
NAT'L INST. OF STAND & TECH

AlllDS Tfl337b
i..MSiiiiiilHiH

NIST

PUBLICATIONS

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

(formerly National Bureau of Standards)

NIST Technical Note 1251

System Description and Design Architecture for

Multiple Autonomous Undersea Vehicles

James S. Alhus

3sns3

Multiple

K Autonomous

NIST ^Undersea
darpaW Vehicles





NIST Technical Note 1251

System Description and Design Architecture for

Multiple Autonomous Undersea Vehicles

James S. Albus

Robot Systems Division

Center for Manufacturing Engineering

National Engineering Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

Sponsored by:

DARPA Defense Advanced Research Projects Agency
Office of Naval Technology

1400 Wilson Blvd.

Arlington, VA 22209-2308

September 1988

NOTE: As of 23 August 1988, the National Bureau of

Standards (NBS) became the National Institute of

Standards and Technology (NIST) when President

Reagan signed into law the Omnibus Trade and

Competitiveness Act

U.S. Department of Commerce
C. William Verity, Secretary

National Institute of Standards and Technology

(formerly National Bureau of Standards)

Ernest Ambler, Director



National Institute of Standards U.S. Government Printing Office For sale by the Superintendent

and Technology Washington: 1988 of Documents,

Technical Note 1251 U.S. Government Printing Office,

Tech. Note 1251 Washington, DC 20402

126 pages (Sept. 1988)

CODEN: NBTNAE



TABLE OF CONTENTS

EXECUTIVE SUMMARY 1

1. Introduction 3

1.1 Objective 3

1.2 Approach 3

1.3 Research Issues 3

2. Demonstration Scenarios 5

2.1 Search and Map (Mine Countermeasures) 5

2.2 Search and Attack (Antisubmarine Warfare) 7
2.3 Simulation/Gaming Environment 7

2.3.1 The Gaming Goals 10

2.3.2 The Gaming Setup 10

2.3.3 Capabilities and Attributes 10

3. Background 12

3.1 The MAUV Vehicles 1

2

3.2 The MAUV Control System 12

3.3 Institutional Participation 12

4. The MAUV Control System Architecture 16

4.1 The Control System Hierarchy 16

4.2 Functional Levels in the MAUV Control Hierarchy 16

4.3 Hierarchical versus Heterarchical (Horizontal)

Organization 23
4.3.1 The Hierarchical Organization of RCS-3 23
4.3.2 Heterarchical (Horizontal) Organization in

RCS-3 25
4.3.3 Global Representation of Data 26
4.3.4 HierarchicalControlof Multiple Vehicles 27

5. Tasks and Plans 28

6. Task Decomposition - H modules (Plan, Execute) 47
6.

1

Planner Manager 47
6.2 Planners 47
6.3 Executors 54

7. World Modeling - M modules (Remember,Estimate, Predict,

Evaluate) 60
7.1 Global Memory 60

7.1.1 Contents of Global Memory 63
7.1.2 Implementation of Common Memory 67

8. Sensory Processing - G modules (Filter, Integrate, Detect,

Measure) 69
8.1 Egospheres 69

ui



9. Implementation of RCS-3 82

10. Operator Interfaces (Control, Observe, Define Goals,

Indicate Objects) 84

10.1 Control Interface Levels 84
10.2 Monitoring Interfaces 84
10.3 Sensory ProcessingAVorld Modeling Interfaces 85

10.4 Programming Interface 85

10.5 Operator Interface Mechanisms 85

1 1

.

Detailed Description of RCS-3 Control Levels forMAU

V

87

11.1 Level 6 - Mission Control Level 87
1 1 .2 Level 5 - Group Control Level 9

1

1 1 .3 Level 4 - Vehicle Task Level 96
1 1.4 Level 3 - Elemental Move (E-Move) 102
11.5 Level 2 - Primitive Level 107
1 1 .6 Level 1 - Servo Level 109

12. Summary and Conclusions 113

12.1 Progress to Date 113

12.2 What Remains To Be Done 114
12.2.1 Control System Development 114
12.2.2 Cooperative Search and Map Demo 1 14

12.2.3 Cooperative Search and Attack Demo 1 14

12.2.4 Advanced Simulator/Gaming Environment 115

12.2.5 Transfer ofMAUV Control System to

MK-30 Vehicle 115

12.2.6 Visual Bottom Following and Mapping 1 15

12.2.7 Real-time 3-D Vision 115

12.3 Transfer ofMAUV Technology 115

13. Acknowledgments 117

References 118

IV



Project MAUV
System Description and

Design Architecture

Executive Summary

The objective of the MAUV project was to demonstrate intelligent cooperative behavior in multiple

autonomous undersea vehicles.

The approach was to build a control system architecture which fully integrates concepts of artificial

intelHgence and game theory with those of modem control theory. The control system was designed to

permit a team of cooperating intelligent vehicles to compete against a team of cooperating intelligent

opponents in a real-time dynamic environment.

Among the significant technologies pursued are:

* Real-time planning, using game theory and value driven logic;

* Dynamic world modeling, using multi-dimensional world maps and a real-time object

oriented database;

* Sensory data fusion, using egosphere representations, real-time model matching, and
stereo/motion integration;

* Multiplayer gaming.

The Real-time Control System (RCS-3) developed for the MAUV project has an open system
architecture. Each module has clearly specified function and I/O interfaces. Data flow and timing are

also specified. As a result, it is easy to integrate software from multiple sources, to upgrade modules,
and add new sensors. RCS-3 is one of a family of open system architectures being developed at the

National Bureau of Standards for automated factories, telerobot manipulators, and unmanned vehicles.

Progress in FY87:

* Two autonomous underwater vehicles were constructed and equipped with a five beam
obstacle avoidance sonar, altitude and depth sonars, an acoustic navigation system,

pressure and temperature sensors, a communications system, a hierarchical control

system, and intelligent software.

* A RCS-3 control system architecture was designed and constructed consisting of six

layers of task decomposition, world modeling, and sensory processing. Functionality

was defined and code written at all six levels. Code at the lowest three levels was
integrated and tested on the vehicles in Lake Winnipesaukee, and code at the highest

level was run in simulation.



* A real-time computer system was designed and constructed consisting of five CPUs per

vehicle. This system uses a commercial real-time operating system with multi-tasking

and multi-processors. The hardware consists of 68020 computer boards, four

megabytes of RAM, and 400 megabytes of mass storage using optical disk technology.

The hardware and operating system are capable of running both C and Lisp

simultaneously with real-time communications between the C and Lisp programs. A
network of 15 SUN computers was procured and assembled into a program
development environment running under UNIX. Two sets of computer hardware were
constructed and integrated into two vehicles. A simulator was developed and installed

to run either on a SUN, on a micro VAX, or on the vehicle hardware.

Plans proposed for FYS 8:

* Fully integrate intelligent software at all six hierarchical levels.

* Design and build a four player gaming environment.

* Demonstrate multiplayer gaming for search and map (mine countermeasures), and
search and attack (antisubmarine warfare) scenarios.

* Demonstrate the system operating on two vehicles in Lake Winnipesaukee.

* Transition the RCS-3 control system to a MK-30 target vehicle (in cooperation with the

Naval Underwater Systems Center).

* Install a TV camera on at least one vehicle and perform real-time 3-D visually guided

maneuvers.

* Specify the RCS-3 system to a sufficient level of detail to make it suitable to become a

commercial product.

Funding during FY87 was $2.3 million. A decision was made by DARPA, Office of Naval
Technology, in December 1987, to terminate the MAUV project due to lack of funding in FY88, and to

attempt to transfer MAUV technology to other DARPA projects.

The purpose of this document is to decribe what was accomplished, what was planned, and what could

be achieved if the approach taken here is pursued in the future by other DARPA projects.



Project MAUV
System Description and

Design Architecture

1. Introduction

1.1 Objective

The objective of the MAUV project was to demonstrate intelligent cooperative behavior in multiple

autonomous undersea vehicles.

1.2 Approach

The approach was to build a control system architecture which fully integrates concepts of artificial

intelligence and game theory with those of modem control theory.

1.3 Research Issues

The research issues addressed by the MAUV project are: hierarchical distributed control, knowledge
based systems, real-time planning, world modeling, value-driven reasoning, intelligent sensing and
communication, gaming, and cooperative problem solving by two intelligent vehicles in a natural and
potentially hostile environment.

At its most basic level, the MAUV project represents basic research on the nature of intelligent

behavior. The scientific goal was the understanding of intelligence as a mechanism for acquiring and
defending assets. The demonstration scenarios were designed to study, and attempt to mimic,
aggression, predation, exploration, stealth, deception, escape, communication, and cooperation.

On another level, the MAUV project represents developmental research on potential applications of

multiple autonomous vehicles to military operations. The objective was to understand the basic issues

of intelligent cooperation between two or more autonomous vehicles in a hostile environment.

Intelligent cooperation requires that group goals transcend individual goals. Each vehicle must weigh
the value of its own survival against the success of the mission. Risk must be weighed against

probable payoff, and cost/benefit analysis must be factored into behavioral decisions.

Intelligent cooperation also requires communication. In a natural environment, communication is not

always possible or reliable. Bandwidth is usually limited, and in military operations, every

transmission carries the risk of revealing information of more value to the enemy than to the sender or

intended receiver.

Intelligent communication is a goal directed activity. Information is transmitted for a purpose. What
information needs to be transmitted? when is it needed? and by whom? When is the value of a piece of

information of sufficient value to incur the risk to survival of revealing one's presence by transmitting a



message? What are communication strategies which balance risk against benefits?

There are also issues of command and control when communication is impossible or inadvisable. How
should the control system be structured so that two or more vehicles can have equivalent intelligence

when they are apart, but one vehicle is recognized as the leader of the pack when they are together?

How do they share knowledge acquired by only one? What if they cannot agree on a strategy?

The initial focus of the MAUV project was on potential applications of two autonomous undersea
vehicles. The types of scenarios that were being studied were:

a) One vehicle searches an area while the other relays messages about what has
been found.

b) One vehicle illuminates a target while another takes action against the target.

c) One vehicle actively hunts for the target, while the other lies in wait.

d) One vehicle attracts the target's attention, while the other closes in for the

kill.

e) One vehicle occupies the enemy defenses, while the other slips past

unnoticed.

f) One vehicle draws attention to itself, while the other escapes with valuable

information.

Future concepts were to be developed for more than two vehicles. These include tactics for hunting in

packs, patrolling and guarding, and methods for saturation of enemy defenses. Studies were to be
made of group tactics such as phase coordinated emission of acoustic energy to create phantom sources,

and pseudorandom coordinated pulse transmission to confuse enemy attempts to track the source of
acoustic emissions.



2. Demonstration Scenarios

The MAUV project planned to conduct a series of demonstrations by two autonomous underwater

vehicles. The demonstration scenarios were grouped into two basic classes:

1) cooperative search and map scenarios

2) cooperative search and attack scenarios

The environment chosen for the MAUV demonstrations was Lake Winnipesaukee.

2.1 Search and Map
(Mine Countermeasures)

The search and map scenarios were to mimic a harbor or coastal shallows survey mission. One of the

principal applications of this class of scenarios is mine countermeasures. Figure 1 illustrates the

concept of using two or more MAUVs to search and map shallow areas such as bays, gulfs, harbors,

estuaries, and rivers. In this mission type, the MAUVs were to demonstrate the ability to measure the

bottom topology, and to search for and map the positions of objects on the bottom and in the water.

The vehicles were to inspect objects with particular characteristics.

The search and map scenarios were being designed to show MAUV capabilities to operate in either

friendly or unfriendly waters. In friendly waters, the mission might be to sweep an area to assure that

no enemy vehicles, mines, or listening devices are present. In enemy waters, the mission might be to

map mine fields and find safe pathways through them without being detected. Enemy defenses were
assumed to use both passive and active sonar. The vehicles were to sense and plot the position of
"enemy positions" (simulated by acoustic beacons), and perform a number of maneuvers relative to

known or suspected enemy positions.

In Lake Winnipesaukee demonstration scenarios, enemy targets and defenses were simulated by
transponder buoys. Several stationary transponder buoys, and at least one moving buoy was to be
used. A boat with a human operator was to be used for towing the moving transponder buoy.

Passive sonar was simulated by allowing the MAUV vehicles to use only bearing information from the

enemy target and defense transponders. Active sonar was simulated by allowing the MAUV vehicles to

use both range and bearing information from the enemy transponders.

In Lake Winnipesaukee, the modified EAVE-EAST vehicles were to execute a variety of search

patterns, including several involving separation and rendezvous for exchange of information. As they

move, the MAUVs were to compute maneuvering tactics which take into account bottom topology and
simulated enemy positions.

The MAUV vehicles were to demonstrate the use of topological maps of the bottom for local

navigation, and were to use both visual and acoustic bottom sensors to update these maps in real time.

Obstacle avoidance sonar and bottom altitude sonar were to give the vehicles the ability to follow

bottom topographic features such as ravines and ridges. The MAUV vehicles planned to demonstrate

tactics using bottom features for shadowing their movements from known or presumed enemy
positions.

The selection of tactics were to be performed by four methods: a) rule based analysis of particular task



Optical Fiber
Wide Band
Covert Communications
(Optional)

MAUV 1

Wide Coverage
Scanning Sonar

o Side Scan
o Forward Scan

Hi Resolution Scanners
o Optical

o Acoustic

Bottom Following
o Navigation
o Mapping

FIGURE 1. lUustration ofMAUV search and map scenario.



situations, b) plan schemas, c) game theory algorithms, and d) AI search methods. The selection

criteria was to be based on value driven logic which takes into account cost, risk, and payoff of various

actions. This includes values placed on the vehicles, as well as the value of information and stealth.

Value driven logic can generate strategies which vary from aggressive to conservative depending on
priorities and values given to the mission.

2.2 Search and Attack

(Antisubmarine warfare)

The second class of scenarios, search and attack, was designed to mimic deep ocean missions, and
relatively little use was to be made of bottom features. The principal application of this class of

scenarios was to be antisubmarine warfare. These scenarios were to demonstrate the concept of

carrying sensors and weapons off-board from a manned submarine. In this type of mission, two or

more MAUVs would act as sensor platforms, probes, or pathfinders for a simulated manned nuclear

submarine.

A typical operational MAUV Search and Attack mission planned for two MAUV Probe vehicles, such

as shown in Figure 2, was to carry sensors ahead, to the side, or behind a manned sub in order to

search for, locate, and engage the enemy. Tactics were to be explored whereby the two vehicles

conduct coordinated search, attack, decoy, escort, escape, and data relay maneuvers.

In practice, a manned sub would serve as command ship to the MAUVs. In this scenario type, two
MAUV probes would patrol using a variety of tactics, such as leap-frog, fly-formation, split-

circle-and-rendezvous, leader-follower, and high-low. The vehicles would execute cooperative search

patterns such as criss-cross weave patterns ahead and to the sides of the manned sub. The MAUV
probes would typically communicate only when they pass in close proximity to each other.

Upon detecting a target with passive sonar, two or more MAUV probes might split and encircle the

target to better triangulate on its position. Tactics were to be studied where one vehicle illuminates the

environment and the second vehicle observes the target. For example, one MAUV might actively ping

the target, or paint it with light, while the other MAUV Probe would remain passive and compute the

target position and trajectory. The second MAUV Probe might then communicate targeting information

to the manned sub, or transmit target position and velocity to weapons launched by the manned sub.

MAUV vehicles could also perform simpler missions, such as monitoring acoustic emissions from the

manned sub, or serving as communications messengers. They might also provide hook-up service to

"telephone booths" moored to the ocean bottom.

In a realistic scenario, MAUV probes would be ferried into action by a manned sub. They would be
launched and recovered through torpedo tubes. The MAUVs would need to periodically return to the

manned sub to be refueled.

One of the demonstrations to be conducted in Lake Winnipesaukee was to be rendezvous and docking.

The two MAUV vehicles were to use sonar to rendezvous and optical tracking methods for docking. A
series of tests was first to be performed in a test tank, and later in the lake. Both side-by-side and
end-to-end docking were to be demonstrated.

2.3 Simulation/Gaming Environment

In addition to the demonstrations in Lake Winnipesaukee, a simulation/gaming system, such as shown



ANTISUBMARINE WARFARE

Probe
(Ping)

Target

Manned Attack Sub

Scout
(Listen)

TARGET ACQUISITION/ATTACK SCENARIO

FIGURE 2: Target acquisition and attack scenario.



GAMING ENVIRONMENT

MICRO
VAX

REFEREE

mis
IGRAPHICS

PLAYER 1 PLAYER 2 PLAYER 3 PLAYER 4

4 PLAYER GAMES
4 HUMANS
2 HUMANS + 2 RCS

DISPLAYS
WORLD TRUTH ON IRIS

PLAYER KNOWLEDGE ON SUNS

FIGURE 3: A gaming environment for multiplayer games. Two
Simulated MAUV vehicles under two RCS-3
controllers can play against two humans. For
comparison two humans can play against two humans.



in Figure 3, was planned for development. A complex archipelago of islands such as the passage

between Northern Canada and Greenland was planned to be the environment.

2.3.1 The Gaming Goals

For the search and map scenario, the goal of the Blue MAUV vehicles would be to identify,

photograph, and map the position of a stationary target object on the bottom of an area designated as a

secret enclave. The Blue MAUV vehicles would carry no weapons, but have stealth properties which
makes them difficult to observe except at very close range.

The goal of the Red manned vehicles was to destroy the Blue MAUV vehicles before they could gather

their intelligence information and escape.

For the search and attack scenario, the goal of the Blue MAUV vehicles was to destroy a manned Red
target vehicle being escorted through the archipelago by a pair of manned Red escort vehicles.

The goal of the Red manned vehicles would be to achieve safe passage for the target vehicle.

2.3.2 The Gaming Setup

The gaming was to take place in a simulated environment. The acoustic properties of the chosen region

would be computed and stored in tabular form as a set of acoustic maps. About 400 points were to be

defined in the region. For each point, a map could be defined as follows: Assume that an active ping is

emitted. At each of the other points, plot the effect of that ping, using 8 bits to define the sound
intensity, 8 bits to define the azimuth of the arriving wave front, and 8 bits to define the amount of

reverberation. This will require 400 maps, each with 400 points, each with three bytes of data

(480,000 bytes of memory).

There would exist a Truth database, to simulate the real world environment. Each of the four players,

would have its own world model, which would be that player's best estimate of the state of the real

world environment. Each human player would have both egosphere and world map displays. The
egosphere would display raw or filtered sensor data overlaid on world model data.

The initial setup would use all human players, one human for each Red and each Blue vehicle. This

would test the game for bugs, and establish a baseline for the expected outcomes of various strategies

for both scenarios.

The final setup would have the Blue MAUV vehicles under control of the RCS control system, playing

against humans controlhng the Red vehicles.

The size of the geographical region was to be scaled, and the vehicles given fuel and speed capabilities

such that the games could be conducted in a timely manner.

2.3.3 Capabilities and Attributes

a) For the search and map scenario:

10



The Red side would deploy 5 stationary passive sonar arrays. These would have coverage and
sensitivity defined by the acoustics of their surroundings. These passive sonar arrays could measure
bearing (with an accuracy defined by the acoustic surroundings) but not range. They might be

confused as to azimuth by hearing more than one Blue vehicle at a time.

The Red side would also deploy active pingers with the passive arrays. These measure both range and
bearing, with errors determined by the acoustic environment. They can recognize and identify multiple

targets. These typically would be used only rarely, since they reveal the position of the sonar arrays.

The two Red vehicles would have passive sonars with lOx less sensitivity than the stationary arrays.

They cannot measure range, and are less accurate than the stationary arrays in bearing measurements.

They are more susceptible than the stationary arrays to confusion by more than one Blue vehicle.

The two Red vehicles would also have active scanning beams with controllable resolution. These can

acquire acoustic range images with resolution of 1 degree per pixel out to 10 yards, 3 degrees out to

300 yards, and 10 degrees out to 1000 yards. Range and bearing errors would be determined by the

acoustic environment.

The two Red vehicles would carry two simulated torpedoes with a range of 200 yards. The range and
bearing of the targets must be precisely known before these weapons can be used effectively.

The two Red vehicles would have two way 300 baud communications with their home base via an RF
antenna on a tethered float. Information from the stationary sensor arrays could be communicated via

this link. The two Red vehicles would have two way 300 baud communication between each other via

RF antenna. They would have two way 30-300 baud communications between each other via acoustic

link provided there were line of sight and range less than 2 kilometers.

The two Blue vehicles would carry the same acoustic sensors and have the same communications
capabilities as the Red vehicles.

The Blue vehicles would carry no simulated weapons, but would have visual and acoustic mapping
sensors. They would have much lower observability than their Red pursuers. The Blue vehicles

would also carry explosive charges that can be used to drown all Red sensors in reverberations for a

period of minutes while the Blue vehicles make an attempt to escape or hide.

b) For the search and attack scenario:

The Blue rather than the Red side would possess the stationary sonar arrays.

The Red target vehicle would emit a characteristic sound the intensity of which would depend on the

velocity of the target.

Both the Red and Blue vehicles would have the sensors described for the Red vehicles in the search and
map scenarios. They would carry two simulated torpedoes with range of 220 yards. Both Red and
Blue vehicles would have approximately the same observability under the same conditions.

11



3. Background

3.1 The MAUV Vehicles

The MAUV vehicles built for the Lake Winnipesaukee demonstrations are a second generation of the

University of New Hampshire Marine Systems Engineering Laboratory EAVE-EAST design [1].

Figure 4a is a picture, and Figure 4b a diagram, of an EAVE-EAST MAUV vehicle. The vehicles were
developed at the University of New Hampshire by Richard Blidberg and his associates. The vehicles

are gravity stabilized in pitch and roll, with thmsters that allow them to be controlled in x, y, z, and
yaw. They are battery powered with the batteries stored in cylindrical tanks at the bottom of each
vehicle, and flotation tanks on the upper part of the vehicles. Each vehicle carries three acoustic

navigation transponders which allow them to measure the range and bearing to navigation buoys placed

in the water. Each vehicle also has a compass, pressure and temperature sensors, and bottom and
surface sounders. In front, they have obstacle avoidance sonars consisting of five narrow beam
acoustic transmitter-receivers. These are arranged such that the center sonar beam points straight ahead,

two point ten degrees to the right and left, and two point ten degrees up and down from the center

beam. Each vehicle carries an radio frequency communications system and will soon also have an

acoustic communications system.

3.2 The MAUV Control System

For the control system of the MAUV project, the National Bureau of Si^.^dards is designing and
building RCS-3, a third generation of the NBS Real-time Control System (RCS) [2].

The first generation of RCS was a real-time sensory-interactive control system for a robot manipulator

[3]. The second version (RCS-2) served as the control system architecture model for the NBS
Automated Manufacturing Research Facility (AMRF) [4]. The current version (RCS-3) is being

developed as the architecture for the MAUV project [5]. RCS-3 also forms the basis of the

NASA/NBS Standard Reference Model Control System Architecture (NASREM) for the Space Station

Flight Telerobot Servicer [6].

The RCS-3 control system architecture incorporates a number of concepts developed in previous and
on-going robotics research programs, including the DARPA Autonomous Land Vehicle [7], the Air

Force/DARPA Intelligent Task Automation program [8], the NASA telerobotics program [6], the

supervisory control concepts pioneered by Sheridan at MIT [9], and the hierarchical control system
developed for the NBS AMRF [10-12]. RCS-3 incorporates many artificial intelligence concepts such

as goal decomposition, hierarchical real-time planning, model driven sensory processing, blackboards,

and expert systems [13-19]. These are integrated into a systems framework with modem control

concepts such as multivariant state space control, reference model adaptive control, dynamic
optimization, and learning systems [20-23]. The RCS-3 architecture also readily accommodates
concepts from operations research, differential games, utility theory, and value driven reasoning

[24-25].

3.3 Institutional Participation

The Robot Systems Division of the National Bureau of Standards pursued the MAUV project because

of its broad interest in performance measures and standards for intelligent machine systems. NBS is

conducting research in advanced automation in several application areas: including manufacturing,

construction, undersea vehicles, and space telerobotics. The MAUV project was of interest to NBS

12



FIGURE 4A: University of New Hampshire Marine System
Engineering Laboratory EAVE-EAST MAUV vehicle

design.

13



EAVE 111

VERTICAL
THRUSTERS

KF ANTENNA NAVIGATION
SONAR

NAVlGApON
GUIDANCE
CONTROL

OBSTACLE
AVOIDANCE
SONAR

PROPULSION
BATTERIES

DEPTH SONAR
AND
TEMP
PRESSURE
SENSORS

KBS COMPUTERS

TELEMETRY
ELECTRONICS

COMPUTER
BATTERIES

FORWARD
THRUSTERS

COMPASS
(BOTTOM, CENTER)

FIGURE 4B: Diagram of University of New Hampshire
EAVE-EAST MAUV vehicle.

14



because autonomous undersea vehicles are members of the class of intelligent machines. The RCS-3
hierarchical control system architecture is being developed as a prototype for a proposed NBS Standard

Reference Architecture Model for intelligent machine systems.

The University of New Hampshire Marine Systems Engineering Laboratory was involved because of

its interest in autonomous undersea vehicles, and knowledge based systems for controlling them.

UNH supplyed the vehicles, and the operational expertise in autonomous undersea vehicles. The
Marine Systems Engineering Lab designed and built the EAVE-EAST MAUV vehicles, installed on
them the lower two levels of the sensory processing and control system, and provided the interfaces to

level three of the NBS RCS-3 system. UNH has also developed a high level Knowledge Based control

System (KBS) which was demonstrated as a part of the MAUV project [26].

Also involved in the MAUV project was Professor Allen Waxman, of Boston University. He
performed research on stereo vision for AUVs using the NBS Pipeline Image Processing Engine
(PIPE) [27]. University of Maryland under Professor Azriel Rosenfeld conducted experiments on depth

from image flow in the underwater environment, also using PIPE [28]. These capabilities were to be
added to the MAUV vehicles in the later phases of the project. Lehigh University under Professors

Roger Nagel and Glen Blank did studies of programming techniques for RCS-3 using state-graph

techniques [29]. Decision Science Incorporated provided expertise in value driven logic for mission,

group, and vehicle level planners [30]. Martin Marietta Baltimore provided an environmental simulator

for scenario development [31]. Robot Technology Incorporated performed scenario development and
developed performance evaluation techniques for MAUV demonstrations [32].

15



4. The MAUV Control System Architecture

4.1 The Control System Hierarchy

A high level block diagram of the MAUV RCS-3 control system architecture is shown in Figure 5. The
system is a three legged, six level hierarchy of computing modules for task decomposition, world
modeling, and sensory processing. This hierarchy is serviced by a communications system and a

distributed common memory.

In the RCS-3 control system architecture the task decomposition modules perform real-time planning

and task monitoring functions. Task goals are decomposed both spatially and temporally, as shown in

Figure 6. The sensory processing modules filter, correlate, and integrate sensory information over both

space and time so as to detect, recognize, and measure patterns, features, objects, events, and
relationships in the external world. This is shown in Figure 7. The world modeling modules answer
queries, make predictions, and compute evaluation functions on the state space defined by the

information stored in global memory. The world modeling modules service both the task

decomposition and sensory processing modules, as shown in Figure 8. Global memory is a database

which contains the system's best estimate of the state of the external world. The world modeling
modules keep the global memory database current and consistent.

4.2 Functional Levels in the MAUV Control Hierarchy

Figure 9 is a block diagram of the task decomposition hierarchy. Each module in the task

decomposition hierarchy receives input commands from one and only one supervisor, and outputs

subcommands to a set of subordinate modules at the next level down in the tree. Outputs from the

bottom level consist of drive signals to motors and actuators.

Figure 10 shows the relationship between the task decomposition, sensory processing, and world
modeling modules.

At each of the six layers of the MAUV architecture a different function is performed.

Level 1 — Coordinate Transform/Servo

Level 1 of the task decomposition hierarchy transforms coordinates from a vehicle coordinate frame
into actuator coordinates. This level also servos thruster direction and actuator power. There is a

level 1 planner and executor module for every motor and actuator in the MAUV vehicle. At this level

in the sensory processing hierarchy, sensor readings are filtered, scaled, and entered into the world
model as point readings. There is a level 1 module comparator and temporal integration for every

sensor, including one for every pixel in the camera, or acoustic imaging system.

Level 2 — Primitive (or Dynamic Level)

Level 2 works in vehicle or world coordinates. The task decomposition modules compute inertial

dynamics, and generate smooth trajectory positions, velocities, accelerations for efficient vehicle

maneuvers. In the sensory processing modules features of objects are recognized and stored in the

world model as feature position, orientation, and velocity.

16



BLACKBOARD

MAPS
OBJECT LISTS

STATE VARIABLES

EVALUATION FCNS

PROGRAM FILES

SENSORY
PROCESSING

WORLD
MODELING

TASK
DECOMPOSITION

DETECT
INTEGRATE

m

TT

-T"

MODEL
EVALUATE

SENSE

M,

M

M.

M.

Ml

,
GOAL

-H PLAN
EXECUTE

H.

4 ^ H.

H-

H.

H.

ACTION

MISSION

GROUP

VEHICLE
TASK

E-MOVE

PRIMITIVE

COORDINATE
TRANSFORM
SERVO

FIGURE 5: High level block diagram ofMAUV RCS-3 control

system architecture.

17



Task Decomposition

PLANNER
MANAGER

Planners

Executors (EX1

Subtasks

FIGURE 6:

Temporal

Decomposition

Each task decomposition H module decomposes task

both spatially and temporally.

18



Sensory Processing

^Detected
Event

Spatial
Integration'

Temporal
Integrators

Comparators

Observed
Signal

Predicted
Signal

Time

FIGURE 7: Each sensory processing G module compares observed
signals with world model predictions and performs
temporal and spatial integration.

19



World Modeling

Sensory
Detection

Sensory
Compare

Common \
Memory

Knowledge
Base
Maps

Object Lists

State
Variables

Task
Planner

Task
Executor

FIGURE 8: Functions performed by M modules in world model.

20



GROUP TASKS

GROUP 1

VEHICLE TASKS

VEHICLE 1

E-MOVE KEY POSES

3 PILOT

CLEAR PA-
POINTS

/
FH

2 VEHICLE
DYNAMICS

DYNAMIC xy

TRAJECTORHIS r

1 THRUSTERS

ACTUATOR POWER / I \

MISSION
CONTROL

SONAR

/ \

BEAM
POINTING

/ \

TRANSMIT
RECEIVE

ZTT
ACTUATORS

GROUP M

/T\

VEHICLE K

/T\

COMMUN-
ICATIONS

/ Y

MESSAGE
STRING

/ \

TRANSMIT
RECEIVE

/T\

nOURE 9: A block diagram of the MAUV task decomposition
hierarchy.

21



Level 3 ~ Elementary Move (E-move)

Level 3 works in both symbolic and geometric space. It decomposes elementary move commands
(E-moves) into strings of intermediate poses, or primitive (dynamic) level commands. At level 3,

objects are recognized and stored in the world model with position, orientation, and velocity.

Coordinated movements of effectors are planned relative to surfaces of objects. Nearby obstacle

surfaces are observed and avoided. Target object may be approached and touched.

As shown in Figure 9, each MAUV vehicle consists of three subsystems: pilot, communications, and

sonar. E- moves are defined for each vehicle subsystem.

A pilot E-move can be defined as a smooth coordinated motion of the vehicle designed to achieve some
position, orientation, or "key-frame pose" (see Section 1 1.4) in state-space, or space-time. The length

of path defined as an E-move is typically the distance that can be direcdy observed by low resolution,

wide angle, on-board sensors. The level 3 pilot planner computes clearance with obstacles sensed by
on-board sensors and generates strings of intermediate poses that define motion pathways between
key-frame poses. These intermediate poses become input commands to the level 2 dynamics
computations.

A communications E-move is a message. The level 3 communications planner encodes messages into

strings of symbols, adds redundancy for error detection and correction, and formats the symbols for

transmission.

A sonar E-move may be defined as a temporal pattern of sonar pings or a scanning pattern for a passive

listening beam designed to obtain a specific type of information about a feature of a specific target. The
level 3 sonar planner decomposes sonar E-Moves into patterns of sonar pings and scanning beam dwell

times.

Level 4 ~ Vehicle Task

Level 4 works in object/task space. It decomposes vehicle commands, defined in terms of tasks to be
performed by a single AUV on a single target object, into sequences of E-moves, defined in terms of

vehicle subsystem actions on object features. At level 4, relationships between objects, and the

properties of groups are recognized and entered into the world model.

The level 4 planner manager decomposes vehicle tasks into work elements to be performed by the

various vehicle subsystems. It also coordinates, synchronizes, and resolves conflicts between vehicle

subsystem plans.

The level 4 planners schedule sequences of E-Moves for the pilot, the communications, and the sonar

subsystems.

The level 4 pilot planner uses world model maps to assure that there exists at least one pathway
between keyframe poses. From map overlays, it estimates the cost, risk, and benefit of various

routes and chooses a path that maximizes some cost-benefit evaluation function.

The level 4 communications planner schedules the messages to be sent. It computes the value of each

message, its urgency, the risk of breaking communications silence, the power needed to make the

message heard, and decides if and when to send the message.

22



The level 4 sonar planner analyzes the nature of the target, plans scanning patterns for passive or

active beams, estimates the value of taking an active sonar sounding, and compares that against the

risk of breaking silence.

Level 5 -- Group

Group task commands define actions to be performed cooperatively by groups of autonomous vehicles

on multiple targets. The job assignment module of the level 5 planner manager decomposes group
tasks into vehicle job assignments. This decomposition typically assigns to each vehicle a prioritized

list of tasks to be performed on or relative to one or more other vehicles, objects, or targets. Tactics

and vehicle assignments are selected to maximize the effectiveness of the group's activity.

Level 5 vehicle planners schedule group task lists into coordinated sequences of vehicle tasks. The
vehicle planners use the Group level world model map to compute vehicle trajectories and transit times.

They also estimate costs, risks, and benefits of various vehicle tactics (or task sequences).

The level 5 plan coordinator constrains the actions of each MAUV to coordinate with the other

MAUVs in the group so as to maximize the effectiveness of the MAUV group in accompHshing the

group task goal.

They also estimate costs, risks, and benefits of various vehicle tactics (or task sequences).

Level 6 ~ Mission

Missions are typically specified by a list of mission objectives, priorities, requirements, and time line

constraints. Level 6 decomposes a commanded MAUV mission into a sequence of group tasks and
assigns priorities and values to them.

The level 6 planning manager assigns vehicles to groups, sets priorities for group actions, and
assigns mission objectives to MAUV groups. The level 6 planners schedule the activities of the groups

so as to maximize the effectiveness of the mission. They also generate requirements for resources such

as fuel, and time, develop a schedule, and set priorities for each respective group assignment.

4.3 Hierarchical versus Heterarchical (Horizontal) Organization

There has been considerable debate among experts in the field regarding the relative merits of

hierarchical versus heterarchical control. Advocates of heterarchical control frequently characterize

hierarchies as rigid and inflexible with overburdened central controllers and unintelligent peripheral

elements. Advocates of hierarchical control often criticize heterarchies for requiring excessive amounts
of communication and producing inefficient iterative solutions to temporal planning and resource

allocation.

As shown in Figure 10, the organization of RCS-3 is both hierarchical and heterarchical (horizontal).

4.3.1 The Hierarchical Organization of RCS-3

RCS-3 is hierarchical in the sense that commands and status feedback flow hierarchically up and down
the chain of command. It is also hierarchical in that sensory information is processed into increasingly

higher levels of abstraction, and that information stored in the world model is organized hierarchically.

23



World Modeling

Vehicle
Goal

FIGURE 10: Hierarchical and heterarchical (horizontal)

organization of RCS-3 control architecture.

24



Hierarchical control is an old and proven organizing concept. It has been used by military,

government, and business bureaucracies for centuries. The principle is based on a partition of the

problem domain, leading to an efficient division of labor, according to both spatial and temporal levels

of resolution. Spatial resolution is manifested in the span of control and in the resolution of maps.
Temporal resolution is manifested in terms of loop bandwidth, sampling interval, length of historical

traces and future planning horizons.

Hierarchical control was applied to computer control systems for process control during the 1950s and

'60s. It has been applied to computer integrated manufacturing systems during the 1970s and '80s.

Real-time hierarchical control concepts are also now being implemented in advanced aircraft flight

controllers and modem smart weapons systems. The concepts of hierarchical control are also now
being applied in the control architectures used in a number of autonomous vehicle projects, for

example, Hughes [33,34], Martin Marietta [35], Carnegie Mellon University [36], and Drexel
University [37].

The hierarchical aspect of RCS-3 is most prominent in its method of decomposition of tasks, its

representation of space, and its processing of sensory information. The flow of commands and status

feedback is strictly hierarchical. High level commands, or goals, are decomposed both spatially and
temporally through a hierarchy of control levels into strings and pattems of subcommands. Each task

decomposition module represents a node in a command tree. Each command node receives input

commands from one and only one supervisor, and outputs a temporal string of subcommands to one or

more subordinate modules at the next level down in the tree. Outputs from the bottom level consist of

drive signals to motors and actuators.

The flow of commands through the hierarchical task decomposition command tree is strictly enforced

(no command subtree in RCS-3 ever reports to more than one supervisor at any instant in time).

However, the RCS-3 command tree is not necessarily stationary. For example, at the Group level, the

command tree may be reorganized from time to time so as to reassign vehicles to different groups for

various tasks. This concept corresponds to the "virtual cell" developed by McLean [38]. When the

command tree is reconfigured it is done instantaneously, and the control structure always remains a

tree. No module ever has more than one superior at any one time, and all modules are always part of a

command and control tree, even when one or more vehicles become separated from the others so that

communication is not possible, (see Section 4.3.4) The command tree has one root node at the top,

where the longest term strategy is pursued and the highest level priority is determined.

4.3.2 Heterarchical (Horizontal) Organization in RCS-3

RCS-3 is heterarchical (or horizontal) in the sense that data is shared horizonally between
heterogeneous modules at the same level. At each hierarchical level, RCS-3 is horizontally partitioned

into three sections: Task Decomposition, World Modeling, and Sensory Processing.

Task decomposition includes planning and task monitoring, value driven decisions, servo control, and
interfaces for operator input. The task decomposition module at each level in the control hierarchy is

made up of a planner manager module, plus one or more planner and executor modules. Each of these

communicates voluminously with each other and with the world modeling module at the same level.

World modeling includes geometric models of objects and structures, maps of areas and volumes, lists

of objects with their features and attributes, and tables of state variables which describe both the system

and the environment. The world modeling module at each level consists of a set of processes that

maintain maps, update lists of objects and their attributes, keep state variables current, generate

predictions and compute evaluation functions based on hypothesized or planned actions. Each world

25



modeling module is constantly in communication with the sensory processing module at its

corresponding level, predicting sensory input, and being updated by the observed state of the world.

Each world modeling module also responds to "What is?" and "What if?" questions from the executors

and planners in the task decomposition module at its corresponding level.

Sensory processing includes signal processing, detection of patterns, recognition of features, objects,

and relationships, and correlation and differencing of observations versus expectations. Each sensory

processing module is made up of a heterogeneous group of processes that compute spatial and temporal

correlations, differences, convolutions, and integrations; comparing predictions generated by the

modeling module at the same level with observations detected by lower level sensory processing

modules. The sensory processing module is programmed to filter, detect, recognize, measure, and
otherwise extract from the sensory data stream the information necessary to keep the world model at its

level updated.

Thus, although the RCS-3 system architecture incorporates a command and control hierarchy in the

form of a formal logical tree, the horizontal communication not only exists, it predominates, both in

terms of volume and bandwidth. There exists a voluminous horizontal flow of non-command
information between H, M, and G modules at the same level. This information is about both the state

of the task and of the world. The flow of information between sensory processing, world modeling,

and task decomposition modules at each level completely dwarfs the amount flowing vertically in the

command hierarchy.

The RCS-3 design is thus an attempt to take advantage of the benefits of both hierarchies and
heterarchies, and to minimize the limitations of each.

It should be noted that the requirement for horizontal flow of data is mostly confined within the same
subtree. The requirement for communications becomes less voluminous and critical between entities in

separate subtrees. For example, horizontal communication may be important for coordinating actions

between the pilot and sonar subsystems in the same vehicle. Yet the need for communication between
the pilot in one vehicle and the sonar subsystem in another vehicle is limited, if not non-existent. In

general, the volume and bandwidth of communication between entities at the same hierarchical level

diminishes rapidly as the distance between the respective subtrees increases in the command tree.

4.3.3 Global Representation of Data

It should also be noted that RCS-3 does not restrict flow of information to only hierarchical or

horizontal pathways. All input and output variables to all of the modules at all levels are globally

defined, and exist in a global memory. There is no restriction prohibiting any module at any level from
making a query of, or obtaining information from, any other module at any level.

RCS-3 is designed for a real-time operating system with a communications process which allows

shared access to information in global memory. This communication process is transparent to the

computing modules. This makes the global memory appear to the various computing modules as if it

were a single common memory.

This global memory is, however, not in a single common memory. The physical architecture of global

memory is distributed over a number of single board computers and memory cards. For some
applications, portions may even exist as virtual memory on disks that may also be distributed in various

locations. Thus, world state variables may, in practice, be distributed over a number of physically

distinct memories and mass storage devices in widely separated locations. Various parts of global

memory may sometimes not even be in direct communication with each other. They may, for example,

be in separate vehicles.

26



4.3.4 Hierarchical Control of Multiple Vehicles

Coordinating behavior between intelligent vehicles with limited communication between them is a major

unsolved research problem. One of the principal objectives of the MAUV project was to address this

issue.

The control architecture shown in Figures 5 and 10 suggests that communications exist between all

levels of the hierarchy at all times. In practice, this is often not possible, because vehicles, or groups,

become separated from each other and from their chain of command.

In order to deal with this situation, each MAUV vehicle carries its own copy of the the entire RCS-3
control hierarchy, including its own complete copy of the world model and global memory. Every
vehicle thus has the potential to be the command vehicle for the entire mission.

As long as there exists adequate communication between the vehicles, updates to the world model can

be shared fully, and the world model of aU the vehicles is kept identical.

So long as both the control system and world model of each vehicle is identical, the commands
generated by the higher level control system in each vehicle will be identical to those generated by, and
communicated from, the group leader vehicle. In this ideal case, communication of commands is

unnecessary for coordinated behavior.

Of course, the world model of each vehicle is constantly being updated by sensory data. Events

detected by one vehicle may be unnoticed by others. Once communications is limited, or the vehicles

lose communication with each other, their world models will grow different due to different updates

from different sensory inputs.

However, until the world models of the different vehicles diverge, coordinated behavior is possible

without communicating commands. This means that communication silence can be maintained during

the early phases of an engagement, up until the time when cooperative action must be taken on
information that is not shared.

Keeping the world model in all the vehicles identical can require very large amounts of data to be
communicated between the vehicles. In many cases, this will exceed the available communication
bandwidth. Typically, the bandwidth required to transmit commands and status feedback is less than

that needed to keep world models identical. Thus, the transmission of commands tends to be the

mechanism of choice for coordinated behavior in most cases.

There are, however, situations where a small amount of information in the world model can produce a

lengthy sequence of actions to occur. In these cases, communication of the critical world model
information may be more efficient and rehable than transmitting a lengthy series of commands. This is

particularly true if the series of commands must be communicated during the heat of battle, while the

world model information can be transmitted before the action begins.

27



5. Tasks and Plans

In this section we will provide a formal definition of tasks and plans, and develop a mathematica
notation for representing them.

Df: Task
A task is an activity which begins with a start-event and is directed toward a goal-event. This i;

illustrated in Figure 11.

Df: Goal
A goal is an event which successfully terminates a task.

Df: Command
A command is an instruction to perform a task.

A command may have the form:

DO <Task> AFTER <Start Event> UNTIL <Goal Event>

or

COMMAND := DO <Task>
WHEN (Start Event)

DO (Task)

UNTIL (Goal Event)

END-DO

Df: Plan

A plan is a set of activity-event pairs which is designed to accomplish a task and produce a goal event.

Each activity in the plan leading to the goal is a planned subtask, and the event terminating each of the

planned subtasks is a subgoal. The fmal event in the plan is the goal event. This is illustrated ir

Figure 11.

For tasks that involve the cooperative action of several subsystems, a plan may consist of several

concurrent strings of subtasks which collectively achieve the goal event, as shown in Figure 12.

In a plan involving concurrent activities, there may be mutual constraints. Various subtasks ma>
require that the activities of the subsystems be coordinated. A start-event for a subtask activity in one

subsystem may depend on the goal-event for a subtask activity in another subsystem. For example,

pointing a sonar beam at a target may not be possible until the pilot maneuvers the vehicle into the

proper orientation.

At each level in the task decomposition hierarchy, there exists a command vocabulary. This consists ol

the set of tasks that can be decomposed by that level. For each task in the command vocabulary, there

exists a task frame, such as shown in Figure 13, in which there are slots for tools or equipmenl

required for the task, conditions that must be met before the task can begin, a statement of the goal oi

the task, and estimates of cost and risk in the performance of the task.

The Gantt Notation

A plan can be represented in a number of different notations. The series of actions and events

illustrated in Figures 1 1 and 12 are the form of a Gantt chart. The Gantt chart notation explicitly

28



r
start

Task

K-.

Activity

Plan

r

Subtask 1

A —
r-

. Subgoal^

Subtask 2
A

Subgoal
"r

Subtask 3
A

^
Goal

Subgoal .= Goal

I I I 1 I I I I I I I I I I I I I I I I

Time

FIGURE 11: A plan is a set of activity-event pairs, or subtasks,
which achieve the goal event.

29



GOAL

FIGURE 12: A plan may consist of several concurrent strings of

sul)tasks which collectively achieve the goal event.

30



>
o

m

>
o
<"

ro

m<
>§

ro

>
o
<'

<<

Task Frame

Name of Activity: Task Command Input

Goal Event:

Actor:

Object of Action:

Preconditions:

Resources Needed:

i

Coordination \

Precedence > Constraints

Timing
)

FIGURE 13. Task frame format.

31



represents the time axis, and can conveniently represent parallel simultaneous activities along the time

axis.

However, a Gantt chart represents only one instance of a plan. If a plan is event driven, or contains

conditional branches, it may have many different instances, depending on different circumstances when
it is executed. The Gantt notation has no convenient way to represent a plan with conditional

branching.

A Gantt chart can also be used to represent a historical trace of activities and events. For this, it is ideal,

because there is only one instance of history. A historical trace can be used in two ways:

First, as a means of programming, or generating, plans. A Gantt chart of a successful sequence of

subtasks can be used later as a plan.

Second, as a method for representing the processing of sensory data. The Gantt notation can be used to

denote the recognition of temporal features, patterns, and events.

The State-Graph Notation

A plan can also be represented as a state-graph, as shown in Figure 14. In the state-graph notation,

nodes represent actions, and edges represent events that cause one action to cease and another to begin.

The state-graph notation has an advantage over the Gantt notation in that it allows steps in the plan to be
event driven, and expHcitly represents conditional branching. The state-graph notation is used in PERT
charts, or Critical Path Method (CPM) planning charts.

A single state-graph plan may produce many different results depending on circumstances. For
example, a plan containing the action node <Search Region 1> may result in finding any number of

objects of interest (or possibly nothing of interest). If the plan is to do something different when
different things are found, then the node in the plan graph corresponding to <Search Region 1> will

have a number of edges leaving it, corresponding to the different things that might be found (including

an edge for nothing being found). These different edges would then lead to different next action nodes
corresponding to the different next actions that may be called for upon finding the different objects.

By defining transition edges with probabilistic conditions attached, state-graphs can be used to

represent plans that involve probabilistic decision rules. This is useful in plans that implement gaming
strategies.

Branching to error recovery routines at any time during a task can be handled by a slight modification to

the classical state-graph formulation. A set of transition edges corresponding to error conditions can be

defined as being attached to every node in the state-graph unless specifically indicated otherwise. A
further modification in the traditional state-graph notation can allow counters in nodes to detect looping

and generate time-out flags. This gives the plan state-graph many of the characteristics of a computer
program flow-chart.

Concurrent activities of different subsystems can be represented in state-graph form by defining a

separate state-graph for each subsystem. Synchronization between concurrent activities can be
represented by making transition edges in one state-graph dependent on states (or transitions) in another

state-graph.

Time does not appear explicitly in the state-graph notation. Time can be represented, however, by
defining transition edges that depend on temporal events, such as interval time-outs or specific clock

ticks. For example, time is represented in PERT charts by indicating when a node is entered and

exited.

32



SEARCH AND ATTACK

FIGURE 14. A simple plan for a search and attack mission

represented as a state graph.

33



Petri nets can also be used to represent plans. Petri net plans have many of the same characteristics as

state-graph plans. The principal difference between state-graph and Petri net plans is in the use of

tokens, and in the correspondence between the graph and the system being modeled. In the state-graph

notation, there is a separate state-graph for each subsystem, with only one token per state-graph. The
position of the token is directly related to a state of the subsystem executing the plan. In contrast, a

single Petri net can be used to define the activity of several subsystems. Petri net tokens also represent

states, but there can be many tokens which come and go. Thus, there is no one-to-one correspondence

between tokens and states of the subsystems.

The state-graph notation for a plan has been chosen for the representation of plans in RCS-3 because of

the property that it can be direcdy translated into a state-transition table which can then be executed by a

finite state automata (fsa).

At each level in the RCS-3 task decomposition hierarchy, there is a planner PL(s) which generates a

plan in the form of a state-graph for each subsystem. The corresponding executor EX(s) is the fsa that

executes the state transition table corresponding to that state-graph. The state-graph (or the state

transition table) is thus the format of the interface between the task planners and executors. The
executor fsa is defined as:

fsa = (states, transition table, inputs, outputs).

The nodes of the plan state graph correspond to states of the fsa. Edges of the plan state graph

correspond to the lines in the state-transition table of the fsa. This is illustrated in Figures 15 and 16.

Inputs consist of task commands, plan nodes corresponding to planned subtask PST(s,t), and feedback

FB(s,t). Outputs are the executor outputs STX(s,t). Lines in the state-transition table also contain a

pointer to the next (or same) node in the plan, a report or request other modules in the system, and
possibly a pointer to a procedure to be executed when the input conditions are satisfied (see Figure 17).

The procedures may be used to compute parameters (such as velocity or force) for the subtask

commands. They may involve mathematical functions of time and/or state variables such as distance

from target, velocity, coordinate position, etc. For example, a path trajectory procedure may compute a

straight line trajectory from the current point to a goal point, or as illustrated in Figure 18, the planning

procedure may compute acceleration and deceleration profiles as a function of time or position along the

planned trajectory.

The state of EX(s) corresponds to the currently active node in the state graph. The output of EX(s) at

time t is STX(s,t). EX(s) monitors its input PST(s,t) + FB(s,t), and discovers which line (or lines) in

the fsa state-transition table match the current situation. EX(s) then executes the appropriate line in the

state table; i.e. it computes the functions called, outputs the STX(s,t) subtask output commands
selected, and goes to the next state node in the plan state-graph called for by that line [10, 1 1].

The executor fsa state-transition table has the form of a set of IF/THEN rules. Each line in the

state-transition table corresponds to an IF/THEN rule for subtask selection. The state-graph form of

representing plans thus can easily be translated into (or derived from) a set of expert system rules for

task decomposition and subtask sequencing. The left hand side of the state-transition table corresponds

to the IF premise, and the right hand side, to the THEN consequent. For example:

IF the node in the plan state-graph is PST(s,t)

and the feedback from the world model is FB(s,t)

34



A State-Graph Representation of Plan for Fetch (A)

No New Command Dist A>T1 Grip Pres8ure< T2

Grip Dlsl>T3

Dist X>0 Grip

I
Dist<T4

Grip

Dlst>T4

New Commands
Male Fasten

Report

Fetcti

Done

FIGURE 15. A state-graph plan for decomposition of ttie

<Fetch (A)> command. (From reference 10)

35



A State-Transition Table Representation of Fetch (A)

Tasic Plan Next

Command Node Feedbacl( Node Output Report

— C30 No New Command C30 Wait -
Fetch (A) C30 New Command C31 Reach to (A) —
Fetch (A) C31 Distance to A>T1 C31 Reach to (A) —
Fetch (A) C31 Distance to A<T1 C32 Grasp (A) —
Fetch (A) C31 A Not Visable C35 Search for (A) —
Fetch (A) C32 Grasp Pressure<T2

Grip Dist>T3

C32 Grasp (A) —

Fetch (A) C32 Grasp Pressure ^T2
Grip Dist>T3

C33 Move to (X) —

Fetch (A) C32' Grip Dist<T3 C36 Back Up (Y) Object

Missing

Fetch (A) C33 Distance to X>0 C33 Move to (X) —
Fetch (A) C33 Distance to X = C34 Release —
Fetch (A) C34 Grip Dist<T4 C34 Release —
Fetch (A) C34 Grip Dist^T4 C30 Wait Report

Fetch

Done

Fetch (A) C35 A Not Visible C35 Search for (A) —
Fetch (A) C35 A in Sight C31 Reach to (A) —
Fetch (A) C35 Search Fail C30 Wait Report

Fetch

Fail

Fetch (A) C36 Back Up Not Done C36 Back Up (Y) -
Fetch (A) C36 Back Up Done C35 Search for (A) —

FIGURE 16. A state-transition table representation of the

state-graph shown in Figure 14. (From reference 10)

36



A Computing Structure Designed to Execute State-Transition Tables

Toi

•

1

'T -
-

ik Command Plan-Node - Feedback

-

Feedback i * Next Node

Task Command Plan-Node - Feedback ^ Output Report

I

1

1

1 Procedure
(

»

|i •

1

1

A 1

^ V^ Requests & Reports j

Subcommand

37



TASK: -GOTO P2

r
A.

AT PI Move Along Path X

for 0<t<tA
X= \ for tA<t<tB

for tB<t<tG

Time

X

X

X

XP1 + Kt t*

Kat + Ka

XP2-Ki(t-tG)2

FIGURE 18:

^
ATP2

An example of a path-planning procedure for moving
from point pi to p2. Only the x component of the

procedure is shown.

38



THEN compute subtask command parameters

output subtask command STX(s,t)

report status (goal achieved?)

request feedback FB(s,t+l)

go to next (or same) node in plan state-graph

Df: Planning

Planning is the preparation of a plan.

Planning can be done off-line (long before the action begins), or in real-time (immediately before the

actions begins, or as the action is proceeding). Planning may combine off-line and real-time elements.

For example, off-line planning may be used to develop a library of prefabricated plans, and real-time

planning can then select a particular plan, or modify a prefabricated plan in order to fit the conditions

that exist at, or near, execution time. The modification of prefabricated plans can be accomplished by
the procedures called by lines in the state- transition table defined by the plan graph.

Off-line planning can also be used to specify plan schemas. These are partially formed plans with

prespecified constraints, such as the order that must be followed in performing certain tasks. A plan

schema can be represented as a partially ordered graph, or an AND/OR graph, where nodes are actions

and edges are conditions or events. Each trace through the plan schema represents the precedence

constraints on a particular subtask sequence. Parallel paths formed by multiple OR edges leaving action

nodes represent alternative orderings of subtask sequences. The choices among alternative traces can

be determined by evaluation functions which take into account environmental conditions at, or near,

execution time. Real-time planning then consists of evaluation of alternative sequences through the plan

schema.

A MAUV mission will typically begin with an off-line mission plan, and prefabricated plans for all the

lower levels as well. If everything goes exactly as planned, there is no need for real-time planning, or

replanning. Even if there are unexpected events, the range of behavior that can be generated by a

hierarchy of plan schemas, each of which contains a number of conditional branches and error recovery

routines, is so large and complex that it may cover the range of situations that are likely to be
encountered even in combat. If the off-line plans are sufficiently well formulated plans, with

provisions for conditional branches to handle every situation that arises, and error routines to handle all

emergencies, then the system will behave very intelligendy and effectively without real-time planning.

An efficient set of plan executors and associated parameter computation procedures is all that is needed.

Only if situations arise that are not covered by existing plans, is real- time planning or replanning

needed.

In general, however, it is not possible to create enough sufficiently general plan schema so that

real-time planning is totally unnecessary. Military combat can be extremely unpredictable and complex.

The expenditure of fuel and resources, the loss of vehicles, and fluctuations in the tide of battle may
change values and priorities, and affect the choice of actions in ways that cannot be predicted before the

mission begins.

The RCS-3 planners thus periodically examine the current state of the world and re-evaluate whether the

current plan still gives the best mission score. If not, the current plan is replaced with the new plan

giving the best mission score. A variety of real-time planning methodologies can be implemented in

RCS-3. These include scripts and plan schemas; planning algorithms, which apply heuristic formulae

to state variables; search methods, which hypothesize all possible actions and select the best results; and

learning methods, which acquire plans from a teacher.

All these methods require the input of world model data at, or near, execution time (t=0) in order

instantiate the particular plan state-graph that is to be executed in real-time. Most methods require

39



evaluating the results of alternative plans. As shown in Figure 19, the planner may hypothesize some
action or series of actions, the world model predicts the results of the action(s), and computes some
evaluation function EF(s,tt) on the predicted resulting state of the world.

In the simplest case, this evaluation may be used to select between alternative AND/OR schemas, or

planning algorithms, or for selecting the most effective plan state-graph for accomplishing a

commanded task. In the more complex case, where an adequate plan, schema, or planning algorithm

does not exist, a search method may be necessary.

The search method of planning generates a search tree, or a game tree. In the game tree, there are two
types of nodes, and two types of edges. These represent the potential actions of two (or more) players

in a game (or one player vs. nature).

In the case of a two player game, the first type of nodes represent states of the world prior to action by
player one. The edges leaving those nodes represent alternative actions which could be taken by player

one. The second type of nodes represent the state of the world after player one's action is carried out

(or while it is being carried out) prior to action by player two. The second type of edges represent the

set of possible actions which might be taken by player two. This is illustrated in Figure 20.

The nodes in the resulting game tree can be evaluated, or scored, based on the values and priorities

assigned to objects and situations. If player two is an intelligent opponent, the probability is very high

that he will always choose the move that is minimally advantageous to player one. In this case, the best

planning strategy is the famiUar min-max algorithm. This algorithm evaluates the state of the world for

each leaf node. Then working back from each leaf: a) if a node is type one, assign to it the maximum
value of all its successor nodes; b) if a node is type two, assign to it the minimum value of all its

successor nodes.

The game tree then yields a plan graph by the following procedure:

Start at the root node and select the trace through the game tree which gives the maximum type two
node scores and the minimum type one node scores. That trace represents the best plan. The dual of

that trace is the plan state-graph, i.e.

a) For each player 1 action edge in the trace, define a plan node corresponding to the

action of the edge.

b) For each type one node in the trace, define a plan edge corresponding to the condition

represented by that node.

This procedure is illustrated in Figures 20 and 21.

In the case of one player against nature, the type two edge events which occur will not necessarily be

the ones most disadvantageous to player one. The response of nature will be subject to some
probability distribution. In this case, player one will try to maximize his score based on his best

estimate of the probable future state of the environment. This he can do by multiplying the pay-off of

each state of the world by the probability of that state occurring, and taking the action that leads to the

highest expected score. For each probable outcome of the selected action, he plans the best next action.

In one player versus nature, the type two edges represent events of nature which might occur in

response to the action of player one. Type two edges can be labeled with the probability of their

occurring. In this case, the best planning strategy is to evaluate all the leaf nodes. Then working back

from each leaf: a) if a node is type one, assign to it the maximum value of its successor nodes, b) if a

node is type two, compute its expected value by taking the weighted sum of all its successor nodes

multiplied by the probability of their occurring.

40



WORLD MODEL

EVALUATION
TtflTM

EVALUATION
TASK PLANNER1 rlJirrN

IF

FUNCTION EF(i)

HYPOTHESIZED

1
— SEARCH GRAPH i=l,N

HYPOTHESIZED
PREDICTION

T17

THEN—

1

M.M. " ACTION (i)

-

"ACTION (i)

PICK PLAN (MAX EF)

EXPECTED
RESULTS

FIGURE 19. Role if world model in planning. Hypothesized
actions are "What if?" questions.

41



GAME TREE
TWO PLAYERS

Al PLAYER 1 ACTION A2

A3 A4 PL\YER 2 ACTION a5 A6

A7 A9 / Alo\ PLAYER 1 ACTION An \ y^jj A13 A14

AlSy yA16 All
I

^A18 A19/ ^0 A21 / pAyER 2 ACTIONW A25 / \a26 A27 / \a28 A29 / \a30

7 — -^ ^-^ ^^ ^^ 3 © © © © ^ ^ ^ ^2^ (53^^^ "'
7 .6 3 4 7 -2 10 2 -4 10 ^^12 ^"-'4 ^^6

FIGURE 20. A game tree for a two player game. The nodes with

heavy outlines represent states of the world prior to

player one action. Values are to the right of each

node.

42



PLAN GRAPH
TWO PLAYERS

SO

©
S4

S21

FIGURE 21. A plan graph derived from the game tree of Figure 20.

43



The game tree then yields a plan graph by the following procedure:

Select the traces through the game tree which give the maximum type one node scores and branch at

each type two node, a) For each player 1 action edge on the trace, define a plan-graph node
corresponding to that action, b) For each type one node connected to a type two node on the trace,

define a plan edge corresponding to that state.

This procedure is illustrated in Figures 22 and 23.

The resulting state-graph is then the plan PST(s,tt), which can be passed to the executor EX(s) to be
executed, tt is a dummy time index for steps in the plan.

Methodologies for generating plans by learning is a largely unexplored topic. However, some
approaches appear promising. Perhaps the simplest is to record in Gantt chart form the actions of a

human expert performing the functions of a RCS-3 planner module during the execution of a game
scenario. A Gantt chart is a particular instance of a plan. It is possible to generate a Gantt chart for any

particular scenario. A Gantt chart is a single trace through a plan. The Gantt chart can then be
converted into a simple linear state-graph plan which can be used the next time a similar situation is

encountered. Once such a linear state-graph has been generated, it can then be generalized by a human
expert adding conditional branches. This can be done in a manner similar to that in which a human
expert adds rules to an expert system.

Multiple scenarios will generate multiple Gantt charts, each of which is a trace through a plan schema.

Methods maybe developed for building up multipath plan schemas from the systematic combination of

multiple scenarios, represented by multiple Gantt charts.

Neural net mechanisms such as CMAC (Cerebellar Model Arithmetic Computer) [40, 41] also may be

able to leam plans. These mechanisms not only can learn appropriate responses, but can generalize

from one specific task performance to similar situations. Both learning-by-teaching, and self-learning

methods are possible and appear promising.

44



GAME TREE
ONE PLAYER VERSUS NATURE

Al PLAYER 1 ACTION A2

A3
.2

A4 RESPW^SEOT NATURE ^5
.5

A6
.5

A7 A8 A9 / A10\ W-AYER 1 ACTION Lll A12 A13 AM

(SI 4) -3.5

AI5 / \A16 A17 / \A18 A19
.3 / \ .7 5 / \ .5 .6

JO
.4 .3

JSEOFNi
.7 .1

A25
.9 .2

^A26 A27
.8 .7

^28 A29 / \A30
13 .5 / \ .5

15) Kia Kyn fsia fei9^ fcsd 621I
4 3 .5 ^^2 -1 ^^3 — -2

;231 fS24l fi25^ 6261 fcj^ fc28l fc2^ P3C
-4 -3 -2 4 ^*^9 ^^6 ^^5 ^^2 ^"-^-9

FIGURE 22. A game tree for one player versus nature. Values are

to the right of each node. Probabilities of each

response by nature are also indicated.

45



PLAN GRAPH

ONE PLAYER VERSUS NATURE

7\ S28

FIGURE 23. A plan graph derived from the game tree of Figure 22.

46



6. Task Decomposition - H modules (Plan, Execute)

The task decomposition hierarchy in Figures 5 and 9 consists ofH modules which plan and execute the

decomposition of high level goals into low level actions. The mission level controls several groups.

The group level controls several vehicles. The vehicle level controls several vehicle subsystems. The
elemental move level controls the various components of each subsystem. The primitive level controls

the dynamics of each component. The servo level controls the actuators which act on the environment.

Task decomposition involves both a spatial decomposition (into concurrent actions by different

subsystems), and a temporal decomposition (into sequential actions along the time line).

Each H module at each level consists of three sublevels as shown in Figure 24:

1) a planner manager PM

2) a set of planners PL(s) and

3) a set of executors EX(s).

These three sublevels decompose the input task into both spatially and temporally distinct subtasks as

shown in Figure 6.

6.1 Planner Manager

As shown in Figure 25, the planner manager PM has two components:

1) A job assignment module

This module is responsible for partitioning the input task command TC into s spatially or logically

distinct jobs JC(s) to be performed by s physically distinct subsystems.

At the upper levels, the job assignment modules, assign physical resources along with task elements.

The output of the job assignment manager is a set of job commands JC(s), s=l, 2, ..., N where N is

the number of subsystems being controlled.

2) A plan coordination module

This module is responsible for assuring that mutual constraints between subsystem plans are satisfied

and that the subtasks plans for the various subsystems are coordinated where necessary.

It is the responsibihty of the plan coordination module to reconcile the plans generated by each of the s

planners with the plans generated by the other planners at the same level. One method is for each

planner to first compute its own individual plan, and then for the planner coordinator to schedule the

start and finish of the subtasks in each plan to coordinate with subtasks in other plans.

6.2 Planners

For each subsystem, there exists a planner PL(s). Each planner is responsible for decomposing the job

assigned to its subsystem into a temporal sequence of planned subtasks. Each subtask has a

corresponding subgoal.

47



FIGURE 24. The H module at each level has three parts. A planner

manager module PM, planners PL and set of executors

EX.

48



PLANNER MANAGER

JOB
ASSIGNMENT
MODULE

PLAN
COORDINATION
MODULE

• • • :^^ • • t

SUBSYSTEM PLANNER

CYCLIC
REPLANNING
MODULE

PLAN
SCHEMA
DATABASE

SUBTASK
FAILURE

REPLANNING
MODULE

PLAN
UPDATE
MODULE

PLAN GRAPH

EXECUTOR

FIGURE 25. Internal structure of the planner manager and
planners.

49



Planning typically requires evaluation of alternative hypothetical sequences of planned subtasks. Each
planner PL(s) functions by hypothesizing some action or series of actions. The world model then

predicts the results of the action(s) and computes the value of predicted resulting state of the world, as

shown in Figure 19. This value is computed by an evaluation function which performs a

priority-weighted cost-benefit analysis on the predicted results. The hypothetical sequence of actions

producing the best evaluation is then selected as the plan to be executed by the executor EX(s) [421.

The representation of task planning illustrated in Figure 26 indicates that each planner generates a

simple linear string of planned actions. In general, plans are more complex, with conditional branches.

RCS represents plans as state-graphs which allow for conditional branches.

Df: Planning horizon

The planning horizon is the period into the future for which a plan is prepared.

Each level of the hierarchy has a planning horizon of approximately two input task time durations. This

implies that the planner at each level generates a plan for the current and the next planned input task.

Planning is performed top-down, and there always exists a hierarchy of plans.

Figure 27 shows a timing diagram for the RCS-3 task decomposition and sensory processing system as

was tp be implemented for the the MAUV control system. The highest level input command is to

accomplish the mission. The mission plan covers the entire backlog of work to be done, and the

planning horizon of the mission level is the end of the mission. At each lower level, plans are

formulated (or selected) in real-time to accomplish the current and next task in the plan of the level

immediately above. Each task in the higher level plan is decomposed into a lower level plan of at least

two, and typically less than ten, subtasks. The planning horizon thus shrinks exponentially at each

successively lower level of the hierarchy.

Similarly, the rate of subtask completion, and hence the rate of subgoal events, increases at the lower

levels of the hierarchy, and decreases at upper levels of the hierarchy. If the planners at each level

generate plans containing an average of five steps, the average period between changes in output at each

level will increase by a factor of about five at each higher level in the control hierarchy.

Replanning is done either at cyclic intervals, or whenever emergency conditions arise. The cyclic

replanning interval is about an order of magnitude less than the planning horizon (or about equal to the

expected output subtask time duration). Thus the real-time planner must work an order of magnitude
faster than real time. Emergency replanning begins immediately upon the detection of an emergency
condition.

Figure 28 shows three levels of planning activity. The activity represented by the Gantt chart at the

highest level is input to the top level H module as a task command. This task is decomposed by the job

assignment manager and three planners of the top H module into three simultaneous plans consisting of

four activity-event pairs each. The first executor of the top level H module outputs the current subtask

command in its plan to a second level H module. This second level task command is decomposed by
the job assignment manager and three planners in the second level H module into three plans, again

consisting of four subtasks each. The first of the second level executors outputs the current activity in

its plan to a third level H module, which further decomposes it into three plans of four subtasks. At
each level the final subgoal events in the plans correspond to the goal of the input task. At each

successively lower level, the planning horizon becomes shorter, and the subtasks become more detailed

and fine structured.

The timing diagram in Figure 27 illustrates the duality between the task decomposition and the sensory

processing hierarchies. A sensory event at one hierarchical level can be defined as a sequence of events

50



STX (i,3,t)

FIGURE 26. At each level i, each planner PL(j) produces a string

of planned subtasks PST(iJ,t). At time t the executor

EX(j) reads the planned task PST(iJ,t). The feedback

FB(ij,t) and computes an output STX(ij,t).

51



RCS-3 TIMING DIAGRAM

HISTORICAL
TRACES

start of

mission

T-2 hr

FUTURE
PLANS

T=0
goal of

mission

T+2 hr

event summary interval

from beginning of

mission -2 hr

event summary interval

-30 min

input sample period = 600 msec

f^Ianning interval

- 30 min

^-2 hr planning horizon to

to end of mission

command update interval -30 min

leplanning interval

- 5 min

-SO min planning

horizon

command update interval - S min

^10 min planning

horizon

command update interval - 1 min

^-2 min planning

hcHizon

command update interval - 10 sec

-20 sec planning

horizon

command update interval = 2 sec

4 sec planning

horizon

OUTPUT
update interval = 600 msec

Executor cycle period = 600 msec at all levels

FIGURE 27. A timing diagram for the MAUV version of RCS-3
illustrating the planning and sensory processing time

scales at each level.

52



Hierarchical Planning

t =

FIGURE 28. Three levels of planning activity in RCS-3.

53



at the next lower level. At each level in the hierarchy, the sensory processing modules look back into

the past about as far as the planner modules look forward into the future. At each level, future plans

have about the same detail as historical traces.

The goal events which terminate each subtask in the plan, when achieved at time t=0, become the

observed events that make up the historical trace. To the extent that a historical trace is but a time

shifted duplicate of a former future plan, the plan was followed and every task was accomplished as

planned. To the extent that a historical trace deviates from the plan, there were surprises.

This suggests a measure of performance for robot planners. A metric which quantifies the extent to

which the historical trace deviates from the plan could be integrated over the period of a task. The
inverse of the resulting value would provide a figure of merit for a robot planner.

6.3 Executors

For each planner PL(s), there is an executor EX(s) which is responsible for successfully executing the

plan prepared by its respective planner. When each subtask in the current plan is successfully

completed, the executor steps to the next planned subtask. When all the subtasks in the current plan are

successfully executed, (i.e. when all the subgoals in the plan are successfully achieved), then the goal

of the plan is achieved. The executor then steps to the first subtask in the next plan.

The executor modules operate on short, regular intervals, or execution cycles. A flow chart of the

executor is shown in Figure 29. The length of the execution cycle is set by a system state clock. The
period of the state clock is defined by the rate at which sensory input data is sampled. In the MAUV
control system, the executor state clock at all levels increments every 600 milliseconds. Other
implementations of RCS-3, may use other time increments. For example, the NASREM [6]

implementation for the space station telerobot manipulator uses a one millisecond executor cycle at the

servo level, and submultiples of this rate at higher levels.

The executor at each level has the task of reacting to feedback in one state clock period. If the feedback

indicates the failure of a planned subtask, the executor branches immediately to a preplanned emergency
subtask. The planner simultaneously selects or generates an error recovery sequence which it

substitutes for the former plan which failed.

If unexpected events cause a plan to become obsolete, and if no error recovery procedures or

emergency subtask is adequate to deal with the current situation, the control system is without a plan.

A condition in which one or more levels has no plan available for execution can be described as a state

of "confusion". The time required to generate a new plan is an important system parameter, and what
the system does while a new plan is being computed is an important issue in error recovery and restart.

Every time the state clock increments one count, the executor executes a communicate-compute-wait
sequence as shown in Figure 30.

COMMUNICATE

During the communicate interval, the operating system moves data from process output buffers to

process input buffers. This can be done either by actually moving data, or by changing pointers. It

also updates world model global data variables.

54



K)

WAIT FOR STATE CLOCK

READ
CURRENT NODE IN
PLAN, WORLD STATE,
INTERNAL STATE

PROCESS INPUT,
COMPUTE PREDICATES,
SEARCH TRANSITION TABLE

GOTO NEXT (OR SAME)
NODE IN PLAN

T
GOTO

RECOVERY
PLAN NODE

COMPUTE OUTPUT
SUBCOMMAND AND PARAMETERS,
WRITE OUTPUT, POST STATUS,
POST WORLD MODEL QUERY

FIGURE 29. A flow chart of the executor modules at each level.

55



Input
T2 Output

^
B1 B2 N

Compute

RQ
/

t=l

T1

Communicate

Move
Data

T1 T2
Communicatel Compute H Wait

t = i + 1

Icommunicatel
B2 Fixed B1 Fixed Don't
B1 Changing 82 Changing Care

FIGURE 30. Executor timing for communicate-compute-wait cycle.

56



At the beginning of the communicate interval each executor reads:

a) the current subtask in the plan generated by its respective planner

b) feedback from the world model reporting current state of the world
c) status from the planners/executors at the next lower level

d) status from the other executors at the same level

COMPUTE

During the compute interval, the various executors access input buffers and global variables in the

world model. Each executor (possibly in parallel) performs a number of calculations. These include

processing the input, if necessary, to put it into the proper form for computing predicates.

Each executor then searches its list of predicates and computes whether any conditions are satisfied that

would cause it to step to another state in the plan graph. If not, the executor stays in the current state.

Each executor then computes an output subcommand to the next lower level in the control hierarchy.

This output may be simply a symbolic subcommand stored in the current node of the plan graph, or it

may contain numerical parameters that depend on command and feedback variables. The output

parameters may, for example, be computed by an algorithm which compares the planned subtask goal

with the state of the world reported by feedback, and generates an output designed to null the difference

between the current state and the goal state. In this case the executor acts as a servo, closing a control

loop at its particular level of the hierarchy.

Finally during the compute interval, each executor writes an output subcommand into its output

command buffer, posts a request for input from the world model in the request buffer, and puts status

reports to the next higher level and to the world model in the status buffer.

WATT

During the wait interval, the executors wait for the next increment of the state clock. Any process

which finishes before the end of the compute interval, waits for the next communicate interval for new
input data. Any process not finishing before the end of the compute interval continues processing until

finished, and then waits for the next communicate interval for its results to be transmitted and new data

acquired.

In the MAUV version of RCS-3, this communicate-compute-wait cycle repeats every 600 milliseconds.

Feedback from the world model keeps the executors informed as to events in the world. Status reports

inform the executors of the state of the rest of the control system. Status reports from the next lower
level provide a handshaking acknowledgment of receipt of the subtask command and an echo of the

unique identification number of the command currently being executed in the next lower level. This

enables each EX(s) process to know that its subtask output has been received and is being executed.

Error status reports are posted if there are failures in handshaking, or if time limits for subcommand
execution are exceeded.

An executor may also use feedback or status reports for coordinating its output with other executors at

the same level. Coordination can be based either on the detection of events in the world, or on clock

timing.

The data buffers forming the input and output buffers to an H module at the i-th level are shown in

Figure 31.

The executors at all levels produce an output every 600 milliseconds. Thus, a subtask at any level can

57



1B NB 18 28

N Command-String Inc-Cmd # NC-Clk #

48 IB

Plan-Head-Ptr PIn-Lgt

Eval-Func (s, k, s) k j

18 18 28

Hyp-Act 0)

Hyp-Stat (k)

IB MB
M FB-String

F8 (i, s, t)

Status Inc-Cmd # Est-End-Clk

18 KB IB 28

K Req-String Inc-Rq # Rq-Clk # -<*
STX(i.s.t^1)

18 JB ''

TC (i, r, t)

JA(i)

Hi

JC (i, s, t)

PL (i, s)

^ PST (i, s

EX (i, s)

Plan-Head-Rr i PIn-Lgt

18 28

J Output-String Inc-Out #
|
NOC-Clk #

PST (i, s, 1)

PST (i, s, 2)

PST (i, s, PIn-Lgt)

N Command-String Inc-Cmd # NC-Clk #

Plan-Head-Ptr PIn-Lgt
1

' '
'

TC(i-1, s, t-f 1)

FIGURE 31. Data buffers for input and output to the H module at

the i - th level.

58



be altered on any state clock cycle, and the minimum subtask period at all levels is 600 milliseconds. In

other words, the finite state automata comprising the executor at each level has a state clock with 600
millisecond period, and any state in the plan state graph will be occupied by the active token for at least

600 milliseconds once it is entered.

The executor outputs typically do not change in value every 600 milUseconds, except at the servo level

where 600 milliseconds is the servo sample period. The primitive level output changes every 2

seconds. At higher levels, changes in output are event driven at irregular intervals. The E-move output

changes with events which occur approximately every 10 seconds. The vehicle level output changes on
average every minute. The group level output changes about once every 5 minutes, and the mission

level output averages about one change every 30 minutes.

In the current MAUV version of RCS-3, the primitive and servo levels reside in the University of New
Hampshire controller. The E-move executor provides a framemod command to the UNH controller

every 600 milliseconds. The E-move framemod output value changes approximately every 10 seconds.

A summary of the RCS-3 timing is given in the following table:

TABLE 1 : MAUV RCS-3 TIMING

State Clock Period Average rate of Planning

(Executor cycle time) change of output Horizon
E-move 600 millisec -10 seconds ~2 minutes

Vehicle Task 600 milUsec ~1 minute -10 minutes

Group 600 milUsec ~5 minutes -50 minutes

Mission 600 millisec ~30 minutes -2 hours

59



7. World Modeling - M modules (Remember, Estimate, Predict, Evaluate)

The world model is the system's best estimate and evaluation of the history, current state, and possible

future states of the world, including the states of the system being controlled. The world model
includes both the M modules and a knowledge base stored in global memory. The world model thus

corresponds to what is widely known in the literature as a blackboard [18].

The knowledge stored in the world model consists of state variables, maps, lists of objects, tasks, and
events, and attributes of objects, tasks, and events. The world model includes both a priori information

which may be provided to the system before a mission begins, and a posterior knowledge which is

gained from sensing the environment as the mission proceeds.

As shown in Figure 8, the M modules at each level perform the following functions:

a) Maintain the global memory knowledge base, keeping it current. The M modules update the

knowledge base based on correlations and differences between model predictions and sensory

observations. This is illustrated in Figure 32.

b) Provide predictions of expected sensory input to the corresponding G modules, based on the state

of the task and estimates of the extemal world, as shown in Figure 32.

c) Answer "What is?" questions asked by the planners and executors in the corresponding level H
modules. The task executor requests information about the state of the world, and uses the answers to

monitor and servo the task, and/or to branch on conditions to subtasks that accomplish the task goal.

See Figure 33.

d) Answer "What if?" questions asked by the planners in the corresponding level H modules. As
shown in Figure 19, the M modules predict the results of hypothesized actions.

e) The M modules also contain a set of values, and a process which evaluates the current situation and
potential future consequences of hypothesized actions by applying evaluation functions to current states

and to future states expected to result from hypothesized actions. The evaluation functions have as

variables the set of values assigned to events such as vehicle survival, subtask completion, and
information gathered by the vehicles. They also have as coefficients of those variables, the set of

priorities assigned to each of the values. Values such as risk and payoff may be assigned to regions on
maps. Cost and risk values may also be associated with map route segments.

Mission objective priorities are defined, and values are assigned to vehicles, targets, and resources at

the beginning of the mission. These are typically not changed during the mission. Lower level task

priorities are derived from the mission level priorities in the context of specific situations and state

variables contained in the world model.

The evaluation functions use the priorities and values to provide value driven logic [30] for planning

and execution at several hierarchical levels. The planners use the world model predictors and evaluation

functions to search the space of possible futures, and choose the sequence of planned actions that

produce the best evaluation. The executors are also able to apply value driven logic to the current state

of the world in order to produce moment by moment behavioral decisions.

7.1 Global Memory

Global memory is the database wherein is stored knowledge about the state of the world including the

internal state of the control system.

60



Recognized/Integrated
Event

.e

b9'

Sensory
Observations

FIGURE 32. Role ofM module in predicting sensory input and in

up-dating knowledge base based in correlations and
differences between predictions and observations.

61



Planned
Task

Command

Contents

StateofWorld

What Is?

StateofWorld

H-Executor '

If (FB, Command)

Then (Subcommand,
Request)

Subtask
Command

FIGURE 33. Role ofM modules in responding to H module
executor "What is?" questions.

62



7.1.1 Contents of Global Memory

The knowledge in the global memory consists of:

a) Maps

Maps describe the spatial occupancy of the world. A map is a spatially indexed database showing the

relative position of objects and regions. Maps may also contain overlays, which may indicate values

such as utility, cost, risk, etc. assigned to regions or objects on the map. These values can be used for

planning and execution of tasks.

There are two types of map coordinate frames of importance to the MAUV project: world coordinates,

and vehicle coordinates. These are illustrated in Figure 34. A world coordinate map is a two
dimensional representation in which latitude and longitude are the x-y coordinates, and each pixel

contains a pointer to a data structure that gives the physical properties and z-dimension of the region or

objects covered by that pixel. Objects with vertical dimensions are projected onto the x-y plane of the

map, and regions of constant height (or depth) may be indicated by contour lines.

A vehicle moving through the world can be represented as an object moving on the world map. The
world map may be scrolled so as to keep a particular vehicle of interest at the center.

A vehicle coordinate representation of a map is also shown in Figure 34. The vehicle coordinate map is

a polar coordinate system centered on the vehicle. Pixels are referenced by range and bearing. The
vehicle coordinate map is derived from the world coordinate map. The contents of the pixels in the

vehicle map change as the vehicle moves. This implies that the vehicle coordinate map must be
periodically recomputed from the world coordinate map at a rate such that significant errors do not

occur in the position of important objects on the map. In some cases, it may be convenient to have the

vehicle coordinates represented on a log polar plot, where the range to pixels is represented on a

logarithmic scale. This provides high resolution for near objects, and low resolution for distant.

Objects at infinity may then be arranged around the outer edge of the vehicle centered world map.

The MAUV world model has a global database in which the world map is stored in quadtree form.

This is illustrated in Figure 35 [43]. The minimum resolution of the quadtree is one half meter. The
quadtree is an efficient structure for storage, but not for updating or scrolling. Therefore, the portion of

the world map that is relevant to tasks being performed at the various hierarchical levels are

transformed from the quadtree into a hierarchy of local world maps, each of which has the form of a

256x256 pixel array.

For each different hierarchical level, the local array map has a different resolution. Local array map
resolution increases at each successively lower level, while the area covered by the local array map
increases at each successively higher level. At each level, the local array map typically covers a region

which completely contains the task being planned at that level. It has a resolution which is sufficiently

fine grained so that subtasks being planned at that level are easily resolved. Local array maps at

different levels thus represent a pyramid structure as shown in Figure 36.

These local pixel arrays are initialized so as to be approximately centered on the vehicle or group
performing the task. As the vehicle or group moves away from the center of a local array map, the

updated map is transformed back into the quadtree, and a new portion of the global world map, with the

vehicle again at the center, is transformed into the local array map. As the vehicle moves through the

world, the local array maps thus form a series of overlapping windows on the global world quadtree

map.

63



M uiup]e

lonomous

WORLD MODEL
MAPS hides

MAP FILE

EEGIOH
OCEAN
ROUTEl
R0UTE2
HAKBOR •,;^

VAYPOINT ^\

FIGURE 34. World Model map representations.

64



Global Database

A Prior Map
2048m X 2048m

Sensory Map
2048m X 2048m

Quadtree

Resolution

16 X 16m X 1m

8 bits value

Quadtree

Resolution

0.5m X 0.5m X 0.5m

8 bits elem.

8 bits conf.

Quadtree

Object Feature

Map

Object Feature

Table

Local Map

256 X 256

0.5m X 0.5m X 0.5m

8 bits elevation

8 bits confid.

Local Map

128 X 128

4mX4mX1m

8 bits

8 bits

8 bits

8 bits

AVG. elev.

S.D. elev.

MAX. elev.

MIN. elev.

E-MOVE

128m X 128m

VEHICLE

512m X 512m

FIGURE 35. Global database storage of maps.

65



WORLD MODEL MAPS

MISSION
MAP

64 km X 64 km

256 m resolution

GROUP
MAP

8 km X 8 km

32 m resolution

VEHICLE
MAP

1 km X 1 km

4 m resolution

E-MOVE
MAP

128 X 128 meters

0.5 m resolution

FIGURE 36. Different resolutions of local maps for different

hierarchical levels.

66



These local world map arrays can then be further transformed into vehicle centered maps, or

egospheres, and updated with sensory data.

b) Lists

All known objects, tasks, features, regions, and relationships, and events are listed in the global

memory database indexed by name, and characteristic features. Each item in the list has a data form, or

"frame", containing its attributes, as shown in Figure 37. Object frames contain information such as

position, velocity, orientation, shape, dimensions, reflectance, color, mass, and other information of

interest. For moving objects, the object frames contain not only current map coordinates, but a past

history or trace of coordinate positions.

c) State Variables

The state variables in global memory are the system's best estimate of the state of the world, including

both the external environment and the internal state of the H, M, and G modules.

Events are state vectors which include the time variable. Event vectors or event frames contain

information such as start and end time, duration, type, cost, payoff, etc.

Recognized objects and events may also have associated with them confidence levels, and degrees of

believability and dimensional uncertainty. At different hierarchical levels, object frames have different

levels of detail and spatial resolution, and event frames have different levels of temporal resolution.

7.1.2 Implementation of Common Memory

Common memory in the MAUV architecture is not located in a single physical database, but is

distributed over several computers, memory boards, and mass storage devices on a VME bus.

Common memory is, in fact, distributed over more than one vehicle. Variables in common memory are

globally defined, i.e., they may be accessed (read or written) by name from local processes running at

any level. Of course, the time required to access a global variable is not the same for aU processes. For

example, in order for a global variable in vehicle-A to be read or updated by a process in vehicle-B, the

two vehicles may have to rendezvous and communicate world model updates. This may take many
minutes or hours. In the mean time vehicle-B would be forced to use its own local copy of the global

variables, with the knowledge that it is not current, and therefore possibly incorrect.

67



WORLD MODEL

Real Time Object Oriented Database

Name

vehicle 1

vehicle 2

vehicle N

defense 1

target 1

channel

shoal

barge

Attributes

Tree Dynoinlc Storage

Vehicle Frame

Position -- Map Coordinates

Dynamics -- Velocity

Acceleration

Geometry -- Shape

Size

Boundaries

Faces

Edges

Vertices

Attributes -- Type
Mass
Reflectance

Capabilities - Speed
Weapons
Range

Position Frame

X Time.

FIGURE 37. Object database in world model.

68



8. Sensory Processing - G modules (Filter, Integrate, Detect, Measure)

The sensory processing leg of the MAUV control hierarchy consists of G modules which recognize

patterns, detect events, and filter and integrate sensory information over space and time. As shown in

Figure 7, the G modules are dual to the H modules. They also consist of three sublevels which:

1) compare sensor observations with world model predictions

2) integrate correlation and difference over time

3) integrate correlation and difference over space

These spatial and temporal integrations fuse sensory information from multiple sources over extended

time intervals.

Newly detected or recognized events, objects, and relationships are entered by the M modules into the

world model global memory database, and objects or relationships perceived to no longer exist are

removed. The G modules also contain functions which can compute confidence factors and
probabilities of recognized events, and statistical estimates of stochastic state variable values.

8.1 Egospheres

An egosphere is a two dimensional representation of the world projected onto the surface of a sphere

[44, 45]. It is obtained by placing a transparent sphere of unit radius around a vehicle (or group), and
projecting the world onto that sphere. The relationship between the world map and an egosphere is

shown in Figure 38.

Pixels on the egosphere contain pointers to data structures that indicate range and surface properties

(such as reflectance) of the region or objects covered by that pixel. Regions of constant range can be
indicated by contour lines. Objects are projected onto the surface of the egosphere where the line of

sight from the origin to the object intersects the egosphere. The egosphere is thus a view of the world
as seen from an individual vehicle (or from the center of a group).

There are a number of different egosphere representations:

1) A sensor (camera) egosphere is shown in Figure 39. The rows and columns in the image of the

camera field of view of the camera can be represented either by z and x coordinates, or by azimuth and
elevation. For narrow field of view, these representations are essentially the same. For wide field of

view, azimuth and elevation are preferrable because there are fewer problems with distortion and edge

effects

2) A vehicle egosphere is shown in Figure 40. It has coordinates of azimuth and elevation measured in

a reference frame fixed in the vehicle chassis.

3) An inertial egosphere is shown in Figure 41. It has coordinates of azimuth measured east from
north, and elevation measured up from the horizon. It has the advantage that distant objects remain

fixed despite vehicle rotation or small amounts of translation.

4) A velocity egosphere, is shown in Figure 42. The velocity vector defines the positive z-axis (or

pole), and gravity defines the plane of zero azimuth. The velocity egosphere representation is well

suited for dealing with image flow. As the vehicle moves, the positive z-axis corresponds to the focus

of expansion. For stationary objects in the environment, image pixels flow along great circle arcs of

constant azimuth.

69



WORLD MAP/EGOSPHERE TRANSFORMATION

Egosphere

FIGURE 38. Geometric relationship between world map and
egosphere.

70



CAMERA
HELD-OF-

y / I VIEW

FIGURE 39. Camera egosphere.

71



Top of Vehicle

FIGURE 40. Vehicle egosphere.

72



Local Vertical

CAMERA
HELD-OF-
VEEW

WORLD MAP
PROJECTION

North

FIGURE 41

.

Inertial egosphere.

73



ANTI-GRAVITY

Z / Vehicle
velocity

FIGURE 42. Velocity egosphere.

74



The vehicle egosphere representation is well suited for fusing sensory data from multiple sensors. For

example, range data from a sonar sensor can be overlaid on the vehicle egosphere with vision data from

a camera. Range data from multiple sonar sensors (or if the vehicle is stationary, multiple readings of

the same sensor) can be overlaid on the vehicle egosphere to build up an image.

The inertial egosphere is well suited for fusing multiple sensor readings over time on a moving or

rotating vehicle. The inertial egosphere is also ideal for comparing sensory input with world model
predictions from stored map data. If sensory data is overlaid with world map data on the egosphere,

each brightness pixel from the camera will be overlaid with range data from the world map.
Conversely, objects observed in the image will be overlaid on objects predicted in the map.

The velocity egosphere is ideal for computing image flow due to motion of the vehicle through the

world. As shown in Figure 43, objects in the world appear to radiate outward from the positive z-axis,

and converge to a point at the negative z-axis as the vehicle moves through the world. The velocity of

image flow for each point on the velocity egosphere is a simple function of velocity, range, and
elevation angle on the egosphere. For stationary objects in the world, the image flow equations for

egosphere pixels are given by equations (1) and (2)

(1) dA/dt = v(sin A) /r

(2) dB/dt =

where A is the angle between the camera velocity vector and the egosphere pixel

r is the range to the object covered by the pixel

and V is the velocity of the camera

Vehicle velocity is typically known. Predicted image flow requires range data for each pixel. Predicted

range can be obtained from the world map. Observed image flow can be used to compute range for

each pixel. If world map data is overlaid on the velocity egosphere, differences between observed and
predicted image flow can be used to correct object positions predicted from the map.

As shown in Figure 44, the image flow equations for moving objects are given by equations (3) and (4)

as

(3) dA/dt = (v - v^) (sin A) /r + v (cos A) /r

(4) dB/dt = - Vx / (r sin A)

where v^ is the object velocity along the vehicle velocity vector

Vy is the object velocity perpendicular away from the vehicle velocity vector

and Vj^ is the object velocity perpendicular to Vy and v^

Figure 45 shows the transformations between the various egosphere representation. Landmark

75



For stationary objects:

dA/dt = (sin A / r) v

dB/dt =

FIGURE 43. View from center of velocity egosphere

76



Anti-gravity

For Moving Objects:

v^ parallel to v

V perpendicular away from v

dA/dt = (cos A / r) V + (sin A / r) (v

dB/dt = -V, / (r sin A)

-V )

FIGURE 44. Velocity egosphere.

77



Camera
E.S.

—
I

World \

I Map
J

A = f (camera pan, tilt, roll)

B = f (vehicle roll, pitch, yaw)

C = f (vehicle z)

D = f (vehicle x, y, heading)

E = f (camera velocity vector)

FIGURE 45. Transformations for matching camera data to world

map data.

78



navigation can be accomplished by matching sensor data with world map data on the egosphere. When
sensor data correlates witii map data on the egosphere, the vehicle position on the map is correct. When
sensor data does not correlate with map data, the direction and approximate magnitude of the error in

vehicle map position can be determined by computing on the egosphere the approximate displacement

of the vehicle needed to produce the image flow required to null the difference between sensor

observations and map predictions. The position of the vehicle on the map can then be corrected (or the

vehicle can be physically driven to a new location), and another comparison between sensor and map
data on the egosphere can be made. This error correction process will converge rapidly so as to "servo"

the vehicle position into the correct map position.

Vehicle maneuvers relative to objects on the egosphere can often be computed directly from simple

trigonometry on the egosphere data. For example, steering around an obstacle can be accomplished by
finding the point on the edge of the obstacle that lies closest to the vehicle motion vector (i.e. has the

smallest value of A) on the egosphere, and steering in that direction. Another example, if an incoming
missile on the egosphere exhibits motion, it is probably not an immediate threat, since an object which
displays motion on the egosphere is not moving toward the center of the egosphere. A reasonable

avoidance strategy is to steer in a direction opposite from the apparent motion. If, however, the missile

appears motionless and growing larger in size, then it is an immediate threat, for it is coming directiy at

the egosphere center. An avoidance strategy is to immediately steer anywhere in a plane 90 degrees

from the missile's image.

Both egospheres and world maps can have overlays which indicate values to be used for planning and
execution. For example, a region on a map or on an egosphere may be labeled as enemy territory, and
assigned a risk value. If stealth has a priority, motion can be planned so as to limit exposure to that

region.

Both egospheres and local world map arrays have varying resolution depending on hierarchical level.

For egospheres, the relation between resolution and hierarchical level is not necessarily the same as that

of the local world maps. Resolution on the egosphere is determined by the resolution of the sensor

systems using the egospheres. In the case of air or land vehicles using optical sensors, the resolution

of the sensor system increases with range, and hence with higher levels in the hierarchy. As illustrated

in Figure 46, high resolution narrow field-of-view sensors are typically used for long range
measurements, while low resolution wide-field-of-view sensors are typically used for short range
measurements. Long range sensing is typically relevant to high level task decomposition, while short

range sensing is relevant to low level task decomposition.

For optical sensors in air, the percentage of the sphere accessed by the sensor system at any instant of

time decreases at each successively higher level. However, for underwater sonar systems, resolution

rarely exceeds 1 degree. Long range sonar typically has much lower resolution. Thus, for the MAUV
project, only a low resolution ( approximately one degree per pixel) egosphere representation will be
developed. The MAUV egosphere will cover the entire egosphere with 55,024 resolution elements.

This representation will be used for obstacle avoidance and to fuse data from all types of acoustic

sensors.

If a vision system were added to the MAUV vehicle, a second egosphere representation would be

added. This would have a resolution in which the field of view of the camera (about 45x45 degrees)

would contain 256x256 resolution elements. The camera field of view would thus create a 45x45
degree patch on the surface of the egosphere which would be moved over the egosphere to match
movements in the camera pointing system. Input from the camera would thus "paint" video image data

onto the egosphere. As the camera pans and tilts, it would leave a trail of data, which would grow old

with time. The goal of the camera pointing system would be to keep the camera pointed at regions on
the egosphere where action is occurring, or to regions where objects relevant to the task are located.

The camera pointing system would thus allocate dwell time, or "attention", of the vision system.

79



High Resolution

Narrow
Field-Of-View

Medium Resolution

Medium
Field-of-View

Low Resolution Full Sphere

Field-of-View

FIGURE 46. Egosphere for camera system with three levels of

resolution. Each field of view consists of 256 x 256

pixel array.

80



On a land or air vehicle, this second egosphere representation could be used for vehicle level

navigation. For manipulation, this egosphere representation would be used by the object/task level. On
the MAUV this representation could be used for optically guided docking maneuvers, or for optical

inspection of objects.

For air and land vehicles, a high resolution egosphere representation could also be provided to cover a

3x3 degree patch on the egosphere with 256x256 resolution elements. This representation would be

used for fusing data from vision data collected through telescope optics. Such data would typically be
relevant to group level control decisions. The 3x3 degree patch would move over the egosphere to

match movements in the telescope pointing system.

The properties of these mid and high resolution egosphere representations are analogous to a

foveal-peripheral vision system. Mid resolution camera optics would collect data relevant to vehicle

task objects, and high resolution telescopes would collect data relevant to longer term group tasks.

Beyond the group level, the range to objects of interest on the egosphere is on the order of tens of

miles. On this scale, virtually all objects and regions of interest are compressed into a flat plane, and
hence the egosphere compresses into a vehicle centered world coordinate map.

The egosphere (and the vehicle centered coordinate map) representations have the disadvantage that the

positions of objects change constantly with vehicle motion. As the vehicle moves through the world,

the projections of objects on the egosphere flow across its surface. However, for an inertial egosphere,

objects at infinity remain motionless regardless of vehicle motion. Only nearby objects exhibit motion
parallax.

Once the position of the vehicle is known on the world map, the transformation of each pixel from the

world map to the egosphere map (or vice versa) requires only a 3 x 3 matrix multiplication. If the map
region of interest can be localized to a 256 x 256 section of the map, the egosphere to world map (or

vice versa) transformation can be accomplished in real-time (i.e. 16 times per second) by a hardware
vector multipher board of conventional design. Hidden surface removal is accomplished automatically

by transforming the most distant map pixels first, and over-writing with closer pixels.

Since the egosphere updates from sensors at all resolution levels involve images containing no more
than 256x256 pixels, the speed of transformation from egosphere to world map, and vice versa, is

independent of resolution level. Thus, the computation load of coordinate transformation for three

levels of resolution is no more than three times that for one level. Furthermore, since motion parallax is

smaller for distant objects, the slew rates of the mid and high resolution sensors can be kept low,

making the computation load much less than three times, and potentially only slightly more than one
times, that required for the lowest level.

81



9. Implementation of RCS-3

The current MAUV implementation of the RCS-3 control hierarchy is shown in Figure 47. In this

configuration, RCS-3 runs under the pSOS real-time multi-tasking operating system on a VME bus. It

uses pRISM for multi-processor distributed systems. pSOS is written in C and uses Unix for a

program development environment. The pSOS/pRISM system provides communication between
modules of the RCS-3 architecture.

Communications within the RCS-3 control hierarchy uses a common memory, in which state variables

are globally defined on a 32 bit (4 gigebyte) virtual address space. The physical memory addresses

reside on the various single board computers, the common memory board, and the optical disk.

Each module in the sensory processing, world modeling, and task decomposition hierarchies read

inputs from, and write outputs to, the virtual common memory. Thus each module needs only to

know where in global memory its input variables are stored, and where in global memory it should

write its output variables. The data structures in the global memory then define the interfaces between

the G, M, and H modules.

82



COMPUTING RESOURCES OUERUIEUJ

MSEL

SERIflL
8 I/O

Unmiii

68020
4DRnM
GROUP

68020
1 DRHM
E-MOUE

68020
1 ORAM

UEH&MISS

BUBBLE
MEMORY

SYSTEM
CONTROL

2M
DRRM

OPTICHL
DISK

nCTUHL
SYSTEMS

r^ciRF

MSEL

SERIAL
8 I/O

nniTiM

68020
4DRflM
GROUP

68020
1 DRRM
E-MOUE

68020
1 DRRM

UEH^MISS

BUBBLE
MEMORY

SYSTEM
CONTROL

2M
DRRM

OPTICAL
DISK

DEUELOPMENT
SYSTEM

d
i s

5 r
n i

o a

V
i

c
s

SERIAL
8 I/O

E
68020
TARGET
(pSOS)

68020
TARGET
(pSOS)

^dDBBBBBBBSSBBhM

68020
TAAGET
(pSOS)

68020
HOST
(UNIX)

2M
DRHM

ETHERNET
iiiiiiiiiiiiii —

SERIAL
8 I/O

TESTING SYSTEM

SYSTEM
CONTROL

INTEGRATION

TESTING

remote file copy

SUN IBM
PC

10
• • •SUN SUN UAK pURK

IRIS
ALGORITHM DEVELOPMENT

FIGURE 47: Implementation of RCS-3 on two MAUV vehicles plus

the development system, simulator, and program
development environment.

83



10. operator Interfaces (Control, Observe, Define Goals, Indicate Objects)

The RCS-3 architecture is designed to serve both autonomous systems (such as MAUV) and telerobotic

systems (such as the space station telerobot servicer). It thus has provisions for operator interfaces

whereby a human can enter the control hierarchy at many different levels. When implemented, these

interfaces can enable an operator to control low level functions, to define high level goals, to observe

system operation at all levels, and to assist the sensory processing system if necessary by indicating

features of objects.

For autonomous systems such as MAUV, most of the operator interfaces have not been implemented.

However, even autonomous systems must be capable of responding to commands from a higher

authority. Also, from time to time, there is the need for autonomous systems to respond to operator

inputs for deployment and recovery, and for performing tasks that are beyond the capability of the

autonomous system. Data interfaces are also needed for data logging, test, and debugging operations.

The RCS-3 system for MAUV thus is designed with an operator interface to provide access to the

control hierarchy at all levels.

10.1 Control Interface Levels

An operator control interface directly into the motor or actuator drivers (at the output of level 1) would
permit the operator to control individual thruster drive currents.

An operator control interface into the task decomposition hierarchy at the input to the servos (at the

middle of level 1) would permit the operator to control individual thnister rates, or forces.

A control interface at the input to level 1, would permit the operator to control a vehicle with a joy stick

or steering wheel. The position, velocity, acceleration or force of the vehicle is controlled. In

manipulation control, this is called resolved motion force/rate control.

A control interface at the input to level 2 (primitive level) would permit the operator to indicate motion

way points on a local map. The vehicle would automatically compute acceleration profiles needed to

produce dynamic motion through the indicated points.

A control interface at the input to level 3 (E-move) would permit the operator to describe key poses on
an interactive graphics display system, or give symbolic commands for elemental movements
(E-moves) such as <execute-S-tum>, <move-to-pose X>, <approach- target-feature Y>, etc. The
input device may be menu driven.

A control interface at the input to level 4 (Vehicle) would permit the operator to designate objects, and

define tasks to be done on those objects, such as <attack-target T>, <defuse-mine M>, etc.

A control interface at the input to level 5 (Group) would permit the operator to define group priorities,

tactics, and assign group task elements to individual vehicles.

A control interface to level 6 (Mission) would permit the operator to change the mission entirely, or to

alter strategy and mission priorities. This level can also select the operating mode of the system (i.e.,

<initialize>, <run>, <shut down>, <reconfigure>, etc.)

10.2 Monitoring Interfaces

Operator interfaces can permit a human to monitor the state of the system, including system state

84



variables, world model, and sensor processing variables at any level. Windows into the common
memory knowledge base permit viewing of maps, lists of recognized objects and events, object

parameters, and state variables such as positions, velocities, forces, confidence levels, tolerances,

traces of past history, plans for future actions, and current priorities and utility function values. Icons

allow state variables to be displayed as dials, bar graphs, and time traces, or be represented as multiple

exposures with time decay.

Sequences of past actions or plans for future action can be represented as state graphs, with windows
into edges to display the conditions required for state transitions, and windows into nodes to display the

state of the various modules in the control system at different times.

Geography and spatial occupancy can be displayed as a variety of maps, vectors, or stick figures.

Object geometry can be represented with wire frame or 3-dimensional shaded graphics. The operator

may also have a direct television image of the robot's sensory environment with graphics overlays

which display the degree of correlation between the world model ( i.e. what the robot believes is the

state of the world) and what the human operator can observe via the sensory input with his own eyes.

10.3 Sensory ProcessingAVorld Modeling Interfaces

An operator interface may also permit human interaction with the sensory processing and/or world
modeling modules. For example, an operator using a video monitor with a graphics overlay and a light

pen or joystick can provide human interpretative assistance to the vision/world modeling system. The
operator might interactively assist the model-matching algorithms by indicating with a light pen v/hich

features (e.g., edges, corners) in the image correspond to those in a stored model. Altematively, an

operator could use a joystick to line up a wireframe model with a TV image. The operator might either

move the wireframe model so as to line it up with the image, or move the camera position so as to line

up the image with the model. Once the alignment was nearly correct, the operator can allow the

automatic matching algorithm to complete the match, and track future movements of the image.

10.4 Programming Interface

The operator interface can also be used as a programming tool. An expert system front end can be used
to input and edit expert system rules. Each level of the RCS-3 control system can be represented as a

state graph, where nodes are states, and edges are state transitions. The operator interface can permit

the state graph to be edited by adding or deleting nodes and edges. It will also permit the nodes and
edges of the state graph to be opened into windows containing the code that is represented by the nodes
and edges. This code can then be edited on-line.

There also exists the prospect that neural net learning systems can be devised that will permit control

functions to be learned by the neural net system observing the response of a human operator to a variety

of control situations. This may permit system response (including tactics and strategies) to be taught by
example. Using an operator interface to control the vehicle, the human operator may be able to teach

the vehicle control system how to behave under a variety of circumstances by simply operating the

system while the neural net system is in a learning mode. In this case, the operator need not be skilled

in programming computers, but can teach the control system by simply showing it how a task should

be done.

10.5 Operator Interface Mechanisms

The global representation of system state variables facilitates interacdon with an operator, because it

provides easy access for displaying variables and debugging the system. An operator interface process

can be written to access system state variables in global memory by using the system dictionary. The

85



interface process would provide the necessary translators to format human inputs into the proper

format, and synchronize them with the control processes at the appropriate hierarchical levels. The
concepts of a "time clutch" and "time brake" developed by Conway and Volz [46] are examples of how
synchronization and hand-off can be accomplished.

By these mechanisms, it is possible for a human operator to enter the control hierarchy at any level, at

virtually any time of his choosing, to monitor a process, to insert information, to interrupt automatic

operation and take control of the task being performed. The operator may also apply human intelUgence

to sensory processing or world modeling functions.

86



11. Detailed Description of RCS-3 Control Levels for MAUV

11.1 Level 6 - Mission Control Level

Input commands to the H module at the mission control level will come from fleet battle management.
They will consist of commands to one or more groups to perform a specific mission. The mission may
be to respond to specific enemy threats or to defend against or attack specific targets or regions. For
example, mission control wiU be capable of executing the following type of commands:

Mine harbor X
Clear mines from channel Y
Monitor access to port Z
Wait in reserve

A mission input command may take several hours to execute.

An input command to the mission level consists of a list of mission objectives or tasks. Each objective

in the list has a "task frame" i.e. a database associated with the task with slots which define priorities,

expected risks, costs, and time to complete. Each objective also has a list of required tools, and a list of

preconditions that must be met before that objective can be attempted.

For example, a mission level input command may have a format of the following type:

List head - Mission (Name)
Objective #1 (Name)

Intended results (these include events, states, situations, etc.)

Priority

Acceptable risk

Payoff for achieving

Expected fuel cost

Expected time to accomplish

Required tools (these include weapons, ammunition, sensors, etc.)

Reqtool #1 (Name)
Reqtool #2 (Name)

Preconditions ( these include events, states, situations, scenarios, etc.)

Precondition #1

Precondition #2
Objective #2 (Name)

Priority

Acceptable risk

Expected fuel cost

etc.

Mission Level World Model

The mission level world model contains a list of conditions known to be true about the world and

resources available to the vehicles and groups during the mission.

Resources List - Groups available

Group #1 (Name, Type)
List of vehicles assigned to group

Group capabilities

87



Speed
Range
Fuel

Weapons
Tools

Group #2 (Name, Type)
List of vehicles assigned to group

Capabilities

Conditions List - World State

Weather state

Water current, direction and velocity

Water temperature

Water salinity

Wave height

Wave noise spectrum

Turbidity (inverse of visibility)

Batde state

At ease

Blue alert

Red alert

Hostilities in progress

Under fire

Attack

Retreat

Hide
Current map coordinates (or sectors) for

Self

Other team members
Current Ust of objects of attention

Friendly forces

Aircraft

Surface Ships

Submarines
Mines

Hostile forces

Aircraft

Surface Ships

Submarines
Objects of interest to mission

Search sectors

Paths and waypoints

Landmarks
For each object on list

Importance (mission value)

Attributes

Attraction/Aversion (analogous to Trust/Fear)

Protect/Destroy (analogous to Love/Hate)

Task state

Current task command being input at

Mission Level

Group Level (for each Group)

88



Vehicle Level (for each Vehicle)

E-move Level (for each subsystem)

Time on task and estimated time to completion for each
Resources expended and estimate to completion for each

Maps

The global database contains a world map in quadtree form as discussed in Section 7.1.1c. From that

quadtree map, a local array map is derived for each hierarchical level, of scale such that the task at that

level fits within the map boundaries. The mission level local array world map is illustrated in Figure

36. It covers an area of 64x64 kilometers, with 256x256 meter pixels.

On the mission map are geographical objects such as harbors, underwater mountains, canyons, coast

lines, points of land, rivers, islands, navigation routes, navigation way points, and bottom depth

contours. The mission map also contains estimated positions of mine fields, and positions and
velocities of other battle groups, both friendly and unfriendly.

Each pixel on the quadtree map and mission level array map contain information such as:

Bottom depth

Max, min, mean, standard deviation.

Map feature type (i.e. rock, hole, ship wreck, debris, etc.)

Object (vehicle, group, mine, ship, landmark, hazard, etc.)

Terrain type ~
Maximum slope

Bottom character ( rocks, sand, mud, etc.)

Overlaid on the mission map is a route graph with planned destinations, route markers, alternate

destinations, and alternate route markers. Routes are stored as a graph of nodes, edges, and enclosed
regions.

* Edges correspond to route segments. For each edge in the graph, the best available

information is stored about route segment distance, traversibility, risk of detection,

risk of destruction, landmarks visable along the route, etc.

* Nodes correspond to destinations, waypoints, intersections of routes, route markers,

alternate destinations, and alternate route markers. Each node has a set of map
coordinates

* Enclosed regions correspond to areas in which no route has been defined.

Since the nodes and way points of the route graph have map coordinates, the route graph can be
overlaid on the mission map.

Mission Level Task Decomposition

At the mission level, mission objectives are decomposed into group tasks. The mission level task

decomposition module therefore consists of a mission planner manager, and a planner and executor for

each group.

The planner manager at the mission level assigns resources (vehicles, fuel, and weapons) and mission

objectives to the group planners. It is the planner manager's responsibility to assure that the resources

assigned to each group are adequate to accomplish the mission objectives with some safety margin.

89



The planner for each group is responsible for selecting a route for its group to follow. At the mission

level, navigation is typically done by searching the route graph, not by searching the free space regions

of the world map. No test needs to be made as to whether route graph edges intersect obstacles. The
existence of an edge in the route graph can be assumed to guarantee that there exists a traversible path.

The route graph gives the length of each route segment, the risk, and any other features that are relevant

to the traversal of that route. The route graph is all that is necessary for mission level navigation

planning. If enemy movements threaten particular routes, the route graph will be updated to reflect the

change in risk associated with the affected route segments.

The planners for each group are also responsible for scheduling the list of objectives so as to maximize
the expected mission score. The expected mission score is obtained by multiplying the probability of

accomplishing each objective times the priority of that objective.

expected mission score = sum over i { pb(i) 'prCi) }

where pb(i) = probability of accomplishing objective(i)

pr(i) = priority of objective(i)

The actual mission score at any time t during the mission is obtained by multiplying the priority of each

objective by the degree to which it was accomplished, and summing over the number of objectives

accomplished up to time t.

actual mission score = sum over i { pr(i) 'oaCi) }

where oa(i) = degree of accomplishing objective(i)

Both anticipated and actual mission scores are time dependent variables, which change as the mission

evolves. The expected mission score ems(t) is the actual mission score up to time t, plus the expected

mission score from time t until the end of the mission T.

ems(t) = ams(t) + ems(T-t)

where ems(t) is the expected mission score at time t

ams(t) is the actual mission score at time t

ems(T-t) is the expected mission score over the time interval between t and the end of the mission T,

ems(t) is similar to the evaluation function used in the A* search algorithm [47]. At t=0, the mission

begins with prefabricated plans in place. As the mission evolves, the mission level group planners

periodically replan the mission. At each replanning increment, a new plan will be generated by
selecting the current plan that gives the best ems(t).

ems(t) will depend on enemy positions and intentions, and many other factors that may not be known
before the mission and typically will change during the mission. The mission level planners must
search a game tree in which the probable actions of the opponents and of nature must be estimated.

Each node of the game tree is evaluated by computing an ems(t). The algorithms described in Section 7

are implemented to generate a plan graph for the mission executors.

As shown in Figure 27, a new mission level plan graph should be generated at least every 30 minutes.

The mission level planning horizon is always the end of the mission.

90



Mission Level Executors

Each mission level executor executes the plan graph generated by its respective mission level planner.

Output from the mission level executors are group task commands. Procedures called by the plan graph

executors compute task command parameters such as required time to complete, degree of aggressive

vs. conservative tactics to be used, degree of risk to be accepted, and payoff weights (priorities) for

subtask achievements.

Mission executors branch to error recovery routines if difficulties arise. They call for emergency
replanning action if a situation arises which is not covered in the existing plan.

Mission Level Sensory Processing

The function of sensory processing at the mission level is to integrate all data gathered during the entire

mission with the a priori information provided before the mission began. It matches world model
predictions with sensory observations. It detects conditions in the world that are different from what is

in the model, and updates the world model. The identity and position of objects of interest in the world

model are checked and verified by sensory data. Mission level sensory processing compares detected

ocean floor features, GPS satellite navigation measurements, and inertial navigation system estimates

with landmarks contained in the world model map. The results of these comparisons are integrated

both spatially and temporally. This data is then used to update the world model, and to assign

confidence levels to world model variables. New objects may be added to the interest List. Objects that

have disappeared will be noted, and those that have been verified as destroyed will be so marked.

1L2 Level 5 - Group Control Level

The function of the group level is to decompose group task objectives into vehicle task commands. In

the simplest case, a group consists of one vehicle. In all cases, group level input commands are

decomposed into sequences of vehicle task commands for individual vehicles.

Inputs

Inputs to the group level consist of commands to perform group tasks in support of a scheduled

mission objective. Examples of task commands to the group level are:

patrol

defend/attack sector

attack/evade group X
obtain intelligence on target list L

Commands may take several minutes to hours to carry out.

Group tasks must be selected from a task vocabulary, which is a set of group tasks for which there

exists either a preprepared task plan, or an task schema from which a plan can be readily generated, or a

search procedure for generating the task plan.

For each group task in the vocabulary, there exists a frame with slots which define required resources,

preconditions, and constraints. There also exists a set of rules for partitioning the group task among the

various vehicles within the group.

A typical group level input command has a format of the following type:

91



Current group task command (Name)
Object of task

Preconditions for task to begin

Goal of task

Resources needed to perform task

Constraints (coordination, timing)

Priority of task

Acceptable risk

Expected fuel cost

Expected time to accomplish

List of possible next group tasks

Anticipated task #1

Expected time till begin

Probability of being next task

Object of task

Preconditions for task to begin

Goal of task

Resources needed to perform task

Constraints (coordination, timing)

Priority of task

Acceptable risk

Expected fuel cost

Expected time to accomplish

Anticipated task #2

etc.

Group Level World Model

The group level world model contains a list of resources

assigned to, or available to, the group.

Vehicles assigned to group (number)

Vehicle #1 (Model, Serial #)

Capabilities

Speed
Range
Fuel

Weapons
Tools

Vehicle #2 (Model, Serial #)

Capabilities

The world model also contains :

Current map coordinates (or map sectors) for:

Self group

92



Group center of mass
Group volume
Group perimeter

Group member positions

Current list of objects of attention

Other groups

Friendly forces

Aircraft

Surface Ships

Submarines
Mines

Hostile forces

Priority for each

Attributes of each

Map coordinates of each

The group level world model also contains maps. For each group two data structures are extracted

from the global database quadtree representation: 1) a 256x256 pixel group level world map centered

about the group center-of-mass and scaled such that the commanded group task fits within the map
boundaries, and 2) data for a 256x256 egospheric projection of the world map centered on the group
center of mass. This data is provided to a real-time egosphere processor in the sensory processing

system.

The group level world model contains a 256x256 array map of scale such that the current, and planned
next, group task fits within the map boundaries. The group map shown in Figure 36 is a region of 8x8
kilometers, with a pixel resolution of 32x32 meters.

Each pixel in the map contains the following information:

Bottom depth within the pixel — (Max, min, mean, standard deviation)

Map features contained in pixel — (Type i.e. beach, gully, ridge, waypoint, landmark, etc.)

Objects contained in pixel ~ Other vehicles, known or suspected enemy positions, etc.

Terrain type covered by pixel ~
Maximum slope

Bottom type (sand, mud, rocks, etc.)

The world model also contains group level routes, stored as a graph of nodes, edges, and enclosed

regions. The group level route graph defines planned destinations, routes, and alternate routes. For
each route segment in the graph, there is an attribute list which contains the best available information

about traversibility, risk of detection, risk of destruction, distance, of that route segment. If some
information about a route segment is unknown, the route graph will indicate as much. If new
information is learned during the mission, either via sensory measurements, or via communication from
another source, it will be entered into the appropriate route segment attribute Ust.

For each route node in the graph there is an attribute list which indicates the node map coordinates, the

node type, etc. Since the nodes and way points of the vehicle level route graphs have map coordinates,

the group route graphs can be overlaid on the 256x256 pixel group world map.

The vehicle world model also contains a list of other groups and their attributes, such as position,

93



velocity, composition, type, and capabilities such as speed, weapons, and range. Traces of group
position are stored for a period extending about 50 minutes into the past.

The world model also contains information about states and the occurrence of events, such as subtask

completion, or the appearance or disappearance of group level objects.

World model information contained in maps, group attributes, and historical traces is used by the group

level planners to plan actions on, or manuevers relative to, objects that are part of a group. The current

positions and velocities of objects within their group, and the timing of subtask completion events, are

used by the executors for task sequencing.

World model information about groups of objects makes it possible to generate predictions about the

position and motion of objects within that group. The world model generates such predictions for use

by the group level sensory processing modules in the acquisition and interpretation of sensory data.

Group Level Task Decomposition

The function of the group level task decomposition module is to decompose group tasks into

coordinated vehicle actions. The group level task decomposition module is analogous to a football

quarterback, who analyses the defense and calls plays. The group task decomposition module attempts

to recognize the tactics, capabilities, and intentions of opposing groups, to understand the risks and
probable results of various actions, and to organize the activity of the group so as to maximize the score

for each commanded group task.

The job assignment module of the group level planner manager contains an expert system which
partitions the group task command into vehicle assignments. TTiese are given to the group level task

and route planners which generate plans for individual vehicles. The job assignment modules also

assign resources such as fuel, sensors, and weapons to the vehicle planners. It is the job assignment
module's responsibility to assure that the assigned resources are adequate for each vehicle to carry out

its assigned activity with some safety margin.

Group Level Planners

The group level has a planner for each vehicle in the group. The route planning part of the group level

planners correspond to the vehicle navigators. These navigators use processed data from instruments

such as compasses, inertial reference systems, clocks, radar, and sonar, and correlate it with maps and
charts. The job assignment manager commands the vehicle navigators to plan courses and routes based

on group goals and objectives, fuel and time resources, obstacles, and potential threats.

The vehicle task schedulers and route planners may select predetermined, well practiced, and optimized

coordinated cooperative vehicle maneuvers by naming the file in which they are stored. Coordinated

cooperative vehicle maneuvers correspond to group tactics. Textbook group tactics may be obtained by
referring to doctrine in tactics manuals.

Group tactics can also be computed, or recomputed, in real-time by gaming search strategies. The
group level planners may make extensive use of real-time game theory techniques. As shown in

Figure 27, the group level cyclic replanners generate new vehicle plans on the order of every 5 minutes.

The planning horizon averages about 50 minutes into the future.

94



In order to facilitate planning, vehicle task commands carry lists of preconditions, resource
requirements, expected costs, expenditure of resources, and risk factors.

The group level planner for each vehicle is responsible for selecting a route for each vehicle to follow,

and for scheduling the list of vehicle tasks so as to maximize the expected group activity score.

Evaluation functions are based on priorities, values of targets, risk factors, acceptable risk criteria, and
probabilities of various outcomes. The expected group task score is obtained by multiplying the

probability of accomplishing each vehicle task, times the priority of that task. The actual group score is

obtained after the group task is ended by multiplying the priority of each vehicle subtask by the degree

to which it was accomplished, and summing over the number of tasks.

expected group score = sum over i,j { pbv(i,j) • prv(i,j) }

where pbv(i j) = probability of vehicle(j) accomplishing subtask(i)

prv(i,j) = priority of vehicle(j) subtask(i)

actual group score = sum over i,j { prv(i,j) • oav(i,j) }

where oav(i,j) = degree of vehicle(j) accomphshing subtask(i)

Both expected and actual group scores are time dependent variables, which change as the group task

evolves. Once the group task has begun, the expected group score is given by

egs(t) = ags(t) + egs(T-t)

where egs(t) is the expected group score at time t

ags(t) is the actual group score at time t

egs(T-t) is the expected group score over the time interval between t and the end of the group task T.

As the group task evolves, the group level vehicle planners will periodically replan the group task. At
each t they select the plan that gives the best egs(t).

Group Level Executors

The group level executors execute the plans generated by the group level vehicle planners. Output from
the group level executors are vehicle task commands. The group level executors are state sensitive

expert systems that work from the set of IF/THEN state transition rules defined by the vehicle plan

graphs. When feedback FB(5,s) indicates that a subgoal in the PST(5,s,tt) plan has been achieved, the

executor EX(5,s) selects the next vehicle task command PST(5,s,tt+l) in the vehicle task plan. It then

issues this planned command as an actual vehicle task command STX(5,s,t).

In all plans, whether prerecorded or computed in real-time, information about the state of the world can

be used by the EX(5,s) executors to modify planned vehicle maneuver commands, to control decision

points, to vary parameters such as speed, to effect synchronization and timing for cooperative

coordinated movements and synchronized maneuvers between multiple vehicles.

95



Sensory Processing

Sensory processing at the group level compares measured navigational features such as buoys, bottom
features, channels, points of land, rivers, and islands with information derived from the world model
maps and lists of objects. Sensory processing also may detect and recognize synchronization signals

and other messages from other groups cooperating on a mission plan.

At the group, an egosphere is used to compare sensory data with world map data. On the egosphere,

the positions of objects are projected as they should appear to an observer in the group command
vehicle, or group center-of-mass. This permits comparisons of sensory data with world map data, and
facilitates the computation of directional maneuvers (turn toward or away from objects etc.). The types

of objects projected onto the group egosphere are major terrain features such as ridges, gullies, and
reefs, as well as other vehicles and known or suspected enemy positions.

As indicated in Figure 27, Kalman filters in the sensory processing system perform temporal integration

over an interval extending about 50 minutes into the past. Attention is focused on objects and events

that lie beyond the spatial and temporal range of interest for vehicle level sensory processing.

11.3 Level 4 - Vehicle Task Level

The vehicle task level receives commands from the group leader (at Level 5). Inputs command an

individual vehicle to maneuver relative to some place, or target, or group of targets, possibly in

cooperation with other members of the command group, and/or to execute a particular task, or

sequence of tasks, in an environment containing multiple threats, obstacles, and unexpected hazards.

Example input commands at the vehicle task level are:

enter harbor

dock with another vehicle

attack ship/sub

deploy mine
cut cable

inspect pipe

close/open valve

The vehicle task level also receives a set of priorities, values, and evaluation function parameters that

allow world model predictions to be evaluated on the basis of estimates of cost, benefit, risk, and

probability of success or failure. Vehicle task commands are expressed in terms of prioritized lists of

targets and objectives. Target kill values and acceptable risk variables for each vehicle are specified by
the vehicle task input commands.

It is the function of the vehicle task level to carry out the commanded vehicle tasks in such a way that

the given set of priority values are maximized from a probabilistic standpoint.

Inputs

Inputs to the vehicle level consist of a command to perform a vehicle task in support of a group activity.

This command will have the following format:

96



Vehicle task (Name)
Object of task

Preconditions for task to begin

Goal of task

Resources needed to perform task

Constraints (coordination, timing)

Priority of task

Acceptable risk

Expected fuel cost

Expected time to accomplish

List of possible next vehicle tasks

Anticipated task #1

Expected time till begin

Probability of being next task

Anticipated task #2
Expected time till begin

Probability of being next

Anticipated task #3
etc.

Vehicle tasks are selected from a task vocabulary. For each vehicle task in the vocabulary, there exists

a frame with slots which define a list of required tools, a list of preconditions that must be met before

the tasks can begin, and a procedure for decomposing the task. This procedure may consist of a

prefabricated task plan, or an task schema from which a plan can be readily generated, or a search

procedure for generating the task plan. There must also exist a set of rules for partitioning the vehicle

task among the various subsystems within the vehicle. There may also exist a set of constraints that

apply to subsystem assignments and vehicle task plans.

Vehicle Level World Model

The world model at the vehicle task level contains information defining the position and orientation of

objects in the vicinity of the vehicle such as other vehicles, bottom features, buoys, piers, ships, mines,

submarine nets, etc. This information is used by vehicle level planners to schedule E-Moves and
compute E- Move parameters so as to plan attack or evasive maneuvers, and efficiently carry out vehicle

task assignments.

Information about objects is indexed both by name of the objects and their position in space relative to

the referenced vehicle. Attributes of objects such as their shape, size, velocity, type, condition,

capabilities, probability of correct identification, and probable intended course of action are also

contained in the world model at the vehicle task level.

The identity, position, and orientation of objects are used by the vehicle level task decomposition

modules to plan and execute cooperative maneuvers relative to friendly objects or vehicles, and to plan

and execute attack or evasion maneuvers relative to hostile objects or vehicles.

The vehicle level world model also contains a list of resources assigned to, or available to, the vehicle

97



List Head - Subsystems
Subsystem #1 (Pilot)

Capabilities

Speed
Range
Fuel supply

Subsystem #2 (Sensor suite)

Capabilities

Availability

Subsystem #3 (Communications)

Subsystem #4 (Weapons)
etc.

The vehicle level world model contains maps. For each vehicle task, two data structures are extracted

from the quad tree mission level representation: 1) a 256x256 pixel map centered about the vehicle and

scaled such that the vehicle task fits within the map boundaries, and 2) a egospheric projection centered

on the vehicle.

In the 256x256 map, each pixel contains the following information:

Map features contained in pixel ~
Terrain type ~

Maximum slope

Maximum and minimum depth

Standard deviation of depth

Bottom cover ( rocks, sand, mud, etc.)

Pixel resolution is four meters and the entire array covers one square kilometer.

The group level 256x256 map also contains planned destinations, routes, and alternate routes. Vehicle

level routes are stored as a graph of nodes, edges, and enclosed regions overlaid on the 256x256 pixel

map. For each route segment, the best available information is stored about traversibility, risk of

detection, risk of destruction, distance, etc. At the vehicle level and below, information may not be
known a priori about the attributes of many route segments. As the vehicle explores a reqion with its

sensors it will enter new information into the route graph. In particular, the position of local landmarks
which may not be on a priori maps will be entered into the attributes of route segments as the vehicle

moves and observes objects with its sensors. This information may be used by the same vehicle for

later returning along the same route, or may be communicated to other vehicles for their use, or may
simply be stored for subsequent missions.

The vehicle world model also contains a Hst of objects and their attributes, such as position, orientation,

velocity, geometry, type, and capabilities such speed, weapons, and range. Traces of object position

and orientation are stored for a period extending about ten minutes into the past.

The world model also contains information about states and the occurrence of events, such as subtask

completion, or the appearance or disappearance of objects.

World model information contained in maps, object attributes, and historical traces is used by the

vehicle level planners to plan actions on, or manuevers relative to, objects. The current positions and

velocities of objects, and the timing of subtask completion events, are used by the executors for task

98



sequencing.

World model information about objects makes it possible to generate predictions about the position and
motion of objects. The world model generates such predictions for use by the vehicle level sensory

processing modules in the interpretation of sensory data.

Vehicle Level Planner Manager

The planner manager at the vehicle task level is the vehicle captain. The captain receives commands
from his respective group level executor EX(5,s), and interprets those commands in the context of what
is present in the world model. The captain includes the job assignment module, the expert system that

decides what jobs each of the vehicle subsystems should do to accomplish the vehicle level input

command. The job assignment module examines the current state of the vehicle and its identified target,

and issues job commands to the vehicle subsystem planners to generate plans for the type of maneuver
to be performed relative to the target in order to achieve the commanded goal.

The vehicle planner manager module also selects the objective function to be used by the world model
for computing the evaluation function EF(3,s).

Vehicle Level Subsystem Planners

The current MAUV system contains three subsystems. Plans for the next phase of the MAUV project,

include a fourth subsystem, the weapons controller. For each subsystem there is a planner PL(4,s) and

executor EX(4,s) module.
1. Pilot = {PL(4,1), EX(4,1)}
2. Sonar Controller = {PL(4,2), EX(4,2)}

3. Communications Controller = {PL(4,3), EX(4,3)}
4. Weapons Controller = {PL(4,5), EX(4,5)}

The vehicle planners PL(4,s) may select predetermined, well practiced, and optimized plans (i.e.

E-move sequences) by simply naming the file in which they are stored. Generic plans, or scripts, can

be selected by group technology codes, and E-move sequences can be computed in real-time by
artificial intelligence planning and search strategies, by operational research linear programming
techniques, or by game theoretic methods of cost-risk analysis and utility theory.

In order to facilitate planning, E-moves may carry lists of preconditions, resource requirements,

expected costs, expenditure of resources, and risk factors. These parameters may either be specified as

constants or as functions of world model state variables to be evaluated in real-time.

Planned coordination of E-moves between cooperating vehicle subsystems needed for vehicle

maneuvers, manipulator motions, and sensor coordination, pointing, and focusing is organized and

synchronized at this level. Synchronization can be carried out by including a timing field in the plans

generated by the vehicle level E-move planners PL(4,s). The timing field may carry an <execute

immediate> flag, a <begin on condition> flag, a <begin at clock time x> flag, a <begin after delay y>
flag, a <begin with delay y after condition x> flag, an <end before clock time x> flag, a <do-until

condition x> flag, or a <do-while condition y> flag.

99



1. Pilot

The pilot subsystem planner is responsible for generating trajectories, consisting of sequences of
E-moves. These plans define maneuvers relative to target objects. The pilot planner schedules E-move
piloting commands so as to maximize the expected vehicle task score. The vehicle maneuvers are

scored on the basis of minimum risk and cost.

The pilot planner PL(4,1) selects E-moves from a vocabulary, or repertory of motion commands that

the vehicle is capable of performing. The pilot planner never gives a command that is outside the

vehicle's ability to perform. For each E-move in the vocabulary there exists a set of preconditions,

required resources, constraints, and procedures for: flying the vehicle through the water, engaging an

enemy in combat, cooperating with friendly vehicles, etc.

The pilot planner PL(4,1) is then responsible for planning an E- Move sequence according to evaluation

functions provided by the vehicle level world model, and priorities defined in the vehicle task

command. The evaluation functions EF(4,s) may cause the PL(4,s) planners to generate E-move
sequences that satisfy least energy, or shortest time, or least risk, or maximum probability of success,

or some other objective function. EF(4,s) may be a function of a large number of state variables.

2. Sonar

The sensor suite planner is responsible for selecting the proper settings for the sensors, and of planning

the sensor pointing and scanning trajectories, and dwell time schedules to accomplish the commanded
vehicle tasks.

Job commands JC(4,2) to the sonar controller planner PL(4,2) and executor EX(4,2) identify the

target, the obstacle, the type of attack or surveillance tactic, and the evaluation criteria for generating the

most effective and least risky (in terms of being discovered or targeted) sequence of sonar

transmissions. This evaluation criteria may give kill value to the target, set limits on acceptable risk to

the covertness or survival of the vehicle, etc.

3. Communications

The communications planner is responsible for formulating messages for communication, for

computing the value of the information to be transmitted and its timeliness, and for deciding whether

the value of the information exceeds the cost and risk of communicating.

Job commands JC(4,3) to the communications planner PL(4,3) and communications executor EX(4,3)

identify the intended recipient of the message, the type of message, the evaluation criteria for generating

the most effective and least risky sequence of communication transmissions. This evaluation criteria

may give pay-off value to the information getting through, set limits on acceptable risk to the covertness

or survival of the vehicle, etc.

4. Weapons

Job commands JC(4,4) to the weapons planner PL(4,4) and executor EX(4,4) identify the target, the

type of attack, and the evaluation criteria for generating the most effective firing sequence. This

evaluation criteria may place limits on ammunition expenditure, give kill value to the target, and set

Hmits on acceptable risk to the self vehicle during the firing sequence.

100



The weapons planner PL(4,4) and weapons executor EX(4,4) are responsible for sequencing the

arming, aiming, and firing of various weapons at specific targets. The weapons planner is responsible

for determining the type of weapon, (torpedo, depth charge, etc.), fusing, the timing of firing, and the

number of weapons to be expended against a particular target to achieve the commanded probability of

kill.

The weapons planner receives commands from the same job assignment module JA(4,r) as the pilot.

The pilot and weapons planner modules will therefore be expected to maximize their joint effectiveness

by sharing information, and cooperating with each other in every way possible.

As the vehicle task evolves, the vehicle level E-move planners will periodically replan the vehicle task

activity. As shown in Figure 27, the average replanning interval at the vehicle level is about one
minute, and the planning horizon is about ten minutes.

Vehicle Level Executors

The vehicle level executors execute the plans generated by the vehicle level planners. Output from the

vehicle level executors are subsystem commands to the E-move level.

In all plans, whether prerecorded or computed in real-time, information about the state of the world is

be used by the EX(4,s) executors to modify planned E-move sequences, to control branches, to vary

parameters such as speed, to effect synchronization and timing for cooperative coordinated movements
and synchronized maneuvers between various subsystems.

Vehicle Level World Model

The world model at the vehicle level contains a 256x256 array local world map, on which are

represented the position of the vehicle, the topology and characteristics of the bottom, and known
objects. Pixel resolution is four meters and the entire array covers one square kilometer.

The vehicle world model also contains a list of objects and their attributes, such as position, orientation,

velocity, geometry, type, and capabilities such speed, weapons, and range. Traces of object position

and orientation are stored for a period extending about ten minutes into the past.

The world model also contains information about states and the occurrence of events, such as subtask

completion, or the appearance or disappearance of objects.

World model information contained in maps, object attributes, and historical traces is used by the

vehicle level planners to plan actions on, or manuevers relative to, objects. The current positions and

velocities of objects, and the timing of subtask completion events, are used by the executors for task

sequencing.

World model information about objects makes it possible to generate predictions about the position and

motion of objects. The world model generates such predictions for use by the vehicle level sensory

processing modules in the interpretation of sensory data.

101



Sensory Processing

Observed object features from the E-move sensory processing level enter the vehicle sensory

processing modules where they are compared with predicted features from objects in the world model.

Sensory processing at the vehicle level may use egospheres or world map coordinate frames to compare
and integrate sensory data from a variety of sensors, and to match task level world model information

against sensory observations. On the egosphere, the positions of objects can be projected such that

directional maneuvers of the vehicle subsystems can be easily computed. The types of objects projected

on the egosphere are major terrain features such as ridges, gullies, rivers, and navigation way points, as

well as other vehicles, and known or suspected enemy positions.

Correlations and differences between predicted and observed sensory data are computed and integrated

over a period of about one minute. If the integrated correlation is high, an object can be said to be

recognized and a confidence factor in the attribute list of the predicted object in the world model is

increased. If the integrated difference is high, the confidence factor in the world model is decreased.

Once the world model confidence factor drops below threshold, the world model will be modified by
updating with the new sensory data.

Vehicle level sensory processing modules recognize objects and temporal events such as the completion

of E-move level commands. Sensory processing also may detect synchronization and identification

signals and other messages from cooperating vehicles. Recognized object features and temporal events

are entered into the vehicle task level world model, and passed upward to the sensory processing

modules at the group level. Trajectories of objects and a history of temporal events are maintained over

a period of about 10 minutes.

11 .4 Level 3 - Elemental Move (E-move)

Level 3 decomposes elemental move commands (E-moves) into strings of intermediate poses which
define motion pathways that are free of collisions.

Input commands consist of symbolic names of E-Moves. E-moves are typically defined in terms of

motion of the subsystem being controlled through a space defined by a convenient coordinate system.

E-move commands may consist of symbolic names of elemental movements which may be expressed

as keyframe descriptions of desired relationships to be achieved between system state variables.

The term "keyframe" is derived from the field of cartoon animation. A keyframe in an animation

sequence represents a particular relationship between the cartoon characters and objects in their

environment at a key point in the story sequence. The keyframes define the story line, and are drawn
by the principal artist and creator of the cartoon story. Intermediate frames are added by apprentice

artists to fill in the action that connects the keyframes. A string of keyframes can thus be viewed as a

string of goal poses to be achieved by the characters in the cartoon. The E-move level takes each

successive keyframe goal as an input command, and generates the string of intermediate poses needed
to smoothly move the system from each keyframe to the next.

Feedback inputs consist of best estimates of the position and orientation of features of objects such as

bottom and obstacle surfaces, as well as edges, vertices, and holes of objects. Feedback is sampled

every 600 milliseconds, but significant changes in feedback values occur on average only about once

per every ten seconds.

102



Outputs consist of trajectories of intermediate poses that define motion pathways that move the

controlled system from one keyframe pose to the next. The E-move level planners and executors

perform the necessary computations to assure that the sequence of intermediate poses generated

provides adequate clearance with potential obstacles.

Input commands

Input commands TC(3) to the E-move level call for an elemental movement or action designed to

achieve some goal, typically a keyframe pose, defined in terms of a desired state in a specified

coordinate frame. A keyframe pose for a pilot may consist of a desired vehicle position, orientation,

and velocity to be achieved in a coordinate system of choice.

For the MAUV vehicles, pilot E-move commands are the following:

Go-to-pose(x, y, z, w, vx, vy, vz, vw, r, C)
where x, y, z define position, and

w defines orientation

of the vehicle at the keyframe goal pose.

vx, vy, vz define linear velocity, and
vw defines rotational velocity

at the keyframe goal pose.

r defines the distance fi-om the goal pose at which the E-move is complete.

C defines the coordinate system of the E-move.

The coordinate system C may be defined in a target object, in which case, the goal keyframe pose
defines the relative position between the vehicle and the target object.

Go-along-path(dx, dy, dz, dw, vx, vy, vz, vw, r, C)
where dx, dy, dz define the distance and

dw defines the rotation of the vehicle in the

keyframe goal pose relative to the current pose.

vx, vy, vz, vw define rates desired at the goal pose.

r defines the distance from the goal pose at which the

E-move is complete.

C defines the coordinate system of the current pose.

Tum-on-radius(ra, db, dx, dy, dz, v)

where ra is the radius of the turn

db is the desired change in bearing to be achieved by the tum.

dx defines the direction of the tum
dy defines the distance to the start of the turn

dz defines the vertical distance to be traveled per 90 degrees of tum
V defines the velocity to be maintained while turning

Spiral-on-radius(ra, db, dr, dx, dy, dz, v)

where ra is the starting radius

103



db is the desired change in bearing to be achieved during the spiral

dr is the rate of increase of radius per 90 degrees of turn

dx is the direction of the spiral

dy is the distance to the start of the spiral

dz is the vertical distance to be traveled per 90 degrees of turn

V defines the velocity to be maintained while turning

Follow-bottom-to(x, y, w, h, v, r, C)
where x, y are the map coordinates, and

w is the bearing at the goal pose,

h is the height above the bottom to be maintained.

V is the average velocity to be maintained

r is the distance from the goal pose at which the

E-move is complete.

C defines the coordinate system of the E-move.

Go-through(xr(i), yr(i), xl(i), yl(i), zt(i), zb(i),

X, y, z, w, V, r, C)
where xr(i), yr(i) define corridor markers to be kept on the right of the vehicle

xl(i), yl(i) define corridor markers to be kept on the left of the vehicle.

zt(i), zb(i) define top and bottom corridor bounds
X, y, z, w, define the goal pose
V defines the velocity to be maintained

r defines the distance from the goal pose at which the

E-move is complete.

C defines the coordinate system of the E-move

Continue(maneuver/coarse)

This command causes the vehicle pilot to continue the current maneuver, or the current coarse and
bearing, until otherwise notified. It can be used to buy time when the Level 4 Vehicle/Task level

requires an unexpected change in plans.

Stop

This command causes the vehicle to come to a stop as quickly as possible. It is an emergency
command which can be issued when an unplanned halt in movement is required.

Sonar E-move commands consist of:

Scan-sector(xs,ys,xe,ye)

where xs, ys are the coordinates of the starting point

xe, ye are the coordinates of the ending point

Probe-direction(x, y, i, mode, ts)

where x, y is the direction to be probed
i is the sonar transducer identifier

mode = 1 denotes a single-read

104



mode = 2 denotes repeat-continuous

ts denotes the clock time sonar emission should begin

Communications E-move commands consist of:

Send-message(n, message, baud, power, ts)

where n denotes the number of characters in the message
message is a character string of length n
baud is the baud rate of the transmission

power is the transmitted power
ts denotes the clock time the transmission should begin

Task Decomposition - the H module

Planner Manager

For each subsystem at the E-move level, there is an E-move level planner manager module. Part of the

planner manager is the job assignment modules JA(3,r), which selects the coordinate system most
appropriate for computing the execution of the commanded E- move. The job assignment module also

separates translational from rotational motions, and assigns the computation of intermediate positions

and orientations to separate planners and executors for parallel computation.

E-move Planners

The E-move level planning modules PL(3,s) are responsible for generating a plan PST(3,s,tt)

consisting of a problem-free sequence of intermediate poses that will accomplish the commanded
E-Moves. The pilot planners check to see if there is adequate clearance between the vehicle and
potential obstacles at all points along the planned path through in the world. If not, the planners

interject additional intermediate poses so as to safely skirt potential problem areas.

The E-move pilot planning modules PL(3,s) add new intermediate trajectory points to the end of the

current plan on average about as rapidly as the corresponding E-move executor selects points from the

beginning of the plan to output to the Primitive level. Thus, the E-move planners generate an updated
plan about every ten seconds, and the planning module typically has a plan prepared which looks at

least two E-moves (or about 2 minutes) into the future.

E-move trajectories can be be planned in real-time as they are being executed, or can be preplanned and
recorded. In a known environment, such in known waters or around known structures, commonly
used E-move trajectories can be preplanned and stored as route graphs. Such preplanned trajectories

can then be invoked by naming the file in which they are stored. Partially preplanned E-move
trajectories can also be selected and then modified to fit the current environmental circumstances.

In unknown waters, or where known routes are not defined with enough resolution for E-move level

planning, sensor-guided E-moves are required. In this situation, trajectory plans can only be made to

the limit of the sensor range. Plans to avoid obstacles may employ hueristics designed to deviate as

littie as possible from higher level route plans.

105



E-move planning to engage enemy vehicles may employ a combination of set tactics and gaming
techniques to devise the best sequence of manuevers given what is known about the state of the enemy,
his intentions, and capabilities. The E-move level world model attempts to predict what the enemy state

will be two minutes in the future (the E-move planning horizon). The planner then selects the action

sequence for the next two minutes that will produce the best score vis-a-vie the predicted enemy state.

Of course, the enemy may not do what the world model predicts. In order to deal with this, the E-move
level cyclic replanner generates a new plan every ten seconds. Every ten seconds the world model
combines new sensor data with prior knowledge, and generates a modified prediction of enemy actions.

The planner uses this modified prediction to generate a new plan which takes into account the new
situation. If sensor data arrives which makes a current plan obsolete before the end of the ten second
cycUc replanner interval, the emergency replanner begins immediately to generate a new plan.

Execution

The execution submodules EX(3,s) are responsible for issuing the first intermediate pose in the current

plan to the appropriate task decomposition modules at the Primitive level. The execution submodule
also monitors the progress of the Primitive level as it attempts to reach the commanded trajectory points.

When a "Done" report is received from the Primitive level, the EX(3,s) module issues the next

intermediate pose in the current plan.

Information from the world model about the current or anticipated future state of the world can be used

by the executor EX(3,s) to modify planned E-move trajectories, to control branches, to vary parameters

such as velocity, and to effect synchronization and timing for smooth trajectories. The executor can

also respond immediately to emergencies. If sensory information indicates an emergency condition, the

executor can switch immediately to preplanned emergency action until the emergency replanner can

generate a new plan to deal with the situation.

Output from the E-move execution submodule consists of trajectory points, poses, and velocities in a

coordinate system of choice. The output commands carry a field which designate the choice of

coordinate system. Output strings of intermediate poses are not necessarily evenly distributed in time,

but are chosen so as to steer the vehicle trajectories around problem areas such as obstacles.

World Model

The world model at the E-move level contains a 256x256 array local world map, on which are

represented the position of the vehicle, the topology and characteristics of the bottom, and features

(such as edges, vertices, and bounding surfaces) of known objects.

The E-move world model also contains a list of object features and their attributes, such as position,

orientation, and velocity. Traces of feature position and orientation are stored for a period extending

about two minutes into the past.

The world model also contains information about states and the occurrence of events, such as subtask

completion, or the appearance or disappearance of object features.

World model information is used by the E-move level planners and executors to check clearances and

perform local obstacle avoidance, and to define station-keeping poses, docking poses, and the aiming

of sensors. The current positions and velocities of object features, and the timing of subtask completion

events, are used by the executors for task sequencing. The historical traces are used by the planners.

World model information about object features makes it possible to generates predictions about the

position and motion of sensed features, such as edges, comers, contours, etc. The world model

106



generates such predictions for use by the E-move level sensory processing modules in the interpretation

of sensory data.

Sensory Processing

Processed sensory data from the Primitive level enters the E-move sensory processing modules where it

is compared with predicted data from the world model. The comparisons may be made in egosphere or

world map coordinates. Correlations and differences between predicted and observed sensory data are

computed and integrated over a period of about ten seconds. If the integrated correlation is high, a

feature can be said to be recognized. If the integrated difference is high, the world model will be
modified by updating with the sensory data.

E-move level sensory processing modules recognize object features such as edges, comers, and
surfaces. Temporal events such as the completion of primitive level input commands are also

recognized. Trajectories of object features and a history of temporal events are maintained over a period

of about two minutes.

Recognized object features and temporal events are entered into the E-move world model, and passed

upward to the sensory processing modules at the vehicle task level.

11.5 Level 2 - Primitive Level

The primitive level computes inertial dynamics, and generates smooth dynamically efficient trajectories

in a convenient coordinate frame.

Command input consists of intermediate trajectory poses which define a path that has been checked for

obstacles and is guaranteed free of collisions. Command input is updated on average once every ten

seconds.

Feedback input consists of measured vehicle position, heading, velocity, rotation rates, rate of closure

to obstacles and to the bottom. Feedback data at the primitive level is integrated over about a two
second interval.

Output consists of evenly spaced trajectory points produced every two seconds. These trajectory points

define a dynamically efficient movement. Delay between sensory data being sampled and output

response from the Primitive level is two seconds.

Input Commands

Pilot primitive commands define desired vehicle poses at intermediate trajectory points in the coordinate

system of choice. Vehicle Primitive commands are of the form:

Go-to(x, y, z, w, vx, vy, vz, vw, r, C)
where x, y, z define the desired position of the vehicle at end of the command.

w defines the desired yaw orientation of the vehicle at the end of the

command.
vx, vy, vz, vw define the desired velocity at the end of the command. If vx,

vy, vz are zero, the vehicle is required to stop at the commanded point. If the

velocities are not zero, the vehicle should fly through the commanded point

with the specified velocity.

r defines the tolerance to which the commanded point must be achieved.

When the vehicle comes through a plane which contains the desired point and

is perpendicular to the trajectory, the primitive level executor reports "done",

107



and the next primitive command is triggered.

C defines the coordinate system of choice

Continue(course)

This command causes the vehicle pilot to continue the current coarse and bearing, until

otherwise notified. It can be used to buy time when the Level 3 E-move level requires

an unexpected change in plans.

Stop
This command causes the vehicle to come to a stop as quickly as possible. It is an
emergency command which can be issued when an unplanned halt in movement is

required.

Task Decomposition - The H function

Planner Manager Modules

The job assignment modules at level 2 assigns the calculation of each coordinate variable to a separate

process in order to facilitate parallel computation.

Plan Coordination Modules

The Plan Coordination Modules resolve constraints so as to guarantee that the coordinate variables

produce the desired trajectories. Constraints on velocity, acceleration, braking, and jerk make dynamic
trajectory coordination a complex problem.

Planner Modules

The primitive level planners PL(2,s) compute dynamically efficient trajectories between intermediate

trajectory points defined by Primitive commands. Input commands define intermediate trajectory poses

on the order of every ten seconds. The primitive level planners compute output command poses that are

evenly spaced in time every two seconds.

Subcommands in the planned trajectories PST(2,s,tt) are synchronized so smooth coordinated motions

of the vehicle are produced. The smoothness of planned trajectories can be controlled by limiting the

jerk (third derivative of position) to a maximum value.

If the planned trajectories call for motions that transform into velocities or forces that exceed the

physical limits of vehicle thrusters, the PL(2,s) planners must detect that condition, and scale back or

modify planned trajectories PST(2,s,tt) so that the output subcommands to the level 1 servos are always

within the range of capabilities of the servo level. This implies that the primitive level planners have

access to a dynamic model which has the ability to compute the demands placed on the thrusters by
commanded velocities and accelerations.

Executors

The planned trajectories PST(2,s,tt) from the planners PL(2,s) provide inputs to the executors EX(2,s).

The primitive level executors EX(2,s) compare the current observed positions, velocities, and forces in

the coordinate system of choice with the commanded (or desired) positions, velocities, and forces

defined by the planned trajectories PST(2,s,tt). The errors between the desired plan PST(2,s,tt) and

observed values FB(2,s,t) are used to compute outputs designed to achieve the desired values.

108



Output subcommands

Output subcommands from level 2, constitute input commands to level 1. Level 2 outputs define

desired subsystem trajectories in the coordinate system of choice. Output subcommand values are

updated every two seconds.

World Model

The world model at level 2 contains:

Current vehicle position, heading, velocity, and acceleration

A trace over the past ten seconds of position and heading

Current vehicle rotation rate, rotary acceleration

A trace over the past ten seconds of rotation

Vehicle mass and moments of inertia

Obstacle and goal points in vehicle centered world coordinates

Rate of closure of obstacle and goal points

A trace over past ten seconds of obstacle and goal points

Rate of approach to bottom
A trace of bottom distance over ten seconds

Current values from the world model are used by the executor modules to control the motion of the

vehicle, and the pointing of the sonar and communications transponders. The traces integrated over the

past ten seconds are used by the planner modules to generate plans for the next ten seconds. They are

used by the sensory processing modules to filter and smooth incoming sensory data, and by the world
model to predict future sensory data.

The primitive level world model also contains a dynamic model of the vehicle and its subsystems to be
used in computing dynamically efficient trajectories.

Sensory Processing

Primitive level sensory processing modules operate on filtered data from level 1 from depth gages,

bottom sensors, obstacle avoidance sonars, compass readings, and accelerometers. At the primitive

level, sensory information is transformed into egosphere or world map coordinates. This permits data

from a variety of sensors to be overlaid on a single map so that data from different sensors can be
fused into a single representation of the position of the vehicle relative to measured points in the world.

The primitive level integrates information over a period of about two seconds. Information from a

series of ten such integration periods is stored as traces, or trajectories. These can be used to calculate

the motion of the vehicle relative to objects in the environment, or to compute rates of closure and
intercept points.

Observed readings are compared with predictions from the world model. The sensory processing

modules compute correlations and differences which are used by the world model to update the

common memory. This updated information is used to compute better predictions for sensory

processing, and to provide feedback to the planners and executors in the task decomposition module.

11.6 Level 1 ~ Servo Level

Level 1 transforms coordinates from a convenient coordinate frame into joint coordinates, and servos

joint positions, velocities, forces, and power.

109



Command input consists of commanded positions, velocities, thrust, power, orientation, and rotation

rates of the vehicle, or of sensor subsystems in a coordinate system of choice. Command inputs are

updated at regular intervals of two seconds.

Feedback inputs consist of measured rotation rates and torques of thrusters, measured compass
headings, measured depth and altitude above bottom, measured range and bearing to objects including

navigation transponders. Feedback inputs are sampled at regular intervals of 600 milliseconds.

Outputs consist of electrical voltages or currents to motors and actuators. These outputs appear 600
milliseconds after the inputs have been sampled.

Input commands

Input commands to level 1 are designated TC(l,r) r = 1,2, . . ., M, where M is the number of

subsystems being controlled.

For vehicle thrusters and control surfaces, level 1 input commands TC(1,1) defines desired vehicle

positions and orientations, velocities, and forces in a coordinate system of choice.

For sonar transducers, level 1 input commands TC(1,2) define frequencies, duration, and timing of

sonic emissions, as well as desired pointing and tracking vectors.

For communication transducers, level 1 input commands TC(1,3) define frequencies, modulation, and
timing of communication transmissions.

For the weapons system, level 1 input commands defines pointing and tracking vectors, and arming
and firing commands.

Task Decomposition - The H module

The H module consists of Planner Manager, Planner, and Executor modules.

Planner Manager Module

The planner manager modules at level 1 perform kinematic coordinate transformations from a

convenient coordinate system in which the control problem is most easily expressed, into joint

coordinates.

There is a level 1 job assignment module for each vehicle subsystem: pilot (thrusters), sonar,

communications, etc.

The level 1 Job Assignment modules must be able to work equally well with all coordinate systems of

choice, and to switch readily back and forth between coordinate systems. The choice of coordinate

system for each subsystem is made by the respective subsystem planner module at the Vehicle/Task

level. At least four different coordinate systems may be selected. A coordinate system:

1) fixed in the vehicle,

2) fixed in the sensor platform,

3) fixed at a convenient point in inertial space,

4) fixed in an object of interest such as a submerged pipe or sunken ship hull.

Any of these coordinate systems may be either moving or stationary. For example, if a coordinate

system is chosen fixed in a sunken hull of a ship, that hull may be swaying due to underwater currents.

110



Planner Modules

The servo level planners PL(l,s) interpolate (straight line, circular, or spline) desired thruster

commands PST(l,s,tt) between level 1 command updates. These desired thruster commands provide

smoothly varying inputs to the executors EX(l,s), one command for each 600 millisecond interval the

feedback FB(l,s,t) is sampled.

The input commands TC(l,s) to the level 1 occur sufficiently frequently that each thruster planner can
interpolate independently, and each thruster can be independendy servoed to its respective plan.

Executor Modules

The level 1 executors EX(l,s) are servo controllers which compare the current observed thruster

velocities and forces with the commanded (or planned) velocities and forces. The errors between
planned and observed values are used to compute outputs designed to null the difference between
planned and observed values. Plan and feedback inputs are sampled by the executors every 600
milliseconds.

Output subcommands

Output from the level 1 executor modules EX(l,s) consist of electrical voltages or currents. These
outputs drive power amplifiers for thruster motors, sonar transducers, communication transducers,

camera pan, tilt, zoom, focus, iris controls, etc.

Every control cycle, each level 1 executor selects a desired output from the plan generated by its

respective level 1 planner, samples feedback represented in state variables in the world model,
compares the desired value with the feedback, and computes an output. That output is written to an

output register, and the executor waits for the next control cycle to begin. During the wait interval, a

communications process moves new data into all level 1 input registers.

The time required at level 1 for the EX(l,s) modules to compute an updated output is 600 milliseconds.

World ModeUng

The level 1 world model contains sensor readings that have been filtered and scaled to engineering

units.

The world model at level 1 contains the best estimate of the current value of:

Thruster rpm for each thruster

Thruster force generated for each thruster

Range from each navigation transponder

Bearing of each navigation transponder

Range fi-om each obstacle avoidance sonar

Bearing of each obstacle avoidance sonar

Deptii

Compass heading

Altitude above bottom
Water temperature

System parameters (voltages, etc.)

This information is used by the servo level executors to compute the current output.

The world model also maintains a temporal trace over the past four seconds of the above information.

Ill



This may be used by the planner to generate a plan for the next four second interval. It may also be
used by the world model itself to generate filter windows and to do Kalman filtering of the senory data

variables so as to produce an improved estimate of their current value.

Common memory may also contain a priori information such as mass and moments of inertia of the

vehicle and properties of the thruster blades.

Input to the level 1 world model comes from three sources:

1

.

From the task decomposition module
Task state information

2. From the sensory processing module
Detected, filtered, and scaled readings of sensors giving parameters such as range,

altitude, etc.

Correlations and differences between observed and predicted sensor

readings.

3. From a priori information loaded during system initialization.

Requests from the level 1 planners and executors to the world model module consist of Read-Requests
for the value of named variables. Delay between executor requests and retum of the information should

be no more than a few bus cycles. At level 1, total loop delay for the vehicle control system, from
sensory read, to executor output should be 600 milliseconds.

Sensory Processing

Level 1 sensory processing consists of scaling, filtering, and integration of individual sensor readings.

Tachometer and accelerometer readings are transformed into velocities and accelerations. Joint

encoders are processed into radians or degrees. Obstacle avoidance sensors are sampled and readings

are converted into range in feet or meters, and bearing in radians or degrees. Navigation transponder

readings are transformed into range and bearing. Compass readings are transformed into degrees, and
depth and altitude sensors into feet or meters.

Data is filtered by placing an acceptability window around individual readings. Sensor readings that fall

outside the window is discarded as spurious. If time permits, Kalman filtering may be performed on
sensory data variables.

At level 1, emphasis is on short time delay. Data from the entire suite of sensors must be sampled,

processed, entered into the world model, and then accessed and used by the servo level executor

modules in one executor clock cycle. Since the acoustic delays in each sonar transducer can easily be

20 milliseconds and there are several such sensors, timing is critical. Typically sensor readings are

synchronized with the executor clock so as to minimize time delays between sampling and acting on the

sampled data.

The input to the level 1 sensory processing module corresponds to measurements of points in the

environment, or in state space. Output consists of filtered trajectories in space and time.

112



12. Summary and Conclusions

The MAUV project has made good progress toward its objective of demonstrating intelligent

cooperative behavior in multiple autonomous undersea vehicles. Much has been learned about how to

build a control system architecture which fully integrates concepts of artificial intelligence and game
theory with those of modem control theory. A control system architecture has been defined that can

enable a team of cooperating intelligent vehicles to compete against a team of cooperating intelligent

opponents in a real-time dynamic environment.

12.1 Progress to Date

* A Real-time Control System (RCS-3) with an open system architecture has been
designed with six hierarchical layers of task decomposition, world modeling, and
sensory processing. Functionality is defined and code written at all six levels. Each
module in the system has a clearly specified function, and well defined I/O interfaces.

Data flow and timing are specified.

* A formal representation of real-time planning has been developed, using game theory

and value dnven logic

* A conceptual design for dynamic world modeling has been developed, using

multi-dimensional world maps and a real-time object oriented database

* A new approach to sensory data fusion has been developed, using egosphere
representations, real-time model matching, and stereo/motion integration.

* Two autonomous underwater vehicles of EAVE-EAST design have been constructed

and equipped with a five beam obstacle avoidance sonar, altitude and depth sonar, an

acoustic navigation system, pressure and temperature sensors, a communications
system, a hierarchical control system, and intelligent software.

* A six level RCS-3 control system architecture has been installed on the EAVE-EAST
vehicles. Code at the lowest three levels was integrated and tested on the vehicles in

Lake Winnipesaukee, and code at the highest level was run in simulation.

* A real-time multi-processor computer system was designed and constructed consisting

of five CPUs per vehicle. This system uses a commercial (pSOS) real-time operating

system with multi-tasking and multi-processors. The hardware and operating system

are capable of running both C and Lisp simultaneously with real- time communications

between the C and Lisp programs.

* A network of 13 SUN computers was procured and assembled into a program
development environment running under UNIX.

* Two sets of target computer hardware were constructed and integrated into two
vehicles. The hardware consists of five 68020 computer boards, four megabytes of

RAM, and 400 megabytes of mass storage using optical disk technology.

* A underwater environmental simulator for two autonomous vehicles was developed.

Three versions were coded and installed to run a SUN, on a micro-VAX, and on the

vehicle target hardware.

113



Funding during FY87 was $2.3 million. Total funding for the entire MAUV project was $4.0 million.

12.2 What Remains To Be Done

12.2.1 Control System Development

Despite great progress, much remains to be done on the control system development. The complete six

level NBS hierarchical control system has not yet been fully implemented, tested, integrated, and
demonstrated, in both simulation and on the MAUV vehicles. All of the hierarchy levels do not yet

exhibit real-time planning and world model updates. The current MAUV programming and debugging
environment still needs to be enhanced.

Acoustic communications have not yet been fully implemented between the two vehicles and the base

station. Communications protocols that weigh the value of the communicated information against the

risk of breaking communications silence need to be implemented.

There are still many issues of multivehicle command, control, and communication that still need to be

addressed. Methods for transmitting commands with limited bandwidth, and with risks associated with

communication emissions, need to be explored. The question of how to maintain cooperative group

behavior when communications are lost needs much more study.

12.2.2 Cooperative Search and Map Demo

The cooperative search and map scenario has yet to be implemented in a gaming environment against

both fixed and moving simulated defenses. The purpose of the search and map scenario is to illustrate

the ability of two simulated MAUV vehicles to transit, fly formation, penetrate a defensive barrier, and
execute a coordinated search pattem.

The defensive barrier will consist of both fixed and moving defenses. A gaming environment will

permit the moving defenses to be controlled by humans at gaming screens that display the information

available to them about the whereabouts of the simulated MAUV vehicles. The vehicles controlled by
the human players will have simulated weapons which they can use in attempting to prevent the MAUV
vehicles from accomplishing their missions.

This gaming environment will permit testing and evaluation of the same control system hardware and
software that will be used to operate the real UNH EAVE-EAST MAUV vehicles in Lake
Winnipesaukee to demonstrate real search capabilities.

12.2.3 Cooperative Search and Attack Demo

The cooperative search and attack scenario also has not yet been implemented. The purpose of this

demo is to illustrate the abihty of the two simulated MAUV vehicles in a gaming environment to transit,

fly formation, execute a coordinated search pattem, and upon finding a target, to carry out a coordinated

attack against it.

In the search and attack scenario, human players would control a simulated target vehicle and defensive

vehicle. The human players would attempt to get the target vehicle safely through a channel where the

the MAUVs have established a barrier. The MAUVs can be equipped with simulated weapons, and

attempt to prevent the target from passing, by destroying it, or by forcing it into a fixed obstacle such as

a mine field or shoal.

114



12.2.4 Advanced Simulator/Gaming Environment

A next generation simulator/gaming environment system needs to be designed and implemented in order

to accomplish the games outlined above. Also, design requirements and specifications need to be
developed for an advanced MAUV simulator/gaming environment. The advanced system should
include the ability to accommodate up to ten MAUV vehicles, as well as multiple human operators

controlling a variety of submarine vehicles, sensors, surface ships, aircraft, and missiles. A system
similar to the SIMNET tank warfare simulation system should eventually be developed for multiple

autonomous undersea vehicles.

12.2.5 Transfer ofMAUV Control System to MK-30 Vehicle

Discussions have taken place with the Naval Underwater Systems Center at New Port, Rhode Island,

to adapt a MAUV RCS-3 control system for installation of a MK-30 target vehicle. If this were done,

NBS would provide the control system software. NBS would also work with NUSC to install the

MAUV control architecture on the MK-30, and to test, and evaluate the performance of the MK-30
using the MAUV system.

12.2.6 Visual Bottom Following and Mapping

The MAUV vehicles still need to be equipped with high resolution sensors, including a side scan and
forward scanning sonar system, and a vision system. The first vision system would consists of a TV
camera and a structured light projector. This would permit a plane of light to be projected on the

bottom, and the image of the reflected light stripe to be analyzed on a 68020 computer on-board the

vehicle to generate information about the shape and distance of the bottom. This 3-D information could

then be inserted into the world model where it would be used by the control system to generate

bottom-foUowing commands.

A light projector on one vehicle could also be used to illuminate a target while the second vehicle

photographs it. Both flood Ughting and light striping should be demonstrated. An on-board video tape

recorder can be used to store images from the camera for processing through an on-shore Pipeline

Image Processing Engine (PIPE).

12.2.7 Real-time 3-D Vision

A feasibility demonstration model of a passive 3-dimensional real-time underwater vision system also

needs to be designed, constructed, and tested. Methodologies based on stereo and image flow can be

demonstrated using PIPE. A new technique for extracting range from brightness also should be tested

[48].

Egosphere representations need to be developed for building topological maps of the bottom, and for

matching visual and sonar data with them.

12.3 Transfer ofMAUV Technology

In December 1987, the DARPA Office of Naval Technology made a decision to terminate the MAUV
project due to lack of funding. This decision was coupled with a directive by DARPA management to

attempt to transfer MAUV technology to other DARPA projects. There appear to be many potential

applications.

115



The MAUV RCS-3 open system architecture might serve as a standard reference model for the

specification and design of intelligent control systems for a great many autonomous vehicle projects,

not only in DARPA, but for the Air Force, Navy, Army, and Marine Corps as well. For example, the

Army TEAM project for multiple semi-autonomous land vehicles has chosen RCS-3 as a control system

architecture.

RCS-3 has also been applied to batde management for SDI and has potential applications for other battle

management systems. Equally important, RCS-3 might be used to define interfaces between groups of

autonomous (or semi-autonomous vehicles) and higher level battle management systems.

The RCS-3 control architecture is applicable to robot manipulators as well as to autonomous vehicles.

It accommodates both autonomous and teleoperated systems. The NASREM architecture [6] developed

for the NASA space station telerobot system is a version of RCS-3. The NASREM architecture has

also been selected by FMC as the control architecture for the DARPA funded ARM project.

The RCS-3 open system control architecture is still under active development. There remain many
issues which need further study and development. Nevertheless, RCS-3 has already been shown to

have many applications, and appears to have great potential for many others.

116



13. Acknowledgments

The MAUV project was funded by the Defense Advanced Projects Agency, Office of Naval
Technology, Dr. Ron Clark, Director. Mr. Charles Stuart was the DARPA project sponsor.

At the National Bureau of Standards, Maris Juberts headed the systems integration team, Marty Herman
and Scott Swetz headed the real-time planning team, Tsai-Hong Hong headed the world modeling team,

Tom Wheatley was responsible for communications and timing, John Michaloski headed the

programming environments team, Peter Mansbach headed the operating systems team, A. Abrishamian
headed the sensory processing team, Mike Ali headed the executor team, Marty Roche headed the

simulation team, Don Orser headed the theoretical foundations team, and Ken Goodwin provided

management support. Also working on the MAUV project in a variety of capacities were Rick
Quintero, Tsung Ming Tsai, Hui-Min Huang, Steve Legowik, Su Chen Chang, Dave Oskard, Barry

Warsaw, Mark Rosol, Roger Bostelman, Wendell Wallace, and Bob Russell. Jim Albus was the

project manager.

At the University of New Hampshire, Richard Blidberg was the principal investigator, Jim Jalbert was
the project leader, Steve Chappell headed software systems, Mike Shevenell headed hardware/software

integration, Dennis Stamulis was responsible for the operation system, Bob Welsh headed electronic

systems, and Rod Haywood headed mechanical systems.

Also involved in the MAUV project was Professor Allen Waxman, of Boston University, who
performed research on stereo vision for AUVs using the NBS Pipeline Image Processing Engine
(PIPE). University of Maryland under Professor Azriel Rosenfeld conducted experiments on depth

from image flow in the underwater environment, also using PIPE. Lehigh University under Professors

Roger Nagel and Glen Blank did studies of programming techniques for RCS-3 using state-graph

techniques.

At Decision Science Applications, George Pugh provided expertise in value driven logic and Joe
Krupp developed the mission level planner. Martin Marietta Baltimore provided an environmental
simulator for scenario development. Bob Finkelstein, of Robotic Technology, Incorporated, did

scenario development and performance evaluation techniques for MAUV demonstrations.

Products named in this report are listed for purposes of information only. There is no implied

endorsement of any products or implication that they are the best available for the purpose.

117



REFERENCES

[I] D. R. Blidberg, "Guidance Control Architecture for the EAVE Vehicle", IEEE Journal of

Oceanic Engineering . October 1986.

[2] J.S. Albus and D.R. Blidberg, "A Control System Architecture for Multiple Autonomous
Vehicles (MAUV)", Proceedings of the Fifth International Symposium on Unmanned,
Untethered Submersible Technology, University of New Hampshire, June 22-24, 1987.

[3] A.J. Barbera, J.S. Albus, M.L. Fitzgerald, and L.S., Haynes, "RCS: The NBS
Real-time Control System", Robots 8 Conference and Exposition, Detroit, MI, June 1984.

[4] J.A. Simpson, R.J. Hocken, and J.S. Albus, "The Automated Manufacturing Research
Facility of the National Bureau of Standards", Journal of Manufacturing Systems , Vol.1,

No. 1, pg. 17, 1983.

[5] J.S. Albus, "A Control System Architecture for Multiple Autonomous Undersea Vehicles

(MAUV)", The Fourteentii Annual AUVS Technical Symposium and Exhibit, Washington,
DC July 19-21, 1987.

[6] J.S. Albus, H.G. McCain, and R. Lumia, "NASA/NBS Standard Reference Model for

Telerobot Control System Architecture (NASREM)", National Bureau of Standards

Technical Note 1235, July 1985.

[7] J. Lowrie, et al. "Autonomous Land Vehicle", Annual Report, ETL-0413, Martin Marietta

Denver Aerospace, July 1986.

[8] J. Graham, "IntelUgent Task Automation (Phase II) Sixth Quarter Quarterly Report", Martin

Marietta Denver Aerospace, March 1987.

[9] T.B. Sheridan, "Supervisory Control of Remote Manipulators, Vehicles and Dynamic
Processes", In Rouse, W.B. (Ed.) Advances in Man-Machine Systems Research, Vol. 1,

NY JAI Press, pgs 49-137, 1984.

[10] J.S. Albus, C. McLean, A.J. Barbera, and M.L. Fitzgerald, "An Architecture for Real-time

Sensory-Interactive Control of Robots in a Manufacturing Environment", 4th IFAC/IFIP
Symposium on Information Control Problems in Manufacturing Technology, Gaithersburg,

MD, October 1982.

[II] C. McLean, M. Mitchell, and E. Barkmeyer, "A Computer Architecture for Small Batch
Manufacturing", IEEE Spectrum , pg. 59, 1983.

[12] J.S. Albus, "Brains, Behavior, and Robotics", BYTE/McGraw-Hill, Petersborough, NH,
1981.

[13] M.O. Shneier, E.W. Kent, and P. Mansbach, "Representing Workspace and Model
Knowledge for a Robot with Mobile Sensors", Proceedings of the 7th International

Conference on Pattern Recognition , pg. 199, 1984.

[14] W.A. Perkins, "A Model Based Vision System for Sensor-Controlled Manipulation and
Inspection", IEEE Transactions on Computers . Vol. C-27, pg. 126, 1978.

118



[15] G.L. Gleason, and GJ. Agin, "A Modular Vision System for Sensor-controlled
Manipulation and Inspection", Proceedings of the 9th International Symposium on Industrial

Robots , pg. 57, 1979.

[16] R.C. Bolles, P. Horaud, and MJ. Hannah, "3DPO: Three Dimensional Parts Orientation

System," Proceedings of the International Joint Conference on Artificial Intelligence , pg.

1116, August 1983.

[17] T.F. Knoll and R.C. Jain, "Recognizing Partially Visible Objects Using Feature Indexed
Hypotheses", Proceedings of the IEEE Conference on Robotics and Automation . San
Francisco, CA., pg. 925, April 1986.

[18] B. Hayes-Roth, "A Blackboard Architecture for Control, Artificial Intelligence (1985), pgs.

152-321.

[19] A. Barr, and E. Feigenbaum, The Handbook of Artificial Intelligence , (Los Altos, William
Kaufman, 1981).

[20] M. Brady, et.al, ed. Robot Motion: Planning and Control . (Cambridge, MIT press, 1982).

[21] D.E. Whitney, "Resolved Motion Rate Control of Manipulators and Human Prostheses",

IEEE Transactions Man-Machine Systems MMS-10 , pg. 47, 1969.

[22] R.P. Paul, Robot Manipulators: Mathematics. Programming and Control , (Cambridge, MIT
Press, 1981).

[23] J.C. Crowley, "Navigation for an Intelligent Mobile Robot", IEEE Journal of Robotics and
Automation . Vol RA-1, No. 1, pg. 31, 1985.

[24] G.E. Pugh and D.F. Noble, "An Information Fusion System for Wargaming and
Information Warfare Applications", Decision-Science Applications, Inc., Report No. 314,

May 1981.

[25] G.E. Pugh and G.L. Lucas, "Application of Value-Driven Decision Theory to the Control

and Coordination of Advanced Tactical Air Control Systems", Decision-Science
Applications, Inc., Report No. 218, April 1980.

[26] S.G. Chappell, "Blackboard Based System for Context Sensitive Mission Planning in an

Autonomous Vehicle", Proceedings of the Fifth International Symposium on Unmanned.
Untethered Submersible Technology . University of New Hampshire, June 22-24, 1987.

[27] A. Waxman, "Convected Activation Profiles and Image Flow Extraction", Laboratory for

Sensory Robotics, College of Engineering, Boston University, LSR-TR-4, Boston, MA.

[28] A. Waxman and J. Duncan, "Binocular Image Flows: Steps toward Stereo- Motion
Fusion", IEEE Transactions on Pattern Analysis and Machine Intelligence . Vol. PAMI-8,
No. 6, November 1986.

[29] G.D. Blank, "Responsive System Control Using Register Vector Grammar", CSEE
Department, Lehigh University, Bethlehem, PA.

119



[30] G.E. Pugh and J. Knipp, "The Control of Autonomous Underwater Vehicles through a

Hierarchical Structure of Value Priorities", Proceedings of the Fifth International Symposium
on Unmanned, Untethered Submersible Technology, University of New Hampshire, June
22-24, 1987.

[31] Martin Marietta Contract 50SBNB6C4125 Progress Reports.

[32] R. Finkelstein, MAUV Final Report, "Measures of Performance and Effectiveness for the

MAUV Project", October 1987.

[33] M. Daily, J. Harris, D. Keirsey, K. Olin, D. Payton, K. Reiser, J. Rosenblatt, D. Tseng,

and V. Wong, "Autonomous Cross-Country Navigation with the ALV", Proceedings
DARPA Knowledge-Based Planning Workshop , Austin, TX, pgs. 20-1 - 20-10, December
1987.

[34] D.W. Payton, "An Architecture for Reflexive Autonomous Vehicle Control", Proceedings

IEEE International Conference on Robotics and Automation , San Francisco, CA pgs.

1838-1845, April 1986.

[35] J. Lowrie, R. Greunke, M. Thomas, B. Gothard, R. Koenig, G. Celvi, and R. Rehn,
"Autonomous Land Vehicle", ETL-0413, Engineer Topographic Laboratories, Fort Belvoir,

VA, July 1986.

[36] S.A. Shafer, A. Stentz, and C.E. Thorpe, "An Architecture for Sensor Fusion in a Mobile
Robot", Proceedings IEEE International Conference on Robotics and Automation, San
Francisco, CA, pgs. 2002-2011, April 1986.

[37] C. Isik and A. Meystel, "Decision Making at a Level of a Hierarchical Control for Unmanned
Robot", Proceedings IEEE International Conference on Robotics and Automation, San
Francisco, CA, pgs. 1772-1778, April 1986.

[38} C. McLean, H. Bloom, and T. Hopp, "The Virtual Manufacturing Cell", IFAC/IFIP
Conference on Information Control Problems in Manufacturing Technology, Gaithersburg,

MD, October 1982.

[39] J.S. Albus, E.W. Kent, M. Nashman, P. Mansbach, L. Palombo, and M. Shneier,

"Six-Dimensional Vision System", Proceedings of the 12th International Symposium on
Industrial Robots, Paris, France, June 1982.

[40] J.S. Albus, "Mechanisms of Planning and Problem Solving in the Brain", Mathematical
Biosciences, Vol. 45, pgs. 247-293, August 1979.

[41] W.T. Miller, F.H. Glanz, and L.G. Kraft, "Real Time Dynamic Control of an Industrial

Manipulator Using a Neural Network Based Learning Controller", IEEE Joumal of Robotics

and Automation, February 1988.

[42] M. Herman and J.S. Albus, "Real-time Hierarchical Planning for Multiple Mobile Robots",

Darpa Knowledge-Based Planning Workshop, Austin, TX December 8-10, 1987.

[43] D.N. Oskard and T.H. Hong, "A Spatial Mapping System for Autonomous Vehicles", NBS
Technical Report (in process), April 1988.

120



[44] S. Chen, "Multisensor Fusion and Navigation of Mobile Robots", Department of Computer
Science, University of Maryland Computer Science Department, University of North
Carolina, Charlotte, NC.

[45] R.C. Nelson and J. Aloimonos, "Finding Motion Parameters for Spherical Flow Fields",

University of Maryland Computer Science Department, TR-1840, April 1987.

[46] L. Conway, R. Volz, and M. Walker, "New Concepts in Tele-Autonomous Systems",
Robotics Research Laboratory, Department of Electrical Engineering and Computer Science,

University of Michigan, Ann Arbor, MI.

[47] N.J. Nilsson, Problem-Solving Methods in Artifical Intelligence . McGraw-Hill, New York,
NY, 1971.

[48] AMELEX American Electronics, Inc. Final Report, "3-D Robotic Vision Using Structured

Lights and Intensity Measurements", Purchase Order 43NANB7 16798, February 1988.

121



NBS-n4A <REv. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NIST/SP-1251

2. Performing Organ. Report No, 3. Publication Date

September 1988

4. TITLE AND SUBTITLE

System Description and Design Architecture for Multiple Autonanous Uidersea

Vehicles Project

5. AUTHOR(S)

James S. Albus

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
(formerly NATIONAL BUREAU OF STANDARDS)
U.S. DEPARTMENT OF COMMERCE
CSAITHERSBURQ, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

DARPA Defense Advanced Research Projects Agency
Office of Naval Techndlogy
1400 Wilson Blvd.
Arlington, VA 22209-2308

10. SUPPLEMENTARY NOTES

I I

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summory of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

The objective of the MA.UV project is to demonstrate intelligent cooperative
behavior in multiple autonanous undersea vehicles.

The approach is to build a control system architecture vdiich will fully integrate

concepts of artificial intelligence and game theory with those of modem control

theory. The control system is being designed to permit a team of cooperating
intelligent vehicles to coipete against a team of cooperating intelligent opponents
in a real-time dynamic environment.

Among the significant technologies being pursued are:
* Real-tirre planning, using game theoiry and value driven logic
* Dynamic world modeling, using multi-dimensional world maps and a

real-time object oriented database
* Sensory data fusion, using egosphere representations, real-time model

matching, and stereo/motion integration
* Multiplayer gaming

12. KEY WORDS (S/x to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

dynamic worldmodeling; egosphere representations; multiplayer gaming; multi-

dinensional world maps; real-time planning; sensory data fusion; value driven logic

13. AVAILABILITY

Ix I
Unlimited

I I

For Official Distribution, Do Not Release to NTIS

[x~l Order From Superintendent of Documents, U.S, Government Printing Office, Washington, D,C,
20402.

ly I

Order From National Technical Information Service (NTIS), Springfield, VA, 22161

14. NO. OF
PRINTED PAGES

126

15. Price

USCOMM-DC 6043-P80









NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
(FORMERLY NATIONAL BUREAU OF STANDARDS)
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

Official Business

Penalty for Private Use $300

Stimulating America s Progress

1913-1988


