Editor, Radiation Laboratory Series Indexes, Massachusetts Institute of Technology, Radiation Laboratory, 160 pp. (1953).

URSI National Committee

U.S. Army. Forces in the Pacific

Report on Japanese research on radio wave propagation Tokyo, General Headquarters, U.S. Army Forces, Pacific Office of the Chief Signal Officer, 2 v., (1946); v. 1, 177+ pp.; v. 2, 133+ pp. figs., tables.
U.S. National Bureau of Standards
Ionospheric radio propagation. Circular No. 462.
(June 25, 1948). Numerous figs., refs., and eqs.

U.S. Office of Scientific Research and Development
National Defense Research Committee.
Direction finder and antenna research, Washington, 1946.
Summary Technical Report of Division 13, NDRC, v. 1
292 pp., 122 refs.

U.S.S.R., WWII Research
See Dolukhanov, M. P.
and Kazantsev, A. N.

Unz, H.
Linear arrays with arbitrarily distributed elements.
IRE Trans. on Antennas and Propagation AP-8, No. 2,

Urkowitz, H.
Delay-line secondary responses in A.M. and F.M. sweep
integrators.

Utlaut, W. F.
Factors affecting radio propagation in the TV and FM bands.

Utlaut, W. F.
Effect of antenna radiation angles upon HF radio signals
propagated over long distances.
J. Research NBS 65D (Radio Prop.) No. 2, 167-174

Uyeda, H., T. Kitsunezaki, and Y. Arima
Divergence factors of the wave reflected from the surface
of the ionosphere.
Vainshtein, L. A. 59-R, Th

Vainshtein, L. A. 59-P, Th, I

van Handel, P. F., and F. Hoehndorf 59-N, R

Valster, F. 61-A, I, R

Valverde, J. F. 58-P, O

Vassy, E. 59-N, P, Th

Veitsel, V. A. 57-P, D
Verma, J. K. D., and R. Roy
Polarization of the echoes from the ionosphere.

Villard, O. G., Jr., S. Stein, and K. C. Yeh
Studies of transequatorial ionospheric propagation by the scatter-sounding method.

Vitkevitch, V. V.
A new system of modulated radio reception of weak signals and its application to the creation of an ultra-high resolving power radio telescope.

Vitkevitch, V. V.
An investigation of ionospheric inhomogeneities by radio-astronomic methods.

Vitkevitch, V. V., and Y. L. Kokurin
Irregular radiowave refraction and extensive discontinuities in the ionosphere.

Vitkevitch, V. V., and Y. L. Kokurin
Measurement of phase and amplitude fluctuations of radio waves which have traversed the ionosphere.

Vogelman, J. H.
Propagation and communications problems in space.

Von Aulock, W. H.
Properties of phased arrays.
Wait, J. R.
Downcoming radio waves, measurement of characteristics.

Wait, J. R.
Transmission of power in radio engineering.
Electronic and Radio Engineer 36, No. 4, 146-147 (Apr. 1959).

Wait, J. R.
A survey and bibliography of recent research in the propagation of VLF radio waves.

Wait, J. R.
Mode theory and the propagation of E. L. F. (extremely low frequency) radio waves.

Wait, J. R.
A new approach to the mode theory of VLF propagation.

Wait, J. R., and J. Householder
Pattern synthesis for slotted-cylinder antennas.

Wait, J. R., and K. Spies
Influence of earth curvature and the terrestrial magnetic field on VLF propagation.
Wall, R. A.
 Radar jamming chart.

Walter, C. M., J. Atkin, and H. Bickel
 Comparative evaluation of several azimuth estimating
 procedures using digital processing and search radar
 simulation.
 IRE Trans. on Aeronaut. Navigational Electronics ANE-5,
 No. 4, 199-210 (Dec. 1958).

Warwick, J. W., and H. Zirin
 Diurnal absorption in the D-region.
 J. Atmospheric and Terrest. Phys. 11, Nos. 3/4,
 187-191 (1957)

Waterman, A. T., Jr.
 Some generalized scattering relationships in transhorizon
 propagation.

Waterman, A. T., Jr.
 A rapid beam-swinging experiment in transhorizon
 propagation.
 IRE Trans. on Antennas and Propagation AP-6, No. 4,

Waterman, A. T., Jr.
 Transhorizon measurement techniques.
 Statistical Methods in Wave Propagation, 212-219,

Watts, J. M.
 Direction findings on whistlers.
 J. Geophys. Research 64, No. 11, 2029-2030 (Nov. 1959).

Waynick, A. H.
 The present state of knowledge concerning the lower
 ionosphere. (Ionosphere Research Lab., Pennsylvania
 State University).
Waynick, A. H. 58-M
Ionospheric research.

Webb, H. D., and R. L. Sydnor 56-I,D
A method for the transformation of automatic bearing indications to Watson-Watt bearing indications.
Illinois University, Dept. of Electrical Engineering, 8 pp. (1956).

Weisbrod, S., and L. J. Anderson 59-P,Th
Simple methods for computing tropospheric and ionospheric refractive effects on radio waves.

Weisbrod, S., and L. Colin 59-P,Th
Refraction of VHF radio signals at ionospheric heights.

Weisbrod, S., and L. Colin 60-P,Th
Refraction of VHF signals at ionospheric heights.

Welch, P. D. 56-B
A bibliographic outline of work performed on the Sandia Corporation's terrain return program under Sandia Purchase Orders EL-586, EL-2167, EL-1451, 54-3052. AER Report 20-A, Sandia Corp. Report SCR-216, Physical Science Lab., New Mexico College of Agriculture & Mechanical Arts (10 July 1956).

Wells, H. W. 57-P,O
Large-scale movements of the layers.
Whale, H. A. 55-P, O
Widespread diurnal variations of effective slope of the ionosphere.
Nature 175, No. 4445, 77-78 (Jan. 8, 1955).

Whale, H. A. 56-P, O
Effective tilts of the ionosphere at places about 1000 km apart.

Whale, H. A. 59-P, O, D
The effects of ionospheric irregularities and the auroral zone on the bearings of short-wave radio signals.

Some relations between the bearing and amplitude of a fading radio wave.

Whale, H. A., and W. J. Ross 56-I, D
An automatic direction finder for recording rapid fluctuations of the bearing of short radio waves.

Wheelon, A. D. 57-P, Th
Radio frequency and scattering angle dependence of ionospheric scatter propagation at VHF.

Wheelon, A. D. 60-P, Th
Relation of turbulence theory to ionospheric scatter propagation experiments.
J. Research NBS 64D (Radio Prop.) No. 4, 301-309 (July-Aug. 1960).

Whitehead, J. D. 56-P
The focussing of short radio waves reflected from the ionosphere.
J. Atmospheric and Terrest. Phys. 9, Nos. 5/6, 269-275 (1956).
Whitehead, J. D.
Focussing of radio waves reflected from a rough curved ionosphere.

Widdel, H. U.
Observations on back-scatter echoes in long-distance short-wave transmission.
(In German).

Wieder, B.
Some results of a sweep-frequency propagation experiment over an 1150 km east-west path.

Wild, J. P., and J. A. Roberts
The spectrum of radio-star scintillations and the nature of irregularities in the ionosphere.
J. Atmospheric and Terrest. Phys. 8, Nos. 1/2, 55-75 (Jan.-June 1956).

Wild, J. P., and J. A. Roberts
Regions of the ionosphere responsible for radio star scintillations.

Wilkins, A. F.
H.F. propagation - its present and future use for communication purposes.

Wilkins, A. F., and C. M. Minnis
Arrival angle of HF waves.

Wilkins, A. F., and E. D. R. Shearman
Back scatter sounding: an aid to radio propagation studies.

Williams, C.
Future trends of radio and radar navigation.
Wilson, A. C., and H. V. Cottony
Radiation patterns of finite-size corner-reflector antennas.
IRE Trans. on Antennas and Propagation AP-8,

Wolfe, J. L.
Satellite tracking by H.F. direction finder.

Wolfe, J. L.
Measurements of the last few periods of Sputnik III by a radio direction finder.

Wolfram, R. T.
An examination of backscatter propagation between Bozemann, Montana, and Palo Alto, California.

Wolfram, R. T.
Improved communications using ground-scatter propagation.
Electronics 33, No. 44, 74-78 (Oct. 18, 1960).

Wright, R. W., J. R. Koster, and N. J. Skinner
Spread F-layer echoes and radio-star scintillations.
J. Atmospheric and Terrest. Phys. 8, Nos. 4/5, 240-246 (Jan.-June 1956).

Yaffee, M. S., W. R. Smith, and J. B. Skully
Mobile radar pinpoints enemy mortar positions.

Yakovlev, O. I., and V. I. Bocharov
On the back scattering of short radio waves.
Yeh, K. C., and G. W. Swenson, Jr. 59-P, O
The scintillation of radio signals from satellites.

Yeh, K. C., and O. G. Villard, Jr. 60-P, O
Fading and attenuation of HF radio waves propagated over long paths crossing the auroral, temperate and equatorial zones.

Yerg, D. G. 59-P, Th
An analysis of drifts of the signal pattern associated with ionospheric reflections.

Yonezawa, T., H. Takahashi, and Y. Arima 59-P, Th
A theoretical consideration of the electron and ion density distributions in the lower portion of the F region.

Zhevakin, S. A., and V. M. Fain 56-P, Th
The theory of nonlinear effects in the ionosphere.

Ziehm, G. 55-N, I, D
Explanation of the difficulty of direction finding with short-and boundary-waves on board ship.
Frequenz 9, No. 9, 310-318 (Sept. 1955). (In German).

Ziehm, G. 55-A, I, D
Ferrite aerials for goniometer direction finders.

Ziehm, G. 57-A, I
The current distribution on vertical cylindrical reflectors.
Ziehm, G. 57-I, D
Symmetry requirements for cables in two-channel direction finder installations.
Frequenz 11, No. 9, 287-294 (Sept. 1957). (In German).

Ziehm, G. 58-I
Balanced phase capacitive goniometer.
Frequenz 12, No. 9, 293-299 (Sept. 1958). (In German).

Ziehm, G. 60-P, Th, D
Reception and direction-finding using electromagnetic waves in sea water.
Telefunken Ztg. 33, 141-150 (June 1960). (In German).

Zinke, O., and H. Brunswig 59-I
High frequency measuring apparatus.

Zinke, O., and H. Brunswig 59-I
High frequency measuring techniques.
THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Office of Weights and Measures.

BOULDER, COLO.

CENTRAL RADIO PROPAGATION LABORATORY

RADIO STANDARDS LABORATORY

