

NIST TECHNICAL NOTE 1250
(formerly National Bureau of Standards)

.^eW^°'^CQ

\
^f-ATES 0^

./

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technoloqy

(formerly National Bureau of Standards

Robot Systems Division

Quoo

NIST Technical Note 1250

The NBS Real-time Control System
User^s Reference Manual

Stephen A. Leake and Roger D. Kilmer

Center for Manufacturing Engineering

National Engineering Laboratory

National Institute of Standards and Technology

(formerly National Bureau of Standards)

Gaithersburg, MD 20899

NOTE: As of 23 August 1988, the National Bureau of Standards

(NBS) became the National Institute of Standards and Technology

(NIST) when President Reagan signed into law the Omnibus Trade

and Competitiveness Act.

October 1988

U.S. Department of Commerce
C. WiUiam Verity, Secretary

National Institute of Standards and Technology

(formerly National Bureau of Standards)

Ernest Ambler, Director

National Institute of Standards U.S. Government Printing Office For sale by the Superintendent

and Technology Washington: 1988 of Documents,

Technical Note 1250 U.S. Government Printing Office,

Tech. Note 1250 Washington, DC 20402

381 pages (Oct. 1988)

CODEN: NBTNAE

ERGO® is a registered trademark of Micro-Term, Inc.

MULTIBUS® is a registered trademark of Intel Corporation.

Polaroid^'^ is a trademark of Polaroid Corporation.

polyFORTH 1 is a licensed product of FORTH, Inc.

VAL^'^is a trademark of Unimation, Inc., A Westinghouse Company, Danbury,
Connecticut.

The material presented in this document was prepared by United States
Government employees as part of their official duties and is therefore a work
of the U.S. Government not subject to copyright.

Commercial equipment is identified in this paper in order to adequately

describe the systems under development. In no case does such identification
imply recommendation by the National Bureau of Standards, nor does it imply

that this equipment was necessarily the best for the purpose.

Ill

FORTHInc 111 N. Sepulveda Blvd.

Manhattan Beach, CA 90266
(213)372-8493

ORDER FORM AND LICENSE AGREEMENT
FOR FORTH. INC. PROGRAM PRODUCTS

FORTH, INC. by acceptance of this Order and Agreennent by signature at its headquarters agrees to grant and Custonner

agrees to accept on the terms and conditions of the agreement, including those set forth on the reverse side, a non-transferable

and non-exclusive license to use the Licensed Programs, listed below, and those v^/hich are ordered from time to time by

the Customer subject to v\/ritten confirmation by FORTH, INC.

PROGRAM PRODUCTS

FORTH, Inc. Product Code

polyFORTH system to be provided

by the National Bureau of Standards

Designated Computer System

NBS Real-time Control System

Charges

$150.00

California Sales Tax

TOTAL

THE CUSTOMER ACKNOWLEDGES THAT HE HAS READ THIS AGREEMENT, UNDERSTANDS IT AND AGREES TO BE
BOUND BY ITS TERMS AND, FURTHER. AGREES THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE
AGREEMENT BETWEEN THE PARTIES. WHICH SUPERSEDES ALL PROPOSALS, ORAL OR IMPLIED AND ALL OTHER
COMMUNICATIONS BETWEEN THE PARTIES RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

FORTH, INC.
Company Name

Address

Signature Authorized Signature

Name and Title Name of Signer and Title

Date Date

LICENSED PROGRAMS
Licensed Programs means the FORTH software and related materials

furnished to Customer under this Agreement. Software may include without

limitation: subroutines, dictionaries, peripheral handlers/drivers, source listings,

compiler, meta-assembler, assembler, interpreter, utility routines, mathematical

routines, optional routines, multiprogrammer, and text editor, Related materials

refer to all materials and documentation furnished to Customer in support of

software such as, without limitation, training manuals, specifications, drawings,

and the like.

OPTIONAL MATERIALS
For certain Licensed Programs FORTH, Inc. will offer to Customer

related Optional Materials as a separate item under this Agreement. When
Optional Materials are ordered by the Customer, the term "Licensed Programs"

shall also refer to the Optional Materials.

LICENSE
Each license granted to the Customer hereunder authorizes the

Customer only to use the Licensed Program on or for the designated single

Computer System for which it was ordered. Customer understands and agrees

that a separate license and license fee is required to use Licensed Programs

or any part thereof on or for any other Computer System.

COPYING
Customer may copy Licensed Programs solely for archival purposes

on the designated single Computer System, No other right to reproduce or

copy Licensed Programs in whole or in part is granted hereby except in a

target-compiled form which contains neither assembler nor compiler. FORTH,
Inc. has no liability or obligation with respect to any such target-compiled Licens-

ed Programs.

TITLE

Title to and ownership of Licensed Programs, or any copies thereof,

shall at all times remain in FORTH, Inc.

PROTECTION OF LICENSED PROGRAMS
Licensed Programs include valuable information which is proprietary

and confidential. Customer agrees to maintain the confidentiality of Licensed

Programs and to not reproduce, provide, disclose, distribute, or otherwise make
available any item of Licensed Programs, in any form, to any person other

than Customer or FORTH, Inc. employees without prior written consent of

FORTH, Inc., except that Licensed Programs may be included in Customer's

products in a cross-compiled or compressed form which is not extensible.

Additional copies of Licensed Programs may be licensed from FORTH, Inc.

at charges then in effect.

Customer agrees to take appropriate action by instruction, agreement,

or othenwise with his employees or other persons permitted access to Licensed

Programs to satisfy his obligations with respect to use, copying, protection,

and security of Licensed Programs.

TERM AND TERMINATION
This Agreement is effective from the date on which it is accepted by

FORTH, Inc and shall remain in force until the Agreement is terminated as

hereinafter provided.

In the event Customer neglects or fails to perform or observe any of

the obligations or conditions under this Agreement, and if such obligations

or conditions are not remedied within twenty (20) days after written notice therof

has been given to Customer, this Agreement and all licenses granted hereunder

shall immediately terminate.

Within two (2) weeks after any such termination. Customer shall certify

in writing to FORTH, Inc. that through its best efforts and to the best of its

knowledge, the original and any and all copies, in any form, including partial

copies or modifications, of Licensed Programs have been destroyed,

WARRANTY
Licensed Program ordered by Customer shall be free from defects in

material and workmanship and shall operate in accordance with applicable

FORTH, Inc. specifications. This warranty is for sixty (60) days following receipt

of Licensed Programs by Customer. During this warranty period, FORTH, Inc.

will at Its option, repair or replace any software which proves to be defective

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE and the stated express warranty is in lieu of all liabilities or obliga-

tions of FORTH, Inc. for damages including, but not limited to, consequential

damages occurring out of or in connection with the use or performance of

Licensed Programs.

The Customer acknowledges that it has not been induced to enter into

this Agreement by any representations or statements, oral or written, not ex-^M
pressly contained herein or expressly incorporated by reference. ^^

LIMITATION OF LIABILITY

FORTH, Inc. will refund the purchase price or replace or correc! any
defective item at FORTH, Inc 's expense provided prompt written notice of

the defect is given to FORTH, Inc.

The Licensed Programs licensed hereunder are for use on the stan-

dard Computer System designated by the Customer FORTH, Inc. assumes
no liability for any malfunction resulting from the use of Licensed Programs
with other than such a standard Computer System or from equipment defects.

Should Customer desire to have such a malfunction corrected. Customer shall

pay for all work performed by FORTH, Inc. in defining and correcting the

malfunction based upon FORTH, lnc!s standard consulting rates then

prevailing.

Customer agrees that FORTH, lnc!s liability hereunder for damages
including but not limited to liability for patent and copyright infringement shall

not exceed the charges paid by Customer for the particular Licensed Pro-

gram involved Customer further agrees that FORTH, Inc. will not be liable

for any lost profits, nor for any claim or demand against the Customer by any
other party. No action, regardless of form, arising out of the transactions under
this Agreement, may be brought by either party more than one year after the

cause of action has accrued, except that an action for non-payment may be
brought within one year after the date of last payment. IN NO EVENT WILL
FORTH, INC. BE LIABLE FOR INDIRECT OR CONSEQUENTIAL DAMAGES
EVEN IF FORTH, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

DELIVERY
Licensed Programs will be shipped to Customer generally with one (1

)

month after order confirmation unless Customer requests a later delivery date.

However, FORTH, Inc. does not represent nor warrant any such shipment
date and in no case will FORTH, Inc. be liable for late or nondelivery due to

war, acts of God, strikes, shortages of equipment, or other causes beyond
its reasonable control.

TRAINING ^
FORTH, Inc. will provide with the Licensed Programs furnished to

Customer reasonable training materials for use of the Licensed Programs on
the designated Computer System. Upon the Customer's request, FORTH, Inc.

will provide additional training at charges then prevailing.

CONSULTING
Upon request, FORTH, Inc. will provide consulting services to Customer

at FORTH, Inc.'s standard rates then prevailing.

TERMS
The changes for the Licensed Programs set forth on the reverse side

hereof are payable on delivery unless designated otherwise,

RETURN POLICY

NO RETURNS ACCEPTED WITHOUT PRIOR WRITTEN AUTHORIZA-
TION. Normal restocking charge on returns is 25% of P.O. amount. Merchan-

dise held over 30 days from invoice date is not subject to return.

ASSIGNMENT—SUBLICENSE
This Agreement, the Licenses granted hereunder, and Licensed Pro-

grams transferred hereunder may not be assigned, sublicensed, or transferred

by the Customer without prior written consent from FORTH, Inc.

GENERAL
The term "this Agreement" as used herein includes any future written

amendments, modifications, or supplements thereto.

The terms of this Agreement will take precedence over the terms of

any present or future order from the Customer for any license hereunder.

Customer agrees that acceptance of future delivery of any Licensed Programs

from FORTH, Inc. is conclusive evidence of his agreement that the license

for such Program is governed by the terms of this Agreement.

If any of the provisions, or portions thereof, of this Agreement are in-^^
valid under any applicable statute or rule of law, they are to that extent to be|j^^
deemed omitted.

This Agreement will be governed by the laws of the State of California.

VI

INSTRUCTIONS FOR ORDERING RCS SOFTWARE

Required Items to be Sent to NBS:

(1) Copy of valid Order Form and License Agreement from FORTH, Inc. This is obtained by

submitting an Order Form and License Agreement form for polyFORTH (a copy is

provided on the next page) to FORTH, Inc. at the listed address. There is a fee of $150
which must be sent to FORTH along with the Order Form and License Agreement.

(2) Four (4) Intel Model D2732A EPROMs (or equivalent) for each single-board computer in

the system. For a complete RCS system (four single-board computers), a total of sixteen

(16) EPROMs are required.

(3) One (1) DataTech Model QuadPlus 1/2" tape (or equivalent), 2400-foot length and 6250
bpi rating.

(4) Completed Order Form from the bottom of this page.

Send these items to the following address:

Robot Systems Division

National Bureau of Standards

Building 220, Room B 127

Gaithersburg, MD 20899

^x ATTN: RCS User's Group

Include the following with your order;

NBS RCS SOFTWARE ORDER FORM

Company Name:

Mailing Address:

Telephone No.:

Person to Contact:

Vll

m

TABLE OF CONTENTS

Page

Chapter 1

INTRODUCTION

1 .

1

The Purpose of RCS 1-1

1.2 About This Manual 1-1

How This Manual is Organized 1-1

Documentation Conventions 1-2

System Word Conventions 1-3

1 .

3

Who Should Use This Manual 1-3
Entering Data for an Existing Application 1-4

Modifying an Existing Application 1-4

Creating New Applications 1-4

Chapter 2

RCS OVERVIEW

2.1 What is RCS? 2-1

Multiprocessor System 2-1

Hierarchical Control Levels 2-1

Modular Architecture 2-1

Control Function Techniques 2-2

2.2 The Attributes of RCS 2-2
Modularity 2-2

Flexibility 2-3
Understandability 2-3

2 .

3

RCS as an Input-Process-Output Structure 2-3
2.4 Processing Within a Generic Control Level 2-4

Preprocessing 2-5
Decision Processing 2-5
Postprocessing 2-7

Chapter 3

RCS ARCHITECTURE

3 .

1

Hierarchical Control Architecture 3-1

Structure of a Control Level 3-1
Cyclical Control-Level Processing 3-2
Control-Level Decision Processing 3-2
Interlevel Communications 3-4

3.2 RCS Programs 3-4

XX

Page

3 . 3 RCS Common Memory 3-4
System Dictionary 3-4
Communication Buffers 3-5
Data in Common Memory 3-5

Pose data 3-6
Object data 3-7
Location data 3-7
Trajectory data 3-8

Chapter 4

RCS COMPONENTS

4.1 Hardware Components of RCS 4-1

MULTIBUS Address Space Organization 4-2

MULTIBUS I/O Space Organization 4-2
RCS Interrupt Structure 4-2
RCS Disk Block Organization 4-2

4 .

2

Software Components of RCS 4-2
The Operating System 4-3

System utilities > 4-3
Multiprocessor operation 4-3
Background tasks 4-3

Interrupt routines 4-4

Operating modes 4-4

RCS SMACRO Language 4-4

SMACRO Files 4-4

Disk Files 4-5

Robot Sensor Language (RSL

)

< 4-5
System Dictionary Vocabularies 4-5
The Communications Utility (COMM) 4-5

Chapter 5

RCS INSTALLATION PROCEDURES

5 .

1

Hardware Requirements 5-1

Minumum Hardware Requirements 5-2

Unimate Puma 760 Robot Requirements 5-2

Additional Components 5-3
5 .

2

Robot Interface Requirements 5-3

5 .

3

Software Requirements 5-4

5 .

4

Hardware Installation Procedures 5-4

Configuring the Processor Boards 5-4

Installing processor-board jumpers 5-4

Installing the FORTH PROM circuits 5-5

Installing the 8087 numeric data processors 5-5

Installing heat sinks 5-5

Installing the bus clock 5-5

Configuring interprocessor communications 5-6

X

Page

Configuring the Common Memory Board 5-6

Configuring the Disk and Tape Controller Board 5-6

Configuring the Disk Drive 5-7

Configuring the Terminal 5-8

Configuring the Printer 5-9

Preparing to Install the RCS Software 5-10

5 . 5 Software Installation Procedure 5-10

Chapter 6

BASIC RCS OPERATIONS

6 .

1

Starting the System 6-1

6 .

2

Moving From One Board to Another 6-2
Using Software Switches 6-3

Using a Hardware Switch 6-3

Changing Vocabularies 6-3
6 .

3

Locating Source Code 6-4

Using the LOC Command 6-4

Using the Locate Mode 6-4

Understanding Directory Block Conventions 6-4
Using Relative and Absolute Block Addresses 6-5
Specifying an Offset 6-5
An Example of Using the RCS Directory Block System 6-5

6 .

4

Loading Code 6-9

Editing and Reloading a Routine 6-10
Loading Routines Under Development 6-10

6 .

5

Executing Tasks and Routines 6-11

Executing Robot Tasks 6-11
Executing Routines 6-11

Understanding Modes 6-12
Controlling Screen Output 6-12
Aborting an Executing Task 6-12

6.6 Saving and Rebooting the System 6-12
Saving and Restoring Disk Images 6-13

Saving and Restoring the System Dictionary 6-16

Saving and Restoring User Files 6-16

6.7 Editing a Block of Code 6-16
Using Screen-Editor Commands 6-17

Character operations 6-19

Line operations 6-20
Block operations 6-20

Special operations 6-22
Using Line-Editor Commands 6-22

6.8 Example RCS Dialogue 6-24

6 .

9

Using Printing Utilities 6-28
Printing a Range of Blocks 6-28
Printing Block Directories and Programs 6-29

xi

Page

6.10 Using Tape Utilities 6-29
Backing Up the System on Tape 6-29
Solving Bad-Tape Problems 6-29
Reading a Tape 6-29

6.11 Shutting Down the System 6-30

Chapter 7
SMACRO

7 .

1

Overview 7-1

7.2 SMACRO Syntax 7-1

Programming Conventions 7-2

Variable Declarations 7-3
Members and Owners 7-^

Variable owners 7-^
Sequential variable owners 7-6

List owners 7-7
File Declaration 7-8

SMACRO Operators for Standard Programming Operations 7-8
Arithmetic operators 7-9
Assignment operators 7-10
Relational operators 7-10
File operators 7-11

Additional SMACRO Operators 7- 1 ^

Bit operators 7-15
1/0 operators 7-15
Stack operators 7-15
Matrix, pose, quaternion, and vector operators 7-16

Other SMACRO operators 7-16
SMACRO Statements 7-17

7 .

3

SMACRO Routines 7-18

7.4 Modes 7-18

7 .

5

Board Level Processes 7-19

7 .

6

Interrupts and Assembly Language 7-19

Chapter 8

COMMUNICATIONS

8 .

1

Using Memory Files to Pass Data 8-1

8.2 Using COMM to Pass Command and Status Information 8-1

8.3 Programming COMM 8-3
8 .

4

Communicating on the Same Board 8-4

XXI

Page

Chapter 9

ROBOT SENSOR LANGUAGE (RSL)

i

9.1 What is RSL? 9-1

9.2 RSL Overview 9-3
The Pose Statement 9-3

The Movetable Statements 9-4

The Location Statement 9-4

The Array Statement 9-4
The Object Statement 9-4

The Path Statements 9-4

The Path-Point Statement 9-5
The Round-Robin Statement 9-6
Example RSL Code 9-6

9 .

3

Entering and Editing RSL Source Code 9-7

9 .

4

Compiling RSL Source Code 9-8
9 .

5

Executing RSL Commands 9-8

Chapter 10

RSL CONTROL LEVELS

10.1 Overview of RSL Control Levels 10-1

10.2 RSL Data Structures 10-3
The Pose Data Structure 10-4

The Movetable Data Structure 1 0-4

The Location Data Structure 1 0-5
The Array Data Structure 1 0-6

The Object Data Structure 10-7
The Path Data Structure 10-8

The move-to path type 1 0-8

The approach-pickup path type 1 0-9
The depart-pickup path type 1 0-9

The approach-release path type 10-10
The depart-release path type 10-10

The Path-Point Data Structure 10-10
The Trajectory Data Structure 10-11

The Round-Robin Data Structure 10-12
10.3 RSL Compiler 10-14

Utility Routines 10-15
Environmental Data Routines 10-16

Routines to Compile Trajectories 10-16
Routines to Compile Path-Points 10-17
Routines to Compile Paths 10-18

10.4 The Task Level 10-19
TASK Commands 10-19
TASK Input Command Buffer 1 0-2

1

TASK Status Information 10-22
TASK Variables 10-22

TASK Errors 1 0-23
TASK Utilities 10-2^

Xlll

Page

TASK Processing 10-26

TASK preprocessing 10-26

TASK decision processing 10-27

TASK postprocessing 10-29
10.5 The Path Level 10-29

PATH Commands 10-29

PATH Input Command Buffer 10-30
PATH Status Information 10-31

PATH Errors 10-31
PATH Processing 10-32

PATH preprocessing 1 0-32
PATH decision processing 10-33
PATH postprocessing 1 0-36

10.6 The Prim Level 10-36
PRIM Commands 10-37
PRIM Input Command Buffer 1 0-38
PRIM Status Information 10-38
PRIM Trajectory Information 10-39
Joystick HOLD-SET and HOLD-CLEAR Buttons 10-40
PRIM Variables 10-40

PRIM Errors 10-42
PRIM Processing 10-42

PRIM preprocessing 1 0-42

PRIM decision processing 10-44

PRIM postprocessing 10-46

10.7 The Joint Level 10-47

JOINT Commands 10-48

JOINT Input Command Buffer 1 0-50

JOINT Status Information 10-50
JOINT Errors 10-51

JOINT Processing 10-51

JOINT preprocessing 1 0-5

1

JOINT decision processing 10-52
JOINT postprocessing 10-54

JOINT Robot-Dependent Routines 10-54

Chapter 1

1

RSL EXTENSIONS

11.1 Understanding the Types of Extensions 11-1

11.2 Adding a Task to RSL 11-1

11.3 Adding a Path to RSL 11-2

11.4 Adding a Path-Point to RSL 11-3

Adding Code on the RSL Board 1 1-4

Adding Code on the TASK&PATH Board 11-5

11.5 Adding a Trajectory Type to RSL 11-6

Adding Code on the RSL Board 1 1-6

Adding Code on the TASK&PATH Board 11-7

Adding Code on the PRIM Board 1 1-8

XIV

Page

Chapter 12

RCS APPLICATION EXAMPLES

12.1 A Machining Station in the Automated Manufacturing
Research Facility 12-1

The Horizontal Machining Workstation 12-1

Hardware configuration of the T3 RCS 12-3

Software configuration of the T3 RCS 1 2-5

T3 UNLOAD Tray Example 12-9
12.2 The Field Materiel-Handling Robot Control System 12-11

Hardware Configuration for the FMR 12-11

Software Configuration for the FMR 12-14
FMR Transfer Example 12-18

Chapter 13

DEBUGGING TECHNIQUES

13.1 Debugging Interactively Using Show Mode 13-1

13.2 Single-Stepping Through a Routine 1 3-3

13.3 Single-Stepping Through the RSL Control Levels 1 3-4

13.4 Isolating Problems 1 3-9

13.5 Creating Debugging Routines 13-13

13.6 Using Other Debugging Techniques 13-14

RCS Hardware Debugging Techniques 13-15

RCS Software Debugging Techniques 13-15
RSL Software Debugging Techniques 13-15

Appendix A

RCS, 8087, AND DISK AND TAPE ERROR MESSAGES

A.I RCS Error Messages A-1

A. 2 8087 Error Messages A-4
A . 3 Rimfire Disk and Tape Error Messages A-4

Appendix B
USER WORD SUMMARY

B.I RCS Words B-19
Operating System Words B-19
MBOOT/CUSTOM words B-19
Terminal words B-24
Printing words B-26
Tape words B-28
Editing words B-29
Remote-slave words B-33
Miscellaneous RCS words B-35

FORTH Words B-46
SMACRO Words B-54

SMACRO declaration words B-54

XV

Page

Predefined SMACRO variable words B-57
SMACRO operator words B-59
SMACRO vector-operator words B-68
SMACRO quaternion-operator words B-70
SMACRO matrix-operator words B-7

1

SMACRO pose-operator words B-72
SMACRO Boolean-operator words B-74
SMACRO file-operation variable words B-78
SMACRO file-operation header variable words B-78
SMACRO file-operation words B-80
SMACRO Boolean file-operation words B-83
SMACRO statement words B-84
Miscellaneous SMACRO words B-90

COMM Words B-92
B.2 RSL Words B-94

RSL Operating System Words B-9^
Language Words . . . e B-98
TASK Command Words B-104
RSL System Parameter Words B-105

JOINT parameters B-105
PATH parameters B-107
PRIM parameters B-107
RSL parameters B- 108

Control-Level Words B-108

Appendix C

SYSTEM MAPS

C. 1 Multibus Address Space .C-1

C.2 Multibus I/O Space Organization C-1

C . 3 RCS Interrupt Assignments C-2

C.4 Timers C-2

Appendix D
RCS DISK BLOCK ORGANIZATION

Appendix E

8087 OPERATION CODES FOR RCS

Appendix F
JOYSTICK SCHEMATICS

Appendix G
GLOSSARY

#

XVI

Page

Appendix H

BIBLIOGRAPHY

Robotics H-1

Robot Interface Specifications H-1

Real-Time Control System (RCS) H-2
FORTH H-3

General FORTH Documents H-3
FORTH Reference Manuals H-3

Hardware Reference Manuals H-^
Processor and I/O Boards H-4
Memory Boards H-5
Disk and Tape Controller Board H-5
Tape Drive H-5
Winchester Disk Drive H-5

MULTIBUS Chassis H-6
Terminals H-6
Printers H-6

•

xvii

LIST OF FIGURES

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 2-k.

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 3-^.

Figure 3-5.

Figure 3-6.

Figure 5-1.

Figure 6-1.

Figure 6-2.

Figure 6-3.

Figure 6-4.

Figure 6-5.

Figure 7-1.

Figure 7-2.

Figure 7-3.

Figure 7-4.

Figure 7-5.
Figure 7-6.

Figure 7-7.

Figure 7-8.

Figure 8-1.

Figure 9-1.

Figure 10-1.

Figure 10-2,

Figure 12-1.

Figure 12-2.

Figure 12-3.

Figure 12-4.

Figure 12-5.

Figure 12-6.

Figure 12-7.

Page

The input-process-output structure 2-4

The processing structure within a module 2-5

The general form of a state table 2-6

Example of a state table 2-7

Components of a functionally bounded module 3-1

Inputs and outputs from control-level decision
processing 3-3

Examples of poses 3-6

Example object data specifications 3-7

Example location 3-8

Examples of trajectories 3-9

Example RCS hardware configuration 5-1

Directory blocks for a 1000-block section of the disk.... 6-6

Restoring and saving code 6-13
Example D>M map block 6-14

Using continuation blocks 6-17
RCS screen-editor display for the VT 1 00 6-18

Example SMACRO routine 7-2
Example variable owner 7-5
Example sequential variable owner 7-6
Example list owner 7-7

An example SMACRO file in common memory 7-13
SMACRO file after the execution of add-record 7-14

Example SMACRO routine 7-18

Setting up an interrupt routine 7-20

Command and status communication paths 8-2

RSL control levels 9-2

RSL files and control levels 1 0-2

Using a round-robin to transfer information between

control levels 10-13

Major robot-related components of the horizontal

machining workstation 1 2-2

T3 RCS hardware configuration 1 2-4

T3 RCS control-level hierarchy 1 2-5

Control level commands for the T3 RCS 1 2-7

The QC-DETACH routine 12-8

Example UNLOAD situation for the T3 robot 12-9

Pseudocode example of a T3 UNLOAD command 12-10

XIX

Page

Figure 12-8. Fork and sensor hardware for the FMR 12-12

Figure 1 2-9 . RCS hardware configuration for the FMR 12-13
Figure 12-10. RCS software configuration for the FMR 12-14

Figure 12-11. FMR path-point examples 12-1?

Figure 13-1. Single-step output 1 3-5

Figure 13-2. Display routine and List-display list owner for
the PATH level 13-14

Figure F- 1 . Joystick switch layout F-2
Figure F-2. Joystick switch wiring diagram F-3
Figure F-3. Joystick to interface electronics cable diagram F-4
Figure F-4(a). Joystick switch debounce circuitry (page 1 of 2) F-5
Figure F-4(b). Joystick switch debounce circuitry (page 2 of 2) F-6
Figure F-5. Emergency stop and hold set/clear circuitry F-7

XX

LIST OF TABLES

Page

Table 5- 1 . Processor-Board Jumper Modifications 5-^

Table 5-2. Processor-Board Starting-Address Jumpers 5-5

Table 5-3 . Common Memory Board Jumper Modifications 5-6

Table 5-^. Common Memory Board Switch Settings for RSL 5-6

Table 5-5. Disk and Tape Controller-Board Jumper Modifications 5-7

Table 5-6. Disk and Tape Controller-Board Switch Settings 5-7
Table 5-7 . Disk Drive Switch Settings 5-7

Table 5-8. Function Keys Defined on the Micro-Term ERGO 301 5-8

Table 5-9. Function Keys Defined on the TeleVideo 950 5-9

Table 6- 1 . Board Names and Prompts 6-2

Table 6-2 . Character-Editing Commands 6-19

Table 6-3 . Line-Editing Commands 6-20

Table 6-4 . Block-Operation Commands 6-20

Table 6-5 . Special Editing Commands 6-22

Table 6-6 . Line-Editor Commands 6-23

Table 7-1 . SMACRO Variables 7-3
Table 7-2. Matrix, Pose, Quaternion, and Vector Declarations7-4
Table 7-3 • The Variable Owner VO-Example 7-5
Table 7-4 . The Sequential Variable Owner SVO-Example 7-7
Table 7-5. The List Owner LO-EXAMPLE 7-8

Table 7-6 . SMACRO Arithmetic Operators 7-9
Table 7-7. SMACRO Assignment Operators 7-10

Table 7-8 . SMACRO Relational Operators 7-11

Table 7-9 . SMACRO Stack Operators 7-15
Table 7-10. Syntax for SMACRO Statements 7-17
Table 7-11. SMACRO Words in Run and Show Modes 7-19

Table 10-1 . Movetable Line Types 10-5

Table 1 0-2 . Data Type Compiling Words 10-14

Table 10-3. Data Type Search Routines 10-15

Table 11-1. Additions for the MOVE-TO Task 11-2

Table 12-1. Functions of the Major Robot-Related Components of the
Horizontal Machining Workstation 12-3

Table B-1. List of Abbreviations Used in the Syntax Descriptions B-1
Table B-2. List of Phrases Used in the Syntax Descriptions B-2
Table B-3. Complete List of RCS and RSL User Words in ASCII Order B-3

XXX

Chapter 1

INTRODDCTION

This chapter gives a brief description of the Real-time Control System (RCS)

developed by the National Bureau of Standards (NBS) and describes how this

manual is organized. The chapter also describes the documentation conventions
used throughout the manual to indicate different types of information. The
conventions include how the manual presents syntax descriptions of the lan-
guages within RCS. Finally, the chapter describes who should read this manual
and points out which chapters will be most useful to you, depending on your
purpose in using RCS.

1.1 THE PURPOSE OF RCS

RCS is a microprocessor-based system for the real-time control of automated
systems. The applications described in this manual are for robotic systems;
however, RCS can be used to control other types of automated devices.

RCS has two unique features that generally are not found in other control sys-
tems. First, because of the hierarchical control architecture of RCS, you can
adapt RCS to control different systems. The hierarchical architecture makes
RCS modular, with well-defined interfaces. NBS has been developing these
interfaces using RCS for over 10 years. Second, RCS provides for real-time
control based on sensor measurements. This feature enables you to modify RCS
control commands, in real time, based on this sensor data.

1.2 ABOUT THIS MANUAL

This section introduces the organization of the manual, the documentation con-
ventions used in the manual, and the conventions used for RCS words.

How This Manual is Organized

This manual is organized into 13 chapters, six appendices, a glossary, a
bibliography, and an index. This chapter, "Introduction", introduces RCS and
explains how to use this manual.

Chapter 2, "RCS Overview", provides a brief description of RCS, including its
purpose and the basic processing structures implemented.

Chapter 3? "RCS Architecture", is a detailed description of RCS processing
structures. This chapter provides the theoretical background necessary for
understanding the design of RCS and how it operates.

Chapter 4, "RCS Components", describes the required and optional hardware and
software for RCS.

1.2 ABOUT THIS MANUAL
1-1

Chapter 5, "RCS Installation Procedures", explains how to configure and
install the hardware required to run RCS. It also explains how to install the

RCS software supplied on magnetic tape by NBS, and how to get the system run-
ning for the first time.

Chapter 6, "Basic RCS Operations", provides step-by-step procedures for sev-
eral RCS operations and utilities. It explains how to start up and shut down
the system, edit and execute code, and use printer and tape utilities.

Chapter 7, "SMACRO", is a complete description of the SMACRO language created
by NBS for use with RCS. SMACRO consists of word extensions to the FORTH pro-
gramming language and operating system.

Chapter 8, "Communications", is a detailed description of the RCS communica-
tions process that enables communication of real-time data between the various
parts of the system.

Chapter 9, "Robot Sensor Language (RSL)", describes RSL, a task-description
language developed by NBS as an application for RCS.

Chapter 10, "RSL Control Levels", describes the structure of the four levels
of the RSL application. Using this information, you can modify the RSL code
for your own application.

Chapter 11, "RSL Extensions", explains how to create your own extensions to

RSL.

Chapter 12, "RCS Application Examples", provides two example robot
applications that use RCS. Each example is a step-by-step description of an

application, including a partial listing of the SMACRO or RSL code with
explanations. Each example traces the execution of a robot task.

Chapter 13, "Debugging Techniques", describes the interactive debugging proce-
dures you can use with RCS.

Appendix A contains information on error messages. Appendices B through F

include a user word summary, system maps, a disk directory, information on the

8087 operation codes relevant to RCS, and joystick schematics and interfacing
information.

Finally, the manual includes a glossary of RCS and RSL terms, a bibliography
listing additional reference material, and an index.

Documentation Conventions

This manual uses the following documentation conventions:

• The name of each keyboard key mentioned in the text appears in uppercase
letters. For example, the carriage-return key appears as RETURN.

• In a control-key sequence, a caret (") represents the CONTROL key. For
example, control-C appears as ''C.

1.2 ABOUT THIS MANUAL
1-2

• Information that appears on the terminal screen appears in bold print. For
example, the ;R rsl> prompt appears on the terminal when the system is

awaiting input from the terminal keyboard.

• Information that you must enter exactly as it appears in the manual is

underlined. For example, "Enter 3 LOAD " means to type 3 LOAD and press
RETURN.

• Variable data that you are to enter is represented within square brackets

([]). The instruction "Enter [block #] LOAD " indicates that you are to

replace [block //] with a specific block number when you enter the LOAD com-
mand. For example, you might type 3 LOAD and press RETURN.

• The default string delimiter is a carriage return. The characters ", \,

and a space may also delimit strings. You need to use the correct
character delimiter to include strings in source code blocks. String
delimiters are listed in syntax descriptions.

Note: Memory address locations, board numbers, and port addresses are hexa-
decimal numbers.

Syst«n Word Conventions

RCS defines many words to perform real-time task decomposition but you do not
need all of these words to create application programs. This manual describes
only the RCS, RSL, and FORTH words used to create application programs.

For the syntax descriptions of RCS, RSL, and FORTH words, this manual shows
each command and its operands in the order in which you enter them.

1.3 WHO SHODLD USE THIS MANUAL

This manual is for NBS personnel and for robotics researchers in government,
industry, and universities. The manual assumes that you are conducting
research and developing applications for the real-time control of robots using
sensors, hierarchical task decomposition, and multiple CPUs. This manual is

intended for system developers and not for factory-floor operators of robotic
systems. Although the manual includes the basic RCS operating procedures, it
does not include the information these operators would need for the daily
operation of a turnkey system.

This manual assumes that you are familiar with the concepts and terminology of
robotics and with the FORTH programming language used extensively in RCS. The
polyFORTH 1 Reference Manual and the polyFORTH 8086 Operations Manual from
FORTH, Inc., of Hermosa Beach, California, provide in-depth information on the
FORTH language and operating system used for RCS.

Also, if you intend to create or modify any RCS 8086 or 808? assembler code
for research or applications, the manual assumes you are already familiar with
assembly language programming. Appendix E, "8087 Operation Codes for RCS",
lists the 8087 operation codes that affect RCS operation.

1.3 WHO SHOULD USE THIS MANUAL
1-3

Researchers using RCS can be divided into three classes: those who want to
enter data for an existing application, those who want to modify an existing
application while retaining the basic configuration, and those who want to
create new applications.

Entering Data for an Existing Application

To use the sample application written in RSL, you need to edit the blocks of
RSL code to enter the specific application data for your system. This robot-
control data is specific for each application at a specific installation, and
includes defined or recorded robot poses, defined locations and objects, and
defined trajectories.

If you want to use RCS to enter specific data for the supplied sample applica-
tion, be sure to read Chapter 6, "Basic RCS Operations", which describes how
to edit blocks of code, and Chapter 9, "Robot Sensor Language (RSL)", which
describes the data types used with RSL and how to edit RSL code.

Modifying an Existing Application

A typical modification to an existing application is to add a simple sensor,
such as a ranging sensor or switch. When you add a simple sensor, the basic
structure and configuration of RSL do not change. You need to edit approxi-
mately 100 lines of SMACRO or RSL code.

If you want to use RCS to add a sensor to an existing application, be sure to
read Chapter 6, "Basic RCS Operations"; Chapter 7, "SMACRO", which describes
SMACRO code; Chapter 9, "Robot Sensor Language (RSL)"; Chapter 10, "RSL Con-
trol Levels", which includes information on sensor preprocessing; and Chapter
11, "RSL Extensions", which describes how you can add RSL extensions.

Creating New Applications

To create new applications, you need to modify the basic structures (such as
adding a new control level). Be sure to read Chapters 1 through 11 for a com-

plete understanding of RCS and RSL.

1.3 liHO SHOULD USE THIS MANUAL
1-4

Chapter 2
RCS OVERVIEW

Chapter 2 briefly describes the purpose and theory of RCS, and outlines the

basic processing structure of RCS architecture. This overview is presented
without technical detail; Chapter 3, "RCS Architecture", describes the archi*

tecture in greater detail.

2.1 WHAT IS RCS?

RCS is a research tool for investigating the use of real-time sensory-
interactive control. The current implementation of RCS uses a multi-
processor, hierarchically structured architecture for control of robotic
systems. RCS is a stand-alone system that enables you to develop, compile,
and test all necessary programs without a host. RCS provides an interactive
programming environment, while retaining the run-time speed of a compiled
system.

thiltlprocessor System

RCS is designed around a multiprocessor computer system to provide the high-
speed processing required to control a multi-axis robot in real time. The
multiprocessor architecture also provides a natural modularity, which helps
divide the control function of the system into easily understood control
levels.

Hierarchical Control Levels

Each hierarchical control level receives a task from the level above and
decomposes this task into a set of more primitive tasks, which it sends to the

level below. The lowest control level (the robot controller) supplies the
machine Instructions to the robot. Each control level communicates with the

adjacent levels through a common memory that all control levels share.

Modular Architecture

The modularity of RCS also simplifies the task of integrating different kinds
of hardware into the system. For example, you can design a module to accept
and process input from sensors and then modify existing modules to use this
sensory information.

2.1 WHAT IS RCS?
2-1

Control Function Techniques

RCS uses the following techniques to simplify the programming of control
functions:

• Software modularization into well-bounded functions with clearly defined
interfaces to enhance extensibility of the system by clarifying the infor-
mation that passes between two "black box" modules.

• Use of generic software module structures to simplify module creation,
debugging, and maintenance.

• Specification of well-defined data interfaces.

• Use of a common memory structure to simplify integration of independently
developed modules, provide access to additional processes, and provide
extensive diagnostic and status reporting capabilities.

• Replacement of separate internal looping structures with cyclic execution
that repeats at globally specified periodic intervals to ensure that state
changes within the system are synchronized with each other.

• Use of state table programming structures that provide an explicit repre-
sentation of branch conditions. A state table provides an advantage over a

nested IF-THEN-ELSE structure because a state table for a complex branch
condition is easier to understand and modify.

2.2 THE ATTRIBUTES OF RCS

RCS provides a modular, flexible, and easily understandable computer hardware
and software architecture for experimenting with sensory systems and robotic
devices operating in real time.

Modularity

Just as a structured program consists of a series of well-defined modular com-

ponents, the RCS hardware and software is modular. This modularity makes the

system more manageable, enabling developers to concentrate their efforts on
one module at a time.

The modular nature of the system software lets you reconfigure all or part of

the system software simply by loading different software modules. This modu-
larity ensures that if you make changes to one module you do not necessarily
have to reconfigure other modules.

2.2 THE ATTRIBUTES OF RCS
2-2

The following are examples of RCS modules:

• Initialization procedures
• Real-time control function execution
• Communications

• Preprocessors and postprocessors
• Device drivers
• Diagnostics
• Monitor systems
• Error reporting

Flexibility

To provide hardware flexibility and extensibility, RCS uses the Intel
MULTIBUS. The MULTIBUS can support multiple processors, and compatible board
products are widely available.

The RCS software is flexible and extensible by its modular nature. Developers
can create sample input data for each module and examine the resulting output
data to analyze the operation of the module.

Understandabillty

NBS designed a generic software module structure as the basis for the various
modules operating within the system. After you understand the generic module
structure, you can more easily understand the specific modules within the sys-
tem, which are derived from this generic structure.

The modular design of RCS reduces the considerable complexity of a real-time
control system to a set of simple, well-defined, and easily understood seg-
ments. You can comprehend the operation of the entire system by analyzing the
operation of each module separately.

RCS simplifies the analysis of system operation by providing you with Inter-
active diagnostic software tools to monitor system operation continuously,
display the system status, and capture data In real time.

2.3 RCS AS AN INPOT-PROCESS-ODTPOT STRUCTDRE

The fundamental building block of the RCS architecture is the input-process-
output structure, which specifies functional modules that communicate through
well-defined data interfaces. The input-process-output structure is shown in

Figure 2-1.

2.3 RCS AS AN INPDT-PROCKSS-OOTPDT STROCTURK
2-3

Input

Data Process
Output
Data

Figure 2-1. The input-process-output structure.

In this model structure, a functional module processes its input data set to

generate a set of output data. The function that each module performs is

independent of other processing that might occur within the system. Informa-
tion required by more than one module passes through the interface data sets
stored in common memory. You can understand the function of a module by
examining its input data, its output data, and a description of the processing
that occurs within the module.

You can define new modules to provide new capabilities, such as new sensors,

end effectors, or robot trajectory algorithms, and integrate these modules
with existing components of the system through the appropriate data
interfaces.

In addition to providing a clear understanding of the system, well-bounded
modules facilitate module testing and debugging. Simply by supplying input
data to a module, you can test that module in isolation before adding it to
the system or when diagnosing a problem.

2.4 PROCESSIHG WITHIN A GENERIC CONTROL LEVEL

Although using the basic input-process-output structure is an efficient method
of organizing a complex system, the large number of such structures is a prob-
lem in itself.

An effective solution to this problem is the use of generic software module
structures. This method helps you understand the system by standardizing the
basic operation of a module because you can view each module function as a

variation of the generic processing structure.

Within a module, you can view processing as a sequence of three processing
operations—preprocessing, decision processing, and postprocessing. (See

Figure 2-2.)

2.4 PROCESSING WITHIN A GENERIC CONTROL LEVEL
2-4

Input

Data # i^ Output
Data

Pr»- Decision Post-
Processing Processing Process ing

Processing

Figure 2-2. The processing structure within a module.

Preprocessing

In the preprocessing stage, the system evaluates, scales, and reduces the
input data, and transforms it into the appropriate set of variable values
required for decision processing.

Decision Processing

Decision processing is the primary mechanism that directs program execution
within a module. Decision processing selects the appropriate procedures for
execution based on the values of several high-level variables.

Decision processing defines the various test conditions and the corresponding
output procedures for the system to execute if the input from preprocessing
satisfies the test conditions. In RCS, state tables usually control this
decision-making process.

For a real-time control system, state table programs are preferable to

control-path diagrams and IF-THEN-ELSE structures because state tables provide
explicit representation of the branch conditions occurring during decision
processing. This representation makes branching easier to follow. The state
table is an enclosed version of the case statement used in programming lan-
guages such as Pascal and C.

2.H PROCESSING WITHIN A GENERIC CONTROL LEVEL
2-5

Figure 2-3 illustrates the general form of a state table!

Inputs Outputs

A B C D

T X T T 5

T X T F t

T X F X 3

F T X X 2

F F X X 1

T = TRUE F = FALSE X = DON'T CARE

Figure 2-3. The general form of a state table,

The state table in Figure 2-3 contains four input variables: A, B, C, and D,

each of which can be either true or false. The system executes the first out-
put where the values of the input variables match all the listed inputs on
that line. For example, assume inputs A, B, and C are true and input D is

false. When you look through the table, you see that this set up condition
generates output 4. In this case, since input B does not affect the outcome,
it could be either true or false.

Figure 2-4 shows an implementation of a state table that determines an output
command for controlling a robot gripping an object based on the status of

touch and force sensors and the position of the gripper.

In this example, there are five input variables: INPUT COMMAND, TOUCH SENSOR

#1, TOUCH SENSOR #2, GRIPPER OPENING, and GRIPPER FORCE. The output consists
of the command to be executed, OUTPUT COMMAND, and the status of the task cur-

rently being executed, OUTPUT STATUS. Each line in the state table corre-
sponds to a set of conditions that can occur when the robot tries to grasp an

object with its gripper.

For example, the third row of state table conditions corresponds to a situa-

tion where the object is touching one of the gripper fingers (TOUCH SENSOR #1

has contact) but not the other. In this case, the output commands the robot
to move 0.05 mm to try to center the object between the gripper fingers and

also commands the gripper to close 0.1 mm to grasp the object. The OUTPUT
STATUS indicates that RCS is executing the GRASP command and that contact with
the object has been made. Other lines in the state table correspond to other
situations, including errors which might occur, and the corresponding output
response that the robot and gripper should make.

2.^ PROCESSING WITHIN A GENERIC CONTROL LEVEL
2-6

INPUT
COMMAND

TOUCH
SENSOR #1

TOUCH
SENSOR #2

GRIPPER
OPENING

GRIPPER
FORCE

OUTPUT
COMMAND

OUTPUT
STATUS

GRASP NO CONTACT NO CONTACT X X CLOSE .

1

MM GRASP-EXECUTING

GRASP NO CONTACT CONTACT X X

CLOSE . 1

MOVE +.05
MM
MM

GRASP-EXECUTING
CONTACT

GRASP CONTACT NO CONTACT X X

CLOSE . 1

MOVE -.05
MM
MM

GRASP-EXECUTING
CONTACT

GRASP CONTACT CONTACT
> object

size
< grip
force

CLOSE .

1

MM GRASP-EXECUTING
FORCE

GRASP CONTACT CONTACT 2_ object
size

>. grip
force

PAUSE GRASP-FINISHED
OBJ-IN-HAND

GRASP CONTACT CONTACT < obj. size
i closed

X PAUSE GRASP-FINISHED
NOT-OBJ,
SIZE-VALUE

GRASP CONTACT CONTACT CLOSED X PAUSE GRASP-FINISHED
NO-OBJ-IN-
HAND

Figure 2-4. Example of a state table.

Postprocessing

The postprocessing stage performs any additional processing required after
decision processing is complete. Saving internal variables and reformatting
algorithm results for output or transfer to other modules are examples of
postprocessing tasks.

2.^ PROCESSING WITHIN A GENERIC CONTROL LEVEL
2-7

r

r

6

Chapter 3
RCS ARCHITECTURE

This chapter describes the ways the control-level software running on the

single-board computers can communicate and cooperate to perform control func-

tions. It includes descriptions of the independence of data, program struc-
tures, hierarchical control architecture, interlevel communications, decision
processing, and the contents of common memory.

3.1 HIERARCHICAL CONTROL ARCHITECTURE

Hierarchical control levels enable you to break a complex control task into
manageable procedures. Each control level represents a well-defined, clearly
bounded control function with a small number of inputs and outputs.

In this control scheme, you enter a high-level command such as "transfer the

part" to the top level of a hierarchical system of control levels. The top
level decomposes the task into sequences of more primitive commands (subtasks)

to the next lower control level in the hierarchy. The bottom level in the
control-level hierarchy generates the outputs to the actuator that performs
the action.

Structure of a Control Level

The atomic unit within a control level is a functionally bounded module. This
module consists of inputs, a process, and outputs (see Figure 3-1).

Input

Data # ^ Output
Data

Pi

Pre- Decision Post-
'-ocessing Processing Process!ing

Processing

Figure 3-1. Components of a functionally bounded module.

The process shown in this figure includes the preprocessing, decision-
processing, and postprocessing stages described in Chapter 2, "RCS Overview".
The preprocessing stage accepts and conditions the inputs for the decision-
processing stage of the module, and the postprocessing stage prepares the out-

put and performs the handshaking required for data transmission.

3.1 HIERARCHICAL CONTROL ARCHITECTURE
3-1

You can group functionally bounded modules under a named high-level routine (a

routine containing a series of statements that execute other routines). You
can then execute this group of modules by entering the name of the high-level
routine. RCS uses this method to maintain hierarchical relationships between
routines.

A control level consists of groups of routines. The routines perform the

functions of preprocessing the input, decision processing based on the input,
and postprocessing the output.

Cyclical Control-Level Processing

RCS does not require the use of interrupts to respond to external events.
Instead, RCS performs its processing in a cycle based on the periodic communi-
cations it conducts between different control levels. This cycle is called
the communications cycle.

Real-time control depends on producing a response to changes in input data
quickly enough for that response to be stable and effective. The system can

provide continuous real-time control without interrupts only if the communica-
tions cycle repetition rate is fast enough (that is, the period of the commu-
nications process is short enough) to give the processing modules time to
respond to the new input data.

RCS uses multiple processors to achieve the high-speed parallel processing
needed to support a fast repetition rate. Each control level executes once
during every communications cycle.

Cyclic execution has a major impact on the way control-level decision process-
ing is implemented. Because a typical task takes many cycles to complete, the
level must enable you to enter the algorithm description each cycle without
losing track of what has already been done. RCS uses state variables to

accomplish cyclic execution. State variables record the state of the algo-
rithm at the end of each cycle and are used at the beginning of the next cycle
to pick up algorithm execution.

Control-Level Decision Processing

You can program the decision-processing stage of a control level using a state
table and state variables or using a series of IF-THEN-ELSE control struc-
tures. Each of these options provides certain benefits.

A state table has the advantage of separating the definition of a function

from the timing of its execution. However, this separation can be a disadvan-
tage when you are trying to trace the sequence of program execution. A series
of IF-THEN-ELSE statements is easy to follow when you are tracing the sequence
of program execution, but hard to understand and follow if it becomes long and
complex.

3.1 HIERARCHICAL CONTROL ARCHITECTURE
3-2

The SMACRO language developed by NBS supports the following format for state

tables:

state-table [state-varl] [state-var2]

state: [test-varl] [test-var2]
state: [test-var8] [test-var9]

[state-var7]
[test-var?] [routine A]

[test-varl4] [routine B]

default-state: [default-routine]
end-state-table

During execution, the system searches through the state table until it finds a

line in which the values of all test variables match the values of the corre-

sponding state variables. After the state table finds a line with matching
variable values, it executes the routine at the end of that line. All lines
after the first matching line are ignored. The state table executes the

default routine if no line matches.

The following list contains examples of questions that a state table can

answer for the decision-processing stage by examining test-variable status
information:

• Has the level received a new command from the next higher level?
• Has the lower level returned its status to the current level?
• Has the lower level confirmed that it has received the last command?

• How far has the procedure progressed through its execution sequence?
• Have the sensors specified values for all symbolic variables?
• Has a specified event occurred?

Figure 3-2 illustrates the sources of information that a control-level proce-

dure uses to determine the command to send to the next lower level and the
status to send to the next higher level.

Status Report to^s^
Next Higher Level \

>v Input Command from\ Next Higher Level

PrftCftusffd ^ Control Level

Decision ProcessSensor Feedback

Status Kleport from X
Lover Level ^

S. Output Command to

^*^Next Lover Level

Figure 3-2. Inputs and outputs from control-level
decision processing.

3.1 HIERARCHICAL CONTROL ARCHITECTURE
3-3

Each control level may require multiple cycles to complete a command. After a

control level completes its command, it sends a done status message to the

next higher level, commands the lower levels to pause, and waits for a new
command.

Interlevel CCTumunlcations

The information that the communications process transfers to any control level
consists of commands issued from the level above and status information
returned from the level below.

The commands passed to a control level from the level above vary greatly from
level to level and from application to application. However, the status
information passed to a control level from the level below (or from other com-
ponents such as sensor systems) usually reflects one of three possible
results: executing, done, or error. The error status message can also indi-
cate the reason for the failure.

The communications process is described in more detail in Chapter 8,

"Communications".

3.2 RCS PROGRAMS

A complete control system based on RCS includes multiple programs running in
parallel on the various boards within the system. These programs access the
data they require from variables stored in common memory. To make the pro-
grams data-independent, you must use symbolic variables to represent the phys-

ical system and the objects manipulated by the system.

Programs also use common memory to pass command and status information to pro-
grams running on other boards. To enable communications between levels to be
asynchronous, common memory provides double buffering for the input and output

of the different control levels in the system.

3.3 RCS COMMON MEMORY

The common memory of RCS contains three major components: the system diction-

ary, the communication* buffers, and the data files.

System Dictionary

The system dictionary contains records for every variable, procedure, state
table, and list of variables in the system while it is operating. The system
dictionary makes the interactive features of RCS possible by enabling you to

locate, modify, and test any section of code quickly without having to modify
the entire system.

3.3 RCS COMfON MEMORT
3-4

After loading the application software, the contents of the system dictionary

enable you to perform the following functions:

• Execute procedures (functionally bounded modules)

• Create and initialize new variables
• Define lists of variables
• Show the value of a variable or a list of variables

The system dictionary maintains pointers to procedures and RCS updates these

pointers automatically when you reload a procedure. This automatic updating
enables you to modify a procedure, reload the procedure, and then run the sys-

tem without having to modify other procedures to integrate the altered
procedure.

CCTBmunicatlon Buffers

The communication buffers provide communication paths between control levels,

sensor systems, robots, grippers, and other subsystems. RCS simplifies the

transfer of information between control levels by providing high-level com-
mands that make the details of the communications process transparent to the

control-level procedure.

To program a level to receive input commands or status, you identify the name

of the sending level and the name of the list of variables to be transferred.
Similarly, to program a level to send output commands or status, you identify
the name of the receiving level and the name of the list of variables to be
transferred.

The communications cycle reads output buffers every cycle and fills input

buffers on the same cycle only if those buffers are ready to accept input.

The communications protocol is described in more detail in Chapter 8,

"Communications"

.

Data In CCTumon Memory

The factory of the future will maintain a database that describes every system
and object within its domain, and this data will be supplied to the control

algorithms during the manufacturing process. However, for RCS you must enter
manually the data required to specify the geometry of each object, the loca-

tion of each critical point, the approach path, the departure path, and inter-
mediate trajectories for each application of the system.

To maintain the data independence of a control algorithm, you should always

separate data from the algorithm that uses the data. Separating the data and
task definitions ensures that only the data, and not the algorithm, will
require alteration if the physical aspects of the system or the object change.

The common memory stores the data for all control levels and serves as the

interface between communicating control levels and between the control levels
and input/output systems. When a procedure requires data, its control level
assigns data from common memory to the appropriate symbolic variables within
the procedures.

3.3 RCS C0M40N MEFfORY

3-5

Chapter 9, "Robot Sensor Language (RSL)", describes the NBS-developed language
for robot-control applications. Therefore, this chapter presents only a brief
overview of the kinds of information RCS needs in common memory to control a

robot. Consider the example of a robot wrist and gripper. The kind of data
you place in common memory to define the physical characteristics of a system
with a robot wrist and gripper would include poses, objects, locations, and
trajectories.

Pose data

Poses comprise the most fundamental data required to control a robot. You use
the name of each pose to identify a specific position and orientation in the
workspace of the robot.

To create a pose, you enter numerical information from the keyboard or use a

joystick to describe a specific position and orientation. Alternatively, you
can program the robot system to "learn" poses by using sensor systems to cap-
ture a pose you select manually.

A pose in the example robot gripper system consists of a specific position and
orientation for the wrist and gripper. Figure 3-3 illustrates some different
poses for this system.

vv. wi . jr„^„^^,, ,,, ,.^,j^.,, .,

,

r~^
, ^ '.».^^^».^^^^.^\^^.'_'.v'.'.w^.^\^.^^.^'.v.^.^

POSE A POSE B POSE C POSE D

Figure 3-3. Examples of poses.

I

3.3 RCS COIMON MEMORY
3-6

m
Object data

Object data specifies such things as the grip size and grip location on an

object that the robot is manipulating. The grip size specifies the width that
the gripper needs to accommodate and the grip location specifies the location
at which to grip the object. Figure 3-^ illustrates the grip size and grip
location on an object.

Grip Size Specification

Object

Grip

Location
lecification

Figure 3-4. Example object data specifications.

Location data

Location specifications refer to coordinates within the workspace of the

robot. These specifications describe points such as the goal point of a
move-to command.

3.3 RCS COUPON MEMORY
3-7

Figure 3-5 illustrates an example of a location where the robot is to place an
object.

Figure 3-5. Example location.

Trajectory data

Trajectories define how the robot is to move from one location to another.
Each object and location has specific requirements as to how the gripper
should approach and depart. You also need to provide intermediate trajectory
data to guide the gripper from one departure to the next approach.

Trajectory data can refer to objects, location points, or arrays of location
points. The specifications for a trajectory can include specific beginning or

end location points (as well as objects or arrays), maximum acceleration, max-
imum velocity, and braking distance.

3.3 RCS C0M40N MEMORY
3-8

Figure 3-6 illustrates some of the possible components of trajectory data,

T3 ROBOT

' ""'ill

Approach
Trajectory

i li 1^;

Intermediate
Trajectory

Departure
Trajectory

Figure 3-6. Examples of trajectories.

3.3 RCS C(»»«N MEMORY
3-9

Chapter 4

RCS COMPONENTS

This chapter describes the hardware and software components of RCS, including

the organization of the memory address space, I/O space, and disk blocks.

4.1 HARDWARE COMPONENTS OF RCS

RCS is a MULTIBUS-based multiprocessor microcomputer system. The MULTIBUS
defines a bus structure supported by many vendors with compatible board
products. RCS currently supports up to seven Intel 86/30 single-board
computers, each with an 808? floating point coprocessor. Each 86/30 computer
can run one or more RCS control levels, depending on timing considerations.

Each single-board computer includes local RAM and contains the FORTH operating
system in PROM. All computers in the system share access to a common memory
and Winchester disk.

One of the single-board computers is the master board; the others are slave

boards. The user terminal attaches to the master board. Except for unusual
circumstances (such as a system crash), all user communication with the slave
boards occurs indirectly through the master board. If necessary, you can add
a terminal switch box to the system to communicate directly with a slave
board.

In addition to one or more single-board computers, RCS includes the following
components:

• Shared-memory boards
• Numeric data processors
• Disk/tape controller board
• Winchester disk drive
• Nine-track tape drive
• Terminal

Depending on the RCS application, it may also contain optional components,
such as:

• Serial I/O boards
• Parallel I/O boards
• Analog I/O boards
• Joystick
• Printer

RCS can connect directly to, and control the operation of, a wide variety of
robotic equipment. See Chapter 5, "RCS Installation Procedures", for a com-
plete description of the system hardware.

4.1 HARDWARE COMPONENTS OF RCS
4-1

MDLTIBOS Address Space Organization

In RCS, the address space for the disk control block, FORTH PROMs, and
semaphores are fixed. The user allocates address space for processors and
common memory. RCS supports either 20-bit or 24-bit addressing (24-bit
addressing requires the P2 connector on the MULTIBUS).

With 24-bit addressing, the address space is divided into 16 one-megabyte
pages. Processors must be in page 0. You can distribute common memory over
any two (but only two) other pages.

The RSL application uses 20-bit addressing. See Section C.I, "Multibus
Address Space", for the exact addresses.

MOLTIBOS I/O Space Organization

RCS allocates the MULTIBUS I/O space as shown in Section C.2, "Multibus I/O
Space Organization". All unused I/O address space and the J3 and J4 ports are
available for user applications.

RCS Interrupt Structure

Each processor board in the system uses interrupts to control RCS operation.
See Section C.3, "RCS Interrupt Assignments", for the use of each interrupt.

RCS Disk Block Organization

RCS uses the FORTH block structure for all source code. The disk block map in

Appendix D, "RCS Disk Block Organization", shows how RCS allocates blocks on
the Winchester disk for the RSL 1.6 application.

RCS uses a 10-block directory structure within these source code blocks. The

system does not automatically maintain this directory information; you must
update the block-directory blocks when you add, delete, or move blocks. For
more information on directories, see Section 6.3> "Locating Source Code".

4.2 SOFTWARE COMPONENTS OF RCS

The RCS operating system software developed by NBS is based on a compiled
version of the FORTH programming language. This operating system supports

multiple processors, interprocessor communications, and a mid-level high-speed
compiled language called SMACRO.

The operating system provides an environment for the development of applica-
tion programs for real-time control. One such application program is RSL,

which runs under RCS.

4.2 SOFTWARE COMPONENTS OF RCS
4-2

The RCS software includes an operating system with system utilities and
macros. The utilities enable you to edit source code, communicate with indi-

vidual computers within the system, debug application programs, back up pro-
grams and data, and perform other tasks. The macros form the SMACRO language
you can use to create application programs.

Other components of the RCS software include SMACRO files in common memory,
system dictionary vocabularies, and the communications utility, COMM.

The Operating System

The RCS operating system includes utilities for booting the system, editing
source code, and performing other tasks. It provides multiprocessor operation

by using one master processor board to control several slave processor boards.
In addition to these features, the RCS operating system supports background
tasks, interrupts, and four modes of operation.

System utilities

Many RCS system utilities perform simple tasks, such as printing a block of
source code or selecting a specific type of terminal. Other utilities (such

as the MBOOT, CUSTOM, and EDITING utilities) are more powerful.

Some MBOOT and CUSTOM utilities enable you to boot the system, load the system
software, and load the custom software required for your particular applica-
tions. Other MBOOT and CUSTOM utilities enable you to save memory images on
the Winchester disk, and then reload them into memory. These utilities are
useful when you need to recover from a system crash.

The EDITING utilities enable you to examine and modify source code. RCS sup-
ports three kinds of terminals: the TeleVideo Model 950, the Datamedia Elite
1521A, and the DEC VT100.

Multiprocessor operation

To provide multiprocessor operation, the RCS operating system enables you to
define one processor board as the master board, and the other processor boards
as slave boards. The terminal can communicate directly with only the master
processor board. Communication with the slave boards occurs indirectly
through the master board.

Background tasks

The RSL application developed by NBS includes tasks that run in the back-
ground. Refer to the RSL source code for an example of background task opera-
tion. The polyFORTH 1 Reference Manual and the polyFORTH 8086 Operations
Manual provide more information on running tasks in background mode.

4.2 SOFTWARE COMPONENTS OF RCS
4-3

Interrupt routines

RCS includes specific SMACRO words for interrupt routines. The enter-
interrupt SMACRO word prepares an 8086 processor to perform an interrupt rou-
tine first by pushing the contents of all registers and then by pointing the
DS and ES registers to specific segments.

The exit-interrupt SMACRO word should appear at the end of an interrupt rou-
tine, to restore the contents of the 8086 registers and then execute an IRET.
You can use the "INTERRUPT SMACRO word to set the 8086 interrupt vector to
point to a selected SMACRO routine.

The operation of these SMACRO words is explained in detail in Section 7«6,
"Interrupts and Assembly Language". Refer to Section C.3» "RCS Interrupt
Assignments", for a list of the reserved interrupts.

Operating modes

RCS can run in one of four modes: Run, Show, Locate, and Compile. Run mode
is the normal operating mode for controlling robotic equipment. Show mode
enables you to examine the values of variables. Locate mode enables you to
search for the source block of any SMACRO word. Compile mode is for compiling
blocks of RCS code.

RCS SMACRO Language

The RCS operating system is based on the FORTH language and operating system.
NBS has extended FORTH by adding words to the standard set of FORTH words.

This set of extensions comprises the SMACRO language.

Each SMACRO variable is a member of a set of variables belonging to a variable

owner. SMACRO variable types include: integer, byte, floating point, array,
string, segment, and sequential. The owners in SMACRO include: variable
owners, sequential owners, and list owners. In SMACRO, unlike FORTH, you can

define a word that is longer than one block by using the SMACRO words routine
and end-routine. For a complete description of SMACRO, see Chapter 7,

"SMACRO". For a complete list of SMACRO words, see Appendix B, "User Word
Summary"

.

SKACRO Files

RCS operation is based on SMACRO files. A SMACRO file is stored using a

linked-list record structure, residing in common memory. The memory-resident
SMACRO files provide a means of communication between the processor boards
within a system.

C

4.2 SOFTWARE COMPONENTS OF RCS
4-4

Disk Files

RCS does not have traditional disk files. RCS stores source code in blocks.

You keep track of which block holds what source code by maintaining the RCS
system of directory blocks. The directory blocks help you locate code; RCS

does not use the directory blocks.

RCS also provides a mechanism for storing compiled code on the disk. This
method is similar to the method for storing an object code file on a

traditional system. The compiled code is stored in D>Ms, where D>M is simply
a copy of the local RAM for a board. D>Ms are less flexible than the

traditional object code file, but they are faster to load because no linking
is required.

Robot Sensor Language (RSL)

NBS has developed RSL as a sample RCS application you can use and modify for
your own robot system. It includes four control levels, each representing one
level of task decomposition.

The four RSL control levels are TASK, PATH, PRIM, and JOINT. TASK decomposes
a task into a sequence of paths. PATH decomposes each path into sequences of
goal poses. PRIM decomposes the poses into a sequence of intermediate poses.
JOINT decomposes the intermediate poses into commanded joint angles.

System Dictionary Vocabularies

RCS maintains a system dictionary in common memory. The system dictionary
contains entries for every variable and routine in the system. A vocabulary

is a group of related entries in the dictionary. RCS includes a system vocab-
ulary on each board, and a vocabulary for each control level, including RSL.

You can include up to five user-defined vocabularies per board (although you
usually have only one vocabulary per control level).

The CoBBBunications Utility (C0tfl4)

The RCS operating system includes the COMM communications utility, which per-
forms communications between processor boards within the system. This utility
enables you to restart the timer, set up communication buffers, and specify
the communications timing. See Chapter 8, "Communications", for more informa-
tion on the communications process.

4.2 SOFTWARE COMPONENTS OF RCS
4-5

Chapter 5
HCS INSTALLATION PROCEDURES

This chapter lists the hardware required to support the RCS and RSL software,

and explains the hardware and software installation procedures.

5.1 HARDWARE REQUIREMENTS

NBS supplies the software for an RCS system; you supply the hardware (see Fig-

ure 5-1).

Minimum RCS
Copfiguration

Optional
Equipment

Master Board Terminal — Printer

Common Memorg Board

Controller Board I
\

1

Disk Drive Tape Drive
^

Slave Board 2 Analog Multimodule Analog Sensors
,

>»

Slave Board 4 Parallel Multimodule • Joystick 1

Slave Board 6 Serial Multimodule — Robot A

Slave Board 8

Slave Board A Parallel Multimodule Digital Sensors

Slave Board C

Common Memory Board

Common Memory Board

Serial I/O Board

Parallel I/O Board

Analoy I/O Board
f-

- Analog SeiDsors

Digital I/O Board |- -Digital Se nsors

MULTIBUS Backplane

Figure 5-1. Example RCS hardware configuration.

5.1 HARDWARE REQUIREMENTS
5-1

Minimum Hardware Requlronents

The following list describes the minimum hardware configuration needed to run
RCS:

• Equipment rack.

• MULTIBUS backplane and power supply (for example, the ETI Model 8223
23-slot chassis, including a parallel priority circuit).

• Intel iSBC 86/30 single-board computer configured with a bus clock.

• Intel iSBC 337A numeric data processor module for 86/30 board.

• Plessey Model PSM 512A (or equivalent) memory board.

• Ciprico Rimfire H5 disk and tape controller board.

• Priam Diskos Model 6650-10 66-megabyte Winchester disk drive.

• Priam Model 3 00106-04 ANSI-standard disk interface adapter board.

• Cipher F880 nine-track tape drive.

• TeleVideo Model 950, Datamedia Elite 1521A, or DEC VT1 00-compatible
terminal

.

Note: The NBS-supplied system tape is configured for a Micro-Term ERGO 301

terminal, which is VT100 compatible.

• Apple Imagewriter, DECwriter III, or Integral Data Systems Paper Tiger
printer.

• Interconnection cables.

Unimate Puma 760 Robot Requirements

The following list describes the additional system components required to run
RSL to control a Unimate Puma 760 robot.

• Three additional iSBC 86/30 single-board computers.

• Three additional iSBC 337A numeric data processor modules.

• One iSBX 351 Serial I/O Multimodule.

(

5.1 HARDWARE REQUIREMENTS
5-2

Additional CCTuponents

To modify RCS to develop other applications or control other types of robotic
machinery, you can add the following components:

• Intel MULTIBUS boards and multimodules
- Up to three additional iSBC 86/30 computers (for a maximum of seven)
- iSBC 53^ Serial I/O board
- iSBC 519 Parallel I/O board
- iSBX 351 Serial I/O Multimodule
- iSBX 350 Parallel I/O Multimodule
- iSBX 311 Analog Input Multimodule
- iSBX 328 Analog Output Multimodule

• One to four additional Plessey Model PSM 512A (or equivalent) memory boards
(this application requires 24-bit addressing capability).

• MULTIBUS P2 backplane connector installed in chassis (required for 24-bit
addressing)

.

• A switch box, compatible with RS-232 and including one input and seven out-

puts (required only if you need direct communication with slave boards).

• Joystick, as specified in Appendix F, "Joystick Schematics".

• Robot with optional sensors.

Your system may not require all of the hardware included in these lists. The
configuration of your system depends on the requirements of your robot. For
example, the Analog Input Multimodule is not required for RCS operation, but

may be needed to provide sensor input. However, you should plan ahead by
ordering a spare for each critical component in the system.

5.2 ROBOT INTERFACE REQUIREMENTS

RCS provides an environment for developing programs that operate in real time

to control robotic equipment. RCS makes no assumptions about the machine it
controls; the machine does not even need to be a robot. You must supply the
software interface for the specific machine you want to control using RCS.

NBS provides interface software designed to control a Unimate Puma 760 robot
through a serial I/O multimodule. This software also can control Unimate
robots other than the Puma 760. For more information, see the Unimate Puma
Control System SLAVE Interface Specification for External Computer Path Con-
trol Using VAL II .

To control robotic devices from other manufacturers, you must develop your own
interface software according to the specific requirements of each device.

5.2 ROBOT INTERFACE REQUIREMENTS
5-3

5.3 SOFTWARE REQUIREMENTS

The software required to run RCS applications includes PROMs containing the
basic FORTH operating system, and a magnetic tape containing the SMACRO exten-
sions to FORTH.

The magnetic tape supplied by NBS also includes RSL, an application developed
by NBS. You can modify RSL for your application or copy selected RSL
procedures as a basis for your own RCS application.

5.^ HARDWARE INSTALLATION PROCEDURES

To install the hardware required to run RCS, you must configure the processor
boards, the common memory board, the disk and tape controller board, the disk
drive, the terminal, and the printer.

Configuring the Processor Boards

Before installing the 86/30 processor boards in the system, you must change
the factory-default configuration of the boards, add the PROMs containing the

FORTH operating system, install the 8087 numeric data processors, add heat
sinks, set up the bus clock on one of the boards, and set up RCS communica-
tions on one of the boards.

Installing processor-board jumpers

Configure each processor board by performing the jumper modifications indi-
cated in Table 5-1. These modifications are from the Intel default jumper
configurations

.

Table 5-1. Processor-Board Jumper Modifications.

Modification Result

Enables bus lock

Disables bus clock
Disables serial priority
Grounds CBRQ/
Sets the RAM address to 2000
Selects 24-bit addressing
Selects 32K PROM size
Selects 32K PROM size
Deletes interrupt assignments
Selects 8087 error interrupt
Selects onboard serial port interrupts
Assigns the 6-msec time-out interrupt
Sets PIT clocks
Connects RTS to CTS

Add 204-206

Pull 205-207, pull 208-209
Pull 210-211

Pull 213-214, add 212-213
Pull 219-225
Add 218-223, add 238-239
Add 124-125
Pull 111-112, add 112-113
Pull 151-152, pull 147-158
Add 164-166

Add 136-154, add 153-157
Add 133-165
Pull 175-176, add 175-184
Add 76-77

5.4 HARDWARE INSTALLATION PROCEDURES
5-4

After making these jumper modifications, cut connection line 32 of the P2 con-

nector to disconnect a non-tristate output.

You may need additional jumpers to configure a processor board for the onboard
parallel port or for one of the add-on multimodule ports.

To select the address for the RAM on each 86/30 processor board, configure the

jumpers for each starting address as shown in Table 5-2.

Table 5-2. Processor-Board Starting-Address Jumpers.

RSL
Control Level

RSL
PRIM
TASK/PATH

JOINT/COMM
not used for RSL
not used for RSL
not used for RSL

Board
Numbers Starting Address Jumpers

2

4

6

8

A
C

00000
20000
40000

60000
80000
A0000
C0000

232-233
None
219-226,

219-226
219-225,
219-225
219-225,

232-233

232-233

219-226

Installing the FORTH PROM circuits

Install on each 86/30 processor board the four PROMs containing the FORTH
operating system supplied by NBS.

Installing the 8087 numeric data processors

For each processor board, carefully remove the 8086 microprocessor from the

board and install it on a small board (Intel 337A) with an 8087 numeric data
processor. Next, install the 8087 board into the 8086 socket on the processor

board. If you are using an old 8087 that runs at a maximum clock speed of

5 MHz, add jumper 36-37 to the processor board.

Installing heat sinks

After installing the 8087 board, install a heat sink (using silicone heat sink
compound) on top of the 8086 and 8087 processors to ensure adequate cooling.

Installing the bus clock

You must enable the bus clock on one, and only one, of the processor boards

(usually board 0) within the system. Install jumpers 205-207 and 208-209
to enable the bus clock. These jumpers should not be present on any other
processor board in the system.

5.4 HARDWARE INSTALLATION PROCEDURES
5-5

Configuring Interprocessor cCTimunlcatlona

The processor board responsible for RCS communications between levels is the
COMM board (although it may also perform functions not related to
communications)

.

Configure the COMM board to send the COMM bit to the other boards by adding
jumper 245-251. This jumper enables status register bit 5 to invoke bus
interrupt 2.

Configure the other processor boards to receive the COMM bit by adding jumper
147-148. This jumper assigns bus interrupt 2 to bit 2 of the Programmable
Interrupt Controller (PIC).

Configuring the Ccamnon Memory Board

Modify the factory-default configuration of the common memory board (Plessey
Model PSM 512A) by modifying the jumper wires as indicated in Table 5-3.

Table 5-3. Common Memory Board Jumper Modifications.

Modification Result

Pull LK19 Disables the PWRfail interrupt
Pull LK21 Selects parallel priority operation
Pull LK22-31 Disables the error interrupt

To run RSL, set the address and interrupt switches of the common memory board

to the settings shown in Table 5-4.

Table 5-4. Common Memory Board Switch Settings for RSL.

Switch Settings Result

Pole: 12345678 (Pole 1 is at the left)
SW1: on off off off off off off off Disables interrupts
SW2: off off off off off off off off Selects megabyte page
SW3: off on on on on on on on Selects 80000 as first address

SW4: off off off off off off on off Selects EFFFF as last address

Configuring the Disk and Tape Controller Board

Modify the factory-default configuration of the Rimfire 45 disk and tape con-
troller board by installing the jumper wires indicated in Table 5-5.

5.4 HAHDWARB INSTALLATION PROCEDURES
5-6

t

/

Table 5-5. Disk and Tape Controller-Board Jumper Modifications.

Modification Result

Pull 15-16, add 15-17 Selects 16-bit bus operation
Pull 23-26 Selects parallel priority operation
Add 13-14 Enables bus time-out interrupt
Pull 31 through 50

Add 50-49-48-47-^5-44-43-42
Add 46-41 Sets the initialization address to EFC06
Add 40-39-38
Add 37-36-35-34-33-32-31

For operation with the RCS system, you must set the channel attention of the
Rimfire 45 controller board to 0052 and the bus width to 16. You must also
set the DIP switches on the Rimfire controller board to the settings shown in
Table 5-6.

Table 5-6. Disk and Tape Controller-Board Switch Settings.

Switch Settings

Bit: 12 3 4 5 6 7 8

SW1: off on off on off off on on
SW2: off off off off off off off off

Configuring the Disk Drive

You can order Priam Diskos Model 6650-10 disk drives from the factory,
equipped with an ANSI standard adapter. Refer to the Priam documentation if

you have a drive that requires installing this adapter.

Modify the factory-default configuration of the Priam 6650-10 disk drive by

setting the Sector DIP switch (located under the adapter board) for 18 sectors
per track according to the settings shown in Table 5-7.

Table 5-7. Disk Drive Switch Settings.

Switch Settings

Bit: 1

Sector Switch: off

Caution: Make sure you have unlocked the disk heads and spindle before turn-
ing on the disk power. New Priam disk drives have a label indicat-
ing which lever performs this function. Old drives have two levers;

one releases the heads and the other releases the spindle. Refer to
the manufacturer's instructions for more information on preparing

the disk drive for use.

2 3 4 5 6 7 8

on off off on off off off

m
5.4 HAHDWARE INSTALLATION PROCEDURES

5-7

Configuring the Terminal

Installing the terminal requires configuring both the hardware and software.
The steps involved depend on the terminal you are using. This section
describes the steps for the terminals that RCS supports.

To configure the hardware, set up the terminal to communicate with RCS. The
computer port on the terminal must be configured for RS-232C, 9600 baud, 8

data bits, no parity, and one stop bit. Refer to the terminal manual for
information on how to set up the terminal. If you have Micro-Term ERGO 301

i

the function key format must be set to TV970.

To configure the software, modify the system to load the proper block for the
terminal being used and define the programmable function keys (if any). See
Steps 6 and 7 in Section 5.5, "Software Installation Procedure", for the exact
steps involved.

Your NBS-supplied system tape is configured for an ANSI terminal, specifically
the Micro-Term Model ERGO 30 !• The Micro-Term has programmable function keys
and tabs. The RCS VT100 utility contains additional words to program these
keys. Similarly, the RCS TeleVideo utility contains words to program the

TeleVideo function keys. Tables 5-8 and 5-9 list the programmable function
keys as defined for these two terminals. Note that the Datamedia 1521 A does
not have function keys.

Note: Terminals that are compatible to VT100 terminals conform to the ANSI
standard for terminals. You can use any ANSI standard terminal with
the RCS VT100 screen editor. However, most terminals add features on
top of the ANSI standard, such as programmable function keys and tabs.

Therefore, the protocol for programming function keys and tabs differs

from one terminal to another, even if both terminals are ANSI. If you
do not have a Micro-Term or TeleVideo terminal, you have to write your
own words to program the function keys for your terminal.

(

Table 5-8. Function Keys DefinecI on the Micro-Term ERGO 301.

SHIFT-Key CTRL-Key
Key Function Function Function

F1 printer on X printer off
F2 form feed X X
F3 -^x X X
F4 move to TASK&PATH board X X
F5 move to PRIM board X X
F6 move to JOINT/COMM board X X
F7 X X X
F8 X X X

F9 X boot commands* X

F10 X 2 D>M X

F11 X 3 D>M X

5.4 HARDWARE INSTALLATION PROCEDURES
5-8

Table 5-8 Functio

Key Function

F12 X

F13 X

F14 X
F15 X

F16 -^E

PF1 home
PF2 clear
PF3 X
?FH X

Function Keys Defined on the Micro-Term ERGO 301. (continued)

SHIFT-•Key CTRL-Key
Functl on Function

5 D>M X
X X
X X
X X
X X
X X
X X
X X
X X

•The boot commands are HEX F7 C9 CBOOT MBBOOT init-cm . SHIFT-F9 does not
include a carriage return.

Note: The keys PF1 through PF4 are not programmable. The keys F1 through F16
are programmed in the RCS Function-Keys block. The SHIFT-Key sequences
are programmed in EAROM.

For the VT100, pressing *<ENTER> toggles the selection of the printer.

Table 5-9. Function Keys Defined on the TeleVideo 950.

i SHIFT-Key CTRL-Key
Key Function Function Function

F1 printer on X X
F2 printer off X X

F3 printer form feed X X
F4 move to TASK/PATH board X X
F5 move to PRIM board X X

F6 move to JOINT/COMM board X X
F7 X X X

F8 X X X
F9 X X X
F10 boot commands X X

F11 2D>M X X

Ccmfinuring the Printer

Connect the printer to the printer port on the terminal you are using. Make
sure the printer and terminal have the same port configurations, such as baud
rate and stop bits. Consult the printer and terminal manuals for more infor-
mation. If your terminal does not have a transparent mode (where the terminal
passes all control codes through to the printer), some of the RCS printing
utilities will not work. In this case, you need to write a small amount of
FORTH code to communicate with a separate printer port. The TeleVideo 950 and
VT100 terminals have transparent modes.

5.^ HARDWARE INSTALLATION PROCEDURES
5-9

RIMFIRE-GET RDOP C080 FFFF 7WERR0R RIMFIRE-FREE
DECIMAL

t

In addition to configuring the ports on the printer and terminal, it is neces-
sary to modify the system for the particular printer being used. The steps
involved are given in Section 5.5 in Step 8.

Preparing to Install the RCS Software

After configuring the boards, the disk, the printer, and the terminal, install
them and any other components of the system according to the manufacturer's
instructions. Although different applications require different configura-
tions of the system hardware, you must have at least the minimum hardware con-
figuration defined in Section 5.1, "Hardware Requirements", to install the RCS
system on a blank disk. If you want to install the full RSL application, you
must have three additional 86/30 processor boards configured as shown in Table
5-2 (board numbers 2, 4, and 6).

5.5 SOFTWARE INSTALLATION PROCEDURE

You install the RCS and RSL software by transferring it from the NBS-supplied
magnetic tape to your Winchester disk, and then compiling it on your system.
To install the software, follow this procedure:

Note: If you make an error in typing any of the required input statements,
use the "delete" key to backspace over the error and correct it. Do
not use the "backspace" or cursor control keys to correct an error.

1. Make sure the disk heads are unlocked. Then turn on the system and ver-
ify that the disk is spinning. V

2. At the terminal, type the first digit of the master board address (that

is, the board number) followed by a space and the word CBOOT. For
example type RPB 4 ERASE CBOOT and press RETURN.

After you press RETURN, the system initializes the disk semaphore and
control block for that board. Then the system loads the heads on the

disk to prepare it for use and displays the FORTH ok prompt.

3. Formatting the disk takes approximately 3 minutes. To format the disk,
enter the following commands exactly as shown:

HEX
RPB 1C ERASE

24 RPBPREP
0400 RPB T + ORM
H RPB 0A + !

t

5.5 SOFTWARE INSTALLATION PROCEDURE
5-10

Refer to the Rimfire controller manual for information on any error mes-
sages that appear during the formatting process. Repeat the commands

listed in this step if formatting does not proceed as expected. If the

problem persists, make sure that the addressing jumpers and switches are
correctly positioned on the memory board, the processor board, and the

Rimfire controller board.

4. To rewind the tape, move the tape past the first file mark, and read in

the MBOOT file, load the RCS system tape into the tape drive and enter
the following commands exactly as shown:

TREWIND
TSKIP
1000 13^9 88 T/F-TAPE

Note; Appendix B, "User Word Summary", does not contain these words
because they are used only for this initial installation.

5. If the commands listed in Step 4 execute correctly, enter the following
commands to load MBOOT and the normal TAPE utility, and to rewind the

tape. Enter the commands exactly as shown, but substitute the [#] with
the first hex digit of the starting address for the 86/30 processor board
designated for RSL. If you configured your system as described in this
chapter, the first hex digit of the starting address for the RSL board is

0.

[#3 MBOOT
Basic TAPE
TREWIND

Now load the rest of the source code from the tape. After each FROM-TAPE
command, the specified blocks are read from the tape, and the message
tape is at file # (where # is the current file number on the tape) is
displayed. If an error message appears, do not execute the rest of the

commands (see Section 6.10, "Using Tape Utilities", for information on
solving the tape problem). To load the source code, enter:

2 TGOTO
1350 1^99 FROM-TAPE
1500 1599 FROM-TAPE
7000 7999 FROM-TAPE
8000 8999 FROM-TAPE
9000 9999 FROM-TAPE
10000 10999 FROM-TAPE
11000 11999 FROM-TAPE
12000 12999 FROM-TAPE

After each FROM-TAPE command, the specified blocks are read from tape,

and the message tape is at file # will be displayed, (where # is the cur-
rent file # on the tape). If any error messages appear, do not execute
the rest of the commands (see Section 6.10, "Using Tape Utilities").

5.5 SOFTWARE INSTALLATION PROCEDURE
5-11

6. Create the tape and print D>M by pressing the master reset switch and
entering the following commands on the master board:

HEX F7 C9 OUTPUT
RPB k ERASE

CBOOT
MBOOT

Depending on the type of terminal being used, enter:

[#] CUSTOM

Where [#] is 7. for Datamedia, 8^ for TeleVideo, and 9. for VT 100-compatible
terminals. Note that after you enter [#] CUSTOM, the system prompt
changes to list&tape>.

Now enter:

OFFSET !

5 MEM>DISK

7. If you are using a Micro-Term ERGO 301 terminal, skip to Step 8. If you
are using either a TeleVideo or Datamedia terminal, you must reconfigure
the system.

For the TeleVideo 950, perform the following steps:

• In block 1370, the CUSTOM block, use the screen editor to change
VT100 in line U to Televideo .

• Change VT100-Terminal in line 6 to Televideo-terminal .

• Enter the following commands to copy block 1166 to block 1405:

1000 OFFSET !

166 405 1 BLOCKS

For the Datamedia, perform the following steps:

• In block 1370, the CUSTOM block, use the screen editor to change
VT100 in line 4 to Datamedia .

• Change VT100-Terminal in line 6 to Datamedia-terminal .

• In block 1405, insert %%^ at the beginning of line 0. Inserting %%_

disables the programming of function keys since the Datamedia 1521

A

has none.

Note: For information on using the screen editor, see Section 6.7, "Editing a

Block of Code".

#

*

5.5 SOFTWARE INSTALLATION PROCEDORE
5-12

»

8. If you are using an Imagewriter printer, skip to Step 9. If you are

using either a DECwriter III or Integral Data Systems Paper Tiger
printer, you must reconfigure the system. For the DECwriter III, change
Image-writer to Dec-writer in blocks 1377, 1378, and 1379. For the Paper
Tiger, change Image-writer to Paper-tiger in these three blocks.

9. Create the base system by pressing the master reset button to turn the
hardware on and off, and then entering the following commands to the mas-
ter 86/30 processor board. (If the system does not have 24-bit address-
ing the first command is not needed.) After you enter RCS, the system
responds with a variety of loading messages, followed by a :R prompt.
After you enter 1471 LOAD, the system prompt becomes :R r3l>.

HEX F7 C9 OUTPUT
CBOOT
MBOOT

init-cm

I

RCS
1471 LOAD

After you enter these commands, the system loads CUSTOM and performs
the 1 PRESERVE and 1 PRESERVE-FILE commands. CUSTOM loads a block that
customizes the board for a specific application (RSL on the tape supplied
by NBS). PRESERVE writes the current system dictionary to disk.

PRESERVE-FILE writes the current user files to disk.

10. As prompted, enter the 1 MEM>DISK command. This command writes an image

of the board's local RAM to the disk. Then enter Y_ at the nake imaige?
prompt.

11. A system running RSL requires four processor boards. Other applications
may require more or fewer processor boards. If you are installing equip-
ment other than that listed for a system running RSL, you must edit
blocks 1472 through 1479 to reconfigure the base system to accommodate
these components. For information on how to edit blocks, see Section
6.7, "Editing a Block of Code".

12. Enter the following command to load each slave board through CUSTOM and
to execute the 1 MEM>DISK command:

1470 LOAD

Loading the base system takes about 14 minutes for the three slave boards
in a system configured to run RSL. The previous command causes each
slave board to execute the following commands:

[#] MBOOT
Slave
REMOTE-SLAVE
RCS
[#] CUSTOM
1 PRESERVE 1 PRESERVE FILE 1 MEM>DISK

5.5 SOFTWARE INSTALLATION PROCEDURE
5-13

vniere [#] is the first hex digit of the 86/30 processor board address
given in Table 5-2.

13. Enter the following command to load each slave board with the correspond-
ing control level of the RSL sample application:

1480 0LOAD

$

Loading RSL takes about 7 minutes. If you are using an application other
than RSL, you must first define slave address constants in block 1404
(loaded by the master board) and reconfigure BOOT-SYSTEM. Blocks 1460
through 1469 are reserved for booting slave boards | BOOT-SYSTEM loads

block 1460.

14. When loading is complete, the system prompts you to enter the following
commands on the master board:

8000 OFFSET !

2 MEM>DISK
Y
3 MEM>DISK

Y

At this point, the RCS and RSL software is installed.

5.5 SOFTWARE INSTALLATION PROCEDURE
5-14

Chapter 6

BASIC RCS OPERATIONS

This chapter provides the step-by-step procedures for performing basic RCS

operations. The operations include starting up the system; finding, loading,
and editing code; saving and rebooting the system; using printer and tape

utilities; and shutting dovm the system.

The procedures in this chapter describe how to use RCS user command words to

perform these basic operations. For a complete list of RCS user words, see
Appendix B, "User Word Summary".

6.1 STARTING THE SYSTEM

This section describes how to start the system when you have a working appli-
cation in the 2 D>M area of the disk. A D>M is a 120 consecutive block area
on the disk. Your system tape comes with the RSL application in the 2 D>M
area of memory.

RCS enables you to maintain up to five copies of local memory on the disk.
Each copy is called a disk image or D>M. The RCS word D>M enables you to move

one of the copies from the disk to memory. Alternatively, MEM>DISK moves a

disk image from local memory to the disk. On the system tape provided by NBS,

1 D>M contains the base RCS version 2.2, 2 D>M contains RSL version 1.6, 3 D>M
and 4 D>M are free for expansion, and 5 D>M contains additional RCS features
such as the editor and the print and tape utilities.

For information on starting the system for the first time, including a more

detailed explanation of the start-up command words, see Chapter 5, "RCS
Installation Procedures".

Note: If you make an error in typing any of the required input statements,
use the "delete" key to backspace over the error and correct it. Do

not use the "backspace" or cursor control keys to correct an error.

To start the system, follow these steps:

1. Turn on rack power to the RCS hardware.

2. Press the RETURN key until the terminal responds ok.

3. Enter RPB H erase CBOOT MBOOT init-cm 2 D>M and wait for the :R rsl>
prompt. (Remember that the system is case sensitive. You must enter the
uppercase and lowercase characters as shown.)

The commands in Step 3 boot the RSL application. The CBOOT command ini-
tializes the Winchester disk, MBOOT loads the base FORTH system, init-cm
initializes memory, and 2 D>M moves the application image to memory and
executes the auto-load block. The auto-load block initializes the commu-
nications process, the 808? chip, the function keys, the system diction-
ary, and the SMACRO files. The auto-load block also calls BOOT-SYSTEM to
boot the slave boards in the system.

6.1 STARTING THE SYSTEM
6-1

Note: At this point you can use the system for programming and debugging
without running the robot.

4. Turn on power to the robot.

5. Prepare the robot for RCS control. The exact procedures for this step
depend on the type of robot you are using with RCS. Typically, the steps
include turning on power to the robot controller, initializing the con-
troller and the interface to RCS, turning on arm power to the robot, and
moving the robot to a safe starting position.

6. Enter GO to start all the control levels and the communications process.
RCS is now waiting for the robot to start communications.

7. Command the robot controller to start the RCS interface.

8. Enter _2X to return to the master board. You must press RETURN after "X.

RCS now controls the robot.

6.2 MOVING FROM ONE BOARD TO ANOTHER

To find a block of code in the memory on a specific board, you must move to

that board to search for the block. Moving to a board means that you make the
terminal communicate directly with the specified board. RCS enables you to

use either software switches or a hardware switch for moving between boards.
After you move to the correct board, you must use the correct vocabulary on
that board.

The RSL example includes four processor boards. The prompt that appears on

the terminal identifies the board with which the terminal is currently commu-
nicating. In addition, the first two characters of the prompt indicate the
current operating mode of the system.

Table 6-1 lists the boards and their prompts for the RSL example system.

Table 6-1. Board Names and Prompts.

Board Name Prompt

RSL (the master board) :R rsl>
TASK&PATH :R task&path>
PRIM :R priin>

JOINT :R joint/c<MBm>

Note: The RCS prompts for each board were named with the RSL application in

mind. If you add a new application, you can change the prompts to
correspond to the control levels of your application. The prompt for

each board is defined by the word :0K in the CUSTOM block for that
board.

6.2 MOVING FROM ONE BOARD TO ANOTHER
6-2

r

Dsing Software Switches

The software switch is the code on the master and slave boards that enables
you to select the board with which the terminal is communicating. For exam-

ple, enter [slave board name] REMOTE to make your terminal communicate with a

specified slave board. Enter _2X to make your terminal communicate with the

master board again.

The NBS-supplied system tape includes code to define the function keys on the
Micro-Term terminal. Function keys correspond to each slave board, eliminat-
ing the need to type [slave board name] REMOTE . See Table 5-8 in Chapter 5,

"RCS Installation Procedures", for the definition of all Micro-Term function
keys.

If you have a different terminal, you can customize the function keys for that

terminal by editing the block that defines the word Function-keys (absolute
block number 1405). If you have defined function keys for the slave boards in
your system, you can move between boards by pressing the function key for the
board you want.

You must move to a slave board from the master board; you cannot move from one
slave board to another. To return to the master board from any slave board,
enter "X.

Dsing a Hardware Switch

If your system includes a switch box for the terminal, you can communicate
with another board by moving the switch to the position corresponding to the
appropriate board.

You can also use this switch to perform a soft reset of a board by setting the
switch for that board and entering _2£. You can perform a hard reset of the
entire system by using the master reset button on the chassis.

Changing Vocabularies

Each board contains a system vocabulary, called SDEF, and up to five user-
defined vocabularies. To locate code on the system, you must be on the cor-
rect board and in the correct vocabulary on that board. To display the cur-
rent vocabulary name and size, enter V-SIZE . Enter SDEF to change to the

system vocabulary on any board.

The RSL application includes a predefined vocabulary for each control level.
These vocabulary names are the same as the names of the RSL control levels:
TASK, PATH, PRIM, and JOINT. The word $DEF sets the vocabulary to be the
vocabulary of the current board. For example, if you are on the PRIM board,
enter $DEF to move to the PRIM vocabulary. Because the TASK and PATH levels
are on the same board, RSL defines the words TDEF and PDEF to move between the
TASK and PATH vocabularies on the TASK&PATH board.

6.2 MOVING FROM ONE BOARD TO ANOTHER
6-3

Alternatively, you can enter [name] DEFINITIONS , where [name] is the name of
the desired vocabulary. For example, enter PRIM DEFINITIONS to use the PRIM
vocabulary.

6.3 LOCATING SOORCE CODE

Locating source code requires an understanding of the LOG command, the Locate
mode, directory block conventions, relative and absolute blocks, and offsets.

This section discusses these topics, including an example of how to locate
source code using the RCS directory block system.

Most code creates entries in the system dictionary. This code can be located
by name using the LOG command or Locate mode. To locate code which does not
make entries in the system dictionary, you must use the directory block
system.

Using the LOC C<»mand

When you are on the correct board, using the correct vocabulary, use the LOC
command to find the block where a specific word is defined. Enter LOG fol-
lowed by a space and the word you want to locate. The system displays a list-
ing of the source block in which the word is defined.

Some words cause RCS to issue the message Pre-locate. This message indicates
that the word is a system word, not a user application word, and that you can-

not access it. However, some system words are accessible using the LOC
command

.

Using the Locate Mode

You can also find a specific block using Locate mode. To use Locate mode,
when you are on the correct board, using the correct vocabulary, enter iL^, In
Locate mode, :L prefixes the system prompt.

Enter the word that you want to locate and the system lists the block that
defines that word, instead of executing the word. To exit Locate mode, enter
;R . (For more information on RCS modes, see Section 7.4, "Modes".)

Understanding Directory Block Conventions

The RGS disk is organized into sections containing 1000 blocks each. For
example, the source code for RGS resides in the 7000-block section, and the

source code for RSL resides in the 8000-block section. For a complete map
showing these blocks, see Appendix G, "System Maps".

#

6.3 LOCATING SOURCE CODE
6-4

All source code on the disk is organized according to the FORTH block struc-

ture; a block contains 16 lines of 64 characters each. RCS uses a hierarchi-

cal directory block structure to organize these blocks on the disk. A direc-
tory block exists for each 1000-, 100-, and 10-block section of disk.

Note that if a block is or a multiple of 10 or 100, the next block (block 1,

block 11, or block 101, respectively) is also a directory block that lists

blocks at the next directory level. For example, block 11 lists the directory

for blocks 12 through 19.

The directory blocks contain comments to help you locate code on the disk.

You must maintain directory blocks. When you add, delete, or change code, be

sure to update the affected directory blocks.

Using Relative and Absolute Block Addresses

RCS uses a system of relative block addresses to help you locate blocks.

The absolute block number is the actual block number on the disk; the

relative block number is the absolute block number minus the offset.

Specifying an Offset

The offset is the value of the special FORTH variable OFFSET. The offset is

usually a multiple of 1000 that indicates the board with which you are cur-

rently communicating. Using an offset decreases the number of characters you

must enter to identify a block.

If a board boots with the offset set at 8000, you can access blocks 8000
through 8999 using the relative block numbers through 999.

Note that there may be more than one control level on the same processor
board. In this case, the first level resides in blocks through 999, the

second level resides in blocks 1000 through 1999, and so forth.

Use !, the FORTH store command, to change the offset. For example, to set the

offset at 8000, enter 8000 OFFSET ! .

Note: If you reconfigure the disk, you must edit the code in the application-
load blocks to change the offsets.

An Example of Using the RCS Directory Block System

This section explains how to use the RCS directory block system to locate a

block of code. Figure 6-1 shows the directory blocks for a 1000-block section
of the disk.

6.3 LOCATING SOURCE CODE
6-5

Dl rectory
Blocks

Code and
Data Blocks

j
i 1

rl2l ;

ITril
-El :

•
•

L|19|
:

H«ii| :

Hqi2| :

•
•

H919| :

i

-PI ;

-|30| :

•
•
•

:

1

100

200

300

400
:

500

600

700

H920|:

H930|: :

•
•
•

H990|:
1 1

800

900

1

Directory
Blocks D

Code and
ata Blocks

Figure 6-1. Directory blocks for a 1000-block section of the disk.

6.3 LOCATING SOURCE CODE
6-6

You use these directory blocks to locate code; for example, to find the block
that contains a TRANSFER task. Tasks are contained in blocks on the TASK

level. To find where TASK is located on the disk, boot the system (Steps 1

through 3 in Section 6.1, "Starting the System"), then enter MAP to list the

first block of the directory of the disk.

-10640 1360 ABS

220/A366 Development Disk Directory 03/05/86
»«»*••» SYSTEM BLOCKS »»»»»»»»«»»»

- 999 FLOPPY BLOCKS

1000 -

1350 -

1500 -

1349
1499
1599

MBOOT 2.2
CUSTOM
screen EDIT

1600 -

6000 -
5999
6999

D>M images
TAPE TRANSFER

7000 -

8000 -

9000 -

7999
8999
9999

RCS 2.2
RSL 1.6
TASK 1.6

10000 -

11000 -

12000 -

10999
11999
12999

PATH 1.6

PRIM 1.6
JOINT 1.6

:R rsl>

As you can see, MAP lists absolute block 1360, which shows TASK at 9000
OFFSET. (You can see the rest of the MAP directory block by entering N L .

)

Enter 9000 OFFSET ! to set the offset to the location of the TASK level.
Enter LIST to list the first directory block for the TASK level.

(TASK 1.6 5/19/86 for RSL 1.6b

2

3
4

5
6

7
8

9

10

11

12

13
14

15

:R rsl>

1 load, list, debug
100 variables
200 pre-process
300 ccNimand ; primitives
400 coaaaand : path search
500 command : tasks, COMMAND-PROCESS
600
700
800 post-process
900 user commands, level, power-up

6.3 LOCATING SOURCE CODE
6-7

Because the TRANSFER command is a user command, you can see on line 11 that
TRANSFER should be in the 900 100-block section. Enter 900 LIST to display
the next directory-level listing.

900
(TASK ; user c(»inands, level, power-up

1 -

2 01 Display, time

3 10 user ccxmnands

4 20
5 30
6 40

7 50
8 60

9 70
10 80 power-up load block
11 90 TASK LEVEL
12)

13 00 ref-blk
14 01 load (10 load 20 load 30 load 40 load
15 50 load 60 load 70 load 80 load) 90 load
:R rsl>

You can see on line 3 that user commands are in the 910 10-block section.
Enter 910 LIST to display the next directory-level listing.

910i

1

2

(TASK ; user commands

1 RESTART
3 2 PAUSE

4 3 TRANSFER
5 4 MOVE-TO nul ARRAY-SAFE
6 5
7 6

8 7

9 8

10 9 single-step
11

12 ref-blk
13

14 (1 load 2 load 3 load 4 load 5 load
15 6 load 7 load 8 load 9 load) -MEM
:R rsl>

Finally, you can see on line H that TRANSFER is in block 913. Enter 913 LIST
to display the TRANSFER command block.

6.3 LOCATING SOURCE CODE
6-8

913

1 :R

2 inc-conmand-f-ln '§ l-i- ==> inc-ccHmnand-TASK DEFINITIONS#-ln
3 '* TRANSFER nul 01 arr ARRAY 00 08 ;; loc CONVEYOR "

4 ==> Input-connuind

5 :S

6
7
8

9
10
11

12

13
14

15
:R rsl>

6.4 LOADING CODE

Loading code in RCS is similar to loading code in FORTH. In fact, in RCS, the
word "load" means the FORTH LOAD operation, which reads a block from the disk
to local RAM, and then interprets all the words in the block. In RCS, the

SMACRO compiler interprets or compiles the words in a block.

The SMACRO compiler in RCS is an incremental compiler. It compiles, links,

and loads code in small pieces, typically one routine at a time. No separate
linker and loader exists as in other systems; the code is completely linked
and ready to run when the compiler finishes with it. The SMACRO compiler is

called by the SMACRO defining words, mainly the word "routine" and variable
declarations. Thus, to compile code, you simply load the blocks containing
it.

Note that loading a block does not necessarily result in compiling code. The
block may contain words that perform other tasks, such as initializing ports
or executing routines. Blocks used this way resemble command files on other
systems.

The SMACRO compiler also enables you to redefine routines. After a complete
system is loaded, you can edit and reload (recompile) any routine at any time,
without reloading or even relinking the rest of the system. Any routine that
calls the edited routine now calls the new version. Combined with the block
screen editor, the ability to redefine routines is extremely useful for
debugging, because bug fixes can be tested with very short edit and compile
cycles.

SMACRO is also interpretive in that you can execute any routine by typing its

name, and you can view and set variables. You cannot execute statements or
fragments in this way, only compiled routines. This restriction retains the
speed of compiled systems, while providing the user-friendliness of inter-
preted systems.

6.4 LOADING CODE
6-9

To load a block, enter the relative block number followed by the word LOAD , or
the absolute block number followed by the word 0LOAD . You can save the time
required to reload code by saving the FORTH and SMACRO segments (the D>M) and
the system dictionary to disk, using the MEM>DISK and PRESERVE commands.

The following procedures describe two special situations in which you need to

load code: reloading an edited routine and loading code still under
development.

Editing and Reloading a Routine

To edit and reload a routine, follow these steps:

1. Boot the system as described in Section 6.1, "Starting the System".

2. Edit the routine as described in Section 6.7, "Editing a Block of Code".

3. Move to the board containing the routine.

k. Use the command LOAD or 0LOAD to reload the source code for the routine.

5. Enter [preserve//] PRESERVE [preserve//] PRESERVE-FILE , where [preserve*] is
the number of the PRESERVE area containing the final application, to save
the system dictionary and your files.

6. Enter [d>m#] MEM>DISK , followed by a comment, such as the date and a

description of the changes you made. The comment must begin with a double
quotation mark.

The MEM>DISK command saves the FORTH and SMACRO segments that are on the

board. For example, 2 MEM>DISK " Added code for new sensor , saves the

2 D>M image to disk.

(This procedure is illustrated in Section 6.8, "Example RCS Dialogue".)

Loading Routines Under DevelotHnent

The procedure for loading routines under development is similar to the proce-
dure for reloading a routine. However, because an application under devel-
opment may contain programming errors, you should load it in segments. After
you load each segment of the application and ensure that the code works prop-

erly, save the application and the system dictionary to the disk, using the
D>M and PRESERVE commands.

To load an application under development, follow these steps:

1. Make the board containing the application the current board.

2. Enter [d>m#] D>M to copy the working Forth and SMACRO segments from the

disk into memory, where [d>m#] is the last image saved.

6.4 LOADING CODE
6-10

3. Enter [Preserve#] RESTORE [preserve//] RESTORE-FILE to copy the working

system dictionary and SMACRO files from the disk into memory.

4. Load the code under development. If the system detects an error, RCS
aborts the loading procedure and you must edit the block to correct the

error.

An error may be nonfatal or fatal. If the error is nonfatal (for example,
a misspelled variable name), simply reload the block. If the error is

fatal (for example, not allowing enough space for a variable owner),
reload the application using the D>M, RESTORE, and RESTORE-FILE commands.

At this point, all of the code is loaded. However, memory space may be

wasted as a result of nonfatal errors. To recover this wasted space,

repeat Steps 2 through 4 before continuing to Step 5.

5. Enter [preserved] PRESERVE [preserve/A] PRESERVE-FILE , where [preserved] is

the number of the PRESERVE area containing the final application, to save
your files and the system dictionary.

6. Enter [d>m#] MEM>DISK , followed by a comment, to save the updated FORTH
and SMACRO segments to disk.

Using this procedure, you can restore a system quickly without reloading a

list of blocks.

6.5 EXECUTING TASKS AND RODTINES

With RCS, you can execute robot tasks with an operating robot, or the routines
that define that task without an operating robot. RCS also enables you to

operate in different modes, control output to the screen, and abort an exe-
cuting task.

Executing Robot Tasks

To execute a robot task, load the block that defines that task. For example,
if the RSL transfer task is defined in block 913 on the TASK board, enter
Task/path REMOTE to move to the TASK&PATH board, and then enter 913 LOAD to
execute a transfer in which the robot transfers an object to a different
location.

Executing Routines

Executing routines without an operating robot is useful when you are debugging
an application. First, issue a HALT command to stop all control levels, the

communication process, and execution of the robot interface. Then assign val-
ues to the input variables needed by the routine, and enter the name of the
routine to execute it. If the routine includes many input variables, you may
want to set up a load block to assign values to the input variables. This
procedure is illustrated in the example in Chapter 13, "Debugging Techniques".

6.5 EXECUTING TASKS AND ROUTINES
6-11

Understanding Modes

RCS includes four operating modes: Run, Show, Locate, and Compile. In Run
mode, the system executes routines previously compiled. In Show mode, the
system displays on the screen the contents of variables. In Locate mode, the
system displays the block defining the word you enter. Section 7.4, "Modes",
explains how these modes affect SMACRO words. RCS uses Compile mode when you
load a block containing defining words.

Controlling Screen Output

To suspend output to the terminal, press _2S. To resume output to the ter-
minal, press _2Q.

Aborting an Executing Task

To send a soft reset to the board to which the terminal is currently connected
(usually the master board), press _2C. If you are using a software switch to

communicate with a slave board, pressing *C aborts the software switch and
returns you to the master board. The executing task on the slave board is not
aborted. To abort a task on a slave board, use the switch box to access that
board and then press "^C .

6.6 SAVING AND REBOOTING THE SYSTEM

When you change existing code or create new applications, you usually want to

save the changes or the new code to the disk. You may also need to recreate
the base system to reflect hardware changes. This section describes the pro-
cedures for performing these operations.

To understand these procedures, you need to understand the structure of RCS
described in earlier chapters of this manual. RCS stores compiled code, vari-
ables, and routines in the local memory of each processor board. Common mem-
ory contains the system dictionary and user files. RCS also stores compiled
code on the disk in D>Ms, PRESERVES, and PRESERVE-FILEs , which contain copies
of the compiled code from local and common memory.

Figure 6-2 shows the action of the RCS words D>M, MEM>DISK, PRESERVE, RESTORE,

PRESERVE-FILE, and RESTORE-FILE, used for saving and restoring copies of code.

6.6 SAVING AND REBOOTING THE SYSTEM
6-12

MEM>DISK

BOARD

1 D>M
2 D>M
3 D>M
4 D>M
5 D>M

Processor
Boards

o
o

MEM>DISK

BOARD C

1 D>M
2 D>M
3 D>M
4 D>M
5 D>M

Figure 6-2. Restoring and saving code.

Saving and Restoring Disk Images

A D>M is the name given to a disk area of 120 consecutive blocks containing
the FORTH and SMACRO segments for a processor board. A D>M is a disk image of
the contents of that 120-block area. D>M is also an RCS word that moves the

data in the D>M to local memory.

The disk includes space for seven boards, each with five disk images (D>Ms).
Enter [boards] DM? to list the D>Ms on a board. This listing is called the
D>M map block. The word MBOOT lists the D>M map block for board 0, which you
see every time you start RCS.

6.6 SAVING AND REBOOTING THE SYSTEM
6-13

Figure 6-3 shows the D>M map block for board of the RSL application,

-7615 1385 ABS
D>M MAP : board : RSL

II 5/191 init-cm RCS 1471 LOAD % RCS 2.2

21 5/191 1 D>M 1480 LOAD % RSL (all boards)

31 4/111

41 5/28

i

8 CUSTOM % edit, laser print, type

51 4/111 9 CUSTOM % edit, Image print, tape

Figure 6-3. Example D>M map block.

In this D>M map, you create the 1 D>M image by entering the commands summa-
rized on line 1. To create the 5 D>M image, enter 9 CUSTOM . You must update
this block for your specific application.

The RCS word D>M moves the data in that D>M area on the disk to local memory,

and then loads the auto-load block. A reserved auto-load block exists for
each D>M on each board. The auto-load block executes all the words necessary
to start the D>M, including initializing hardware and software.

For example, when you enter 2 D>M to boot an application, RCS copies the 2 D>M
image from disk to local RAM and the auto-load block executes, restoring the
system dictionary and SMACRO files from the disk.

The RCS word MEM>DISK copies the contents of the on-board RAM into a D>M space
on the disk, saving the current segments. Any words you enter on the same
line after the MEM>DISK are executed both after the MEM>DISK word and after
the corresponding D>M is executed. Enter words after the MEM>DISK command to

add comments to describe the D>M.

6.6 SAVING AND REBOOTING THE SYSTEM
6-14

The following dialogue illustrates D>Ms, input lines, and auto-load blocks:

:R r3l>Joint/comm REMOTE Switch to the Joint/comm board.

:R joint/CCTim>2 AUTO? Display the auto-load block for
the 2 D>M on the Joint/comm board.

-10564 1436 ABS

% board 6 2 D>M
CR " Joint/ccwnn level "

" MO RESTORE "

TDffi-ODT-INIT 87IHIT
HEX 7FFF ==> control-cycle-#-clks DECIMAL
RESTART-COm-TIMER

CR " Joint init " 12000 980 OLOAD
CR " Joint/ccxnra inited "

CR

When you load this block, it prints the message Joint/conm level NO RESTORE,
initializes the time-out and the 8087, initializes the variable
control-cycle-#-clks, starts the communications timer, prints the message
Joint inlt, loads block 12980 absolute, and prints the message Joint/c<»im
inited. Block 12980 loads other blocks that initialize several variables for
the JOINT level.

:R joint/c<Mim>2 MEM>DISK "hi there-this is the input line"

Make a new 2 D>M; it overwrites
make image? ^ the old 2 D>M. Confirm the

command

.

Joint/comii level NO RESTORE
Joint init
Jolnt/comn inited
hi there-this is the input line

RCS loads the auto-load block when MEM>DISK executes. The auto-load block
displays the message on the input line.

:R joint/c<MBm>2 D>M Executing 2 D>M now reads into RAM
the copy just written, loads the

auto-load block, and displays the
message on the input line.

Jolnt/ccMmB level NO RESTORE
Joint init
Joint/c<»im inited
hi there-this is the input line

All essential start-up procedures should reside in the auto-load block. Use
the D>M input line only for comments.

6.6 SAVING AND REBOOTING THE SYSTEM
6-15

Saving and Restoring the System Dictionary

Use the words PRESERVE and RESTORE to move the system dictionary between com-
mon memory and the disk. PRESERVE moves the system dictionary from common
memory to the disk, and RESTORE moves the system dictionary from the disk to
common memory. The disk contains space for nine copies of the system diction-
ary. The base RCS system dictionary resides in the 1 PRESERVE area.

Saving and Restoring User Files

Use the words PRESERVE-FILE and RESTORE-FILE to save and retrieve SMACRO
files. (RCS creates user files using the SMACRO FILE declaration. See Sec-
tion 7.2, "SMACRO Syntax", for more information.) PRESERVE-FILE saves your
files to the disk, and RESTORE-FILE retrieves them. The disk contains space
for nine copies of your files.

Note: Be careful when using more than one version of an application. If you
do not enter the PRESERVE, PRESERVE-FILE, and MEM>DISK commands after
making changes to the system, the versions in the D>M and the source
code will differ.

6.7 EDITING A BLOCK OF CODE

RCS provides line-editing commands and a screen editor. Both these editing
features are loaded in the 2 D>M and 5 D>M on the master board. You have to

be on the master board to use the screen editor.

To edit the current block of code using the screen editor, enter ED. To edit
any other block, enter [blocks] ED . RCS displays the block and puts you in
the screen editor. In the editor, a block consists of 16 lines of 64 charac-

ters each. The screen editor does not recognize characters that exceed the

FORTH block boundaries. Be careful not to lose characters off the end of a
line or the end of a block.

The source code on your supplied tape is spread out over many blocks. The

empty blocks are provided so you can expand the system. If new or added code
does not fit in a block, use editing commands to move part of the block to the

next block and load both blocks together. Do not put a vocabulary name in the
continuation block. This technique is shown for an example SMACRO routine in

Figure 6-4.

6.7 EDITING A BLOCK OF CODE
6-16

JOINT DEFINITIONS

1 routine CARTESIAN
2 % Input: pose-'^-in, scaling-var

3 % Output: servo-com-joint, scaling-var
H if servo-status (EQ) error
5 then error => status-report lower-level => status-arg-out
6 else

7 POSE-FILE pose-^-in => record*
8 retrieve-from-fields pose conf-flag pose

9 REACH-CHECK
10 if status (EQ) noerror

11 then CART>JOINT CART-CONFIGURE
12 if status (EQ) noerror

13 then 1.# .=>. j-acc 1.# .=>. j-vel
14 SCALE
15 servo-point => output-command inc-command-#-out INC

(CARTESIAN cont)

1 JOINT-LIMIT-TEST
2 is status (EQ) error

3 then error => status-report
4 status-arg => status-arg-out
5 old-ja S=> servo-com-joint
6 else CART-STATUS

7 endif
8 else error => status-report
9 status-arg => status-arg-out
10 endif
11 else error => status-report
12 status-arg => status-arg-out

13 endif
14 endif
15 end-routine

Figure 6-4. Using continuation blocks.

Using Screen-Editor Canmanda

To move the cursor in the screen editor, use the four arrow keys. If you hold
down an arrow key, the key repeats until you release the key. The cursor
never leaves the block; if the cursor reaches the end of a line, it wraps
around to the beginning of that line. The HOME key moves the cursor to the

top left corner of the block. All screen-editor commands use relative block
numbers.

6.7 EDITING A BLOCK OF CODE
6-17

When you enter the screen editor, RCS displays the four categories of editing

commands, as shovm in Figure 6-5. The vertical lines on the right of the

figure indicate the end of the 64-character line.

CHARACTER OPS LINE OPS BLOCK OPS SPECIAL OPS

"A Insert On/Off ''C Copy Line "F Forward Block PF1 Home PF2 Clear
''E Erase Char *D Delete Line "P Previous Block "U Undo Block
"K Mark to Keep "0 Open Line "G Goto Block "W Want String
*Z Input Keep *T Transfer "N Next Want

"R Retire(quit) "X Cancel

BLOCK

1

2

3

H

5

6

7
8

9

10

11

12

13 1

14

15

Figure 6-5. RCS screen-editor display for the VT100,

The control characters listed on the screen are for the VT100. Other termi-
nals may have other control characters that perform the same function. The
commands the control characters perform are listed on this screen. Table 6-2

describes these editing commands.

Note: The screen editor must be configured for the terminal being used.
Section 5.5, "Software Installation Procedure", for the procedure.

See

6.7 EDITING A BLOCK OF CODE
6-18

Character operations

In the screen editor, you can edit characters using the four character-editing
commands shown in Table 6-2.

Table 6-2. Character-Editing Commands.

Command

'A (Insert On/Off)

Description

Inserts characters when on and writes over characters
when off. After you press ^A, • INSERT • appears at
the top of the screen, and any characters you enter are
inserted at the cursor position. When you press ^A
again, the insert indicator leaves the screen and any
character you enter replaces the character at the
cursor position.

Caution: Remember not to shift characters past the end
of the line.

'E (Erase Character) Erases the character at the cursor position and moves
the remaining characters in the line one space to the

left.

'K (Mark to Keep) Marks code to be copied into a Keep buffer that you can
copy to other locations within the block or to another
block. Use "K to delimit the string you want to copy
to the buffer.

'Z (Input Keep)

Position the cursor on the first character to include
and press 2^ once. • KEEP • appears at the top of the
screen. Then move the cursor to the first position
after the last character to include and press ^
again. If the last character you want to save is the

last character in the line, position the cursor at the
first character in the next line and press ^K .

If the insert indicator is on, inserts the string
contained in the Keep buffer starting at the cursor
position. If the insert indicator is off, enters the
string in the Keep buffer at the cursor position,
overwriting the characters already there.

6.7 EDITING A BLOCK OF CODE
6-19

Line operations

In the screen editor, you can edit lines using the three line-editing commands
shown in Table 6-3.

Command

'C (Copy Line)

'D (Delete Line)

'0 (Open Line)

Table 6-3. Line-Editing Commands.

Description

Moves all lines after the line containing the cursor
down one line, and copies the line containing the
cursor on the resulting blank line. The last line of
the block is lost; it does not move to the next block
or wrap around to the top of the block.

Deletes the line containing the cursor and moves all
subsequent lines up one line, leaving the last line in
the block empty.

Moves the line containing the cursor and all subsequent
lines down one line, providing a blank line for new
input. The last line of the block is lost.

If you want to insert more lines than the block can
hold and the next block is empty, use the Keep buffer
or the Transfer command to copy part of the block into
the next block. Make sure both blocks are loaded
together.

Block operations

You can save and move code between blocks using the five block-operation com-
mands shown in Table 6-4.

Table 6-4. Block-Operation Commands.

Command

'F (Forward Block)

Description

Saves changes to the current block and displays the
next block. The next block appears in the screen
editor, with the cursor at the same position as it was
in the saved block.

'P (Previous Block) Saves changes to the current block and displays the
previous block. The previous block appears in the

screen editor, with the cursor at the same position as
it was in the saved block.

6.7 EDITING A BLOCK OF CODE
6-20

Command

h *G (Goto Block)

'T (Transfer)

Description

Displays the block you specify,
system displays a Go To Block

When you enter _2G, the

prompt at the

bottom of the screen, requesting a block number. After
you enter the relative block number, the current block
is saved and the specified block appears in the editor.

Transfers lines within a block or from one block to

another. Start the transfer operation with the cursor
at the destination location.

When you enter _2T, the system displays the prompt
Transfer Block . Enter the relative block number
of the block containing the information you want to

transfer. The system then displays the prompt From
Line . Enter the number of the first line you
want to transfer. Then respond to the To Line
prompt with the number of the last line you want to

transfer. The transfer lines overwrite existing
characters in the destination block.

I

'R (Retire)

For example, to transfer lines through 5 from block
99 to block 100, display block 100 and place the cursor
at the position where you want the transferred
information to appear. Then press _2T, and respond to

the three prompts with 99 ? 0., and 5_, respectively.

Caution: Insert mode should be off. Transfer lines
overwrite existing characters in the desti-
nation block.

Saves the current block and exits the screen editor.

The message Bye appears on the screen, and you return
to the master board.

6.7 EDITING A BLOCK OF CODE
6-21

Special operations

Table 6-5 describes the commands you can use for special editing operations in
Screen Edit mode.

Command

PF1-H0ME

PF2 (Clear)

*U (Undo Block)

^W (Want String)

^N (Next Want)

Table 6-5. Special Editing Commands.

Description

Moves the cursor to the home position in the block.

Erases the contents of the block. If you press the
CLEAR key unintentionally, enter _2U to undo the Clear
operation.

Restores the screen to its condition before the last
Save operation. Note that several editing commands
save the contents of a block before performing their
assigned functions. For example, ^F saves a block
before moving to the next block.

Enables you to search for a string of up to 20
characters. After you press _2W, the system displays the
prompt Search Input . Enter the search string.
After you enter the search string, the system displays
the From Block and To Block prompts,
enabling you to specify beginning and ending block
numbers for the search. After you answer these
prompts, the system displays the first block in the

specified range that contains the search string. The
characters must match exactly.

While the system is searching for the string, AT and
the number of the block currently being searched appear
at the top of the screen.

Repeats the last Want String operation specified using
*W, finding the next occurrence of the search string
within the specified range.

'X (Cancel Operation) Cancels an editing operation. For example, to cancel a

transfer operation after pressing
_2l.,

press _2X before
responding to all three Transfer command prompts.

Using Line-Editor CCTamands

You can also edit blocks outside the editor by using the RCS line-editor com-
mands. Common line-editor commands are listed alphabetically in Table 6-6.

Line-editor commands enable you to perform operations such as listing a block,

or clearing or copying a range of blocks. For a complete list of editing com-
mands, see Appendix B, "User Word Summary".

6.7 EDITING A BLOCK OF CODE
6-22

Command

B

Table 6-6. Line-Editor Commands.

Description

Decrements the current block number,

[source block]
[destination block]

[# of blocks] BLOCKS

[start block] [end block] CLEAR

Copies blocks, starting at the source block
and continuing for the number of blocks
specified, to the destination block. The
source and destination blocks may overlap.

For example, to copy blocks 100, 101, and
102 to blocks 400, 401, and 402, enter
100 400 3 BLOCKS .

Clears the specified range of blocks with
spaces.

Note: Use the BLOCKS and CLEAR commands with extreme caution, because you can
lose large sections of source code with a simple typing error.

[start block] [end block] FIND
[string*]

[start block] [end block]
FIND-R [string"]

Displays each line containing the string in
the specified range of blocks. The display
shows the line number in the block at the
right margin, along with the start block num-
ber on the first line followed by the end

block number on the last line.

Replaces all occurrences of the string in the

specified block range with the str_ng in the
insert buffer. You can load the insert buf-
fer using the command R-WITH, described later
in this table.

[block#] LIST

[absolute block#] 0LIST

[block*] LLIST

Lists the current block, including the line
numbers. N L lists the next block, B L lists
the previous block.

Lists the specified block, including the line
numbers.

Lists the specified block, including the line
numbers. You must specify the absolute block
number.

Lists the specified block without line
numbers.

[absolute block#] 0LLIST Lists the specified block without line num-

bers. You must specify the absolute block
number.

Increments the current block number.

6.7 EDITING A BLOCK OF CODE
6-23

Command Description

[start block] [end block] QR Searches for a string and either replaces it
or does not replace it, based on your answer
to a query. QR prompts you for the search
and replace strings.

The system searches for the first occurrence
of the search string. When the system finds
the string, QR prompts you to confirm the
replacement by positioning the cursor at the
end of the string. You enter Y, y, or space
to replace the search string with the replace
string. You can enter ? to display a help
menu.

R-WITH [string"] Loads the insert buffer with the specified
string.

6.8 EXAMPLE RCS DIALOGDE

This section gives a possible dialogue for a user of the NBS RSL application.
The dialogue contains examples of most of the procedures described in sections
6.2 through 6.7. The dialogue locates the word Display in the vocabulary of
the PATH level on the TASK&PATH board. The word Display displays the contents
of certain variables.

After the dialogue locates Display, it executes Display, edits Display to
label the variables displayed, and saves the updated routine on the disk. The

dialogue indicates each of these steps with a separator shown in all uppercase
characters. Information that you type appears underlined in the dialogue.
Information that the system displays appears in boldface in the dialogue.
Brief explanations are included in parentheses.

Remember that this example is specific to the NBS implementation of RCS, and
the RSL application of RCS. If you are working with the NBS implementation,
you may want to use this dialogue as a tutorial to get acquainted with basic
RCS procedures. Centered headings appear in the tutorial to indicate the
function of each group of commands.

To start the tutorial, boot the system as described in Steps 1 through 3 of
Section 6.1, "Starting the System". After you boot the system, it displays
the prompt for the master RSL board.

6.8 EXAMPLE RCS DIALOGDE
6-24

STEP 1: LOCATE Display FOR THE PATH LEVEL

:R rsl> Task/path REMOTE

:R task&path> PDEF

:R task&path> LOG Display

1909 10909 ABS

routine Display
if print-f (EQ) true

then
T CR
-PRINT" path: "

"PRINT inc-ccxmiand-f-in
"PRINT input-connnand
"PRINT status-report
"PRINT status-arg-out
"PRINT ppt-c<»Dn£Uid

"PRINT ppt-done
endif

end-routine

(Moves to the task/path board.)

(Makes the path vocabulary current .

)

(Lists the source block for Display.)

PATH DEFINITIONS

STEP 2: EXECUTE Display

:R task&path> Display

path;

(Executes the word Display.)

STEP 3: EDIT Display TO ADD A LABEL

:R task&path> 2jL

;R rsl> red

(Returns to the master board containing the

editor.)

(Edits the block most recently accessed on

the most recent slave board.)

6.8 EXAMPLE RCS DIALOGUE
6-25

STEP 3: EDIT Display TO ADD A LABEL (cont.)

CHAHACTER OPS
*A Insert On/Off
*E Erase Char
*K Mark to Keep
*Z Input Keep

T.TNE OPS BLOCK OPS SPECIAL OPS
*C Copy Line "F Forward Block PF1 Home PF2 Clear
*D Delete Line "P Previous Block '^U Undo
*0 Open Line "G Goto Block If Want string

*T Transfer "N Next Want
"R Retire(quit) "^X Cancel

2909 10909

1

2

3
k
5
6

7
8

9
10

11

12

13

14

15

routine Display
if print-f (EQ) true
then
T CH
-PRINT" path: "

""PRINT inc-co]mnand-#-in

"PRINT input-c<»ini2Uid

"PRINT status-report
"PRINT status-arg-out
"PRINT ppt-c(»amand

"PRINT ppt-done
endif

end-routine

PATH DEFINITIONS

Use the arrow keys to position the cursor at the first character in line 10.

_2A (Enables you to insert characters. Notice
the insert indicator appears after the abso-
lute block number.)

'PRINT" ppt: " (Labels the path-point output. Do not put a
space before the first quotation mark. Do
put a space before and after the second quo-
tation mark.

)

(Turns insert off.)

(Exits the editor.)

Bye

:R rsl> L 2909 (Lists the current block with your editing
changes.

)

6.8 EXAMPLE RCS DIALOGUE
6-26

STEP 3: EDIT Display TO ADD A LABEL (cont.)

1 routine Display
2 if print-f (EQ) true

3 then
4 "T CR

5 -PRINT" path: "

6 "PRINT inc-c<»gmand-#-in

7 "PRINT input-ccxmnand
8 "PRINT status-report

9 "PRINT status-arg-out
10 "PRINT" ppt: " "PRINT ppt-conamand

11 "PRINT ppt-done
12 endif
13 end-routine
14

15

PATH DEFINITIONS

STEP 4: LOAD THE BLOCK AND EXECUTE THE ROUTINE

:R rsl> 2JL (Returns to the most recent slave board.)

:R task&path>
:R task&path> 1909 ELOAD Display REDEFINED

(Empties the local block buffers and then
loads the specified block.)

:R task&path> Display (Executes the word.)

path: ppt:

:R task&path>

STEP 5s SAVE THE UPDATED ROUTINE

:R task&path> 6 PRESERVE 6 PRESERVE-FILE

(Writes the system dictionary and SMACRO
files to the 6 PRESERVE area on the disk.)

6.8 EXAMPLE RCS DIALOGUE
6-27

8R task&path> 3 MEM>DISK " Patched Display 5/23 "

(Writes the current D>M, D>M number 3, from
the local RAM on the TASK&PATH board, to the
disk. The text within quotation marks is a
comment briefly describing the update you
made, followed by the date. The comment
appears as a message the next time you exe-
cute a 3 D>M. You may want to save comments
in a logbook to track the changes you make to
the system.)

STEP 5: SAVE THE UPDATED ROUTINE (cont.)

make image? _Y (Confirms the MEM>DISK command and writes the
image to disk.)

Task/path levels
NO RESTORE
Task init
Path init
sonar not inlted

Task/path inlted
Patched Display 5/23
:R task&path>

6.9 USING PRINTING UTILITIES

To use the RCS printing utilities, enter 5 D>M on the master board for the
printing application. After you enter 5 D>M, you can use the printing words
described in the following sections and in Appendix B, "User Word Summary".
These commands enable you to print a range of blocks and to print block direc-
tories and programs. For information on configuring your printer, see Section
5.4, "Hardware Installation Procedures".

Printing a Range of Blocks

You can print a range of blocks with 10 blocks on each page by using the
CPRINT command. Enter the start block and the end block, separated by a

space. Then enter the word CPRINT. For example, to print blocks 10 through
19 on one page, enter 10 19 CPRINT .

To print a range of blocks with three blocks on each page, use the same proce-
dure, but enter the word Print instead of CPRINT. For example, to print
blocks 1 through 9 with three blocks on a page, enter 1 9 Print.

6.9 USING PRINTING UTILITIES
6-28

Printing Block Directories and Programs

The words List-directory and List-programs enable you to print the block
directories and the programs, respectively. For more detailed information on

these commands, see Appendix B, "User Word Summary".

Note: When using a TeleVideo 950, prefix the printer commands with the word

Thru-tv. Using these words puts the terminal in transparent mode so

that printer control codes are passed to the printer; for example for a

Televideo 950, Thru-tv 10 19 CPRINT .

6.10 USING TAPE UTILITIES

To use the RCS tape utilities, enter 5 D>M on the master board for the tape

application. After you enter 5 D>M, you can use the tape words described in

the following sections and in Appendix B, "User Word Summary". These commands
enable you to back up the system on tape, solve a bad-tape problem, and read a

tape.

Backing Up the System on Tape

The word BACKUP lists the backup block that contains the commands to back up
the system on tape. BACKUP uses the ADD-TO-TAPE command to write a file to

the tape. To back up the system on tape, load the backup block. You must
edit the backup block to conform to your applications.

Solving Bad-Tape Problems

If you receive a bad-tape message for an ADD-TO-TAPE command, use the command
BAD-TAPE preceded by the start and end blocks of the file to extend the file

to cover the bad section and preserve the file numbering sequence. You cannot
use this command if the bad section of tape is in the first file. In that
case, start the tape operation using a new tape.

Reading a Tape

To read a tape, use the command FROM-TAPE preceded by the start and end blocks
of the file you want to read. FROM-TAPE reads the range of blocks from the

tape, beginning from the current tape position. To use this command, you need

a listing of the BACKUP block that contains the current block numbers for the

files.

6.10 USING TAPE UTILITIES
6-29

6.11 SHUTTING DOWN THE SYSTEM

To shut down the system, follow this procedure: /C

Note: If you are using the system without running the robot, start with Step
4.

1. Move the robot to a safe place.

2. Enter HALT . The HALT command aborts communications through the robot
interface, turns off the background task on each board, and turns off the
communications process.

3. Turn off the robot.

4. If you want, save any changes you made to the code, using the MEM>DISK,
PRESERVE, and PRESERVE-FILE commands. Making and saving changes are

described under Section 6.6, "Saving and Rebooting the System", earlier in

this chapter.

5. Enter WUNLOAD . The WUNLOAD command shuts down the Winchester disk.
Always enter this command before you turn off rack power to the RCS
hardware

.

6. Turn off rack power to the RCS hardware.

The shut-down procedure is now complete.

6.11 SHUTTING DOWN THE SYSTEM
6-30

Chapter 7

SMACRO

RCS contains code written in SMACRO, FORTH, and 8086 assembly language. This

chapter describes when to write code in the different languages and gives a

comprehensive description of SMACRO, the primary language used in RCS. The
chapter assumes that you know the FORTH programming language.

7.1 OVERVIEW

The base operating system of RCS is polyFORTH 1 . SMACRO is an extension of
polyFORTH, containing a set of macros that enable you to write structured pro-

gramming code similar to high-level languages like Pascal and C. SMACRO is a

high-level assembler and, like most assemblers, it generates code that usually
executes faster and is more compact than similar code written in a high-level,
structured language.

In addition to the speed of SMACRO, SMACRO is easy to debug because of the
interactive nature of FORTH and SMACRO. You can execute a single SMACRO rou-

tine, or you can edit and recompile one routine of a larger application and

then execute the application without recompiling the rest of the code.

NBS developed SMACRO to make writing structured programming code easy. How-
ever, SMACRO may not be suited for all tasks. If SMACRO is not suited for a
particular task, you can include FORTH or 8086 assembly language within a

block of SMACRO code, or you can write blocks of code entirely in FORTH or
assembly.

For example, if timing is important for a routine, you may need to use assem-
bly language, to make the routine operate fast enough to execute in one con-
trol cycle. Also, because SMACRO does not support block and disk access, you

may have to write some routines in FORTH. The read routines in the TASK level
that access the system dictionary are written in FORTH.

Your NBS-supplied system tape also contains Robot Sensor Language (RSL) code.

RSL is a language for controlling robot motions; it is one specific applica-
tion that runs in RCS. Chapter 9, "Robot Sensor Language (RSL)", describes
RSL in more detail.

7.2 SMACRO SYNTAX

This section describes the syntax of the SMACRO language, including program-
ming conventions, variable declarations, members and owners, file declara-
tions, operators, and statements. See Appendix B, "User Word Summary", for a

complete list of SMACRO words.

In general, the SMACRO compiler does not detect syntax errors. Using DBG-ON
catches some errors, but not all. You should test routines to ensure that the
algorithm, as well as the syntax, is correct. To verify that each routine
runs correctly, test each routine individually.

7.2 SHACRO SYNTAX
7-1

ProgranaBing Conventions

The SMACRO code that is on the system tape follows several programming con-
ventions. These conventions include:

• The vocabulary name is in the top right corner of the first line of the
block.

• A comment describing the purpose of the routine and the input and output
variables appears at the beginning of the routine.

• Routine names appear in uppercase characters.

• Variable names appear in lowercase characters.

• Code is indented two spaces.

To keep your system organized and easy to maintain, continue to follow these
conventions.

Figure 7-1 shows an example block of SMACRO code to illustrate SMACRO program-
ming conventions:

SDEF
1 routine SMACRO-EXAMPLE
2

3

4

5

6

7

8

% Example routine to illustrate SMACRO programming conventions
% Input: variable 1, variable2, ...

% Output: variableA, variableB, ...

SMACRO routine statements

end-routine

9

10

11

12

13

14

15

Figure 7-1. Example SMACRO routine.

The vocabulary identifier on the first line of a SMACRO block automatically
makes the vocabulary you specify the current vocabulary when you reload the

block. The line also displays the current vocabulary when you use the LOC
command

.

Percent symbols in SMACRO code indicate that the rest of the line is a com-

ment. List the input and output variables at the beginning of each routine to

make code easier to read and debug.

7.2 SMACRO SYNTAX
7-2

The convention of using all uppercase characters for routine names and all
lowercase characters for variable names is used throughout the system, RCS

will be easier to maintain if you follow this convention when you add code to

the system.

Variable Declarations

You must declare a variable before you use it, and the variable you declare
must be in a vocabulary. RCS already contains a system vocabulary for each

board. RSL contains the vocabularies TASK, PATH, PRIM, and JOINT. Make sure
you are in the correct vocabulary before you declare a variable. For informa-

tion on changing vocabularies, see Section 6.2, "Moving From One Board to
Another"

.

Table 7-1 shows how to declare a variable for the SMACRO variable types.

Table 7-1. SMACRO Variables.

Variable Type

16-bit integer
8-bit integer byte
32-bit floating point
1 -dimensional integer array
2-dimensional integer array
1 -dimensional floating point array
2-dimensional floating point array
string
segment

sequential

SMACRO Declaration

iv [variable name]

bv [variable name]
fv [variable name]

[# elements] 1:a [variable name]
[# rows] [#coliimns] 2:a [variable name]

[# elements] 1:fa [variable name]
[# rows] [//columns] 2: fa [variable name]

[# bytes] strv [variable name]

[segment] [address] [# bytes]
segv [variable name]

seqv [variable name]

On your system tape, variables tend to be declared at the beginning of each
control level, as they are in high-level languages like Pascal. However, in
SMACRO and FORTH, this method is only a convention; you can declare variables
at any place before you use them.

Remember that all variables in RCS are global within a vocabulary. A SMACRO
variable name can be up to 31 characters long, and can contain any ASCII char-
acter, except a space. Variable names must be unique within a vocabulary.

To refer to an array element in SMACRO code, enclose the indices in braces.

For example, A1 { x } is the xth element in array A1. A2 { x y } is the ele-
ment in the xth row and yth column of array A2. The indices must be integer
or sequential variables, and the first element in the array is 0.

In addition to the SMACRO variable types listed in Table 7-1, RCS uses matrix,
pose, quaternion, and vector variables to represent robot positions and move-
ments. SMACRO represents these variables in floating point arrays.

7.2 SMACRO SYNTAX
7-3

A vector consists of three consecutive floating point values. A pose consists
of seven consecutive floating point numbers. The first four numbers represent
the quaternion (or orientation) part of the pose, and the last three numbers
represent the vector (or position) part of the pose.

A rotation matrix consists of nine consecutive floating point numbers, stored
in the order: mil, m21, m31, m12, m22, m32, m13, m23, m33. Using this order,
the matrix represents a coordinate frame with the first column representing
the X unit vector, the second column representing the y unit vector, and the

third column representing the z unit vector.

A quaternion consists of four consecutive floating point numbers. The first
number represents the scalar part of the quaternion, and the last three num-
bers represent the vector part of the quaternion.

Table 7-2 gives an example declaration for representing a vector, pose,
matrix, and quaternion.

Table 7-2, Matrix, Pose, Quaternion, and Vector Declarations,

Variable Type SMACRO Declaration

Vector named VI

Pose named PI

Pose named PQ
Matrix named Ml

Matrix named M2
Quaternion named Q1

3 1;:fa VI

7 1;:fa PI

H 1;:fa PQ 3 1:fa PV

9 1;:fa Ml

3 3 2:fa M2
4 1 :fa Q1

Members and Owners

Variables are always grouped as members under an owner. Members include all
SMACRO variable types. The three types of owners include: variable owners
(VAR-0), sequential variable owners (S-VAR-0), and list owners (LIST-0).

Variable owners

The following list gives the syntax, function, and members allowed for a vari-

able owner.

Syntax: [# bytes] bytes VAR-0 [name]

Function: Enables you to group variables by allocating space in the SMACRO
segment.

Members: integer, byte, floating point, string, segment, one-dimensional
integer array, two-dimensional integer array, one-dimensional
floating point array, two-dimensional floating point array.

(

7.2 SMACRO SYNTAX
7-4

Figure 7-2 presents an example variable ovmer that contains each type of mem-

ber a variable owner can have.

SDEF
1 125 bytes VAR-0 VO-EXAMPLE
2 iv 11

3 bv B1

4 fv F1

5 10 1:a IARRAY1

6 3 3 2:a IARRAY2

7 4 1:fa FARRAY1
8 2 6 2: fa FARRAY2
9 10 strv STR1

10 9000 80 4 segv SEG1
11

12

13

14

15

Figure 7-2. Example variable owner.

Table 7-3 gives the action of each line in Figure 7-2. In Table 7-3, the

value in parentheses is the number of bytes allocated.

Line

Number

1

Table 7-3. The Variable Owner VO-Example.

Action

Puts the contents of this block in the SDEF vocabulary.

Allocates a 125-byte buffer, named VO-EXAMPLE, in the SMACRO
segment. Defines the variable owner, VO-EXAMPLE. The number of

bytes, 125, is the sum of the bytes required for all the mem-
bers. The word "bytes" is a null word to make the source code

more readable. If the members allocate more than the specified
number of bytes, RCS issues a buffer overflow error message.

Assigns a 16-bit integer variable, II, to the VAR-0. (2 bytes)

Assigns an 8-bit integer variable, B1, to the VAR-O. (1 byte)

Assigns a 32-bit floating point variable, F1, to the VAR-0. (4

bytes)

Assigns a 10-element one-dimensional 1 6-bit integer array,
IARRAY1, to the VAR-0. (20 bytes)

7.2 SMACRO SYNTAX
7-5

Line
Number Action

6 Assigns a 3 X 3 two-dimensional 1 6-bit integer array, IARRAY2,

to the VAR-0. (18 bytes)

7 Assigns a 4-element one-dimensional 32-bit floating point array,

FARRAY1, to the VAR-0. (16 bytes)

8 Assigns a 2 x 6 two-dimensional 32-bit floating point array,
FARRAY2, to the VAR-0. (48 bytes)

9 Assigns a string with a maximum of 10 characters, STR1, to the

VAR-0. (12 bytes: 10 for the string, 1 for the maximum charac-
ter count, and 1 for the actual character count)

10 Assigns a 4-byte section of common memory, SEG1, whose absolute
address is at offset 80, segment 9000. (6 bytes: 2 bytes for

length and H bytes for the 32-bit address)

Sequential variable owners

The following list gives the syntax, function, and allowable members for a
sequential variable owner.

Syntax: [# members] mem S-VAR-0 [name]

Function: Enables you to group sequential variables by allocating space in
the SMACRO segment

Members: sequential variables

Figure 7-3 presents an example sequential variable owner that contains three
members:

SDEF
1 3 mem S-VAR-O SVO-EXAMPLE
2

3

4

5

6

seqv
seqv

seqv

SA
SB
SC

•

•

14

15

Figure 7-3. Example sequential variable owner.

r

(

(

7.2 SMACRO SYNTAX
7-6

Table 7-4 lists the action of each line in the preceding figure:

Line

Number

1

Table 7-4. The Sequential Variable Owner SVO-Example.

Action

Puts the contents of this block in the SDEF vocabulary.

Creates a 6-byte buffer, named SVO-EXAMPLE, in the SMACRO seg-

ment. The buffer contains consecutive integers starting at 0.

The word "mem" is a null word to make the source code more read-

able. The maximum number of members is 3.

Assigns the variable SA with a value of to the S-VAR-0.

Assigns the variable SB with a value of 1 to the S-VAR-0.

Assigns the variable SC with a value of 2 to the S-VAR-0.

List owners

The following list gives the syntax, function, and allowable members for a

list owner.

Syntax: LIST-0 [name]

Function: Enables you to group any type of member together for display

Members: Any type of variable

Figure 7-4 presents an example list owner that contains an integer and two
owners .

SDEF
1 LIST-0 LO-EXAMPLE
2 m A

3 m IARRAY1
4 m SA
5

6

•

•

•

14

15

Figure 7-4. Example list owner,

7.2 SMACRO SYNTAX

7-7

Table 7-5 lists the action of each line in the preceding block.

Table 7-5. The List Owner LO-EXAMPLE.

Line
Number Action

Puts the contents of this block in the SDEF vocabulary.

Groups the members under the owner LO-EXAMPLE.
Assigns an integer variable A to the LIST-0.
Assigns an integer array, IARRAY1, to the LIST-0.
Assigns a sequential variable, SA, to the LIST-0.

Note: You must define all list owner members before you add them to the list
owner. The numbers must be in the same vocabulary as the owner.

For a complete list of the RCS words for members and owners, see Appendix B,

"User Word Summary".

File Declaration

Use the SMACRO word FILE to declare SMACRO files. This declaration creates a
SMACRO file, using the most recently declared variable owner as the template.
(Include the file declaration in the source block that declares the variable
owner .

)

RCS stores SMACRO files in common memory, providing the primary method of com-

munication between control levels. SMACRO files consist of a linked list of
records. Record numbers identify individual records in a file. The record
number is the address of the record in the file segment of common memory.

Header variables contain information about the file, such as the number of
records available, the address of the first record, and the record size. The

header variables are stored in common memory with the file and retrieved to

local variables when you open the file.

t

SMACRO Operators for Standard Prograanning Operations

The SMACRO operators that enable you to perform most standard programming
operations are:

• Arithmetic
• Assignment
• Relational
• File

In SMACRO, you perform operations using infix notation as in mathematics.
Different operators are available for different types of variables. The oper-

ator types include: integer, byte, floating point, string, pose, matrix, qua-

ternion, and vector. C

7.2 SMACRO SYNTAX
7-8

In general, SMACRO encloses most integer operators in parentheses, precedes
most byte operators with a capital B, and encloses most floating point
operators in periods. Operands must be of the same type as the operator.
Conversion operators convert integers to floating point numbers and floating

point numbers to integers.

Arithmetic operators

SMACRO includes arithmetic operators for adding, subtracting, multiplying, and
dividing integers, bytes, and floating point numbers. Table 7-6 lists these
operators.

Table 7-6. SMACRO Arithmetic Operators.

Integer Operators Byte Operators Floating Point Operators

(+) B+ .+.

(-) B-
(«) B» .».

(/) B/ ./.

Integer operations produce integer results. When you use integer division,
remember that SMACRO truncates the fractional part of the result. For exam-
ple, if you enter 5 (/) 3> the result is 1. SMACRO operations proceed from
left to right; there is no precedence for integer and byte expressions.

You can use parentheses enclosed in periods to enforce precedence, but only
for floating point numbers. You can nest scalar operations up to eight lev-

els. You can nest vector operations only one level, and pose and quaternion
operations to any level.

Here are some example SMACRO arithmetic operations and the results:

Statement Result

II (•) 12 Multiplies the integer variables II and 12.

B1 B+ B2 Adds the byte variables B1 and B2.

F1 .-. F2 Subtracts the floating point value of F2
from the floating point value of F1.

II (+) 12 (*) 13 Adds integers II and 12 and multiplies the
result by integer 13.

F1 .+. .(F2 .». F3). Multiplies the floating point numbers F2
and F3, and then adds the result to the
floating point value in F1.

7.2 SMACRO SYNTAX
7-9

Be careful not to mix variable types in arithmetic operations. You may not

get an error message, but you might get incorrect results. SMACRO does not
allow literals in statements. To include constants in a statement, declare a
variable with an appropriate name and initialize it.

Assignment operators

SMACRO includes assignment operators for integer, byte, floating point,
string, pose, quaternion, matrix, and vector variables.

An assignment operator stores the variable or expression on the left side of
the operator in the variable location specified on the right side. The arrow
indicates the direction of the assignment. (Most high-level languages use the
opposite direction.) Table 7-Y lists the assignment operators.

Table 7-7. SMACRO Assignment Operators,

Operator Type

=> Integer
B=> Byte
.=>. Floating Point
S=> String
.P=>. Pose
.Q=>. Quaternion
.M=>

.

Matrix
.V=>. Vector

Here are some example assignment operators:

II (+) 12 => II

A2 { X y } => II

B1 B» B2 B=> B3

Assigns the sum of integer variables II and 12

to the integer variable II.

Stores the element in row x, column y, of the

integer array A2, to the integer variable II.

Assigns the product of byte variables B1 and

B2 to the byte variable B3.

Relational operators

Relational operators enable you to compare variables of the same type. You
can use relational operators only in the conditional statements "if then else

endif", "while do end-do", and "repeat until end-repeat". You cannot use

relational operators in assignment statements. Table 7-8 lists the SMACRO
relational operators.

C

7.2 SKACRO SYNTAX
7-10

^

Table 7-8. SMACRO Relational Operators.

Integer Operators Byte Operators Floating Point Operators

(EQ) EQ B .EQ. .EQZ.

(NE) NE B .NE. .NEZ.

(LT) LT B .LT. .LTZ.

(LE) LE B .LE. .LEZ.

(GT) GT B .GT. .GTZ.

(GE) GE B .GE. .GEZ.

These operators perform the comparisons equal to, not equal to, less than,

less than or equal to, greater than, and greater than or equal to, respec-
tively. The second column of floating point operators compares floating point
expressions to 0. The floating point expression goes before the operator.
Relational operators produce Boolean results of true or false. For example:

II (EQ) 12 results in the Boolean value of true if
integer II is equal to integer 12.

F1 .GEZ. results in the Boolean value of true if the

floating point variable F1 is greater than
or equal to 0.

You can also use arithmetic expressions on the left side of a relational test.
For example:

II (+) 12 (/) 13 (EQ) IH results in a Boolean value of true
if the result of the integer expression
II (+) 12 (/) 13 equals integer I4.

SMACRO also includes a string comparison operator, S-EQ, which compares two

strings of equal length using the ASCII character values.

The SMACRO logical (AND) enables you to compare two Boolean expressions. The

result is true only if both expressions are true.

File operators

File operators enable you to perform operations such as storing data from the

local template to a record, retrieving the current record from the current
file, and returning the current list to the free list. Appendix B, "User Word
Summary", contains a list of the operators for manipulating files.

SMACRO also includes four Boolean file operators: matches, matches-r,
matches-fields, and matches-fields-r. Use these Boolean file operators to

search for a variable in the file and, if desired, to retrieve the local tem-
plate of the first record that matches the variable.

7.2 SMACRO SYNTAX
7-11

In other systems, files reside on the disk, and you must open and close them.

You can open only one file at a time, and you can only read or write to that
file. Closing the file enables other processes to access it.

y

In SMACRO, files reside in common memory, and you must open but you do not
need to close them. To open a file, you execute its name. You can open a
file from any number of boards; no inherent protection mechanism exists. You
must ensure that two boards do not try to access the same file simultaneously.
This structure increases the access speed of the files. Potential read/write
conflicts between files arise rarely, so RSL handles these conflicts as a
special case using round-robins.

The control levels of RCS communicate through SMACRO files in common memory.
The file structure consists of linked lists of records. For each file

declaration, SMACRO sets up a file using the most recently declared variable
owner as the template. The members of the variable owner define the fields

for the records in the linked list. The file declaration also adds two fields
to each record: a link field that points to the next record in the linked

list, and a source block field that points to the source block that contains
the data in the record.

The following SMACRO code declares a file named DATA-FILE:

16 bytes VAR-0 file-rec
15 strv " field 1"

iv field2

5 rec FILE DATA-FILE

The first three lines of the example define a variable owner named file-rec

that serves as the local template for DATA-FILE. The last line of the example
allocates space in common memory for a file named DATA-FILE with five records.
The file declaration fills the file with a list of empty records called the

free list. The linked list for the file is terminated by a record whose link
field contains 0.

C

(

7.2 SMACRO SYNTAX
7-12

Figure 7-5 shows a representation of the file as initialized by re-init-file,

Local Template:

str "field 1"

iv field 2

Avail

-

Record

Linic

source- ^<^5^J^< Source- ;-^i,-{<?f5^- Sowrce-
Block

Field 1

Field 2

fVtfVtntfTfrr#Vfffn

llii:;:;:;!!;:!?!!! Fieia 2
AAMariAiAMAMMAMi

neiii 1

r*f4v#fT#vvtwta*%T

rield 1

rieid 2

Yrr^mYil «^"^ ilSiii:^ Block ££ja2i^

lllltlltl<H lHH
rielil I

Field 2

l<ll<H lllllltl<ll

lM***A*M*MiMM

Field 1

TielC 2

i>ii>i«n lnH i>ii

First -

Record —^ NUL Free List

Figure 7-5. An example SMACRO file in common memory.

You create the file represented in Figure 7-5 by loading the block that con-

tains the file declaration and initializing the file with the work re-init-
file. RCS maintains the free list. When you add a record to a list, the
record comes from the free list. When you remove a record from a list, the
record returns to the free list.

You open a file by executing the file name. When you execute the file name,
RCS retrieves header variables that contain information about the file from
common memory to local variables.

Figure 7-6 shows the file after a record is added. Assume that the local tem-

plate variables contain the data shown in the figure. To use DATA-FILE, you
execute DATA-FILE to open the file, and then execute add-record to store the
data in the local template to a record, remove the record from the free list,

and add the record to the end of the current list. After add-record executes,
DATA-FILE looks like Figure 7-6.

7.2 SMACRO SYNTAX
7-13

Local Template:

POSE

Avail-
Record

Link

Source-
Block

Field 1

Field 2

ink^Hl^H Link^HJ^H Link^Hi^H i-ink^HO^H

se- ^l^ppppp Source- ^lipppl^li Source- >Pl>PP1>P Source- l-ppppPP
. '\^ti^i^:i^%^i>i i^i^v^i^i^i^i i^i^i^i^i^^^i •.^•.^^i^i^^i^v^'.

•"•f iiiiiiiiiiiiS ei»«fc iiiiiiiiSS^ Block i%?igfs^%?N? Block ^s^sii^s^N^N^
Jtdldldtd»dtd itdtdtdtdtdtd indtdt^tdmtti **dtdtdmttdU

Field 2

Source-
Block

Field 1

Field 2

t?<><?A?>>;?;l Source- ;^;>;V;^A^;>;

Block

Field 1

Field 2)

Free
List

First-
Record

Source-
Block Current

List

Figure 7-6. SMACRO file after the execution of add-record.

Additional aiACRO Operators

SMACRO includes additional operators that enable you to perform the following
types of operations:

• Bit
• I/O

• Stack

• Matrix
• Pose

• Quaternion

• Vector
• Others

The bit, I/O, and stack operators enable you to perform operations similar to

those in assembly language. The matrix, pose, quaternion, and vector opera-
tors make representing robot positions and movements easier. For the exact
syntax of these operators, see Appendix B, "User Word Summary".

7.2 SMACRO SYNTAX
7-14

Bit operators

Several operators perform bit-wise operations. The operator "EQ'' performs a

bit-wise logical AND of two integer variables, compares the result with the
second variable, and returns true if the variables are equal. The operators
set-bit-in and zero-bit-in enable you to define a bit mask to set specific

bits in a word.

Use the bit operators 1-? and 0-? in conditionals. The operator 1-? performs

a bit-wise logical AND of two integer variables and returns a true value if

the result is not 0. The operator 0-? takes the complement on the first inte-

ger variable and then performs a bit-wise logical AND with the second integer

variable. The operator returns a true value if the result is not 0.

I/O operators

SMACRO includes the in-port and out-port I/O operators. The in-port operator
enables you to read a value from the port you specify. The out-port operator
enables you to send an integer expression to the port you specify. Use these
operators when you want to communicate with sensors in the system.

Stack operators

Stack operators enable you to transfer values to and from the 8086 processor
stack. Table 7-9 lists the integer and byte stack operators. (You also can
access an internal 808? stack through assembler code.)

Table 7-9. SMACRO Stack Operators.

Integer Operators Byte Operators

to-stack B-to-stack
from-stack

The to-stack operator stores a variable or the result of a calculation onto
the stack. For example:

II (+) 12 to-stack Moves the sum of integers II and 12 to the

stack.

A2 { X y } to-stack Moves the element in row x, column y, of
integer array A2, to the stack.

B1 B+ B2 B-to-stack Moves the sum of byte variables B1 and B2 to

the stack.

7.2 SMACRO SYNTAX
7-15

The from-stack operator takes values from the processor stack. You can assign
the values to variables or use the values in calculations. The from-stack
operator must appear on the left side of an assignment. For example: f

from-stack => II moves the integer value from the processor
stack and stores it in the variable II.

Matrix, pose, quaternion, and vector operators

RCS uses matrices, poses, quaternions, and vectors, stored as floating point
arrays, to represent robot positions and movements. Most other robot applica-
tions use 4x4 homogeneous matrices to represent robot movements. RCS uses
quaternions, which are more efficient. SMACRO includes operators to make vec-
tors, matrices, and quaternions easier to use.

For more information on how to use quaternions in robotics, refer to Robot
Motion: Planning and Control , part of the MIT Press series in artificial
intelligence. You will find specific information for quaternions on pages
240 to 265.

Note: All quaternions in RCS are rotation quaternions with a magnitude of 1

and a non-negative scalar element. When performing quaternion opera-
tions, RCS uses the 8086 stack for temporary storage because these
operations require the use of all 8087 registers.

Therefore, you can nest quaternion operations to a depth limited only by the

size of the 8086 stack. However, because RCS stores all vectors in the 8087
registers, a sequence such as vexp .V+. .(qexp .Q*V. vexp). overflows. On

the other hand, a sequence such as qexp .Q*V. vexp .V+. vexp does not

overflow.

The SMACRO matrix operator words operate on 3 x 3 rotation matrices only.

A pose consists of a quaternion part and a vector part. The quaternion part
is a rotation quaternion. The 8086 stack is used for temporary storage of
poses, so you can nest pose expressions to any depth for which there is enough
space on the stack.

Other SMACRO operators

SMACRO includes many additional operators that perform operations such as cal-
culating trigonometric functions, performing indirect addressing, converting
an integer to a floating point number or a floating point number to an inte-
ger, reading and writing strings from the current input stream, and indexing
arrays. You can also use FORTH operators. The SMACRO word ~F calls a FORTH
word. For a complete list of SMACRO operators, see Appendix B, "User Word
Summary"

.

7.2 SMACRO SYNTAX
7-16

1

SK&CRO Statanents

SMACRO includes the structured programming statements if, while, repeat, and

case. SMACRO also includes an enhanced version of the case statement called a
state-table. Using the state-table statement, you can test the state of up to
seven variables. If all the variables are equal to the corresponding test

variables, then the statement executes the code following that state line.

Table 7-10 presents the syntax for each of the SMACRO statements,
statements are in Appendix B.

Additional

Statement
Name

if

while

repeat

case

Table 7-10. Syntax for SMACRO Statements.

Syntax

if [Boolean exp] then [code] else [code] endif

while [Boolean exp] do [code] end-do

repeat [code] until [Boolean exp] end-repeat

case [ivarl]
case: [ivar2] [code]

state-table

default: [code]
end-case

state-table [state-varl] [state-var2]
state: [test-varl] [test-var2] .

[test-var8] [test-var9] ..

. [state-var7]
[test-var7] [routineA]
[test-varl4] [routineB]

default-state: [default-routine]
end-state-table

7.2 SMACRO SYNTAX
7-17

7.3 SMACRO RODTINES

All SMACRO routines start with the word routine and end with the word
end-routine. Figure 7-7 presents an example SMACRO routine:

f

BLOCK 8106

$DEF
1 routine POSE-^ (- pose name -)

2 % find record# of named pose

3 % output: record# (0 if not found)
H POSE-FILE WREAD S=> "pose-name"

5 first-record => record//

6 if "pose-name" matches "pose-name"

7 then endif
8 end-routine
9

10

11

12

13

14

15

Figure 7-7. Example SMACRO routine.

In SMACRO, routines can be longer than one block. To make a routine longer

than one block, put the additional code that does not fit in the first block
into the next block. Use the screen editor described in Section 6.7, "Editing
a Block of Code", to move existing code to another block. Do not put a vocab-
ulary name in the continuation block.

7.4 MODES

SMACRO words function differently depending on the current mode of RCS. The
three RCS modes are Run, Show, and Locate. To set or change the mode, enter
;R , :S , or tL (or, j_r, ^s.* or* :1) , respectively. To change modes and
re-execute the most recent word in the new mode, enter ^, ^, or \L_ (or \r ,

\s , or \1) . To display the most recent word, enter ^ (or \n)

.

A fourth mode called compile mode, indicated by :C, is used exclusively by the

SMACRO compiler. You see the :C prompt only when an error occurs while a

routine is compiling. Change to one of the other modes to continue.

In Locate mode, entering a SMACRO word lists the source block for that word.
In Run and Show modes, the results of a SMACRO word depend on the type of the

SMACRO word. Table 7-11 lists the results of using SMACRO words in Run and
Show modes.

t

t

7.4 MODES
7-18

Table 7-11. SMACRO Words in Run and Show Modes.

SMACRO Word Type

VAR-0, S-VAR-0

LIST-0

iv, bv, fv, 1:a, 1:fa,

strv, seqv

2:a, 2:fa

segv

routine

FILE

In Run mode

Returns the address of
the first member on the
stack.

Displays all members.

Returns the address of
the variable to the stack.

Returns the address of
the variable to the stack.

Returns the segment and

address of the variable to
the stack, leaving the

address on the top of the
stack.

Executes the routine.

Makes the file current.

In Show mode

Displays all members.

Displays all members.

Displays the variable
name and value.

Displays the variable
name and values, one
row per line.

Displays the name and

contents of the data
area of the variable,
as unsigned 8-bit
integers, in hex.

Executes the routine.

Makes the file
current.

7.5 BOARD LEVEL PROCESSES

RCS executes tasks in the foreground and the background. You run a task in
the foreground when you execute a task at the terminal, and when you single-
step each control level. You cannot access the terminal or perform any ter-
minal operations from a routine running in the background task.

RSL has one background task per board that runs the control task, named
BACK-TASK, for that board. You execute the background task by entering the

word BGO. For examples of background tasks and broad level processes, see the
RSL application (blocks 8020 through 80M9).

7.6 INTERRUPTS AND ASSEMBLY LANGUAGE

You can write interrupt routines by beginning the routine with the word
enter-interrupt and ending the routine with the word exit-interrupt. The word
"INTERRUPT sets the specified interrupt vector to point to your interrupt
routine.

7.6 INTERRUPTS AND ASSEMBLY LANGUAGE
7-19

Figure 7-8 shows how to set up an interrupt routine.

SDEF
1 routine INTERRUPT-SERVICE
2 %

3 %
4 enter-interrupt

5

6 (interrupt routine code)

7
8 exit-interrupt

9

10 end-routine
11

12

13

14

15 8 -INTERRUPT INTERRUPT-SERVICE

Figure 7-8. Setting up an interrupt routine,

To enable the interrupt, you have to install the appropriate jumpers and clear
the interrupt mask in the Programmable Interrupt Controller. Refer to the

manual and schematics that come with the board for details. Also be careful
not to disturb any of the interrupts currently implemented in the system. See

Appendix C, "System Maps", for a list of the interrupts.

If you need to use assembly language code to write an interrupt routine or

another routine, refer to the FORTH documentation for 8086 assembler, and
Appendix E, "8087 Operation Codes For RCS", for 8087 assembler.

«

7.6 INTERRUPTS AND ASSEMBLY LANGUAGE
7-20

Chapter 8

COMMUNICATIONS

In addition to data, RCS can pass command and status information between con-

trol levels. Normal data consists of information such as robot poses, task

descriptions, and relative moves. Command and status information consists of

the control-level inputs and outputs that control task decomposition.

This chapter briefly explains that memory-resident files provide the m.ediura

for data transfer and then describes the communications process provided by

NFS to transfer command and status information between control levels. Fol-
lowing a description of how the communications process works, this chapter
explains how to program the communications process to transfer command and

status information between control levels on different boards and between
control levels on the same board.

8.1 USING MEMORY FILES TO PASS DATA

The different control levels within the system use common memory to pass data
in the form of files. The control levels must implement the protocol to
resolve file read/write conflicts. RSL uses round-robins to resolve these
conflicts.

8.2 USING COMM TO PASS COMMAND AND STATUS INFORMATION

COMM is an RCS utility that provides a communications process for passing com-

mand and status information between control levels. Each control level can
have an input status buffer, an input command buffer, an output status buffer,
and an output command buffer. The output command buffer and the input status
buffer of a control level communicate with the level below. The input command
buffer and the output status buffer communicate with the level above. (See

Figure 8-1.)

8.2 USING COMM TO PASS COMMAND AND STATUS INFORMATION
8-1

Higher Control Level

Output
Command Buffer

Input

Status Buffer

Buffer
Ready
Flag

Buffer in

Common Memory
Buffer in

Common Memory

COMMUNICATION
PROCESS

Input

Command Buffer
Output

Status Buffer

RCS Control Level

Output
Command Buffer

Input

Status Buffer

Buffer in

Common Memory

^

Buffer

Ready
Flag

Buffer in

Common Memory

input
Command Buffer

Output
Status Buffer

Lower
Buffer
Ready
Flag

C

Figure 8-1. Command and status communication paths.

The communications process passes command and status information by moving the

contents of the output buffer on one level to the corresponding input buffer
on another level. This process operates in cycles to synchronize the flow of

command and status information. Communication buffers in common memory enable
the communications process to proceed in an asynchronous fashion. That is,

these buffers can temporarily store command and status information until the

control level is ready to accept It.

The period of the communications cycle is user-defined using a SMACRO variable
called control-cyc] e-#-clks. COMH uses timer to generate the communications
cycle period. You can also synchronize the communications cycle to the

operations of the robot.

C

8.2 USING COMM TO PASS COMMAND AND STATUS INFORMATION

A combination of ready flags on each level and a communications bit on the

bus provide a means of resolving read/write conflicts. See Section 5.4,

"Hardware Installation Procedures", for information on how to use one of the

MULTIBUS interrupt lines as the communications bit.

No other process can execute while the communications bit is set and the com-

munications process is moving the contents of the communication buffers
between control levels. At the beginning of each cycle, the communications
process resets the communications bit. Each level waits for this bit to be

reset before starting execution.

While each level is executing, it sets the variable buffer-ready-f to

not-ready to indicate that its buffers are not ready. When the level finishes
executing, it waits for the system to reset the communications bit (which nor-
mally occurs immediately). Then the level sets buffer-ready-f to ready to

indicate that the buffer is ready.

At the end of each cycle, the communications process sets the communications
bit and moves all ready output buffers to an intermediate buffer in common
memory. It then moves all data from the Intermediate buffer to the corre-
sponding input buffer, assuming the input buffer is ready. This protocol
allows levels to overrun the cycle time without affecting communications.

The communications period during which no other process may execute Is called
communications dead time. To minimize this dead time, you must restrict
buffers to the smallest possible size.

For example, to minimize the communications dead time, RSL communicates pose
information between levels by passing pointers into a round-robin group of
poses. This technique reduces the required buffer size (and speeds communica-
tion) because the levels communicate only the name of each pose rather than
the Information to describe a pose completely.

8.3 PROGRAMMING COMM

The program for the communications process consists of a table of buffer moves
called a communications table. You must first enter the ERASE-COMM-TABLE
statement and then repeat the following two statements for each Internal
buffer move desired:

TRANSFER-FROM [vocabulary] [output buffer]
TO-DESTINATION [vocabulary] [input buffer]

The ERASE-COMM-TABLE statement clears the contents of the communications
tables on all the boards in the system. The TRANSFER-FROM statement selects
the output buffer from which to send command and status Information. The

TO-DESTINATION statement selects the corresponding input buffer that Is to

receive the command and status information.

Each vocabulary specified with TRANSFER-FROM or TO-DESTINATION must include a

semaphore variable named buffer-ready-f, which COMM uses to synchronize com-
munications. Thus, each vocabulary actually has its own buffer-ready-f rather
than a flag for each buffer. The communications process determines the

8.3 PROGRAMMING COMM
8-3

address of this variable when it compiles the communications table. If you
compile the communications table and this variable is missing, RCS returns the
"no buffer-ready-f" message.

B,l\ COMMUNICATING ON THE SAME BOARD

Two processes running on the same processor board do not need the communica-
tions process to resolve read/write conflicts. Processes running on the same

processor board can use the S=> SMACRO operator.

For example, in RSL you can use the following two statements to move the con-

tents of TASK'S output command buffer to PATH'S input-status-buffer:

TASK path-command-var PATH S=> input-command-var

PATH output-status-var TASK S=> path-status-var

8.^ COMMUNICATING ON THE SAME BOARD
8-H

Chapter 9
ROBOT SENSOR LANGUAGE (RSL)

This chapter describes the Robot Sensor Language (RSL), an example of a real-

time application that NBS developed within the RCS environment. RSL is a

high-level, task description language designed for programming robotic tasks,

in which the control system, RCS, uses sensors to control the robot. This
chapter defines RSL, describes RSL syntax, and gives procedures for entering,
editing, and executing RSL code.

9.1 WHAT IS RSL?

RSL is a data-driven, semi-interpreted, user-extensible language that supports

user-designed sensors, hierarchical task decomposition, and real-time execu-
tion. RSL is extensible; you can add a new sensor to a robot, and then extend
RSL, enabling you to program robot tasks that use the new sensor.

RSL consists of two main programming structures: data and algorithms. Data
is information about the robot environment such as the name, size, or location
of an object. Robot sensors supply data to RSL, or you may enter the data
directly from the keyboard.

An algorithm is the RSL code you use to accomplish a task. RSL compiles algo-
rithms into a linked-list representation. Then the RSL control levels inter-
pret the algorithm, using environmental data to command the robot to execute a

task.

RSL decomposes tasks hierarchically, from the top down, using the RCS methods
of cyclic execution, task decomposition, and control levels described in Chap-

ter 2, "RCS Overview", and Chapter 3} "RCS Architecture". The four RSL-
specific control levels are: TASK, PATH, PRIM, and JOINT, as shown in Figure

9-1.

9.1 WHAT IS RSL?
9-1

Figure 9-1. RSL control levels.

The code in these control levels defines the types of tasks that you can
accomplish with RSL. You define tasks by writing algorithms, which define how

to accomplish the task. The algorithms include operations such as transfer-
ring parts from a tray to a buffer or loading tools into a machining center.
These algorithms become the input for the RSL control levels.

The TASK level decomposes all tasks into a sequence of path types. The path
type and parameters of the current task identify the specific path to execute.

RSL defines the path types: move-to, approach-pickup, depart-pickup,
approach-release, and depart-release. You can define additional path types as
you need them. A path algorithm specifies a simple path such as moving
between locations or grasping objects. The specific path becomes the input

for the PATH level.

9.1 WHAT IS RSL?
9-2

The PATH level decomposes paths into a sequence of path-points. Each path-

point consists of a single motion or sensor command. A path-point command

performs operations, such as initiating a motion that a sensor condition
terminates. You must define additional commands for each type of motion and

sensor combination you need. The PATH level further decomposes the path-
points into a sequence of trajectories, which become the input for the PRIM

level.

The PRIM level decomposes trajectories into a sequence of intermediate points.

A trajectory consists of a goal point and parameters describing the path to

the goal point. RSL defines the straight-line Cartesian trajectory types and
the joint-interpolated trajectory type. The intermediate points become the

input for the JOINT level.

The JOINT level transforms intermediate points from Cartesian space to joint

space. The joint values are sent to the servo controls in the manufacturer's
robot controller.

Note: Keep in mind the different kinds of code in RSL. RSL contains data,
such as the name of an object; algorithms, consisting of paths, path-

points and trajectories, such as the RSL steps to accomplish a transfer
task; and SMACRO code that defines the control levels.

9.2 RSL OVERVIEW

This section describes the syntax of RSL statements. See Appendix B, "User
Word Summary", for the exact syntax of each RSL statement. The section also
includes some example RSL code.

The Pose Statement

The pose statement, -pose-, defines a position, or the physical location, of
the robot. A pose consists of a translation, represented by a vector, and a
rotation, represented by a quaternion. The translation and rotation give the
tool frame relative to the base frame of the robot.

With a six-axis robot, you may need to use up to three robot arm configuration
flags to resolve the ambiguities of the inverse transform operation that
transforms a pose into joint angles. These flags depend on the robot you use
and the interface between RCS and the manufacturer's robot controller.

You may enter poses directly from the keyboard; or you may position the robot
with a joystick or sensor-based algorithm and then record the pose. For

information on how to enter a pose, see Section 9.3» "Entering and Editing RSL
Source Code", later in this chapter.

9.2 RSL OVERVIEW
9-3

The Movetable Statements

A movetable defines relative positions, using a combination of rotations and
translations. That is, a movetable defines a coordinate transform. Adding a
movetable to an existing pose produces a new location.

For example, if you define a pose at one corner of a table, you can define the

other three corners of the table using movetables. If you want to reposition
the table, you have to update only one pose—the movetables do the rest.

Defining a movetable requires several RSL statements such as -mtb-, , and
-mtb-end-. Each transform line, , specifies either a vector translation or

a rotation. You can also define a movetable that is the exact inverse of
another movetable using the -imtb- statement.

The Location Statement

The location statement, -loc-, defines a location as the combination of a pose
and a movetable. Locations may be goal points, or the origin of a coordinate
frame in which to define motions. RSL adds the movetable and the pose just
before the control system needs the result, enabling you to modify the data
structures in real time. You can fine-tune a recorded pose by defining a
movetable without using the robot. Also, you can define several related
locations in terms of the same pose, so that RSL redefines the locations when
it redefines the pose.

The Array Statement

Arrays may be one-, two-, or three-dimensional. The statement -arr- defines
an array. The origin of an array is a location. A movetable specifies the
displacement from one sector to the next sector along each dimension of the

array. A sector is an element of an array. Use arrays to make palletizing
operations easier.

The Object Statement

The object statement, -obj-, defines an object that consists of the object
name and a list of grip numbers and movetables. The grip numbers define
different orientations for gripping the object. RSL finds the grip orienta-
tion by adding the movetable to the object frame. Note that you may never
refer to an object without a grip number.

The Path Statements

A path is an algorithm for performing simple tasks such as moving between

locations or grasping an object. The path algorithm may be a simple path in

space that guarantees no collisions, or the path may be more complex, requir-
ing sensor input to help locate an object. Paths consist of a sequence of
steps called path-points.

9.2 RSL OVERVIEW
9-4

C

The path statement syntax has two parts: the path statement and a sequence of
path-point lines. The statement -path- defines the type and goal of the path;

the -ppt- lines give the sequence of steps in the algorithm.

The path type identifies the intended purpose of the path. RSL provides five

path types: move-to, approach-pickup, depart-pickup, approach-release, and

depart-release. You may define other path types, using these types as models.
The rest of this section describes each of these five types of paths:

• The move-to path specifies how to move the robot quickly while it is carry-
ing an object from near the starting location to near the destination loca-
tion. The approach and depart paths handle slower movement closer to the

starting and destination locations.

• The approach-pickup path specifies how to move the robot, with an empty end

effector, toward an object at the goal location. The approach-pickup path
starts from a safe location near the goal and stops at the goal location.

• The depart-pickup path specifies how to move the robot to pick up an object
at a goal location. The depart-pickup path starts at the goal location and
stops at a safe nearby location while the robot grasps the object.

• The approach-release path specifies how to move the robot while it is
grasping an object. The approach-release path starts at a safe location
near the goal and stops at the goal location.

• The depart-release path specifies how to move the robot at a goal location
to release an object. The depart-release path starts at the goal location
and stops at a safe nearby location, leaving the object at the goal
location.

The Path-Point Statement

Each path-point consists of a single command. Typically, the commands initi-
ate a motion, which a sensor condition terminates. The structure of the path-
points depends heavily on the specific sensors and applications you are using.
In general, path-points consist of a command phrase, a location phrase, and a
trajectory phrase, although you may define other structures.

The command phrase gives the motion type, and specifies the sensor condition
that terminates the motion. The location phrase specifies a location that RSL
uses in one of two ways: as an intermediate goal point, or as a coordinate
frame with translation along or rotation about an axis. The trajectory phrase
specifies the trajectory type (Cartesian straight-line or joint interpolated)
and the parameters (acceleration, maximum velocity, and neighborhood) RSL uses
during execution of the path-point.

RSL provides only the goto path-point. The goto path-point specifies a motion
of the robot to be a goal location using either straight-line Cartesian or
joint-interpolated trajectories. You can add other path-points.

9.2 RSL OVERVIEW
9-5

The Round-Robin Statement

The round-robin statement defines a round-robin or a circular list in a file.
RSL uses round-robins to pass information between control levels. When one
control level writes a record to the next lower control level, the lower level
reads the record previously written. For a more detailed explanation of
round-robins, see Section 10.2, "RSL Data Structures" in Chapter 10.

Example RSL Code

This section gives some simple examples of RSL code, and explains what each
example does.

0.00166-pose -- TABLE 0.04361 0.999 0.0005033
-39.83 -8.702 0.0216
1.0 1.0 -1.0

This code defines a pose named TABLE. The first four numbers give the orien-
tation expressed as a quaternion. The next three give the position expressed
as a Cartesian vector. The last three give the arm configuration. (For a

PUMA 760, the arm configuration is lefty, elbow up, wrist flipped.) This pose
defines the position and orientation of a table.

-mtb- CORNER
t-tool 20.0 0.0 0.0

-mtb-end-

-mtb- TABLE-SAFE
t-tool 10.0 15.0 10.0
r-tool Z 20.0

-mtb-end-

-mtb- UP5
t-tool 0.0 0.0 5.0

-mtb-end-

This code defines three movetables, intended for use with the TABLE pose. The
first movetable defines a corner of the table. The TABLE pose is at one

corner of the table, with the x axis along one edge, the y axis along the
other edge, and z up. CORNER is 20 inches away along the x axis. TABLE-SAFE
is a point above the center of the table that is a pass-through point for

motions to and from the table. The point is rotated 20 degrees about the z

axis. UP5 is a point 5 inches up along the z axis. It defines an intermedi-
ate point for moving to points on the table.

(

9.2 RSL OVERVIEW
9-6

-loc- TABLE TABLE nul

-loc- CORNER TABLE CORNER

-loc- TABLE-SAFE TABLE TABLE-SAFE

This code defines locations. Locations are always the sum of a pose and a

movetable. They are used in paths and path-points (poses cannot be used

directly). These four locations associate the movetables defined above with
the TABLE pose, indicating the appropriate positions and orientations for the
table.

-path- approach-pickup nul loc CORNER
-ppt- goto loc TABLE_SAFE joint 10.0 ^^0.0 20.0
-ppt- goto goal UP5 cart 0.03 0.03 1.0

0.25 1.5 6.0

-ppt- goto goal nul cart 0.03 0.10 0.0

0.25 0.5 0.0

This code defines a path used for moving to the corner of the table. The
first path-point moves towards the location TABLE-SAFE (above the middle of
the table). The trajectory is joint-interpolated, with acceleration limited
to 10 percent of maximum and velocity limited to 40 percent of maximum. When
all joints are within 20 degrees of the TABLE-SAFE location, the system steps
to the next path-point.

The second path-point goes towards the intermediate goal defined by the loca-

tion CORNER, plus the movetable UP5. Thus, the intermediate goal is TABLE +
CORNER + UP5, or 5 inches above the corner of the table. The motion is a Car-
tesian straight line. For information on the velocity and acceleration param-
eters, see Appendix B, "User Word Summary". The second path-point is complete
when the tool-point is within 1.0 inch and 6.0 degrees of the intermediate
goal. The last path-point moves to the goal TABLE + CORNER and stops there.

9.3 ENTERING AND EDITING RSL SOURCE CODE

When you build a new application or change the data for an existing applica-
tion, you need to enter or edit RSL source code. To enter new source code,
type the data into a block using the RCS screen editor, described in Section
6.7» "Editing a Block of Code". Also use the screen editor to edit existing
source code.

You can enter new robot poses by using the joystick to position the robot.
Then enter RECORD-POSE [pose-name

]

. RECORD-POSE stores the current robot
position in the pose with the specified pose-name. RECORD-POSE creates a new
pose record if the pose-name is not already defined.

You can also enter the pose directly into a block by specifying the block num-
ber, the line number, and the name of the pose. For example, to enter SECTOR
into block 23, line 5, enter 23 5 TYPE-POSE SECTOR . TYPE-POSE enters the pose
into the block beginning at the line specified.

9.3 ENTERING AND EDITING RSL SOURCE CODE
9-7

9.4 COHPILING RSL SOURCE CODE

Like SMACRO code, you compile RSL code by loading the blocks containing the /

source code. The compiling words in RSL compile the code into a linked list "

representation in common memory files. Like SMACRO code, you can recompile
all RSL code; you may edit and recompile any piece of code, and any other code

that uses it will use the new version.

Unlike SMACRO, RSL has garbage collection; a path may be recompiled several
times without wasting any space in the files. Other named data structures
have no garbage collection; you cannot remove a pose, for example. Thus, you
may run out of space if you keep defining more and more data structures such
as poses and locations. To avoid running out of space, restore the system to

a clean state and recompile all the RSL source code.

Recompiling code is easier with RSL than with SMACRO; to restore the system to

a clean state, you simply reinitialize all the files using ~re-init-file
(rather than using D>M and RESTORE on several boards). Block 990 on RSL is

set up to do this restoration, as well as reload the RSL code. (You must edit
block 994 and your directory blocks to be sure all of your code is loaded.)
Note that the control system must not be running the robot when the RSL code

is completely reloaded; 990 executes HALT to guarantee that the robot is not
running. Small pieces of code may be loaded with the control system running,
as long as the control system is not actually using that code. To be safe,

HALT the system before loading RSL code.

If you run out of file space (indicated by a "FILE FULL" message), but do not

have extra code loaded, you can increase the number of records allotted to

each file by editing the file declaration (in the 100 block section on the RSL %

board). You must recompile the SMACRO code for all levels and the RSL code
for this change to take effect. You may run out of the common memory space

allotted to files; type F-MEM to display the amount of memory left. To change
the allocation of common memory, edit absolute block 1402 and reload the base

and application code.

In general, RSL checks for errors and gives appropriate error messages. (The

appendices of this manual do not list these messages.) If you get an error
message, simply edit the block to correct the error, then reload the code.

You do not have to use the "RESTORE or D>M commands to fix errors with RSL.

When you load block 990 on RSL, it reloads the initialization blocks for each
level after compiling all the RSL source code. This is done because the

levels use several reserved records in RSL (mainly the round-robins) and must
look up record numbers, which may have changed as a result of recompilation.

9.5 EXECUTING RSL COMMANDS

To execute RSL commands, you load a block containing a command for the TASK
level. For example, move to the TASK&PATH board and use the directory block

structure to locate the TRANSFER command. Listing block shows that user
commands are defined in the 900 section. Listing block 900 shows that the
input commands for the task level are in the 910 section. Listing block 910
shows that the TRANSFER command is in block 913.

(

9.5 EXECUTING RSL COMMANDS
9-8

Load block 913. RCS executes the TRANSFER command specified in block 913.
You can also execute the TRANSFER in Show mode, in which case RSL displays the

status-report, status-arg-out, and joint angles for each level as the robot
executes the transfer.

To see the status of the command being executed, load block 928 on RSL. This
block displays the status-report and status-arg-out variables for each level.

A status-report of means the command is executing, of 1 means the command is

done, and of 2 means an error occurred. The status-arg-out variable gives the
error types. (Refer to Chapter 10, "RSL Control Levels", for a description of
these errors.) Alternatively, you can display the variable error-list, the
owner of the error-report variables, on each level.

To issue another command, simply load another block. Blocks 910 through 979
on TASK are available for user commands. Most RSL commands are interruptible.
If you issue a new command, the old command aborts and the new command starts
executing. To suspend and then resume command execution, press the HOLD-SET
button on the joystick. The HOLD-SET button causes the robot to stop moving
and command execution to be suspended. To resume execution, press the
HOLD-CLEAR button.

Note that the GO and HALT coimnands are not commands to the control system.
The GO and HALT commands start and stop the control system.

9.5 EXECDTING RSL C0M4ANDS
9-9

Chapter 10

RSL CONTROL LEVELS

The first three sections of this chapter provide an overview of RSL and

describe the RSL data structures and compiler. The last four sections
describe TASK, PATH, PRIM, and JOINT, the four hierarchical control levels

that make up RSL. These control levels decompose each task you enter at the

keyboard into a series of primitive commands that a robot can execute to

accomplish a task. The sections describe the function of each control level
and provide command descriptions, status information, variable descriptions,
control-level routine descriptions, and a discussion of the error conditions
for each control level.

10.1 OVERVIEW OF RSL CONTROL LEVELS

The RSL system contains five main segments of code: the RSL compiler and the
four control levels TASK, PATH, PRIM, and JOINT. Each segment has its own
vocabulary. This chapter refers to segments by using the vocabulary name for
each segment. (The context of the discussions distinguishes RSL as the whole
system from RSL as the compiler.)

•
10.1 OVERVIEW OF RSL CONTROL LEVELS

10-1

Figure 10-1 gives an overview of the relationships between RSL and the control
levels.

[2g[L {FSI]@©

Pose

Movetable

Locations

Path Types

Traj parameters

task

sequence of paths

RCS
communications

N^ 28 msec

PATH
path

sequence of

trajectory segments

<^f
(J»

Sonars
j

RCS
communications

28 msec

trajectorg segment

/s

sequence of

poses

<^

RCS
communications

N^ 28 msec

pose

commanded
joint angles

robot

RS-232
28 msec

Joystick

Figure 10-1. RSL files and control levels.

RSL compiles environmental data and algorithms into files in common memory.
The control levels use the files to execute commands. The TASK level decom-

poses user commands into a series of paths. The PATH level decomposes those

10.1 OVERVIEW OF RSL CONTROL LEVELS
10-2

paths into path-points and then into trajectories. The PRIM level executes

Cartesian trajectories, by sending a new pose to the JOINT level every cycle.

The JOINT level transforms the poses to joint values, and sends them to the

servo controls in the manufacturer's robot controller. For joint trajecto-

ries, PRIM sends the command to JOINT, which executes it, sending new joint

values to the servo mechanisms every cycle.

The rest of this chapter gives an introductory description of the source code

for all five segments and describes the RSL data structures. The source code
descriptions introduce you to the overall structure of RSL code.

The descriptions of individual routines are not exact translations of the

SMACRO code into English. Rather, they describe the functions of the rou-
tines. When you understand the descriptions in this chapter, you should be

able to understand the source code without the functional descriptions.

The internal structures of the four control levels are similar, but they are

not exactly the same. Each section of this chapter begins with a description
of the input commands and status feedback for the level, followed by an over-
view of the level's structure, the preprocess routines, the command-process
routines, and the postprocess routines.

Note that when a variable owner is given as an input or output for a routine,

the members of the owner are the actual inputs and outputs.

The command descriptions include the command syntax. Commands to the TASK
level are different from those to the other levels. The TASK input is an

ASCII string; the other levels accept numerical data. The user never gives
commands directly to the lower levels, only to the TASK level. So the TASK
level needs to be very flexible and user-friendly. The lower levels have less

flexible inputs and use fixed record descriptions. Thus, the syntax descrip-
tions for the lower levels only indicate which of the fields in the input com-
mand record are actually used by that command.

The command syntax shows parameter names enclosed in square brackets. When
you enter the commands, separate the parameters with spaces.

10.2 RSL DATA STRUCTURES

RSL represents data structures and algorithms as a linked list of records,
kept in files in common memory. These files are the user files described in

earlier chapters of this manual. The data within these files resides in the
user file portion of common memory.

Typically, the records contain pointers to other files, numeric data, and
names. For linear displacement values, the unit of measurement is inches.
For angles, the unit of measurement is degrees. Internally, RSL represents
angles as radians. Names in RSL can have up to 15 ASCII characters, excluding
spaces.

RCS provides each file with a free list of records for garbage collection, and
SMACRO file operators to maintain the free list.

10.2 RSL DATA STRUCTURES
10-3

The following sections explain the RSL data structures: pose, movetable,
location, array, object, path, path-point, trajectory, and round-robin. Each
section describes the record structure of a file for the RSL data structure
type. RSL uses the RCS language SMACRO to define the data files. SMACRO pro-
vides the linked-list programming structure used for RSL files. A SMACRO
variable owner defines the record, with each member of the owner defining a

field in the record. The SMACRO file declaration specifies the maximum number
of records allowed in the file. You may change this number to fit the size of
your application.

The Pose Data Structure

The pose file in common memory has the following structure:

55 bytes VAR-0 pose-rec
15 strv "pose-name"

7 1:fa pose
3 1:fa conf-flag

50 rec FILE POSE-FILE

where:

• "pose-name" contains the name of the pose.

• pose contains the seven numbers giving the rotation quaternion and the
translation vector for the pose.

• conf-flag contains the three robot arm configuration flags.

The pose file is a single linked list. When you define a new pose, RSL adds
the pose to the end of the list. RSL does not Include a provision for remov-
ing poses. When you reload the source code for a pose, RSL updates all the
fields.

The Movetable Data Structure

The movetable file in common memory has the following structure:

127 bytes VAR-0 mtb-rec
15 strv "mtb-name"

iv Ist-line-type 3 Is fa Ist-line-para
iv 2nd-line-type 3 1:fa 2nd-line-para
iv 3rd-line-type 3 1:fa 3rd-line-para
iv 4th-line-type 3 1:fa 4th-line-para
iv 5th-line-type 3 Is fa 5th-line-para
iv 6th-line-type 3 Isfa 6th-line-para
iv 7th-line-type 3 1:fa 7th-line-para
iv 8th-line-type 3 1:fa 8th-line-para

100 rec FILE MOVETABLE-FILE

10.2 RSL DATA STRUCTURES
10-4

where:

• "mtb-name" contains the name of the movetable.

• Ist-line-type through 8th-llne-para contain the lines of the movetable.

The first integer in each line contains a code number that identifies the

line type, and the next three floating-point numbers contain the parameters

for that type of line. Some line types require less than three parameters.

(A movetable may contain up to eight lines.) Table 10-1 lists the line

types and parameters.

Note; The line types given in Table 10.1 are used for the internal repre-

sentation only and are not the same as the line types in the syntax
for defining movetables.

Table 10-1. Movetable Line Types.

Parameters

none.

X, y, z components of the vector in the

tool frame.

X, y, z components of the vector in the

base frame.

sine and cosine of half the angle about
the X axis of the tool frame.

sine and cosine of half the angle about
the y axis of the tool frame.

sine and cosine of half the angle about
the z axis of the tool frame.

The movetable file is a single linked list. When you define a new movetable,

RSL adds the movetable to the end of the list. RSL does not include a provi-
sion for removing movetables. When you reload the source code for a move-
table, RSL updates all the fields.

The Location Data Structure

The location file in common memory has the following structure:

19 bytes VAR-0 loc-rec
15 strv "loc-name"
iv loc-pose-'^

iv loc-mtb-"

20 rec FILE LOCATION-FILE

Code Line Type

nul

1 tool-trn

2 base-trn

3 tool-rotx

4 tool-roty

5 tool-rotz

10.2 RSL DATA STRUCTURES
10-5

where

:

• "loG-name" contains the name of the location. ^
• loc-pose-^ contains a pointer to the pose for "loc-name" in the POSE-FILE.

RSL sets the pointer when it defines the location.

• loG-mtb-^ contains a pointer to the movetable for "loc-name" in the

MOVETABLE-FILE. RSL sets the pointer when it defines the location.

The location file is a single linked list. When you define a new location,
RSL adds the location to the end of the list. RSL does not include a provi-
sion for removing locations. When you reload the source code for a location,
RSL updates all the fields.

The Array Data Structure

The array file in common memory has the following structure:

88 bytes VAR-0 arr-rec
10 strv "arr-name"
iv base-loc-*
iv x-#-sectors
iv y-#-sectors
iv z-#-sectors
iv //-sectors

iv x-mtb-"
iv y-mtb-"
iv z-mtb-*
20 1:a sector-list
iv arr-pose-

(

10 rec FILE ARRAY-FILE

where:

• "arr-name" contains the name of the array.

• base-loc-"" contains a pointer to the location in LOCATION-FILE that is the
origin of the array.

• x-//-sectors , y-Zi^-sectors , and z-#-sectors contain the number of sectors
along the x, y, and z axes of the location frame.

• //-sectors contains the total number of sectors.

• x-mtb-^ , y-mtb-^ , and z-mtb-^ contain pointers to the movetables in

MOVETABLE-FILE for the displacement from one sector to the next sector
along the respective axes of the location frame. The movetables should
have only lines of type tool-trn.

(

10.2 RSL DATA STRUCTORES
10-6

• sector-list contains a list of sectors giving the order in which RSL loads
or unloads the array.

• arr-pose-"^ contains a pointer to the pose that gives the position of the

current sector during loading or unloading.

All fields, except sector-list, are set when RSL defines the array. TASK sets

the field sector-list when it receives a TRANSFER command to load or unload
the array.

RSL reserves a pose record for arr-pose-* when you declare the array. TASK
calculates the value of the pose from the base location and sector movetables
at the beginning of execution of a path involving the sector as the source or
destination.

RSL numbers sectors starting at the origin of the location frame, sector 0.

Then it increments along the x, y, and z axes of the location frame, incre-
menting X first, y second, and z third.

The array file is a single linked list. When you define a new array, RSL adds
the array to the end of the list. RSL does not include a provision for remov-
ing arrays. When you reload the source code for an array, RSL updates all the

fields, clearing the sector-list.

The Object Data Structure

The object files in common memory have the following structure:

17 bytes VAR-0 obj-name-rec
15 strv "obj-name"
iv obj-grip-L-*

5 rec FILE OBJ-NAME-FILE

4 bytes VAR-0 obj-grip-rec
iv grip#
iv grip-mtb-*

20 rec FILE OBJ-GRIP-FILE

where :

• "obj-name" contains the name of the object.

• obj-grip-L-^ contains a pointer to a list of the grips for each object in
OBJ-GRIP-FILE.

• grip# contains the grip number of the object.

• grlp-mtb-'' contains a pointer to a movetable that defines the grip in

MOVETABLE-FILE.

10.2 RSL DATA STRDCTDRES
10-7

Typically, grip 1 has a nul movetable and RSL defines other grips relative to
grip 1.

OBJ-NAME-FILE contains a linked list of all object names. OBJ-GRIP-FILE con-
tains a list for each object. RSL does not include a provision for removing
objects or object grips. When you reload the source code that defines a grip
definition, RSL updates the field grip-mtb-* and preserves all other fields.

The Path Data Structure

The central path file in common memory is the PATH-POINT-FILE. The
PATH-POINT-FILE has the following structure:

4 bytes VAR-0 ppt-rec
iv ppt-command
iv ppt-para"

100 rec FILE PATH-POINT-FILE

where

:

• ppt-command contains the path-point command.

• ppt-para* contains a pointer to the command parameter file.

The path-point file contains one list for each defined path. RSL does not
include a provision for removing paths. When you reload a path, RSL returns
the current list for that path to the free list and creates a new list. RSL
also returns the associated records in the command parameter file to their
free lists and creates new lists as needed. You may redefine paths as often
as you like without wasting file space.

Each path-point command has one command parameter file. This file contains
any parameters related to the path-point. RSL provides only the goto path-
point, and thus, only the GOTO-FILE command parameter file.

The move-to path type

The move- to file in common memory has the following structure:

12 bytes VAR-0 move-to-rec
iv move-to-obj-"
iv move-to-start-type
iv move-to-start-*
iv move-to-dest-type
iv move-to-dest-*
iv move-to-path-'*

40 mem FILE MOVE-TO-FILE

10.2 RSL DATA STRUCTORES
10-8

where

:

• move-to-obj-'* contains a pointer to the object grip record in

OBJ-GRIP-FILE.

• move-to-start-type contains the starting location type. The location type
must be either loc or arr.

• move-to-start-'^ contains a pointer to the starting location in

LOCATION-FILE or ARRAY-FILE.

• move-to-dest-type contains the destination location type (loc or arr).

• move-to-dest-'^ contains a pointer to the destination.

• move-to-path-'' contains a pointer to the path in the PATH-POINT-FILE.

The move-to file is a single linked list. A new record is added to this file
when a move- to path for a new object/start location/destination is defined.
RSL does not include a provision for removing paths. When you reload a

move-to path, RSL updates the field move-to-path-* to point to the new path.

The structures of the other path types are similar to the structure of
move-to. Because of the similarity, the following sections give the structure
of the path type records without a complete description.

The approach-pickup path type

The approach-pickup file in common memory has the following structure:

8 bytes VAR-0 approach-pickup-rec
iv appr-pick-loc-type
iv appr-pick-loc-*
iv appr-pick-obj-"
iv appr-pick-path-"

40 mem FILE APPROACH-PICKUP-FILE

The depaurt-pickup path type

The depart-pickup file in common memory has the following structure:

8 bytes VAR-0 depart-pickup-file
iv dept-pick-loc-type
iv dept-pick-loc-''
iv dept-pick-obj-*
iv dept-plck-path-''

40 mem FILE DEPART-PICKUP-FILE

10.2 RSL DATA STRDCTURES
10-9

ZI

The approach-release path type

The approach-release file in common memory has the following structure:

8 bytes VAR-0 approach-release-rec
iv appr-rel-loc-type
iv appr-rel-loc-^
iv appr-rel-obj-^
iv appr-rel-path-''

40 mem FILE APPROACH-RELEASE-FILE

The depart-release path type

The depart-release file in common memory has the following structure:

8 bytes VAR-0 depart-release-file
iv dept-rel-loc-type
iv dept-rel-loc-''

iv dept-rel-obj-"
iv dept-rel-path-''

40 mem FILE DEPART-RELEASE-FILE

The Path-Point Data Structure

The goto file in common memory has the following structure:

8 bytes VAR-0 goto-rec
iv goto-loc-type
iv goto-loc-'^

iv goto-traj-type
iv goto-traj-''

100 rec FILE GOTO-FILE

where:

• goto-loc-type contains the type of location.

• goto-loc-^ contains a pointer to the location.

• goto-traj-type contains the trajectory type: cart or joint.

• goto-traj-^ contains a pointer to the trajectory parameters in
CARTESIAN-FILE or JOINT-FILE.

The goto file is a single linked list. When you define a goto path-point, RSL
adds the goto path-point to the end of the list. RSL removes the goto path-

point whenever a path containing goto path-points is deleted as part of
redefinition.

10.2 RSL DATA STRDCTORES
10-10

The Trajectory Data Structure

The files for the Cartesian and joint trajectory types in common memory have
the following structure:

24 bytes VAR-0 cart-rec
fv amax
fv vmax
fv trn-nbrhd

fv gmax
fv wmax
fv rot-nbrhd

100 rec FILE CARTESIAN-FILE

where:

• amax contains the maximum allowed magnitude of the translational accelera-
tion, in inches per cycle per cycle.

• vmax contains the maximum allowed magnitude of the translational velocity,
in inches per cycle.

• trn-nbrhd contains the translational distance in inches from the current
goal location at which the trajectory routine reports done.

• gmax contains the maximum allowed magnitude of the rotational acceleration,
in degrees per cycle per cycle.

• wmax contains the maximum allowed magnitude of the rotational velocity, in

degrees per cycle.

• rot-nbrhd contains the rotation neighborhood, the rotational distance in

degrees from the current goal location at which the trajectory routine
reports done.

12 bytes VAR-0 joint-rec
fv j-acc

fv j-vel
fv j-delta

100 rec FILE JOINT-FILE

where:

• j-acc contains the maximum allowed acceleration of any joint, given as the
percentage (between and 100) of the hardware maximum for each joint.

• J-vel contains the maximum allowed velocity of any joint, given as the per-
centage (between and 100) of the hardware maximum for each joint.

10.2 RSL DATA STRUCTURES
10-11

• J-delta contains the difference in degrees from the location Joint values
at which the trajectory routine reports done. When the trajectory reports
done, all Joint values are within this delta.

Each file is structured as a single linked list. RSL adds records to the

appropriate list whenever a path-point is defined. RSL removes records when-
ever a path-point containing the trajectory is deleted as part of a path
redefinition.

The Round-Robin Data Structure

A round-robin is a circular list in a file, called the containing file. Use
round-robins to store information temporarily. For example, if you are using
a slow sensor, such as a vision sensor that may require up to 15 cycles to
take a reading, use a round-robin to store robot poses for the previous 15

cycles. This technique enables the sensor to access the position of the robot
at every cycle since the sensor started the reading,

RSL also uses round-robins to pass information between control levels. When
one control level writes a record to the next lower level, the lower level
reads the record written previously.

As Illustrated in Figure 10-2, for example, in cycle 1 PATH writes the goal
pose to record 1 and puts the pointer in goal-pose-'^-out. Also in cycle 1,

PRIM reads the pose from record 3 (put there by PATH in the last cycle). This
pose is pointed to by goal-pose-^-in. After cycle 1, COMM moves PATH'S output
command buffer (containing goal-pose-*-out) to PRIM'S input command buffer
(containing goal-pose-^-in) . Then in cycle 2, PATH writes the goal pose to

record 2 and PRIM reads from record 1

.

10.2 RSL DATA STRUCTURES
10-12

PATH

goa1-pose-'-out

^ cycle 1

write pose

±.

PRIM

goal-pose-"-in

PATH

goal-pose-'-out

\^

PRIM

goal-pose-'-in

POSE-FILE

2

3

cycle 2

POSE-FILE

2

3

read pose

Figure 10-2. Using a round-robin to transfer information
between control levels.

10.2 RSL DATA STRDCTDRES
10-13

The round-robin file in common memory has the following structure:

17 bytes VAR-0 r-rec
15 strv "rr-name"
iv rr-^

iv rr-size

10 mem FILE ROUND-ROBIN-FILE

where:

• "rr-name" contains the name of the round-robin.

• rr-^ contains the record number of the beginning of the circular list in

the containing file.

• rr-size contains the number of records in the round-robin.

The round-robin file is a single linked circular list. RSL does not include a

provision for removing round-robins. When you redefine a round-robin, RSL
returns the records in the containing file to the free list, and then creates
a new circular list.

Note: The containing file is not identified by any field in this record. You
must manually keep track of which containing file is associated with
each round-robin. In RSL, the name of the round-robin denotes the
containing file.

10.3 RSL COMPILER

The RSL compiler compiles RSL source code describing locations, movetables,

objects, and paths into a linked-list representation, stored in common memory
files. The RSL compiler consists of a set of routines that interpret the

source code and build the data and algorithm files. Each data type has its
own compiling routine or routines.

Table 10-2 lists the compiling words for each data type.

Table 10-2. Data Type Compiling Words.

RSL Data Type Compiling Word

pose -pose-
movetable -mtb-, , -mtb-end-, -imtb-
location -loc-
array -arr-
object -obj-
path -path-, -ppt-
round-robin -rr-

10.3 RSL COMPILER
10-1^

Note that the compiling word is an abbreviation of the data type name enclosed
by dashes. RSL uses these same abbreviations consistently when naming vari-

ables and routines.

The rest of this section describes some RSL compiling routines. If you extend

RSL to include new path-points, path types, or trajectory types, you have to

add new compiling routines, similar to the ones described here to accommodate
the extensions. These compiler routines call utility routines to perform com-

mon functions. For more information on extensions see Chapter 11, "RSL
Extensions",

Utility Routines

Each file that contains a data type name has an associated search routine that
reads a name from the input stream, stores the name in the name field of the

local template for the file, and searches the file for that name. If the
search routine finds the name in the file, the routine sets the record# to the

found record. If the search routine does not find the record name in the

file, the routine sets the record# to 0. Table 10-3 lists the files and the
associated routines:

Table 10-3. Data Type Search Routines,

RSL Files Routines

POSE-FILE POSE-"
MOVETABLE-FILE ^f^B-"

LOCATION-FILE LOC-"
ARRAY-FILE ARR-"
OBJ-NAME-FILE OBJ-"
ROUND-ROBIN-FILE RR-"

SAME-BLOCK? is an example of a utility routine called by many of the other
compiling routines.

SAME-BLOCK?

The SAME-BLOCK? utility routine compares the current source block number
with the block number stored in the current record. If the numbers are
different, the routine displays the message redefined in different block,
and displays the old block number. This message should prevent you from
using the same name twice.

RSL includes the location types loc, arr, tool, and goal. VHien you add loca-
tion types, you need to add to the routine READ-LOC-PHRASE , which is defined
next.

10.3 RSL COMPILER
10-15

READ-LOC-PHRASE [loc type] [loc name]

The READ-LOC-PHRASE utility routine stores the location type in the vari-
able loc-type. Then it searches the corresponding file for loc name and
stores the record* in loc-'*. READ-LOC-PHRASE aborts execution if it does
not find the location. Because READ-LOC-PHRASE does not add records to a
file, it does not have a STORE or REMOVE routine.

Environmental Data Routines

Environmental data routines compile information about objects in the environ-
ment such as the position of an object relative to the robot. The routine
-pose- is described here as an example.

-pose- [name] [pose numbers] [configuration flags]

This environmental data routine calls POSE-" to read the pose name and
check that it is not already defined. Then -pose- calls #.READ 10 times
to read in the pose numbers and configuration flags, storing them in the
corresponding fields in the POSE-FILE local record, pose-rec. If the
pose is already defined, it calls SAME-BLOCK? and stores the local tem-
plate to the found record. Otherwise, it adds the local template to the

list in POSE-FILE, pointed to by the variable first-record.

Routines to Compile Trajectories

READ-TRAJ-PHRASE, STORE-TRAJ-PHRASE, and REMOVE-TRAJ-PHRASE are the highest

level compiler routines used with trajectories. Use these routines when you
add other trajectory types to RSL.

READ-CART-TRAJ [cart traj parameters]

READ-CART-TRAJ is an example trajectory type routine that calls #.READ
five times to read in the Cartesian trajectory parameters, storing them
in the local template of CARTESIAN-FILE.

READ-JOINT-TRAJ [joint traj parameters]

READ-JOINT-TRAJ is an example trajectory routine that calls #.READ three
times to read in the joint trajectory parameters, storing them in the

local template of JOINT-FILE.

READ-TRAJ-PHRASE [traj type] [traj parameters]

READ-TRAJ-PHRASE is a compiling routine that calls //READ to read in the
trajectory type, storing it in traj-type. READ-TRAJ-PHRASE aborts if the
trajectory type is invalid. READ-TRAJ-PHRASE also executes a case state-
ment to call a routine to read the trajectory parameters for the type.

10.3 RSL COMPILER
10-16

STORE-TRAJ-PHRASE

STORE-TRAJ-PHRASE is a compiling routine that stores the traj-type local

template to its file, adding to the list of file records.
STORE-TRAJ-PHRASE sets traj-" to the record// stored. The path-point rou-

tine calls this routine after checking the rest of the path-point syntax,

REMOVE-TRAJ-PHRASE

REMOVE-TRAJ-PHRASE is a compiling routine that deletes the trajectory
parameter record pointed to by the variable traj-* from the traj-type
file.

Routines to Compile Path-Points

RSL compiles paths in two stages. First, RSL compiles the path and then the
path-points. The routine -path- compiles the identifying information for the

path, and creates a list in PATH-POINT-FILE. The routine -ppt- compiles the

path-points, adding them to the list in PATH-POINT-FILE.

You must provide two routines for each path-point you add to RSL; one that

compiles the path-point and one that removes it for garbage collection. By
convention, the path-point command consists of lowercase characters, the com-
piling routine has the same name in uppercase characters, and the removing
routine has the same name in uppercase characters with -REMOVE appended to the

end. For example, the goto path-point command is goto, the compiling routine

is GOTO, and the removing routine is GOTO-REMOVE.

The compiling routine must read in all the fields of the path-point, checking
that any referred- to items, such as movetables and locations, are defined
before modifying any files. Then the compiling routine stores the results in

the appropriate files. One of these files must be the primary path-point
parameter file. The record# of the record added to that file must be put in

the variable ppt-para-'' to be stored in PATH-POINT-FILE by the routine -ppt-.

You must add the new compiling routine to the case statement in -ppt-, and you
must add the removing routine to the case statement in PPT-REMOVE. Use the
directory block system in the source code to find empty blocks in which to

write your routines.

The compiling routines for the RSL path-point goto are described below:

GOTO [loc phrase] [traj phrase]

This routine calls READ-LOC-PHRASE and copies loc-type and loc-'' into the

variables goto-loc-type and goto-loc-'^. (These variables are fields in

the GOTO-FILE local template goto-rec.) GOTO then calls READ-TRAJ-PHRASE
and copies traj-type into goto-traj-type. At this point, all fields have

10.3 RSL COMPILER
10-17

been read and any errors detected so the records may be written to the
files. GOTO writes the records to the files by calling
STORE-TRAJ-PHRASE, copying traj-" to goto-traj-*. Then GOTO adds the
local template to GOTO-FILE and sets ppt-para-'' to the record* stored.

GOTO-REMOVE

This routine retrieves the record from GOTO-FILE pointed to by
ppt-para-*^, copies the variables goto-traj-type and goto-traj-* into
traj-type and traj-", calls REMOVE-TRAJ-PHRASE , and removes the record
from GOTO-FILE.

-ppt- [ppt command] [ppt parameters]

This routine stores the ppt command type in ppt-command, executes a case
statement to call the corresponding compiling routine, then adds the ppt
record to the current path in PATH-POINT-FILE. (Note that -path- puts an
invalid ppt record at the beginning of the list when it is created.

Therefore, -ppt- checks first-ppt to see if it should store to that
record or add a record to the list.)

Routines to C<Miplle Paths

Each path type you add to RSL must have enough parameters to identify individ-
ual paths of that type. You provide a routine that reads the identifying
parameters, creates a list in PATH-POINT-FILE, and stores the data to the
path-type file. When a path is redefined, you must call PATH-CLEAR to delete

the old path from PATH-POINT-FILE and the path-point command parameter files.
You must also modify the path files. You must add your routine to the case
statement in -path-.

Two typical parameters that identify a path are locations and objects. The
utility routine READ-LOC-PHRASE may be used to read location phrases. A rou-
tine used to read object phrase, a compiling routine for the system path type
move-to, and some associated routines are described below.

READ-OBJ-PHRASE [obj name] [grip#]

This routine searches the object files for the name and grip number. If

they are not found, the routine aborts. Then the routine sets obj-grip-'

to the record* in the OBJ-GRIP-FILE.

PATH-CLEAR

This routine deletes the path in PATH-POINT-FILE starting at path-", exe-

cuting PPT-REMOVE for each path-point. PPT-REMOVE deletes all records
added to path-point parameter files for the path.

10.3 RSL COMPILER
10-18

MOVE-TO [obj phrase] [start loc phrase] [destination loc phrase]

This routine calls READ-OBJ-PHRASE and copies obj-grip-" to

move-to-obj-''. MOVE-TO then calls READ-LOC-PHRASE , and copies loc-type
and loc-" into move-to-start-type and move-to-start-'^. Then MOVE-TO

calls READ-LOC-PHRASE again, and copies loc-type and loc-" into move-to-
dest-type and move-to-dest-". MOVE-TO has now read all input fields, and

is ready to write the data to the files.

MOVE-TO searches MOVE-TO-FILE for the object, start location, and desti-

nation location. If a match is found, the old path is removed. If not
found, a record is added to the MOVE-TO-FILE list. In either case,

path-own-" is set to the record// in MOVE-TO-FILE, so that move-to-path-"
may be set later.

After the correct MOVE-TO-FILE record is found, a list is created in

PATH-POINT-FILE, and move-to-path-" is set. The ppt-command is set to -1

for a path with no path-points. If such a path is redefined, PPT-REMOVE
does not abort.

-path- [path-type] [parameters]

This routine sets path-type to the path type. It then executes a case

statement to execute the corresponding routine, which reads the param-

eters and creates a list in PATH-POINT-FILE. The variable first-ppt is

set to true, so that -ppt- stores to the first record in the list, rather
than adding a record to the list.

10.4 THE TASK LEVEL

The TASK level interprets and executes robot task commands entered at the key-
board, or more commonly, loaded from a block. You can define your own tasks
using state tables, or you can use the MOVE-TO and TRANSFER tasks provided on
your system tape. You must use the TASK utility routines when you create rou-
tines to perform other tasks.

TASK Conmands

The following commands execute at the TASK level: RESTART, PAUSE, MOVE-TO,
and TRANSFER. This section explains the function and provides the syntax of
each command.

RESTART command

The syntax of the RESTART command is!

RESTART

10.4 THE TASK LEVEL
10-19

RESTART sends RESTART to PATH, and sets the current location and object to
nul. After sending the RESTART command, TASK reports its status as executing,
until the PATH level reports done. Then TASK level also reports its status as
done.

PAUSE command

The syntax of the PAUSE command is:

PAUSE

PAUSE sends PAUSE to the PATH level, and sets the current location and object
to nul. After you issue PAUSE, the TASK level reports its status as executing
until the PATH level reports its status as done. Then the TASK level also
reports its status as done.

MOVE-TO command

The syntax of the MOVE-TO command is:

MOVE-TO [object] [grip#] [destination location type] [destination]
[sector]

where

:

• object specifies the name of the object you are directing RSL to move.

• grip# specifies the number of the grip for the specified object.

• destination location type can be array (arr) or location (loc).

• destination specifies the destination for the MOVE-TO command.

• sector specifies the array sector containing the destination. This field
is Included only if the destination location type is an array (arr).

MOVE-TO sends a single move-to path to the PATH level. MOVE-TO uses the cur-

rent location as the start location. The destination becomes the current

location when the path is complete.

MOVE-TO reports an error if it does not find the path. After you issue
MOVE-TO, the TASK level reports its status as executing until the PATH level

reports its status as done. Then the TASK level also reports its status as

done.

TRANSFER command

The syntax of the TRANSFER command is:

TRANSFER [object phrase] [source location phrase] [source sector list]

[destination location phrase] [destination sector list]

10.1 THE TASK LEVEL
10-20

where :

• object phrase contains the object name and grip number.

• source location phrase contains the location type and name of the source.

• source sector list is a list of numbers, terminated by ;; and giving the

sectors of the source array. This field is included only if the source
location type is an array (arr).

• destination location phrase contains the location type and name of the
destination.

• destination sector list is a list of numbers, terminated by ;; and giving
the sectors of the destination array. This field is included only if the
destination location type is an array (arr).

TRANSFER sends a sequence of path commands to the PATH level and updates the
current location each time it completes the execution of a path.

TRANSFER sends the following sequence of paths, in the order shown, to the

PATH level:

1. move-to [object] [source] [destination]
2. approach-pickup [object] [source]

3. depart-pickup [object] [source]
4. move-to [object] [source] [destination]
5. approach-release [object] [destination]
6. depart-release [object] [destination]

If the source or the destination is an array, RSL repeats the specified
sequence of paths for each sector in the sector list. If both the source and
the destination are arrays, the sector lists must have the same lengths.

After you issue TRANSFER, the TASK level reports its status as executing until

the PATH level indicates that all paths are complete by reporting its status
as done. Then the TASK level also reports its status as done.

TASK Input CoBBand Buffer

The TASK input command buffer consists of the following variables:

inc-command-#-in
The user increments this integer variable each time the user issues a new
command

.

input-command
The user stores each new command in this 128-character string variable.

10.4 THE TASK LEVEL
10-21

TASK Status Information

To provide status feedback, the TASK level returns an echo of the input com-
mand, and a status report.

The TASK output status buffer consists of the following five variables:

cycle-#-status-out
Returns the cycle count when TASK returns its status. The changing value
of this integer variable verifies that the TASK level is running.

inc-command-#-echo-out
Returns a copy of the inc-command-ZA-in variable. This information
enables you to know for which command TASK is returning status
information.

command-echo
Returns a copy of the string stored in input-command. This information
enables you to know for which command TASK is returning status
information.

status-report
Returns the current status of TASK. The possible values for this integer
variable and their meanings are:

Value Meaning Description

executing The current command is still executing.

1 done The current command is finished executing.
2 error An error occurred. (See status-arg-out.

)

status-arg-out
Returns the error status. The possible values for this integer variable
and their meanings are:

Value Meaning Description

noerror TASK detected no errors.
1 path-error PATH reported an error to TASK.

2 command-error TASK received an invalid command or parameters.

3 nul-path TASK could not find one of the specified paths.
4 programmer TASK detected a programming error.

TASK Variables

This section describes internal TASK variables.

t->IN
TASK uses this variable as a pointer to the current position in the

input-command buffer variable.

10.4 THE TASK LEVEL
10-22

t-word
This variable holds a word read from the current position in the

input-command buffer variable.

t-#
This variable holds a number read from the current position in the

input-command buffer variable.

state-label
This variable holds the label for the current state. TASK routines
derived from state graphs use this variable.

cur-loc-type
The cur-loc-type variable specifies the current location type.

cur-loc-*
The cur-loc-* variable points to the current location.

cur-obj-*
The cur-obj-" variable points to the current object.

com-loc-type
The com-loc-type variable holds the commanded location type determined by
READ-LOC-PHRASE.

com-loc-'*

The com-loc-* variable holds the commanded location pointer determined by

READ-LOC-PHRASE.

com-obj-*
The com-obj-" variable holds the commanded object pointer determined by
READ-OBJECT-PHRASE

.

search-result
This variable owner contains the variables that hold the output of
path-search routines.

goal-type, goal-*, obj-*, path-''

These variables hold the output of path-search routines. These variables
are members of the search-result variable owner.

arr-pose-"
This variable points to the pose for the current sector in the current
array. ARRAY-POSE is used as a dummy name for this pose.

TASK Errors

TASK uses the variable status as an error flag. At the beginning of each
cycle, the value of status is noerror. Any routine that detects an error sets
status to indicate an error. TASK notes this error, sets status-arg-out to

the appropriate value, and sends a PAUSE command to the PATH level. TASK does
not finish executing the current task after detecting an error.

10.4 THE TASK LEVEL
10-23

TASK Utilities

This section provides general descriptions of the TASK utilities listed below.
Use the LOC command to find the exact code for each routine on your system.

WREAD-COMMAND READ-SECTOR-LIST
#READ-COMMAND CALC-SECTOR-POSE
READ-OBJ-PHRASE WAIT-PATH-DONE
READ-LOC-PHRASE TASK=>PATH

The description of these utilities begins with a list of the input and output
variables.

WREAD-COMMAND

Input Variables Output Variables

input-command t~word
t->IN t->IN

status

Reads a word, delimited by a space, from the input-command buffer vari-
able. The routine stores the word in t-word and Increments t->IN by the
number of characters in the word.

#READ-COMMAND ^
Input Variables Output Variables

input-command t-#
t->IN t->IN

status

Reads a string, delimited by a space, from the input-command buffer vari-
able and increments t->IN by the number of characters in the string. It
then searches for the string in the system dictionary, using the current

vocabulary. If the string is in the dictionary, #READ-COMMAND checks to

see that it is an integer or sequential variable and, if it is, stores
the value in t-#.

If the string is not in the system dictionary or if it is not an integer

or sequential variable, #READ-COMMAND converts the string to an integer
and stores the result in t-#. If the string is not a valid integer,

#READ-COMMAND aborts.

READ-OBJ-PHRASE

Input Variable Output Variables

input-command com-obj-'

t->IN status r

10.4 THE TASK LEVEL
10-24

Calls WREAD-COMMAND and #READ-COMMAND to read an object name and grip number
from the input command buffer. READ-OBJ-PHRASE then finds the recordyA of the

corresponding entry in the object data structure.

READ-LOC-PHRASE

Input Variable Output Variables

input-command com-loc-type
com-loc-"
status

Calls #READ-COMMAND and WREAD-COMMAND to read a location type and name
from the input command buffer. READ-LOC-PHRASE stores the location type
in the com-loc-type variable. READ-LOC-PHRASE searches the location data
structure for the name and sets com-loc-* to the record// of the record
containing the name.

READ-SECTOR-LIST

Input Variables Output Variables

input-command sector-list
com-loc-* status

Calls #READ-COMMAND until it reads the entire sector list, which is ter-
minated by ; ;

.

CALC-SECTOR-POSE

Input Variables Output Variable

sector ARRAY-POSE
arr-rec

Calculates the pose for the sector of the array in arr-rec and stores the
pose in the RSL data structure POSE-FILE at the position pointed to by
arr-pose-*.

WAIT-PATH-DONE

Input Variable Output Variables

path-status status-report
cur-var

Checks if the path-status variable indicates done and, if so, sets the
status-report variable to done, sets cur-loc-type to equal goal-loc-type.

10.4 THE TASK LEVEL
10-25

sets cur-loc-* to equal goal-loc-'', and sets cur-obj-'' to equal
obj-"-out. WAIT-PATH-DONE does nothing if the path-status variable indi-
cates executing. r'

TASKr>PATH

Input Variable

search-result
inc-coinmand-#-out

Output Variable

path-command-var
inc-command-#-out

Sets the value of output-command to PATH, copies the value of
search-result to the corresponding fields in path-command-var, and incre-
ments the value of inc-command-#-out.

TASK Processing

The three stages for the TASK level are PRE-PROCESS, COMMAND-PROCESS, and
POST-PROCESS, which correspond to the preprocessing, decision-processing, and
postprocessing stages discussed in Chapter 2, "RCS Overview".

PRE-PROCESS reads the command and status inputs, and sets the flags needed by
COMMAND-PROCESS. COMMAND-PROCESS, the decision-processing stage, reads the
command parameters, searches for paths, and sends commands to the command buf-
fer of the PATH level. POST-PROCESS performs the "housekeeping" required to
prepare TASK for the next command.

TASK preprocessing

The TASK routine PRE-PROCESS calls READ-COMMAND and PATH-STATUS.

READ-COMMAND

Input Variables

input-command
inc-command-#-in
old-inc-command-#-in

Output Variables

"command-name"
new-command
status
status-arg
t->IN

old-inc-command-#-in

Checks if the value of inc-command-Zit-in has changed since the last cycle
and, if so, sets the status report and status-arg-out variables to indi-
cate no error, sets the new-command variable to true, and copies the

value of inc-command-#-in to old-inc-command-#-in. Calls WREAD-COMMAND
to read the first word contained in the input-command buffer variable.
Stores the first word in the "command-name" variable. (The "command-
name" variable includes the double quotation marks.)

(

10.^ THE TASK LEVEL
10-26

PATH-STATUS

Input Variables

status-in

inc-coimnand-#-out
inc-coinmand-#-echo-in

Output Variable

path-status

Verifies that inc-coimnand-#-out matches inc-cominand-#-echo-in, indicating
that the PATH level responded to the current command and that the value
of the status-in variable is valid. PATH-STATUS then copies the value of

status-in to the path-status variable. If the PATH level has not
responded, PATH-STATUS sets path-status to executing.

TASK decision processing

The TASK routine COMMAND-PROCESS executes the current task routine. If the

value in status-report is error, COMMAND-PROCESS executes only the RESTART
command

.

If neither status-report nor status indicates an error, COMMAND-PROCESS exe-
cutes the task routine corresponding to the "command-name" set in PRE-PROCESS.

If "command-name" does not contain a valid command, COMMAND-PROCESS sets
status-report to error and sets status-arg to command-error. After
COMMAND-PROCESS executes the specified task routine, it copies the value of
status-arg to status-arg-out.

The following is a list of routines used in COMMAND-PROCESS for the RESTART,
PAUSE, and MOVE-TO commands. This list does not include the routines for
TRANSFER, most of which are similar to the routines for MOVE-TO.

TASK-RESTART
TASK-PAUSE
MOVE-TO

MOVE-TO-PARAM
MOVE-TO-SEARCH

The descriptions of these routines follow.

TASK-RESTART

Input Variable

new-command
inc-command-#-out

Output Variables

path-command-var
process-var
status-report

Sends RESTART to the PATH level and waits for prim-status to indicate
done.

10.4 THE TASK LEVEL
10-27

TASK-PAUSE

Input Variable

new-command

Sends PAUSE to the PATH level,

Output Variables

path-command-var
status-report

MOVE-TO

Input Variables

new-command
input-command

Output Variables

path-command-var
status-report

Reads the command parameters and finds the path by calling MOVE-TO-PARAM
and MOVE-TO-SEARCH. If MOVE-TO-SEARCH finds the path without finding any
errors, MOVE-TO calls TASK=>PATH. If new-command indicates false,

MOVE-TO calls WAIT-PATH-DONE. MOVE-TO sets the status as described under
the "MOVE-TO" command.

MOVE-TO-PARAM

Input Variables

input-command
cur-loc-type
cur-loc-''

Output Variables

move-to-rec
sector
ARRAY-POSE
status
status-arg

C

Reads the rest of the parameter information in the input-command buffer
variable by calling READ-OBJ-PHRASE , READ-LOC-PHRASE , and #READ-COMMAND

.

MOVE-TO-PARAM then uses this information to set the parameters for
MOVE-TO-SEARCH.

MOVE-TO-SEARCH

Input Variable

move-to-rec

Output Variables

search-result
status
status-arg

Searches the MOVE-TO-FILE for a record that matches move-to-rec and sets
the fields of search-result if it finds a match.

C

10.4 THE TASK LEVEL
10-28

TASK postprocessing

The TASK routine POST-PROCESS calls CLEAN-UP.

CLEAN-UP

Input Variable Output Variable

input-command-var output-status-var

Echoes the input-command and inc-command-#-in, and then sets
cycle-#-status-out

.

10.5 THE PATH LEVEL

The PATH level interprets and executes path and path-point commands received
from the TASK level. PATH executes paths by retrieving each successive path-

point and waiting for the lower levels, PRIM and JOINT, to complete the exe-
cution of the path-point. PATH executes path-points by reading the appropri-
ate sensors and sending motion commands to the PRIM level.

PATH Commands

The following commands execute at the PATH level: RESTART, PAUSE, and PATH.

This section describes the function and provides the syntax of each command.

RESTART command

The syntax of the RESTART command is:

RESTART

RESTART sends RESTART to PRIM and resets the debug variables. After issuing

the RESTART command, PATH reports its status as executing until PRIM reports
done. Then PATH reports done to TASK.

PAUSE command

The syntax of the PAUSE command is:

PAUSE

PAUSE sends PAUSE to the PRIM and JOINT levels. After issuing PAUSE, PATH
reports done to the TASK level immediately, without requesting confirmation
from PRIM and JOINT.

10.5 THE PATH LEVEL
10-29

(

PATH command

The syntax of the PATH command is:

PATH [path-"] [goal-type] [goal-"] [obj-"]

where:

• path-" points to the path to be executed.

• goal-type can be either a location (loc) or an array (arr).

• goal-" points to the goal location or the array describing the path. Path-
point commands use this information to determine paths for the PRIM and
JOINT levels to execute.

• obj-" points to the current object. Some path-point routines use this
information to obtain the grip movetable or other object-dependent data.

PATH executes the path pointed to by path-". The PATH level reports its
status as executing until it completes the execution of all path-points. Then
the PATH level reports done to the TASK level.

PATH Input CCTHmand Buffer

The PATH input command buffer consists of the following variables:

inc-command-#-in (

TASK increments this integer variable each time it sends a new command to

the PATH level.

input-command

TASK sends this integer variable to PATH to identify the command. Com-
mands are numbered as follows: 0-RESTART, 1 -PAUSE, and 2-PATH.

path-"
TASK sends this integer pointer variable to PATH to identify the path.

goal-type
TASK sends this integer variable to PATH to indicate the type of goal
location.

goal-"
TASK sends this integer pointer variable to PATH to identify the goal
location.

obj-"
TASK sends this integer pointer variable to PATH to identify the current
object.

10.5 THE PATH LEVEL
10-30

PATH Status Information

To provide status feedback to the TASK level, the PATH level returns a status
report, and echoes the input command and incremental command number.

PATH uses the following five variables to return status to the TASK level:

cycle-#-status-out
Returns the cycle count when PATH returns its status. The changing value
of this integer variable verifies that the PATH level is running.

inc-command-#-echo-out
Echoes the integer count of new commands received by the PATH level as
indicated by the inc-command-#-in variable. This information enables
TASK to know for which command PATH is returning status information.

command-echo
Echoes the string stored in inc-command-#-in. This information enables
you to know for which command PATH is returning status information.

status-report
Returns the current status of PATH,
variable and their meanings are:

The possible values for this integer

Value Meaning

executing
done
error

Description

The current command is still executing.
The current command is finished executing.
An error occurred. (See status-arg-out.)

status-arg-out
Returns the error status,
and their meanings are:

The possible values for this integer variable

Value Meaning

noerror
1 prim-error
2 command-error

3 ppt-para

Description

PATH detected no errors.
PRIM reported an error to PATH.

PATH received an invalid command or parameters,
PATH detected invalid ppt-command parameters.

PATH Errors

When PATH detects an error of any type, it sets the status-report variable to

indicate an error, stores the label for the error in the status-arg-out vari-
able, and sends the PAUSE command to the PRIM level. PATH does not complete
the execution of a path-point after detecting an error. (The ppt-done vari-
able remains set to false.)

PATH utility routines set the status and status-arg variables. The calling
routine must set the status-report and status-arg-out variables.

10.5 THE PATH LEVEL
10-31

PATH Processing

The three processes for the PATH level are PRE-PROCESS, COMMAND-PROCESS, and
POST-PROCESS. PRE-PROCESS reads the command, status, and sensor inputs for
COMMAND-PROCESS. COMMAND-PROCESS, the decision-processing stage, interprets
the command and the command parameters, executes paths and path-points, and
sends commands to the command buffer of the PRIM level. POST-PROCESS sends
the TASK level confirmation for each command received and performs the "house-
keeping" required to prepare PATH for the next command.

The output command from PATH to PRIM consists of a pose, configuration flags,
trajectory type, and trajectory parameters. The path-point routines in PATH
store the pose, configuration flags, and trajectory type in the variable ovmer
prim-com-var, and the trajectory parameters in the local template of the file
corresponding to the trajectory type. The POSE-ROUND and TRAJ-ROUND routines
in the POST-PROCESS stage of the PATH level put the trajectory parameters into
the PATH>PRIM round-robins.

PATH preprocessing

The PATH routine PRE-PROCESS calls NEW-COMMAND?, PRIM-STATUS, and TOOL-POSE-'
If you add sensors to your system, you can have PRE-PROCESS call your sensor
routines also.

NEW-COMMAND?

Input Variables

inc-command-#-in
old-inc-command-#-in

Output Variables

new-command
old-inc-command-#-in
status
status-arg

(

Sets the new-command flag to true if the value of inc-command-#-in has
changed since the last cycle. (That is, if inc-command-#-in does not
equal old-inc-command-#-in.) NEW-COMMAND? also sets the status and
status-arg variables to noerror.

PRIM-STATUS

Input Variables

status-in
inc-command-#-out
inc-comraand-#-echo-in

Output Variables

prim-status

Sets prim-status to the same value as status-in if inc-command-#-out
matches inc-command-#-echo-in. This match indicates that the PRIM level

responded to the current command, and that the status-in variable repre-
sents the current PRIM status. If these variables do not match, PATH

sets prim-status to executing.

10.5 THE PATH LEVEL
10-32

TOOL-POSE-*

'^ Input Variables

tp-cycles
rbt-pose-*

Output Variables

tool-pose-'^

Sets tool-pose-* to the best guess of the tool pose of the robot for the

current cycle. For the best guess, TOOL-POSE-* uses the pose stored in

the RBT-POSE round-robin tp-cycles before the current cycle.

PATH decision processing

The PATH routine COMMAND-PROCESS reads the input command and uses a case
statement to determine which of the COMMAND-PROCESS commands to execute. If

the status-report variable indicates an error, COMMAND-PROCESS freezes the
error state and will not execute any command other than RESTART.

See "PATH Status Information" earlier in this chapter for a description of the

status information that the COMMAND-PROCESS routines return in the
status-report and status-arg-out variables.

PATH-RESTART

Input Variables

new-command
prim-status

Output Variables

prim-command-var
status-report
status-arg-out

Sends RESTART to the PRIM level and waits for prim-status to indicate
done.

PATH-PAUSE

Input Variables

new-command
prim-status

Sends PAUSE to the PRIM level.

Output Variables

prim-command-var
status-report
status-arg-out

PATH-PATH

Input Variables

new-command
prim-status
Input-command-var

Output Variables

prim-comraand-var
status-report
status-arg

10.5 THE PATH LEVEL
10-33

Initializes the PATH variables if new-command is true. Then, if the last
path-point is complete, PATH-PATH calls NEW-PPT? to retrieve the next
path-point and calls PATH-POINT to execute the path-point. If C
prim-status is error, PATH-PATH sets status-report to error, sets ^

status-arg to prim-error, and does not execute PATH-POINT.

NEW-PPT?

Input Variables Output Variables

ppt-done ppt-rec
last-ppt new-ppt
next-ppt-" last-ppt

ppt-done
path-done
next-ppt-''

Reads the next path-point record from the current path and sets flags
ppt-done, new-ppt, and last-ppt. NEW-PPT? stores the current path-point
information in ppt-rec, the PATH-POINT-FILE local template. NEW-PPT?
does not retrieve the ppt command parameter record; the path-point rou-
tines (for example, GOTO) retrieve this record.

To indicate the start of a new path-point, NEW-PPT? sets new-ppt to true
during the cycle in which a path-point routine is retrieving a new path-
point record. NEW-PPT? sets new-ppt to false during other cycles.

The path-point routines set ppt-done to true when they finish executing v
each path-point. NEW-PPT? sets ppt-done to false when it retrieves the
next path-point record.

NEW-PPT? sets last-ppt to true if the current path-point is the last
path-point in the current trajectory.

GOAL-POSE

Input Variables Output Variables

goal-type prim-com-conf-flag
goal-^ pose-add
obj-'' status

status-arg

Calculates the goal pose for the current path. If the goal-type is

invalid, GOAL-POSE sets status to error and status-arg to command-error.

C

10.5 THE PATH LEVEL
10-34

TRAJ-PHRASE

Input Variables

traj-type
traj-*

Output Variables

prlm-com-traj-type
traj para file local template
status
status-arg

Sets prim-com-traj-type to traj-type and retrieves the trajectory param-
eters and stores them in the local template of the corresponding file.

Your sensor routine can modify the trajectory parameters before PATH
sends them to PRIM so that sensor path-point servo algorithms can control
the velocity and acceleration of the robot.

TRAJ-PHRASE sets status to error and status-arg to ppt-para if the

traj-type parameter is invalid.

LOC-PHRASE

Input Variables

loc-type
loc-*

Output Variables

prim-com-pose
prim-com-conf-flag
status
status-arg

Interprets a location phrase in a path-point by calculating the pose for
the specified location and storing the pose in the prim-com-pose and
prim-com-conf-flag variables. LOC-PHRASE sets status to error and
status-arg to ppt-para if the loc-type parameter is invalid.

GOTO

Input Variables

ppt-rec
new-ppt
prim-status

Output Variables

prlm-com-var
traj para file local record
ppt-done
status
status-arg

Executes the goto path-point. If new-ppt is true, GOTO retrieves the ppt
parameters from GOTO-FILE and sets the specified pose and trajectory
parameters by calling LOC-PHRASE and TRAJ-PHRASE. If new-ppt is false,
GOTO waits for prim-status to indicate done and then sets ppt-done to

true.

10.5 THE PATH LEVEL
10-35

PATH postprocessing

The PATH routine POST-PROCESS sends the TASK level confirmation for each com-
mand received and performs the "housekeeping" required to prepare PATH for the
next command. POST-PROCESS calls CLEAN-UP, POSE-ROUND, and TRAJ-ROUND.

CLEAN-UP

Input Variables

inc-command-#-in
cycle-count
input-command

Output Variables

inc-command-#-echo-out
cycle-#-status-out
command-echo

Echoes the command and inc-command-# to the TASK level.

POSE-ROUND

Input Variables

prim-com-pose
prim-com-conf-flag
path-pose-^

Output Variables

path-pose-*
goal-pose-*-out
PATH> PRIM-POSE round-robin

Puts prim-com-pose and prim-com-conf-flag into the PATH> PRIM-POSE
round-robin.

(

TRAJ-ROUND

Input Variables

prim-com-traj-type
traj-para-file-local-record
path-cart-*
path-joint-*

Output Variables

path-cart-*
path-Joint-*
traj-type-out
PATH> PRIM-CART round-robin
PATH> PRIM-JOINT round-robin

Puts the traj-para-file-local-record corresponding to prim-com-traj-type
into the PATH> PRIM-CART or PATH> PRIM-JOINT round-robin.

10.6 THE PRIM LEVEL

The PRIM level receives trajectories from the PATH level, transforms these

trajectories into positions, and sends these positions to the JOINT level.
The JOINT level converts the positions to the primitive commands sent to the
robot controller.

(

10.6 THE PRIM LEVEL
10-36

PRIM Commands

The following commands execute at the PRIM level: RESTART, PAUSE, and TRAJ.

This section explains the function and provides the syntax of each command.

RESTART command

The syntax of the RESTART command is:

RESTART

RESTART clears any error conditions, sets the hold-set variable to false, and
sends RESTART to the lower level, JOINT. After executing RESTART, PRIM
reports its status as executing until the JOINT level reports its status as
done. When JOINT reports done, PRIM sets the current location to the feedback
position, sets the current velocity and acceleration to 0, and resets the

debug variables. Then PRIM reports done to PATH.

PAUSE command

The syntax of the PAUSE command is:

PAUSE

PAUSE sends the PAUSE command to JOINT when the joystick is inactive. The
PAUSE command ensures that JOINT performs its processing only when you are

using the joystick. After executing PAUSE, PRIM reports its status as execut-
ing when the joystick is active, and done when the joystick is inactive.

TRAJ command

The syntax of the TRAJ command is:

TRAJ [traj-type] [traj-para-*] [goal-pose-*]

where :

• traj-type specifies the type of trajectory, either Cartesian or joint.

• traj-para-"^ points to the trajectory parameters.

• goal-pose-* points to the goal pose.

TRAJ executes the specified trajectory. The traj-type parameter can have a

value of either or 1 as follows:

(Cartesian)

Specifies that the type of trajectory is a straight line in Cartesian
space from the start pose to the goal pose. While executing a Cartesian
TRAJ command, PRIM reports its status as executing until the system

10.6 THE PRIM LEVEL
10-37

detects that the actuator is within a specified range of the goal. The
variables trn-nbhrd and rot-nbhrd specify this range. After the system
verifies that the robot is within range, PRIM reports its status as done
to PATH.

(Joint)
Specifies that the type of trajectory is linear interpolation in joint
space from the start pose to the goal pose. While executing a joint TRAJ

command, PRIM reports its status as executing until the robot reports
that all joint angles are within the target range. The variable j-delta
specifies the target range for joint angles. PRIM reports its status as
done when the system verifies that the joint angles are within range.

Note: The joint trajectory algorithm does not decelerate to a stop at
the goal. If the robot reaches the goal, it oscillates around the

goal rather than stops. Use the Cartesian trajectory algorithm to
stop the robot at a goal.

PRIM Input CCTnmand Buffer

The PRIM input command buffer consists of the following variables:

inc-command-#-in
PATH increments this integer variable each time it sends a new command to

the PRIM level.

input-command
PATH sends this integer variable to PRIM to identify the command. Com-
mands are numbered as follows: 0-RESTART, 1 -PAUSE, and 2-TRAJ.

traj-type-in
PATH sends this integer variable to PRIM to indicate the type of

trajectory.

traj-^-in
PATH sends this integer pointer variable to PRIM to Identify the

trajectory parameters, which are in a file corresponding to the
trajectory type in traj-type-in.

goal-pose-^-in
This integer pointer variable identifies the current pose in POSE-FILE.

PRIM Status Information

To provide status feedback to the PATH level, the PRIM level returns a status

report and a feedback pose, and echoes the input command and its incremental
command number.

(

(

10.6 THE PRIM LEVEL
10-38

PRIM uses the following six variables to return status to the PATH level:

1 cycle-#-status-out
Returns the cycle count when PRIM returns its status. The changing value
of this integer variable verifies that the PRIM level is running.

inc-coinmand-#-echo-out
Echoes the integer count of new commands received by the PRIM level as
indicated by the inc-command-#-in variable. This information enables
PATH to know for which command PRIM is returning status information.

command-echo-out
Echoes the string stored in inc-command-#-in. This information enables
you to know for which command PRIM is returning status information.

status-report
Returns the current status of PRIM,
variable and their meanings are:

The possible values for this integer

Value Meaning

executing
done
error

Description

The current command is still executing.
The current command is finished executing.

An error occurred. (See status-arg-out.)

t

status-arg-out
Returns the error status,

and their meanings are:

The possible values for this integer variable

Value Meaning

1

2

3

Note:

noerror
joint-error
command-error
hold

Description

PRIM detected no errors.
JOINT reported an error to PRIM.
PRIM received an invalid command or parameters.
The HOLD-SET joystick button paused the robot.

The hold status argument is not an error. PRIM sets the

status-report variable to executing when you push the HOLD-SET
button. You can clear this status by pushing the HOLD-CLEAR
button or by sending the RESTART command to PRIM.

rbt-pose-''
Returns a pointer to the feedback pose calculated by adding the tool
movetable to the JOINT feedback pose.

•

PRIM Trajectory Information

RSL supports two types of trajectories: Cartesian straight-line and joint
interpolated. The PRIM level executes the Cartesian trajectories and the
JOINT level executes the joint trajectories. Therefore, this section dis-
cusses the joint trajectories only when they affect the execution of Cartesian
trajectories. See Section 10.7, "The Joint Level", for information on joint
trajectories.

10.6 THE PRIM LEVEL
10-39

The differences between the two types of trajectories can cause problems when
you follow one type of trajectory with the other. Ideally, the transition
from the tool-point velocity and acceleration of one trajectory to the next
should be as smooth as possible. To accomplish this smooth transition, PRIM
must track the output of the joint algorithm and maintain current information
on position and velocity.

To maintain current position and velocity data, PRIM uses the joint feedback
pose to update this data for the Cartesian trajectory algorithm during every
cycle of a joint trajectory motion. Because PRIM and JOINT execute on sepa-
rate boards, communication timing delays the feedback pose information by one
cycle. Output commands incur an additional delay of one cycle. Therefore,
PRIM calculates the appropriate current position by adding twice the current

velocity (in inches per cycle) to the feedback pose. PRIM uses the history of
the feedback pose to calculate the approximate velocity.

Another problem arises during Cartesian motion. Because JOINT limits the
joint velocity and acceleration, the actual output from JOINT may be different
from the command that PRIM sends to JOINT. If JOINT reports its status as
next-point or done, PRIM executes the trajectory routine to generate the next
point. However, if JOINT reports its status as executing, PRIM updates the

current position using the history of the feedback pose, rather than generat-
ing a new point. This procedure produces errors in the velocity and acceler-
ation profiles, but minimizes path errors. To minimize velocity and acceler-
ation profile errors, try to set the Cartesian trajectory parameters so that
JOINT does not have to limit them.

Joystick HOLD-SET and HOLD-CLEAR Buttons

The PRE-PROCESS stage of the PRIM level sets the hold-set variable to true
when you push the HOLD-SET button on the joystick controller. When the
hold-set variable is true, COMMAND-PROCESS ignores the input command (except
RESTART) and sends PAUSE to the JOINT level to stop the robot. In this case,
PRIM sets the status-report variable to executing and the status-arg-out vari-
able to hold. When you push the HOLD-CLEAR button, PRIM sets hold-set to

false, sets new-command to true, and restarts the current input command.

PRIM Variables

This section describes internal PRIM variables.

joint-com-pose
This variable (along with joint-com-conf-flag) holds the current command
that PRIM is sending to JOINT. The joint-com-pose and current-pose vari-

ables may contain different values when JOINT is executing a joint tra-
jectory or scaling a Cartesian point to limit the motion of the joint.

C

(

(

10.6 THE PRIM LEVEL
10-40

joint-com-conf-flag
The joint-com-conf-flag (along with joint-com-pose) holds the current
command that PRIM is sending to JOINT. The joint-com-conf-flag and
current-conf-flag variables may contain different values when JOINT is

executing a joint trajectory or scaling a Cartesian point to limit the

motion of the joint.

current-pose
This variable (along with current-conf-flag) holds the current position
of the robot. The command routine executing during the current cycle
sets the current-pose variable.

current-conf-flag
The current-conf-flag variable (along with current-pose) holds the cur-
rent position of the robot. The command routine executing during the

current cycle sets the current-conf-flag variable.

current-vel
This six-element array holds the current velocity. The first three ele-

ments represent the rotation velocity vector and the last three elements
represent the translation velocity vector. The command routine executing
during the current cycle sets the current-vel variable.

last-pose
This variable holds the last position of the robot. At the beginning of
each cycle, PRE-PROCESS copies the value of current-pose to last-pose.
The command routines use last-pose as the current position when they
build a trajectory.

last-vel
This six-element array holds the last velocity. As with the current-vel
array, the first three elements of the last-vel array represent the rota-
tion velocity vector and the last three elements represent the transla-
tion velocity vector. At the beginning of each cycle, PRE-PROCESS copies
the value of current-vel to last-vel. The command routines use last-vel
as the current velocity when they build a trajectory.

feedback-pose
PRIM transforms the feedback position from JOINT to the tool-point pose
and stores this information in the feedback-pose variable.

feedback-conf-flag
PRIM copies the feedback configuration flags from JOINT and stores this
information in the feedback-conf-flag variable.

last-feedback-pose
The last-feedback-pose variable (along with last-feedback-conf-flag)
holds the last feedback position. Before updating the feedback-pose
variable, PRE-PROCESS copies the value of feedback-pose to
last-feedback-pose

.

10.6 THE PRIM LEVEL
10-41

last-feedback-conf-flag
The last-feedback-conf-flag variable (along with last-feedback-pose)
holds the last feedback position. Before updating the feedback-conf-flag
variable, PRE-PROCESS copies the value of feedback-conf-flag to
last-feedback-conf-flag.

hold-set
This variable indicates the state of the HOLD-SET and HOLD-CLEAR buttons
on the joystick controller. The hold-set variable indicates true after
you press the HOLD-SET button, and false after you press the HOLD-CLEAR
button.

PRIM Errors

When PRIM detects an error of any type, it sets the status-report variable to

indicate an error, stores the label for the error in the status-arg-out vari-
able, and sends the PAUSE command to the JOINT level. Error reporting over-
rides status reporting. PRIM does not send any commands to JOINT after
detecting an error. One exception to the above rule is if the current input
command is PAUSE and JOINT is reporting a joint-limit error, PRIM does not
report an error. In this case, the CREEP button on the joystick commands
CREEP to JOINT, clearing the error.

PRIM Processing

The three processes for the PRIM level are PRE-PROCESS, COMMAND-PROCESS, and
POST-PROCESS. PRE-PROCESS reads the command, joystick status, and JOINT
status, and prepares for COMMAND-PROCESS. COMMAND-PROCESS, the decision-
processing stage, interprets the command and the command parameters, and sends
joint commands to the command buffer of the JOINT level. POST-PROCESS sends
the PATH level confirmation for each command received and performs the "house-

keeping" required to prepare PRIM for the next command.

(

PRIM preprocessing

The PRIM routine PRE-PROCESS calls NEW-COMMAND?, JOY-STATUS, and JOINT-STATUS.

NEW-COMMAND?

Input Variables

inc-command-#-in
old-inc-command-#-in

Output Variables

new-command
old-inc-command-#-in
status
status-arg

Sets the new-command flag to true if the value of inc-command-#-in has
changed since the last cycle. (That is, if inc-command-#-in does not
equal old-inc-command-#-in.) NEW-COMMAND? also sets the status and
status-arg variables to noerror.

10.6 THE PRIM LEVEL
10-42

•
JOY-STATUS

Input Variables Output Variables

hold-set joy- la

joystick ports joy- lb
joy-2a
joy-2b
hold-set
joy-status
new-command

Reads the joystick ports and stores the binary image of the switches in

the variables joy- la, joy- lb, joy-2a, and joy-2b. (See Appendix F,

"Joystick Schematics", for more information.) JOY-STATUS sets the

joy-status variable to active if the joystick enable switch is on and a

motion switch is active. JOY-STATUS sets the joy-status variable to
inactive if the joystick enable switch is off or a no-motion switch is

active.

JOY-STATUS sets the new-command variable to true if the hold-clear switch
is active and the hold-set variable indicates true. If the hold-set
switch is active, JOY-STATUS sets the hold-set variable to true. If the
hold-clear switch is active, JOY-STATUS sets the hold-set variable to

false.

m JOINT-STATUS

Input Variables Output Variables

status-in prim-status
inc-command-#-out feedback-pose
inc-command-#-echo-in feedback-conf-flag
joint-pose-* RBT-POSE round-robin
tool movetable

Sets joint-status to the same value as status-in if inc-command-#-out
matches inc-command-#-echo-in. This match indicates that the JOINT level
has responded to the current command, and that the status-in variable
represents the current JOINT status. If these variables do not match,
PRIM sets joint-status to executing.

If the current input command is not RESTART, JOINT-STATUS does two

things. First, it adds the specified tool movetable to the joint feed-
back pose and places this combination in the RBT-POSE round-robin and in
the feedback-pose variable. By checking for the RESTART conmiand, PRIM
avoids trying to add the tool movetable to a meaningless pose. Second,
JOINT-STATUS copies the values of the feedback configuration flags to the
RBT-POSE round-robin and the feedback-conf-flag variable.

10.6 THE PRIM LEVEL
10-43

PRIM decision processing

If the hold-set variable is false and the status-report variable does not f"
indicate an error, the PATH routine COMMAND-PROCESS uses a case statement to
determine which of the commands in this section to execute. If hold-set is
true and input-command is not RESTART, COMMAND-PROCESS commands JOINT to

pause. If the status-report variable indicates an error, COMMAND-PROCESS
freezes the error state and does not execute any command other than RESTART.

PRIM-RESTART

Input Variables Output Variables

new-command joint-command
joint-status inc-command-#-out

hold-set
current-pose
current-conf-flag
current-vel
debug variables

Checks if new-command is true and, if so, sets the value of the
joint-command variable to joint-restart, increments inc-command-#-out,
sets hold-set to false, and resets the debug variables. If new-command
is false, PRIM-RESTART waits for joint-status to indicate done and then
sets current-vel to zero and sets current-pose and current-conf-flag to

the combination of the feedback pose and the tool movetable. ^-

PRIM-PAUSE

Input Variables Output Variables

new-command joint-com-pose

joint-status joint-com-conf-flag
status-arg-in joint-command
joy-status inc-command-#-out
joy-la current-pose
joy- lb current-conf-flag
joy-2a current-vel
joy-2b

Checks if new-command is true and, if so, sets the value of the

joint-command variable to joint-pause, increments inc-command-#-out, and
sets current-vel to 0. If new-command is true and joy-status is active,
PRIM-PAUSE increments the inc-command-#-out variable and calls JOYSTICK
and STRAIGHT-LINE to interpret the joystick command. If new-command is

true and joy-status is inactive, PRIM-PAUSE sets the current velocity and
acceleration to 0.

10.6 THE PRIM LEVEL
10-44

If the value of Joint-status is error and the value of status-arg is

Joint-error when you press the CREEP button on the joystick console,
PRIM-PAUSE sets the Joint-command variable to joint-creep and increments
inc-command-#-out. In response to other error conditions, PRIM-PAUSE

sets Joint-command to PAUSE.

TRAJ

Input Variables

last-pose
last-vel
traj-type-in
traJ-'^-in

goal-pose-*-in

Output Variables

Joint-com-pose
Joint-com-conf-flag
Joint-command
inc-command-#-out
current-pose
current-vel

Calls CART-TRAJ or JOINT-TRAJ depending on whether the value of the

traj-type-in variable is cart or joint.

CART-TRAJ

Input Variables

last-pose
last-vel
traJ-^-in
goal-pose-^-in

Output Variables

Joint-com-pose
Joint-com-conf-flag
joint-command
inc-command-#-out
current-pose
current-conf-flag
current-vel

Executes the specified Cartesian straight-line trajectory. CART-TRAJ
calls STRAIGHT-LINE to build the trajectory and monitors the joint
status. In response to any error conditions, CART-TRAJ sets joint-
command to PAUSE.

JOINT-TRAJ

Input Variables

traj-*-in
goal-pose-*-in
status-in

Output Variables

Joint-com-pose
joint-com-conf-flag
joint-command
inc-command-#-out
current-pose
current-conf-flag
current-vel

#
10.6 THE PRIM LEVEL

Sends a joint trajectory to the JOINT level and monitors joint status.
In response to any error conditions, JOINT-TRAJ sets joint-command to
PAUSE. ^

JOYSTICK

Input Variables Output Variables

joy- la Rg
joy- lb xg
joy-2a vmax
joy-2b amax
last-pose wmax

gmax

Adds the motion indicated by the joystick to last-pose and stores the
result in Rg and xg for use by STRAIGHT-LINE. JOYSTICK sets vmax to the
value resulting from the equation (joy-max-v) • 2**(-vel) and sets wmax
to the value resulting from the equation (joy-max-w) • 2**(-vel), where
vel represents the setting of the velocity switch on the joystick.

JOYSTICK sets variables amax and gmax equal to vmax and wmax,
respectively.

STRAIGHT-LINE

Input Variables Output Variables ^
Rg current-pose
xg current-vel
vmax
amax
wmax
gmax
last-pose
last-vel

Executes the straight-line algorithm.

PRIM postprocessing

The PRIM routine POST-PROCESS sends to the PATH level confirmation for each
command received and performs the "housekeeping" required to prepare PRIM for

the next command. POST-PROCESS calls CLEAN-UP and, if the current command is

not RESTART, calls COMMAND-RR.

10.6 THE PRIM LEVEL
10-46

CLEAN-UP

Input Variables Output Variables

input-command-var output-status-var

Echoes the command and inc-command-# to the PATH level.

COMMAND-RR

Input Variables Output Variables

joint-com-pose PRIM> JOINT-POSE round-robin
joint-com-conf-flag PRIM>JOINT-TRAJ round-robin
joint-rec

Adds the inverse tool movetable to the contents of the joint-com-pose
variable and puts the resulting pose and the joint trajectory parameters
in the PRIM> JOINT round-robins.

10.7 THE JOINT LEVEL

The JOINT level receives positions expressed in Cartesian coordinates from the

PRIM level, transforms these positions to robot joint coordinates, and con-

trols joint velocities and accelerations.

The design of the JOINT level is modular so that you can replace the existing
robot-dependent modules (the interface routines and transforms) with new mod-
ules designed to control your specific robot.

The two basic modes of motion for JOINT are Cartesian-space motion and joint-
space motion. In the Cartesian-space mode, the PRIM level interpolates
Cartesian paths between the start and end positions by generating and execut-
ing a new point along a Cartesian path each cycle. The JOINT level transforms
each path-point to joint coordinates and, if necessary, scales the move to

meet velocity and acceleration limits.

In the joint-space mode, the PRIM level passes the goal position from the PATH
level to the JOINT level. The JOINT level generates a joint-interpolated tra-
jectory to the goal position.

The routines that the JOINT level executes fall into two categories:
robot-independent and robot-dependent. The functions of the robot-independent
routines do not change if you use a different robot. The functions of the
robot-dependent routines are specific to the Puma 760 robot. You must provide
your own routines to accommodate other robots.

10.7 THE JOINT LEVEL
10-47

JOINT CcHmnands

The following commands execute at the JOINT level: RESTART, PAUSE, CARTESIAN, I

JOINT-TRAJ, and CREEP. This section provides the syntax and explains the ^

function of each command.

RESTART command

The syntax of the RESTART command is:

RESTART

RESTART clears all errors, sets the current joint velocity and acceleration to

0, and resets the debug variables. When the robot interface reports its

status as done, RESTART reads the feedback joint values and then sends these
values back to the JOINT level on succeeding cycles to maintain the current
position. RESTART ignores acceleration limits.

While executing RESTART, the JOINT level reports its status as executing until
the robot interface reports done. Then JOINT reports done to PRIM.

PAUSE command

The syntax of the PAUSE command is:

PAUSE

PAUSE continues sending the most recently commanded joint values to the robot

interface. PAUSE ignores acceleration limits. After sending PAUSE, JOINT
reports its status as done immediately.

CARTESIAN command

The syntax of the CARTESIAN command is:

CARTESIAN [pose-"]

where:

• pose-"" points to the position to which the robot is being moved.

CARTESIAN is best used to move through a series of points in a Cartesian
motion, where the distances between successive points are small. JOINT trans-
forms each pose it receives from PRIM into a set of goal joint values and
moves the robot to the position indicated by pose-'*. If necessary, JOINT
scales the commanded trajectory to stay within the specified hardware limita-
tions as it interpolates each step along the trajectory.

10.7 THE JOINT LEVEL
10-i|8

While executing CARTESIAN, JOINT reports its status as executing if the inter-

polated step size is larger than the system parameter next-point-scale-

threshold. PRIM should not send any new points to JOINT when the JOINT status

is executing.

If the step size is the same or smaller than this system parameter, JOINT

reports its status as next-point. The next-point status indicates that PATH
should send the next Cartesian step on the next cycle.

JOINT reports its status as done when the commanded joint values equal the

goal joint values. The done status indicates that PRIM should send a new goal

point on the next cycle.

JOINT-TRAJ command

The syntax of the JOINT-TRAJ command is:

JOINT-TRAJ [pose-"] [traj-para-"]

where:

• pose-" points to the position to which the robot is being moved.

• traj-para-" points to the trajectory parameters.

JOINT-TRAJ is best used to move through large joint-interpolated path seg-

ments. JOINT transforms each pose it receives from PATH into a set of goal
joint values and moves the robot to the position indicated by pose-". If
necessary, JOINT scales each step to stay within the limitations specified by
traj-para-" as it interpolates the trajectory. While executing JOINT-TRAJ,
JOINT reports its status as executing if the commanded joint values are out-

side the range of the goal joint values specified by the j-delta variable.

JOINT reports done after the coimnanded values are within the j-delta range.

CREEP command

The syntax of the CREEP command is:

CREEP

CREEP recovers from the joint-limit error state by commanding all joints that

are within the creep-delta distance from a joint limit to move away slowly
from the limit at a speed specified by creep-vel. The creep-delta distance
and the creep-vel velocity are user-defined values.

While executing CREEP, JOINT reports its status as executing until all joint
movements are complete. Then CREEP reports done.

10.7 THE JOINT LEVEL
10-^49

JOINT Input Conmand Buffer

The JOINT input command buffer consists of the following variables:

inc-comman(i-#-in
PRIM increments this integer variable each time it sends a new command to

JOINT.

input-command
PRIM sends this integer to JOINT to identify the command. Commands are
numbered as follows: 0-RESTART, 1 -PAUSE, 2-CARTESIAN, 3-JOINT-TRAJ , and
^-CREEP.

pose-^-in
PRIM sends JOINT this pointer to the commanded pose in POSE-FILE.

traj-^-in
PRIM sends JOINT this pointer to the traj-para in the PRIM>JOINT-TRA

J

round-robin.

JOINT Status Information

To provide status feedback to the PRIM level, the JOINT level returns a status
report, returns a feedback pose, and returns echoes of the input command and
its incremental command number.

JOINT uses the following six variables to return status information to the

PRIM level:

cycle-#-status-out
Returns the cycle count when JOINT returns its status. The changing
value of this integer variable verifies that the JOINT level is running.

inc-command-#-echo-out
Echoes the integer count of new commands received by the JOINT level as

indicated by the inc-command-y/-in variable. This information enables
PRIM to know for which command JOINT is returning status information.

command-echo-out
Echoes the integer stored in inc-command-#-in. This information enables
PRIM to know for which command JOINT is returning status information.

status-report
Returns the current status of JOINT. The possible values for this inte-
ger variable and their meanings are:

Value Meaning Description

executing The current point is still executing.

1 done The joint has reached its goal location.
2 error An error occurred. (See status-arg-out.

)

3 next-point The joint reached an intermediate path-point.

10.7 THE JOINT LEVEL
10-50

i

status-arg-out
Returns the error status. The possible values for this integer variable

and their meanings are:

Value Meaning Description

noerror PRIM detected no errors.

1 lower-level The servo reported an error to JOINT.

2 command-error JOINT received an invalid command or parameters.

3 joint-limit A joint has reached its limit.

U reach-limit The goal pose is outside the reach of the robot.

5 configuration The commanded configuration is invalid.

pose-*-out
Contains the pointer to the feedback pose, which is the output joint val-

ues transformed to the wrist pose. During the execution of a RESTART

command, the feedback pose gives the startup position of the robot. Dur-

ing the execution of the CARTESIAN and JOINT-TRAJ commands, the feedback
pose can update the Cartesian trajectory routines with the actual com-

manded position.

JOINT Errors

When JOINT detects an error of any type, it sets the status variable to indi-

cate an error, stores the label for the error in the status-arg-out variable,

and sends the last valid joint values to the robot. At this point, COMMAND-

PROCESS does not execute any command other than RESTART, with one exception.

If the error is joint-limit, COMMAND-PROCESS allows the CREEP command to cor-
rect the error.

JOINT ProcesalDg

The three processes for the JOINT level are PRE-PROCESS, COMMAND-PROCESS, and
POST-PROCESS. PRE-PROCESS reads the command from the PATH level and the

status from the servo. COMMAND-PROCESS, the decision-processing stage, calcu-
lates trajectories for robot motion and scales the motion to meet velocity and

acceleration limits. POST-PROCESS sends the JOINT level confirmation for each
command received and performs the "housekeeping" required to prepare JOINT for

the next cycle.

JOINT preprocessing

The JOINT routine PRE-PROCESS calls NEW-COMMAND? and SERVO-STATUS.

10.7 THE JOINT LEVEL
10-51

NEW-COMMAND?

Input Variables

inc-command-#-in
old-inc-command-#-in

Output Variables

new-command
old-inc-command-#-in
status
status-arg

Sets the new-command flag to true if the value of inc-command-#-in has

changed since the last cycle (That is, if inc-command-#-in does not
equal old-inc-command-#-in.) NEW-COMMAND? also sets the status and
status-arg variables to noerror.

SERVO-STATUS

Input Variables

inc-command-#-out
inc-Gommand-#-echo-in
status-in

Output Variables

servo-status

Checks if the values of inc-command-#-out and inc-command-#-echo-in are
equal (indicating that status-in contains the status of the last com-

mand). If these values are equal, SERVO-STATUS sets the value of
servo-status to the value of status-in. If these values are not equal,
SERVO-STATUS sets the value of servo-status to executing.

JOINT decision processing

If the status-report variable does not indicate an error, the JOINT routine

COMMAND-PROCESS uses a case statement to determine which of the routines in
this section to execute. If the status-report variable indicates an error
other than joint-limit, COMMAND-PROCESS freezes the error state and does not

execute any command other than RESTART. COMMAND-PROCESS allows CREEP to exe-
cute if the error is joint-limit.

JOINT-RESTART

Input Variables

joints-in
new-command
servo-status

Output Variables

output-command
inc-command-#-out
servo-com-joint
status-report
v-current
overflow cycle
max-process-time
min-process-time

10.7 THE JOINT LEVEL
10-52

•

•

•

Checks if new-command is true and, if so, sets the value of the

output-command variable to RESTART, increments inc-command-#-out, sets

v-current to 0, and resets the debug variables. If new-command is false,

JOINT-RESTART waits for servo-status to indicate done and then calls

READ-SERVO-STATUS to set servo-com-joint to the feedback joint values.

JOINT-PAUSE

Input Variables Output Variables

none inc-command-#-out
v-current

Pauses the robot, leaves the current joint values unchanged in the

servo-com-joint variable, sets v-current to 0, and increments
inc-command-#-out

.

CARTESIAN

Input Variables Output Variables

pose-'^-in servo-com-joint
v-current v-current
old-ja

Retrieves the commanded pose and configuration flags, calls CART> JOINT
and CART-CONFIGURE to convert the pose to joint values, calls SCALE to

limit the joint velocities and accelerations (using the hardware maximum
limits), stores the result in servo-com-joint, and calls JOINT-LIMIT-
TEST. If JOINT-LIMIT-TEST does not result in an error, CARTESIAN incre-
ments inc-command-#-out. If JOINT-LIMIT-TEST results in an error,
CARTESIAN sets the value of servo-com-joint to that of old-ja.

JOINT-TRAJ

Input Variables Output Variables

pose-^-in servo-com-joint
traj-'^-in v-current
v-current
old-ja

Retrieves the commanded pose, configuration flags, and trajectory param-
eters; calls CART> JOINT and JOINT-CONFIGURE to convert the pose to joint
values; calls SCALE to limit joint velocities and accelerations (using
the commanded trajectory parameters), stores the result in
servo-com-joint, and calls JOINT-LIMIT-TEST. If JOINT-LIMIT-TEST does
not result in an error, JOINT-TRAJ increments inc-command-#-out. If
JOINT-LIMIT-TEST results in an error, JOINT-TRAJ sets the value of
servo-com-joint to that of old-ja.

10.7 THE JOINT LEVEL
10-53

(

SCALE

Input Variables Output Variables

xg servo-com-joint
scaling-var scaling-var

Scales the step from servo-com-joint to xg to meet the velocity and
acceleration limits, and ensures that the joint motions are coordinated
to reach their goals simultaneously.

JOINT postprocessing

The JOINT routine POST-PROCESS sends to the PRIM level confirmation for each
command received, and performs the "housekeeping" required to prepare JOINT
for the next command. POST-PROCESS calls CLEAN-UP and, if the
input-command-var is not RESTART (or if the command is RESTART and the
status-report variable indicates done), calls FEEDBACK-POSE and

SET-SERVO-COMMAND

.

CLEAN-UP

Input Variables Output Variables

input-command-var output-status-var ^
v-current v-previous
servo-com-joint old-ja

Echoes the command and inc-command-# to the PRIM level, sets the value of
v-previous to that of v-current, and sets the value of old-ja to that of
servo-com-joint

.

FEEDBACK-POSE

Input Variable Output Variable

servo-com-joint RBT-POSE round-robin

Calls JOINT>CART to transform the value of servo-com-joint to a pose, and

stores that pose in the RBT-POSE round-robin.

JOINT Robot-Dependent Routines

The following commands control JOINT operations that are specific to the type
of robot the system is controlling. You must edit or replace these routines
to accommodate different robots.

10.7 THE JOINT LEVEL
10-54

READ-SERVO-STATUS

mk Input Variable

jolnt-in

Output Variable

servo-com-joint

READ-SERVO-STATUS converts the value of the jolnt-ln variable from the

servo format to radians and returns the converted value in

servo-com-joint

.

SET-SERVO-COMMAND

Input Variable

servo-com-joint

Output Variable

joint-out

SET-SERVO-COMMAND scales the value of the servo-com-joint value from
radians to the servo format and returns the converted value in joint-out,

REACH-CHECK

Input Variable

pose

Output Variable

status
status-arg

REACH-CHECK checks the pose variable to see if the commanded pose is

within the work volume of the robot. If the pose is not within the work
volume of the robot, REACH-CHECK sets the status variable to error and
the status-arg variable to reach-limit.

JOINT-LIMIT-TEST

Input Variable

servo-com-joint

Output Variable

status
status-arg

JOINT-LIMIT-TEST tests the servo-com-jolnt variable to see if it exceeds
the joint limits. If the servo-com-jolnt value exceeds the joint limits,
JOINT-LIMIT-TEST sets the status variable to error and the status-arg
variable to joint-limit.

JOINT>CART

Input Variable

servo-com-jolnt

Output Variable

pose
conf-flag

10.7 THE JOINT LEVEL
10-55

JOINT>CART transforms the value of servo-corn-joint to a pose and stores
the result in the pose and conf-flag variables.

CART> JOINT

Input Variable

pose
conf-flags (POSE-FILE local

template)

Output Variable

xg (goal joint values)
status
status-arg

CART> JOINT converts the value of the pose and configuration flags to
joint values and stores the result in xg, the goal joint values variable.
The conf-flag variable contains the configuration flags it reads from the
POSE-FILE local template.

In addition to the pose and conf-flag variables, CART> JOINT uses the
old-ja variable to determine the new joint values. The variable old-ja
stands for old-joint-angle. It holds the commanded joint values from the
previous cycle. It is set to servo-com-joint by POST-PROCESS. This pro-
cess is similar to the way PRIM handles current versus old position and
velocity. See the transform documentation for your robot for details on
poses and configurations.

Warning: CART> JOINT may generate a floating-point error interrupt that
aborts the control process if the pose is outside the work area
of the robot. Use REACH-CHECK to test the pose before using ,

CART> JOINT. (See also REACH-CHECK.) W

CART-CONFIGURE

Input Variable

xg

old-ja

Output Variable

xg

CART-CONFIGURE reads xg and old-ja and then modifies xg to minimize joint

motion by taking advantage of multiple configurations for the same pose.
See the transform documentation for your robot for definitions of
configurations

.

JOINT-CONFIGURE

Input Variable

xg
conf-flag

Output Variable

xg

JOINT-CONFIGURE reads xg and conf-flag and modifies the transform output
to match the commanded configuration. See the transform documentation
for your robot for definitions of configurations. (

10.7 THE JOINT LEVEL
10-56

Chapter 11

RSL EXTENSIONS

This chapter discusses how to incorporate user extensions to RSL. It assumes

that you have loaded the NBS-supplied system tape as described in Section 5.5,
"Software Installation Procedure", and that you have not yet modified the

code. "^

The extensions described in this chapter are extensions made while developing

RSL. The code is included as part of RSL on your system tape. To understand
the general procedures for making similar extensions to RSL, refer to the
blocks mentioned in this chapter.

11.1 UNDERSTANDING THE TYPES OF EXTENSIONS

RSL was developed in the context of the transfer task application and may be
inappropriate for other applications, such as tracing an object for a deburr-
ing operation. To overcome these potential limitations, you can extend the

RSL application by adding new tasks, paths, path-points, and trajectories to

the existing RSL control structure.

For example, you need a new trajectory for any type of motion other than
Cartesian straight-line or joint interpolated, such as circular motion. You
need new path-points whenever you add another sensor to the system. VHien you
develop a new application, both new tasks and new paths are required to

provide a hierarchical decomposition of that application.

After you understand the basic procedures, you may want to make more complex
extensions to RSL. For example, you can modify RSL to perform a quick change
operation that changes the tool movetable while a task is executing, or you
can add the ability to download RSL programs from a supervising computer. You
can also add new control levels, execute control levels in parallel, or run
two robots simultaneously.

11.2 ADDING A TASK TO RSL

You can extend RSL by adding a new task. Adding a task is a complex opera-
tion, that usually involves adding additional paths and path-points. This
section describes how to add the MOVE-TO task as if it were a new extension to

RSL, assuming the move-to path and goto path-point are present.

The syntax for the MOVE-TO task is:

MOVE-TO [object] [grip#] [destination location type] [destination]
[sector]

The MOVE-TO task issues a move-to path, using the current location as the

starting location. If the destination location type is an array (arr), then
the destination is the array sector given by the optional parameter sector.
MOVE-TO updates the current location when it completes the path. Refer to the

indicated blocks on the system tape for the actual MOVE-TO code.

11.2 ADDING A TASK TO RSL
11-1

To add the MOVE-TO task to RSL, you must make four additions. Table 11-1

lists the additions and their associated block numbers. These routines are
all on the TASK level on the TASK&PATH board. The block numbers listed assume
that you are on the TASK&PATH board with the OFFSET set at 9000. Remember
that you have to update the directory/load blocks when you add new routines to
RSL.

Table 11-1. Additions for the MOVE-TO Task.

Routine Addition

MOVE-TO Add this routine to execute the task, send a move-to path
to the PATH level, and wait for the PATH level to report
status done. Refer to block 513 for the routine MOVE-TO.

MOVE-TO-PARAM Add this routine to read the input parameters, looking up
record numbers in the object and location files. Refer to
blocks 511 and 512 for the routine MOVE-TO-PARAM.

MOVE-TO-SEARCH Add this routine to search for the proper MOVE-TO-FILE
record. Refer to block 402 for the routine MOVE-TO-SEARCH.

COMMAND-PROCESS Add MOVE-TO to the if-then-else list of legal commands that

the RSL routine COMMAND-PROCESS uses to execute tasks on
the TASK level. COMMAND-PROCESS is in block 591.

11,3 ADDING A PATH TO RSL

You can extend RSL by adding a new path. This section describes how to add
the move-to path type as if it were a new addition to RSL. Note that lower-
case move-to is a path type and not the same as the MOVE-TO task described in
Section 11.2, "Adding a Task to RSL".

The syntax for the move-to path type is;

-path- [move-to] [object] [grip#] [start location type] [start location]
[destination location type] [destination location]

The move-to path type moves the robot quickly from near the start location to

near the destination location. The approach and depart path types move the

robot when it is near the start location or the destination location. Refer
to the indicated blocks on the system tape for the actual move-to code.

Remember that you have to update the directory/load blocks when you add new
routines to RSL.

The following steps use the move-to path as an example of the general proce-
dure you follow to add a similar path to RSL. The block numbers listed assume

that you are on the RSL board with the OFFSET set at 8000.

11.3 ADDING A PATH TO RSL
11-2

1. Define an RSL data structure for the new path type by creating a SMACRO
variable owner that lists the parameters for the new path type. The vari-

able owner defines the record format for the move- to data structure file,

described in Section 9.2, "RSL Overview".

Insert the new file declaration in an empty block between blocks 14 1 and

149, the blocks reserved for RSL path-type file declarations. List block
141 to see the move-to path parameter file MOVE-TO-FILE.

2. Add the new path type to the list of legal path types. Block 195 contains
the sequential variable owner path-type-list that defines the legal RSL
path types. List block 195 to see the addition of the move-to sequential
variable to the path-type-list owner.

3. Add a routine that compiles the path parameters and starts the path-point
(ppt) list. The routine reads the new command and all its parameters,
looks up the record numbers for the locations and object, and creates a

path-point list in the RSL PATH-POINT-FILE. The routine should store the
results of reading the command in the file created in Step 1 . List blocks
411 and 412 to see the routine MOVE-TO.

List blocks 413 and 4l4 to see the optional routine 7M0VE-T0 that displays
information about all currently defined move-to paths. You can create a

similar routine for other path types.

4. Add the new path type to the case statement in the RSL routine -path- that
starts compiling an RSL path. List block 491 to see the move-to path type
in the case statement.

5. Initialize the new path file created in Step 1, by using the SMACRO file
operator ~re-init-file. List block 993 to see the initialization of the
MOVE-TO-FILE.

11.4 ADDING A PATH-POINT TO RSL

You can extend RSL by adding a new path-point. This section describes how to
add a range path-point that positions the tool point at a given distance from
a surface, using a sonar range finder. Although the range path-point is

included with RSL, you cannot use this path-point without a sonar and addi-
tional hardware circuitry to enable RCS to read the range.

The syntax for the range path-point is:

-ppt- range [sonar#] [range] [threshold] [{X, Y, Z}] [loc-phrase]
[traj-phrase]

The range path-point translates the tool point along the axis of the
loc-phrase frame, until the range read by the specified sonar is within the
threshold of the range. Refer to the indicated blocks on the system tape for
the actual range code.

11.4 ADDING A PATH-POINT TO RSL
11-3

Remember that you have to update the directory/load blocks when you add new
routines to RSL. To add the range path-point, you have to add code on the RSL
board and the TASK&PATH board.

Adding Code on the RSL Board

The following steps describe the additions you need to make on the RSL board
to add the range path-point or a similar path-point to RSL. The block numbers
listed assume that you are on the RSL board with the OFFSET set at 8000.

1

.

Define an RSL data structure for the new path-point by creating a SMACRO
variable owner that lists the parameters for the new path-point. The var-
iable owner defines the record format for a new data structure file, simi-
lar to the data structures defined in Section 9.2, "RSL Overview".

Insert the new file declaration in an empty block between blocks 161 and

169, the blocks reserved for RSL path-point command parameters file decla-
rations. List block 162 to see the range path-point parameter file
RANGE-FILE.

2. Add the new path-point to the list of legal path-points. Block 192 con-
tains the sequential variable owner ppt-command-list that defines the

legal RSL path-points. List block 192 to see the addition of the range
path-point to the ppt-command-list owner.

3. Add a routine to compile the new ppt, read ppt syntax fields, look up the
record numbers for the location, and add records to the trajectory, range,
and path-point files. The routines must read and check all of the ppt
syntax fields before storing any records. You must leave the files in a

clean state in case any errors occur in the ppt syntax fields. List block
3^3 to see the routine RANGE.

4. Add a garbage collection routine to remove records added by the routine in
Step 3. The routine should remove the records when a path containing a

range ppt is redefined. List block 3^4 to see the routine RANGE-REMOVE.

5. Add the new path-point to the case statement in the RSL routine -ppt- that
defines path-points. List block 391 to see the addition of the range
path-point to the case statement.

6. Add the garbage collection routine in Step k to the case statement in the

RSL routine PPT-REMOVE. List block 395 to see the addition of the routine
RANGE-REMOVE to the case statement.

7. Initialize the new path-point file created in Step 1, by using the SMACRO
file operator ~re-init-file. List block 993 to see the initialization of
the RANGE-FILE.

11.4 ADDING A PATH-POINT TO RSL
11-4

Adding Code on the TASK&PATH Board

The following steps describe the additions you need to make on the TASK&PATH
board to add the range path-point or a similar path-point to RSL. All the

additions on the TASK&PATH board are to the PATH level. The block numbers
listed assume that you are on the TASK&PATH board in the PATH vocabulary with
the OFFSET set at 10000.

1. Add the variables needed to execute routines for the new path-point. The

variables you need to add depend heavily on the type of path-point you are
adding to RSL. List block 141 to see the variables needed for the range
path-point. List block 142 to see the additional variables that give
addresses of the ports for the sonar interface, and some constants used in
the interface protocol.

2. Add any routines needed to process information from a sensor. These rou-
tines depend heavily on the path-point and sensor you are adding to RSL.

List block 251 to see the addition of the range path-point routine SONAR-
PORT-INIT that initializes the sonar interface port. List block 252 to

see the addition of the routine SONAR-READ that reads the sonar range,
converts the range to inches, and stores the result in sonar-range.

3. Add any read routines specified in Step 2 to the RSL routine PRE-PROCESS.
List block 299 for the addition of SONAR-READ to the PRE-PROCESS routine
for the PATH level. This addition enables you to read the sonar every
cycle, making data available as soon as needed. (The SONAR-READ routine
is currently commented out.)

4. Add the command routines needed to execute the new path-point in empty
blocks between blocks 300 and 399. For the range path-point, list block

331 to see the routine TRANSLATE, which translates the current tool pose
by a specified delta along the specified axis. TRANSLATE stores the
result in prim-com-pose.

List block 332 to see the routine HALT, which sets prim-com-pose to the
current tool pose and sets the neighborhood fields of the current trajec-
tory template to 0. HALT commands the robot to halt at the current tool
pose.

List block 411 to see the routine R-NEW-PPT, which retrieves the range
path-point parameters and initializes the range path-point variables.

List blocks 412 and 4l3 to see the routine RANGE, which executes the range
path-point.

5. Initialize the new path-point routines and variables. List blocks 982 and

983 to see the initialization of these variables and routines for the

range path-point.

11.4 ADDMG A PATH-POINT TO RSL
11-5

11.5 ADDING A TRAJECTORY TYPE TO RSL

You can extend RSL by adding a new trajectory type. This section describes
how to add a servo trajectory type to RSL. The code that implements this
trajectory type is included on the system tape and is loaded when you load
RSL.

The syntax for the servo trajectory phrase is:

servo [sensor-mtb] [inv-sensor-mtb] [goal-mtb] [trn-max-acc]
[trn-max-vel] [trn-min-vel] [max-range] [trn-nbrhd] [rot-max-acc]
[rot-max-vel] [rot-min-vel] [max-angle] [rot-nbrhd]

The servo trajectory type moves the sensor toward the goal (target pose plus
goal-mtb). The servo trajectory reports done when the robot is within the

neighborhood you specify in trn-nbrhd and rot-nbrhd. Servo decreases the
translation velocity linearly from trn-max-vel (for ranges greater than or

equal to the max-range) to trn-min-vel at the goal (range=0). Servo decreases
the rotation velocity linearly from rot-max-vel (for angles greater than or
equal to max-angle) to rot-min-vel at the goal (angle=0). Refer to the indi-
cated blocks on the system tape for the actual servo code.

Remember that you have to update the directory/load blocks when you add new
routines to RSL.

To add the servo trajectory type, you have to add code on the RSL board, the
TASK&PATH board, and the PRIM board.

Adding Code on the RSL Board

The following steps describe the additions you need to make on the RSL board
to add the servo trajectory type or a similar trajectory to RSL. The block
numbers listed assume that you are on the RSL board with the OFFSET set at
8000.

1

.

Define an RSL data structure for the new trajectory type by creating a

SMACRO variable owner that lists the parameters for the new trajectory
type. The variable owner defines the record format for a new data struc-

ture file, similar to the data structures defined in Section 9.2, "RSL
Overview".

Insert the new routine in an empty block between blocks 121 and 129, the

blocks reserved for RSL trajectory file declarations. List block 123 to

see the servo trajectory-parameter file SERVO-FILE.

2. Add the new trajectory type to the list of legal trajectory types. Block
19^ contains the sequential variable owner traj-list that defines the
legal RSL trajectory types. List block 194 to see the addition of the

servo sequential variable to the traj-list owner.

11.5 ADDING A TRAJECTORY TYPE TO RSL
11-6

3. Add a routine to read the new command and all its parameters. The routine
should store the results of reading the command in the local template of

the file created in Step 1. List block 322 to see the routine
READ-SERVO-TRAJ.

4. Add the routine created in Step 3 to the case statement in the RSL routine
READ-TRAJ-PHRASE. List block 337 to see the addition of READ-SERVO-TRAJ
to the case statement.

5. Add the routine created in Step 1 to the case statement in the RSL routine
STORE-TRAJ-PHRASE . List block 338 to see the addition of SERVO-FILE to

the case statement.

6. Add the routine created in Step 1 to the case statement in the RSL routine
REMOVE-TRAJ-PHRASE . List block 339 to see the addition of SERVO-FILE to

the case statement.

7. Add a round-robin to pass the new trajectory type parameters from the PATH
level to the PRIM level. Add the round-robin in an empty block between
blocks 511 and 519, the blocks reserved for RSL round-robins. The round-
robin enables the PATH level to change parameters every cycle, if neces-
sary. List block 511 to see the servo round-robin PATH> PRIM-SRV

.

8. Initialize the new trajectory file created in Step 1, by using the SMACRO
file operator ~re-init-file. List block 993 to see the initialization of
the SERVO-FILE.

Adding Code on the TASK&PATH Board

The following steps describe the additions you need to make on the TASK&PATH
board to add the servo trajectory type or a similar trajectory type to RSL.

All the additions on the TASK&PATH board are to the PATH level. The block
numbers listed assume that you are on the TASK&PATH board in the PATH vocabu-
lary with the OFFSET set at 10000.

1. Add an integer variable to the SMACRO variable owner reserved-record* to

access the round-robin created in Step 7 of the previous section. List
block 173 to see the addition of the servo variable path-srv-^ to the

reserved-record# owner.

2. Add the new trajectory type file to the case statement in the RSL routine
TRAJ-PHRASE. This addition enables you to retrieve the appropriate record
from the data structure file, and also makes the new trajectory type legal
for the PATH level. List block 322 to see the addition of SERVO-FILE to
the case statement.

3. Add the new trajectory type to the case statement in the RSL routine HALT
block 332.

4. Add the new trajectory type and file to the case statement in the RSL rou-
tine TRAJ-ROUND. TRAJ-ROUND sends the trajectory parameters to the tra-
jectory round-robin. List block 804 to see the addition of the servo
trajectory type and SERVO-FILE for the PATH> PRIM-SRV round-robin.

11.5 ADDING A TRAJECTORY TYPE TO RSL

11-7

5. Initialize the new trajectory variable created in Step 1. The variable
identifies the round-robin record for the RSL routine TRAJ-ROUND. List
block 981 to see the initialization of path-srv-*.

Adding Code on the PRIM Board

The following steps describe the additions you need to make on the PRIM board
to add the servo trajectory type or a similar trajectory type to RSL. The
block numbers listed assume that you are on the PRIM board with the OFFSET set
at 11000.

1. Add the variables and routines for the new trajectory type. The variables
you need to add depend heavily on the type of trajectory you are adding to

RSL. Refer to blocks 730 through 739 for the servo trajectory variables
and routines.

The Cartesian straight-line trajectory type is the basis for the servo
trajectory. The routines transform the velocity of the tool point to the

sensor frame, command the goal pose as the goal of both the rotation and
translation parts of the trajectory, compute the maximum velocity as a
function of the range to the goal, and transform the result back into a
motion of the tool point.

2. Add the new trajectory type to the case statement in the RSL routine TRAJ.
This addition makes the new trajectory type legal for the PRIM level.
List block 791 to see the addition of the servo trajectory type to the
case statement.

11.5 ADDING A TRAJECTORY TYPE TO RSL
11-8

Chapter 12

RCS APPLICATION EXAMPLES

This chapter describes two example applications of RCS. NBS developed each
application for a different project. The first application describes a

machining workstation that is part of a totally automated factory project.
The second application describes a field materiel-handling robot that is part
of an Army-sponsored research project.

12,1 A MACHINING STATION IN THE AUTOMATED MANUFACTURING RESEARCH FACILITY

The National Bureau of Standards is developing an experimental factory called
the Automated Manufacturing Research Facility (AMRF). The AMRF will operate
as a small, totally automated, batch machine shop.

Currently the AMRF consists of five workstations: three machining stations, a

cleaning and deburring station, and an inspection station. The AMRF maintains
a central database that provides information for the five workstations. Each
workstation uses robotic material handling for tasks such as machine-tool
loading and unloading, deburring parts, and loading a collet into a lathe.
The horizontal machining station and the cleaning and deburring station use
RCS to maintain real-time control over the robot.

The following sections discuss the horizontal machining workstation in more
detail and give an example of unloading an incoming parts tray.

For more information, read the IEEE Computer Society reprint entitled, "A
Hierarchically Controlled, Sensory Interactive Robot in the Automated Manufac-
turing Research Facility". This paper is a reprint from the IEEE Interna-
tional Conference on Robotics and Automation, St. Louis, Missouri, March 25
to 28, 1985.

The Horizontal Machining Workstation

This example discusses the horizontal machining workstation. This workstation
contains a horizontal-machining center and a materiel-handling robot, the
Cincinnati Milacron T3 hydraulic, six-degree-of-freedom manipulator. The
function of the T3 robot is to load part blanks into the horizontal-machining
center fixtures and then unload the machined parts. The T3 robot also loads
and unloads the parts from the part trays and buffers of the workstation.

To meet the requirements of the AMRF, NBS equipped the T3 with a hierarchical
real-time control system (RCS), a 3-D vision system, a watchdog safety system,
an active pedestal, a quick-change device, and an instrumented servo-
controlled gripper.

12.1 A MACHINING STATION IN THE AUTOMATED MANUFACTURING RESEARCH FACILITY
12-1

Figure 12-1 shows the major robot-related components of this workstation and
the workstation control system, which sends commands to the T3 RCS.

IWorkstalion
Control

System

Active
Pedestal
System

3-D Vision
Sensor
System

1 T3
1 Controller

1 and Robot

Figure 12-1. Major robot-related components of the horizontal
machining workstation.

12.1 A MACHINING STATION IN THE AUTOMATED MANOFACTORING RESEARCH FACILITY
12-2

Table 12-1 lists the functions of the major robot-related components of the

horizontal machining workstation.

Table 12-1. Functions of the Major Robot-Related Components of

the Horizontal Machining Workstation.

Component

RCS

3-D Vision Sensor System

Watchdog Safety System

Active Pedestal System

Quick Change

Servo-Controlled Gripper System

Function

Controls the operation of the T3 robot,
the active pedestal system, and the
quick change device.

Locates and identifies objects.

Monitors individual joint and tool-
point motions of the robot to prevent
the robot from damaging itself or other
equipment.

Regrips parts.

Changes end effectors.

Enables the T3 to open a gripper to a

specified width or close a gripper with
a specified force.

The hardware and software configuration of the T3 RCS is more complex than the

RSL configuration described in earlier chapters, because the T3 RCS supports
additional devices.

Hardware configuration of the T3 RCS

The hardware configuration of RCS for the horizontal machining workstation

consists of six Intel 86/30 processor boards communicating via a MULTIBUS.
Three of the 86/30 boards contain the task decomposition levels: TASK,
SUBTASK, E-MOVE (elemental move), PRIM (primitive), PARTS GRIPPER, VALVE
GRIPPER, and QUICK CHANGE.

The final robot-dependent level, T3, is on a separate 86/30 board. Of the
other two remaining 86/30 boards, one contains a diagnostics system and the
communications process (COMM), and the other controls the graphics display
monitor.

12.1 A MACHINING STATION IN THE AUTOMATED MANUFACTURING RESEARCH FACILITY
12-3

The 86/30 boards have parallel I/O and A/D ports for communicating with sen-
sors and actuators. For example, the board containing the E-MOVE and PRIM
control levels has access to proximity sensors and gripper beam-break sensors
through the parallel I/O ports of the board.

This implementation of RCS also includes six other boards: two memory boards
for the common memory, which contains user files, communications buffers, and
the system dictionary; a DMA (Direct Memory Access) board that provides commu-
nications with the vision system; two 68000 processor boards that provide
access to other workstations on the network; and the board for controlling the
hard disk and tape drive.

Figure 12-2 shows the T3 RCS hardware configuration.

Beam Breaks

Holster Sensors

Joystick

T3 Controller

Resolvers

Workstation

Active Pedestal

86/30
Task/Subtask
Control Levels

86/30
E- Move/Prim

Control Levels

Hard Disk-

Tape Drive-

86/30
T3

Control Level

68000
Local Area
Netvork

68000
Netvork
Protocol

Disk/Tape
Controller

Board

f.

<—:.

y.

?-

86/30
Parts Gripper/
Valve Gripper/
Quick Change

Control Levels

86/30
Communications/

Diagnostics

Processor

86/30
Graphics
Display

Controller

DMA
Communications

vlth
Vision System

1 /2 Megabyte
Memory Board

Common Memory

1 Megabyte
Memory Board

Common Memory

MULTIBUS

Gripper
Activator

Gripper Sensors

Quick Change
Sensors

Quick Change
Activator

Graphics

Display

Vision

Figure 12-2. T3 RCS hardware configuration.

12.1 A MACHINING STATION IN THE AUTOMATED MANOFACTORING RESEARCH FACILITY
12-4

Software configuration of the T3 RCS

The RCS software configuration for the horizontal machining workstation con-
sists of task decomposition control levels similar to the RSL application con-

trol levels. This application of RCS decomposes tasks using the control
levels: TASK, SUBTASK, E-MOVE, PRIM, and T3. The T3 level is robot depend-
ent, transmitting the appropriate commands to the T3 controller.

In addition, the control levels PARTS GRIPPER, VALVE GRIPPER, and QUICK CHANGE
execute in parallel with the PRIM level, enabling the gripper system to posi-
tion the gripper independently of the T3 robot motion. The control levels
PARTS GRIPPER, VALVE GRIPPER, and QUICK CHANGE transmit commands to the two

grippers and to the quick change actuator, respectively. Figure 12-3 shows
the control-level hierarchy.

Task
Level

d k

^ '

Subtask
Level

d k
Active Pedestal

System

4 k

^ r

3-D Vision
4—

1

E-Move
LevelSensor System

A '

i
'
^ t t 1

^ L , F . r +
Parts Valve Quick

Prim Gripper Gripper Change
Level Level Level Level

k

'

4^

:

A

r

Parts Valve Quick
T3 Gripper Gripper Change

Level

I
T3 Robot
Controller

Figure 12-3. T3 RCS control-level hierarchy.

12.1 A MACHIHING STATION IN THE AUTOMATED MANUFACTURING RESEARCH FACILITY
12-5

The COMMUNICATIONS/DIAGNOSTICS processor manages communications between
levels. This processor transfers the command and status buffers between
levels every 40 milliseconds, as set by the fixed cycle time of the T3 RCS.

Each control level processes a set of commands of decreasing complexity. A
typical command at the TASK level decomposes into several robot movements,
while a command at the PRIM level typically becomes one simple robot movement.

For example, a TRANSFER command consists of the following sequence of steps:
moving to the specified object at the specified location, identifying the
object orientation using the vision system, grasping the object, moving the
object to the destination point, and releasing the object. The other control

levels decompose these steps into simpler and simpler actions. For example,
the command DELTA-MOVE at the PRIM level moves the robot a short distance from

its current position.

12.1 A MACHINING STATION IN THE AUTOMATED MANDFACTURING RESEARCH FACILITY
12-6

Figure 12-4 shows the commands that each control level can process.

Task

Subtask

E-Move

Prim

Parts

Gripper

Valve
Gnpper

Quick
Change

TRANSFER REFIXTURE
UNLOAD ACQUIRE
MOVE PAUSE
POSITION

GET-ENDEFF GOTO-ENDPT >POSITION
FIX-GRIP GOTO-DEST RELEASE
GET-OBJECT MOVE-OBJ>D MOVE-SAFE
PLACE-OBJ S- PAUSE

POSITION
OPEN-GRIP
CLOSE-GRIP

POSITION
OPEN-GRIP
CLOSE-GRIP

UNLOCK-QC
LOCK-QC

MOY-TO-LOC LOCATE-OBJ GRASP-OBJ
MOV-TO-OBJ QC- DETACH RELEASE
MOY-OBJ-TO QC-ATTACH WITHDRAW
liOV-TO-YU E- PAUSE MOV-TO-HOL

DPART-THRU GO-UNTIL CONNECT
GO-THRU CONTACT UNSEAT
APPR-THRU SEAT REMOVE
STOP-AT- PT DELTA- MOVE PAUSE
GOTO-PT EXTRACT ROBOT- 1 NIT

Figure ^2-H. Control level commands for the T3 RCS.

12.1 A HACHINING STATION IN THE AUTOMATED MANUFACTURING RESEARCH FACILITY
12-7

Whenever possible, this RCS application uses the SMACRO state table statement
to decompose tasks. Figure 12-5 shows an example state table routine,

QC-DETACH, which decomposes a quick change operation, disengaging the current
end effector on the robot.

routine QC-DETACH-ST EDEF
state-table ref-action "qc-status-in"

state: new-command XX EXECUTING
GET-HOLSTER-D CONTACT

state: XX "executing" EXECUTING
state: contact-made "locked" EXECUTING QC-UNLOCK
state: contact-made "unlocked" EXECUTING SEAT
state: seated "unlocked EXECUTING EXTRACT
state: extracted "unlocked" EXECUTING

DETACH
VERIFY-

state: detached XX EXECUTING

HOLSTER

DEPART-

state: executing XX EXECUTING
state: delta-move-done XX DONE

default-s1bate: STATE-ERR--MSG

end-state-table

end-routine

Figure 12-5. The QC-DETACH routine.

In the QC-DETACH routine,
tion and moves the robot
proximity sensors on the

ster. After the contact,
unlock, disconnecting the
robot then slides the end
slightly. RCS checks the

After the robot detaches

RCS first gets the correct holster position informa-
into contact with the holster. The application uses
holster to determine when the robot contacts the hol-

QC-DETACH commands the quick change device to
end effector and dropping it into the holster. The
effector to the seat position and moves away
sensors in the robot wrist to verify the detach,

the end effector, it departs from the holster.

Each control level uses similar routines to decompose the commands at that
level. Each control level consists of an executing routine that calls the
routines PRE-PROCESS, STATE-TABLE, and POST-PROCESS. These routines perform
the RCS functions of preprocessing, decision processing, and postprocessing,
respectively.

4
12.1 A MACHINING STATION IN THE AUTOMATED MANDPACTURING RESEARCH FACILITT

12-8

T3 ONLOAD Tray Example

One function of the T3 robot is to unload incoming parts from a tray and store

them in a buffer area. When the workstation sensors detect an incoming parts
tray, the workstation controller sends an UNLOAD command to the TASK level.
The workstation controller also sends the tray location point and the unload
buffer area as UNLOAD command parameters. RCS must obtain information about
the contents of the parts tray from the AMRF central database.

For this example, suppose the tray contains two rectangular part blanks and a

valve body, as shown in Figure 12-6.

T3
Robot

Buffer

'MjII^(==^ji
RP2I

Station-2

Slation-1

Figure 12-6. Example UNLOAD situation for the T3 robot.

The rectangular parts, RP1 and RP2, require the T3 to use a parts gripper, and
the valve body, VB1, requires the T3 to use a valve gripper. Assume that the
rectangular parts gripper is attached to the robot. Figure 12-7 gives a

pseudocode example of the sequence of control statements generated by the

UNLOAD command.

12.1 A MACHINING STATION IN THE AUTOMATED MANUFACTURING RESEARCH FACILITY
12-9

Figure 12-7 lists statements down to the E-MOVE control level. Each
indentation indicates statements at the next lower control level.

UNLOAD (STATION-2, BUFFER, SAFE)

GET-OBJECT (RP1, STATION-2, SECTOR-3)

MOV-TO-VU (STATION-2, SECTOR-3)

LOCATE-OBJ (RP1)

MOV-TO-OBJ (RP1)

GRASP-OBJ (RP1)

PLACE-OBJ (RP1, BUFFER)

MOV-OBJ-TO (RP1, BUFFER)

RELEASE (RP1)

GET-OBJECT (RP2, STATION-2, SECTOR-4)

MOV-TO-VU (STATION-2, SECTOR-4)

LOCATE-OBJ (RP2)

MOV-TO-OBJ (RP2)

GRASP-OBJ (RP2)

PLACE-OBJ (RP2 BUFFER)

MOV-OBJ-TO (RP2, BUFFER)

RELEASE (RP2)

GET-ENDEFF (VALVE-GRIPPER)

MOV-TO-HOL ()

QC-DETACH ()

MOV-TO-HOL (VALVE-GRIPPER)

QC-ATTACH (VALVE-GRIPPER)

GET-OBJECT (VB1, STATION-2, SECTOR-2)

MOV-TO-VU (STATION-2, SECTOR-2)

LOCATE-OBJ (VB1)

MOV-TO-OBJ (VB1)

GRASP-OBJ (VB1)

PLACE-OBJ (VB1, BUFFER)

MOV-OBJ-TO (VB1, BUFFER)

RELEASE (VB1)

GOTO-ENDPT (SAFE)

Figure 12-7. Pseudocode example of a T3 UNLOAD command.

12.1 A MACHINING STATION IN THE AOTOKATED MANDFACTORING RESEARCH FACILITY
12-10

STATION-2 and BUFFER are location-point arrays and SAFE is a location point.

The SECTOR parameter indicates which array position contains the specified
part. The TASK level obtains the value of SECTOR from the AMRF database
before the first SUBTASK command, GET-OBJECT.

The objects RP1, RP2, and VB1 have associated grip and vision information.
The control-level routines obtain much of the information needed to execute
the UNLOAD task from the files in common memory. For example, when the T3
must move from the BUFFER to the holsters for a quick change operation, the

system searches the trajectory file for a trajectory between the array BUFFER
and the fixed holster location point HOL-SAFE. If the system finds a tra-
jectory, it uses the path-points and velocity parameters to move the robot;

otherwise, it uses the end points and default parameters.

The UNLOAD example includes three sequences of GET-OBJECT/PLACE-OBJ opera-
tions—one sequence for each object. The example includes an additional
GET-ENDEFF operation after the first two objects, because the T3 must change
grippers to pick up the valve body part. After the T3 unloads the valve body
part, it moves to the location labeled SAFE.

12.2 THE FIELD MATERIEL-HANDLING ROBOT CONTROL SYSTEM

The U.S. Army Human Engineering Laboratory is developing a Field Materiel-
Handling Robot (FMR). When completed, the FMR project will include a spe-
cially developed robot designed to automate materiel handling. The Human
Engineering Laboratory is sponsoring NBS to develop an RCS-based robot con-
troller for the FMR project.

One proposed task for the FMR is to locate, acquire, and transfer a randomly
oriented pallet load from a truck bed to a conveyor. The following sections
describe the hardware and software configurations required to accomplish the

transfer task.

The FMR application uses an extended version of RSL. The extensions add path-

points to use the sensors mounted on the FMR end effector. The discussion of

this example assumes that you are familiar with the information on RSL in
Chapter 9, "Robot Sensor Language (RSL)", and Chapter 10, "RSL Control
Levels".

Hardware Configuration for the FMR

The specifications for the FMR robot include a reach of 25 feet with the abil-
ity to move a 4,000-pound load at speeds of up to 150 inches per second.
Commercially available robots cannot meet these specifications. NBS uses the
Unimate 4000 robot to test software and sensor development.

NBS developed a forklift-like end effector for the Unimate 4000 robot. The
fork enables the robot to insert tines into a pallet to transport the materiel
securely on the pallet. The fork also provides a structure on which to place

12.2 THE FIELD MATERIEL-HANDLING ROBOT CONTROL SYSTEM
12-11

the sensors needed to position the fork for picking up a randomly oriented
pallet. Figure 12-8 shows the fork and sensor hardware and the associated
coordinate frame.

Tool frame origin
is level with face plate
and 23 inches in front
of sonar

Proximity
switches

Face plate

Downward facing
sonar unit

Forward facing
sonar unit

Figure 12-8. Fork and sensor hardware for the FMR.

The sensor hardware enables the robot to orient the fork with the truck bed,

to align the fork with the desired entry side of the pallet, and to guide the
fork under the pallet. The sensors are Polaroid ultrasonic ranging devices or
sonars, and optical proximity switches. Routines can control robot motions,
such as translations along and rotations about the tool axes, using the sonar
sensors shown in Figure 12-8. For example, routines can control a roll motion
about the X-axis using sonars 3 and k.

The FMR application uses the same RCS hardware configuration as RSL. The FMR
contains four 86/30 processor boards containing the four RSL control levels
TASK, PATH, PRIM, and JOINT; a 512K memory board for common memory; and the

tape and disk controller board. The boards communicate through a MULTIBUS.

12.2 THE FIELD KATERIEL-HANDLING ROBOT CONTROL SYSTEM
12-12

Figure 12-9 shows the hardware configuration for the FMR example.

Terminal Serial Switch Box Robot Joystick

<
'1*

Multibus

RSL

86/30

<4

^

COMMON
MEMORY

512K

Priam Winchester

Hard Disk

^—

Cipher Tape Drive

TAPE/DISK
CONTROLLER

t->
TASK/PATH

86/30

PRIM

86/30

Ultrasonics

(D

Proximity Switches

J

JOINT/COMM

86/30

f (

SLAVE Serial Interface

Unimate 4000
Robot Controller

Figure 12-9. RCS hardware configuration for the FMR,

12.2 THE FIELD MATERIEL-HANDLING ROBOT CONTROL SYSTEM
12-13

Software Configuration for the FMR

The FMR application uses the same RCS software configuration as the RSL appli-
cation. Figure 12-10 reviews the RSL control-level hierarchy and shows the
RSL data types and common memory data structure files.

Data

I
KSL

-ppt-

-loc-, -pose-, -mtb-

-obj-, -irr--

carctnj

joint traj

USER

MKMORY

MOVE-TO-FILE
APPR-PICK-RLE
DEPT-PICK-HLE
APPR-REURLE
DEPT-REL-HLE

PATH-POINT-HLE

LOC-HLE
POSE-HLE
MTB-HLE

OBJ-FILE
ARR-FILE

-| cart-file[

JOINT-HLE

Commands

1
TASK

Decompose Commands
into

PATHS

PATH
Decompose PATHS
into sensor based

y GOAL POSES

EH
PRIM

Decompose GOAL POSES
into intermediate tiajeaory

POSES

EH
JOI NT
COMM

Decompose POSES into

JOINT ANGLES

E~r
TINTMATK 4000

Figure 12-10. RCS software configuration for the FMR.

^

12.2 THE FIELD MATERIEL-HANDLING ROBOT CONTROL SYSTEM
12-1^1

To locate a randomly oriented pallet, the FMR application extended RSL by add-

ing path-points that use the sonar and proximity sensors. The new path-points
control individual sensor motion, scan the work volume and analyze the orien-
tation of a pallet, and combine sequences of lower-level path-points so that

you can execute these sequences of path-points in parallel.

The new path-points are edge, range, equate, scan, align-grip, approach-
pallet, and pickup-pallet. The application also uses the RSL goto path-point.

The following list provides the syntax and a brief description of each FMR
path-point.

goto [location type] [location name] [traj type] [traj parameters]

Moves the robot directly to the location.

edge [sonar#] [range] [delta] [location type] [location name]
[traj type] [traj parameters]

Moves the robot toward the location name looking for an edge. The delta
parameter describes how large the edge is, and range specifies at what
distance to start looking for the edge.

range [sonar#] [range] [threshold] [axis] [location type]
[location name] [traj type] [traj parameters]

Moves the robot along the specified axis of the Cartesian frame specified by

the location type and location name. The robot moves to the range measured by
sonar (within threshold). The commanded translation is positive if the range

minus the sonar is greater than 0.

equate [sonar#1] [sonar#2] [threshold] [offset] [axis] [location type]
[location name] [traj type] [traj parameters]

Rotates about the axis of the Cartesian frame specified by the location type
and location name until the two selected sonars take the same reading (within
threshold). The rotation is positive if sonar#1 minus sonar#2 is greater than
0. If two sonars are on different but parallel planes, you can specify the
difference between them in offset.

12.2 THE FIELD MATERIEL-HANDLING ROBOT CONTROL SYSTEM
12-15

scan [sonar#] [skip readings] [max object range] [min range delta]
[extra] [pose name] [location type] [location name] [traj type]
[traj parameters]

Determines the nominal location of a rectangular object. The robot scans an
area taking range readings starting from the current position and ending at

the location name. When the sonars take readings, the routines associated
with scan link the readings to the position of the robot and store the posi-
tions in a file. The scan path-point returns the nominal pose of the object
in pose name.

align-grip [perm-edge-val] [perm-equal-val] [s1s2-offset] [extra]

[long-integer] [min-total-long] [max-short-side]
[side-equate-thresh] [location type] [location name]
[goto-traj-type] [traj parameters] [edge traj type]
[traj parameters] [equate traj type] [traj parameters]

Uses information from the scan path-point and the current sonar data to deter-

mine if the long side of the pallet faces the fork. By calling the edge,
equate, and goto commands, the align-grip path-point uses the trajectory
parameters to align the fork with the long side of the pallet.

12.2 THE FIELD MATERIEL-HANDLING ROBOT CONTROL SYSTEM
12-16

Figure 12-11 shows a sequence of path-points similar to the path-points that
align-grip might execute. However, the figure makes some assumptions that
cannot be made until after sonar data processing, such as which direction to
move when looking for the edge.

O
n i

5^
I. Do Edge 2. Edgcdonc;now

do Range.

3. Range done;now
do Equate.

r

A Done.

Sonar axis Robot motion
axis

^

^ t

Figure 12-11. FMR path-point examples.

12.2 THE FIELD MATERIEL-HANDLING ROBOT CONTROL SYSTEM
12-17

approach-pallet [t-x-sonar#] [t-x-range] [t-x-threshold]
[t-y-sonar#] [t-y-range] [t-y-threshold]
[r-x-sonar#1] [r-x-sonar#2] [r-x-offset] [r-x-threshold]
[r-y-sonar#1] [r-y-sonar#2] [r-y-offset] [r-y-threshold]
[location type] [location name]
[traj type] [traj parameters]

Achieves the proper height and orientation of the fork before the robot
inserts the fork under the pallet. The approach-pallet path-point calculates
four tool motions similar to the calculations for the range and equate path-
points. The t-x- and t-y- parameters correspond to the parameters for range
path-points along the x and y axes. The r-x- and r-y- parameters correspond
to the parameters for equate path-points about the x and y axes.

pickup-pallet [sonar#] [z-correction] [extra]

[location type] [location name]
[traj type] [traj parameters]

Ensures that the fork tines do not hit the pallet feet while the robot inserts
the fork under the pallet. Optical proximity sensors detect when the tines
are too close to the pallet feet. The specified sonar# obtains the nominal
distance the fork must travel before a switch at the rear of the fork engages
the pallet. When a proximity sensor senses a pallet foot, the robot trans-
lates in the appropriate z direction until the sensor is no longer active.
Because of the narrow beam of the sensors, the robot also travels an addi-
tional z-correction after the sensor has cleared the foot.

FMR Transfer Example

This example provides the source code for the paths required to execute the

following TRANSFER command, which transfers PALLET 1 from TRUCK to CONVEYOR.

TRANSFER PALLET 1 loc TRUCK loc CONVEYOR

The six steps of a TRANSFER command specify the paths for the robot to pick
up, move, and release the pallet. The six steps are:

1. move-to PALLET 1 loc HOME loc TRUCK
2. approach-pickup PALLET 1 loc TRUCK
3. depart-pickup PALLET 1 loc TRUCK
U. move-to PALLET 1 loc TRUCK loc CONVEYOR
5. approach-release PALLET 1 loc CONVEYOR
6. depart-release PALLET 1 loc CONVEYOR

^

k

12.2 THE FIELD MATERIEL-HANDLING ROBOT CONTROL SYSTEM
12-18

To execute the TRANSFER command, you must define and compile all six path

steps from the RSL board. The RSL code for the paths and path-points needed
to accomplish the TRANSFER command follow. The % character indicates a com-

ment line.

% Move to a starting position (from home) before scanning the truck,

-path- move-to PALLET 1 loc HOME loc TRUCK

% Move to the predefined scan start location using a fast joint

% trajectory motion.
-ppt- goto loc SCAN-START

joint 30.0 30.0 5.0

% Scan the truck from left to right searching for a pallet, align

% with long side of pallet, and engage fork,

-path- approach-pickup PALLET 1 loc TRUCK

% Orient fork with the truck bed

% adjust roll.
-ppt- equate 4 3 .5 .0 X tool nul

cart .2 .15 .25 .3 .2 .25

% adjust pitch.
-ppt- equate 4 5 .5 20.0 Z tool nul

cart .2 .15 .25 .3 .2 .25

% Fork is now parallel with truck bed. Scan for pallet, return

% position in PALLET-POSE. SCAN-MTB causes the fork to travel in a

% base rotation motion.
-ppt- scan 50.0 .5 PALLET-POSE

tool SCAN-MTB joint 25.0 25.0 5.0

% Move to loc PALLET-LOC which consists of PALLET-POSE and a

% movetable to position the fork in front of the pallet,

-ppt- goto loc PALLET-LOC
joint 25.0 25.0 1.0

% Find the long side of the pallet,
-ppt- align-grip

4.0 8.0 0.0 .75 15.0 14. 5

tool nul
cart .3 .15 .25 .3 .15 .25

cart .3 .15 .25 .3 .15 .25

cart .3 .15 .25 .3 .15 .25

% Lower the fork to the truck bed. Ensure that the fork is parallel
% with the face of pallet and truck bed.

-ppt- approach-pallet
17.75 .5

4 28.5 .25
4 3 .0 .25

7 4 .0 .5

cart .3 .07 .25 .3 .07 .25

12.2 THE FIELD MATERIEL-HANDLING ROBOT CONTROL SYSTEM
12-19

% Guide fork under the pallet until the rear switch signals engagement,
-ppt- pickup-pallet 7 .5 1.0

cart .3 .3 .25 .3 .15 .25 ^
% Depart by picking up the pallet and tilting it back.
-path- depart-pickup PALLET 1 loc TRUCK

% PALLET-UP 1 is an offset up from the current position under the

% pallet.
-ppt- goto tool PALLET-UP 1

cart .3 .3 .25 .3 .3 .25

% PALLET-UP2 tilts the pallet back,

-ppt- goto tool PALLET-UP2
cart .3 .3 .25 .3 .3 .25

% Move to an intermediate safe position.
-path- move-to PALLET 1 loc TRUCK loc CONVEYOR

% CONV-SAVE is a predefined safe position near the conveyor, which
% can be approached using a high-joint velocity,

-ppt- goto loc CONV-SAFE
joint 10.0 30.0 5.0

% Approach conveyor, a predefined location, and release pallet,
-path- approach-release PALLET 1 loc CONVEYOR

% C0NV-UP1 is an offset up from CONVEYOR goal. Goal type .

% takes the movetable (C0NV-UP1) and adds it to the path goal w
% (CONVEYOR).

-ppt- goto goal C0NV-UP1
cart .3 .3 .25 .3 .3 .25

% Place pallet at the goal CONVEYOR,
-ppt- goto goal nul

cart .3 .3 .25 .3 .3 .25

% Extract fork tines.
-path- depart-release PALLET 1 loc CONVEYOR

% CONV-BACK is an offset up from the CONVEYOR goal,
-ppt- goto goal CONV-BACK

cart .3 .25 .25 .3 .25 .2

-ppt- goto loc CONV-SAFE
joint 10.0 30.0 5.0

^

12.2 THE FIELD MATERIEL-HANDLING ROBOT CONTROL SYSTEM
12-20

Chapter 13

DEBUGGING TECHNIQUES

This chapter describes several RCS debugging techniques, including debugging
interactively using Show mode, single-stepping through a routine, single-
stepping control levels, isolating problems, creating debugging routines, and
using other debugging techniques.

13*1 DEBUGGING INTERACTIVELY USING SHOW MODE

In most high-level languages (when an interactive debugging system is unavail-
able), you debug routines, or procedures, by inserting write or print state-
ments within the code, recompiling the code, and executing the code again.
SMACRO is interactive. You can perform the following functions at the

terminal: execute individual routines, assign values to variables, and dis-
play the contents of variables.

Show mode is a useful debugging tool, enabling you to display information at
the terminal. In Show mode, when you enter the name of an owner, RCS displays
the name of the owner and the contents of all the members. When you enter the
name of a variable, RCS displays the value of the variable.

For example, if you are using the RSL application, move to the TASK&PATH board
and change to Show mode by entering _£S. Enter TDEF to ensure that you are in
the TASK vocabulary and then enter input-command , the variable that contains
the command that the user passes to the TASK level. RCS displays the contents
of the input-command, for example, PAUSE.

To see the values of all members in the output status buffer for the TASK
level, enter the name of the owner, output-status-var . RCS displays the name
of the owner and the contents of the members of the owner:

output-status-var
(iv) cycle-#-status-out =15
(iv) inc-coiimand-#-echo-out = 1

(strv) c(»iiiiiand-echo-out = PAUSE

(iv) status-report =

(iv) status-arg-out =

13.1 DEBUGGING INTERACTIVELY USING SHOW MODE
13-1

For example, to test the robot transforms, set up block 21 on the JOINT/COMM
board as follows:

:S joint/c<Miiiii>21 LIST
21

$DEF
1 :R

2 10.deg 20.deg 30*(leg

3 40.deg 50.deg 60.deg ==> servo-com-Joint
4 TIME-P JOINT>CART
5 TIME-P CART>JOINT
6 :S

7 CR JS servo-com-joint
8 CR JS xg
9 CR PMS pose
10 CR conf-flag
11

12

13
14

15

Line 2 sets servo-com-joint to the desired joint values. Line 4 executes
JOINT>CART and displays the execution time. The input to JOINT>CART is in

servo-com-joint, the output is in pose and conf-flags. Line 5 executes
CART> JOINT and displays the execution time. The input to CART> JOINT is in
pose and conf-flags, the output is in xg. Lines 7 through 10 display the
inputs and outputs. Load block 21 by entering 21 LOAD . RCS yields the fol-
lowing output:

JOINT>CART 9750 usee
CART>JOINT 8300 usee
servo-com-joint
10. 20. 30. 40. 50. 60
xg
10. 20. 30. 40. 50. 60

pose as matrix
X y Z xyz
-0.6366 0.02272 0.7709 25.66
0.7712 0.0296 0.6359 9.082
-0.008369 0.9993 -0.03636 39.23

(1:fa) conf-flag =

-1. 1. 1.

:S joint/comm>

Because xg has the same values as servo-com-joint, the two transforms are
inverses of each other, as required. Block 21 displays the pose as a matrix

for easier interpretation. You can set the joint angles to simple values (for

example, or 90 degrees) to check the pose and conf-flag computation. To

13.1 DEBUGGING INTERACTIVELY USING SHOW MODE
13-2

check the computation, return to the master board, edit line 2 of block 12021,

move to the JOINT board, and reload block 21 (using ELOAD). Edit block 21 to

contain the simple joint angles in the following listing:

$DEF
1 :R

2 0.deg 0.deg 90.deg
3 0.deg 0.deg 0.deg ==> servo-ccxn-Joint

4 TDffi-P JOINT>CART
5 TDffi-P CAHT>JOINT
6 :S

7 CR JS servo-conni-Joint

8 CR JS XG
9 CR PMS pose
10 CR conf-flag
11

12

13
14

15

:S rsl

oad the block by entering 21 ELOAD. The output is:

JOINT>CART 7920 usee
CART>JOINT 6750 usee
servo-corn-Joint
0.0 0.0 90. 0.0 0.0 0.0
zg
0.0 0.0 90. 0.0 0.0 0.0
pose as matrix

X* y^ Z xyz
0.0 0.0 1. 23.62
0.0 1. 0.0 4.488
-1. 0.0 0.0 25.59

(1:fa) conf-flag =

-1. 1. 1.

:S Joint/co]iiii>

These particular values correspond to the pose for the PUMA 760 with the elbow
at 90 degrees.

13.2 SINGLE-STEPPING THROUGH A ROUTINE

To locate an error within a routine, single-step through the routine one line

at a time. You can execute routines line by line in two ways: by making the
entire routine a comment and then restoring the routine one line at a timcj or

by executing the FORTH equivalent of the code in the routine line by line at

the terminal (if possible).

9
13.2 SINGLE-STEPPING THROUGH A ROUTINE

13-3

To make an entire routine into a comment, you should first copy the routine to

an empty block. Then use the screen editor to enclose the routine, except for
the first line of SMACRO code, in parentheses. Leave the screen editor, load
the block, and execute the routine. If you do not get an error, go back into
the screen editor and move the first parenthesis to include another line of
code. Continue this procedure until you find the problem.

Executing the code at the terminal works best for routines that manipulate
SMACRO files, because you can execute many of the SMACRO file operators
directly at the terminal. These file operators are:

add-list retrieve-l&r
add-record store
clear-list store-l&r
~re-init-file store-source
remove update-header
retrieve

Many other SMACRO operators have equivalents in FORTH that you can use to exe-
cute lines of code at the terminal. For example, the FORTH equivalent for the
SMACRO assignment operator (=>) is the FORTH store command ("!).

13-3 SINGLE-STEPPING THROUGH THE RSL CONTROL LEVELS

Often the best way to isolate an error is to single-step through the control

levels. In single-step, each step executes one communications cycle. To
single-step through the control levels, follow this procedure:

1

.

On the RSL board , enter 923 LIST .

2. Use the screen editor to select between dummy and real execution. Making
line 6 a comment selects single-step without the robot. Making line 5 a

comment selects single-step with the robot.

3. Enter Task/path REMOTE to move to the TASK&PATH board.

4. Issue a command by loading a block that contains an RSL command. On the

NBS system tape, the directory block 910 lists the blocks containing RSL
commands. Enter 913 LOAD to issue a transfer task.

5. Enter 2Ji to return to the master board.

6. Enter HALT whenever you return to the master board from a slave board.

Entering HALT makes the single-step output easier to read.

7. Enter PAGE TT to execute one communications cycle.

13.3 SINGLE-STEPPING THROUGH THE RSL CONTROL LEVELS
13-4

Figure 13-1 shows sample output that RCS displays when you enter TT,

task: 2 transfer nul 01 arr ARRAY 00 08 ;; loc CONVEYOR
path: 13 2 1 1

1330 usee
2370 usee
:S task&path>
prim: 22 2 1

(fv) Izsl = 0.0
(fv) angRs r 0.0

10940 usee
:S priin>

Joint: 533 2 1 1. 1.

servo-eom-joint
53.3 -26.38 -79.08 -174.4 55.98 161.4

31880 usee

Figure 13-1. Single-step output.

TT commands each board to load block 919 in its offset. (TASK&PATH loads

TASK'S 919, and not PATH'S 919.) Block 919 on each level contains the words
that execute that level, and any debug or display words you may have added.

Here is block 919 on the TASK&PATH board:

TASK DEFINITIONS
1 :R 1 remote-aetive I

2 BOARD-PROCESS

3 :S
4 PDEF
5 ^ CR ppt-stsu?ted

6 ^ CR new-e(»miand

7 ^ CR ine-e(»niand-#-out
8
9 CR :R TDEF process-time "€ PRINT-TIME :S

10 CR :R PDEF process-time "§ PRINT-TIME :S

11

12

13
14

15

13.3 SINGLE-STEPPING THROUGH THE RSL CONTROL LEVELS
13-5

Here is block 919 on the PRIM board:

PRIM DEFINITIONS ^
1 :R 1 remote-active !

2 BOARD-PROCF-SS

3 :S

4 CR Ixsl

5 CR angRs
6 % CR current-vel
7 CR :R process-time ~§ PRINT-TIME
8 % CR PMS Joint-com-pose
9
10

11

12

13

14

15

«

:S

Here is block 919 on the JOINT/COMM board:

% single step dummy mode JOINT DEFINITIONS
1 :R

2 1 remove-active !

3 COJM-PROCESS JOINT-LEVEL
4 done "§ ==> status-in joint-out joint-in 12 "MOVE
5 inc-c(»nand-#-out "§ ==> inc-command-f-echo-in
6 CR JS servo-com-joint ^
7 * CR JS xg ^
8 $ CR JS v-current

9 :S
10 % CR PMS pose
11 $ CR conf-flag
12
13 CR :R process-time "§ PRINT-TIME :S

14

15

Note: The TASK&PATH and PRIM boards simply run BOARD-PROCESS, but the

JOINT/COMM board is more complex. The difference is because the
JOINT/COMM board must run without the robot communications, which are

usually included in BOARD-PROCESS for that board.

13.3 SINGLE-STEPPING THROUGH THE RSL CONTROL LEVELS
13-6

The following example shows output from TT taken from the middle of a TRANSFER

task execution. The times shown are for 5 MHz boards.

task: 9 TRANSFER nul 01 arr ARRAY 00 08 ;; loc CONVEYOR
2

path: 8 2

1170 usee
2540 usee
:S task&path>
prim: 10 2

(fv) Ixsl = 5.263
(fv) angRs =0.0
14450 usee
:S prim>
joint: 78 2 1 1. 1.

servo-com-joint
13.45 053.7 -54.04 -0.003327 -72.47 18.45

32030 usee

:S joint/comm>
:S rsl>

The Display routine on each level generates the lines labeled with the level

name. (For example, the PRIM level Display routine generates the line prim:
10 2 0. TT sets the print-f of each level to true.) Other words in the

919 blocks on each level generate the additional output lines. The rest of

this section describes the output in detail, line by line.

task: 9 TRANSFER nul 01 arr ARRAY 00 08 ;; loc CONVEYOR
2

These lines are from the TASK Display routine. It shows the values of
inc-command-#-in (9), input-command (TRANSFER nul 01 arr ARRAY 00 08 ;; loc

CONVEYOR), status-report (0 is executing), status-arg-out (0 is noerror),
state-label (2), and sector-count (0).

path: 8 2

This line is from the PATH Display routine. It shows the values of

inc-command-#-in (8), input-command (2 - PATH), status-report (0 - executing),
status-arg-out (0 - noerror), ppt-command (0 - goto), and ppt-done
(0 - false).

1170 usee

This line is generated from the line "CR :R TDEF process-time ~@ PRINT-TIME
:S" in TASK block 919. It displays the execution time for the TASK level.

13-3 SINGLE-STEPPING THROUGH THE RSL CONTROL LEVELS
13-7

2540 usee

This line is generated by the line "CR :R PDEF process-time "§ PRINT-TIME :S"

in TASK block 919. It displays the execution time for the PATH level.

:S task&path>

This line is the prompt for the TASK&PATH board.

prim: 10 2

This line is from the PRIM Display routine. It shows the values of
inc-command-#-in (10), input-command (2 - TRAJ), status-report (0 -

executing), status-arg-out (0 - noerror), and traj-type-in (0 - cart).

(fv) Ixsl = 5.263

This line is generated by the line "CR Ixsl" in PRIM block 919. It displays
the translational distance from the goal.

(fv) angRs = 0.0

This line is from the line "CR angRs" in PRIM block 919. It displays the

rotational distance from the goal.

14450 usee

This line is generated by the line "CR :R process-time ~@ PRINT-TIME :S" in

PRIM block 919. It displays the execution time for the PRIM level.

:S prim>

This line is the PRIM board prompt.

joint: 78 2 1 1. 1.

This line is from the JOINT Display routine. It shows the values of
inc-command-#-in (78), input-command (2 - CARTESIAN), status-report (1 -

done), status-arg-out (0 - noerror), v-scale-min (1.), and a-scale-min (1.).

servo-com-joint
13.45 053.7 -54.04 -0.003327 -72.47 18.45

This line is generated by the line "CR JS servo-com-joint" in JOINT block

919. It displays the output joint angles in degrees.

13.3 SINGLE-STEPPING THROUGH THE RSL CONTROL LEVELS
13-8

32030 usee

This line is generated by the line "CR :R process-time ~@ PRINT-TIME :S" in
JOINT block 919. It displays the execution time for the JOINT level.

:S joint/comm>
:S rsl>

These lines are the prompts for the JOINT/COMM and RSL boards.

The word Display on each control level, and any variables executed in Show
mode in block 919 on each control level, generate this output. You can

execute a number of cycles and watch the single-step display change by
entering [^cycles] TTT . Single-stepping through the control levels is often
helpful in locating errors.

13.4 ISOLATING PROBLEMS

When the system aborts a robot task or does not complete a task, debug the
problem first by determining where the problem occurred. If you can see that

the robot is not performing a task correctly, finding the cause of the problem
is usually easy. For example, if the robot starts a transfer task and hits an
object while moving directly to the first sector of an array, you have to add
a path-point to the transfer routine that first moves the robot to a safe
location.

If the error is in the software, you have to determine where the problem
occurred and correct it. To illustrate this procedure, the following example
introduces an error onto the system tape, isolates the problem by single-
stepping the control levels and tracing the execution of the task, and
restores RCS to its previous condition.

1. Start the system in background mode by entering the following commands:

CBOOT MBOOT init-cm 2 D>M
922 LOAD

2. Load block 928 to show the contents of the status-report and
status-arg-out variables on each level by entering the command:

928 LOAD

13.1 ISOLATING PROBLEMS
13-9

Edit block 981 on the PRIM level, as follows:

3981 ED

Introduce an error by editing block 98 1 to make line 9 a comment and to
include a new line 8 that sets tool-mtb-" to 0. The block should now
look as follows:

CHARACTER OPS

"A Insert On/Off
^E Erase Char
*K Mark to Keep
"Z Input Keep

LINE OPS BLOCK OPS SPECIAL OPS

"C Copy Line *F Forward Block PF1 Home PF2 Clear
"D Delete Line "P Previous Block *U Undo Block
*0 Open Line "G Goto Block If Want string

"T Transfer "N Next Want
*R Retire(quit) *X Cancel

BLOCK 3981 11981

PRIM DEFINITIONS

1

2

3

4

5
6

7
8

9
10

11

12

13

14

15

RR-" PRIM>JOINT-POSE retrieve rr-

RR-" PRIM>JOINT-TRAJ retrieve rr-'

"§ ==> priiii>Joint-pose-rr-
"•§ ==> priin> joint-traj-rr-

RR-" RBT-POSE retrieve rr-* ~§ ==> rbt-pose-rr-'

==> tool-mtb-*
% MTB-"* TOOL-MTB retrieve recordf "§ ==> tool-mtb-'*

MTB-* INV-TOOL-MTB retrieve record# ~§ ==> inv-tool-mtb-'

^

Load the edited block containing the error by halting RCS execution and

moving to the PRIM board, as follows:

HALT
Prim REMOTE
981 ELOAD

Now single-step through the control levels until the error occurs.

Enter:

21
HALT
PAGE TT

The error message BOARD-PROCESS ABORTED appears after the first cycle of

single-step. Because the message appears before the prompt for the PRIM
board, the error occurred on the PRIM level.

13.4 ISOLATING PROBLEMS
13-10

»

Note: Some errors do not occur until RCS has single-stepped through many
cycles. Single-stepping through the control levels is often a

useful debugging tool.

6. Move to the PRIM board and re-execute the word that caused the error.

The error occurs again, enabling you to locate the block that aborted.
Enter:

Prim REMOTE
LOG BOARD-PROCESS

7. As you can see on the display, the routine BOARD-PROCESS executes several
other routines. Because PRIM-LEVEL is the only routine an RCS user is

likely to have changed, locate that routine by entering:

LOC PRIM-LEVEL

8. The routine PRIM-LEVEL also executes several routines, but an RCS user is

likely to have changed only the routines PRE-PROCESS, COMMAND-PROCESS,
POST-PROCESS, and Display. Execute these routines in the same order as
PRIM-LEVEL executes them, stopping when an error occurs. Enter:

PRE-PROCESS
COMMAND-PROCESS

Executing COMMAND-PROCESS should cause the error to occur again.

9. Enter the following commands to display the last word executed and to
locate that word:

\N

10. Trace the execution of the routine COMMAND-PROCESS by displaying vari-
ables in Show mode to isolate the problem further. Enter:

jS
status-report
error
hold-set
false
input-command
prim-restart

11. At this point, COMMAND-PROCESS executes the routine PRIM-RESTART. Enter:

PRIM-RESTART

The error should occur again. Now locate PRIM-RESTART by entering:

\L

13. M ISOLATING PROBLEKS
13-11

12. Trace the execution of the routine PRIM-RESTART by displaying variables
in SHOW mode to isolate the problem further, as follows (the command N L
displays the rest of the routine):

new-command
true
joint-status
error
N L

joint-status
done

13. At this point, PRIM-RESTART executes the routine FEEDBACK-POSE. Execute
FEEDBACK-POSE, as follows:

FEEDBACK-POSE

The error should occur again. Now locate FEEDBACK-POSE by entering:

\k

14. Because the original error message said RCS aborted because of a
record#, look for statements in FEEDBACK-POSE that assign values to

record// and display those variables. Enter:

joint-pose-""
tool-mtb-

Note: You cannot execute retrieve-from-field from the terminal.

15. Because tool-mtb-'" equals 0, you need to find where the variable
tool-mtb-" is initialized. Use the directory block structure to deter-
mine where PRIM level round-robin variables are initialized by entering:

LIST
900 LIST
980 LIST
981 LIST

16. Return block 98 1 to its original state by entering:

21
RED

13.4 ISOLATING PROBLEHS
13-12

Edit the block to contain the following code:

CHARACTER OPS
"A Insert On/Off
*B Erase Char
^K Hark, to Keep
'^Z Input Keep

LINE OPS
'^C Copy Line
"D Delete Line
'^0 Open Line

BLOCK 3981 11981

BLOCK OPS SPECIAL OPS
'F Forward Block PF1 Home PF2 Clear
'P Previous Block ''U Undo Block
*G Goto Block *W Want string
'T Transfer ^ Next Want
"^R Retire(quit) '^X Cancel

PRIM DEFINITIONS

1

2

3

5
6

7
8

9
10

11

12

13
14

15

:R

RR-'

RR-'

PRIM>JOINT-POSE retrieve rr-'

PRIM>JOINT-TRAJ retrieve rr-'

"§ ==> priiii>joint-pose-rr-'
~§ ==> priin> joint-traj-rr-'

RR-* RBT-POSE retrieve rr-'* "§ ==> rbt-pose-rr-'

MTB-'* TOOL-MTB retrieve record* ~§ ==> tool-mtb-"
MTB-'* INV-TOOL-HTB retrieve record* ~§ ==> inv-tool-mtb-'

When you extend RSL, use this procedure to debug errors.

13«5 CREATING DEBUGGING ROUTINES

You can create your own routines to help debug problems, RSL contains several
debugging routines that display variables. Each control level contains a rou-

tine called Display and a list owner called List-display. Figure 13-2 lists

the routines Display and List-display for the PATH level. You can write simi-

lar routines to display other variables.

13.5 CREATING DEBUGGING ROUTINES
13-13

1909 10909 ABS
PATH DEFINITIONS

routine Display
if print-f (EQ) true
then

-T CR
-PRINT" path: "

"PRINT inc-coinmand-#-in

"PRINT input-command
"PRINT status-report
"PRINT status-arg-out
"PRINT ppt-command
"PRINT ppt-done

endif
end-routine

1908 10908 ABS
PATH DEFINITIONS

LIST-0 List-display
m new-command
m ppt-done
m new-ppt
m path-done
m prim-status
m output-command
m inc-command-#-out

Figure 13-2. Display routine and List-display list owner
for the PATH level.

Note: In debugging routines when RSL is running in the background, you cannot
see the intermediate results of calculations. To show the intermediate
results, you can run RSL in the foreground and include "PRINT state-
ments. However, "PRINT statements slow RCS operation.

13.6 USING OTHER DEBUGGING TECHNIQUES

You can also use other techniques to debug RCS hardware, RCS software, and RSL
software.

13.6 USING OTHER DEBUGGING TECHNIQUES
13-14

I

RCS Hardware Debugging Techniques

You can add the following optional RCS hardware to make some debugging opera-
tions easier:

• A hardware switch box enables you to use the hardware switch to communicate
directly with the other boards in the system. When only one board in the

system malfunctions, use the switch box to reset that board without reboot-

ing the entire system.

• An oscilloscope on the bus busy enables you to see the signal on the

MULTIBUS. The signal goes down when the bus is busy.

RCS Software Debugging Techniques

Some techniques for debugging RCS software problems include:

• Check your spelling. Remember, reserved words in the FORTH dictionary have
three significant characters. SMACRO words have 31 significant characters.

• If the vocabulary of a control level is full, increase the size allocated
in block 9 of that control level.

• If the system dictionary for a board is full, edit the system vocabulary
declaration for that board to increase the size of the dictionary. These

declarations are located in absolute blocks 1406 to 1^12. You must reload
the base system for this to be effective.

• If you cannot access a slave board, try entering [board name] Board-sem-
initialize .

• Make sure you did not put a vocabulary identifier in routines that are more
than one block long.

RSL Software Debugging Techniques

Some techniques for debugging RSL software problems include:

• To check the current status of all control levels, enter 8928 0LOAD to dis-
play the status and status-arg-out information from all control levels.

• Check that all RSL source code blocks contain j^. The RSL compiler does
not work in other modes.

• If you are not sure what RSL code is loaded, enter HALT to halt the system
and then enter 8990 0LOAD to reload the code.

13.6 USING OTHER DEBUGGING TECHNIQUES
13-15

If the robot continues to reach a wrist joint-limit when moving to a pose,
try changing the wrist configuration by editing the wrist configuration

flag in the pose definition. Note that you cannot change the wrist config-
uration when using the joystick.

Write debugging routines to display variables.

13.6 USING OTHER DEBUGGING TECHNIQUES
13-16

Appendix A
RCS, 8087, AND DISK AND TAPE ERROR MESSAGES

This appendix lists the error messages that RCS displays to indicate error
conditions. The error messages include RCS, 8087, and disk and tape error

messages. RCS error messages consist of explanatory text. 808? error
messages consist of a display of the 808? register contents. Disk and tape
error messages consist of an error code described in the Rimfire manual.

A.I RCS ERROR MESSAGES

RCS error messages describe fatal and nonfatal errors. Fatal errors are the

result of problems in allocating memory space for an application. A fatal
error requires you to execute at least a RESTORE and a D>M, rather than simply
reload a single block, to recover from the error. RESTORE and D>M return the

system to the "clean" state that existed before you encountered the error.
The fatal error messages include BUFFER OVERFLOW, DICTIONARY FULL, FILE FULL,

FILE SPACE FULL, SYSDICT FILE FULL, SYSDICT SPACE FULL, and vocab redefined
larger. The remaining error messages indicate nonfatal errors.

The following list describes the RCS error messages.

~var only
RCS detected something other than a SMACRO variable following ==>

.

(Nonfatal)

[name] ?

The specified name is undefined. (Nonfatal)

6 msec time-out interrupt
An application program attempted to access an I/O port or a RAM address
that Is not physically present in the system. (Nonfatal)

ALREADY ASSIGNED HERE
RCS found more than one occurrence of the same variable in a list owner
(LIST-0). (Nonfatal)

base<>10
RCS detected that you were trying to load a block with DBG-ON without
first setting BASE to decimal. The block is not loaded. (Nonfatal)

buffer length mismatch
RCS detected that two buffers specified for a COMM transfer have differ-
ent lengths. (Nonfatal)

A.I RCS ERROR MESSAGES
A-1

[name] BUFFER OVERFLOW
The current variable owner does not have room for the name to be defined.
BUFFER OVERFLOW is the most common fatal error. This error results from
the user specifying an insufficient number of bytes during the variable
owner declaration. The error actually occurs when the SMACRO compiler
assigns the members of that variable owner to the allocated space, which
is too small to hold the members. (Fatal)

coram table full
RCS cannot accept more than 60 COMM transfer definitions. (Nonfatal)

DICTIONARY FULL
The FORTH dictionary space is full. This condition results from defining
too many FORTH words or encountering too many errors while compiling
SMACRO routines. If the condition results from defining too many FORTH
words, you may be able to circumvent the condition by reloading the base
system with LOCATE-OFF. (RCS loads RSL with LOCATE-OFF automatically.)

RCS compiles SMACRO routines in FORTH space before moving them to SMACRO

space. If an error occurs during the compilation, RCS does not move the
part of the SMACRO routine already compiled to SMACRO space, thus using
up FORTH space. (Fatal)

[name] F-EXISTS
The specified name is a previously defined FORTH word. This error mes-
sage is a warning only; RCS defines the SMACRO word. (Nonfatal)

FILE FULL
The current SMACRO file is full. This error can occur when you load the

RSL code. To correct this condition, delete some of the RSL code for
that file or increase the size of the file.

Deleting some RSL code and reloading the current set (enter 990 LOAD for
RSL) may solve the problem if the file does not use garbage collection
(such as the POSE-FILE or the LOCATION-FILE).

If you choose to increase the file size, you must use RESTORE and D>M to

return the system to a "clean" state before the file was declared on any
level. Then declare the file with the new size and reload the system.
Examine block H on each level to determine if the level declares the
file. (Fatal)

FILE SPACE FULL
The SMACRO file being declared is too large for the remaining space in

the common memory area allocated for user files. You can check the cur-

rent size of the file space by entering F-MEM . To correct this condi-
tion, you must redefine the values of the fpage, ftop, and fbottom
variables in block 1402, and reload the base system. (Fatal)

floating point only
RCS detected something other than a floating-point number in the input
for the #.READ word. (Nonfatal)

*

A.I RCS ERROR MESSAGES
A-2

•

§)

ILLEGAL
RCS detected an illegal value following <=. (Nonfatal)

illegal type
RCS detected something other than a string, array, byte variable, integer
variable, floating-point variable, or a segment variable following ==>.

(Nonfatal)

invalid preserve*
The preserve (or preserve-file) number is outside the range 1 through 9.

(Nonfatal)

invalid image#
The D>M image number is outside the range 1 through 5. (Nonfatal)

[name] Pre-locate
The indicated name cannot be found using LOG. (Nonfatal)

record* =

The variable record* was when the program tried to manipulate a file.

(Nonfatal)

remove record not on list
The SMAGRO file-manipulation word, remove, could not find the specified
record number on the current list. This error indicates that remove did

not remove any records. (Nonfatal)

STAGK EMPTY
Program operation caused the FORTH stack to underflow. Syntax errors in
SMAGRO statements may cause this error. (Nonfatal)

SYSDIGT FILE FULL
RGS detected an attempt to add a word to a vocabulary that is already
full. Enter V-SIZE to determine the size of the current vocabulary. To
increase the size of a vocabulary, you must first use RESTORE and D>M to
return the system to a "clean" state where that vocabulary is not

defined. Then define the larger vocabulary. (Fatal)

SYSDIGT SPAGE FULL
The vocabulary being declared is too large for the remaining space in the
common memory area allocated for the system dictionary. You can check
the current size of the system dictionary by entering F-MEM . To correct
this condition, you must redefine the values of the dpage, dtop, and
dbottom variables in block 1402, and reload the base system. (Fatal)

u-STAGK-underflow
A stack used in compiling SMAGRO routines has underflowed. This message
indicates a syntax error, such as if you spelled "endif" as "end-if".

(Nonfatal)

vocab already exists
RGS detected an attempt to define more than one vocabulary with the same
name. Each vocabulary name must be unique throughout the entire system.
(Nonfatal)

A.1 RCS ERROR MESSAGES
A-3

vocab redefined larger
RCS detected an attempt to increase the size of a vocabulary when you L
redefined it. (Fatal)

var-owner only
RCS detected something other than a variable owner in a COMM transfer
definition. (Nonfatal)

A.2 8087 ERROR MESSAGES

If the 8087 detects an error, it aborts the current operation and displays the

control, status, and tag registers (in binary). It also displays the instruc-
tion address (in either the FORTH or SMACRO segment), the opcode, and the
operand address (in either the FORTH or SMACRO segment). You can enter
0.0 0.0 F/ for an example of this display.

A. 3 RIMFIRE DISK AND TAPE ERROR MESSAGES

Disk and tape errors have the following format:

tape error [error code] block [block#] [word]

The error code gives the two Rimfire status bytes. The lower 6 bits of the
high order byte give the error code. See the Rimfire manual listed under
"Disk and Tape Controller Board" in the bibliography for a description of the ^

error codes. The block# gives the block where the error occurred, and word is
the error encountered.

(

A. 3 RIMFIRE DISK AND TAPE ERROR MESSAGES
A-li

Appendix B
USER WORD SUMMARY

This appendix describes the RCS and RSL user words. The word descriptions are

grouped according to function and labelled with headings (See the Appendix B
portion of the table of contents at the beginning of this manual for a list of
the headings.) Within each group, the words are listed in ASCII order. The
descriptions include the required syntax showing the word and its parameters
in the order in which you should enter them.

Table B-1 lists the abbreviations and Table B-2 lists the phrases used to
describe the syntax of the words. Table B-3 helps you find the description of
a specific word in this appendix. This table lists all RCS and RSL user words
in ASCII order. The table consists of the word followed by its group heading,
the page number on which it is found in this appendix, and the page number
where it is discussed in the manual. The bottom of each page of the table
lists the ASCII character sequence to help you locate specific words. Because
of the length of this table, horizontal lines separate every five words.

Table B-1.

Abbreviation

var
ivar
iexp

fvar

fexp

war
vexp
qvar
qexp
pvar

pexp
mvar
mexp

List of Abbreviations Used in the Syntax Descriptions

Meaning

Any variable, including subscripted arrays.
An integer or byte variable.
An integer expression, composed of integer vari-

ables and operators. Note that integer expres-
sions do not contain parentheses.
A scalar floating-point variable, including sub-

scripted floating-point arrays.
A scalar floating-point expression.

A vector variable.
A vector expression.
A quaternion variable.
A quaternion expression.
A pose variable.
A pose expression.
A matrix variable.
A matrix expression.

USER WORD SUMMARY
B-1

Table B-2.

Phrase

local template

current file

current record

current list

free list

List of Phrases Used in the Syntax Descriptions.

Meaning

The variable owner that serves as a template for
records in the file. The members define the

fields in the record.

The last file made current by executing its

name. All file operations refer to this file.

The record in the current file pointed to by the
variable record//. If record* is 0, no current
record exists.

The linked list in the current file starting at
the current record. If record// is 0, no current
list exists.

The linked list of available records in the

current file. The variable avail-record points
to the free 1.

USER WORD SUMMARY
B-2

Table B-3. Complete List of RCS and RSL User Words in ASCII Order.

WORD GROUP HEADING
APPENDIX
PAGE #

MANUAL
PAGE #

!

tt

tin

#.READ
#LLIST

#READ

$DEF
%

%%

FORTH words
Miscellaneous RCS words
SMACRO operator words

SMACRO operator words
Editing words

B-46
B-35
B-59
B-60
B-29

B-60

B-94
B-35
B-35
B-35

6-5

6-9

10-16

1

1

SMACRO operator words

RSL operating system words
Miscellaneous RCS words
Miscellaneous RCS words
Miscellaneous RCS words

6-5
6-14

5-12
6-9

(

((

()

(•)

(»/)

))

Miscellaneous RCS words
SMACRO operator words
SMACRO operator words
SMACRO operator words
SMACRO operator words

B-36
B-60
B-60
B-60
B-61

6-8

7-9

(+)

(-)

(/)

(ABS)

(AND)

SMACRO operator words
SMACRO operator words
SMACRO operator words
SMACRO operator words
SMACRO Boolean-operator words

B-61
B-61
B-61
B-61
B-74

7-9
7-9
7-9

7-11

(COM)

(EQ)

(GE)

(GT)

(LE)

TltT
(MAX)

(MIN)

(MOD)
(NE)

SMACRO operator words
SMACRO Boolean-operator words
SMACRO Boolean-operator words
SMACRO Boolean-operator words
SMACRO Boolean-operator words

B-61

B-74
B-74
B-74
B-74

B-74

B-61
B-62
B-62
B-75

6-17
7-11
7-11
7-11

SMACRO Boolean-operator words

SMACRO operator words
SMACRO operator words
SMACRO operator words
SMACRO Boolean-operator words

7-11

7-11

+

-1#

FORTH words
FORTH words
FORTH words
Language words
Predefined SMACRO variable words

B-46
B-46
B-46
B-98
B-57

10-46

9-4

ASCII Sequence:

!"#$$&•()»+,-./ 0...9 : ;<=>?§ Aa...Zz [\]
" _ { I }

'

OSER WORD LIST
B-3

WORD GROUP HEADING

-arr-

-imtb-
-loc-

-mtb-

-mtb-end-

Language words
Language words
Language words
Language words
Language words

APPENDIX
PAGE #

B-98
B-98
B-99
B-99
B-100

MANUAL
PAGE #

9-4

9-4
9-4
9-4
9-4

•obj-

path-
pose-
-ppt-

-rr-

Language words
Language words
Language words
Language words
Language words

B-100
B-100
B-101
B-101
B-101

9-4
9-5

9-3
9-5
10-14

.().

FORTH words
SMACRO operator words
SMACRO operator words
SMACRO operator words
SMACRO operator words

B-46
B-62
B-62
B-62
B-62

7-17

7-9
7-9

7-9

,ABS.

,ATAN,SIN,COS.

SMACRO operator words
SMACRO operator words
SMACRO operator words
SMACRO operator words
SMACRO operator words

B-62
B-63
B-63
B-63
B-63

B^Fy
B-70
B-70
B-68

B-47

7-9
7-9
6-17

,ATAN.

,AXIS,ANGLE>Q.
.AXIS, SIN, COS>Q.
.CROSS.

.D

SMACRO operator words

SMACRO quaternion-operator words
SMACRO quaternion-operator words
SMACRO vector-operator words
FORTH words

.DOT.

.EQ.

.EQZ.

.Esc

.FRAC.

SMACRO vector-operator words
SMACRO Boolean-operator words
SMACRO Boolean-operator words
Miscellaneous RCS words
SMACRO operator words

B-68
B-75
B-75
B-36
B-63

7-11

7-11

.GE.

.GEZ.

.GT.

.GTZ.

.INT.

SMACRO Boolean-operator words
SMACRO Boolean-operator words
SMACRO Boolean-operator words
SMACRO Boolean-operator words
SMACRO operator words

B-75
B-75

B-75
B-75
B-63

7-11

7-11

7-11

7-11

ASCII Sequence:

I
" # $ 5f & ' ()«+,-./ 0... 9 : ; < = > ? e Aa...Zz [\]

" _ { I }
~

USER WORD LIST

B-4

=ss=r==sss====sss::s==ss==;:==ss=sssss===s===srs==sr=r=r==

APPENDIX MANUAL
WORD GROUP HEADING PAGE # PAGE #

.LE. SMACRO Boolean-operator words B-75 7-11

.LEZ. SMACRO Boolean-operator words B-76 7-11

.LT. SMACRO Boolean-operator words B-76 7-11

.LTZ. SMACRO Boolean-operator words B-76 7-11

.M=>. SMACRO matrix-operator words B-71 7-10

.M>Q. SMACRO matrix-operator words B-71

.MAX. SMACRO operator words B-6M

.MIN. SMACRO operator words B-64

.MINUS. SMACRO operator words B-64

.MOD+-180. SMACRO operator words B-64

.NE. SMACRO Boolean-operator B-76 7-11

.NEZ. SMACRO Boolean-operator words B-76 7-11

.P=>. SMACRO pose-operator words B-72 7-10

.PINV. SMACRO pose-operator words B-72

.PP». SMACRO pose-operator words B-72

.PQ«. SMACRO pose-operator words B-72

.PV+. SMACRO pose-operator words B-72

.Q=>. SMACRO quaternion-operator words B-70 7-10

.Q> AXIS, ANGLE, SIN

J

,COS.

SMACRO quaternion-operator words B-70
.Q>AXIS, SIN, COS. SMACRO quaternion-operator words B-71

.Q>M. SMACRO matrix-operator words B-72

.QINV. SMACRO quaternion-operator words B-71

.QP«. SMACRO pose-operator words B-73

.QQ». SMACRO quaternion-operator words B-71

.QV». SMACRO quaternion-operator words B-71

.ROT, SIN, COS. SMACRO pose-operator words B-73

.ROT. SMACRO pose-operator words B-73

.SIGN. SMACRO operator words B-64

.SIN, COS. SMACRO operator words B-64

.SQ. SMACRO operator words B-64

.SORT. SMACRO operator words B-65

.TRN. SMACRO pose-operator words B-73

.UNIT. SMACRO vector-operator words B-69

.V«S. SMACRO vector-operator words B-69

.V+. SMACRO vector-operator words B-69 7-16

ASCII Sequence:

!"#$$&•() -./0...9:;<=>?@Aa...Zz[\] { I } -

USER WORD LIST
B-5

WORD GROUP HEADING
APPENDIX
PAGE #

MANUAL
PAGE #

.V-.

.V/S.

.V=>.

.V>Q.

.VINV.

S^dACRO vector-operator words
SMACRO vector-operator words
SMACRO vector-operator words
SMACRO quaternion-operator words
SMACRO vector-operator words

B-69
B-69
B-69
B-71

B-69

7-10

.VMAG.

.VMINUS.

.VP+.

/

SMACRO vector-operator words
SMACRO vector-operator words
SMACRO pose-operator words
Miscellaneous RCS words
FORTH words

B-70
B-70
B-7^
B-36
B-47

0-?

0-SMACRO
0.#
0ED
0ed

SMACRO Boolean-operator words
Miscellaneous SMACRO words
Predefined SMACRO variable words
Editing words
Editing words

B-76
B-90
B-58
B-30
B-30

7-15

6-23
6-23
5-14

7-15

0LIST
0LLIST
0LOAD
1#

1-?

Editing words
Editing words
Miscellaneous RCS words
Predefined SMACRO variable words
SMACRO Boolean-operator words

B-30
B-30
B-36
B-57
B-76

10#
1 0-SMACRO
11#

12#

Predefined SMACRO variable words
Predefined SMACRO variable words
Miscellaneous SMACRO words
Predefined SMACRO variable words
Predefined SMACRO variable words

B-58
B-57
B-90
B-57
B-57

6-17

12-SMACRO

13#
14#

15#

16#

Miscellaneous SMACRO words

Predefined SMACRO variable words
Predefined SMACRO variable words
Predefined SMACRO variable words
Predefined SMACRO variable words

B-90
B-57
B-57
B-57
B-57

17#

18#

19#
1:a

1:fa

Predefined SMACRO variable words
Predefined SMACRO variable words
Predefined SMACRO variable words
SMACRO declaration words
SMACRO declaration words

B-57
B-57
B-57
B-54
B-54

7-3
7-3

ASCII Sequence;

. /0...9 : ; <=> ?eAa...Zz [\]
^ _ { I }

- (

USER WORD LIST
B-6

WORD GROUP HEADING
APPENDIX
PAGE #

MANUAL
PAGE #

2!

2#

2-SMACRO
2.#
2:a

FORTH words
Predefined SMACRO variable words
Miscellaneous SMACRO words
Predefined SMACRO variable words
SMACRO declaration words

B-47
B-57
B-90
B-58
B-54 7-3

2: fa

2e
2IN
20UT
2pi

SMACRO declaration words
FORTH words
FORTH words
FORTH words
SMACRO operator words

B-55
B-47
B-47
B-47
B-65

7-3

3#
32767#
4#
4-SMACRO
5#

Predefined SMACRO variable words
Predefined SMACRO variable words
Predefined SMACRO variable words
Miscellaneous SMACRO words
Predefined SMACRO variable words

B-57
B-57
B-57
B-90
B-57

6#
6-SMACRO
7#
8#
8-SMACRO

Predefined SMACRO variable words
Miscellaneous SMACRO words
Predefined SMACRO variable words
Predefined SMACRO variable words
Miscellaneous SMACRO words

B-57
B-90
B-57
B-57
B-90

87INIT
9#

C~EXEC
L

Miscellaneous RCS words
Predefined SMACRO variable words
FORTH words
FORTH words
Miscellaneous RCS words

B-36
B-57
B-47
B-48
B-36

6-15

6-4

:1

:L~EXEC
:0K

:R

:r

Miscellaneous RCS words
FORTH words
Miscellaneous RCS words
Miscellaneous RCS words
Miscellaneous RCS words

B-36
B-48
B-37
B-37
B-37

7-18

6-2
6-4

7-18

:S

:S-EXEC
;s
•

<=

Miscellaneous RCS words
FORTH words
Miscellaneous RCS words
FORTH words
SMACRO declaration words

B-37
B-48
B-37
B-48
B-55

6-9

7-18

ASCII Sequence;

! " # $ 56 & ' ()
» - . / 0...9 : ;<=>?« Aa...Zz [\]

" _ { I }

-

USER WORD LIST
B-7

WORD GROUP HEADING

<PAGE

=>

r>SEG
>PAGE

Miscellaneous RCS words
Miscellaneous RCS words
SMACRO operator words
SMACRO operator words
Miscellaneous RCS words

APPENDIX
PAGE #

B-37
B-37
B-65
B-65
B-37

MANUAL
PAGE #

6-9

7-10

e

?

?ARR

?LOC
7M0VE-T0
7MTB

FORTH words
RSL operating system words
RSL operating system words
RSL operating system words
RSL operating system words

B-il8

B-94
B-94
B-95
B-95

6-24

11-3

?OBJ

?POSE
@

a#
a-sysmax

RSL operating system words
RSL operating system words
FORTH words
SMACRO operator words
JOINT parameters

B-95
B-95
B-48
B-65
B-105

AA>Q
abort
abort-f
ABT
add-list

Miscellaneous RCS words
SMACRO statement words
Control-level words
RSL operating system words
SMACRO file-operation words

B-38
B-84
B-108
B-95
B-80 13-4

add-record
ADD-TO-TAPE
approach-pickup
approach-release
arr

SMACRO file-operation words
Tape words
Language words
Language words
Language words

B-80
B-28
B-101
B-102
B-102

7-13
6-29
9-5
9-5
6-9

ass/rec

AUTO?
avail-record
B
B»

SMACRO file-operation header variable words B-78

MBOOT/CUSTOM words B-19
SMACRO file-operation header variable words B-78
Editing words
SMACRO operator words

6-15

B-30
B-65

6-23
7-9

B-65
B-66
B-84
B-66
B-49

7-9
7-9

7-15

B+
fi-

b-fill
B-to-stack
B.

SMACRO operator words
SMACRO operator words
SMACRO statement words
SMACRO operator words
FORTH words

ASCII Sequence:

. / 0...9 : ;<=>?§ Aa...Zz [\]
" _ { I }

~

USER WORD LIST
B-8

WORD GROUP HEADING
APPENDIX
PAGE #

MANUAL
PAGE #

B/

B=>
BACKGROUND
BACKUP
BAD-TAPE

SMACRO operator words

SMACRO operator words
FORTH words

Tape words
Tape words

B-66
B-66
B-49

B-28
B-28

7-9
7-10

6-29
6-29

BASE
Basic
BI

blank
BLOCKS

Miscellaneous RCS words
MBOOT-CUSTOM words
Miscellaneous RCS words
SMACRO statement words
Editing words

B-38
B-19
B-38
B-84
B-30

5-11

6-23

Board-sem-initialize

BOOT-BASE-SYSTEM
BOOT-SYSTEM
buffer-ready-f
BUILD

Remote-slave words
MBOOT/CUSTOM words
MBOOT/CUSTOM words
COMM words
FORTH words

B-33
B-19
B-20
B-92
B-49

13-15
D-1

5-14
8-3

bv
bytes
bytes/record
cart
case

SMACRO declaration words B-55 7-3
SMACRO declaration words B-55 7-4

SMACRO file-operation header variable words B-79
Language words B-102 9-7
SMACRO statement words B-85 7-17

case:

CBOOT
CLEAR
clear-list
CLR-BIT

SMACRO statement words
MBOOT/CUSTOM words
Editing words
SMACRO file-operation words
FORTH words

B-85
B-20
B-30
B-80
B-49

7-17
5-10
6-23
13-4

COMM COMM words
COMM-PROCESS COMM words
control-cycle-#-clks

COMM words
cos {angle} Predefined SMACRO variable words
CPRINT Printing words

B-92
B-92

B-92
B-58
B-26

4-3

6-15

6-28

CR
creep-delta
creep-vel
CUSTOM
CUSTOM?

Miscellaneous RCS words
JOINT parameters
JOINT parameters
MBOOT/CUSTOM words
MBOOT/CUSTOM words

B-38
B-106
B-106
B-20
B-20

6-15
10-49

10-49

4-3
D-1

ASCII Sequence:

- . / 0...9 : ;<=>?§ Aa...Zz [\] { I }

-

USER WORD LIST
B-9

WORD GROUP HEADING
APPENDIX
PAGE #

MANUAL
PAGE #

cycle-count
cycle-time
D>M
Datamedia

Predefined SMACRO variable words
Control-level words
MBOOT/CUSTOM words
Terminal words

Datamedia-terminal Editing words

B-58
B-108
B-20
B-2M
B-31

B-38

B-38
B-20
B-2l|

B-26

4-5

5-12
5-12

DBG-OFF
DBG-ON
dbottom
DC
Dec-writer

Miscellaneous RCS words
Miscellaneous RCS words
MBOOT/CUSTOM words
Terminal words
Printing words

7-1

A-3

5-13

DECIMAL
default:
default-state:
DEFINITIONS
deg

Miscellaneous RCS words
SMACRO statement words
SMACRO statement words
Miscellaneous SMACRO words
Miscellaneous RCS words

B-39
B-85
B-85
B-90
B-39

6-15

7-17
3-3
6-4

depart-pickup
depart-release
Disk-fix
Display
DM?

Language words
Language words
MBOOT/CUSTOM words

Control-level words
MBOOT/CUSTOM words

B-102
B-102
B-21

B-109
B-21

9-5

9-5

6-8
6-13

do

dpage
dtop
DUMP
ED

SMACRO statement words
MBOOT/CUSTOM words
MBOOT/CUSTOM words
FORTH words
Editing words

B-85
B-21
B-21
B-49
B-31

7-10

A-3
A-3

6-16

ed

Ed-extend
EDIT
ELOAD
else

Editing words
Editing words
Editing words
Remote-slave words
SMACRO statement words

B-31

B-31

B-31
B-34
B-85

6-27

6-17

end-case
end-do
end-repeat
end-routine
end-state-table

SMACRO statement words
SMACRO statement words
SMACRO statement words
SMACRO declaration words
SMACRO statement words

B-85
B-85
B-85
B-55
B-85

7-17
7-10
7-10
4-4

3-3

ASCII Sequence:

! " # $ 5t & » ()
• - . / 0...9 : ; < = > ? @ Aa...Zz [\]

" _ { I }

~

USER WORD LIST
B-10

APPENDIX MANUAL
WORD GROUP HEADING PAGE # PAGE #

endif SMACRO statement words B-86 6-17

enter-interrupt SMACRO statement words B-86 4-4

EQ B SMACRO Boolean-operator words B-77 7-11

erase SMACRO statement words B-86 6-1

ERASE-COMM-TABLE COMM words B-92 8-3

error-list Control-level words B-109
Esc Miscellaneous RCS words B-39
exit-interrupt SMACRO statement words B-86 4-4

F» FORTH words B-49
F+ FORTH words B-50

F- FORTH words B-50
F-ABS FORTH words B-50
F-MEM Miscellaneous RCS words B-39 9-8

f-segment SMACRO file-operation header variable words B-79
f-template SMACRO file-operation header variable words B-79

F. FORTH words B-50
F/ FORTH words B-50 A-

4

F>I SMACRO operator words B-66
false Predefined SMACRO variable words B-58 13-11

Fastbaud Terminal words B-24

fbottom MBOOT/CUSTOM words B-21 A-2
FILE SMACRO declaration words B-55 7-12

file-start SMACRO file-operation header variable words B-79
File-var SMACRO file-operation variable words B-78
FIND Editing words B-31 6-23

FIND-R Editing words B-32 6-23
first-record SMACRO file-operation header variable words B-79
FLOAT FORTH words B-50
fpage MBOOT/CUSTOM words B-22 A-2
from-stack SMACRO operator words B-66 7-15

FROM-TAPE Tape words B-29 5-11

ftop MBOOT/CUSTOM words B-22 A-2
Function-keys Terminal words B-24
fv SMACRO declaration words B-56 7-3

GET-FROM-DISK Miscellaneous RCS words B-39

ASCII Sequence:

! " # $ 5t & ' ()»+,-./ 0... 9 : ; < = > ? e Aa...Zz [\]
" _ { I }

-

USER WORD LIST
B-11

WORD GROUP HEADING
APPENDIX
PAGE #

MANUAL
PAGE #

GE_B
GO
goal
goto
GT B

SMACRO Boolean-operator words
RSL operating system words
Language words
Language words
SMACRO Boolean-operator words

B-77
B-96
B-103
B-103
B-77

7-11
6-2
9-7
9-5
7-11

H.

HALT
HEX
I>F
identity-pose

FORTH words

RSL operating system words
Miscellaneous RCS words
SMACRO operator words
Predefined SMACRO variable words

B-50

B-96
B-39
B-66
B-58

"B=B5~

B-26
B-67
B-109
B-67

6-11

6-15

6-17

5-13
7-15
6-9

if

Image-writer
in-port
inc-command-#-in
index-on

SMACRO statement words

Printing words
SMACRO operator words
Control-level words
SMACRO operator words

init-cm
INPUT
INV-TOOL-MTB
IRR
iv

MBOOT/CUSTOM words
FORTH words
RSL parameters
FORTH words
SMACRO declaration words

Language words
PRIM parameters
RSL operating system words
PRIM parameters
PRIM parameters

B-22
B-51
B-108
B-51
B-56

5-13

7-3

joint

joint-traj-delay
Joint/comm
joy-max-v
joy-max-w

B-103
B-107
B-96
B-107
B-108

9-7

6-15

10-46

^o-ne

JS

L

LE_B
LIST
List-directory

Control-level words
Editing words
SMACRO Boolean-operator words
Editing words
Printing words

B-109
B-32
B-77
B-32
B-26

13-2

6-23
7-11
6-8

6-29

List-display
LIST-0
List-programs

Ij-limit
LOAD

Control-level words
Miscellaneous SMACRO words
Printing words

JOINT parameters
Miscellaneous RCS words

B-109
B-91
B-26

B-106
B-iiO

7-4
6-29

5-13

ASCII Sequence:

. / 0...9 : ;<=>?§ Aa...Zz [\] * _ { I }
~

USER WORD LIST
B-12

WORD GROUP HEADING
APPENDIX
PAGE #

MANUAL
PAGE #

load

LOG
loc
LOCATE-OFF
LOCATE-ON

Miscellaneous RCS words
Miscellaneous RCS words
Language words
FORTH words
FORTH words

B-40
B-40
B-103
B-51
B-51

6-7

6-4

6-9

LT_B
m
MAP
mask-with
Master

SMACRO Boolean-operator words
Miscellaneous SMACRO words
MBOOT/CUSTOM words
SMACRO operator words
Remote-slave words

B-77
B-91
B-22
B-67
B-34

7-11

13-14
6-7

matches
matches-fields
matches-fields-r
matches-r
max-cycle-time

SMACRO Boolean file-operation words
SMACRO Boolean file-operation words
SMACRO Boolean file-operation words
SMACRO Boolean file-operation words
Control-level words

B-83
B-83
B-83
B-84
B-109

7-11

7-11

7-11
7-11

max/rec
MBOOT
mem
MEM>DISK
min-cycle-time

SMACRO file-operation header variable words B-79
MBOOT/CUSTOM words B-22 4-3

SMACRO declaration words B-56 7-6
MBOOT/CUSTOM words B-22 5-12
Control-level words B-110

MONITOR

MOVE
move
move-to
MOVE-TO

Remote-slave words

FORTH words
SMACRO statement words
Language words
TASK command words

B-34

B-51

B-87
B-103
B-104

3-7
6-8

MS Miscellaneous RCS words
N Editing words
next-point-scale-threshold

JOINT parameters
next-record SMACRO file-operation variable words
NE_B SMACRO Boolean-operator words

B-40
B-32

B-106
B-78
B-77 7-11

not-ready
NQUIT
nul
nz

OFFSET

Predefined SMACRO variable words
Miscellaneous RCS words
Language words
Miscellaneous RCS words
Miscellaneous RCS words

B-58
B-40
B-103
B-40
B-41

8-3

6-8

5-14

ASCII Sequence:

! " # $ 5t & • ()»+,-./ 0... 9 : ; < = > ? @ Aa...Zz [\]
" _ { i }

~

DSER WORD LIST
B-13

WORD GROUP HEADING
APPENDIX
PAGE #

MANUAL
PAGE #

OLOAD
Opaq
out-port
OUTPUT
overflow-cycle

Miscellaneous RCS words
Terminal words
SMACRO operator words
FORTH words
Control-level words

B-41
B-25
B-67

B-51
B-110

7-15

PAGE
page
PAGE-MOVE
PAGE-SEG-ERASE
Paper-tiger

Miscellaneous RCS words
Miscellaneous SMACRO words
Miscellaneous RCS words
Miscellaneous RCS words
Printing words

B-41
B-91

B-41
B-41
B-27

13-4

5-13

PAUSE
PDEF
PDUMP

PI

pi

TASK command words
Control-level words
Miscellaneous RCS words

FORTH words
SMACRO operator words

B-104
B-110
B-41

B-51

B-67

6-8

6-3

pi/2
PIC
PMAP
PMS
POFF

SMACRO operator words
FORTH words
MBOOT/CUSTOM words
Miscellaneous RCS words
RSL operating system words

B-67
B-52
B-23
B-42
B-96

13-2

Poff
PON
Pon
PRESERVE
PRESERVE-FILE

Terminal words
RSL operating system words
Terminal words
MBOOT/CUSTOM words
MBOOT/CUSTOM words

B-25
B-96
B-25
B-23
B-23

5-13
5-13

Prim
Print
print-f
PRINT-TIME
Printing

RSL operating system words
Printing words
Control-level words
Miscellaneous RCS words
Printing words

B-97
B-27
B-110
B-42
B-27

B-28

B-42
B-32
B-42
B-32

6-28
6-26

13-5

Pset-tab

QMS
QR

QS
Query-replace

Printing words

Miscellaneous RCS words
Editing words
Miscellaneous RCS words
Editing words

6-24

ASCII Sequence:

. / 0...9 : ;<=>?§ Aa...Zz [\]
" _ { I }

~

USER WORD LIST
B-14

WORD GROUP HEADING
APPENDIX
PAGE #

MANUAL
PAGE #

r-tool

R-WITH
rad

RCS
READ"

Language words

Editing words
Miscellaneous RCS words

MBOOT/CUSTOM words
SMACRO operator words

B-10M

B-33
B-42

B-23
B-67

9-6

e-2k

5-13

ready
rec
record*
RECORD-POSE
RED

Predefined SMACRO variable words
SMACRO declaration words
SMACRO file-operation variable words
RSL operating system words
Editing words

B-58
B-56
B-78
B-97
B-33

8-3
7-12

6-17
9-7
13-12

red
ref-blk
REMOTE
REMOTE-SLAVE
remove

Editing words
Miscellaneous RCS words
Remote-slave words
Remote-slave words
SMACRO file-operation words

B-33
B-42
B-34
B-34
B-80

B-87
B-58
B-105
B-93
B-23

6-25
6-8

6-3

5-13
13-^

repeat SMACRO statement words
reset Predefined SMACRO variable words
RESTART TASK command words
RESTART-COMM-TIMER COMM words
RESTORE MBOOT/CUSTOM words

B-28

B-23
B-81

B-81

B-81

7-10

6-8
6-15
6-11

Restore Printing words
RESTORE-FILE MBOOT/CUSTOM words
retrieve SMACRO file-operation words
retrieve-from-field

SMACRO file-operation words
retrieve-from-fields

SMACRO file-operation words

retrieve-l&r
retrieve-link
retrieve-source
rot-angle
rot-axis

SMACRO file-operation words
SMACRO file-operation words
SMACRO file-operation words
Predefined SMACRO variable words
Predefined SMACRO variable words

B-81
B-81
B-81
B-58
B-59

6-11

13-4

6-17

13-4

ROUND
routine

S-EQ
S-VAR-0
S=>

FORTH words
SMACRO declaration words
SMACRO Boolean-operator words
SMACRO declaration words
SMACRO statement words

B-52
B-56

B-77
B-56

B-87

4-4

7-4

6-17

ASCII Sequence:

. /0. ..9: ;<=>?§ Aa...Zz[\] { I }
-

OSER WORD LIST
B-15

WORD GROUP HEADING
APPENDIX
PAGE #

MANUAL
PAGE #

SAVE-ON-DISK
sd
SDEF
SEG-DUMP
SEG-MOVE

Miscellaneous RCS words
Miscellaneous RCS words
Miscellaneous SMACRO words
Miscellaneous RCS words
Miscellaneous RCS words

B-43
B-it3

B-92
B-43
B-43

6-3

SEG=>
segv
set
SET-BIT
set-bit-in

SMACRO operator words
SMACRO declaration words
Predefined SMACRO variable words
FORTH words
SMACRO statement words

B-68
B-57
B-59
B-52
B-87

7-3

7-15

seqv
SHOW-TABLE
sin{angle}
Slave
Small

SMACRO declaration words
COMM words
Predefined SMACRO variable words
Remote-slave words
Printing words

B-57
B-93
B-59
B-3^
B-28

B-78
B-52
B-87
B-88
B-82

7-3

5-13

source-blk
SORT
state
state-table
store

SMACRO file-operation variable words
FORTH words
SMACRO statement words
SMACRO statement words
SMACRO file-operation words

2-5
13-4

store-l&r SMACRO
store-link SMACRO
store-source SMACRO
store-to-field SMACRO
store-to-fields SMACRO

file-operation words
file-operation words
file-operation words
file-operation words
file-operation words

B-82
B-82
B-82
B-82
B-82

13-4

13-4

strv

SYNC
t-base
t-tool
TAB

SMACRO declaration words
Remote-slave words
Language words
Language words
Miscellaneous RCS words

B-57
B-34
B-104
B-104
B-43

7-3

9-6

TALK\

TAPE
Task/path
TDEF
TDOC

Remote-slave words
Tape words
RSL operating system words
Control-level words
Tape words

B-35
B-29
B-97
B-110
B-29

5-11
6-11

6-3

ASCII Sequence:

!"# $ 5^ &'()•+, - . / 0...9 : ;<=>?§ Aa...Zz [\]
" _ { I }

-

USER WORD LIST
B-16

APPENDIX MANUAL
WORD GROUP HEADING PAGE # PAGE #

Televideo Terminal words B-25 5-12
Televideo-terminal Editing words B-33 5-12
TGOTO Tape words B-29 5-11

then SMACRO statement words B-88 6-17
THRU B-43

Thru-tv Terminal words B-25 6-29

TIME-OUT-INIT Miscellaneous RCS words B-44 6-15
TIME-P Miscellaneous RCS words B-44 13-2
TIMER-READ Miscellaneous RCS words B-44
TIMER-START Miscellaneous RCS words B-44

TO-DESTINATION COMM words B-93 8-3

to-stack SMACRO operator words B-68 7-15
tool Language words B-104 12-20
TOOL-MTB RSL parameters B-108
tp-cycles Path parameters B-107

Tran Terminal words B-25
TRANSFER TASK command words B-105 6-7

TRANSFER-FROM COMM words B-93 8-3
TREWIND Tape words B-29 5-11
true Predefined SMACRO variable words B-59 6-26

TT RSL operating system words B-97 13-4
TTT RSL operating system words B-97 13-9
TUNLOAD Tape words B-29
TYPE-POSE RSL operating system words B-97 9-7
uj-limit JOINT parameters B-106

until SMACRO statement words B-88 7-10
V-SIZE Miscellaneous RCS words B-44 6-3
v-sysmax JOINT parameters B-107
VAR-0 SMACRO declaration words B-57 7-4
VOCABULARY SMACRO declaration words B-57

VT100 Terminal words B-26 5-12
VT 100-terminal Editing words B-33 5-12
w-fill SMACRO statement words B-88
WAIT-FOR-NEXT-COMM-CYCLE

COMM words B-93
WAIT-TASK-DONE Control-level words B-110

ASCII Sequence:

! " # $ Sf & ' ()«+,-./ 0... 9 : ; < = > ? @ Aa...Zz [\] { I }

-

USER WORD LIST
B-17

WORD GROUP HEADING
APPENDIX
PAGE #

MANUAL
PAGE #

WFIX
while
WREAD
WUNLOAD
XX

MBOOT/CUSTOM words
SMACRO statement words
SMACRO operator words
MBOOT/CUSTOM words
Miscellaneous SMACRO words

B-24
B-89
B-68
B-24
B-89

7-10
7-18
6-30

X Y Z

zero-bit-in
\L

\1

\N

Predefined SMACRO variable words
SMACRO statement words
Miscellaneous RCS words
Miscellaneous RCS words
Miscellaneous RCS words

B-59
B-89
B-45
B-45
B-45

7-15
7-18
7-18
7-18

\n

\R

\r

\S

\s

Miscellaneous RCS words
Miscellaneous RCS words
Miscellaneous RCS words
Miscellaneous RCS words
Miscellaneous RCS words

B-45
B-45
B-45
B-45
B-45

7-18
7-18
7-18
7-18
7-18

'^EQ'

X

{ }

Miscellaneous RCS words
SMACRO Boolean-operator words
Remote-slave words
SMACRO operator words
Miscellaneous SMACRO words

B-45
B-78
B-35
B-68
B-89

7-15
6-2

7-10

-I

'?

'e

'C!

'ce

FORTH words
FORTH words
FORTH words
FORTH words
FORTH words

B-52
B-52
B-53
B-53
B-53

13-^

6-9

"DUMP

'F

"F!

'F?

'Fe

Miscellaneous RCS words
SMACRO statement words
FORTH words
FORTH words
FORTH words

B-45
B-89
B-53
B-53
B-53

6-25

'FR?

'INTERRUPT
'MEM

-MOVE

'PRINT

FORTH words
Miscellaneous SMACRO words
Miscellaneous RCS words
Miscellaneous RCS words
SMACRO statement words

B-53
B-92
B-46
B-46
B-89

H-i\

6-25

•PRINT"
're-init-file

"update-header

SMACRO statement words
SMACRO file-operation words

SMACRO file-operation words

B-89
B-83
B-83

6-25
13-4

ASCII SequeDce:

!"#$5{&' ()*+,-./0...9: ;< = >?& Aa, ,Zz [\] { I }

-

USER WORD LIST
B-18

B.I RCS WORDS

This section describes user words defined in RCS, including SMACRO and COMM.

The RCS words include:

• Operating system words
• FORTH words
• SMACRO words

• COMM words

All block references are absolute, unless otherwise indicated.

Operating System Words

The operating system words include!

• MBOOT/CUSTOM words
• Terminal words
• Printing words
• Tape words
• Editing words
• Remote-slave words

• Miscellaneous words

MBOOT/CUSTOM words

% AUTO?

[d>m#] AUTO?

Lists the auto-load block for the specified D>M# on the current board.

Basic

Basic

Loads the second half of the basic FORTH system. Use this word after
MBOOT and before other load words.

BOOT-BASE-SYSTEM

BOOT-BASE-SYSTEM

Loads absolute block 1490 to boot the base system (1 D>M) on each board,

RCS WORDS: MBOOT/CUSTOM Words
B-19

BOOT-SYSTEM

BOOT-SYSTEM ,

Loads block 1460 to boot the slave boards in the system. You may edit
blocks 1460 through 1469 to configure the boot process.

CBOOT

[board#] CBOOT

Boots the Winchester disk from the board that you specify using board#.
Use CBOOT at power-up only.

CUSTOM

[custom#] CUSTOM

Loads a block (block 1370 + custom#) that loads a custom set of utilities
on the current board for an application. You must set up and maintain
this custom# block.

CUSTOM?

[custom#] CUSTOM?

Lists the custom block if the argument is present; lists the custom map
block if the argument is not present.

D>M

[d>m#] D>M

Loads a specified D>M image from disk to memory and loads the auto-load
block,

dbottom

dbottom

Specifies the bottom 20-bit address used by the system dictionary. The
pointer value in this FORTH variable consists of a segment and an offset

within the megabyte page specified by the dpage variable. You must set
the value above 1FFFF because a processor board interprets any lower
address as an on-board address instead of a common memory address. You
set dbottom in block 1402. (See also dpage and dtop)

RCS WORDS: MBOOT/CDSTOM Words
B-20

Disk-fix

Disk-fix

Loads the disk-patching utility.

DM?

[board//] DM?

Lists the D>M map block. If the argument is present, this word lists the

D>M map for the specified board. If the argument is not present, this
word lists the D>M map for the current board.

dpage

dpage

Specifies which megabyte page (using a pagecode) in common memory con-
tains the system dictionary. You can use >PAGE to store a pagecode value

in this FORTH variable. You set the dpage variable in block 1402. (See
also >PAGE, under "Miscellaneous RCS words", dtop, and dbottom)

dtop

dtop

Specifies the top 20-bit address used by the system dictionary. The
pointer value in this FORTH variable consists of a segment and an offset
within the megabyte page specified by the dpage variable. You set the
dtop variable in block 1402. (See also dpage and dbottom)

fbottom

fbottom

Specifies the bottom 20-bit address used by the SMACRO files. The
pointer value in this FORTH variable consists of a segment and an offset
within the megabyte page specified by the fpage variable. You must set
the value above 1FFFF because a processor board interprets any lower
address as an on-board address instead of a common memory address. You
set the fbottom in block 1402. (See also fpage and ftop)

RCS WORDS: MBOOT/CDSTOM Words
B-21

fpage

fpage

ftop

Specifies which megabyte page (using a pagecode) in common memory con-
tains the SMACRO files. You can use >PAGE to store a pagecode value in
this FORTH variable. You set the fpage variable in block 1402. (See
also >PAGE, under "Miscellaneous RCS words", ftop, and fbottom)

ftop

Specifies the top 20-bit address used by the SMACRO files. The pointer
value in this FORTH variable consists of a segment and an offset within
the megabyte page specified by the fpage variable. You set the ftop
variable in block 1402. (See also fpage and fbottom)

init-cm

init-cm

Initializes the common memory space by filling it with zeros. Block 1405

defines the area to be initialized. (When editing block 1405, you should
also edit block 1402, which sets the common memory pointer variables)

MAP

MAP

Lists the first map block.

MBOOT

[board#] MBOOT

Loads the first half of the basic FORTH system by loading block 9 from

1000 OFFSET. Use MBOOT at power-up and following a reset, and follow it

with Basic to load the second half of the basic FORTH system, or D>M to

boot a finished system.

MEM>DISK

[d>m#] MEM>DISK

Writes a D>M image of memory to disk and assigns a number to the image.

RCS WORDS: MBOOT/CDSTOM Words
B-22

PMAP

PMAP

Lists the preserve map block.

PRESERVE

[preserve*] PRESERVE

Writes an image (identified by preserved) of the current system diction-
ary to disk. (See also RESTORE)

PRESERVE-FILE

[preserve-file*] PRESERVE-FILE

Writes the current user files to disk. (See also RESTORE-FILE)

RCS

RCS

Loads RCS. Note that the system ignores any words typed after this word
on the same line.

RESTORE

[preserve*] RESTORE

Restores the specified system dictionary image from disk. (See also
PRESERVE)

RESTORE-FILE

[preserve-file*] RESTORE-FILE

Restores a specified set of user files from disk. (See also
PRESERVE-FILE)

RCS WORDS: MBOOT/COSTOM Words
B-23

WFIX

[block#] WFIX

Reformats the portion of the disk containing the specified block. This
word displays the range of blocks that would be affected by the refor-
matting and asks you to confirm that the reformatting is to take place.
This reformatting process usually repairs blocks that generate disk
errors.

WUNLOAD

WUNLOAD

Unloads the heads and powers down the drive motor of the Winchester disk
drive. You must use this command before you turn off the system.

Terminal words

Datamedia

Datamedia

Loads the control words required to use a Datamedia Elite 1521 A terminal
as the system console. (See also EDIT under "Editing words")

DC

[row] [column] DC

Positions the cursor at the specified row and column.

Fastbaud

Fastbaud

Sets the communication rate of the board to 19,200 baud. After issuing

this word, you must also set the terminal communication rate to 19,200
baud. For the TeleVideo 950, Fastbaud sets the rate to 19,200 automat-
ically. For the VT100, you must set the baud rate manually. Fastbaud is

inappropriate for the Datamedia because the Datamedia does not operate at
19,200 baud.

Function-keys

Function-keys

Programs the function keys by loading block 1^05. You may edit block
1405 to customize the operations of the function keys.

RCS WORDS: Terminal Words
B-2it

Opaq

Opaq

Stops sending output to the printer. This word cancels the action of
Opaq. This word operates only when used with a TeleVideo 950 terminal.

(See also Tran)

Poff

Poff

Disables the printer port on the terminal so that output sent to the ter-

minal is not also sent to the printer. (See also Pon)

Pon

Pon

Enables the printer port on the terminal so that output sent to the ter-

minal is also sent to the printer. (See also Poff)

Televideo

Televideo

Loads the control words required to use a TeleVideo 950 terminal as the

system console. (See also EDIT under "Editing words")

Thru-tv

Thru-tv [words]

Executes Tran to send output to the printer, executes the words you enter
at the keyboard, then executes Opaq to stop sending the output to the

printer. This word operates only when used with a TeleVideo 950 terminal
or a VT100 terminal.

Tran

Tran

Sends all output to the system printer, including all control sequences
that the terminal normally intercepts and interprets. This word operates
only when used with a TeleVideo 950 terminal. (See also Opaq)

RCS WORDS: Terminal Words
B-25

VT100

VT100

Loads the control words required to use a DEC VT100 or compatible ter-
minal as the system console. (See also EDIT under "Editing words")

Printing words

CPRINT

[start block*] [end block*] CPRINT

Prints the specified range of blocks at a density of 10 blocks per page.

Dec-writer

Dec-writer

Loads the control words required to use a Digital Equipment Corporation
DECwriter III as the system printer. (See also Printing)

Image-writer

Image-writer

Loads the control words required to use an Apple Imagewriter as the sys-
tem printer. (See also Printing)

List-directory

List-directory

Places RCS in the list-directory mode, which is similar to the list-
programs mode except that list-directory mode prints the comments (lines

3 through 11) in the load blocks instead of listing the program blocks.
These lines should provide a directory to the code contained in each

block.

List-programs

List-programs

Places RCS in the list-programs mode. In this mode, RCS prints at least

10 blocks per page (more if the blocks contain blank lines). The actual
number of blocks printed per page depends on the format of the 10-block
load block structure.

RCS WORDS: Printing Words
B-26

i

t

The best way to use this utility is to set up a block that lists an

entire level as follows:

List-programs
Small

100 LOAD
200 LOAD
301 load 380 load
Restore

The word List-programs redefines "load" to be the listing word at the

beginning of the block, and the word Restore puts back the FORTH defini-
tion at the end of the block. The word Small instructs the printer to

use condensed type. 100 LOAD prints the blocks normally loaded by 100;

this block is assumed to use "load" (and not "LOAD") to load 10-block
segments.

RCS prints only the nonblank lines from each block actually loaded. RCS
enhances the printing of the first line of each 10-block load block to

serve as a label for the load block. (It does not print the rest of the

10-block load block)

RCS does not print the first line of each program block because it

assumes that the first line contains a vocabulary identifier. RCS prints
the block number on the line above the block and, if the current page
does not have enough room to print a complete 10-block load block, RCS
begins a new page.

Paper-tiger

Paper-tiger

Loads the control words required to use an Integral Data Systems Paper
Tiger as the system printer. (See also Printing)

Print

[start block#] [end block#] Print

Prints the specified range of blocks at a density of three blocks per
page.

Printing

Printing

Loads the printing utilities. Use this word after you select a specific
printer. (See also Dec-writer, Image-writer, and Paper-tiger)

RCS WORDS: Printing Words
B-27

Pset-tab

[column^] Pset-tab

Sets a printer tab stop at the specified column. (The first column is
column 1

)

Restore

Restore

Returns you to the mode you were using before you entered the
List-programs word or the List-directory word.

Small

Small

Selects condensed printing for the printers.

Tape words

ADD-TO-TAPE

[absolute start block#] [absolute end block#] ADD-TO-TAPE

Begins at the current tape position and writes the specified range of
blocks to tape.

BACKUP

BACKUP

Lists the backup block. You can edit this block to specify customized
tape backup procedures.

BAD-TAPE

[absolute start block#] [absolute end block//] BAD-TAPE

Extends the previous file (while preserving file numbers) on the tape to

cover a bad section detected by an attempted ADD-TO-TAPE. BAD-TAPE can-
not work if the first file on the tape is bad.

RCS WORDS: Tape Words
B-28

t

FROM-TAPE

[absolute start block*] [absolute end block*] FROM-TAPE

Begins at the current tape position and loads the specified range of

blocks into memory.

TAPE

TAPE

Loads the tape utility.

TDOC

[absolute start block*] [absolute end block*] [file*] TDOC

Moves the tape to the start of the specified file and then displays the

start and end blocks. TDOC also leaves the start block* and end block*
on the stack.

TGOTO

[file*] TGOTO

Moves the tape to the beginning of the specified file.

TREWIND

TREWIND

Rewinds the tape to the beginning.

TUNLOAD

TUNLOAD

Unloads the tape. RCS does not wait for the tape to finish unloading
before executing the next word you enter.

Editing words

*LLIST

[block*] #LLIST

Lists a block (specified by its relative block number) with relative and
absolute block numbers, but without line numbers.

RCS WORDS: Editing Words
B-29

0ED

0ed

[absolute block#] 0ED or [absolute block#] 0ed

Makes a block (specified by its absolute block number) the current block
and then enters the screen editor. (Loaded by EDIT)

(see 0ED)

0LIST

[absolute block#] 0LIST

Lists a block (specified by its absolute block number) with relative and
absolute block numbers and with line numbers.

0LLIST

[absolute block#] 0LLIST

Lists a block (specified by its absolute block number), but without line
numbers.

B

B

Decrements the current block number for listing or editing nearby blocks.

BLOCKS

[source block//] [destination block#] [#blocks] BLOCKS

Copies a number of blocks (specified by //blocks) from the source block
number to the destination block number. The source and destination block
ranges can overlap. (Loaded by Ed-extend)

CLEAR

[start block//] [end block//] CLEAR

Clears the specified range of blocks by filling the blocks with spaces.
(Loaded by Ed-extend)

RCS WORDS: Editing Words
B-30

Datamedia-terminal

Datamedia-terminal

Customizes the screen editor for the Datamedia terminal. (Loaded by
EDIT)

ED

ed

[block#] ED or [block*] ed

Makes a block (specified by its relative block number) the current block

and then enters the screen editor. If no block number is entered, the

screen editor is entered at the current block. (Loaded by EDIT)

(See ED)

EDIT

EDIT

Loads the screen editor. One of the following terminal customization
words must follow the word EDIT: TeleVideo-terminal, Datamedia-terminal,
or VT100-terminal. EDIT also loads the following screen editor words:
TeleVideo-terminal, Datamedia-terminal, VT 100-terminal, ED, ed, 0ED, 0ed,

RED, and red.

Ed-extend

Ed-extend

Loads the following command extensions to the line editor: BLOCKS,
CLEAR, FIND, FIND-R, and R-WITH.

FIND

[start block#] [end block*] FIND [string"]

Locates and displays each line within the specified block range contain-
ing the specified string. (Loaded by Ed-extend)

RCS WORDS: Editing Words
B-31

FIND-R

[start block#] [end block*] FIND-R [string*]

Locates and replaces all occurrences of the specified string within the

specified block range. You must precede FIND-R with R-WITH to specify
the replacement string. (Loaded by Ed-extend) (See also R-WITH)

L

Lists the current block with line numbers.

LIST

[block*] LIST

Lists a block (specified by its relative block number) with line numbers.

N

N

Increments the current block number for listing or editing nearby blocks.

QR

[start block*] [end block*] QR

Prompts you for the search and replace strings, then searches through the

specified range of blocks for the first occurrence of the search string.
After matching the search string, QR waits for you to enter a space, Y,

or y, before replacing the string and then continuing to search for the
next occurrence.

You can enter a question mark (?) to receive help information. Entering
any other character causes QR to leave the matched string unchanged and
search for the next occurrence. (Loaded by Query-replace)

Query-replace

Query-replace

Loads the QR utility. (See also QR)

RCS WORDS: Editing Words
B-32

i

R-WITH

R-WITH [string"]

Places the specified string into the insert buffer. FIND-R uses the

string in the insert buffer as the replacement text for its search and

replace operation. (Loaded by Ed-extend) (See also FIND-R)

RED

RED or red

Makes current for editing the most recently accessed block on the most
recently accessed slave board. You must load RED by using 1124 0LOAD in
CUSTOM after you load the words Master and EDIT.

red

(See RED)

i

Televideo-terminal

Televideo-terminal

Customizes the screen editor for the TeleVideo 950 terminal. (Loaded by

EDIT)

VT 100-terminal

VT100-terminal

Customizes the screen editor for the VT100 terminal. (Loaded by EDIT)

Remote-slave words

Board-sem-initialize

[board segment] Board-sem-initialize

Initializes the semaphore used to control remote/slave operation. This
semaphore must be initialized by the master board for each slave board at
power-up.

RCS WORDS: Remote-Slave Words
B-33

ELOAD

[block#] ELOAD

Empties the local block buffers, then executes LOAD. You must use ELOAD
to reload a block onto a slave board after you have edited it from the
master board.

Master

Master

Loads the master utility.

MONITOR

[board segment] MONITOR

Displays all output from the specified board and then returns to the
master board when the slave becomes idle (waiting for input).

REMOTE

[board segment] REMOTE [stringX]

Places the master board into remote mode to communicate with the speci-
fied slave board, and then sends the slave board the specified string.

REMOTE-SLAVE

REMOTE-SLAVE

Places the current board into slave mode.

Slave

Slave

Loads the slave utility.

SYNC

[board segment] SYNC

Waits for the specified board to become idle (waiting for input).

C
RCS WORDS: Remote-Slave Words

B-34

TALK\

[board segment] TALK\ [string]

Sends the specified string to the specified board.

X

*x (This word is control-x, not caret-x)

Terminates slave mode on the current board and returns to the master

board, or returns from the master board to the most recently accessed
slave board.

Miscellaneous RCS words

" [string"] (This word consists of one double quotation mark character)

Displays the specified string. You can use this word in load blocks to

display comments during loading.

%

%%

f t

%

Indicates that the rest of the line is a comment.

Indicates that the rest of the block is a comment.

•' [string"] (This word consists of two single quotation mark
characters)

Reads a string of up to 256 characters from the keyboard or block. RCS
stores the string in a temporary area so you can use ==> to initialize a

string variable.

RCS WORDS: Miscellaneous RCS Words
B-35

([string])

Enters a conunent that terminates with a closing parenthesis. You cannot
nest this kind of comment.

.Esc

.Esc [string]

Sends to the terminal an ASCII ESC code followed by the specified string,
You can use this word to program terminal options, such as function keys.

This word may be used only in FORTH words, and cannot be used in load
blocks. (See also Esc)

.^ [string] (This word consists of a period and a caret)

Converts the ASCII string into the corresponding control characters and
sends the control-character string to the terminal. You can use this
word to program terminal options, such as function keys. This word may
be used only in FORTH words, and cannot be used in a load block.

0LOAD

[absolute block#] 0LOAD

Loads the specified block from OFFSET, then restores the previous
OFFSET.

87INIT

87INIT

Initializes the 8087. All boards must execute 87INIT after booting RCS

at power-up.

:L

:L or :1

Places RCS in Locate mode.

:1

(See :L)

RCS WORDS: Miscellaneous RCS Words
B-36

:0K

ft :0K [string"]

Sets the system prompt to the specified string.

:R

:R

Places RCS in Run mode.

:r

See :R

:S

:S

Places RCS in Show mode.

:s

W See :S

<PAGE

[pagecode] <PAGE

Converts a pagecode to a page number and leaves this page number on the

stack. (See also >PAGE)

==>

[values] ==> [variable]

Moves information from the stack to the specified variable in the current
vocabulary. RCS assumes that the information on the stack is correct for
the type of variable you specify.

>PAGE

[page#] >PAGE

Converts a page number to a pagecode and leaves the pagecode on the

Wfc stack. (See also <PAGE)

RCS HORDS: Miscellaneous RCS Words
B-37

AA>Q

[vector] [angle] AA>Q

Normalizes the specified vector and converts the vector and the access
angle (specified in radians) into a quaternion. This word leaves the
quaternion on the stack so that you can use ==> to initialize quaternion
variables.

BASE

BASE

Contains the current number base. The value of this variable affects all
input and output numbers. (See also BI, DECIMAL, and HEX)

BI

BI

Specifies base 2 operation. The action of this word affects all input
and output numbers. (See also BASE, DECIMAL, and HEX)

CR

CR

Sends to the terminal an ASCII carriage-return code followed by an ASCII
line-feed code.

DBG-OFF

DBG-OFF

Turns off debug load. (See also DBG-ON)

DBG-ON

DBG-ON

Turns on debug load. Debug load performs three tasks: displays each
block number before it is loaded, aborts the load if BASE is not decimal,
and displays any numbers still on the stack after each block is loaded.
Some of these numbers appear while loading SMACRO code, but any numbers
remaining on the stack when loading is complete indicate one or more
errors. (See also DBG-OFF)

RCS WORDS: Miscellaneous RCS Words
B-38

•

DECIMAL

DECIMAL

deg

Specifies base 10 operation. The action of this word affects all input

and output numbers. (See also BASE, BI, and HEX)

[angle in degrees] deg

Converts floating-point angle measurements from degrees to radians and

leaves the converted value on the stack.

Esc

Esc [string]

Sends to the terminal an ASCII ESC code, followed by the specified
string. You can use this word to program terminal options, such as func-

tion keys. This word may be used only in a load block, and cannot be

used in a FORTH word. (See also .Esc)

F-MEM

F-MEM

Displays the current, minimum, and maximum highest address for the system
dictionary and user files.

GET-FROM-DISK

[page] [segment] [page address] [start block#] [#blocks] GET-FROM-DISK

Moves #blocks * 1024 bytes of data from the disk beginning at the start
block# (specified by its absolute block number) to the specified RAM page
address. (See also SAVE-ON-DISK)

HEX

HEX

Specifies base 16 operation. The action of this word affects all input
and output numbers. (See also BASE, BI, and DECIMAL)

RCS HOR0S: Miscellaneous RCS Words
B-39

LOAD

[block*] LOAD

Loads the specified block.

load

[block*] load

Loads the specified block relative to the current ref-blk. (See also
ref-blk)

LOG

LOG [word]

Lists the source block for the specified word. The error message,

Pre-locate, indicates that you cannot list the specified word.

MS

MS [matrix variable]

Displays the name of the specified matrix variable and then displays its

contents.

NQUIT

NQUIT

Gorrects a problem (indicated by the loss of :R in the prompt) that
occurs in rare situations.

nz

nz

Gontains the specification for the maximum number of zeros FORTH displays
following the decimal point and before the most significant digit of a

floating-point number. You can set this FORTH variable to display up to

32 characters in a floating-point number.

RCS WORDS: Miscellaneous RCS Words
B-40

OFFSET

OFFSET

Contains the value of the current offset. RCS adds the value of this

FORTH variable to relative block numbers to generate the absolute block
numbers

.

OLOAD

[offset] [blockilt] OLOAD (Oh-LOAD, not 0LOAD)

Changes the current OFFSET to the specified offset, loads the specified
block, and then restores the previous OFFSET.

PAGE

PAGE

Sends a PAGE character to the terminal. This PAGE (also called a form
feed) character may be different for different types of terminals.

PAGE-MOVE

[source seg] [address] [dest seg] [address] [#bytes] [pagecode] PAGE-MOVE

Moves #bytes from the specified address in the source segment to the
specified address in the destination segment. Either the source or the
destination segment must be in the current board. The other segment must
be in the page specified by the pagecode.

PAGE-SEG-ERASE

[page] [segment] PAGE-SEG-ERASE

Fills with zeros the 64-kilobyte segment beginning at the specified page
and segment address.

PDUMP

[page] [segment] [address] [#bytes] PDUMP

Displays kbytes (in hex) beginning at the specified page address.

RCS NORDS: Miscellaneous RCS Words
B-Ul

PMS

PMS [pose variable]

Displays the name of the pose variable and shows it as a rotation matrix
with a translation vector.

PRINT-TIME

[#tics] PRINT-TIME

Displays the result (in microseconds) of TIMER-READ execution. (See also
TIMER READ and TIMER-START)

QMS

QMS [quaternion variable]

Displays the name of the specified quaternion matrix variable and shows
the quaternion as a matrix.

QS

rad

QS [quaternion variable]

Displays the name of the specified quaternion variable and shows the
quaternion value as an axis and an angle.

[angle in radians] rad

Converts floating-point angle measurements from radians to degrees and

leaves the converted value on the stack.

ref-blk

[block#] ref-blk

Updates the current ref-blk by making it the sum of the specified block
number and the current block number. (See also load)

RCS WORDS: Miscellaneous RCS Words
B-42

SAVE-ON-DISK

0^ [page] [segment] [page address] [start bloGk#] [#blocks] SAVE-ON-DISK

Moves ^blocks * 1024 bytes of data from the specified RAM page address to

the disk, beginning at start block# (specified by its absolute block num-
ber). (See also GET-FROM-DISK)

#)

sd

sd

Contains the specification for the number of significant digits FORTH
displays in floating-point numbers and leaves this value on the stack.

You can set this FORTH variable to display up to 8 significant digits in
a floating-point number.

SEG-DUMP

[segment] [address] [#bytes] SEG-DUMP

Displays #bytes (specified in hex) beginning at the specified segment
address.

SEG-MOVE

[source address] [dest address] [#bytes] [source seg] [dest seg] SEG-MOVE

Moves kbytes from the source segment address to the destination segment
address.

TAB

TAB

Sends an ASCII TAB character to the terminal.

THRU

[start block#] [end block*] THRU

Loads the specified range of blocks.

RCS WORDS: Miscellaneous RCS Words
8-43

TIME-OUT-INIT

TIME-OUT-INIT

Enables the 6-millisecond time-out interrupt, which aborts access to a
memory location or I/O port if the hardware does not respond within 6

milliseconds of the request. This interrupt generates the message 6 msec
time-out interrupt. To enable this interrupt, the system must execute
TIME-OUT-INIT at power-up.

TIME-P

TIME-P [routine]

Displays the name of the specified routine, executes the routine, and
displays the time of execution. TIME-P subtracts the appropriate over-

head time required to call the routine from the terminal task to provide
an accurate measurement of the time required to execute the routine.
TIME-P uses the same timer (timer 1) as TIMER-READ and TIME-START.

The overhead factor is correct for 8-MHz operation. You should enter the

following lines in the D>M auto-load block for each board running at
5-MHz:

16 fnul-word-time !

81 snul-word-time !

TIMER-READ

TIMER-READ

Reads the timer and returns on the stack the number of ticks from the

153-KHz clock. TIMER-READ uses the same timer (timer 1) as TIME-P and

TIMER-START. (See also PRINT-TIME and TIMER-START)

TIMER-START

TIMER-START

Starts the timer. TIMER-START uses the same timer (timer 1) as TIME-P
and TIMER-READ. (See also PRINT-TIME and TIMER-READ)

V-SIZE

V-SIZE

Displays the current vocabulary, the number of words defined in it, and
the maximum number of words the vocabulary can hold.

RCS WORDS: Miscellaneous RCS Words

n

\L

Re-executes the last SMACRO word executed, this time In Locate mode.

\1
(See \L)

\N

Displays the name of the last SMACRO word executed.

\n

(See \N)

\R

Re-executes the last SMACRO word executed, this time in Run mode.

\r

(See \R)

Re-executes the last SMACRO word executed, this time in Show mode,

\s

(See \S)

[string] (This word consists of a caret)

Converts the ASCII string into the corresponding control characters and
sends this control-character string to the terminal. You can use this
word to program terminal options, such as function keys. This word may
be used only in a load block, and may not be used in a FORTH word. (See
also .")

'DUMP

[address] [#bytes] -"DUMP

Displays #bytes (in hex) from the specified SMACRO segment address.

RCS WORDS; Miscellaneous RCS Words

~MEM

~MEM

Displays the number of bytes remaining in the SMACRO segment.

-MOVE

[source] [destination] [#bytes] ~MOVE

Moves #bytes (specified in hex) from the SMACRO segment source to the
SMACRO segment destination.

FORTH Words

!

[value] [FORTH address] !

Stores the specified 16-bit integer value in the specified FORTH address.

[valuel] [value2] •

Calculates the product of two 1 6-bit integer values and leaves the result
on the stack.

[valuel] [value2] +

Calculates the sum of two 16-bit integer values and leaves the result on

the stack.

[valuel] [value2] -

Calculates the difference between two 1 6-bit integer values by subtract-
ing value2 from valuel and leaves the result on the stack.

[value] .

\Displays the specified 1 6-bit integer value.

RCS WORDS: FORTH Words
B-46

.D

^>

[value] .D

Displays the specified 16-bit decimal integer value, but does not change

the current base.

[valuel] [value2] /

Calculates the quotient of two 16-bit integer values by dividing valuel
by value2 and leaves the result on the stack.

2!

[address] [value] 2!

Stores a 32-bit integer in a FORTH variable.

26

[address] [value] 2@

K Retrieves a 32-bit integer from a FORTH variable.

2IN

[port address] 2IN

Reads the 8-bit port twice and leaves the resulting 16-bit value on the

stack. This word reads the low-order byte of this 16-bit value before
the high-order byte.

20UT

[value] [port address] 20UT

Sends the specified 1 6-bit value to the specified output port as 2 bytes.
This word sends the low-order byte of this 1 6-bit value before it sends
the high-order byte.

:[name]

Creates a FORTH word and causes the system to enter the FORTH Compile
mode.

RCS WORDS: FORTH Words
B-47

:C~EXEC

:C-EXEC [SMACRO word]

Sets the mode temporarily to Compile, compiles a call to the specified
SMACRO word, and restores the previous mode after the SMACRO word exe-
cutes. This word may be used only in FORTH words, not in a load block.

:L-EXEC

:L-EXEC [SMACRO word]

Sets the mode temporarily to Locate, compiles a call to the specified
SMACRO word, and restores the previous mode after the SMACRO word exe-

cutes. This word may be used only in FORTH words, not in a load block.

:S-EXEC

:S~EXEC [SMACRO word]

Sets the mode temporarily to Show, compiles a call to the specified
SMACRO word, and restores the previous mode after the SMACRO word exe-

cutes. This word may be used only in FORTH words, not in a load block.

Causes the system to exit from the FORTH Compile mode,

[FORTH address] ?

Displays the 16-bit integer value contained in the specified FORTH
address.

[FORTH address] §

Retrieves a 1 6-bit integer value from the specified FORTH address and
leaves it on the stack.

RCS WORDS: FORTH Words
B-M8

B.

[value] B.

Displays the specified 1 6-bit integer value in binary, but does not
change the current base.

BACKGROUND

[stack size] [return stack size] [# user variables] BACKGROUND

Allots space for a background task by creating an entry in the FORTH dic-

tionary with the parameter fields providing (in the following order) the

background task address, stack origin, and the user area size (expressed
as an 8-bit value). FORTH adjusts the task address upwards to fall on a

16-byte boundary to simplify segment register manipulations. (See also

BUILD)

BUILD

[task address] BUILD

Inserts the background task from the specified task address into the

FORTH round-robin. BUILD places the new background task immediately
after the current task in the round-robin, copies the user variables
declared for the background task from the operator task, and sets the
background stack pointer to its origin. (See also BACKGROUND)

CLR-BIT

[bit#] [port address] CLR-BIT

Clears the specified bit in the specified port to 0. Other bits remain
unaffected. You can use this word to clear interrupt masks with PIC.

(See also SET-BIT)

DUMP

F»

•

[FORTH address] [#bytes] DUMP

Displays #bytes beginning at the specified FORTH address.

[valuel] [value2] F»

Calculates the product of two 32-bit floating-point values and leaves the
result on the stack.

RCS WORDS: FORTH Words
B-49

F+

[valuel] [value2] F+

Calculates the sum of two 32-bit floating-point numbers and leaves the
result on the stack.

F-

[valuel] [value2] F-

Calculates the difference of two 32-bit floating-point values by sub-

tracting value2 from valuel and leaves the result on the stack.

F-ABS

[value] F-ABS

Calculates the absolute 32-bit floating-point value of the specified
value and leaves the result on the stack.

F.

[value] F.

Displays the specified 32-bit floating-point value.

F/

[valuel] [value2] F/

Calculates the quotient of two 32-bit floating-point values by dividing
valuel by value2 and leaves the result on the stack.

FLOAT

[integer] FLOAT

Converts a 16-bit integer value to a 32-bit floating-point value and

leaves the converted value on the stack. (See also ROUND)

H.

[value] H.

Displays the specified 1 6-bit integer value in hex, but does not change
the current base.

RCS WORDS: FORTH Words
B-50

INPUT

[port address] INPUT

Reads the 8-bit value from the specified input port and leaves the value
on the stack.

IRR

IRR

Returns on the stack the port address for the Interrupt Request Register
in the Programmable Interrupt Controller. This FORTH constant is useful
for determining if interrupts are connected correctly.

LOCATE-OFF

LOCATE-OFF

Turns off locate for FORTH words.

LOCATE-ON

LOCATE-ON

Turns on locate for FORTH words. You cannot locate words defined with
locate off. Turning off locate saves 2 bytes of FORTH space per word.

(Locate is always on for SMACRO words)

MOVE

[source FORTH address] [destination FORTH address] [#bytes] MOVE

Moves #bytes from the source FORTH address to the destination FORTH
address.

OUTPUT

[value] [port address] OUTPUT

Sends the specified 8-bit value to the specified output port.

PI

PI

Leaves the 32-bit floating-point value of pi on the stack.

RCS WORDS: FORTH Words
B-51

PIC

PIC

Returns on the stack the port address for the Programmable Interrupt Con-
troller. You use this port to mask and unmask interrupts.

ROUND

[float] ROUND

Converts a 32-bit floating-point value to a 1 6-bit integer value through
rounding and leaves the converted value on the stack. (See also FLOAT)

SET-BIT

[bit#] [port address] SET-BIT

Sets the specified bit in the specified port to 1 . Other bits remain
unaffected. You can use this word to set interrupt masks with PIC. (See
also CLR-BIT)

SORT

[value] SQRT

Calculates the square root of the specified 32-bit floating-point value
and leaves the result on the stack.

~!

[value] [SMACRO address] ~!

Stores the specified 16-bit integer value in the specified SMACRO
address.

[SMACRO address] ~?

Displays the 16-bit integer value contained in the specified SMACRO
address.

RCS WORDS; FORTH Words
B-52

(#

CI

#

[SMACRO address] ~@

Retrieves the 1 6-bit integer value contained in the specified SMACRO
address and leaves the value on the stack.

"C!

[value] [address] ~C!

Stores data in a SMACRO byte variable.

~C@

[address] [value] ~C@

Retrieves data from a SMACRO byte variable.

-F!

[value] [SMACRO address] ~F!

Stores the specified 32-bit floating-point value in the specified SMACRO
address.

~F?

[SMACRO address] "F?

Displays the 32-bit floating-point value contained in the specified
SMACRO address.

-F@

[SMACRO address] ~F§

Retrieves the 32-bit floating-point value contained in the specified
SMACRO address.

~FR?

[address] ~FR?

Reads a 32-bit floating-point value from the specified address, converts
it from radians to degrees, and then displays the converted value.

RCS WORDS: FORTH Words
B-53

SMACRO Words

The SMACRO words include the following types:

SMACRO declaration words

SMACRO predefined SMACRO variable words
SMACRO operator words
SMACRO vector-operator words
SMACRO quaternion-operator words
SMACRO matrix-operator words
SMACRO pose-operator words
SMACRO boolean-operator words
SMACRO file-operation variable words
SMACRO file-operation header variable words
SMACRO file-operation words
SMACRO boolean file-operation words
SMACRO statement words
Miscellaneous SMACRO words

SMACRO declaration words

1:a

[//elements] 1:a [name]

Creates a one-dimensional integer array, which belongs to the most
recently declared variable owner. The parameter //elements must be less
than 256.

1:fa

[//elements] 1:fa [name]

Creates a one-dimensional floating-point array, which belongs to the most
recently declared variable owner. The parameter //elements must be less
than 256.

2:a

[#rows] [//columns] 2:a [name]

Creates a two-dimensional integer array, which belongs to the most
recently declared variable owner. SMACRO stores the array by rows. The

product of the #rows and the //columns must be less than 256.

RCS NORDS: SMACRO Declaration Words
B-54

2:fa

[#rows] [#coluinns] 2: fa [name]

Creates a two-dimensional floating-point array, which belongs to the most
recently declared variable owner. SMACRO stores the array by rows. The
product of the #rows and the #columns must be less than 256.

<=

bv

<= [values]

Stores the specified values in the most recently declared variable. The

values are assumed to be of the correct type and number for the variable
type. This declaration word works only for string, byte, and integer
variables. (See ==> for other variable types) The parameter <= is used

to initialize variables as they are declared, not in routines.

bv [name]

Creates an 8-bit byte variable, which belongs to the most recently
declared variable owner.

bytes

bytes

Performs no function. You can use this nul word to make source code more
readable (for example, 2 bytes VAR-0).

end-routine

end-routine

Terminates the Compile mode. (See also routine)

FILE

[max ^records] FILE [file name]

Creates a file with the specified name, using the most recently declared
variable owner as a template. Include this statement in the source block
that declares the variable owner. The max ^records parameter specifies
the size of the new file.

RCS WORDS: SMACRO Declaration Words
B-55

fv

iv

fv [name]

Creates a 32-bit floating-point variable, which belongs to the most
recently declared variable owner.

iv [name]

Creates a 16-bit integer variable, which belongs to the most recently
declared variable owner.

mem

mem

Performs no function. You can use this nul word, which is an abbrevia-
tion for members, to make source code more readable (for example, 10 mem
S-VAR-0).

rec

rec

Performs no function. You can use this nul word, which is an abbrevia-
tion for records, to make source code more readable (for example, 10 rec
FILE).

routine

routine [name]

Creates a routine with the specified name and enters the Compile mode.
(See also end-routine)

S-VAR-0

[//members] S-VAR-0 [name]

Creates a sequential variable owner with the specified name. The sequen-
tial variable can accept a maximum of #members.

RCS WORDS: SMACRO Declaration Words
B-56

r

r

c

f

i

segv

[segment] [address] [#bytes] segv [name]

Creates a segment variable, which belongs to the most recently declared
variable owner.

seqv

seqv [name]

Creates a sequential variable, which belongs to the most recently
declared sequential variable owner. The first sequential variable
receives a value of 0, the second variable receives a value of 1, and

each successive variable receives the next sequential integer value.

strv

[#bytes] strv [name]

Creates a string variable #bytes long with the specified name, which
belongs to the most recently declared variable owner.

VAR-0

[#bytes] VAR-0 [name]

Creates a variable owner with the specified name and allots to this vari-
able owner #bytes of space in the SMACRO segment for variable storage.

VOCABULARY

[assembler voc#] [SMACRO voc#] [Gentries] VOCABULARY [name]

Creates a vocabulary. Enter the vocabulary numbers (voc#s) in hexadeci-
mal. Both voc#s are four-digit numbers. The first three digits for the
assembler vocabulary must be 513. The first three digits for the SMACRO
vocabulary must be 531. The fourth digit of each number must be the

same; must be 7, 9, B, D, or F; and must be different from any other
vocabulary declared on the same board. The vocabulary name must be
unique in the system, because RCS does not check for duplicate vocabulary
names. The system may contain up to 20 vocabularies.

Predefined SMACRO variable words

-1# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# 1^# 15# 16# 17# 18# 19# 32767#

Each of these predefined integer variables contains the indicated value
(for example, -M^ contains the value -1).

RCS WORDS: Predefined SMACRO Variable Words
B-57

0.# 1.# 2.#

Each of these predefined floating-point variables contains the indicated r
value (for example, 2.# contains the floating-point value 2.0).

cos {angle}

Predefined floating point variable used as output for certain quaternion
operators.

cycle-count

A segment variable that provides the current cycle count. The communica-
tions process updates the cycle count.

false

Predefined sequential variable with integer value 0. You use the

predefined sequential variables false, true, set, reset, ready, and not

ready for logic tests. Their integer values are 0, 1, 2, 3> ^> and 5,

respectively.

identity-pose

This predefined pose variable contains the identity pose, 1.0 0.0 0.0 0.0 '^

0.0 0.0 0.0.

not-ready

Predefined sequential variable with integer value 5. (See also false)

ready

Predefined sequential variable with integer value H. (See also false)

reset

Predefined sequential variable with integer value 3. (See also false)

rot-angle

Predefined floating-point variable used as output for certain quaternion
operators.

RCS WORDS: Predefined SMACRO Variable Words
B-58

rot-axis

•
Predefined floating-point variable used as output for certain quaternion
operators.

set

Predefined sequential variable with integer value 2. (See also false)

sin {angle}

Predefined floating-point variables used as outputs of certain quaternion
operators.

true

Predefined sequential variable with integer value 1. (See also false)

X Y Z

These predefined integer variables contain 0, 1, and 2, respectively.
You can use these predefined variables with pose operators to identify
frame axes.

SMACRO operator words

The general spelling convention for SMACRO operators is as follows: operators
surrounded by () are integer, operators surrounded by .. are floating point,
and operators ending in _B are byte. (There may be exceptions to this conven-
tion) See Table B-1 earlier in this appendix for definitions of the abbrevia-
tions used in syntax descriptions.

It It

Returns the result of the most recent integer expression. This word may
operate incorrectly if you place other code between the most recent inte-
ger expression and the pair of double quotation mark characters.

RCS WORDS: SMACRO Operator Words
B-59

#.READ

#.READ ^

Reads a word (bounded by ASCII spaces) from the current Input and tries
to find the word in the current vocabulary. If #.READ finds the word in
the current vocabulary, it assumes that the word is a floating-point var-
iable and returns the value of the variable. Otherwise, #.READ assumes
that the word is a floating-point number and returns this value. You can
use the #.READ word in place of a floating-point variable except as the

destination of the .=>. SMACRO word.

#READ

#READ

Reads a word (bounded by ASCII spaces) from the current input and tries

to find the word in the current vocabulary. If #READ finds the word in
the current vocabulary, it assumes that the word is an integer variable
and returns the value of the variable. Otherwise, #READ assumes that the

word is an integer number and returns this value. You can use #READ in
place of an integer variable except as an array index or as the destina-
tion of the => SMACRO word.

(())

(([ivar]))

Causes SMACRO to treat the integer variable, ivar, as a pointer.

()

[var] ()

Specifies an address by adding the current value of the index register to

the value of var. There is no space between the parentheses. (See also
Index-on)

(*)

[iexp] (*) [ivar]

Returns the product of iexp and ivar (iexp • ivar).

RCS WORDS: SMACRO Operator Words
B-60

^

(-)

(/)

(*/)

[iexp] (*/) [ivarl] [ivar2]

Returns the result of iexp * ivarl /ivar2. The intermediate results of

this expression can occupy up to 32 bits to maintain accuracy.

(+)

[iexp] (+) [ivar]

Returns the sum of iexp and ivar (iexp + ivar).

[iexp] (-) [ivar]

Returns the difference of ivar subtracted from iexp (iexp - ivar).

[iexp] (/) [ivar]

Returns the quotient of iexp divided by ivar (iexp/ivar).

(ABS)

(ABS) [iexp]

Returns the absolute value of iexp.

(COM)

(COM) [iexp]

Returns the one's complement of iexp,

(MAX)

[iexpl] (MAX) [iexp2]

Returns the signed maximum integer of iexpl and iexp2.

RCS WORDS: SMACRO Operator Words
B-61

(MIN)

[iexpl] (MIN) [iexp2] T

Returns the signed minimum integer of iexpl and iexp2.

(MOD)

[iexpl] (MOD) [iexp2]
Performs a modulo operation (iexpl modulo iexp2) and returns the result
using the same sign as iexpl.

.().

.().

Specifies the processing order for floating-point operations within an

expression. Scalar operations can support up to eight levels of nesting,
vector operations can support up to one level of nesting, and pose and
quaternion operations can support any number of levels of nesting.

[fexpl] .». [fexp2]

Returns the floating-point product of fexpl and fexp2.

,»2»».

[fexpl] .»2««. [fexp2]

Rounds fexp2 to an integer value and then returns a value computed
according to the following expression:

fexpl » 2 ^®^P2

+.

[fexpl] .+. [fexp2]

Returns the floating-point sum of fexpl and fexp2.

» ^ •

[fexpl] .-. [fexp2]

Returns the floating-point difference of fexpl minus fexp2.

<T

t

RCS WORDS: SMACRO Operator Words
B-62

./.

[fexpl] ./. [fexp2]

Returns the floating-point quotient of fexpl divided by fexp2.

[fexp] .=>. [fvar]

Stores fexp into fvar.

.ABS.

.ABS. [fexp]

Returns the absolute value of fexp.

.ATAN,SIN,COS.

.ATAN, SIN, COS. [fexpl] [fexp2]

Returns the arctangent, in radians of the quotient resulting from divid-
ing fexpl by fexp2 (fexp1/fexp2). This word also returns the SIN and

COS values of the quotient in the predefined variables sin {angle} and
cos{angle}, respectively.

.ATAN.

.ATAN. [fexpl] [fexp2]

Returns the arctangent in radians of the quotient resulting from dividing
fexpl by fexp2 (fexp1/fexp2).

.FRAC.

.FRAC. [fexp]

Returns the fraction portion of fexp as a floating-point value.

.INT.

.INT. [fexp]

Returns the integer portion of fexp as a floating-point value.

RCS WORDS: SMACRO Operator Words
B-63

.MAX.

[fexpl] .MAX. [fexp2]

Returns the signed maximum floating-point value of fexpl and fexp2.

.MIN.

[fexpl] .MIN. [fexp2]

Returns the signed minimum floating-point value of fexpl and fexp2.

.MINUS.

.MINUS, [fexp]

Multiplies fexp by -1.0 and returns the result.

.MOD+-180.

.MOD+-180. [fexpr]

Forces the result of fexpr into the range ± Pi radians (j+l80 degrees).

.SIGN. W

.SIGN, [fexp]

Returns the floating-point sign of fexp as +1.0, -1.0, or 0.0 if the
value of fexp is greater than 0, less than 0, or equal to 0,

respectively.

.SIN, COS.

.SIN, COS. [fexp]

Returns the sine and cosine of fexp in radians in the predefined SMACRO
variables sin{angle} and cos{angle}. This word is a statement in itself
and cannot be used as part of another expression,

.SQ.

.SQ. [fexp]

Returns the square of fexp.

RCS WORDS: SMACRO Operator Words
B-64

.SQRT.

.SQRT. [fexp]

Returns the square root of fexp. This word generates an 8087 error if

fexp has a negative value,

2pi

2pi

Returns the indicated floating-point value.

=>

[iexp] => [ivar]

Stores iexp into ivar.

=>SEG

[var] [y/bytes] =>SEG [segvar]

Moves #bytes from var to the segment address identified in pointer vari-

able, segvar.

a#

a# [var]

Returns the address, not the value, of var.

B»

[iexp] B* [ivar]

Returns the byte product of iexp and ivar.

B^

[iexp] B+ [ivar]

Returns the byte sum of iexp and ivar.

RCS WORDS: SMACRO Operator Words
B-65

B-

[iexp] B- [ivar]

Returns the byte difference of iexp minus ivar.

B-to-stack

[iexp] B-to-stack

Converts iexp to a byte value and then pushes it onto the 8086 stack.

B/

[iexp] B/ [ivar]

Returns the byte quotient of iexp divided by ivar.

B=>

[iexp] B=> [bvar]

Converts iexp to a byte value and stores the resulting value in bvar.

F>I

F>I [fexp]

Returns the integer value obtained by rounding the floating-point value
of fexp.

from-stack

from-stack

Pops the 8086 stack and returns the resulting integer value. (See also
to-stack)

I>F

I>F [iexp]

Converts the integer value of iexp to a floating-point value.

f

RCS WORDS: SMACRO Operator Words
B-66

in-port

[ivar] in-port

Returns the byte value read from the 8-bit I/O port specified by the

address value in ivar.

index-on

index-on [ivar]

Loads ivar into the indexing register for use with the () operator.

mask-with

[iexp] mask-with [ivar]

Returns the result of a bitwise AND using iexp and ivar (iexp AND ivar).

out-port

[iexp] out-port [ivar]

Truncates iexp to an 8-bit value and sends it to the 8-bit output port
whose address is contained in ivar.

pi

pi

Returns the indicated floating-point value.

pi/2

pi/2

Returns the indicated floating-point value.

READ"

READ"

Reads a string terminated by an ASCII double quotation mark character (")

from the current input. You must follow READ" with S=> to store the

string in a variable.

RCS WORDS: ISHACRO Operator Words
B-67

SEG=>

[segvar] [#bytes] SEG=> [var] ^
Moves #bytes to var from the segment address identified in pointer vari-
able, segvar.

to-stack

[iexp] to-stack

Pushes iexp onto the 8086 stack. (See also from-stack)

WREAD

WREAD

Reads a string terminated by an ASCII space character. WREAD must be
followed by S=> to store the string in a variable. If the input string
is to contain spaces, use READ" instead of WREAD.

{ }

array-var {[ivarl] [ivar2]}

Provides a means of indexing arrays. In the case of one-dimensional
arrays, ivarl specifies the element number (beginning at 0) and the
second variable, ivar2, is not included. In the case of two-dimensional
arrays, ivarl specifies the row number and ivar2 specifies the column

number.

SMACRO vector-operator words

.CROSS.

[vexpl] .CROSS. [vexp2]

Returns the cross-product of vexpl and vexp2,

.DOT.

[vexpl] .DOT. [vexp2]

Returns the dot-product of vexpl and vexp2.

RCS WORDS: SMACRO Vector-Operator Words
B-68

.UNIT.

^ .UNIT, [vexp]

Returns a unit vector parallel to vexp.

.V»S.

[vexp] .V*S. [fexp]

Returns the vector obtained by multiplying each element of vexp by fexp.

.V+.

[vexpl] .V+. [vexp2]

Returns the vector obtained by adding vexpl to vexp2, element by element,

.V-.

[vexpl] .V-. [vexp2]

•

Returns the vector obtained by subtracting vexp2 from vexpl, element by

element.

.V/S.

[vexp] .V/S. [fexp]

Returns the vector obtained by dividing the elements of vexp by fexp.

.V=>.

[vexp] .V=>. [war]

Stores vexp into war,

.VINV.

.VINV. [vexp]

Returns the generalized inverse of vexp (that is, vexp/ I vexp I

^)

.

RCS WORDS: SMACRO Vector-Operator Words
B-69

.VMAG.

.VMAG. [vexp] C

Returns the magnitude of vexp.

.VMINUS.

.VMINUS. [vexp]

Returns the negative of vexp,

SMACRO quaternion-operator words

.AXIS,ANGLE>Q.

.AXIS,ANGLE>Q. [vexp] [fexp]

Treats vexp as an axis and fexp as an angle in radians, and returns the
equivalent quaternion. The vector vexp must be a unit vector. (See also
.UNIT, in the section "SMACRO vector-operator words")

.AXIS, SIN, COS>Q.

.AXIS, SIN, COS>Q. [vexp] [fexpl] [fexp2] <-

Treats vexp as an axis, fexpl as sin{angle}, fexp2 as cosfangle}, and
returns the equivalent quaternion. The vector vexp must be a unit
vector. (See also .UNIT.)

.Q=>.

[qexp] .Q=>. [qvar]

Stores qexp into variable qvar.

. Q> AXIS , ANGLE , SIN , COS

.

.Q> AXIS, ANGLE, SIN, COS. [qexp]

Converts qexp into an axis and angle representation. This word returns
its results in the predefined variables rot-axis, rot-angle in radians (0
<= rot-angle <=pi), sin{angle}, and cos{angle}. .Q>AXIS, SIN, COS. is
faster than .Q> AXIS, ANGLE, SIN, COS. but it does not compute the angle.
This word is a statement in itself and cannot be used as part of another
expression.

RCS WORD: SKACRO Quaternion-Operator Words
B-70

.Q>AXIS, SIN, COS.

_^ .Q> AXIS, SIN, COS. [qexp]

Converts qexp into an axis and angle representation. This word returns

its results in the predefined variables rot-axis, sin{angle}, and

cos {angle}. .Q> AXIS, SIN, COS. is faster than .Q> AXIS, ANGLE, SIN, COS.
because it does not compute the angle. This word is a statement in

itself and cannot be used as part of another expression.

.QINV.

.QINV. [qexp]

Returns the inverse of qexp.

.QQ».

[qexp2] .QQ«. [qexpl]

Returns the quaternion product of qexp2 and qexpl.

.QV».

^ [qexp] .QV*. [vexp]

Returns the vector obtained by applying the rotation qexp to vexp.

.V>Q.

.V>Q. [vexp]

Returns the quaternion equivalent to the rotation vector, vexp, by
treating .UNIT, vexp as an axis and .VMAG. vexp as an angle in radians.

SMACRO matrix-operator words

.M=>.

[mexp] .M=>. [mvar]

Stores mexp into mvar,

.M>Q.

.M>Q. [mexp]

^ Returns the quaternion equivalent to mexp.

RCS WORDS: SMACRO Matrix-Operator Words
B-71

.Q>M.

.Q>M. [qexp]
(_

Returns the matrix equivalent to qexp.

SMACRO pose-operator trords

.P=>.

[pexp] .P=>. [pvar]

Stores pexp into pvar.

.PINV.

.PINV. [pexp]

Returns the inverse of pexp.

.PP».

[pexp2] .PP». [pexpl]

Returns the POSE product of pexp2 and pexpl. ^

.PQ*.

[pexp] .PQ*. [qexp]

Returns a pose computed by multiplying the quaternion part of pexp by

qexp. The vector part of pexp becomes the vector part of the result.
The operator .PQ*. rotates the pose frame by a rotation expressed in the
pose frame.

.PV+.

[pexp] .PV+. [vexp]

Returns a pose computed by multiplying the quaternion part of pexp by
vexp, and then adding the result to the vector part of pexp. The opera-
tor .PV+. translates the pose frame by a translation expressed in the
pose frame.

k

RCS WORDS: SKACRO Pose-Operator Words
B-72

.QP».

[qexp] .QP». [pexp]

Returns a pose computed by multiplying the qexp by the quaternion part of

pexp. The vector part of the result is the vector part of pexp. The
operator .QP*. rotates the pose frame by a quaternion expressed in the

base frame.

.ROT, SIN, COS.

[pexp] .ROT, SIN, COS. [ivar] [fexpl] [fexp2]

Treats ivar as the axis of the pose frame and uses sin (fexpl) and cos

(fexp2) to define the angle of rotation, and then returns a pose computed
by rotating the quaternion part of pexp about the axis through the speci-
fied angle. The axis is one of the x, y, or z axes of the pose frame as

indicated by an ivar value of 0, 1, or 2, respectively. (Use the pre-
defined variables X, Y, and Z) The vector part of the result is the
vector part of pexp. .ROT, SIN, COS. operates faster than .PQ*. or .ROT.

to rotate the pose frame by a quaternion expressed in the pose frame.

.ROT.

[pexp] .ROT. [ivar] [fexp]

Treats ivar as one of the axes of the pose frame and fexp as the angle of
rotation in radians, and then returns a pose computed by rotating the

quaternion part of pexp about the axis through the specified angle. The
axis is one of the x, y, or z axes of the pose frame as indicated by an

ivar value of 0, 1, or 2, respectively. (Use the predefined variables X,

Y, and Z) The vector part of the result is the vector part of pexp. The
operator .ROT. operates faster than .PQ*. to rotate the pose frame by a
quaternion expressed in the pose frame.

.TRN.

[pexp] .TRN. [ivar] [fexp]

Treats ivar as the axis of the pose frame and fexp as the translation
distance, and then returns a pose computed by translating the vector part
of pexp along the specified axis by the specified distance. The axis is
one of the x, y, or z axes of the pose frame as indicated by an ivar
value of 0, 1, or 2, respectively. (Use the predefined variables X, Y,

and Z) The quaternion part of the result is the quaternion part of
pexp. The effect of this word is to translate the pose frame by a vector
expressed in the pose frame. The operator .TRN. operates faster than
.PV+. to translate the pose frame by a vector expressed in the pose
frame.

RCS WORDS: SNACRO Pose-Operator Words
B-73

.VP+.

[vexp] .VP+, [pexp]

Returns a pose computed by adding vexp to the vector part of pexp. The
quaternion part of the result is the quaternion part of pexp. This word
translates the pose frame by a vector expressed in the base frame.

SMACRO Boolean-operator words

(AND)

[boolean exp] (AND) [boolean exp]

Returns true only if both Boolean expressions are true,

(EQ)

[iexp] (EQ) [ivar]

Returns true only if the operands are equal.

(GE)

[iexp] (GE) [ivar]

Returns true only if iexp is greater than or equal to ivar.

(GT)

[iexp] (GT) [ivar]

Returns true only if iexp is greater than ivar.

(LE)

[iexp] (LE) [ivar]

Returns true only if iexp is less than or equal to ivar.

(LT)

[iexp] (LT) [ivar]

Returns true only if iexp is less than ivar.

f

RCS WORDS: ;^fACRO Boolean-Operator Words
B-7^

1

(NE)

[iexp] (NE) [ivar]

Returns true only if the operands are not equal.

.EQ.

[fexpl] .EQ. [fexp2]

Returns true only if the operands are equal.

.EQZ.

[fexp] .EQZ.

Returns true only if fexp is equal to 0.

.GE.

[fexpl] .GE. [fexp2]

Returns true only if fexpl is greater than or equal to fexp2.

^ .GEZ.

[fexp] .GEZ.

Returns true only if fexp is greater than or equal to 0.

• GT.

[fexpl] .GT. [fexp2]

Returns true only if fexpl is greater than fexp2.

.GTZ.

[fexp] .GTZ.

Returns true only if fexp is greater than 0.

.LE.

[fexpl] .LE. [fexp2]

Returns true only if fexpl is less than or equal to fexp2.

RCS WORDS; SMACRO Boolean-Operator Words
B-75

,LEZ.

[fexp] .LEZ. t

Returns true only if fexp is less than or equal to 0.

.LT.

[fexpl] .LT. [fexp2]

Returns true only if fexpl is less than fexp2.

.LTZ.

[fexp] .LTZ.

Returns true only if fexp is less than 0.

.NE.

[fexpl] .NE. [fexp2]

Returns true only if the operands are not equal.

.NEZ.

[fexp] .NEZ.

Returns true only if fexp is not equal to 0.

0-?

[ivarl] 0-? [ivar2]

Returns true only if the result of a bitwise AND of ivar2 with the one's
complement of ivarl is not 0.

1-?

[ivarl] 1-? [ivar2]

Returns true only if the result of a bitwise AND of ivarl with ivar2 is

not 0.

RCS WORDS: SMACRO Boolean-Operator Words
B-76

EQ_B

[iexp] EQ_B [ivar]

Truncates the operands iexp and ivar to 8 bits and returns true only if
the truncated operands are equal.

GE_B

[iexp] GE_B [ivar]

Truncates iexp and ivar to 8 bits and returns true only if the truncated

iexp is greater than or equal to the truncated ivar.

GT_B

[iexp] GT_B [ivar]

Truncates iexp and ivar to 8 bits and returns true only if the truncated
iexp is greater than the truncated ivar.

LE_B

[iexp] LE_B [ivar]

Truncates iexp and ivar to 8 bits and returns true only if the truncated
iexp is less than or equal to the truncated ivar.

LT_B

[iexp] LT_B [ivar]

Truncates iexp and ivar to 8 bits and returns true only if the truncated
iexp is less than the truncated ivar.

NEJB

[iexp] NE_B [ivar]

Truncates the operands iexp and ivar to 8 bits and returns true only if
the truncated operands are not equal.

S-EQ

[svar] S-EQ [svar]

Returns true only if the ASCII values of two string variables are
equal. S-EQ assumes the lengths of the strings are equal.

RCS WORDS; SMACRO Boolean-Operator Words
B-77

[ivarl] "EQ" [ivar2]

Returns true only if the Boolean value of ivar2 is equal to the result of
a bitwise AND of ivarl with ivar2.

SMACRO file-operation variable words

File-var

Contains all the file-operation and header variables. Showing this
variable owner can be useful in debugging file operations.

next-record

Points to the next record in the file.

record*

Points to the current record in the file. All file access procedures use
this variable.

source-blk

Specifies the block (if any) that contains the source code for that
record.

SMACRO file-operation header variable words

ass/rec

ass/rec

Contains the number of records removed from the free list and assigned to

other lists.

avail-record

avail-record

Points to the beginning of the free list.

f

RCS WORDS: SMACRO File-Operation Header Variable Words
B-78

#

•

bytes/record

bytes/record

Specifies the number of bytes in each record in the file, including the

link and source fields.

f-segment

f-segment

Specifies the segment address for the file.

f-template

f-template

Specifies the address of the local template.

file-start

file-start

Specifies the address of the first physical record in the file segment.

first-record

first-record

Points to the first record in a list in the current file. This header
variable provides a simple way to manage files that consist of a single
list. The first-record variable contains the pointer to the beginning of
the list, and is updated as needed by the file operators. This variable
has other uses in multiple-list files.

max/rec

max/rec

Contains the total number of records allocated for the file.

RCS NORDS: SMACRO File-Operation Header Variable Words
B-79

SMACRO file-operation words

See Table B-2 at the beginning of this appendix for definitions of the phrases
used in the syntax descriptions.

add-list

add-list

Stores the data from the local template to a record, removes the record
from the free list, and makes the record the beginning of a new list.
This operator leaves record// and first-record set to the record stored,
increments ass/rec, sets source-blk and the source block field to the
current block, and sets next-record and the link field to 0. The word
add-list aborts if the file is full.

add-record

add-record

Stores the data from the local template to a record, removes the record
from the free list, and adds the record to the end of the current list.
This operator leaves record* set to the record stored, increments
ass/rec, sets source-blk and the source block field to the current block,
and sets the next-record and link field to 0. If there is no current
list (that is, if record* is 0), SMACRO executes add-list automatically
in place of add-record. The word add-record aborts if the file is full.

clear-list

clear-list

Returns the entire current list to the free list. This operation does
not abort if record* is 0, but in this case no action takes place because
there is no list to clear.

remove

remove

Removes the current record from the list pointed to by first-record, and

returns it to the free list, sets first-record to the beginning of the

resulting list, sets next-record to the record following the removed
record, and decrements ass/rec. The operation of remove aborts if there

is no current record, or if the current record is not on the list.

RCS WORDS: SMACRO File-Operation Words
B-80

#

retrieve

retrieve

$

Retrieves the current record from the current file and leaves the data in
the local template. The word retrieve aborts if record* is 0.

retrieve-from-field

retrieve-from-field [field] [destination]

Retrieves the data from the specified field in the current record and
stores the data in the specified destination. The word retrieve-from-
field aborts if record# is 0.

retrieve-from-fields

retrieve-from-fields [fieldl] [field2] [destination]

Retrieves the data from fields in the range fieldl through field2 in the

current record and stores the data in the specified destination. The
destination must be the beginning of a set of consecutive variables whose
total byte count matches the total of the fields being retrieved. The
word retrieve-from-fields aborts if record* is 0.

retrieve-l&r

retrieve-l&r

Retrieves the following three items: the current record to the local
template, the link field to the variable next-record, and the source
field to the variable source-blk. The word retrieve-l&r aborts if
record* is 0.

retrieve-link

retrieve-link [var]

Retrieves the record* from the link field of the current record and
stores it in var. This word does not abort if record* is 0.

retrieve-source

retrieve-source [var]

Retrieves the data from the source block field of the current record and
stores it in var. This word does not abort if record* is 0.

RCS WORDS: SKACRO File-Operation Words
B-81

store

store f

Stores the data present in the local template in the current record and
sets the source block field to the current block. The word store aborts
if record* is 0.

store-l&r

store-l&r

Stores the following three items: the local template to the current
record, the variable next-record to the link field, and the variable
source-blk to the source field. The word store-l&r aborts if recordy/

is 0.

store-link

store-link [var]

Stores the value in var to the link field in the current record. The var
must contain a valid record* for the current file. This operation does
not abort if record* is 0.

store-source

store-source

Sets the source block field in the current record to the current block as

specified by BLK + OFFSET. This word does not abort if record* is 0.

store-to-field

store-to-field [field] [source]

Stores the data from the specified source to the specified field in the

current record. The source and the field must contain an equal number of
bytes. The word store-to-field aborts if record* is 0.

store-to-fields

store-to-fields [fieldl] [field2] [source]

Stores the data from the source to the range of fields, fieldl through
field2, in the current record. The source must be the beginning of a set

of consecutive variables whose total byte count matches the total of the

fields stored. The word store-to-fields aborts if record* is 0.

RCS WORDS: SMACRO File-Operation Words
B-82

f

e

're-init-file

~re-init-file

Assigns all records in the current file to the free list. This operator
sets variables first-record and ass/rec to 0, and fills all record fields
(except the link field) with zeros.

"update-header

~update-header

Stores the data present in the local copies of the header variables to

the header of the current file.

atACRO Boolean file-operation words

matches

[var] matches [field]

Searches the current list, testing to see if the contents of the speci-
fied var equal the contents of the specified field in each record. This
operation returns a true value and sets record* to that record when it

finds a match between the two operands. The word matches aborts if
record* is 0.

matches-fields

[var] matches-fields [fieldl] [field2]

Searches the current list, testing to see if the contents of the speci-
fied var equal the contents of the specified range of fields in each
record. This operation .returns a true value and sets record* to that
record when it finds a match between the operands. The word matches-
fields aborts if record* is 0.

matches-fields-r

[var] matches-fields-r [fieldl] [field2]

Searches the current list, testing to see if the contents of the speci-
fied var equal the contents of the specified range of fields in each
record. This operation returns a true value, sets record* to that
record, and retrieves the record to the local template when it finds a

match between the operands. The word matches-fields-r aborts, if record*
is 0.

RCS WORDS: SMACRO Boolean File-Operator Words
B-83

matches-r

[var] matches-r [field]

Searches the current list, testing to see if the contents of the speci-

fied var equal the contents of the specified field in each record. This
operation returns a true value, sets record# to that record, and
retrieves the record to the local template when it finds a match between
the operands. The word matches-r aborts if record* is 0.

SKACRO statement words

abort

abort

Aborts the current process and displays the message ABORTED.

b-fill

[var] [#bytes] [char] b-fill

Starts at var and fills #bytes with the value of char (an 8-bit ASCII
character, not a variable). The parameter var cannot be a subscripted

array. (See also w-fill)

blank

[var] [#bytes] blank

Starts at var and fills #bytes with the ASCII space character. The
parameter var cannot be a subscripted array.

(

RCS WORDS: SMACRO Statement Words
B-84

case

W)

•

case [varl]
case: [var2] [codeA]

case: [var3] [codeB]

case: [var^l] [codeC]
default: [default codeD]
end-case

Compares the value of varl to the values of the case variables (var2
through varUl) and executes the code following the first variable match-
ing varl. This statement executes the default code if none of the vari-
ables match varl. You can use up to 40 cases (the statement compiles as
a nested IF-THEN-ELSE comparison so the same maximum nesting limit
applies). The operands varl through var4l must be either integers or
sequential variables.

case:

(See case)

default:

(See case)

default-state:

(See state-table)

do

(See while)

else

(See if)

end-case

(See case)

end-do

(See while)

RCS WORDS: SMACRO Statement Words
B-85

end-repeat

(See repeat) i

end-state-table

(See state-table)

endif

(See if)

enter-interrupt

enter-interrupt

Pushes all 8086 registers, except CS, SS, and S; pushes the variable
page; sets DS to the SMACRO segment; sets ES to the FORTH segment; and
sets the 24-bit page register to page 0. The enter-interrupt statement
does not clear the interrupt mask. You can use this statement to pre-
serve the state of the processor registers at the beginning of an inter-
rupt routine. (See also exit-interrupt)

erase g

[var] [#bytes] erase

Starts at var and fills #bytes with 0. The parameter var cannot be a

subscripted array.

exit-interrupt

exit-interrupt

Restores the registers pushed on the stack by enter-interrupt and then
executes a return from interrupt (IRET). You can use this statement at
the end of an interrupt routine to restore the registers before continu-
ing with normal processing. (See also enter-interrupt)

if

if [boolean exp] then [code] else [code] endif

Provides the standard if-then-else control structure up to a nesting

level of 40.

HCS WORDS: SMACRO Statement Words
B-86

move

[varl] [var2] [#bytes] move

Moves #bytes from varl to var2. The parameters varl and var2 cannot be

subscripted arrays.

repeat

repeat [code] until [boolean exp] end-repeat

Provides the standard repeat-until control structure up to a nesting
level of 40.

S=>

[varl] S=> [var2]

Moves varl to var2. This statement does not affect the rest of var2 if
varl is shorter than var2. The variables varl and var2 may be strings,
owners, or arrays.

set-bit-in

[varl] set-bit-in [var2]

Sets to 1 the var2 bits corresponding to ones in bit mask varl.

state

(See state-table)

RCS WORDS: SMACRO Statement Words
B-87

state-table

state-table
state:
state:
state:

[state-varl]
[test-varl]
[test-var8]
[test-var15]

[state-var2]
[test-var2]
[test-var9]
[test-varl6]

[state-var7]
[test-vary] [codeA]
[test-varl4] [codeB]
[test-var21] [codeC]

default-state: [default code]
end-state-table

Compares the values of all state variables (state-varl through
state-var7) to the values of the test-variables (test-varl through test-
var?) in each line of the state table and executes the code on the first
line containing a match for every state variable. Following the match,
lines within the state table are ignored. SMACRO executes the default
code if none of the lines contains a match for every state variable.

You must use the same number of test variables in each line as there are
state variables. You may have up to seven state variables. A test vari-

able can be a variable, a negated variable (using the ~ prefix character
to indicate "not-equal"), or XX. XX is a don't-care variable that
matches any state variable. Corresponding state and test variables must
be of the same type. State tables accept only types strv, iv, bv, and

seqv.

State tables cannot be nested. The total number of test variables (not

counting XX don't-care variables) must be less than 40.

then

(See if)

until

(See repeat)

w-fill

[var] [#words] [integer] w-fill

Starts at var and fills #words with the specified integer value,
parameter var cannot be a subscripted array. (See also b-fill)

The

C.

RCS WORDS: SMACRO Statement Words
B-88

while

while [boolean exp] do [code] end-do

Provides the standard while-do control structure up to a nesting level

of 40.

XX

(See state-table)

zero-bit-in

[ivarl] zero-bit-in [ivar2]

Sets to the ivar2 bits corresponding to ones in bit mask ivarl.

(See state-table)

~F

~F [FORTH word]

Calls the specified FORTH word.

-PRINT

-PRINT [var]

Displays the value of the specified variable. For an array variable, the
entire array is displayed. -PRINT does not work with a subscripted
array.

-PRINT"

-PRINT" [string"]

Displays the specified string.

RCS VORDS: SFfACRO Statement Words
B-89

Miscellaneous SMACRO words

0-SMACRO

0-SMACRO

Represents board in the system vocabulary. (All boards have even
numbers)

1 0-SMACRO

1 0-SMACRO

Represents board 10 in the system vocabulary. (All boards have even
numbers)

12-SMACRO

12-SMACRO

Represents board 12 in the system vocabulary. (All boards have even
numbers)

2-SMACRO

2-SMACRO

Represents board 2 in the system vocabulary. (All boards have even
numbers)

n-SMACRO

4-SMACRO

Represents board 4 in the system vocabulary. (All boards have even
numbers)

6-SMACRO

6-SMACRO

Represents board 6 in the system vocabulary. (All boards have even
numbers)

(

RCS WORDS: Miscellaneous SMACRO Words
B-90

8-SMACRO

8-SMACRO

Represents board 8 in the system vocabulary. (All boards have even

numbers)

DEFINITIONS

DEFINITIONS

Enables the current vocabulary. You must precede DEFINITIONS with the

name of a vocabulary.

LIST-0

LIST-0 [name]

Creates a list owner.

m

m [name]

Adds a variable with the specified name to the most recently created list

owner. You must declare this named variable in the same vocabulary as

the list owner. (For example, you cannot add a variable from the SDEF

vocabulary if the most recently created list owner is in the $DEF
vocabulary)

page

page

Contains a copy of the four high-order address bits. Routines that per-
form address calculations require this FORTH variable because the system
does not allow access to the actual address register. To keep the infor-

mation in this variable current, all code that sets the address register
must also set this variable. In particular, an interrupt routine that
changes the four high-order bits must first preserve the page variable
before making the changes. The interrupt routine must then restore the
page variable and reset the address register bits before executing an
IRET. (See also enter-interrupt and exit-interrupt in the section
"SMACRO statement words")

RCS WORDS: Miscellaneous ;^<ACRO Words
B-91

SDEF

SDEF C

Sets the system vocabulary.

-INTERRUPT

[interrupt#] -INTERRUPT [routine]

Sets the specified interrupty/ to call the specified routine.

COMM Words

buffer-ready-f

buffer-ready-f

Indicates when the buffer is ready. You must include this integer vari-
able in every vocabulary that COMM accesses.

COMM

COMM

fLoads the communications utility.

COMM-PROCESS

COMM-PROCESS

The routine that performs the communications process. You must include
this routine in the board process on the COMM board.

control-cycle-#-clks

control-cycle-#-clks
Contains the user-defined number of counts for the communications timer
based on a 153-KHz counter cycle. The default value for this SMACRO
variable is 1300 (hex). For debugging, you can change this value to 7FFF
to obtain the longest possible interval between cycles.

ERASE-COMM-TABLE

ERASE-COMM-TABLE

Erases all entries from the communications table of a board, thus delet-
ing all communication paths between control levels. ^

RCS WORDS: COMM Words
B-92

i

RESTART-COMM-TIMER

RESTART-COMM-TIMER

Restarts the communications timer (timer on the COMM board).

SHOW-TABLE

SHOW-TABLE

Displays the contents of the current communications table. The first

column contains unimportant information which you can ignore. Each line
in the table represents either a transfer path from an output buffer to
common memory or a transfer path from common memory to an input buffer on

another level. Thus, two lines comprise a complete transfer path.

TO-DESTINATION

(See TRANSFER-FROM)

TRANSFER-FROM

TRANSFER-FROM [vocabulary buffer] TO-DESTINATION [vocabulary buffer]

Enters a buffer transfer into the communications table of a board, thus

adding a communication path between control levels.

WAIT-FOR-NEXT-COMM-CYCLE

WAIT-FOR-NEXT-COMM-CYCLE

Delays program execution until the communications timer begins the next
communications cycle. You can optionally include this statement in the
board process on the COMM board.

RCS WORDS: COft! Words
B-93

B.2 RSL WORDS

The following list describes the user words defined in RSL. All block refer-

ences are absolute, unless otherwise indicated. The RSL words fall into the
following categories:

• RSL operating system words
• Language words
• TASK command words
• RSL system parameter words
• Control level words

RSL Operating System Words

$DEF

$DEF

Enables all levels to load their file definitions from the same source
block. Though the file definitions come from the same source block, $DEF
declares them in the correct vocabulary. You must define this word on
all control levels to set their vocabularies.

?ARR

?ARR [array name]

Displays the following information for the specified array: record num-
ber, absolute source block number, number of sectors for each dimension,
movetable name for each dimension, sector pose name, and current sector
list. ?ARR sets the editor default block to the last block number
displayed.

?LOC

?LOC [location name]

Displays the following information for the specified location: record
number, absolute source block number, pose name, movetable name, and a

matrix representing the resulting pose. ?LOC sets the editor default
block to the last block number displayed.

RSL WORDS: RSL Operating System Words
B-94

7M0VE-T0

7M0VE-T0

Displays the following information for all currently defined move-to
paths: record number, absolute source block number, path-", object,
start location, and destination location. 7M0VE-T0 pauses after display-
ing the information for each move-to path and waits for you to press any

key before displaying the information for the next move-to path. You can
press _2£ to abort the operation of 7M0VE-T0 before it displays all cur-
rent move-to paths. 7M0VE-T0 sets the editor default block to the last

block number displayed.

?MTB

?MTB [movetable name]

Displays the specified movetable, its record number, and its absolute
source block number. ?MTB sets the editor default block to the last

block number displayed.

?OBJ

?OBJ [object name] [grip#]

Displays the following information for the specified gripy/ on the speci-
fied object: OBJECT-NAME-FILE record number, OBJ-GRIP-FILE record num-
ber, absolute source block number for the object grip, and name of the

grip movetable. ?OBJ sets the editor default block to the last block
number displayed.

?POSE

?POSE [pose name]

Displays a matrix representation of the specified pose and its configura-
tion flags, record number, and absolute source block number. 7P0SE sets
the editor default block to the last block number displayed.

ABT

ABT [level name]

Aborts the control process of the specified level by setting the abort-f
variable to true. The level can be TASK, PATH, PRIM, or JOINT.

RSL WORDS; RSL Operating System Words
B-95

GO

GO

Starts the execution of all control level and communications processes
and issues the RESTART command to the TASK level by loading block 8921,

GO prompts you to initialize the robot interface.

HALT

HALT

Stops the execution of all control-level processes, the communications
process, and the robot interface by loading block 8924. HALT clears all
slave-board output buffers, sets offsets and prepares the system to exe-
cute the next GO command it receives. Block 8925 performs the same func-

tions as block 8924 except that block 8925 leaves the robot interface
active so that you can use the TT command. (See also TT)

Joint/comm

Joint/comm

Specifies the board segment of the JOINT/COMM board. You use this FORTH
constant with remote-slave words described in the section "Remote-slave
words"

.

POFF

POFF [level name]

Turns off the debug print facility for the specified control level by
setting the print-f variable to false. The level can be TASK, PATH,
PRIM, or JOINT. (See also PON)

»t

PON

PON [level name]

Turns on the debug print facility for the specified control level by

setting the print-f variable to true. The level can be TASK, PATH, PRIM,
or JOINT. (See also POFF)

(Ml

RSL WORDS: RSL Operating System Words
B-96

Prim

Prim

Specifies the board segment of the PRIM board. You use this FORTH con-

stant with remote-slave words described in the section "Remote-slave
words"

.

RECORD-POSE

RECORD-POSE [pose name]

Stores the current robot pose in the named pose variable. If the pose
name is not yet defined, RECORD-POSE defines it.

Task/path

Task/path

Specifies the board segment of the TASK&PATH board. You use this FORTH
constant with remote-slave words described in the section "Remote-slave
Words".

TT

TT

Executes one cycle of the full system and displays debug output for all
control levels. You must edit block 8923 to activate or deactivate the
robot interface during the operation of TT. You can edit block 919 on
each level to display the additional debug output. You must precede TT
with the HALT command if the robot interface is to be inactive. Alterna-
tively, you must precede TT with 8925 LOAD if the robot interface is to

be active. (See also HALT)

TTT

[#cycles] TTT

Performs the TT single-step function a number of times equal to #cycles.
(See also TT)

TYPE-POSE

[block//] [line#] TYPE-POSE [pose name]

Enters source code for the specified pose into the specified block,

beginning at the specified line.

RSL WORDS; RSL Operating System Words
B-97

Language Words

(See -mtb-)

-arr-

-arr-[array name] [base location] [x-#-sectors] [x-movetable]
[y-#-sectors] [y-movetable] [z-#-sectors] [z-movetable]
[sector pose]

Defines an array with the specified name and dimensions.

Where:

• array name contains the name of the array.

• base location specifies the location that is the origin (sector 0) of
the array.

• x-#-sectors , y-//-sectors , and z-#-sector3 specify the number of sec-

tors along the x, y, and z axes of the array frame. Currently, the
total number of sectors must be less than or equal to 20. The size of
sector-list limits the total number of statements. You can increase
the size of sector-list.

• x-movetable , y-movetable , and z-movetable contain the names of the

movetables that give the displacements between sectors along the x, y,
and z axes of the array frame. The movetables should consist only of
tool frame motions. The array retains its shape if you move the

location.

• sector pose contains the name of the pose RSL uses to store the posi-
tion of the current sector during execution.

I

imtb-

-imtb- [inverse name] [source name]

Defines an inverse movetable with the specified name based on the speci-
fied source movetable.

Where:

• inverse name contains the name for the new movetable.

• source name contains the name of the original movetable.

RSL WORDS: Language Words
B-98

#
-loc-

-loc- [location name] [pose] [movetable]

Defines a location with the specified name. The specified pose and move-
table combine to define the new location.

Where:

• location-name contains the location name.

• pose contains the name of the pose.

• movetable contains the name of the movetable.

-mtb-

-mtb- [name]

[frame] [X] [Y] [Z]

[r-tool] [axis] [angle]

-mtb-end-

Defines a movetable with the specified name. There are two parts to the
movetable syntax: the name line (-mtb-) and the sequence of transform
lines () terminated by -mtb-end-. Each transform line specifies
either a vector translation or a rotation. You specify translations by

giving the x, y, and z components of the vector (expressed in either the
base or tool frame). You specify rotations by giving the angle and the
axis (x, y, or z) of the tool frame. The unit of measurement for trans-
lations is inches. For rotations the unit is degrees, within the range
+180.00 to -179.99.

Where :

• name contains the movetable name.

• frame contains either t-base or t-tool to specify the base frame or

the tool frame, respectively.

• X contains the x component of the translation vector.

• jf contains the y component of the translation vector.

• Z^ contains the z component of the translation vector.

• r-tool specifies a rotation about the tool frame.

• axis contains X, Y, or Z to specify the axis about which to rotate.

• angle contains the angle to rotate in degrees.

RSL WORDS: Language Words
B-99

•mtb-end-

(See -mtb-)

-obj-

-obj- [object phrase] [grip movetable]

Defines an object grip with the specified name. The grip# specifies the
grip position on the object and the specified grip movetable defines the
grip position for the robot.

Where:

• object phrase contains the object name and grip number.

• grip-mtb contains the name of the movetable that defines the grip
position.

-path-

-path- [path type] [object phrase] [location phrase]

or,

-path- move-to [object phrase] [start location phrase] [destination
location phrase]

The path statement syntax contains two parts: the path statement and a

sequence of path-point lines. The -path- line defines the type and the

parameters of the path; the -ppt- lines give the sequence of steps in the
algorithm. See -ppt- for the path-point syntax.

Where:

• path type is one of the RSL path types: approach-pickup, depart-

pickup, approach-release, or depart-release.

• object phrase contains the object name and the grip number for this

path.

• location phrase contains the type of goal (loc or arr) and the name

that defines the goal of this path.

• start location phrase contains the location type (loc or arr) and the

start location name.

• destination location phrase contains the location type (loc or arr)

and the destination location name.

e

RSL WORDS: Language Words
B-100

-pose-

-pose- [name] [pose numbers] [configuration flags]

Defines a pose with the specified name. The definition includes pose
numbers and configuration flags. The pose numbers are the seven float-
ing-point numbers that specify a quaternion and a vector. Refer to the
robot transform documentation for information on the three configuration
flags.

Where:

• name contains the name of the pose.

• pose numbers contains the seven floating point numbers for the quater-
nion and vector that represent the pose.

• configuration flags contains the three configuration flags, usually
+1,0 or -1.0. See your robot transform documentation for details.

-ppt-
-ppt- goto [location phrase] [trajectory phrase]
Adds a goto path-point to the current path.

Where:

• location phrase contains the type (loc, arr, goal, or tool) and the

name of the goal location.

• trajectory phrase contains the type of trajectory (cart or joint) and

the trajectory parameters. (For descriptions of the trajectory
parameters, see cart and joint)

-rr-

-rr- [name] [file] [size]

Defines a round-robin with the specified name and size in the specified
file.

Where:

• name contains the name of the round-robin.

• file contains the name of the round-robin file.

• size specifies the number of records in the round-robin file.

approach-pickup

(See -path-)

RSL WORDS: Language Words
B-101

approach-release

(See -path-)

arr

arr [name]

Indicates an array in a location phrase. (See -path- and -ppt)

cart

cart [translational max acceleration] [translational max velocity]
[translational neighborhood] [rotational max acceleration]
[rotational max velocity] [rotational neighborhood]

Indicates a cartesian trajectory in a path-point trajectory phrase. When
the trajectory routine reports done, the robot is within both the trans-
lational and rotational neighborhood of the goal.

Where:

• translational max acceleration contains the maximum allowed magnitude
of the translational acceleration, in inches per cycle per cycle.

• translational max velocity contains the maximum allowed magnitude of
the translational velocity, in inches per cycle.

• translational neighborhood contains the translational distance in
inches from the current goal location at which the trajectory routine
reports done.

• rotational max acceleration contains the maximum allowed magnitude of

the rotational acceleration in degrees per cycle per cycle.

• rotational max velocity contains the maximum allowed magnitude of the

rotational velocity, in degrees per cycle.

• rotational neighborhood contains the rotational distance in degrees
from the current goal location at which the trajectory routine reports
done

.

depart-pickup

(See -path-)

depart-release

(See -path-)

RSL WORDS: Language Words
B-102

goal

goal [name]

Indicates a goal movetable in a path-point loc phrase. (See -ppt-)

goto

(See -ppt-)

joint

joint [acceleration] [velocity] [delta]

Indicates a joint trajectory in a path-point traj phrase.

Where:

• acceleration contains the maximum allowed acceleration of any joint

given as the percentage (between and 100) of the hardware maximum
for each joint.

• velocity contains the maximum allowed velocity of any joint given as
the percentage (between and 100) of the hardware maximum for each
joint.

• delta contains the difference in degrees from the location joint val-
ues at which the trajectory routine reports done. When the trajectory
reports done, all joint values are within this delta.

loc

loc [name]

Indicates a location in a" location phrase. (See -path- and -ppt-)

move-to

(See -path-)

nul

nul

The name of a predefined object, location, and movetable. Use nul to

specify a nul value in the definition of paths and path-points.

RSL WORDS: Language Words
B-103

r-tool

(See -mtb-) k

t-base

(See -mtb-)

t-tool

(See -mtb-)

tool

tool [name]

Indicates a tool movetable in a path-point location phrase. (See -ppt-)

TASK Command Words

MOVE-TO

MOVE-TO [object] [grip#] [destination location type] [destination]
[array sector]

Sends a move-to path to the PATH level. MOVE-TO uses the current loca-
tion as the start location. The array sector specification is optional,
you need to specify the array sector only if the destination location
type is arr (indicating an array).

MOVE-TO updates the current location to the path goal when PATH completes
the path. MOVE-TO reports an error if it cannot find a specified path.

After you issue MOVE-TO, the TASK level reports its status as executing
until the PATH level reports its status as done. Then the TASK level
also reports its status as done.

I

PAUSE

PAUSE

Sends PAUSE to the PATH level and sets the current location and object to

nul. After you issue PAUSE, the TASK level reports its status as exe-
cuting until the PATH level reports its status as done. Then the TASK
level also reports its status as done.

RSL VORDS: TASK Connand Words
B-104

#

RESTART

RESTART

Sends the RESTART command to the PATH level and sets the current location
and object to nul. After you issue RESTART, the TASK level reports its
status as executing until the PATH level reports its status as done.
Then the TASK level also reports its status as done.

TRANSFER

TRANSFER [object phrase] [source location phrase] [source sector list]

[destination location phrase] [destination sector list]

Sends the following sequence of path commands to the PATH level:

1. move-to object source destination
2. approach-grasp object source
3. depart-grasp object source
H. move-to object source destination
5. approach-release object destination
6. depart-release object destination

RSL repeats the specified sequence of paths for each sector in the sector
list if the source or the destination consists of an array. If both the

source and the destination are arrays, the sector lists must have the
same lengths. RSL updates the current location as it completes the exe-
cution of each path.

After you issue TRANSFER, the TASK level reports its status as executing
until the PATH level indicates that all paths are complete by reporting
its status as done. Then the TASK level also reports its status as done.

RSL System Parameter Words

The following lists describe parameters that are associated with the JOINT,
PATH, and PRIM levels and with RSL.

JOINT parameters

These variables are set in the range of blocks 980 to 989 of the JOINT
level. The auto-load block of the JOINT D>M loads block 980.

a-sysmax

a-sysmax

Contains the maximum acceleration for each joint of the robot. This
6-element array describes acceleration in inches per cycle squared or
radians per cycle squared.

RSL WORDS; JOINT Parameters
B-105

creep-delta

creep-delta

Contains the distance each joint is to move, relative to a joint limit.

The CREEP command uses this 6-element floating-point array to control the
movement of the joints.

creep-vel

creep-vel

Contains the velocity each joint is to use to reach the distance speci-
fied by creep-delta. The CREEP command uses this 6-element floating-
point array to control the movement of the joints.

Ij-limit

Ij-limit

Contains the lower joint limits for each joint of the robot. This
6-element array describes lower joint limits in inches or radians. The

JOINT-LIMIT-TEST routine uses these same limits to test for valid joint

values. You must edit the JOINT-LIMIT-TEST routine if you want this rou-

tine to use other limit criteria.

next-point-scale-threshold

next-point-scale-threshold

Determines when the CARTESIAN command is to report next-point status.
The next-point-scale-threshold variable has the value 0.5 for RSL

operation.

uj-limit

uj-limit

Contains the upper joint limits for each joint of the robot. This
6-element array describes upper joint limits in inches or radians. The

JOINT-LIMIT-TEST routine uses these same limits to test for valid joint

values. You must edit the JOINT-LIMIT-TEST routine if you want this rou-

tine to use other limit criteria.

RSL WORDS: JOINT Parameters
B-106

•

v-sysmax

v-sysmax

Contains the maximum velocity for each joint of the robot. This

6-element array describes the velocity in inches per cycle or in radians
per cycle.

PATH pzurameters

This variable is set in the range of blocks 980 to 989 of the PATH level. The
auto-load block of the PATH D>M loads block 980.

tp-cycles

tp-cycles

Specifies the delay (in number of cycles) between the tool-pose feedback
from the JOINT level and a robot's achievement of that pose. This vari-
able has a value of 2 when you are using RSL with VAL SLAVE. The TOOL-
POSE-'' routine uses this variable to set tool-pose-".

PRIM parameters

These variables are set in the range of blocks 980 to 989 of the PRIM level.
The auto-load block of the PRIM D>M loads block 980.

joint-traj-delay

joint-traj-delay

Specifies the delay (using a floating-point number of cycles) between
issuing a command to, and the feedback pose from, the JOINT level.

joy-max-v

joy-max-v

Specifies the maximum translational velocity (using a floating-point num-

ber of inches per cycle) that you can obtain using the joystick. The
velocity switch on the joystick controller scales velocities down from
this maximum value.

>

RSL WORDS: PRIM Psirameters

B-107

joy-max-w

joy-max-w

Specifies the maximum rotational velocity (using a floating-point number
of radians per cycle) that you can obtain using the joystick. The veloc-
ity switch on the joystick controller scales velocities down from this
maximum value.

RSL parameters

INV-TOOL-MTB

INV-TOOL-MTB

Defines an inverse of the tool point with respect to the robot wrist.
You can define INV-TOOL-MTB as the inverse of TOOL-MTB by entering the
sequence -imtb- INV-TOOL-MTB TOOL-MTB .

TOOL-MTB

TOOL-MTB

Defines the tool point with respect to the robot wrist. You can redefine
this movetable to change the tool point; however, you must also redefine
INV-TOOL-MTB at the same time.

Control-Level Words

abort-f

abort-f

Aborts control-level execution when this flag is true. (See also ABT
under "RSL Operating System Words")

cycle-time

cycle-time

Records the number of 153-KHz clock ticks required for the levels to per-
form the current execution cycle. You can use the PRINT-TIME routine to
convert clock ticks to microseconds.

ij «

RSL WORDS: Control-Level Words
B-108

Display

Enables you to display user-defined debug information. Display is a part
of the board process that runs after the level executes its routines.
You can turn the printing on with PON and turn the printing off with
POFF. (See also PON and POFF under "RSL Operating System Words")

error-list

error-list

Contains the list of status-arg values. You can execute this sequential
variable owner in Show mode to display the names for the status-arg
values.

inc-command-#-in

Indicates that a level has received a new command. You must increment
this counter after setting the input command for a control level.

JS

.

JS [joint array]

Displays the joint angles, joint velocities, or joint accelerations con-
tained in the specified joint array. You must edit this routine to

accommodate your specific robot. For example, if you are using a PUMA
760 robot, enter JS servo-com-joint to display the joint values (in

degrees) commanded to the robot servo level. JS is defined only for the
JOINT level.

List-display

List-display

Contains user-specified variables that are useful for debugging. Execut-
ing List-display in Show mode displays the values of these variables.

max-cycle-time

max-cycle-time

Records the largest number of 153-KHz clock ticks required to complete an
execution cycle since you issued RESTART. You can use the PRINT-TIME
routine to convert clock ticks to microseconds.

RSL WORDS: Control-Level Words
B-109

min-cycle-time

min-cycle-time

Records the smallest number of 153-KHz clock ticks required to complete
an execution cycle since you issued RESTART. You can use the PRINT-TIME
routine to convert clock ticks to microseconds.

overflow-cycle

overflow-cycle

Contains the number of cycles since you issued RESTART in which the con-
trol level required longer than a cycle to complete its execution.

PDEF

PDEF

Sets the vocabulary for the PATH level. PDEF is defined only on the
TASK/PATH board.

print-f

print-f

Controls debug printing. PON sets this flag true and POFF sets this flag
false. (See also PON and POFF under "RSL Operating System Words")

TDEF

TDEF

Sets the vocabulary for the TASK level. TDEF is defined only on the

TASK/PATH board.

WAIT-TASK-DONE

WAIT-TASK-DONE

Waits for the status-report variable to indicate executing (that is, not
done) and then waits for the status-report variable to indicate done.
You can use this word in a load block to issue a sequence of commands to

the TASK level. For this situation, WAIT-TASK-DONE issues each succes-
sive command only after the previous command indicates done. You can use
ABT TASK to abort the operation of WAIT-TASK-DONE before all commands in

the sequence execute.

RSL WORDS; Control-Level Words
B-110

^ l(

^
Appendix C

SYSTEM MAPS

This appendix describes how RCS (with RSL version 1.6) allocates the MULTIBUS
address space, I/O space, interrupt assignments, and timers.

C.I MDLTIBUS ADDRESS SPACE

The following list describes the allocation of memory for RCS and RSL
version 1.6.

•f

Address Range

00000- 1FFFF
20000-3FFFF
40000-5FFFF
60000-7FFFF
80000-EFFFF
80000-8FFFF
90000-DFFFF
E0000-EEFFF
EF000-EFBFF
EFC00-EFC1F
EFC20-EFC7F
EFC80-EFFFF

F0000-FBFFF
FC000-FFFFF

Contents

RSL processor
PRIM processor
TASK/PATH processor
JOINT/COMM processor
Common memory

User files
System dictionary
RCS communication buffer
Unused address space

Disk control
Remote/slave board semaphores
Unused address space

Unused address space
FORTH PROMs

The unused address space shown in this list is available for user applica-
tions. You can use 2M-bit addressing to increase the address space if your
MULTIBUS backplane includes the P2 connector option. This option enables you
to relocate the user files and the system dictionary in memory, and then add
up to three more processes in the address range 80000-DFFFF. (See the dpage
and fpage words for information on allocating memory to the system dictionary
and SMACRO files.)

C.2 MDLTIBDS I/O SPACE ORGANIZATION

The following list describes the allocation of the I/O space for RCS.

I/O Address Contents

0000-004F Unused I/O space
0050-0051 Unused I/O space
0052-0053 Rimfire 45 disk and tape controller
005M-005F Unused I/O space
0060-007F Unused I/O space
0080-009F J4 iSBX connector on 86/30
00A0-00BF J3 iSBX connector on 86/30

«)
00C0-00DF Other 86/30 ports
00E0-00FF Unused I/O space

C.2 MDLTIBDS I/O SPACE ORGANIZATION
C-1

All unused I/O address space and the J3 and J4 ports are available for user
applications.

(|

C.3 RCS INTERRDPT ASSIGNMENTS

The following list describes the assignments of the interrupts that affect the
operation of RCS.

Interrupt Number Function

6 millisecond time-out interrupt
1 8087 error interrupt
2 Communication bit input (not used on the

board with the communications process)
3,M On-board serial port (not required on

slave boards)

5,6,7 Unused interrupts

C.4 TIMERS

Each 86/30 board has three programmable timers, numbered 0, 1, and 2. Timer

0, on the COMM board, is used by the COMM-PROCESS . Timer on other boards is

not used. Timer 1 is used by the debug routines TIME-P, START-TIMER, and
READ-TIMER. Timer 2 is used for the on-board serial port. (Note that this

timer can be used on slave boards that do not use the serial port.) i

C.4 TIMERS
C-2

Appendix D
RCS DISK BLOCK ORGANIZATION

RCS uses the FORTH block structure for all source code. The disk map below
shows how RCS allocates blocks on the Winchester disk for RSL version 1.6.

(Block numbers begin at 1000 for historical reasons.)

Absolute Block Numbers

1000-1349
1350-1499

1350-1359

1360-1363
136M

1365-1369
1370-1383
1384
1385-1397
1398

1399
1400-1401
1402

1403
1404

1405
1406-1412
1413«1H19
1420-1459
1460-1469

1470-1479
1480-1489
1490-1499

1500-1599
1600-5999
6000-6999
7000-7999
8000-8999
9000-9999
10000-10999
11000-11999

12000-12999
13000-30999

Contents

MBOOT
CUSTOM

Unused blocks

MAP
BACKUP

Other tape blocks
CUSTOM setup blocks
CUSTOM? map
DM? maps
PRESERVE-FILE map
PRESERVE map (PMAP)
Directory blocks
System addresses
Init-cm block
Slave board names
Function-keys block
System vocabulary declaration
Additional function key blocks
auto-load blocks
BOOT-SYSTEM blocks
Load base system
Load application
BOOT-BASE-SYSTEM blocks

Screen editor
D>M images
Reserved space for tape transfer
RCS source code

RSL source code
TASK source code
PATH source code
PRIM source code

JOINT source code
Available to user

In addition to the RCS blocks, the disk map includes blocks 8000-12999, which
are allocated for RSL. When you use RSL, block 3 (relative to the first block
in the level) is a load block that loads the control-level software. Simi-
larly, relative block 980 initializes the control level.

RCS uses a 10-block directory structure within these source-code blocks. The

system does not automatically maintain this directory information; you must
update the block-directory blocks when you add, delete, or move blocks. For
more information on directories, see "Understanding Directory Block Conven-
tions" in Chapter 6, "Basic RCS Operations".

RCS DISK BLOCK ORGANIZATION
D-1

6

Appendix E
8087 OPERATION CODES FOR RCS

This appendix lists the 8087 operation codes and their RCS equivalents in
alphabetical order based on the Intel Operation Codes (as in Table S-19 in the
Intel 8086 Family User's Manual) . RCS does not implement the complete 808?
instruction set.

Because FORTH uses only the length and the first three characters to differen-
tiate the names of variables, NBS has changed the Intel names of some opera-
tion codes to ensure that the name of each code is unique.

As with the Intel assembler, unless the second letter is N, RCS assembles all
operation codes with an FWAIT first.

RCS provides the following words to modify operation code mnemonics:

• d sets the destination bit.

• LNG sets the temp-real format required to use the FLD, FST, and FSTP opera-
tion codes.

• P indicates that the 8087 is to pop the result (the same as the Intel P

suffix on the instruction mnemonic).

• rev indicates that the 8087 is to perform the indicated operation with the

source and destination operands reversed (the same as the Intel R suffix on
the instruction mnemonic).

• INT indicates that the operation is to use 32-bit integer arithmetic.

• WINT indicates that the operation is to use 16-bit integer arithmetic.

The alphabetical list of Intel operation codes and their RCS equivalents
follows.

Operation

Calculate 2^-1

Convert to absolute value
Add real

Add real and pop
Load packed decimal
Store packed decimal and pop
Change sign
Clear exceptions
Compare real
Compare real and pop
Compare real and pop twice
Decrement stack pointer
Disable interrupts

Intel RCS Modifier Words

F2XM1 F2XM1
FABS FABS
FADD FADD
FADDP FADD
FBLD none
FBSTP none
FCHS FCHS
FCLEX none
FCOM FCOM
FCOMP FCOMP
FCOMPP FCOMPP
FDECSTP FDECSTP
FDISI none

8087 OPERATION CODES FOR RCS
E-1

Operation

Divide real

Divide real and pop
Divide real reversed
Divide real reversed and pop
Enable interrupts
Free register
Add integer
Compare integer
Compare integer and pop
Divide integer
Divide integer reversed
Load integer
Multiply integer
Increment stack pointer
Initialize 808?
Store integer
Store integer and pop
Subtract integer
Subtract integer reversed
Load real
Load +1.0
Load control word
Load environment
Load log2e
Load Iog2l0
Load log ^02
Load logg2
Load pi

Load +0.0
Multiply real
Multiply real and pop
Clear exceptions (no FWAIT)
Disable Interrupts (no FWAIT)
Enable Interrupts (no FWAIT)
Initialize 808? (no FWAIT)
No operation
Save state (no FWAIT)

Store control word (no FWAIT)
Store environment (no FWAIT)

Store status word (no FWAIT)
Calculate partial arctangent
Calculate partial remainder
Calculate partial tangent

Round to integer
Restore saved state
Save state
Scale
Calculate square root
Store real

Store control word
Store environment

Intel RCS Modifier Words

FDIV FDIV
FDIVP FDIV P

FDIVR FDIV rev

FDIVRP FDIV rev P

FENI none
FFREE FFREE
FIADD FADD INT or WINT
FICOM FCOM INT or WINT
FICOMP FCOMP INT or WINT
FIDIV FDIV INT or WINT
FIDIVR FDIV rev INT or rev WINT
FILD FLD INT or WINT
FIMUL FMUL INT or WINT
FINCSTP FINCSTPT
FINIT none
FIST FST INT or WINT
FISTP FST P INT or P WINT
FISUB FSUB INT or WINT
FISUBR FSUB rev INT or rev WINT
FLD FLD
FLD1 1FLD
FLDCW FLDCW
FLDENV FLDENVIR
FLDL2E L2EFLD
FLDL2T L2TFLD
FLDLG2 LT2FLD
FLDLN2 LE2FLD
FLDPI PIFLD
FLDZ ZFLD
FMUL FMUL
FMULP FMUL P

FNCLEX FNCLEX
FNDISI FNDISI
FNENI FNENI
FNINIT FNINIT
FNOP none
FNSAVE none
FNSTCW none
FNSTENV FNSTENVIR

FNSTSW FNSTSW
FPATAN FPATAN
FPREM FPREM
FPTAN FPTAN
FRNDINT FRNDINT
FRSTOR FRSTOR
FSAVE FSAVE
FSCALE FSCALE
FSQRT FSQRT
FST FST
FSTCW FSTCW
FSTENV none

€

8087 OPERATION CODES FOR RCS
E-2

B

Operation

Store real and pop

Store status word
Subtract real

Subtract real and pop
Subtract real reversed
Subtract real reversed and pop
Test stack top against +0.0
Make 8086 wait while 8087 is busy
Examine stack top
Exchange registers
Extract exponent and significand
Multiply Y and log2X
Multiply y and log2(X+1)

Intel RCS Modifier Words

FSTP FSTP
FSTSW none
FSUB FSUB
FSUBP FSUB P

FSUBR FSUB rev
FSUBRP FSUB rev P

FTST FTST
FWAIT FWAIT
FXAM FXAM
FXCH FXCH
EXTRACT FXTRACT
FYL2X FYL2X
FYL2XP1 FYL2XP1

8087 OPERATION CODES FOR RCS

E-3

Appendix F
JOYSTICK SCHEKATICS

This appendix contains schematic wiring diagrams describing the design of a
joystick and the interface electronics housed in a separate chassis. The
joystick contains U smaller joysticks, 15 switches, a velocity-control knob,

and an indicator light. The joystick interfaces with the RSL PRIM level.

The following table lists the schematics.

TITLE PAGE

• Joystick Switch Layout F-2

• Joystick Switch Wiring Diagram F-3

• Joystick to Interface Electronics Cable Diagram F-4

• Joystick Switch Debounce Circuitry (page 1 of 2) F-5

• Joystick Switch Debounce Circuitry (page 2 of 2) F-6

• Emergency Stop and Hold Set/Clear Circuitry F-7

JOYSTICK SCHEMATICS
F-1

\n\
5 1
li \
II

!

UJ

> 1 ,

LU

Q\^
HOLD SETo

Z

WORLD

TRANSLATE ^
^

^^^'^

o
F UJ m

C/)

>- tv ~r

"3

1- 1-

11 1- - -1 1- - -1

O K

oc
o 'U

LL

f©iU Q

>

\uCa^^z AJJ? § ,(T-)'
N V J

I]
' irr :i VlJ N

LJ >•

m
<

UJ

>
Q.

lO EMERG. STOPo u
J

oj b£)
1-

UJ

lO ESTOP RESETo c
UJ

>

K

N

HOLD CLEARo S K
(,

^J-
5, /^L^,

lO

i"

N

N

II 1- - -1 h - -1

NSLAl TOOL NSLAl

K K

Figure F-1. Joystick switch layout,

JOYSTICK SCHEMATICS
F-2

O

Z
O
o

o
I-

>
o

o
LL

<

o
<
o
o
z
d
i

Figure F-2. Joystick switch wiring diagram.

JOYSTICK SCHEMATICS
F-3

tn cc
> (U

01;

r~ rg<*i^ui(£r^a{3)0'~ojD^inu)Ncoo)Orj'^*^^iflWNa>Or", CMnviflQNOOJO'-fym n m <n f^

o
I-

>

LL

LU
-I

m
<
o

o
H
>
-3

»- Nnvirt<^Ncoai'^'"'^'^^'^^^-(oo)OjrfMn«i/)(Df^a)g)o

I?

O Q

Figure F-3. Joi'stick to interface electronics cable diagram.

JOYSTICK SCHEMATICS

o
F
>
o

o
IL

>-

n
I-

5
o
(£

O
lU

o
z

o
03

UJ

Q

\

r 8 8

! 5

i^i^4^

s

I

/\ A /N A A /N

s

A A A A A A A A
4\ /N >t^

8
1 ::

i
ff

WQ '!A<A\<«A<k\< U<U<U<U< ^i<J

?l

Figure F-4(a). Joystick switch debounce circuitry (par^e 1 of 2)

JOYSTICK SCHEMATICS
F-5

« I

o
H
(J)

>
o

X
o

>

H
5
o
GC

O
HI

o
z
D
o
03

LU

G

n
1-

"A

r
1.

« V (0

^Asi sAs ?A

ui <3-^NA'\^ in <—WV-

T T

QJ.C"
66

^0"

066

Figure F-4(b). Joystick switch debounce circuitry (page 2 of 2)

JOYSTICK SCHEMATICS
F-6

iiii II k n n
i

J

all

>•
I
" s

o
<
LL
OC
LU
H
Z

O
H
W
>-

o
-9

o
I-

>
O
-3

Figure F-5. Emergency stop and hold set/clear circuitry.

JOYSTICK SCHEMATICS
F-7

Appendix G
GLOSSARY

This glossary defines terms that are unique to or have unique meanings in RCS

or the RSL application. RSL terms are differentiated from RCS terms by plac-

ing RSL in parentheses after the term.

Absolute block number. The number used to specify the storage location of a

block on the disk. See Relative block number .

AMRF. See Automated Manufacturing Research Facility .

Array. (RSL) An RSL data structure that contains a group of locations. An
array is one-, two-, or three-dimensional. Movetables define the displacement
between sectors of the array. Arrays are stored in an array file in common

memory

.

Automated Manufacturing Research Facility (AMRF). An experimental factory

developed by NBS to operate as a small, totally automated, batch machine shop.

Block. A division of the disk containing 1,024 bytes, arranged in 16 lines of
64 characters each. The entire disk is organized into blocks, each of which
has a unique block number.

C(M1. An RCS utility that provides a communication protocol for passing com-
mands and status information between control levels.

Common memory. Random-access memory in a central location that all processor
boards in the system use to store the system dictionary, SMACRO files, and

command and status information.

Communications dead time. The communications interval during which the con-

tents of command, status, and data buffers and flags in common memory are
changed. During this time, no other process may execute.

Communications table. A table used by the RCS utility COMM to define desired
buffer transfers between processor boards.

Compile mode. One of the four RCS operating modes. RCS uses Compile mode
when you load blocks of code containing compiling words. See also Locate
mode. Run mode , and Show mode .

Configuration flags. Variables used to resolve ambiguities in the inverse
transform for a robot.

Control level. A group of functionally bounded modules that handle inputs,
decision processing, and outputs for one of the levels generated by the hier-
archical task decomposition.

GLOSSARY
G-1

D>M. On the system disk, an area of 120 consecutive blocks, used to save a

copy of local memory from the currently selected processor board. RCS enables
you to save up to five D>Ms for each of seven processor boards. The RCS word
[d>m#] D>M, where [d>m#] is a number from 1 through 5, enables you to move the
specified D>M region from the disk to the local memory of the current board.
The RCS word [d>m#] MEM>DISK moves code from the local memory of the current
board to the specified D>M area on the disk. A D>M is also called a disk
image , and is similar to an object file in a conventional system.

Directory block. A disk block that contains a description of the contents of
other disk blocks. RCS uses a hierarchical directory block structure, in
which directory blocks describe the contents of each 1000-, 100-, and 10-block
section of the disk.

Disk image. See D>M .

Hierarchical task decc»Q>osition. An approach to process control that defines
tasks in terms of successively more primitive modularized subtasks.

JOINT level. (RSL) The fourth, or lowest, control level in RSL's
hierarchical task decomposition. The JOINT level generates specific commands
that are transmitted to the robot to control its movement in real time. If
the robot has attached sensors, the robot also sends status information back
to the JOINT level. See also PATH level , PRIM level , and TASK level .

List owner. A SMACRO construct that enables you to group any type of variable
under a specified name (the list owner). See also sequential variable owner
and variable owner .

Locate mode. An operational mode that enables you to search for the source

block of any SMACRO word. One of the four RCS operating modes. See also Com-
pile mode . Run mode , and Show mode .

Location. (RSL) An RSL data structure that consists of a location name and a
specified pose and movetable combination. A location defines a new robot

position relative to a reference pose, using the movetable to specify the
coordinate transformations required to move to the new position from the ref-
erence pose. RSL stores location definitions in a location file in common
memory

.

Master board. The single-board processor that handles user communication with
the system through the user terminal. The RCS editor is on the master board.

See also slave board .

Movetable. (RSL) An RSL data structure that consists of a movetable name and
up to eight separate rotations or translations that define the coordinate

transformations required to move from one robot position to another. RSL
stores movetable definitions in a movetable file in common memory.

Object. (RSL) An RSL data structure that defines objects in terms of an
object name and a list of grip numbers and associated movetables. The move-
tables define the orientation of each grip relative to the object frame. RSL
stores object definitions in an object file in common memory.

GLOSSARY
G-2

«

Offset. The value of the FORTH variable OFFSET. The offset Is usually a mul-
tiple of 1000 associated with the currently selected board. By subtracting
the offset from the absolute block number, the system calculates the relative

block number. See also absolute block number and relative block number .

Path. (RSL) An algorithm that specifies the sequence of steps required to

perform a simple task, such as moving between locations or grasping an object.
Paths are stored as linked lists of path-points in a path-point file in common
memory. See also path-point .

PATH level. (RSL) The second control level in RSL's hierarchical task decom-
position. The PATH level decomposes paths into a sequence of path-points and

then into trajectories. See also JOINT level , PRIM level , and TASK level .

(RSL)

Path-point. (RSL) An RSL data structure that consists of a path-point com-

mand and a pointer to the associated command parameters file. A path-point
consists of a single sensor-based motion. A linked list of path-points
defines an RSL path. See also path .

Pose. (RSL) An RSL data structure that defines the physical location of a

robot. The pose definition consists of a pose name and its associated trans-
lation vector and rotation quaternion. RSL stores the pose definition in a

pose file in common memory.

PRIM level. (RSL) The third control level in RSL's hierarchical task decom-
position. The PRIM level decomposes trajectories into poses along a straight
line. See also JOINT level , PATH level , TASK level , and trajectory .

Quaternion. A four-number representation of a rotation by angle about an

axis n. These numbers are expressed as: cos /2, sin /2 n , sin /2 n
,

sin /2 n^,

RCS. See Real-time Control System .

Real-time Control System (RCS). A software system that uses hierarchical task
decomposition, multiple processors, and cyclic execution to control real-time
applications.

Relative block number. The absolute block number minus the offset; the offset
is stored in the FORTH variable OFFSET; See also absolute block number and
offset .

Robot Sensor Language (RSL). A real-time control application written by NBS.
RSL implements a hierarchical task decomposition that uses four processors to

run four hierarchical control levels.

Round-robin. (RSL) An RSL data structure that defines a circular, singly
linked list. RSL stores round-robin definitions in a round-robin file in
common memory.

Routine. A SMACRO program. All SMACRO programs start with the word routine,
which assigns a name to the following SMACRO code, and end with the word
end-routine. SMACRO routines can be longer than one block.

GLOSSARY
G-3

RSL. See Robot Sensor Language .

RSL algorithm. (RSL) The RSL code a user writes to accomplish a task. RSL
compiles algorithms into a linked-list representation. Then RSL control
levels interpret the algorithm, using environmental data to command the robot

to execute a task.

RSL data. (RSL) Information about the robot environment, such as the name,

size, or location of an object. This information is stored in common memory
and is accessible to all control levels. Robot sensors can supply data to
RSL, or you can enter data directly from the keyboard. See also RSL
algorithm .

Rum mode. The normal operating mode for executing the commands that control
robotic equipment. Run mode is one of the four RCS operating modes. See also
Compile mode . Locate mode , and Show mode .

Sector. (RSL) An element of an array. Sector numbers start at 0. See also
array .

Sequential variable. A SMACRO variable type. The value of the first sequen-
tial variable is 0, and succeeding sequential variables contain successive
integers. Sequential variables belong to sequential variable owners.

Sequential variable owner. A SMACRO construct that enables you to group
sequential variables as members under a specified name (the owner). Members
must be sequential variables. See also list owner and variable owner .

Show mode. An operating mode that enables you to display SMACRO variables and

owners. Show mode is one of the four RCS operating modes. See also Compile
mode. Locate mode , and Run mode .

Slave board. A single-board processor that implements one or more of the
process control levels within the system. Direct user communication with a

slave board is possible only with an ABCD switch box. Normally, communica-
tions between user and slave board occur through the master board. See also
master board .

S4ACR0. A set of word extensions to the FORTH programming language and oper-
ating system written by NBS for use in the RCS environment. The extensions
include structured programming constructs such as case, if-then-else,
repeat-until, and while-do statements. The extensions also include words and

constructs to facilitate programming real-time control applications, such as

state table statements and vector, quaternion, and matrix operator words.

SMACRO file. A linked list of records that resides in common memory. SMACRO
files provide the primary method of communication between control levels.

State table. A construct that enables you to describe the possible states of
its inputs and outputs. The state table lists the set of relevant input vari-

ables, the possible combinations of values the input variables may assume, and
the required outputs for each combination of input values. The SMACRO lan-
guage includes a state table statement to facilitate programming state tables.

GLOSSARY
G-k

System dictionary. A block of common memory that contains records with names
and pointers for every variable and procedure in the system.

System vocabulary. A predefined vocabulary that contains system variables.
Each processor board has a separate system vocabulary called SDEF. See also

user-defined vocabulary and vocabulary .

TASK level. (RSL) The first, or highest, control level in RSL's hierarchical
task decomposition. The TASK level decomposes all tasks into a sequence of
path types. See also JOINT level , PATH level , and PRIM level .

Trajectory. A goal point and parameters describing the path to the goal
point. RSL supports two trajectory types: Cartesian straight-line and joint
interpolated.

User-defined vocabulary. A subset of the system dictionary defined by the

user. You can add up to five vocabularies per processor board. See also
system vocabulary and vocabulary .

User file. See SMACRO file .

Variable owner. A SMACRO construct that enables you to group variables as

members under a specified name (the owner). Members can include the following
SMACRO variable types: integer, byte, floating point, string, segment, one-

dimensional integer array, two-dimensional integer array, one-dimensional
floating-point array, and two-dimensional floating-point array. See also list
owner and sequential variable owner .

Vocabulary. An independently linked subset of RCS words in the system dic-
tionary. See also system vocabulary and user-defined vocabulary .

GLOSSARY
G-5

Appendix H
BIBLIOGRAPHT

For additional information on robotics, robot interface specifications, the

Real-time Control System, FORTH, and specific hardware components, see the

documents listed in this bibliography.

ROBOTICS

The following books discuss robotics in general:

Asada, H., and Slotine, J.-J.E. Robot Analysis and Control . New York, NY:

Wiley-Interscience, 1986.

Brady, M. ; Hollerback, J.M.; Johnson, T.L.; Lozano-Perez, T.; and Mason, M.T.
Robot Motion: Planning and Control . Cambridge, MA: The MIT Press, 1982.

Coiffet, P., and Chirouze, M, An Introduction to Robot Technology . New York,
NY: McGraw-Hill Book Company, 1982.

Craig, J.J. Introduction to Robotics—Mechanics and Control . Reading, MA:

Addison-Wesley Publishing Company, I986.

Engelberger, J.F. Robotics in Practice—Management and Applications of

Industrial Robots . London, England: Kogan Page Limited, 1980.

Kane, T.; Likine, P.; and LeVinson, D. Spacecraft Dynamics . New York, NY:

McGraw-Hill Book Company, 198 3.

Nof, S.Y. (editor) Handbook of Industrial Robotics . New York, NY: John
Wiley & Sons, 1985.

Paul, R.P. Robot Manipulators: Mathematics, Programming, and Control .

Cambridge, MA: The MIT Press, I98I.

Rehg, J. A. Introduction to Robotics—A Systems Approach . Englewood Cliffs,
NJ: Prentice-Hall Inc., 1985.

Snyder, W.E. Industrial Robots: Computer Interfacing and Control . Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1985.

ROBOT INTERFACE SPECIFICATIONS

For information on robot interface specifications, see the following
publications:

Anon. "SLAVE Interface Specification for External Computer Path Control Using
VAL II", Publication Number 397T1; Unimation Incorporated; Danbury, CT:

January I986.

BIBLIOGRAPHY
H-1

Nashman, M. "A Low Level Robot Interface: The High Speed Host Interface",
NBSIR 86-3393; National Bureau of Standards; Gaithersburg, MD: June 1986.

REAL-TIME CONTROL SYSTEM (RCS)

The following documents provide additional information on the NBS Real-time
Control System:

Albus, J.S.; Barbera, A.J.; Fitzgerald, M.L.; and Nashman, M. "Sensory
Interactive Robots", Presented at the 31st General Assembly of the

International Institution for Production Engineering Research; September 1,

1981; Toronto, Canada.

Albus, J.S.; Barbera, A.J.; and Nagel, R.N. "Theory and Practice of
Hierarchical Control", Proceedings of the Twenty-Third IEEE Computer Society
International Conference; September 1981.

Albus, J.S.; Barbera, A.J.; and Fitzgerald, M.L. "Programming a Hierarchical
Robot Control System", Proceedings of the 12th International Symposium on
Industrial Robots/6th International Conference on Industrial Robot Technology;
June 9-11, 1982; Paris, France.

Albus, J.S.; McLean, C.R.; Barbera, A.J.; and Fitzgerald, M.L. "An

Architecture for Real-Time Sensory-Interactive Control of Robots in a
Manufacturing Facility", Proceedings of the Fourth IFAC/IFIP Symposium

—

Information Control Problems in Manufacturing Technology; October 26-28, 1982;
Gaithersburg, MD.

Albus, J.S.; McLean, C.R.; Barbera, A.J.; and Fitzgerald, M.L. "Hierarchical
Control for Robots in an Automated Factory", Proceedings of the 13th

International Symposium on Industrial Robots/Robots 7 Symposium; April 17-21,
1982; Chicago, IL.

Barbera, A.J.; Albus, J.S.; and Fitzgerald, M.L. "Hierarchical Control of
Robots Using Microcomputers", Proceedings of the 9th International Symposium
on Industrial Robots; March 13-15, 1979; Washington, DC.

Barbera, A.J.; Fitzgerald, M.L.; and Albus, J.S. "Concepts for a Real-Time
Sensory-Interactive Control System Architecture", Proceedings of the
Fourteenth Southeastern Symposium on System Theory; April 1982; Blacksburg,

VA.

Barbera, A.J.; Fitzgerald, M.L.; Albus, J.S.; and Haynes, L.S. "A Language
Independent Superstructure for Implementing Real-Time Control Systems",
Proceedings of the International Workshop on High-Level Computer Architecture;
May 21-25, 1984; Los Angeles, CA.

Barbera, A.J.; Fitzgerald, M.L.; Albus, J.S.; and Haynes, L.S. "RCS: The NBS
Real-Time Control System", Proceedings of the Robots 8 Conference and
Exposition, Volume 2 - Future Considerations; June 4-7, 1984; Detroit, MI.

BIBLIOGRAPHY
H-2

Fitzgerald, M.L., and Barbara, A.J. "A Low-Level Control Interface for Robot

Manipulators", Proceedings of the Workshop on Robot Standards (Sponsored by

the National Bureau of Standards and the Navy Manufacturing Technology
Program); June 6-7, 1985; Detroit, MI.

Fitzgerald, M.L.; Barbera, A.J.; and Albus, J. A. "Real-Time Control Systems

for Robots", presented at the SPI National Plastics Exposition Conference;

June 1985; Chicago, IL.

Haynes, L.S.; Barbera, A.J.; Albus, J.S.; Fitzgerald, M.L.; and McCain, H.G.

"An Application Example of the NBS Robot Control System", Robotics & Computer-

Integrated Manufacturing, 1984; Washington, DC.

McCain, H.G. "A Hierarchically Controlled, Sensory-Interactive Robot in the

Automated Manufacturing Research Facility", Proceedings of the IEEE
International Conference on Robotics and Automation; March 25-28, 1985;

St. Louis, MO.

FORTH

For more information on FORTH, see the following books that discuss FORTH in
general, and the following FORTH reference manuals.

General FORTH Documents

The following books discuss FORTH in general:

Brodie, L. Starting FORTH . Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981,

Brodie, L. Thinking FORTH - A Language and Philosophy for Solving Problems .

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Hogan, T. Discover FORTH - Learning and Programming the FORTH Language .

Berkeley, CA: Osborne/McGraw-Hill , Inc., 1982.

Katzan, H. Invitation to FORTH . Princeton, NJ: Petrocelli Books, Inc.,

1981.

Toppen, D.L. FORTH - An Applications Approach . New York, NY: McGraw-Hill,
Inc., 1985.

Winfield, A.F.T. The Complete FORTH . New York, NY: Sigma/Wiley Press, 1983-

FORTH Reference Manuals

The following manuals provide reference information on FORTH. Note that the
source of these reference manuals is also listed for your convenience.

Source : FORTH, Inc., 2309 Pacific Coast Highway, Hermosa Beach, CA

90254; (213) 372-8493.

BIBLIOGRAPHY
H-3

Manuals ; FORTH Reference Manual , Fourth Edition, April 1979.

Using FORTH , Second, Revised, Edition, March 1980.

Intel 8086 User's Supplement to the PolyFORTH Reference Manual ,

March 1980.

HARDWARE REFERENCE KANUALS

The following reference manuals discuss processor and I/O boards, memory
boards, the disk and tape controller board, the tape drive, the Winchester
disk drive, the MULTIBUS chassis, terminals, and printers. The source of each
manual or group of manuals is also listed for your convenience.

Processor and I/O Boards

For information on processor and I/O boards, see the following manuals:

Source : Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051;
(408) 987-8080. Publications available from Intel Literature
Sales, P.O. Box 58130, Santa Clara, CA 95052-8130;
(800) 548-4725.

Manuals : OEM Systems Handbook , Publication Number 210941-004, I986.

Microsystem Components Handbook , Volumes I and II, Publication
Number 230843-002, 1985.

iSBC 86/14 and iSBC 86/30 Single Board Computer Hardware
Reference Manual , Publication Number 144044-002, 1982.

iSBC 337A Multimodule Numeric Data Processor Hardware Reference
Manual , Publication Number 142887-001, 1980.

iSBC 519 Programmable I/O Expansion Board Hardware Reference
Manual, Publication Number 9800385B, 1979.

iSBC 534 Four Channel Communications Expansion Board Hardware
Reference Manual , Publication Number 9800450-02, 1979.

iSBX 311 Analog Input Multimodule Board Hardware Reference
Manual , Publication Number 142913-001, 1981.

iSBX 328 Analog Output Multimodule Board Hardware Reference
Manual , Publication Number 142914-002, 1982.

iSBX 350 Parallel Multimodule Board Hardware Reference Manual ,

Publication Number 9803191-02, 1980.

iSBX 351 Serial Multimodule Board Hardware Reference Manual ,

Publication Number 9803190-03, 1984.

BIBLIOGRAPHY
H-4

Memory Boaurds

For information on memory boards, see the following manual:

Source:

Manual:

Plessey Microsystems, P.O. Box 154, 1 Bluehill Plaza,
Pearl River, NY 10965; (914) 735-4661.

PSM 512A MULTIBUS Error-Correcting Dram—User's Guide , Document
Number PMUS/HB/ 10225, Issue 2, January 1984.

Disk and Tape Controller Board

For information on the disk and tape controller board, see the following
document:

Source: Ciprico Inc., 2955 Xenium Lane, Plymouth, MN 55441;
(612) 559-2034.

Document : "Ciprico Product Specification—Rimfire 45A, MULTIBUS Disk
Controller," Publication Number 21010084, Revision A, March 25,
1985.

Tape Drive

The following manual provides additional information on the tape drive:

Source : Cipher Data Products, Inc., 10225 Willow Creek Road, San Diego,
CA 92131; (619) 578-9100. Publications available from Cipher
Data Products, Inc., Technical Publications Department, P.O. Box

85170, San Diego, CA 92138; (800) 982-8808.

Manual : Model F880 Magnetic Tape Transport, Volume 1—Operation
Maintenance, Technical Manual Number 799816-003, Revision Q,
April 1986.

Winchester Disk Drive

For information on the Winchester disk drive, see the following manual:

Source : Priam Corporation, 20 West Montague Expressway, San Jose, CA

95134; (408) 946-0293.

Manual : Fourteen-Inch Winchester Disc Drives-OEM Manual (Model 3350,
Model 6650, and Model 15450), Publication Number 308002, Revision

B, January 1984.

,
BIBLIOGRAPHY

H-5

HDLTIBUS Chassis

For information on the MULTIBUS Chassis, see the following manual:

Source .' ETI Micro, 6918 Sierra Court, Dublin, CA 9^568; (415) 829-6600.

Manual ; 8223 MULTIBUS Chassis User's Manual , Publication Number
832305822313301, 1983.

Terminals

The following manuals provide information on terminals:

Source : TeleVideo Systems Inc., 1170 Morse Avenue, Sunnyvale, CA 94086;
(408) 745-7760.

Manual : TeleVideo Model 950 CRT Terminal Installation and User's Guide ,

Document Number B300002-001, Revision B, April 1982.

Source : Digital Equipment Corporation, 129 Parker Street, Maynard, MA
01754; (800) 258-1710. Publications available from DEC
Accessories and Supplies Group, P.O. Box CS2008, Nashua, NH
03061; (800) 258-1710.

Manual : VT100 User Guide , 3rd Edition, Publication Number
EK-VT100-UG-003, 1981.

Source : Micro-Term, Inc., 512 Rudder Road, Fenton, MO 63026;

(314) 343-6515.

Manuals: Operating Manual—Model ERGO 301 , Publication Number
1-56200004-0D, March I983. [This terminal is VT100 compatible.]

ERGO 30IFK Addendum—Programmable Function Keys , Publication
Number 798500 14-0A, June 1984.

Source : Datamedla Corporation, 7401 Central Highway, Pennsauken, NY

08109; (609) 665-5400.

Manual : Elite 1521 A Video Terminal Operator's Handbook , Publication
Number 0810001-000-B, April 1978.

Printers

For information on printers, see the following manuals:

Source : Apple Computer, 20525 Marian! Avenue, Cupertino, CA 95041;
(408) 996-1010.

Manual ; Imagewriter User's Manual, Part I; Reference , Publication Number
030-0730-A, 1983.

BIBLIOGRAPHY
H-6

Source

i

Digital Equipment Corporation, 129 Parker Street, Maynard, MA
01754; (800) 258-1710. Publications available from DEC
Accessories and Supplies Group, P.O. Box CS2008, Nashua, NH
03061; (800) 258-1710.

Manual

;

LA120 DECwriter III User Guide , Publication Number
EK-LA120-UG-001, 1978.

Source

!

Integral Data Systems, Inc., Route 13 South, Milford, NH 03055;
(603) 673-9100.

Manual

:

The Paper Tiger, IDS-460 Impact Printer—Ovmer's Manual ,

Publication Number 9000-000-728, Second Edition, April 1981.

.

BIBLIOGRAPHY
H-7

'

•

INDEX

#-sectors variable, 10-6

//READ-COMMAND routine, 10-24

% character, 12-19

(Cartesian), 10-37

1 (Joint), 10-38
1 -dimensional arrays, 7-3

1 6-bit integer, 7-3

2-dimensional arrays, 7-3

32-bit floating point, 7-3

8-bit integer byte, 7-3
8086 assembly language. See Assembly language
8087 error messages, A-4

8087 numeric data processors, installing, 5-5

8087 operation codes for RCS, E-1

:C prompt, 7-1

8

:R joint/comm> prompt, 6-2

:R prim> prompt, 6-2

:R prompt, 5-13
:R rsl> prompt, 5-13, 6-1, 6-2

:R task&path> prompt, 6-2

Absolute block addresses, 6-5
Absolute block number, 6-5

Active Pedestal System, 12-3

ADD-TO-TAPE command, 6-29
Addresses

absolute block, 6-5

master board, 5-10
MULTIBUS, 4-2

record, 7-8

relative block, 6-5
align-grip FMR path-point, 12-16

amax variable, 10-1#
AMRF (Automated Manufacturing Research Facility), 12-1

ANSI adapter, 5-7
Apple Imagewriter, 5-2
approach-pallet path-point, 12-18

approach-pickup file, 10-9

approach-pickup path type, 9-5, 10-9
approach-release file, 10-10
approach-release path type, 9-5, 10-10
arr-name variable, 10-6
arr-pose variable, 10-7, 10-23
ARRAY-FILE, RSL file, 10-15

INDEX
1-1

ARRAY-POSE TASK variable, 10-23
Array data structure, 10-6

Arrays, 7-3, 9-4 M
Array Statement, RSL, 9-4 ^
Arithmetic operators, SMACRO, 7-9
Arrow keys, 6-17
Assembly language, 7-1, 7-19 s

Assignment operators, SMACRO, 7-10
]

Atomic unit, 3-1

Auto-load block, 6-1, 6-14

Automated Manufacturing Research Facility (AMRF), 12-1

BACK-TASK, control task, 7-19
Background tasks, 4-3, 7-19
Backing up the system on tape, 6-29

Backslash (\), 1-3

BAD-TAPE command, 6-29
base-loc" variable, 10-6

base-trn, movetable line type, 10-5

BGO, RCS word, 7-19
Bit operators, SMACRO, 7-15
B L command, 6-23
Block addresses, absolute, 6-5

Block of code
editing, 6-16
empty blocks, 6-16
finding, 6-2

Block-directory, 4-2, 6-29, D-1 ^
Block number, absolute, 6-5 T
BLOCKS command, 6-23
Blocks, printing, 6-28, 6-29
Block structures, FORTH, 6-5
Board names and prompts, 6-2

Boolean file operators, SMACRO, 7-11

Branching, 2-5
Bus clock, installing, 5-5

Byte operators, SMACRO, 7-9
Byte SMACRO operator, 7-10

CALC-SECTOR-POSE routine, 10-25

Cancel Operation command, RCS editor, 6-22
Caret ("), 1-2, 1-3

CART-CONFIGURE routine, 10-56
CART-TRAJ routine, 10-45

CART> JOINT routine, 10-56
CARTESIAN command, 10-48

CARTESIAN routine, 10-53
Cartesian straight-line trajectory type, 11-8

Case statement, 2-5, 7-17
Cincinnati Milacron T3. See T3 robot
Cipher F880, hardware requirement, 5-2

Ciprico Rimfire 45, hardware requirement, 5-2

CLEAN-UP routine, 10-29, 10-36, 10-47, 10-54
Clear command, RCS editor, 6-22 M

INDEX
1-2

CLEAR command, RCS editor, 6-23

Code, locating, 6-3

Code, control levels, 9-2

Code, SMACRO, 7-2

com-loc-type variable, 10-23

com-loc-* variable, 10-23

com-obj-'' variable, 10-23
command-echo variable, 10-22, 10-31

command-echo-out variable, 10-39, 10-50

COMMAND-PROCESS
JOINT processing, 10-51

MOVE-TO task addition, 11-2

PATH processing, 10-32
PATH routine, 10-33, 10-44

TASK level stage 10-26

TASK routine, 10-27
COMMAND-RR routine, 10-47

Commands
between control levels, 3-4

editing, 6-16
resuming, 9-9

suspending, 9-9

COMM board, 5-6

COMM communications utility, 4-3, 4-5

passing command and status information, 8-1

programming, 8-3
Common memory

board, 5-6
board jumper modifications, 5-6

allocation of, 9-8, C-1

components, 3-4
data, 3-5

Communications

buffers, 3-5, 8-2

between control levels, 3-4, 12-16

bit, 8-3
COMMUNICATIONS/DIAGNOSTICS processor, 12-6

cycle, 3-2, 3-5
dead time, 8-3

interprocessor, 5-6

on the same board, 8-4
process, 8-2, 8-3

table, 8-3
utility. See COMM communications utility
with sensors, 7-15

Compile mode, 4-4, 6-12, 7-1

8

Compiling
path-points, 10-17

paths, routines for, 10-18
RSL source code, 9-8
trajectories, 10-16

word, 10-15
conf-flag variable, 10-4

INDEX
1-3

Configuring
the common memory board, 5-6

the disk and tape controller board, 5-6 (^
the disk drive, 5-7
interprocessor communications, 5-6

the printer, 5-9
the processor boards, 5-4
the terminal, 5-8

Containing file, 10-12. See also Round-robin
Control-key sequence, 1-2

Control levels
block numbers and, 6-5

commands, 3-1

cyclic processing, 3-2

decision processing, 3-2

defined, 2-1

hierarchy of RSL, 12-14

hierarchy of the T3 RCS, 12-5

RCS, 7-12
round-robins and, 10-12

RSL, 4-5

structures, 3-1

subtasks, 3-1

vocabulary names and, 6-3
Conversion operators, SMACRO, 7-9

Copy Line command, RCS editor, 6-20
CPRINT command, 6-28

CREEP button, 10-42
~

f
CREEP command, 10-49

cur-loc-type variable, 10-23

cur-loc-'' variable, 10-23

cur-obj-^ variable, 10-23
current-conf-flag variable, 10-41

current-pose variable, 10-41

current-vel variable, 10-41

CUSTOM command, 5-13
Customizing function keys, 6-3

cycle-#-status-out
JOINT status variable, 10-50
PATH status variable, 10-31

PRIM status variable, 10-39

TASK status variable, 10-22
Cyclic processing, 3-2

d, RCS word, E-1

Data-independent programs, 3-4
Data in common memory, 3-5
Data, RSL, 9-1

Data type compiling words, 10-14
Data type search routines, 10-15

Datamedia Elite 1521A, 4-3, 5-2, 5-8

Datamedia terminals, software installation, 5-12
Dead time, 8-3
Debugging routines, creating, 13-13 w

INDEX
1-4

Debugging techniques, 13-1 » 13-1^
Decision processing, 2-5

DEC VT100, 4-3, 5-2

DECwriter III printers, software installation, 5-2, 5-13
Delete Line command, RCS editor, 6-20

depart-pickup path type, 9-5, 10-9

depart-release path type, 9-5, 10-10

Direct Memory Access (DMA) board, 12-4

Directory blocks
conventions, 6-4

example of using, 6-5

source code, 4-5
Directory structure, D-1

Disk and tape controller board
configuring, 5-6

jumper modifications, 5-7
switch settings, 5-7

Disk block organization, 4-2, D-1

Disk drive switch settings, 5-7
Disk drives, configuring, 5-7
Disk files, 4-5

Disk, formatting, 5-10
Disk image, 6-1

DMA (Direct Memory Access) board, 12-4

Documentation conventions, 1-2

edge, FMR path-point, 12-15

Editing
a block of code, 6-16
command categories, 6-18

a routine, 6-10
RSL source code, 9-7

EDITING utilities, 4-3

Editors, RCS, 6-16

Environmental data routines, 10-15, 10-16
equate, FMR path-point, 12-15
Erase Character command, RCS editor, 6-19
Errors

fatal, A-1

JOINT, 10-51
messages, A-1

PATH, 10-21
PRIM, 10-42

RCS, A-1
Rimfire disk, A-4
RSL, 9-8

syntax, 7-1
TASK, 10-23

ETI Model 8223, hardware configuration, 5-2

feedback-conf-flag variable, 10-41

feedback-pose variable, 10-41, 10-54
Field Materiel-Handling Robot (FMR), 12-11
File declaration, SMACRO, 7-8

INDEX
1-5

File operators, SMACRO, 7-11

Floating point
arrays, 7-3 ^
expressions, 7-11

numbers in a matrix, 7-^

operators, identifying, 7-9

SMACRO operator, 7-10
FMR, 12-11

FMR hardware configuration, 12-11

FMR path-points, 12-15

FMR software configuration, 12-14

FMR transfer example, 12-18

FORTH
block structure, 4-2, 6-5, D-1

programming language, 4-2, 7-1

PROM circuits, installing, 5-5
Forward Block command, RCS editor, 6-20

FROM-TAPE command, 6-29
Functionally bounded modules, 3-1 > 3-2

Function keys
customizing, 6-3
on the TeleVideo 950, 5-9

Garbage collection, 9-8

gmax variable, 10-11
goal-pose-'^-in variable, 10-38

goal-pose-" variable, 10-37 I
GOAL-POSE routine, 10-34 M |
goal-type variable, 10-23, 10-30 ^

goal-" variable, 10-23, 10-30

goal point, 9-3, 9-4

Goto Block command, RCS editor, 6-21

goto file, 10-10

goto-loc-type variable, 10-10

goto-loc-" variable, 10-10
GOTO-REMOVE routine, 10-18

goto-traj-" variable, 10-10

goto-traj-type variable, 10-10

goto path-point, 9-5, 12-15

goto routine, 10-17, 10-35
grip# variable, 10-7, 10-20

grip-mtb-" variable, 10-7

Grip location, 3-7
numbers, 9-4

size, 3-7

f

INDEX
1-6

Hardware
Cipher F880, 5-2

Ciprico Rimfire 45, 5-2

components of RCS, 4-1

FMR configuration 12-11

T3 RCS configuration, 12-3

installation procedures, 5-4

Priam, 5-2, 5-7
requirements, 5-1, 5-2

switch box, as a debugging tool, 13-15

Header variables, 7-8

Heat sinks, installing, 5-5

Hexadecimal numbers, 1-3

Hierarchical control levels. See Control levels
HOLD-CLEAR button, 9-9, 10-40

Hold-set button, 9-9, 10-40
hold-set variable, 10-42

Holster position, 12-8

HOME command, RCS editor, 6-22

HOME key, 6-17

Horizontal machining workstation, 12-1

I/O operators, SMACRO, 7-15
I/O space allocation, C-1

Identifying file records. See Record numbers
IF-THEN-ELSE structures, 2-5, 3-2
inc-command-#-echo-out variable

JOINT status variable, 10-50
PATH status variable, 10-31

PRIM status variable, 10-39

TASK status variable, 10-22
inc-command-#-in variable

JOINT status variable, 10-50

PATH status variable, 10-30
PRIM status variable, 10-38
TASK status variable, 10-21

Infix notation, 7-8
input-command variable

JOINT status variable, 10-50

PATH status variable, 10-30
PRIM status variable, 10-38

TASK status variable, 10-21
Input-process-output structure, 2-3
Input Keep command, RCS editor, 6-19
input variables, 2-6, 7-2
ilnsert On/Off command, RCS editor, 6-19

Installing
8087 numeric data processors, 5-5
bus clock, 5-5
FORTH PROM circuits, 5-5
heat sinks, 5-5
processor-board jumpers, 5-4
RCS software, 5-10

INT, RCS word, E-1

INDEX
1-7

Integers
16-bit, 7-3
8-bit byte, 7-3

arrays, 7-3
operations, results, 7-9
operators, identifying, 7-9
SMACRO operator, 7-10

Integral Data Systems Paper Tiger, 5-2, 5-13
Intel hardware, 2-3, 4-1, 5-2, 5-3

Intel operation codes and RCS equivalents, E-1
Interface requirements, robot, 5-3
Interrupt

enabling, 7-20
assembly language and, 7-19

Interrupt assignments, C-2

Interrupt routines, 4-4, 7-20

j-acc variable, 10-11

j-delta variable, 10-12, 10-38
j-vel variable, 10-11

JOINT
commands, 10-48
decision processing, 10-52

errors, 10-51
level, modes of motion for, 10-47

joint-com-conf-flag variable, 10-41

joint-com-pose variable, 10-40

JOINT-CONFIGURE routine, 10-56

JOINT-LIMIT-TEST routine, 10-55
JOINT-PAUSE routine, 10-53

JOINT-RESTART routine, 10-53
Joint-space motion, 10-47
JOINT-STATUS routine, 10-43

JOINT-TRAJ command, 10-49
JOINT-TRAJ routine, 10-45, 10-53

JOY-STATUS routine, 10-43
JOINT>CART routine, 10-56
JOINT

control level, 9-3, 10-3

input coimnand buffer, 10-50

level routines, 10-47
processing, 10-51 to 10-54

robot-dependent routines, 10-54
routines, 10-47

status information, 10-50

Joystick, F-1
Joystick buttons, 10-40

JOYSTICK routine, 10-46

Joystick schematics, F-1

keys, as shown in manual, 1-2

INDEX
1-8

last-feedback-conf-flag variable, 10-42

last-feedback-pose variable, 10-41

last-pose variable, 10-41

last-vel variable, 10-41

Line operations, RCS editor, 6-20

Linked-list record structure, 4-4

list&tape> prompt, 5-12
List owners, SMACRO, 7-7

LLIST command, 6-23

LNG, RCS word, E-1

Loading
base system, 5-13

code in RCS, 6-9 to 6-11

routines under development, 6-10

RSL, 5-14

source code, 5-11

tape utility, 5-11

loc-mtb-" variable, 10-6

loc-name variable, 10-6

LOC-PHRASE routine, 10-35
loc-pose-" variable, 10-6

Locate mode, 4-4

Location
data, 3-7
data structure, 10-5

defined, 9-7
file, 10-5 to 10-6

phrase, 9-5

statement, 9-4
LOCATION-FILE, RSL file, 10-15

Macros, 4-3
Mark to Keep command, RCS editor, 6-19

Master board address, 5-10

Matrix declarations, 7-4
Matrix operators, SMACRO, 7-16

Memory allocation, C-1
Memory files, 8-1

Micro-Term ERGO 301, 5-2, 5-8

Modes
compile, 4-4, 6-12, 7-18
locate, 4-4

run, 4-4, 6-12, 7-18
SHOW, 4-4, 6-12, 7-18

Modularity, 2-2

move-to file, 10-8, 10-9

move-to path type, 10-8, 11-2, 9-5
move-to-dest-type varible, 10-9

move-to-dest-" variable, 10-9

move-to-obj-'' variable, 10-9
MOVE-TO-PARAM routine, 10-28, 11-2

move-to-path-^ variable, 10-9

MOVE-TO-SEARCH routine, 10-28
move-to-start-type variable, 10-9

INDEX
1-9

move-to-start-" variable, 10-9
MOVE-TO routine, 11-2, 10-19, 10-28

MOVE-TO task, 11-1 to 11-2 %
Movetable

data structure, 10-4

defined, 9-4
file, 10-4 to 10-5
line types, 10-5

number of lines in a, 10-5

statements, 9-4

MOVETABLE-FILE routine, 10-15

mtb-name variable, 10-5

MULTIBUS
address, 4-2
address space, C-1

defined, 4-1

I/O space organization, C-1

Multiprocessor operation, 4-3

NEW-COMMAND?, routine, 10-32, 10-42, 10-52
NEW-PPT? routine, 10-34

Next Want command, RCS editor, 6-22
N L command, RCS editor, 6-23

OBJ-GRIP-FILE routine, 10-8

obj-grip-L-'' variable, 10-7

obj-" variable, 10-23
OBJ-NAME-FILE routine, 10-8, 10-15 ^
obj-name variable, 10-7
Object

data, 3-7
data structure, 10-7

file, 10-7

phrase variable, 10-21

statement, 9-4
variable, 10-20

old-ja variable, 10-56

old-joint-angle variable, 10-56
Open Line command, RCS editor, 6-20

Operating system, 4-3
Operation code mnemonics, modifying, E-1

Operation codes, E-1

INDEX
1-10

Operators, SMACRO
arithmetic, 7-9

assignment, 7-10

bit, 7-15
Boolean file, 7-11

byte, 7-9

conversion, 7-9
file, 7-11

I/O, 7-15

matrix, 7-16
quaternion, 7-16
relational, 7-10
stack, 7-15

Organizing a complex system, 2-4

Orientation of a pose. See Quaternion

Ovmers, 7-U

P, RCS word, E-1

P2 connector option, C-1
Paper Tiger Printers. See Integral Data Systems Paper Tiger

PATH, 4-5

commands, 10-29 to 10-30
control level, 9-3, 10-2, 10-29

decision processing, 10-33
errors, 10-31

input command buffer, 10-30
processing, 10-32, 10-36

status information, 10-31

Path algorithm, 9-2

Path data structure, 10-8

Path file, 10-8
Path statements, 9-4
Path types, 9-2, 9-5, 10-9

PATH-CLEAR routine, 10-18

PATH-PATH routine, 10-33
PATH-PAUSE routine, 10-33

Path-point
adding, 11-3

command, 9-3, 10-8

command phase, 9-5
compiling, 10-17

data structure, 10-10
range, 11-3

statement, 9-5
PATH-RESTART routine, 10-33
path-srv-* variable, 11-7 to 11-8
PATH-STATUS routine, 10-27

path-" variable, 10-23, 10-30
Paths, adding, 11-2
Paths, compiling, 10-18

INDEX
1-11

PAUSE command
at the JOINT level, 10-48

at the PATH level, 10-29
at the PRIM level, 10-37

at the TASK level, 10-20

Pedestal System, Active, 12-3

Percent {%) character, 7-2, 12-19
PIC (Programmable Interrupt Controller), 5-6

pickup-pallet path-point, 12-18

Plessey Model PSM 512A, 5-2, 5-3, 5-6

Pointers, 3-5

polyFORTH 1, 7-1

Pose
data, 3-6

data structure, 10-4

declarations, 7-4
defined, 7-4

expressions, 7-16
file, 10-4

operations, 7-9
operators, 7-16
position. See Vector
statement, 9-3

POSE-FILE, 10-15

pose-name variable, 10-4

POSE-ROUND routine, 10-36

POST-PROCESS routine
JOINT level, 10-51

PATH level, 10-32

PRIM level, 10-36, 10-42

TASK level, 10-26, 10-29
pose-'^-in variable, 10-50

pose-'^-out variable, 10-51

pose-" variable, 10-48, 10-49

Postprocessing, 2-7, 3-1

ppt-command, 10-19

ppt-command-list variable,, 11-4

ppt-command variable, 10-8

ppt-para variable, 10-8

Pre-locate message, 6-4

PRE-PROCESS routine, 10-26

adding SONAR-READ to, 11-5

JOINT level, 10-51

PATH level, 10-32
PRIM level, 10-42

Preprocessing, 2-5, 3-1

PRESERVE routine, 5-13, 6-16
PRESERVE-FILE routine, 5-13, 6-16
Previous Block command, RCS editor, 6-20
Priam hardware, 5-2, 5-7

c
INDEX

1-12

PRIM
board, 11-8

commands, 10-37

control level, 9-3, 10-3, 10-36
decision processing, 10-44

defined, k-5

errors, 10-42

input command buffer, 10-38
processing, 10-42, 10-46

status information, 10-38

trajectory information, 10-39

variables, 10-40

PRIM-PAUSE routine, 10-44

PRIM-RESTART routine, 10-44

PRIM-STATUS routine, 10-32

Print command, RCS editor, 6-28
Printer configuring, 5-9

Printing
block directories and programs, 6-29

a range of blocks, 6-28

utilities, 5-9, 6-28

Processing stages, 3-1

Processor boards, 5-4, 5-5
Programmable Interrupt Controller (PIC), 5-6

Programming
COMM, 8-3
control levels, 3-5
conventions, 7-2
function keys, 5-8

Programs, data-independent, 3-4

Programs, printing, 6-29
Prompts, 5-13, 6-1, 6-2, 7-18

QR command, RCS editor, 6-24

Quaternions
declarations, 7-4
operators, SMACRO, 7-16

pose statement and, 9-3
nesting, 7-9
SMACRO operator, 7-10

Quick Change, 12-3

range path-point, 12-15
rbt-pose-^ variable, 10-39

INDEX
1-13

RCS
application examples, 12-1

attributes, 2-2 (
common memory. See Common memory.
communications, 8-1

components, 4-1

debugging techniques, 13-15
defined, 1-1

dialogue example, 6-24

disk block organization, D-1

editors, 6-16

error messages, A-1
features, 2-1

function as a robot-related component, 12-3

hierarchical control architecture, 1-1

installation procedures, 5-1

interrupt assignments, C-2
module examples, 2-3
programs, 3-4

SMACRO, 7-1

software installation, 5-10
words, list of, B-1

REACH-CHECK routine, 10-55, 10-56

READ-COMMAND routine, 10-26

READ-CART-TRAJ routine, 10-16

READ-JOINT-TRAJ routine, 10-16

READ-LOC-PHRASE routine, 10-16, 10-25

READ-OBJ-PHRASE routine, 10-18, 10-24 to 10-25 /

READ-SECTOR-LIST routine, 10-25

READ-SERVO-STATUS routine, 10-55
READ-TRAJ-PHRASE routine, 10-16
Read/write conflicts, 8-1, 8-3, 8-4

Record addresses, 7-8
RECORD-POSE routine, 9-7
Record numbers, 7-8

Relational operators, SMACRO, 7-10
Relative block addresses, 6-5

REMOVE-TRAJ-PHRASE routine, 10-17
RESTART command

JOINT level, 10-48

PATH level, 10-29

PRIM level, 10-37
TASK level 10-19

RESTORE-FILE routine, 6-16

Retire command, RCS editor, 6-21

rev, RCS word, E-1

Rimfire 45, 5-6, 5-7

Rimfire disk error messages, A-4
Robot-dependent routines, 10-47
Robot-independent routines, 10-47
Robot interface requirements, 5-3
Robot Sensor Language. See RSL.
Robot tasks, executing, 6-11

rot-nbrhd variable, 10-11 C^

INDEX
1-14

Rotation velocity, 11-6

Round-robin
data structure, 10-12

file, 10-14

statement, 9-6

ROUND-ROBIN-FILE routine, 10-15

Routines, 3-2

compiling path-points, 10-17

compiling paths, 10-18

compiling trajectories, 10-16

debugging, 13-3

environmental data, 10-15, 10-16

executing, 6-11

interrupt, 4-4, 7-20
names in SMACRO, 7-2
robot-dependent, 10-47
robot-independent, 10-47

under development, 6-10

rr-name variable, 10-14
rr-size variable, 10-14

rr-'' variable, 10-14

RSL (Robot Sensor Language), 4-5

board, 11-4, 11-6

code example, 9-6
commands, 9-8
compiler, 10-14

control levels, 9-1, 10-1

data structures, 10-3

debugging techniques, 13-15

extensions, 11-1

loading, 5-14
names in, 10-3

overview, 9-3
programming structures, 9-1

source code
compiling, 9-8
editing, 9-7
entering, 9-7

words, list of, B-94
Run mode, 4-4, 6-12, 7-l8

SAME-BLOCK? routine, 10-15
Saving

disk images, 6-13
internal variables, 2-7
and rebooting the system, 6-12
system dictionary, 6-16
user files, 6-16

Scalar operations, 7-9
SCALE routine, 10-54

scan path-point, 12-16
Schematics, joystick, F-1
Screen editor, RCS, 6-16, 6-17
search-result variable, 10-23

INDEX
1-15

Search routine, 10-15
Sector

defined 9-4
DIP switch, 5-7
numbering, 10-7

variable, 10-20
sector-list variable, 10-7

segment variable, 7-3
Semaphore variable, 8-3

Sensor hardware for the FMR, 12-12

Sequential variable owners, 7-6
Servo-controlled gripper system, 12-3

SERVO-STATUS routine, 10-52
Servo trajectory phrase syntax, 11-6

Servo trajectory type, adding to RSL, 11-6

SET-SERVO-COMMAND routine, 10-55

SHIFT-KLC sequences, 5-9, 13-1

SHOW mode, 4-4, 6-12, 7-18

Single-board computers, 4-1

Single-stepping
through a routine, 13-3
through RSL control levels, 13-4

Slave board, 4-3

SMACRO
arithmetic operation examples, 7-9
code, 7-2

compiler, 6-9

file declaration, 10-4

files, 4-4, 7-8, 7-12
infix notation, 7-8

language , 4-4
operations, order of, 7-9
operators. See Operators, SMACRO
programming conventions, 7-2

routines, 7-1

8

for standard programming operations, 7-8
statements, 7-17
syntax, 7-1

variable
declaration, 7-3
names, 7-3
owner, 10-4

types, 4-4
Software

components of RCS, 4-2

FMR configuration, 12-14
installation procedure, 5-10
modularization, 2-2

module structures, 2-2, 2-4
requirements, 5-4

switch, 6-3

T3 RCS configuration, 12-5

#,

INDEX
1-16

Source code
blocks, 4-5

loading, 5-11

locating, 6-4

organization, 6-5

structure, 4-2

source location phrase variable, 10-21

source sector list variable, 10-21

Square brackets, meaning of, 1-3

Stack operators, SMACRO, 7-15
state-label variable, 10-23

State table, 3-2 to 3-3
State variables, 3-2

Statements, RSL
array, 9-4
location, 9-4
movetable, 9-4

object, 9-4
path, 9-4
path-point, 9-5
round-robin, 9-6

Statements, SMACRO
constants in, 7-10

status-arg-out variable, 9-9
JOINT status variable, 10-51

PRIM status variable, 10-39
PATH status variable, 10-31

TASK status variable, 10-22
status-report variable, 9-9

JOINT status variable, 10-50
PATH status variable, 10-31
PRIM status variable, 10-39
TASK status variable, 10-22

Status information, 3-4, 10-31

STORE-TRAJ-PHRASE routine, 10-17
STRAIGHT-LINE routine, 10-46
String comparison operator, 7-11
String delimiter, 1-3

Switch box, 6-3
Switch settings, DIP, 5-7
System dictionary, 3-4

restoring, 6-16
saving, 6-16
vocabularies, 4-5

System maps, C-1
System utilities, 4-3

t-# variable, 10-23
t->IN variable, 10-22
t-word variable, 10-23

INDEX
1-17

T3 robot, 12-1

control level commands, 12-7

hardware configuration, 12-3 (^
RCS control-level hierarchy, 12-5

software configuration, 12-5

UNLOAD tray example, 12-9

TABLE pose, 9-6
Tape

backing up, 6-29
error messages, A-4
reading, 6-29

rewinding, 5-11

utilities, 6-29
TASK, 4-5

commands, 10-19
control level, 9-2, 10-2, 10-3, 10-19
decision processing, 10-27

errors, 10-23
input, 10-3
input command buffer, 10-21

processing, 10-26 to 10-29
status information, 10-22

utilities, 10-24

variables, 10-22

TASK&PATH board, 11-7

TASK-PAUSE routine, 10-28

TASK-RESTART routine, 10-27
TASK=>PATH routine, 10-26 ^
Tasks V

aborting, 6-12
adding, 11-2

adding MOVE-TO, 11-2

executing, 6-11

TeleVideo terminals
Model 950, 4-3, 5-2, 5-9
software installation, 5-12
printer commands, 6-29

Terminal configuring, 5-8

Terminals supported by RCS, 4-3
Thru-tv command, RCS editor, 6-29
Timers, C-2
TOOL-POSE-" routine, 10-33
tool-rotx movetable line type, 10-5

tool-roty movetable line type, 10-5

tool-rotz movetable line type, 10-5
tool-trn movetable line type, 10-5
traj-para-"

JOINT variable, 10-49
PRIM variable, 10-37

TRAJ-PHRASE routine, 10-35
TRAJ-ROUND routine, 10-36
traj-type-in variable, 10-38
traj-type variable, 10-37 '

INDEX
1-18

traj-*-in
JOINT variable, 10-50

PRIM variable, 10-38

TRAJ command, 10-37
Trajectory

compiling, 10-16
data, 3-8

data structure, 10-11

defined, 9-3
phrase, 9-5

type, 9-5
type, adding, 11-6

TRAJ routine, 10-^*5

TRANSFER-FROM statement, 8-3
Transfer command, 6-21, 10-20 to 10-21

Transform line (), 9-^

Translation velocity, 11-6

Transparent mode on terminals, 5-9

trn-nbrhd variable, 10-11

Tutorial, RCS, 6-24

Underlined text, meaning of, 1-3

Undo Block command, RCS editor, 6-22
Unimate robots, 5-2, 12-11

UNLOAD command, 12-9
User files, 6-16

Utility data routines, 10-15

Values of test variables, 3-3
Variable declarations in SMACRO, 7-3
Variable names in SMACRO, 7-2
Variable owners, 4-M, 7-^, 7-6
Variable types in SMACRO, 7-3

Variables, header, 7-8
Variables, input, 2-6, 7-2
Vector, 9-3

declarations, 7-4
operations, nesting, 7-9
operators, 7-4, 7-16

Velocity data, 10-40
Velocity profile errors, 10-40
Vision Sensor System, 12-3
vmax variable, 10-11

Vocabularies. See System dictionary
Vocabulary, changing, 6-3
Vocabulary identifier, 7-2, 13-15
Vocabulary names, 6-3

WAIT-PATH-DONE routine, 10-25
Want String command, RCS editor, 6-22
Watchdog Safety System, 12-3

WINT, RCS word, E-1
Wiring diagrams, F-1
wmax variable, 10-11

INDEX
1-19

WREAD-COMMAND routine, 10-24

WUNLOAD command, 6-30

x-#-sectors variable, 10-6

x-mtb-'* variable, 10-6

y-#-sectors variable, 10-6

y-mtb-" variable, 10-6

z-#-sectors variable, 10-6

z-mtb-^ variable, 10-6

<ENTER>, on the VT100
r
5-9

A command , RCS editor
,
6-19

C command , RCS editor , 6-20

D command , RCS editor , 6-20

E command , RCS editor
,
6-19

F command

,

, RCS editor,, 6-20

G command , RCS editor , 6-21

K command

,

RCS editor. 6-19

N command , RCS editor.,
6-22

command

,

RCS editor. 6-20

P command , RCS editor , 6-20

R command
j
RCS editor. 6-21

T command
J
RCS editor. 6-21

U command

,

RCS editor, 6-22

W command) RCS editor. 6-22

X command
j

RCS editor, 6-22

z command
j
RCS editor. 6-19

•
INDEX

1-20

NBS.n4A IREV. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO,

NIST/TN-1250

2. Performing Organ. Report No, 3. Publication Date

September 19!

4. TITLE AND SUBTITLE

The NBS Real-Time Control System User's Reference Manual.

5. AUTHOR(S)

Stephen A. Leake and Roger D. Kilmer

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NATIONAL INSTnrUTE OF STANDARDS AND TECHNOLOGY
(formerly NATIONAL BUREAU OF STANDARDS)
U.S. DEPARTMENT OF COMMERCE
GAFTHERSBURG, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

SAME AS ITEM #6 ABOVE.

10. SUPPLEMENTARY NOTES

I I

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

The NBS-developed Real-Time Control System~RCS~ is a hierarchically-structured

I

controller designed to use sensory feedback for real-time control of automated

systems. This manual describes the basic structure of RCS and the programming

features available to develop application software. In addition to a detailed

description of the structure of RCS, examples illustrating the use of RCS for the

control of robotic systems are presented.

12. KEY WORDS (Six to twelve entries; alphabetical order: capitalize only proper nances; and seporcite key words by semicolons)
Control architecture; FORTH; hierarcfiical ; RCS; real-time control;

robot control; robot programming; SMACRO: sensory feedback.

13. AVAILABILITY

^^ Unlimited

Q For Official Distribution. Do Not Release to NTIS

• 1X3 Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

IX)j Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

381

15. Price

'U.S.COVERNntENT PRINTING OFF ICE ! 1988-201 -597 i 92573
USCOMM-DC 6043-P80

$

^^tgSm

.:*¥'"'•**-"

METRIC SY£

METRIC UN '^ \i) u
*-

LENGT^
millimeter ''') :-!.:.S

centimeter (cm) 0.3

decimeter [<^m) 3.94 incries

meter (ITS; 39.37 inches

decameter (Dm) 32.81 feet

hectometer (hm> 109.36 yards

kilometer (km) 0.62 mile?

myriameter

AREA
square centime!

:

square meter {nr) i

are (a) ii9.eo S ,

hectare (ha) 2.47 c\' _ _

sq. kilometer (km^) 0.3361 sq. miles

WEIGHT
milligram (mg) U.U 10 grams

centigram (eg) 0.154 grains

decigram (dg) 1.543 grains

gram (g) 0.035 ounces

decagram (Dg) 0.353 ounces

hectogram (hg) 3.527 ounces

kilogram (kg) 2.2046 pounds

quintal 220.46 pounds

metric ton 1.1 tons

^OORUMSPEASE

ELTE

2532

¥OLUM£
cubic centimeter (cm^)

cubic decimeter (dm^) 0.035.3 cubic reel

cubic meter (m^) 1.31 cubic yards

cubic decameter (Dm') 13.10 cubic yards

CAPACITY, c
milliliter

'^ntiliter

.^iC incnef

cie.c-li'e; (D!) . lie feet

tar (hi) .^.53 cubic fee(

CAPACITY, DRY
3 pints

! \'.i-^.\ iM u.boa quarts

decaliier (Dl) 1.14 necks

hectoliter (fi) vhels

CAPACITY, LIQUID
millilitef'

centiliter

deciliter

liter

decaliter

0.27 fluidrams

0.338 fluldounces

0.21 pints

1.057 quarts

2.64 gallons

