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1. Introduction

The telerobot control system architecture discussed in [ALBUS87] describes a hierarchi-

cal framework that has been used to control complex robot systems. It decomposes plans

both spatially and temporally to meet system objectives. It monitors the environment with

system sensors and maintains the status of system variables in order to control system re-

sources.

The control system is composed of three parallel systems that cooperate to perform teler-

obot control (fig. 1). The task decomposition system breaks down objectives into simpler

subtasks to control physical devices. The world model supplies information and analyzes

data using support modules. It also maintains an internal model of the state of the environ-

ment in the global data system. The sensory processing system monitors and analyzes sen-

sory information from multiple sources in order to recognize objects, detect events and filter

and integrate information. The world model uses this information to maintain the system's

best estimate of the past, current, and possible future states of the world.

Each device or sensor of the telerobot has a support process in each of the three columns

of the control system, as shown in figure 2. For example, the task decomposition functions

associated with planning the actions for processing camera data reside in the task decompo-

sition hierarchy; the world modeling functions for supporting those plans reside in the world

model hierarchy, and the image processing techniques required for executing those plans re-

side in the sensory processing hierarchy. The modules can be logically configured according

to their function in the system, as shown in figure 3. The system pictured consists of two

main branches; the left branch contains the perception processes and the right branch con-

tains the manipulation processes. The perception branch of the tree supports processes

which provide sensory feedback to the manipulator system such as cameras, range sensors,

tactile array sensors, acoustic devices, etc. The manipulator branch of the tree supports pro-

cesses which are responsible for planning and executing manipulator trajectories. The two

branches decompose tasks in most cases independentiy and communicate via the global data

system.

The world modeling support modules communicate asynchronously with the task decom-

position and sensory processing systems. Data flows bidirectionally between adjacent lev-

els within any given hierarchy. The interfaces to the sensory processing system allow it to

operate in a combination of bottom-up (data driven) and a top-down (model driven) modes.

Bottom-up processing involves the extraction of knowledge from sensory data, and top-

down processing is used to correlate predicted information from the world model with ex-

tracted information from the environment. The interfaces between the sensory processing

system and the world model allow updated information to be sent to the world model and pre-

dicted information or sensory processing parameters to be sent to the sensory processing

system.

This document describes the interfaces and functionality of Level 1 of the perception

branch for a camera that is part of a telerobotic control system. This level corresponds to

the one highlighted in figure 3. Processing is performed on individual pixels. Level 1 gathers

raw information (readings) from each camera, filters the information, and, when applicable,

enhances it. It then extracts edge points, surface patches, and information relevant to the op-
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tical flow of pixels. Section 2 discusses the general architecture of a computational level of

the system and defines the functions and the interfaces of the task decomposition, world

model, and sensory processing modules. Section 3 describes the functions and interfaces

specific to Level 1 processing for a camera. Section 4 provides an example of the interactions

between modules in performing a typical telerobotic task. Appendix A describes preprocess-

ing algorithms that can be applied at Level 1. Appendix B describes edge point extraction al-

gorithms, surface patch or region extraction algorithms, and the first level of optical flow ex-

traction algorithms.

2. General System Architecture

Before describing the functionality of Level 1 of the perception system, a description of

the general structure of a computational level is presented. Each level consists of a task de-

composition module, a world model support module, and a sensory processing module (fig.

4). The task decomposition module bases its decisions on information extracted by the sen-

sory processing module. The sensory processing module is driven by predictions of the state

of the world provided by the world model. The world nKxiel maintains the best estimate of

the past, current and possible future states of the world [ALBUS81].

2.1. Task Decomposition

The task decomposition module consists of three submodules: Job Assignment (JA),

Planner (PL), and Execution (EX). These modules have the same general functions at each

level of the system. The Job Assignment module accepts and queues commands from the

world modeling support module or the operator. The commands are passed to the Planner

module, which analyzes the request and selects the most appropriate sensory processing al-

gorithm for achieving the desired output. The Execution module obtains confidence factors

from the world model, updates and modifies algorithm parameters as required, and passes

this information through the world model to the sensory processing system. In this way, the

evaluation of sensory processing algorithms serves as a learning tool for improving the per-

formance of the algorithm. It is also responsible for activating or deactivating the sensor it-

self.

Each of the three modules execute cyclically to process commands and pass information.

They read inputs, perform computations, and generate outputs independent of the other mod-

ules. This type of processing allows the system to operate quickly and efficiently. It pre-

vents system deadlock that can occur when one process waits indefinitely on another for da-

ta. It also allows the system to respond to new information without being explicitiy com-

manded for updated calculations.

To coordinate the requested commands among modules, the Planner and Execution mod-

ules are directed by one Job Assignment module. The single Job Assignment module inter-

acts with s Planner modules, where s is the number of classes of processing algorithms at a

given level of the system. At Level 1, there are five classes of algorithms: filtering, enhanc-

ing, edge point extraction, surface patch extraction, and optical flow. Each of the Planner

modules communicates with t Execution modules, where t represents the number of algo-

rithms that supply the type of features in the class (fig. 4).
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2.1.1. Job Assignment Module

Within a computational level, the Job Assignment module maintains a queue of commands
received from the world model and the operator. It accepts all incoming commands and assigns

them a position in the queue according to the priority level assigned to the command. The pri-

ority level is based on the requirements of the plan developed by the Planner at the next higher

level. For example, when task decomposition requires information about an object's position,

it activates a pljui to detect the identifying features of that object and to update their positions.

The activation of a plan raises the priority level assigned to the class of algorithms responsi-

ble for extracting the required information.

The use of a queue enables incoming commands to be prioritized as they are received. In

this way, the information needed most immediately is always serviced first, but all information

buffers are updated at specified time intervals. At the completion of execution, the Job Assign-

ment module returns status to the requesting process.

At each level of the hierarchy, the operator interfaces only with the Job Assignment mod-

ule. He/she may request a specific type of output, output from a particular algorithm, or termi-

nation of execution of an active process. He/she may also request a change of parameters for a

specific algorithm or request processing in a special window of interest. The Job Assignment

module writes parameters supplied by the operator into the world model global memory where

they can be read by the Execution module at any level. The operator also specifies the mode of

operation for each command he/she issues: either continuous operation until a "halt process-

ing" command is received or execution for a fixed number of times. In all cases, an operator re-

quest is assigned the highest priority. Output from an operator's command is returned in the

form of graphic displays, ASCII strings, or other easily understandable formats.

2.1.2. Planner Module

The Planner module reads commands from the top of the Job Assignment queue. It distin-

guishes between commands to control hardware and commands which will initiate a sensory

processing algorithm. For the former case, it interprets and passes activation commands to

the Execution module. For the latter case, it determines which algorithm within the general

class of algorithms capable of being performed in the sensory processing module at the given

level is best suited for providing results. Since each class of algorithms contains many meth-

ods of computing the required output (Appendices A and B describe the types of algorithms in-

cluded in the class of filtering, enhancing, and segmentation techniques), the Planner module

acts as a rule based system to choose the most appropriate algorithm for a given situation.

Decisions are based on criteria such as timing requirements, precision requirements, statisti-

cal analysis of sensed information, and knowledge about the environment (lighting conditions,

power constraints, etc.). The world model global memory contains this information, and the

Planner module reads and analyzes it as required. At completion of the command, it returns

status information to the Job Assignment module.

2.1.3. Execution Module

The Execution module receives its commands from the Planner module in the same level of

the hierarchy. It is responsible for issuing commands to control a physical device or sensor or



passing algorithm parameters to sensory processing and activating the sensory processing

system to execute the selected algorithm. When a particular algorithm is chosen for execu-

tion, the Execution module reads the parameters required for its execution from the world

model global memory. The types of parameters stored in the world model include threshold

values, histories of past performance for each algorithm, and sensor model information such

as physical sensor parameters, initial conditions, etc. The Execution module then passes the

algorithm command (or a pointer to the algorithm command) and all parameters needed for

its execution to the world modeling module.

2.2. Sensory Processing

The sensory processing modules of the real-time control system compare incoming data

with predicted information, integrate sensory data over space and time, and determine the

detection of an event. At each level of the hierarchy, this information is used to update the

world model. Each sensory processing module consists of four submodules: comparators,

temporal integrators, a spatial integrator, and a detection threshold (fig. 5). A specific exam-

ple of how these modules interact at a given level is given in section 3.2, where the sensory

processing module at Level 1 is discussed.

' ^ Temporal
Integrator

" Temporal
Integrator

' * Temporal
Integrator

Comparator "Comparator "-^Comparator

Figure 5. Submodules in the Sensory Processing System.



The order of the integrator modules can be reconfigured a priori depending on the algo-

rithm applied. It may be appropriate for a specific application to perform temporal integration

after spatial integration, such as when tracking a centroid of a moving object, or it may be un-

necessary to do either spatial or temporal integration.

2.2.1. Comparator Module

The comparator modules receive input from two sources: the world model and the senso-

ry processing module at the next lower level. The input from the world model is a model of

the expected ou^ut. The input from the level below in the sensory processing hierarchy con-

sists of the results generated by that level. The comparator modules perform algorithm spe-

cific computations using these two inputs to generate values which are passed either to the

temporal integrators or the spatial integrator.

2.2.2. Temporal Integrators

Each temporal integrator combines its inputs over a given time window. The length of

the time interval is supplied by the world model and depends upon factors such as timing and

accuracy requirements. In addition, the window usually covers a shorter interval at lower

levels of the control hierarchy and a longer interval at higher levels. The output from the tem-

poral integrators is passed to both the world model and to the spatial integrator.

2.2.3. Spatial Integrator

The spatial integrator module integrates values over space to produce a single response

value. The range of the spatial integral is supplied by the world model, and the results of the

spatial integration are sent to the model to update confidence factors.

2.2.4. Detection Module

The output from the spatio-temporal integration process is passed to the detection mod-
ule for evaluation or event detection. When the output surpasses a prespecified threshold,

indicating correspondence between observations and the prediction of the world model, event

detection occurs. An event can be defined to be the detection of an edge point, the fit of a

line, or the recognition of an object, depending on the level in the control hierarchy at which

the detection is occurring. The correspondence of a prediction occurs when, for example, a

moving object's centroid is within a small distance fi*om its prediction based on a past cen-

troid measurement and the object's velocity. The results of event detection are passed to

the world model to update global memory.

2.3. World Modeling

World modeling maintains the system's intemal model of the world by continuously up-

dating the model based upon sensory information. It consists of two components: support

processes or functions which simultaneously and asynchronously support sensory process-

ing and task decomposition, and the global data system which is updated by the world mod-

eling support processes. The term world model refers to the two hierarchies of support pro-



cesses together with the global data system. Throughout this document, the tenns world

model, world model support, and global database will be used interchangeably. Any of these

terms implies the combined function of the world modeling Level 1 support module and the

global data system.

2.3.1. World Modeling to Task Decomposition Interfaces

The interface with the world model provides decision-making criteria to the task

decomposition system. It allows the Planner module to access global memory in order to

select the optimal algorithm in a given situation. The Planner uses histories of performance,

timing criteria, lighting conditions, expected range to the object, etc. to choose an algorithm

or to manipulate hardware. This information is stored in the world model database. The

Execution module selects the parameters or initialization conditions required for sensory

processing or it actually executes the control algorithm. These parameters are also stored in

the world model.

2.3.2. World Modeling to Sensory Processing Interfaces

The interfaces from the world model to sensory processing allow sensory processing to

read the algorithm selected by the task decomposition Planner, the parameters selected by

the Execution module, and any additional command parameters, such as integral ranges. The
world model support module analyzes the selected algorithm in order to provide the model

required by the sensory processing comparator. In addition to providing sensory processing

with an algorithm and its parameters, the world model also provides a prediction to the

detection module. The prediction is a range of acceptable values that are used to determine

whether an event has been successfully detected. A threshold value used in edge detection

or a window for the centroid value of a moving object are two examples. The results of the

sensory processing integration and detection processes are sent to the world model where

they are used to update confidence factors and global memory.

3. Level 1 Interfaces and Operation

The following sections describe the functions of the task decomposition module, the sen-

sory processing module, and the world model at Level 1 of the visual perception branch of the

control system. Within the task decomposition system, the Job Assignment module accepts

and queues commands from Level 2 and the human operator. The commands are passed to

Planner modules which plan to activate or deactivate the camera and select the most appro-

priate preprocessing and/or segmentation algorithm. Execution modules are responsible for

sending current to the camera actuators and obtaining algorithm parameters and writing the

command, the selected algorithm, and its parameters into an area of the world memory. The

sensory processing modules read the status of the camera and execute the selected algo-

rithm on any incoming image data.

3.1. Level 1 Task Decomposition Module

Information that resides in the world model global data system is required by the task

decomposition system to guide algorithm selection for the sensory processing system.

10



Figure 6 details the information requirements of Level 1 modules from the world model, from

other processing levels, and from a human operator.

3.1.1. Level 1 Job Assignment Module

The Job Assignment module at Level 1 maintains a prioritized command queue for re-

quests for processed data received from the Level 2 task decomposition module and/or the

operator. A background or default algorithm associated with each class of processing is as-

signed a priority so that it is performed periodically for system reliability and is executed

when no other requests are pressing. Commands received from the operator are always as-

signed highest priority, and the Job Assignment module places these commands at the top of

the queue. In this way, operator commands are always acted upon immediately. When the

Job Assignment module receives status information indicating the completion of an operator

command, it reads the output information from a predefined buffer and displays it in an easi-

ly understandable manner such as a graphic display.

3.1.1.1. Level 2 to Level 1 Job Assignment Module Interface

The Job Assignment module at Level 1 interfaces with Level 2 and an operator. It ac-

cepts requests to control the camera or to choose which operations are perforaied on bright-

ness pixels. All incoming commands are coordinated through this module by prioritizing

them in a single queue. The contents of these commands are described in the following sec-

tions and are detailed in figure 7.

The commands from Level 2 request that either the camera be activated and that prepro-

cessing and/or segmentation be performed on pixel data or that the camera be turned off.

Each command includes some or all of the following information:

Command number

The process desiring data must be able to identify its status. Level 1 associates the con-

dition of a request with its unique command number.

Processing request

Level 2 or the operator request the type of information to be extracted from the data. The
request states which class of information to extract. For example, if edges are needed by

Level 2, the direction sent may specify the need for an edge point image.

Timing requirements

The update rate of results is specified to keep current information supplied to the rest of

the system. The mode may be specified as continuous so that information is processed

without needing to be requested repeatedly. The results may need to be supplied within a

specified amount of time so that other processes may rely on its accuracy. The velocity

and acceleration of the manipulator impacts the amount of time required in locating image

features. High rates of velocity and acceleration of the robot manipulator imply a high up-

date rate.

Precision requirements

The distance between the manipulator and objects in its workspace dictate the amount of

11
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precision necessary when extracting features. As an end effector nears an object it is at-

tempting to grasp, the exact location of that object becomes more crucial.

Priority

Each command is prioritized based on its relative importance to the rest of the system.

The priority is assigned by the requesting process and reflects the global importance of

the command to the rest of the system.

Command timestamp

The command initiation time is used to detennine whether timing requirements are being

met.

Sender Identification

A code identifying the sender of the command accompanies each command.

The Job Assignment module returtis status to the requesting process. This information indi-

cates whether Level 1 modules have completed execution of a request. The variables

passed include:

Job Assignment status

This variable indicates the condition of the queue in the Job Assignment module. The
queue may be full, empty, or accepting commands. Since operator commands are of the

highest priority, the Job Assignment queue always accepts an operator command. In the

event that the queue is full, the lowest priority command already on the queue is aborted.

(An "abort" status is retumed to the requestor.) The queue then accepts the operator's

command.

Planner command number

This value reflects the number of the command that the Planner module is processing.

Planner status

The Planner module notifies other modules whether it is busy executing a command, idle

and waiting for a command, or handling an ertor that has arisen while processing a com-

mand.

Execution command number

The Execution module records which command it is processing.

Execution status

The state of the Execution module's processing is busy or idle.

Estimated termination time

Level 1 reflects the estimated time before results are complete. Level 2 uses this param-

eter when deciding whether to terminate a Level 1 command or to wait until its comple-

tion.
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3.1.1.2. Operator Control to Level 1 Job Assignment Interface

During subsequent execution of a command, errors may arise due to uninterpretable re-

sults. To establish more meaningful results, it is important for an operator to intervene with

alternative commands. The operator modifies output by changing parameters for any given

algorithm or by changing the algorithm to be executed. The operator inputs commands in a

similar manner to those issued from Level 2 (See sec. 3.1.1.1) except that the sender iden-

tification field is declared "operator". Output to the operator appears as images on a monitor

or easily understandable ASCII messages on a terminal.

3.1.1.3. Level 1 Job Assignment to Level 1 Planner Interface

The prioritized algorithm commands are passed from the Job Assignment module to the

Planner module. The request passes the indicated information and is the same as initially

defined in 3.1.1.1 and are shown in figure 8.

Command number

Processing request

Timing requirements

Precision requirements

Priority

Command timestamp.

3.1.2. Level 1 Planner Module

The Planner module in Level 1 reads the highest priority command from the Job Assign-

ment queue. Since there are five general classes of sensory processing performed at Level 1,

there are five Planner modules: one for enhancement processes, one for filtering processes,

one for boundary detection, one for region detection, and one for computation of optical flow.

When an algorithm command is received, the Planner modules choose the specific tech-

nique within the class of algorithms specified by the Job Assignment module most appropri-

ate for the type of data being processed. For example, when the camera Job Assignment

module receives a command to perform a filtering operation, the Planner module chooses the

appropriate filtering algorithm from the class of filtering techniques available in the sensory

processing module based on time constraints, environmental conditions, the form required of

the output, etc. The request for the execution of a specific algorithm is passed to the Execu-

tion module. Status information is returned to the Job Assignment module. Figure 8 explic-

itly shows the information passed to and from the Planner module.

3.1.3. Level 1 Execution Module

The Execution module receives either the request for camera control or the algorithm se-

lected by the Planner module (fig. 9). In the case of algorithm selection, it reads all parame-

ters required for the execution of the particular algorithm from the world model database.

The algorithm name and supporting parameters are passed to the sensory processing mod-
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ule where the actual execution of the algorithm is performed. In addition, the Execution mod-
ule is responsible for activating or deactivating the camera sensor. It acts upon commands
received from the planner module to activate or deactivate the camera at the appropriate

time.

3.2. Level 1 Sensory Processing Module

Sensory processing at Level 1 accepts pixel brightoess values as input and processes

each pixel according to the algorithm chosen by the task decomposition Planner module.

Each pixel is passed through the comparator module, the temporal integrators, the spatial in-

tegrator and the detection module. The pixels can be enhanced or filtered using the algo-

rithms described in Appendix A, or they can be categorized according to their grey level char-

acteristics into edge pixels, surface patch pixels, or pixels of motion. The latter methods are

described in Appendix B. To clarify the type of processing done at Level 1, figure 10 depicts

the functions of the sensory processing modules for labelling pixels as edge or non-edge

points using the Sobel edge detection method (Appendix B8.1.1).

In the comparator module, pixel brighmess value input is received from the camera sen-

sor. Conceptually, there is a dedicated comparator for each pixel in the image array. The pre-

diction supplied by the world model which can consist of the 3 x 3 convolution mask de-

scribed in Appendix B8.1.1, is a model of the feature to be tested at that pixel location. As
shown in figure 10, each input pixel in the image is multiplied by the appropriate element of

the Sobel edge detector mask.

The output generated by the multiplication of the pixel's intensity value and its corre-

sponding value in the Sobel mask is passed to the temporal integrators. The results from an

averaged sequence of pixels at the same location in the image are gathered over a time span

defined in the world model.

The temporally integrated pixels are passed to the spatial integrator. The size of the

spatial window is defined in the world model. The pixels are summed over this window.

Lastly, the results of the spatio-temporal information are evaluated by comparing the re-

sults to a threshold parameter stored in the world model. Pixels which exceed this threshold

value are labelled edge points, while those pixels falling below the threshold are labelled

non-edge points.

3.3. Level 1 World Model

Input to world modeling from Level 1 sensory processing consists of point features

extracted from sensor readings. This information is used to update confidence factors in the

model and in the global map. Point data from the spatial integrator is stored by world

modeling to be further processed by higher level sensory processing modules or to be fused

with data from other sensors. Associated with each reading is a sensor identification

number which includes both the sensor type and the instance of the sensor. For example,

the sensor identification number might specify that the reading is coming from pixel i, j from

camera k. In addition, each sensor reading has an associated timestamp t. Thus, we can

refer to B(i, j, k, t) as the brighmess of pixel i, j from camera k at time t.
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Each Level 1 sensory processing module has a corresponding support module in the

world model. After the Level 1 module processes the data, the world modeling module
accepts the results and transforms it, if necessary, to the coordinate system specified by

task decomposition. The data are then stored in the global data system for use by the task

decomposition module, as well as other world modeling processes.

Input to the world model from task decomposition consists of the specific algorithm

selected by the Planner to be performed in Level 1 sensory processing. The Planner

accesses the world model global memory to select the best algorithm for the situation. The
world model passes its prediction to sensory processing based on the algorithm selected.

For example, if the Planner selects the Sobel edge detection algorithm, the world model

passes the Sobel edge mask (Appendix B8.1.1) as its prediction to sensory processing.

4. A Vision System Application

To clarify the operation of the computational triple at Level 1 for a camera, this section

provides a specific example of system interfaces. Assume that Level 3 initiates a command
for information required for tracking a particular surface of a moving part. Further, assume

that task decomposition has selected a particular instance of a camera and positioned it ap-

propriately. The world model contains information about the object model and an initial pre-

diction of the location of the part. Level 2 is directed to extract the symbolic information re-

quired to define the features of the object surface and their attributes (the centroid of the ob-

ject aspect, the equations of its boundaries, their length and their orientation) by the priority

levels set by the Level 2 Planner. The input it requires for these computations resides in

buffers written by Level 1. Similarly, Level 1 is directed to segment its data in accordance

with priority levels set by its Planner.

The remainder of this section describes in detail the role of the Level 1 processing unit

associated with the particular camera in this example. The sensor plan stored in the world

model generates requests to the sensory processing module in response to the need for up-

dated information. These requests are created by assigning priority levels to the classes of

output produced by Level 1. For the sake of example, we assume that the plan requires an

edge point image 20 times per second and a surface patch image of the same scene 10 times

per second. When these commands are received by the Job Assignment module, they are

prioritized (edge point images will be processed more frequently than surface patch images)

and placed on Uie queue.

The Planner module receives its commands from the top of the Job Assignment queue.

In order to obtain an edge point image, it must decide which algorithm among all the gradient

extraction algorithms residing in the sensory processing module is most likely to provide sat-

isfactory results in this particular situation. The Planner module determines the best algo-

rithm based on a performance history residing in the world model.

The Planner module also considers the update rate required by the plan. The execution

time of each algorithm is known to the system and is stored in a world model parameter. In

addition to timing requirements, the Planner module also must take into account the accuracy

required. For example, when the camera is far from the object being tracked, interior texture

information is not visible, and does not have to be smoothed from the image. However, tex-

ture could be visible in a closer view of the same object and must be removed in order to
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avoid false edge information. Thus different algorithms are used depending on the distance

between the camera and the object, lighting conditions, object surface reflectivity, etc.

The Planner module performs the same type of analysis in choosing an appropriate region

classification routine. Assume that after analyzing all factors, it requests output from a se-

ries of two Sobel edge detection algorithms (Appendix B8.1.1) followed by a thresholded im-

age (Appendix A7.2) for a period of thirty seconds. The Execution module reads any param-

eters that are required by the individual algorithms from the world model global memory ar-

ea. In this example, the edge point algorithm needs a threshold value to suppress low mag-

nitude edges, and the thresholding algorithm needs a parameter for converting grey scale pix-

els to binary pixels.

The Execution module passes the algorithm name and the associated parameters to the

world model. This results in the sensory processing module activating the chosen algorithms

from each class of algorithms: Sobel edge detection from the class of gradient extraction tech-

niques and thresholding from the class of region classification techniques. These algorithms

are cyclically executing processes, and are continuously reading raw camera data. The output

from each algorithm is written into a predefined buffer area where it is available to be read by

the requesting process. The sensory processing module appends a timestamp to the results

based on the system time at which the algorithm was initiated. Status information is sent to

the world model module at the completion of processing.

5. Conclusion

This document has described Level 1 of the perception branch of a realtime control sys-

tem hierarchy. The components and functions of the computational triple of task decomposi-

tion, world modeling, and sensory processing were defined, and the specific functions of each

component were discussed. Interfaces between the modules, including the operator, have

been defined. Appendix A discusses the realtime data enhancement and filtering algorithms

capable of being performed in the sensory processing module. Appendix B discusses gradi-

ent extraction algorithms, surface patch extraction algorithms, and optical flow algorithms.

The concept of grouping these algorithms into classes of algorithms allows the flexibility of

adding or deleting algorithms at any stage of implementation without changing the structure

of the system.

Although specific hardware requirements are not defined in this document, the amount of

array information required to be processed at this level (~64 K bytes of information per im-

age), suggests the use of parallel processing machines for realtime output Many algorithms

implemented at Level 1 operate on image data by using local information in a non-sequential

manner. Because of the large amount of data to be processed and the need to process that

data as close to video rate as possible, most serial computers cannot meet the requirements

of Level 1 processing. Parallel computers have been developed in recent years to specifically

fulfill tiie need of real-time processing of image data [ASPEX87, KENT85, LUMIA85], and

although the machines differ in architectural design and implementation, they share the goal

of being able to process an entire image or a region of an image in real-time.
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7. Appendix A: Preprocessing Techniques

This section discusses preprocessing techniques that are applied in the sensor process-

ing module of Level 1 of the perception hierarchy. The input to these algorithms is consid-

ered to be an individual pixel (image point), and the output is in the form of a processed pix-

el. An image is considered to be the spatial integration of individual pixels in a camera ar-

ray. For convenience, the terms "image" and "data array" are used interchangeably.

A7.1. Array Data Enhancement

Image preprocessing consists of "an application-dependent technique for enhancing pre-

selected features or for removing irrelevant detail" [HALL71]. The effectiveness of data en-

hancement techniques is dependent on the information being analyzed and the environmental

conditions under which that data was generated. The causes of a poor image can be non-op-

timal lighting conditions (either too littie or too much illumination), specularity of the objects

in the scene, inappropriate viewing angle, poorly visible details, noise, etc. Not all of these

problems can be improved with data enhancement techniques (if an important feature is oc-

cluded, no preprocessing technique can make it visible), but many enhancement techniques

exist for improving degradations. This section will discuss methods of filtering, smoothing,

thresholding and enhancing contrast for improving data quality.

The input data to be enhanced consists of rectangular arrays of digitized information. The

size of the array is dependent on the sensor from which the data was read. Individual pixels

are addressed by their row and column position in the array (fig. Al).

The input array can also be a binary image which contains only two values, black and

white. Binary arrays provide useful information when there is a high contrast between the

objects of interest in the scene and the background. Grey scale information can be converted

to binary information by using specialized hardware in the digitizer or by software techniques

which will be described later in this section.
Columns

1 ...

prij^

Row
Row 1

Row i

Figure Al. Pixel Position.
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A7.2. Thresholding

Thresholding of an image is a preprocessing technique that segments a grey level array

into a binary array containing "object" and "background" areas. In order to convert the input

data into a binary representation, a threshold value, T, must be chosen. All grey scale val-

ues in the original array whose intensities are less than T are assigned an output value of

(black), while those whose intensities are greater or equal to T are assigned a value of 255

(white). The effectiveness of this technique is heavily dependent on the scene; it is useful in

situations where there is good contrast between the object of interest and background. It is

not an effective method of segmenting a complex scene or one in which the objects of interest

are specular [WESZK78].

Choosing a value T to use as a threshold value varies among images, and a histogram of

the image is required to choose that value. A histogram is a graph of the frequencies with

which each grey level in the image occurs. In many images, the objects of interest fall in one

rjinge of grey levels while the background falls in another range. By choosing the threshold

between the two peaks, good segmentation results have been obtained [ROSEN82].

A7.3. Contrast Enhancement

Contrast enhancement is a method used to improve the clarity of details in an image. Be-

cause of variable lighting conditions, especially in the environment of the space station, cam-

era data is usually compressed either at the low end of the histogram (dark image) or at the

high end (light image) (fig. A2). Histogram equalization is a technique that stretches high

concentrations of grey levels while compressing less populated grey levels (fig. A3). It cre-

ates a transformation that enhances contrasts and brings out details in poorly contrasted or

heavily shadowed portions of the image. [BALLA82].

Figure A2. Histograms a. Ideal b. Dark c. Light.
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Figure A3. Histogram Equalization.

The result of this transformation is to spread the grey level intensities more evenly

throughout the image, sharpening details. A potential disadvantage of contrast stretching is

that a global property of the image, the histogram, is used to generate a local operation.

Therefore, when there is a large variation in the grey level values of the background, the

equalization transform will tend to stretch the un-interesting ranges [INTEG81].

A7.4. Smoothing

Smoothing data is a preprocessing technique for enhancing the appearance of images by

diminishing the effects of noise. It is a form of spatial integration. Although there are many
benefits to be gained by removing image noise, smoothing tends to blur the original image

and therefore to de-emphasize sharp edges and contours [ROSEN82]. There are many
methods used for smoothing data: neighborhood averaging, edge preserving smoothing, low

pass filtering, shrinking and expanding, pyramiding, etc. [BALLA82, GONZA77, ROS-
EN82]. These methods are discussed in this section.

A7.4.1. Averaging

Averaging is a technique for reducing spurious noise in an image. It can be considered to

be a special case of low-pass spatial filtering (see sec. 3.3.4). Averaging can be done as ei-

ther temporal integration over successive images or as spatial integration in a single image

[ROSEN82]. Processing in the temporal domain is useful when there are multiple instances

of the same scene, i.e. a stationary scene, and where the noise values present in the images

are independent of each other and have a mean value of 0. For example, if there are n images

of a single scene, L , I^, . . . L, each pixel in the averaged output image G is computed as:

G(x,y) =( Ij(x,y) + l2(x,y) + . . . +Ij^(x,y)) / n

The noise values in the input images will be blurred (the degree of blurring depends on the

number of input images averaged) while the objects in the image remain unchanged. Averag-

ing images in a moving environment produces more blur.

Averaging in a single image involves a local operation over neighborhoods in the image.
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A neighborhood of a point is defined as those points surrounding the point (fig. A4).

a b c

d f(x,y) e

f g h

Figure A4. Points in the Neighborhood of Point f(x,y).

For every pixel g(x,y) in the spatially integrated output,

n
g(x,y) = (.Z f:(x,y))/n where

1=1 '

n = the total number of points in the neighborhood of f(x,y)

f-(x,y) = grey level of all points in the eight neighborhood of f(x,y) [GONZA77].

Neighborhood averaging is an effective method of reducing fine-grained noise but, depending

on the size of the neighborhood being averaged, can result in an image where boundaries, as

well as noise, are blurred. Averaging over larger neighborhoods produces greater blurring.

This blurring effect can be reduced by combining the averaging operation with a thresholding

operation. A point which differs by less than a specified threshold T from its averaged neigh-

bors is left unchanged. Thus

if (f(x,y)- (Zf(n,m))/M >T)

g(x,y) = ( Sf(n,m))/M

else

g(x,y) = f(x,y)[GONZA77].

A7.4.2. Edge Preserving Smoothing

Edge preserving smoothing is a technique which performs a local blurring on an image to

suppress noise without blurring any edges that might be present in the image [ROSEN82,
SINGH87]. Noise values are suppressed only at selected points. Implementation of this

scheme is based on detecting edges and determining edge directions in the image and then

performing an averaging operation on only non-edge pixels. This operation can be iterated to

weaken noise without affecting edges.

A7.4.3. Median Filtering

Another smoothing technique which does not blur or smooth edges is median filtering.

Rather than averaging the points in a neighborhood around a point f(x,y), the output value
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g(x,y) is set equal to the median value of the points in the neighborhood. Because edge

points are not weakened by this operation, the operation can be iterated a fixed number of

times to reduce noise values to an acceptable level.

A7.4.4. Low-Pass Filtering

Low-pass filtering is a technique that uses information from the frequency domain to en-

hance information in the spatial domain. In the frequency domain, an image is grouped into

different frequency band widths, each of which contains unique information. The Fourier

Transform maps the spatial domain onto the spatio-firequency domain. It is defined as:

3 [f (x,y)] = Jjf(x,y) exp[-j2n(ux + vy)l dx dy

and its inverse

3'^[F(u,v)] = !j F(u,v) exp[j2n(ux + vy)] du dv where

x,y = image coordinates

u = frequency in the x direction

V = frequency in the y direction

The primary advantage of frequency domain processing is that any arbitrary frequency re-

sponse is easy to implement. Because of the reversibility of the transform, many properties

that are inherent to the frequency domain can be used in the spatial domain which is a more

natural and intuitive representation. In the image representation, local operators can be ap-

plied to the image to attenuate or completely suppress information in all other frequencies

[GONZA77]. Since edges and other sharp transitions contribute heavily to the high frequen-

cy portion of an image's Fourier Transform, the smoothing operation can be performed by at-

tenuating a specified range of high frequency components. A low-pass filter is one which fil-

ters out high frequency information (edges) and passes low frequency information. This re-

sults in a blurred or smoothed image. A Gaussian convolution applied over all points in the

image is an example of a low-pass filter which reduces noise in those parts of an image

where there are no strong edges. A side effect of this operation is that portions of the image

containing a large intensity gradient are also blurred.

A7.4.5. Binary Edge Smoothing

Noise removal in a binary image is a more simple operation than grey scale image

smoothing. Because a thresholded image consists only of objects and background values,

noise can be misinterpreted as "object" and therefore must be removed. One method of

noise removal involves a shrinking and expanding operation [ROSEN82]. The shrinking op-

eration examines the neighborhood of each black point in the image Jind changes its value to

white if any neighbors are white.

For all values n,m in the neighborhood of f(x,y)

if ( f(x,y) == black ) && ( f(n,m) == white ))

g(x,y) = white
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else

g(x,y) = black.

The expanding operation performs the reverse operation:

if ( f(x,y) == white ) && ( f(n,m)== black

)

g(x,y) = black

else

g(x,y) = white.

This process completely removes any noise value that is smaller than two pixels wide, and

the expanding step restores larger objects without restoring the noise.

Framegrabbers that convert grey scale information into binary information often contain

additional hardware that can filter noise in an image as it is being digitized. The removal of

noise and the width of the noise to be suppressed is a user option sent to the framegrabber

when the image is to be read.

A7.4.6. Multi-Resolution Processing

Multi-resolution processing or image pyramids offer additional methods for image en-

hancement. A pyramid is an "image data structure consisting of the same image at several

successively decreasing levels of resolution" [BALLA82]. The image at each level of the

th
pyramid is formed by replacing each neighborhood at the n level of the pyramid with a sin-

gle pixel at the n+1 level (fig. A5). The resultant levels of images, each of which is one

quarter the size of its next lower level, resemble a pyramid (fig. A6).

The multi-resolution method of smoothing an image involves averaging each 2x2 neigh-

borhood of the image at level n and placing the value of the neighborhood average in the level

n-f-1 image. This operation can be repeated for two or three levels of the pyramid. The

smoothed image is restored to full resolution by expanding, i.e. mapping each pixel at level

n+1 into four pixels at level n, and interpolating the results to remove "blocking" effects.

This operation is repeated until the full resolution image is restored

A
A

Level n
Level n+1

Figure A5. Forming Levels of a Pyramid.
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Figure A6. Three Levels of a Pyramid.

A7.5. Sharpening

The purpose of sharpening an image is to emphasize edges or areas of intensity disconti-

nuities. Since the goal of this operation can be considered opposite to that of smoothing, the

techniques involved in sharpening images are theoretically opposite to those used in smooth-

ing: smoothing entails integration and sharpening entails differentiation. Two types of image

sharpening techniques are discussed in this section: differentiation and high-pass filtering.

A7.5.1. Differentiation

The computation of gradients is the most common method of differentiation of an image.

The gradient operation not only extracts the local edges which represent areas in the image

where grey levels are changing rapidly, but also can be used to provide information about the

direction and the magnitude of the rate of increase of intensity at each point on the edge.

This filtering method is described in detail in Appendix B, section Bl.l.

A7.5.2. High-Pass Filtering

The use of high-pass filters is based on the distribution of information in the frequency

domain as computed by the Fourier transform. Edges and other sudden changes in grey level

are associated with high frequency components. Thus image sharpening involves

"attenuating the low frequency components in the Fourier transform without disturbing high

frequency information" [GONZA77], and in effect removing contrast information of the image

while emphasizing edges.

The Laplacian operator (fig. A7) is an example of a high-pass filter applied in the spatial
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domain. The result of convolving an image with the Laplacian mask is that areas of the

Figure A7. Laplacian Operator.

original image containing edge information will map into a bright and a daric edge adjacent to

each other in the filtered image, while low frequency information is mapped into a mid-grey

intensity [ROSEN82].

Unshaip masking is a local technique for sharpening an image by subtracting its Lapla-

cian transfonnation from the original blurred image. This operation emphasizes edges while

preserving the grey level infoimation in the non-edge portions of the image.
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8. Appendix B: Segmentation Techniques

Segmentation of an image occurs in the sensory processing module of Level 1. The im-

age data is broken up into components or features which classify pixels by distinct categories

[JARVIS 84]. The features are extracted from filtered or enhanced images and classify pixels

in an image based on similarities or differences. The classification of data points produces

compressed information; the infomiation reduction process is irreversible [BROWN86]. Two
basic approaches to segmentation accomplish boundary (gradient) extraction and suriface

patch (region) extraction. The goal at this level in the sensory processing system is to oper-

ate directiy on pixel data to measure important spatial or spectral properties in the image.

B8.1. Boundary Extraction

Methods for extracting boundaries in an image rely on detection of discontinuities in in-

tensity. The grey level at an edge changes abruptiy at the border of two adjacent regions. A
local edge operator measures this change detects this change over a small spatial extent us-

ing a mathematical operation. There are basically three main classes of edge operators:

mathematical gradient operators, template matching, or parametric model fitting. These

boundary features take the form of either edges or comers. Comer detection will be dis-

cussed in the Level 2 Perception Processing document. The following sections provide more

detail about these methods.

B8.1.1. Mathematical Gradient Operators

Gradient operators respond strongly to places in an image where the grey level changes

rapidly. Digital approximations made to either the first or second partial derivatives respond

numerically to intensity changes. The first order partial is a directional derivative which en-

ables calculation of magnitude and direction of the change. The second order partial is not

sensitive to direction and also responds to comers as well as edges.

The first order partial derivatives, 5f/5x and 5f/6y, measure the rate of change of a func-

tion f in perpendicular directions. The direction of the rate of change is a linear function given

by:

1^. = l^cose + lysine
ox ox oy

[1]

The direction which has the largest rate of change is :

(B
dir(f) = arctan

Sx

[2]
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and the magnitude of that change is:

''- ^ & * (¥y)

[3]

These continuous operations can be approximated using discrete difference operations. They

measure horizontal and vertical changes in f across a pixel located at (x,y) in the image by:

(A^f)(x,y) = f(x+l, y+1) - f(x,y)

(Ayf)(x,y) = f(x,y+l) - f(x+l,y).

[4]

[5]

Some of the most historical edge operators are numerical masks that are convolved with

the image such as:

1

-1

-1

1

-1 1

-1 1

-1 1

1 1 1

-1 -1 -1

-1 1

-2 2

-1 1

1 2 1

-1 -2 -1

(a) Roberts (b) Prewitt (c) Sobel

Using a 3x3 operator instead of a 2x2 operator enables greater local averaging to reduce

noise. The Sobel operator includes a weighted average to combine the pixel values, which in-

creases the response of sharp edges.

Because these gradient operators measure a response across multiple pixels, the edge

detection process produces responses on both sides of the edges even if the edge is perfectly

sharp. Since edges are usually slightly blurred, the operator generally produces responses

with a thickness of several pixels in the gradient direction. In subsequent applications, it is

often necessary to have one pixel wide edges, so non-maximum suppression is used to elim-

inate multiple responses in the gradient direction. Edge responses are quantized into one of
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eight directions, such as in the figure below:

90

Each of these directions implies checking the edge response in a different direction within a

local neighborhood to see if its gradient is a maximum. For example, an edge whose gradient

direction is 45 degrees is retained if its gradient magnitude is a maximum among itself, its

northeast and its southwest neighbors in an 8-connected neighborhood of pixels.

After passing an image through a bandpass filter at multiple resolutions, described by

Crowley and Parker [CROWL84], a difference of low-pass transform images are formed.

Peaks and rides are detected in the resulting images; a peak corresponds to a local positive

maxima or negative minima in a two dimensional 8-connected neighborhood of pixels, and a

ridge is similarly a maxima or minima in one dimension.

Canny [CANNY86] presents similar measures for good edge detection. He defines de-

tection and localization criteria for edges and derives mathematical forms for these criteria.

In addition, he adds the constraint that the operator must provide a single response across

the width of a single edge. Good detection of a noisy step edge correspond to low probabili-

ties of either failing to mark an existing edge point or falsely marking a non-existent edge

point. This criterion is met by maximizing the signal to noise ratio:

J°f(x)dx

[6]

where A is the amplitude of the input step edge. The localization of the marked edge points

to their true position is given by:

f'(C)A=A
n,«Vn^

[7]

To meet both objectives, the two functions are multiplied together and maximized. The prob-

ability of marking multiple edges is reduced by constraining the distance between adjacent
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maxima in the response. Combining these constraints, the solution becomes:

f(x) = a
I
exp(ax) cos(cox + 9,) + a2 exp(-ax) cos(cox + 62) - —

'

[8]

When the values of the constants are solved for, the solution can be approximated by the

first derivative of a Gaussian function. To expand this solution to two dimensions, a Gaus-

sian is also used to project the direction of two dimensional slope to one dimension. These

two operators are convolved together. Since the edges can be approximated by linear seg-

ments, highly directional operators at several orientations are used. Varying widths of the

operators to cope with varying signal to noise ratios in the image. The results are integrated

into a single description.

The one dimensional edge operator described by Canny provides similar results to the ze-

ro-crossing of the Laplacian operator described by Marr and Hildreth [MARR75]. The La-

placian operator, shown below:

-1 -1 -1

-1 8 -1

-1 -1 -1

2 2 2 2
is a digital approximation to the second partial derivative of 6 f/5x + 6 f/6y in the same

way that the gradient methods discussed previously are approximations to the first partial

derivatives. The Laplacian operator, though, does not provide useful directional information

and doubly enhances the noise in an image. The work by Marr and Hildreth advocates filter-

ing an image using four Gaussians which have different bandpass characteristics. The fil-

tered images are then convolved with the Laplacian operator, and places where changes in

sign occur correspond to edges in the original image.

B8.1.2. Template Matching

In template matching, an edge pattern is centered on each pixel in an image, and the

closeness of their correspondence is measured. Since these templates often represent sec-

ond differences of step edges, the operators are similar to those difference operators in sec-

tion 8.1.1. The Prewitt and Sobel operators can be generalized to eight masks corresponding

to eight edge orientations. The Kirsch operator is related to the edge gradient by:

S(x) = max [1, max J^ \ f(Xj^) - f(x)| ]

[9]

where f(x, ) are the eight surrounding pixels of x. The corresponding masks are shown be-
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low:

5 5 5

-3 -3

-3 -3 -3

-3 -3 -3

-3 -3

5 5 5

5 5 -3

5 -3

-3 -3 -3

-3 -3 -3

-3 5

-3 5 5

5 -3 -3

5 -3

5 -3 -3

-3 -3 5

-3 5

-3 -3 5

-3 -3 -3

5 -3

5 5 -3

-3 5 5

-3 5

-3 -3 -3

In practice, the operator is sensitive to the magnitude of f(x), so that templates with larg-

er spans offer the advantage of being less sensitive to noise. However, larger templates

have difficulty resolving the detail of fine texture. Marr [MARR81] present methods for

choosing the appropriate span. Using these ideas, Nevatia and Babu [NEVAT80] use six

correspondioan Ideal steped

-100 -100 3 100 100

-100 -100 100 100

-100 -100 100 100

-100 -100 [) 100 100

-100 -100 100 100

100 100 100 100 100

-32 78 100 100 100

-100 92 D 92 100

-100 -100 100 -78 32

-100 -100 100 -100 -100

100

100

100

32

-100

100

100

92

-78

-100

100

100

100

100

100

78

-92

-100

-100

100

-32

-100

-100

-100

-100 32 100 100 100

-100 -78 92 100 100

-100 -100 100 100

-100 -100 -92 78 100

-100 -100 -100 -32 100

100 100 100 100 100

100 100 100 100 100

-100 -100 -100 -100 -100

-100 -100 -100 -100 -100

100 100 100 32 -100

100 100 92 -78 -100

100 100 -100 -100

100 78 -92 -100 -100

100 -32 -100 -100 -100

Another template-based method, used by Frei and Chen [FREI771, chooses orthogonal

3x3 masks as a basis for expansion. This expansion yields a space of 3x3 masks with which
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local neighborhoods in the image can be compared. Given these templates, an edge re-

sponse is measured by determining the generalized correlation measure between grey level

values in the template and those in the image window. Define the mean, a, and the variance,

a, in the template as:

+k +k

a = "2 Z Z Pi^
^ l=-k m=-k

[10]

+k +k

a(p) =^2 Z E^Pim - a)^
" l=-k m=-k

[11]

(where p is a pixel in the template at 1, m and the template size is odd or n = 2k+l) and the

mean, p. •, and the variance, a- ., of an n x n window as:

+k +k

l=.k m=-kiO n" ^^ ^^ ^+lo+m

[12]

+k +k

'''%=?
I'. L"^-^- ^^^'
l=-k m=-k

[13]

Then the generalized correlation measure between the image and the template at pixel i,j is:

+k +k

5..=
10

„2 Z SCPi^ - a)(Vi:^^- p..)n i=.k m=-k ^'^ ^+l0+m ^i/

^(p)^(q)i:

[14]

Close correlation between the template and the window indicates an edge of the type depict-

ed in the template.

B8.1.3. Parametric Edge Modeling

Parametric edge models provide more information than the magnitude and direction of the

gradient as discussed for previous edge detection methods. This approach involves expand-

ing the image and the step edge functions in terms of a set of orthogonal basis functions.

Hueckel [HUECK71] proposed analyzing the frequency behavior by observing the zero-
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crossings of the following eight basis functions defined on a disk:

0@®G0®®@
By minimizing the sum of the squared error between the image and the edge model in the cir-

cular neighborhood, measures of the slope of the step edge and the average intensity values

on either side of the step edge can be obtained. Other uses of parametric edge models in-

clude models by Nevatia [NEVAT77] who used a subset of Hueckel's basis functions and

O'Gorman [0'GORM78] and Mero and Vassy [MER075] whose bases were defined on

squares. Parametric edge models determine more about an edge's structure, but they are al-

so more computationally expensive than other methods of edge detection.

B8.2. Region Extraction

The class of segmentation methods which label pixels according to similarities is termed

region or surface patch extraction. These methods can be looked at as the opposite of edge

extraction. Region based methods group pixels which share some intensity based property

and which provide spatial continuity. These variations can occur on a large scale, where the

classification is based on shading, or on a small scale, where the differences are based on

texture.

B8.2.1. Intensity and Color

When viewed objects are uniform in color or intensity, labeling pixels according to these

characteristics is a natural way to segment the image. The classification of images can be

accomplished by labeling pixels based on a number of criteria. One of approach labels pixels

by comparing them to a threshold value and another method of labelling is based on compar-

ing the connectedness of adjacent pixels. Each of these approaches are described in more

detail.

Weszka [WESZK78] describes numerous global, local, and dynamic methods to choose

threshold values. Global threshold values separate peaks of an image's histogram into two

or more categories. However as grey level subpopulations become less distinct, reliable

threshold selection becomes more difficult. Local threshold techniques label each pixel based

on the properties of its surrounding neighbors. These methods are susceptible to minor vari-

ations in intensity but have the advantage of being applied in parallel. A dynamic method,

designed to operate on low quality images, uses the statistical variance in a local neighbor-

hood to select a threshold. The methods described can be used to perform binary or multilev-

el thresholding using grey levels or multispectral images.

B8.2.2. Texture

Textured pattems are regions of uniform brightness that have many intemal edges. Con-

sequently, methods that apply to smooth region extraction (Appendix B8.2.1) cannot be used

to classify pixels in a textured region [ROSEN88]. Texutred regions can be segmented by
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information determined from individual pixels, local features, or larger regions. Measure-

ments can be made on pixels or local features using statistical relationships, which character-

ize the distributions and relations of pixels or regions. The structural methods describe prim-

itives and the patterns used to generate a texture. Both of these classes of methods are de-

scribed in more detail.

Uniformly spaced elements of similar shape in an image produce texture. Both the auto-

correlation function of an image and its Fourier transform measure the spatial frequency that

characterizes a pattern. Autocorrelation indicates how each pixel in an image influences sur-

rounding pixels. It is a linear model that describes the frequency of light transmitted when
the intensity of a pixel is compared to its neighbor. The maxima and minima of this two di-

mensional function indicate the size and separation of the texture primitives that compose

the image. The coarseness of the pattern is indicated by the slope of the central peak in any

given window of the image. The periodicity of the peaks also characterize the frequency of

the texture pattern. The auotocorrelation function is given by:

^m,})i
1.J

[15]

where i and j can lie within a window and A and A represent the shift between a pixel and
X y

its compared neighbor. The autocorrelation function does not provide good discrimination for

natural textures, since coarseness tends to not be distinct.

B8.3. Optical Flow

Optical flow is defined as the motion of object points across an image resulting from the

relative motion between a camera and objects in the scene. It is calculated from local tempo-

ral and spatial variations in sequences of grey level images. The optical flow, or instanta-

neous velocity field, assigns a two dimensional "retinal velocity" to every point in the visual

field. The results of this measurement are used as input for higher level methods which com-

pute camera motion, depth maps, and surface normals.

There are two general classes of methods for extracting optical flow from sequences of

images: gradient based methods and correlation based methods [HONG89]. The first meth-

od uses the spatial and temporal derivatives of pixel brightness; the second tracks features

in small regions of images over time. Level 1 processing includes the gradient method of op-

tical flow extraction. The assumption of gradient based techniques is that pixel intensity in

an image is constant over time, and thus any change in intensity at a point in the image is

due to camera motion The optical flow is defined as (u,v)

:

u = (l/z)(x. v^ -v^f) + a(x. yp/f +p(x.)2/f + pf-7y.

[16]
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v = (l/z)(y.v^ -V f) + P(x. y.)/f +a(y.)^/f+af-7X.

[17]

where (x-,y-x is the position of a point in the image, f is the focal length of the camera,

V = (v ,v ,v ) is the translation velocity of the camera, and a,p,Y represent the rotational

velocity of the camera about the X, Y, and Z axes respectively [HONG89].

The Hom and Schunck optical flow algorithm [HORNS 1] uses the ratio of spatial and

temporal image derivatives described above over two frames of image sequences to measure

pixel velocity normal to the gradient direction. Analysis of the results of their method by

Kearney, et al. [KEAR87] indicate that large errors occur where the image is highly textured

or where motion boundaries exist due to depth discontinuities. In an effort to overcome

these shortcomings, methods have been developed which use a large number of frames sam-

pled closely together in time [DUNC88, WAXM88]. Errors are reduced by extracting the op-

tical flow from the second derivative of the Gaussian temporally smoothed image

[MARR81].

B8.4. Evaluation

Errors are often made when segmenting pixels based on local information as described in

the previous boundary or region methods. One way to improve the reliability of labelling is

by adjusting the measurements made based on measurements of adjacent pixels. This meth-

od detects and corrects local inconsistencies in the pixel labels and is called relaxation.

[DAVIS80]

There are two types of relaxation methods: discrete and fuzzy. A discrete method checks

adjacent label values and may adjust a label's value based on this comparison. Fuzzy label-

ling associates a likelihood value with each label and uses this to determine the appropriate

value.

A relaxation process is specified by two things: a neighborhood model and an interaction

model. The neighborhood model specifies which pairs of pixels contribute to the relaxation

process. The choice of which pixels communicate depends on the goal of segmentation. A di-

rectional neighborhood model may be specified for edge detection, while the positional infor-

mation may not be important in a region extraction method. The interaction model deter-

mines the criteria for changing a pixel's label. Interaction models need to represent the rela-

tionships between labels and the mechanism by which labels are modified. The interactions

can be represented by relational knowledge or by logical statements.
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