NBS

PUBLICATIONS

nbs technical note 1229

Crystal Data
 Version 1.0
 Database Specifications

Judith K．Stalick and Alan D．Mighell

he National Bureau of Standards ${ }^{1}$ was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials Science and Engineering .

The National Measurement Laboratory

Provides the national system of physical and chemical measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; provides advisory and research services to other Government agencies; conducts physical and chemical research; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

- Basic Standards ${ }^{2}$
- Radiation Research
- Chemical Physics
- Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

- Applied Mathematics
- Electronics and Electrical Engineering ${ }^{2}$
- Manufacturing Engineering
- Building Technology
- Fire Research
- Chemical Engineering ${ }^{2}$

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

- Programming Science and Technology
- Computer Systems

Engineering

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference materials, quantitative understanding and other technical information fundamental to the processing, structure, properties and performance of materials; addresses the scientific basis for new advanced materials technologies; plans research around cross-country scientific themes such as nondestructive evaluation and phase diagram development; oversees Bureau-wide technical programs in nuclear reactor radiation research and nondestructive evaluation; and broadly disseminates generic technical information resulting from its programs. The Institute consists of the following Divisions:

- Ceramics
- Fracture and Deformation ${ }^{3}$
- Polymers
- Metallurgy
- Reactor Radiation

[^0]
Crystal Data
 Version 1.0 Database Specifications

Judith K. Stalick and Alan D. Mighell
Reactor Radiation Division
Institute for Materials Science and Engineering
National Bureau of Standards
Gaithersburg, Md 20899

November 1986

National Bureau of Standards Technical Note 1229
 Natl. Bur. Stand. (U.S.), Tech. Note 1229, 72 pages (Nov. 1986) CODEN: NBTNAE

The National Standard Reference Data System was established in 1963 to promote the critical evaluation and dissemination of numerical data of the physical sciences. The program is coordinated by the Office of Standard Reference Data of the National Bureau of Standards but involves the efforts of many groups in universities, government laboratories, and private industry. The primary aim of the program is to provide compilations of critically evaluated physical and chemical property data needed by the scientific and engineering community.

In recent years, the use of computers in data activities has become very important, both from an efficiency and from a technical viewpoint. This report is a description of one major effort in this direction and provides an in-depth overview of the NBS Crystal Data database. From this database, a wide variety of products, both computer-oriented and published, will be made available.

David R. Lide, Jr., Director
Standard Reference Data
National Bureau of Standards

PREFACE

This report describes the format and specifications of the NBS Crystal Data database, which contains the most comprehensive collection of crystallographic and related chemical information in the world. The data have come from the six published volumes of Crystal Data Determinative Tables (1972-1983), from newer data abstracted by the NBS Crystal Data Center and the Cambridge Crystallographic Data Centre, and from collaboration with the JCPDS--International Centre for Diffraction Data (Swarthmore, PA), the Metals Data Center (Ottawa, Canada), and the Inorganic Structural Data Center (Federal Republic of Germany).

The database contains many searchable parameters that do not appear in the published works. All data have been reevaluated by the Editors of the NBS Crystal Data Center with the aid of computer programs and errors or possible errors are noted. At this time the rapidly-expanding database contains information on more than 100,000 materials. Information on the availability of Crystal Data products may be obtained from the JCPDS--International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081, USA.

The authors wish to acknowledge the numerous individuals at the National Bureau of Standards and at the collaborating data centers who have made this large collection of data possible, through over 30 years of abstracting and evaluation of data entries. We recognize that it is this dedicated work that actually results in the value of the database. In addition, we thank Dr. Camden R. Hubbard of the National Bureau of Standards for his contributions to the development of the database format and computer evaluation routines.

CONTENTS

FOREWORD iii
PREFACE iv
INTRODUCTION 1
The Data 2
Classification and Standardization of Cells 3
Applications 5
DATABASE SPECIFICATIONS 8
Record Type 1 Original cell parameters 9
Record Type 2 Cell parameter standard deviations 11
Record Type 3 Space group, Z, and density 13
Record Type 4 Crystal Data space group, 2, and density 15
Record Type 5 Material, class, and registration indicators 17
Record Type 6 Compound name 18
Record Type 7 Chemical formula (dot or structural formula) 20
Record Type 8 Empirical formula 23
Record Type 9 Literature reference 24
Record Type A Structure type 26
Record Type B Comments 28
Record Type C Matrix for initial cell \rightarrow Crystal Data cell 29
Record Type D Reduced cell 30
Record Type E Crystal Data cell 31
Record Type J Update or revision 32
Record Type K Processing history and entry termination 33
REFERENCES 34
APPENDIX A. Choice and Orientation of the Crystal Data Cell 35
APPENDIX B. Reduced Cells and Reduced Forms 37
APPENDIX C. Space Groups and Aspects 41
APPENDIX D. Organic Chemical Classes 57
APPENDIX E. Mineral Group and Subgroup Codes 60
APPENDIX F. Examples of Entries 65

Version 1.0 Database Specifications

Judith K. Stalick and Alan D. Mighell
NBS Crystal Data Center, Reactor Radiation Division, National Bureau of Standards, Gaithersburg, MD 20899, USA

The NBS Crystal Data database is a file of crystallographic and chemical data covering a broad spectrum of solid-state materials: inorganics, minerals, metals, intermetallics, organics, and organometallics. To be included in the database the unit-cell parameters of a material must be known. With the aid of computer programs, the data were evaluated by the Editors for reasonableness and selfconsistency, and errors or possible errors are noted. The data items have been formatted in a standard way to permit searches. Each entry in the database contains unit-cell data (initial cell, conventional Crystal Data cell, and reduced cell), space group or diffraction aspect, formula units per cell, observed and calculated densities, literature reference, chemical or mineral name, chemical formula, empirical formula, and an indication of the extent to which the atomic positional parameters have been determined. Additional information may include structure type, locality for minerals, crystal habit, color, melting point, temperature of data collection, information on sub-, super-, or pseudocells, and an indication if cleavage, twinning, or powder data is included in the original literature reference. In addition to identification of unknowns by lattice-matching techniques, the large size of the database along with the combination of crystallographic, chemical, and physical information make this file a valuable resource for all of solidstate science. Detailed format and content specifications are given.

Key words: chemical formula; computer database; crystallographic data; identification; inorganic materials; intermetallics; minerals; NBS Crystal Data Center; organic materials; organometallics; unitcell dimensions.

INTRODUCTION

The NBS Crystal Data database is a large, formatted file of evaluated crystallographic, chemical, and physical data. The data items have been
checked for legality and reasonableness, and, where necessary, transformed into standard forms to facilitate computer searches. Additional data items have been derived from the literature data, and strict adherence to specified formats has been ensured by extensive computer evaluation of the database.

THE DATA

a. Substances included and data sources

The database contains data on organic and inorganic crystalline substances for which cell parameters have been published. Also included are minerals, metals, intermetallic compounds, and organometallic compounds. Many compounds of biological interest are present, although proteins, high polymers, and solid solutions are, in general, excluded. The only requirement for inclusion of a material in the database is that the lattice has been defined by unit-cell dimensions; in over 50 percent of the cases, the data in an entry result from a full structure determination by single-crystal x-ray diffraction techniques.

The majority of information contained in this database has been abstracted from over 1000 journals and, to a lesser extent, from collected conference abstracts. A relatively small number of entries refer to Government and industrial research reports, theses, and books. The data were abstracted primarily by the NBS Crystal Data Center (inorganics, minerals, metals, and intermetallics) and by the Cambridge Crystallographic Data Centre in Cambridge, England (organics and organometallics). Other data entries have originated from collaboration with the JCPDS--International Centre for Diffraction Data (Swarthmore, PA), the Metals Data Center (Ottawa, Canada), and the Inorganic Structural Data Center (Federal Republic of Germany). All data entries have been evaluated by the NBS Crystal Data Center.

b. Data in each entry

A variety of crystallographic, chemical, and physical data are given that can be used to characterize a material. In addition, bibliographic data and indications of further information in the literature reference are given. The data include:

Material classifications

- Inorganic
- Mineral
- Intermetallic (including the Pearson structure code)
- Organic (including chemical class designations)

Abstracted data

- Unit-cell dimensions and space group
- Z (number of formula units per unit cell)
- Calculated and observed densities
- Compound name and chemical formula
- Literature reference
- Indication of the degree to which the structure has been determined
- Additional information such as structure type, locality for minerals, crystal habit, color, melting point, temperature of data collection, information on sub-, super-, and pseudocells, and an indication if cleavage, twinning, or powder data is included in the original literature reference

Derived data

- Crystal Data cell, space group, and Z
- Reduced cell and reduced form type
- Empirical formula and molecular weight
- Recalculated x-ray density

The detailed database contents are given in the Database Specifications.

> c. Evaluation of the data

The scientific and numerical nature of the data permits extensive computer analysis. The NBS Crystal Data Center has developed computer programs that assist the Editors in building and evaluating the database, incorporating years of editorial experience, the results of research in lattice theory, and knowledge gained from analysis of the data as a set.

The FORTRAN program NBS \approx AIDS 83 , developed by NBS scientists and widely distributed to the crystallographic community and to data centers, was designed to build a database entry, transform data to standard settings, calculate derived parameters, evaluate parameters for reasonableness and for consistency within an entry, and check for required data items and proper formats. The program also checks items for legality (e.g., space groups and chemical element symbols) and performs cross-checks; for example, the inorganic chemical name and formula must be consistent, the recalculated x-ray density must agree with the reported densities (if any) and with a density approximated by average atomic volumes, and the metric symmetry as determined by reduced form type is compared with the reported crystal symmetry.

As the database now exceeds 100,000 entries, and is growing at the rate of approximately 7,000 entries per year, the evaluation of data between entries is becoming increasingly important. New analysis functions are being developed through the use of independent programs or database management systems. Any specified parameters may be examined using the entire database; for example, an analysis of the frequencies of occurrence for each of the 230 space groups has revealed that many space groups are rarely occupied. Thus any compound reported in a rare space group is a candidate for special editorial scrutiny.

CLASSIFICATION AND STANDARDIZATION OF CELLS

The various data items in each entry in the database have been rigorously defined and standardized using the software described above. All types of physical, chemical, and crystallographic data have been processed. Once the
data items have been standardized, it is possible to sort and classify the materials in a variety of different ways depending on how one wishes to use the database.

In particular, many practical applications result when materials are classified on the basis of the Crystal Data cell and the reduced cell. Computer programs now exist to transform any cell of the lattice to these standard cells (Mighell, Hubbard, and Stalick, 1981). In fact, many automated commercial x-ray diffractometers routinely calculate the reduced cell and a cell that is the same as, or closely related to, the Crystal Data cell.

a. The Crystal Data cell

The Crystal Data cell is a uniquely-defined primitive or centered cell, with cell parameters assigned on the basis of the symmetry elements of the crystal system. Reduction procedures are used to select the cell parameters not fixed by symmetry (i.e., a, c, and β in the monoclinic system and a, b, c, α, β, and γ in the triclinic system).

A classification of materials based on the Crystal Data cell is used if one wishes to compare lattices within a crystal system. This cell can conveniently be used for comparing similar materials, for identifying unknown substances, for locating isostructural materials, and for studying systematic changes in related materials where the cell orientation remains the same. The Crystal Data cell also provides an ideal conventional cell orientation for the reporting of unit cells in the literature. The complete rules for choice and orientation of the Crystal Data cell are given in Appendix A.
b. The reduced cell

The reduced cell is a unique, primitive cell based on the three shortest lattice translations. If the initial lattice is defined by a centered (F, I, A, B, C) cell, then this cell is converted to a primitive cell which is then reduced.

A classification of materials based on the reduced cell is ideal for identification by lattice-matching techniques (Mighell, 1976), since all cells are defined by the same rules that are independent of the crystal symmetry and cell centering. This method of classification enables one to locate related lattices in spite of certain experimental errors or subtle changes in symmetry. For example, the reduced cell remains invariant even if the experimenter misses the true symmetry of the lattice or if the lattice symmetry varies with site substitution (a common occurrence for minerals).

Once classified by reduced cell, one can determine the metric symmetry of the lattice. It has been shown that for over 95 percent of the entries in the database, the metric symmetry is the same as the crystal symmetry reported by the authors (Mighell and Rodgers, 1980). Thus a convenient procedure to determine the crystal symmetry starts with the determination of any cell defining the lattice. This is followed by transformation to a reduced cell, determination of the reduced form, transformation of the reduced cell to the
conventional cell, and verification of crystal symmetry by checking equivalent intensities.

The mathematical conditions necessary to define the reduced cell and the transformation matrices that relate the reduced cell to the conventional Bravais lattice are given in Appendix B, along with the classification of reduced forms.

APPLICATIONS

The information contained in the database is of interest to scientists in many diverse disciplines, as it includes data from the entire spectrum of wellcharacterized solid-state materials. These disciplines include analytical chemistry, materials science, crystallography, mineralogy, ceramics, metallurgy, organic chemistry, biochemistry, physical chemistry, and inorganic chemistry. The database may be searched to find one or several materials with specified physical or chemical properties; alternatively, known or measured properties may be used to identify an unknown material.

a. Searching the database

The NBS Crystal Data database is a highly evaluated, standardized, and organized collection of formatted scientific data. It is therefore possible to carry out searches on all of the data parameters using computer programs. To perform a wide variety of sophisticated searches, it is most convenient to put the entire database under a database management system. The general search strategy using such a system is based on Boolean operations, and consists of three basic steps: 1) the search question is analyzed and framed into the form of several discrete search parameters; 2) for each parameter, the database is searched and the subset of data consisting of the "hits" is saved; and 3) to find the answer, the subsets of data are intersected using Boolean 'AND', 'OR', and 'NOT' operations. If the resulting data subset is not sufficiently specific, additional search parameters may be formulated to find the desired answer. Surprisingly, several "rough" or rather limited pieces of information (e.g., a partial chemical analysis, a single cell parameter, and an approximate density determination) are commonly sufficient to solve the problem. Typical searches are:

- Find all rare earth binary oxides that crystallize in the hexagonal or monoclinic crystal systems.
- Find all references within the years 1977-1983 that contain data on antibiotics with greater than 30 carbon atoms in the molecule.
- Find all materials with a density between 3.0 and 4.0 , with a cell volume in the range 900-1000 \AA^{3}, and with only Co, S, and one other chemical element in the formula.
- Find all organic substances that have the character string 'pen' in the chemical name, that have three Ni atoms in the molecule, and that crystallize in the anorthic (triclinic) or monoclinic crystal systems.
- Find all compounds with an a-cell parameter (from electron diffraction) in the range 3.5-3.7 \dot{A} that contain Pm and 0 .
- Find all references to steroids in the monoclinic space group P2I that have four molecules in the asymmetric unit (to search for hydrogen bonds between molecules not symmetrically related).
- Find all materials containing Na and S that have calculated densities 15% greater than the density estimated by formula alone.
- Find the space group frequencies for binary oxides.
- Find references to all cyclophosphamides that have had the full structure determined.
- Find all organic compounds in the 40 least-populated space groups.

The above examples illustrate that, using the database along with a database management system, one can carry out a great variety of highlyselective searches. The search capability can be greatly broadened if the database management system is coupled with scientific software designed specifically for the type of data in the database.

b. Compound identification by lattice matching

The database is a valuable resource for compound characterization and identification, as all of the lattices for materials in the database have been classified on the basis of the reduced cell and the Crystal Data cell. An unknown may be identified by matching the unknown lattice against all of the lattices in the database. For a discussion of the theory of lattice-matching techniques see Himes and Mighell (1985), and for a historical discussion of identification based on cell parameters see the Introduction to the third edition of Crystal Data Determinative Tables (Donnay and Ondik, 1972, 1973).

Several recent developments have converged to make identification based on lattice matching even more attractive for routine use in both industrial and analytical laboratories. These include: (a) the large and rapidly expanding file of well-characterized compounds; (b) the high quality of cell data in the file, especially the new data which have often been based on a least-squares refinement; (c) the increasing use of automated diffractometers which makes it easier to obtain a refined cell of the lattice; (d) the development of theory and of computer algorithms to convert any given cell to a standard cell suitable for identification; (e) the fact that low-symmetry organic and inorganic compounds can conveniently be characterized and identified on the basis of their cell parameters (a class of compounds for which the powder method has only limited applicability).

In order to identify an unknown material in conjunction with the database, the following sequence of steps may be used:

1. Mount the unknown crystal on the diffractometer.
2. Determine any cell of the lattice.
3. Refine the cell.
4. Determine the reduced cell (or determine the crystal symmetry and transform to the Crystal Data cell).
5. Check the latabase for a match.

To make an identification in spite of experimental errors and/or to find all related materials, appropriate sub- and supercells should be calculated (Santoro and Mighell, 1972) and checked for a match. The unit cell and crystal symmetry may equally well be determined by other techniques, e.g., powder diffraction or single-crystal film methods. The identification may be confirmed based on known chemical or physical properties. A computer program for lattice matching has been developed (Himes and Mighell, 1985) for use in conjunction with a file derived from the database.

DATABASE SPECIFICATIONS

The NBS Crystal Data database consists of one or more entries for each substance included, and is divided into two separate files. The inorganic file includes elements, inorganic substances, intermetallic compounds, and minerals. Also included are a few classes of materials containing carbon (i.e., carbonates, carbides, cyanides, cyanates, carbonyls, and carbon-bearing minerals). Solid solutions are, in general, excluded. The organic file contains information on organic compounds, organometallic compounds, and metal complexes containing organic ligands. Solid solutions, proteins, and high polymers are excluded.

Each entry in the database consists of up to 16 record types, beginning with record type 1 and ending with record type K. All records contain units of 80 ASCII characters, and some contain multiple units. The following table gives a summary of record types, with the maximum number of units for each type.

Record \qquad Type	Maximum Number of Units	Information in the Record
1	1	Original cell parameters
2	1	Cell parameter standard deviations
3	1	Space group, Z, and density
4	1	Crystal Data space group, 2, and density
5	5	Material, class, and registration indicators
6	5	Compound name
7	5	Chemical formula (dot or structural formula)
8*	1	Empirical formula
9	10	Literature reference
A*	1	Structure type
B*	20	Comments
C	1	Matrix for initial cell \rightarrow Crystal Data cell
D	1	Reduced cell
E	1	Crystal Data cell
J*	5	Update or revision
K	1	Processing history and entry termination

The format for each record type and a complete description of the record contents follow.

Character \qquad	FORTRAN Format	Item
*1-9	F9. 5	a (original data) in Angstroms ($1 \AA=10^{-10} \mathrm{~m}$)
*10-18	F9. 5	b
*19-27	F9. 5	c
*28-35	F8. 3	α (original data) in degrees
* $36-43$	F8. 3	β
$\times 44-51$	F8. 3	γ
*52	A1	Editorial code for cell Blank = cell given by author; normal temperature and pressure $\mathrm{E}=$ cell inserted by Crystal Data editor $C=$ cell is Crystal Data cell (not necessarily the author's original cell) $\mathrm{T}=$ cell data is at high or low temperature $\mathrm{P}=$ cell data is at high pressure (may also be at high or low temperature)
53-64	12X	Blank
*65	A1	Radiation of study Blank $=$ not specified $\mathrm{X}=\mathrm{x}$-ray $\mathrm{N}=$ neutron E $=$ electron G = gamma
66	1X	Blank
*67	A1	Source of unit cell data Blank $=$ not specified S = single crystal $\mathrm{P}=$ powder diffraction $R=$ Rietveld or profile fit analysis
68	1x	Blank
*69	A1	Structure code $\mathrm{N}=$ no information about structure is given $\mathrm{L}=$ limited structure information is given (partial structure determined or assigned by type) $\mathrm{T}=$ total structure determined (excluding H atoms)

```
Crystal system code
    A = anorthic (triclinic)
    M = monoclinic
    0 = orthorhombic
    T = tetragonal
    H = hexagonal
    R = rhombohedral (hexagonal or rhombohedral axes)
    C = cubic
```

*80
A1
1 (Record Type 1)

Notes:

(1) Data items for character numbers preceded by an asterisk ($*$) on this and all subsequent record types are input from the literature reference; all other data items are generated by computer analysis.
(2) The cell parameters are, in general, those given by the authors, maintaining the reported significance; angles in degrees and minutes have been converted to decimal degrees.
(3) Only those cell parameters required to define the cell are given:

| anorthic | $\mathrm{a}, \mathrm{b}, \mathrm{c}, \alpha, \beta, \gamma$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| monoclinic (a-unique) | $\mathrm{a}, \mathrm{b}, \mathrm{c}, \alpha$ | | | |
| monoclinic (b-unique) | $\mathrm{a}, \mathrm{b}, \mathrm{c}$ | β | | |
| monoclinic (c-unique) | $\mathrm{a}, \mathrm{b}, \mathrm{c}$ | | γ | |
| orthorhombic | $\mathrm{a}, \mathrm{b}, \mathrm{c}$ | | | |
| tetragonal | a | c | | |
| hexagonal | a | c | | |
| rhombohedral (H axes) | a | c | | |
| rhombohedral (R axes) | a | α | | |
| cubic | a | | | |

(4) The Crystal Data reference code and the crystal system code for character numbers 72-79 are repeated on all subsequent data record types for the entry.

Numbers	Format	Item
*1-9	F9. 5	$\sigma(\mathrm{a})$
*10-18	F9. 5	σ (b)
*19-27	F9. 5	σ (c)
*28-35	F8. 3	$\sigma(\alpha)$
*36-43	F8. 3	$\sigma(\beta)$
*44-51	F8. 3	$\sigma(\gamma)$
52	1X	Blank
53-56	I4	Average error in axial lengths in parts per 10^{5}
57	A1	Editorial code for average error Blank $=$ standard deviations reported by the authors $E=$ editorial errors assigned (see notes)
59-60	A2	Quality index code for cell
61-71	11X	Blank
72-79	8A1	Crystal Data reference and system codes (see Record Type 1)
*80	A1	2 (Record Type 2)

Notes:

(1) Only those standard deviations reported by the authors are given.
(2) If no errors are reported by the authors, then a standard deviation of 5 in the least significant digit of the axial lengths is assumed in the calculation of the average error and the quality index code; an 'E' is then inserted for character number 57.
(3) The quality index code is assigned as follows:

Average error (parts per 10^{5}) QI code

0	-1
2	-5
6	-10
11	-50
	A
51	-100
101	-500
501	-1000
1001	-5000
5001	-9999

(4) The maximum average error stored in the database is 9999.

Character Numbers	FORTRAN Format	Item
*1-8	8A1	Author's space group, aspect in Laue class, or cell centering (left-justified)
$* 9$	A1	Editorial code for space group Blank $=$ space group given by author E = space group inserted by Crystal Data editor $T=$ space group orientation corresponds to that of the Crystal Data cell (rare; orthorhombic only)
10	1X	Blank
11	A1	```Aspect code Blank = normal * = aspect number has been assigned```
12-14	I3	Space group or aspect number (see notes)
15	A1	Orientation code for space group or aspect
16-19	4X	Blank
*20-25	F6.0	Z (number of formula units per unit cell)
*26	A1	```Editorial code for Z Blank = Z given by author E = Z has been inserted by the Crystal Data editor G = Z has been guessed```
27-29	3X	Blank
* $30-35$	F6. 3	Dm (author's measured density) in $\mathrm{Mg} / \mathrm{m}^{3}\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$
36-37	2X	Blank
*38-43	F6. 3	Dx (author's calculated density) in $\mathrm{Mg} / \mathrm{m}^{3}$
44-60	17X	Blank
61-69	F9. 2	Input cell volume
70-71	2X	Blank
72-79	8 Al	Crystal Data reference and system codes (see Record Type 1)
*80	A1	3 (Record Type 3)

(1) The space groups are given in the Hermann-Maugin notation (International Tables for X-ray Crystallography, 1969). Space groups and aspects are written with subscripts appearing on the line (no spaces), and with bars over numbers represented by a minus sign (-) preceding the number.

Examples: $\mathrm{P} 2_{1} / \mathrm{c} \rightarrow \mathrm{P} 21 / \mathrm{c}$

$$
\begin{aligned}
\mathrm{P} 4{ }_{1} 2{ }_{1} 2_{1} & \rightarrow \mathrm{P} 412121 \\
\mathrm{P} \overline{3} \mathrm{~cm} & \rightarrow \mathrm{P}-3 \mathrm{~cm}
\end{aligned}
$$

(2) Diffraction aspects are those in the Laue class as given by Donnay and Kennard (1964) and reprinted in Supplement II of the third edition of Crystal Data Determinative Tables, Volumes 1 and 2 (Donnay and Ondik, 1972, 1973).

Exceptions: The four aspects that begin with the Laue group symmetry have been rewritten so that the lattice type appears first, e.g.
$\overline{1} P * \rightarrow P *,-1 \quad \overline{3} P * \rightarrow P *,-3 \quad \overline{3} P P * c 1 \rightarrow P * c 1,-3 m \quad \overline{3} m P * 1 c \rightarrow P * 1 c,-3 m$
(3) If no space group or aspect is given, but the cell centering is known, the appropriate symbol ($\mathrm{P}, \mathrm{C}, \mathrm{F}$, etc.) is given under space group. If no centering is indicated, a primitive cell is assumed for cell reduction and transformation, although this may not be correct.
(4) Space group numbers and orientation codes are given in Appendix C. Aspects are given the number corresponding to the highest possible symmetry space group, with a '*' for character number 11.
(5) The value given for Z corresponds to the chemical and empirical formulas given.

RECORD TYPE 4 Crystal Data space group, Z, and density

Character \qquad Numbers	FORTRAN Format	Item
1-8	8A1	Crystal Data space group, aspect, or cell centering (left-justified)
9	A1	```Editorial code for space group Blank = normal E = original space group (Record Type 3) is editorial```
10	1X	Blank
11	Al	Aspect code Blank = normal * = aspect number assigned
12-14	13	Space group or aspect number
15	Al	Orientation code for space group or aspect
16-19	4X	Blank
20-25	F6. 0	Z for Crystal Data cell
26	A1	```Editorial code for Crystal Data Z Blank = normal E = original Z (Record Type 3) is editorial G = original Z (Record Type 3) is guessed```
27-29	3x	Blank
30-34	F5. 2	Density approximated by atomic volumes in $\mathrm{Mg} / \mathrm{m}^{3}$
35	A1	A (editorial code for approximate density)
36-37	2X	Blank
38-43	F6. 3	Dx (program calculated density) in $\mathrm{Mg} / \mathrm{m}^{3}$
44	A1	```Editorial code for Dx Blank = normal G = Dx is questionable due to guessed or missing Z, or to approximation of empirical formula```
45-50	6X	Blank
51-58	F8. 2	Molecular or formula weight

Al Editorial code for molecular weight
Blank = normal
$G=$ molecular weight is questionable due to approximation of empirical formula

1X Blank
61-69 F9.2 Volume of Crystal Data cell
2X
Blank

8A1

80
A1

Crystal Data reference and system codes (see Record Type 1)

4 (Record Type 4)

Notes:
(1) If no value for Z is given on Record Type 3, a value of 1 for the Crystal Data Z is assumed for the calculation of $D x$, and a ' G ' is given for character number 44. The Crystal Data Z is left blank in the database.
(2) For the rhombohedral crystal system, if no space group, aspect, or cell centering is given on Record Type 3, an ' R^{\prime} will be inserted for character number 1.
(3) See notes 1-4 for Record Type 3 for information on space group numbers and orientation codes.
(4) The approximate density in character numbers 30-34 is based solely on the empirical formula given on Record Type 8, using average atomic volumes derived from the database. It may be compared, with caution, with the crystallographic calculated density to assess the validity of the cell, formula, and Z; similar materials should show similar agreement.
(5) The program calculated density in character numbers $38-43$ is calculated using a value of $6.0220943 \times 10^{23} \mathrm{~mole}^{-1}$ for Avogadro's number (Deslattes et al., 1974) and the atomic weights of the IUPAC Commission on Atomic Weights (1979). More recent published values for the atomic weights (Holden and Martin, IUPAC Commission on Atomic Weights and Isotopic Abundances, 1984) would not, with very few exceptions, result in a noticeable change in the program calculated density. New recommended values for fundamental constants are expected to be available in the Fall of 1986 through a CODATA report, and these values will be used in future data processing.

RECORD TYPE 5 Material, class, and registration indicators

Character Numbers	FORTRAN Format	Item
$\times 1$	A1	I for inorganic material (blank if not)
$* 2$	A1	0 for organic material (blank if not)
$* 3$	A1	M for mineral (blank if not)
$* 4$	A1	A for alloy, metal, intermetallic material (blank if not)
5-24	20x	Blank
*25-52	7 (A1, A3)	Chemical class indicators (organic) or mineral group codes (inorganic) (see notes)
53	1X	Blank
*54-64	$\begin{aligned} & \mathrm{I} 6,1 \mathrm{H}-, 2 \mathrm{~A} 1, \\ & 1 \mathrm{H}-, \mathrm{A} 1 \end{aligned}$	Chemical Abstracts Service (CAS) registry number
65-70	6X	Blank
* 71	I1	Sequence number n (1,2 . .), maximum 5 Blank if only one unit of Record Type 5 exists (normal) ' n ' if more than one unit of Record Type 5 exists because of multiple CAS registry numbers
72-79	8A1	Crystal Data reference and system codes (see Record Type 1)
$* 80$	A1	5 (Record Type 5)

Notes:
(1) The chemical class indicators for organic materials consist of two parts, where the Al field indicates the residue number of the corresponding chemical formula (see Record Type 7) and the A3 field gives the number of the associated chemical class. For example, 1023 indicates chemical class 23 for residue 1 . Up to 7 classes may be assigned for a single substance. Appendix D gives a listing of the 86 chemical classes currently defined by the Cambridge Crystallographic Data Centre.
(2) The mineral codes are those defined by the JCPDS--International Centre for Diffraction Data and are given in Appendix E. If an 'm' is given in the Al field then a mineral group code follows in the A3 field; if an 's' is given in the Al field then a mineral subgroup code follows.

Character Numbers	FORTRAN Format	Item
*1-67	67A1	Compound name (left justified)
68	1X	Blank
*69	A1	Index code Blank $=$ Crystal Data index name $\mathrm{M}=$ mineral name $N=$ chemical name for a mineral $\mathrm{C}=$ common or trivial name D = name to be omitted from index
* 70	A1	```Continuation code Blank = no continuation unit C = compound name is continued on the next unit (character numbers 1-67)```
* 71	I1	Sequence number n (1,2 . .), maximum 5 Blank if only one unit of Record Type 6 exists ' n ' if more than one unit of Record Type 6 exists due to continuations or multiple names (see notes)
72-79	8A1	Crystal Data reference and system codes (see Record Type 1)
*80	A1	6 (Record Type 6)

Notes:
(1) An entry may have more than one name for a given compound.
(2) A mineral name will be given (character number $69=$ ' M ') only if the mineral indicator (Record Type 5, character number 3) is ' M '.
(3) Most inorganic chemical names have been rewritten to facilitate searching as follows:

1. Numbers are separated from the components of the chemical name. The chemical name for BaCl_{2} in this scheme is Barium chloride ($1^{\wedge} 2$), where the relative proportions of the constituents are given within the parentheses, separated by the symbol '^'.
2. Ligands are named alphabetically following the central atom and are separated by commas. For example, $\mathrm{Co}(\mathrm{CN})_{2}\left(\mathrm{NH}_{3}\right)_{4}$ is named. Cobalt, ammine, cyano ($1,4,2$).
3. Oxygen "ligands" are treated differently. These ligands are given only as a number added to the number of central atoms, e.g., $\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)=$ phosphate $(3+9)$ and $\left(\mathrm{PO}_{3} \mathrm{~S}\right)=$ phosphate, thio ($1+3,1$) ; if the normal number of oxygen ligands is present, it is not indicated, e.g., Potassium sulfate ($2^{\wedge} 1$), not ($2^{\wedge} 1+4$).
4. Prefixes such as di, iso, etc. are separated from the chemical group name by a slash, e.g., Potassium chromate/di (2^1).
5. Mixed-site occupancy is indicated by a dash, e.g., (A1,Si) $2^{\mathrm{Nd}}=$ Aluminum-silicon neodymium ($2^{\wedge} 1$).
6. The central atoms in heteropoly anions are separated by an asterisk, e.g., $\mathrm{K}_{8}\left(\mathrm{SiW}_{11} \mathrm{O}_{39}\right) \cdot 12 \mathrm{H}_{2} \mathrm{O}=$ Potassium silicate*tungsto hydrate ($8^{\wedge} 1,11+39^{\wedge} 12$).
(4) Organic compound names are generally those assigned by the authors, provided that they are correct and conform reasonably well to accepted nomenclature rules. In some cases, systematic names have been devised or synonyms are given to cater for trivial and alternative names. In the database, superscripts and subscripts are bracketed by the symbols '\#' and '\$', where '\#' indicates 1/2-1ine down and '\$' indicates 1/2-1ine up; Greek letters are spelled out, e.g., $\alpha=$ alpha.
(5) Names in the inorganic file (Record Type 5 , character number $1=$ ' I^{\prime}) are continued at word breaks only; thus blanks may occur at the end of the first unit for the continued name. Organic names are concatenated without respect to word breaks and the first unit uses the full 67-character field.
(6) Example of continuation and sequencing for the inorganic file:

12345678901234567890123456789012345678901234567890123456789012345678901234567890

Afghanite

Sodium-calcium chloride-sulfate-carbonate silicate-aluminate NC2 000001M6 hydrate ($12^{\wedge} 4^{\wedge} 16+34^{\wedge} 1$)

M 1 000001M6
N 3000001 M 6
(7) Example of continuation and sequencing for the organic file:

12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
bis(mu#2$-Glutarato)-octacarbonyl-tetrakis(tri-n-butylphosphine)-te C1 000002M6
tra-ruthenium 2 000002M6
```

Character Numbers	FORTRAN Format	Item
*1-67	67 Al	Chemical formula (left justified)
*68	A1	```Formula approximation code Blank = normal G = editor has simplified formula or composition is approximate (e.g. for minerals)```
*69	A1	```Index code Blank = normal A = formula is absent D = omit from index X = pseudo-empirical formula index (organic only) P = permuted formula index (organic only)```
* 70	A1	```Continuation code Blank = no continuation unit C = formula will be continued on the next unit```
$* 71$	II	Sequence number $n(1,2$. .), maximum 5 Blank if only one unit of Record Type 7 exists 'n' if more than one unit of Record Type 7 exists due to continuations or to multiple formulas
72-79	8A1	Crystal Data reference and system codes (see Record Type 1)
*80	Al	7 (Record Type 7)

Notes:
(1) More than one formula may be given for a compound.
(2) The first formula given is used to calculate the empirical formula unless the empirical formula on Record Type 8 has an 'E' for character number 69.
(3) Organic chemical formulas are expressed in terms of residues, e.g. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{2} \cdot \cdot \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}$for the complex between indole-3-acetic acid and 5 -methoxytryptamine. The arrangement of symbols within a residue is that used by Chemical Abstracts: carbon atoms first, followed by hydrogen atoms (if present) and other elements in alphabetic sequence, typically $C_{x} H_{y} A_{a} B_{b} \ldots$, followed if necessary by the net charge on the residue. Postmultipliers are reserved for polymeric residues, e.g. $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{CdO}_{4}\right)_{\mathrm{n}}$.
(4) The formula is expressed by a sequence of discrete units. Each unit ends with a space. The following symbols are allowed:

1. Chemical element and number. Each element-number unit is terminated with a space. If the number of atoms of a given element is 1 , the 1 is omitted.

$$
\begin{array}{ll}
\mathrm{Ba} \mathrm{C} 2 & \mathrm{Na} 2 \mathrm{~S} \\
04
\end{array}
$$

2. Parentheses. A left parenthesis is always preceded and followed by a blank. A right parenthesis is always preceded by a blank and may be followed by a multiplier.

$$
\text { A12 (S O4) } 3 \text { Co (C O) } 6 \quad(\mathrm{~N} \mathrm{H4} \mathrm{)2} \mathrm{~S} 04
$$

3. Brackets. These are treated the same as parentheses.

$$
\text { Ni3 [Co (C N) 6]2 Mg3 [B (O H) 4]2 F (O H) S } 04
$$

4. Exclamation point. This symbol is used to indicate a center dot. It may be followed by a multiplier.

$$
\text { Rb2 } \mathrm{Zn}(\mathrm{Be} \mathrm{F4}) 2 \text { ! } 6 \mathrm{H} 2 \mathrm{O} \quad 2(\mathrm{NH} 4) 2 \mathrm{~S} \mathrm{O} \text { ! H2 O }
$$

5. Comma. A comma is used to indicate mixed-site occupancy, and is always preceded and followed by a space.

$$
(\mathrm{Cu}, \mathrm{Ge}) 2 \text { Ho K3 Sc (O , O H) } 10
$$

6. Charges. A + or - charge is always preceded by a space and may be followed by a multiplier.

$$
\text { C17 H31 N7 Ni }+2 \text { ! } 2(\text { C24 H20 B }-)!\text { C2 H3 N }
$$

(5) The variable subscripts or multipliers x and z are used.
Na2 S 04 ! x H2 O
Fe2-x S
W Cx Nx-z
(6) The polymer subscript n is used; for the calculation of the empirical formula $\mathrm{n}=1$ is assumed.

(C14 H14 Cd N2 O5) n ! 2n (H 2 O)

(7) The symbols Ln or TR may be used for unspecified rare earth elements.
(8) A formula may be continued on more than one unit (character numbers 1-67). No breaks are made between an element and its multiplier or a symbol and its multiplier. Thus zero or more blanks at the end of the formula field of the first unit should always be interpreted as one blank.

Example of continuation and sequencing:
12345678901234567890123456789012345678901234567890123456789012345678901234567890 (Mg , Na , Ca , K)2 (Mg , Al , Fe , Ti)5 (Si , Al) 8022 (O GDCl 000003H7
H)2
(Mg, Na) $2(\mathrm{Mg}, \mathrm{Al}) 5(\mathrm{Si}, \mathrm{Al}) 8022(\mathrm{OH}) 2$ GD 2 000003H7
G 3000003 H 7

Character Numbers	FORTRAN Format	Item
*1-67	67A1	Empirical formula (left justified)
*68	A1	```Approximation code for empirical formula Blank = normal G = formula is approximate or simplified```
*69	Al	Editorial code for empirical formula Blank = empirical formula was generated from the chemical formula given on Record Type 7 E = empirical formula inserted by editor
70-71	2X	Blank
72-79	8AI	Crystal Data reference and system codes (see Record Type 1)
*80	A1	8 (Record Type 8)

Notes:

(1) The empirical formula is automatically generated from the chemical formula given on Record Type 7 unless the variable subscripts x or z are present, or if the empirical formula is input by the Crystal Data editor with an 'E' for character number 69. When mixed-site occupancy is given on Record Type 7, e.g. (Mo , W), the empirical formula is based on the first element only, e.g. Mo, and a 'G' is given for character number 68.
(2) The empirical formula is consistent with Z, and uses the same conventions as the chemical formula on Record Type 7 except that only the chemical element and number units are allowed.
(3) The elements appear in alphabetical order, except for organics where C, H, D, and T appear first.

$$
\text { C12 H18 N2 03 S (organic) As3. } 72 \mathrm{Fe} 1.95 \mathrm{H} \mathrm{O9} \text { (inorganic) }
$$

Character Numbers	FORTRAN Format	Item
*1-6	6A1	Journal CODEN as given by Chemical Abstracts
*7-10	4A1	Journal volume number (right justified)
*11-15	5A1	Journal page number (right justified)
16	1X	Blank
*17-20	4 Al	Year of journal reference
21	1X	Blank
*22-67	46A1	Authors (left justified)
*68-69	2A1	```Code for reference Blank = primary journal reference CD = reference from Volume 1 or 2 of Crystal Data Determinative Tables```
*70	A1	Continuation code Blank $=$ no continuation unit $\mathrm{C}=$ authors will be continued on the next unit (character numbers 22-67)
*71	I1	Sequence number n (1, 2 . .), maximum 10 Blank if only one unit of Record Type 9 exists ' n ' if more than one unit of Record Type 9 exists due to continuations or to multiple references. For sequence number $10, \mathrm{n}=0$.
72-79	8A1	Crystal Data reference and system codes (see Record Type 1)
$* 80$	A1	9 (Record Type 9)

Notes:
(1) The database contains only the journal CODEN as given by Chemical Abstracts or as assigned by the Crystal Data editors when no published CODEN was available. A file of CODEN vs. journal name accompanies the database; names in the file are abbreviated according to the conventions of Chemical Abstracts or the Bibliographic Guide for Editors and Authors, published in 1974 by the American Chemical Society.
(2) For the primary reference, all authors' names are given, in the following format: Smith, W.G., Brown, R., Green, P.W.R.C.
(3) If an author has no initials, the name is terminated with a period, e.g. Vovan Tien., Tran-Qui-Duc.
(4) No umlauts or accent marks are indicated.
(5) Words are not split between one unit and the next. Extra blanks will, in general, be left at the end of the first unit and are to be interpreted as one blank.
(6) Example of continuation and sequencing:

12345678901234567890123456789012345678901234567890123456789012345678901234567890

Character Numbers	FORTRAN Format	Item
*1-9	2A1, F7. 2	Pearson symbol for alloys, metals, and intermetallics
*10	Al	Editorial code for Pearson symbol Blank = normal (generated from empirical formula and Z) E = Pearson symbol inserted by Crystal Data editor
11-17	7X	Blank
*18-67	50Al	Structure type (formula, name, or Strukturbericht designation)
68-71	4X	Blank
72-79	8Al	Crystal Data reference and system codes (see Record Type 1)
*80	A1	A (Record Type A)

Notes:

(1) The Pearson symbol (Pearson, 1967) consists of three parts: the crystal system code (lower case) for character number l, the lattice centering code (upper case) for character number 2, and the number of atoms per unit cell (character numbers 3-9). Numbers of atoms greater than 9999.99 are set to 9999.99. The following symbols are allowed:

Crystal System Code Centering

Anorthic	a	P	
Monoclinic	m	P, C	
Orthorhombic	\circ	P, C, F, I	
Tetragonal	t	P, I	
Hexagonal	h	P	
Rhombohedral	h	R	
Cubic	c	P, F, I	

When only the centering is unknown, the symbol '?' is used for the lattice centering code.

Note that for the rhombohedral crystal system, the number of atoms per unit cell is based on the primitive rhombohedral cell.

Examples: mP 128.00 cF 96.00 oC 16.00
(2) The structure type given will usually be the formula or name of the isostructural type material. Formulas are enclosed in back slashes (\backslash), e.g. \Cr23 C6\. Note that more than one type of designation may be given, e.g. E8(1), pyrochlore.

Character Numbers	FORTRAN Format	
*1-67	67Al	Comments
68-69	2X	Blank
*70	A1	```Continuation code Blank = no continuation unit C = comments will be continued on the next unit (character numbers 1-67)```
*71	I1	Sequence number $n(1,2$. .), maximum 20 Blank if only one unit of Record Type B ' n ' if more than one unit of Record Type B occurs due to continuations. For sequence numbers >9, the last digit only is used for ' n ' (e.g., for sequence number $14, \mathrm{n}=4$)
72-79	8 Al	Crystal Data reference and system codes (see Record Type 1)
$* 80$	A1	B (Record Type B)

Notes:
(1) The following types of information might be included: solid state form, locality for minerals, temperature of cell determination, habit, color, melting point, chemical analysis, information on optics, cleavage, twinning, and powder data, and information on sub-, super-, and pseudocells.
(2) Formulas are enclosed in back slashes ($\$), e.g. \Cu Pt C16 ! 6 H2 O
, and space groups are enclosed in back apostrophes ('), e.g. 'R-3m'.
(3) Words are not split between one unit and the next. Extra blanks will, in general, be left at the end of the first unit.
(4) Example of continuation and sequencing:

12345678901234567890123456789012345678901234567890123456789012345678901234567890

From Sar-e-Sang, Badakhshan Province, Afghanistan. Bluish, Cl 000006AB transparent. Cleavage and optical data given. Powder data C2 000006AB indexed. Chem. anal. Cell is very close to a quadruple multiple C3 000006AB of the cancrinite cell.

4000006 AB

RECORD TYPE C Matrix for initial cell \rightarrow Crystal Data cell

Character Numbers	FORTRAN Format	Item
1-4	F4. 2	Determinant of transformation matrix
5	1H	:
6	1X	Blank
7-24	3(F5.2,1X)	First row of transformation matrix
25	1H	/
26-43	3(F5.2,1X)	Second row of transformation matrix
44	1H	/
45-62	3(F5.2,1X)	Third row of transformation matrix
63-71	9 X	Blank
72-79	8A1	Crystal Data reference and system codes (see Record Type 1)
80	A1	C (Record Type C)

REGORD TYPE D Reduced cell

Character Numbers	FORTRAN Format	Item
1-8	F8. 3	a (reduced cell) in Angstroms (\AA)
9-16	F8. 3	b
17-24	F8. 3	c
25-31	F7. 2	α (reduced cell) in degrees
32-38	F7. 2	β
39-45	F7. 2	γ
46-54	F9. 2	Volume (reduced cell)
55-65	11X	Blank
66-67	I2	Reduced form number
68	A1	```Metric symmetry code Blank = normal X = metric symmetry exceeds crystal symmetry```
69-71	3 X	Blank
72-79	8A1	Crystal Data reference and system codes (see Record Type 1)
80	A1	D (Record Type D)

Note: See Appendix B for the definition of the reduced cell, the classification of reduced forms, and the assignment of reduced form numbers.

Character Numbers	FORTRAN Format	Item
1-8	F8. 3	a (Crystal Data cell) in Angstroms (\AA)
9-16	F8. 3	b
17-24	F8. 3	c
25-31	F7. 2	α (Crystal Data cell) in degrees
32-38	F7. 2	β
39-45	F7. 2	γ
46-54	F9.4	First determinative ratio
55-62	F8. 4	Second determinative ratio
63-71	9X	Blank
72-79	8 Al	Crystal Data reference and system codes (see Record Type 1)
80	A1	E (Record Type E)

Notes:

(1) The first determinative ratio is a / b for the anorthic, monoclinic, and orthorhombic crystal systems; c/a for the tetragonal, hexagonal, and rhombohedral (H axes) systems; and a for the cubic system. The second determinative ratio is c / b for the anorthic, monoclinic, and orthorhombic systems; it is blank for the tetragonal, hexagonal, rhombohedral, and cubic systems.
(2) See Appendix A for the rules defining the Crystal Data cell.

Character Numbers	FORTRAN Format	Item
*1-8	8A1	Revision date (year/month/day)
9	1X	Blank
*10-12	3 Al	Initials (revision by)
13	1X	Blank
*14-68	55A1	Information on items revised or corrected
69	1X	Blank
$\times 70$	A1	```Continuation code Blank = no continuation unit C = information is continued on the next unit (character numbers 14-68)```
* 71	I1	Sequence number n (1,2 . .), maximum 5 Blank if only one unit of Record Type J exists ' n ' if more than one unit of Record Type J exists due to continuations or to multiple revisions
72-79	8A1	Crystal Data reference and system codes (see Record Type 1)
*80	A1	J (Record Type J)

Note: This Record Type is for internal database management use only and should be ignored for all other purposes.

Character Numbers	FORTRAN Format	Item
*1-8	8A1	Entry date (inorganic) or accession date (organic) in the form year/month/day (e.g. 86/03/15)
9-10	2 X	Blank
*11-18	8A1	Keyboarding date (inorganic) or modification date (organic) (year/month/day)
19	1X	Blank
*20-22	$3 \mathrm{A1}$	Initials of keyboarder
23	1X	Blank
24-31	8A1	Processing date (year/month/day)
32-34	I3	Number of warnings
35-37	I3	Number of errors
38	1X	Blank
39-40	I2	NBS*AIDS83 revision number
41	1X	Blank
42-49	8A1	Revision date (year/month/day)
50	1X	Blank
*51-57	7A1	PDF number (reference to the Powder Diffraction File of the JCPDS--International Centre for Diffraction Data)
58	1 X	B1ank
*59-66	8A1	Alternate reference code (Cambridge code, metals code, or inorganic structural code)
67-71	5X	Blank
72-79	8A1	Crystal Data reference and system codes (see Record Type 1)
*80	A1	K (Record Type K)

Crystal Data Determinative Tables, third edition, Vol. 1 (1972), Vol. 2 (1973), Vols. 3-4 (1978), Vols. 5-6 (1983). U. S. Department of Commerce, National Bureau of Standards, and the JCPDS--International Centre for Diffraction Data, Swarthmore, PA.
Deslattes, R. D., Henins, A., Bowman, H. A., Schoonover, R. M., Carroll, C. L., Barnes, I. L., Machlan, L. A., Moore, L. J., and Shields, W. R. (1974). Phys. Rev. Lett. 33, 463.
Donnay, J. D. H. (1943). Amer. Mineral. 28, 313; 28, 470.
Donnay, J. D. H. and Kennard, O. (1964). Acta Crystallogr., 17, 1337.
Donnay, J. D. H. and Ondik, H. M. (1972). Crystal Data Determinative Tables, third edition, Vol. 1 (1972), Vol. 2 (1973). U. S. Department of Commerce, National Bureau of Standards, and the Joint Committee on Powder Diffraction Standards, Swarthmore, PA.
Gruber, B. (1973). Acta Crystallogr. Sect. A, 29, 433.
Himes, V. L. and Mighell, A. D. (1985). NBS*LATTICE: A Program to Analyze Lattice Relationships. Nat. Bur. Stand. (U.S.) Tech. Note 1214.
Holden, N. E. and Martin, R. L., IUPAC Commission on Atomic Weights and Isotopic Abundances (1984). Pure Appl. Chem., 56, 653.
International Tables for X-ray Crystallography (1969). Vol. I, third edition. Kynoch Press, Birmingham, England.
IUPAC Commission on Atomic Weights (1979). Pure Appl. Chem. 51, 407.
Kennard, O., Watson, D. G., Allen, F. H., Bellard, S. A. (1984). Molecular Structures and Dimensions, Vol. 15. D. Reidel Publishing Company, Dordrecht, The Netherlands.
Mighell, A. D. (1976). J. Appl. Crystallogr., 9, 491.
Mighe11, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS*AIDS80: A FORTRAN Program for Crystallographic Data Evaluation. Nat. Bur. Stand. (U.S.) Tech. Note 1141.

Mighe11, A. D., and Rodgers, J. R. (1980). Acta Crystallogr. Sect. A, 36, 321. Nigg1i, P. (1928). Handbuch der Experimentalphysik, Vol. 7, Part 1. Akademische Verlagsgesellschaft, Leipzig.
Pearson, W. B. (1967). Handbook of Lattice Spacings and Structures of Metals, Vol. 2. Pergamon Press.
Santoro, A. and Mighell, A. D. (1970). Acta Crystallogr. Sect. A, 26, 124.
Santoro, A. and Mighell, A. D. (1972). Acta Crystallogr. Sect. A, $28,284$.

APPENDIX A

CHOICE AND ORIENTATION OF THE CRYSTAL DATA CELL

General Rules-- The cell chosen to define the lattice should obey the following rules (Donnay, 1943), to be applied in the sequence given:
(1) Whenever possible the cell edges should coincide with symmetry directions ${ }^{1}$ of the lattice and the cell should have the same symmetry as the lattice.
(2) Symmetry-equivalent edges should be chosen, if possible.
(3) The cell should be the smallest possible cell that obeys conditions (1) and (2).
(4) Cell edges that cannot be symmetry directions should be the shortest possible lattice translations.
(5) A cell edge parallel to a single 2 -fold axis of the lattice is called b. A cell edge parallel to a principal unique axis ($n \geq 3$) is called c. Cell edges not governed. by the lattice symmetry should obey the inequalities $c<a<b$.
(6) The axes of coordinates should be directed, along the cell edges, so as to form a right-handed system with nonacute interedge angles α and β. (Angle γ can vary from 60° to 120°, both values included; angles α and β cannot exceed 120°.

These rules hold for all crystal systems, whenever applicable.
In the anorthic (triclinic) system Rule 1 does not apply as symmetry directions do not exist. The point-group symmetry of the lattice is $\overline{1}$; every cell is centrosymmetric. Rule 2 does not apply. The cell chosen should be primitive (P) to comply with Rule 3 . Its edges must be the shortest three noncoplanar lattice translations (Rule 4) that define the reduced cell (Niggli, 1928; Santoro and Mighell, 1970). The cell edges are labeled so as to have $c<a<b$ (Rule 5) and oriented so tht the angles α and β are nonacute (Rule 6).

The point-group symmetry of a monoclinic lattice is $2 / m$. There is one symmetry direction, which (Rule 1) fixes one cell edge, conventionally labeled b. Rule 2 does not apply. The shortest two translations in the net perpendicular to b, together with b, define a cell that obeys Rule 3. Take angle β nonacute (Rule 4) and $c<a$ (Rule 5). The resulting cell may be primitive (P) or centered (C, A, or I).

[^1]The point-group symmetry of an orthorhombic lattice is $2 / m 2 / m 2 / m$. The three symmetry directions fix the three cell edges (Rule 1). Rule 2 does not apply. The cell, in accordance with Rule 3, is the smallest possible one that obeys the first rule. All interedge angles are 90°, fixed by symmetry, so that Rule 4 does not apply. Take $c<a<b$ (Rule 5). The resulting cell may be primitive (P), one-face centered (A, B, or C), body centered (I), or all-face centered (F). Note also that point group mm2 may have to be oriented as 2 mm or m2m.

The point-group symmetry of the tetragonal lattice is $4 / m 2 / m 2 / m$. Of the five symmetry directions, one is perpendicular to a plane containing the other four. This unique direction must be taken as a cell edge (Rule 1); it is conventionally labeled c. The remaining cell edges must (Rules 1 and 2) coincide with two equivalent 2 -fold axes, either those of the first or those of the second kind, so that all angles are right angles by symmetry. The axes of the first kind must be chosen, as they lead to the smaller cell (Rule 3). Rules 4 and 5 do not apply. The resulting cell may be primitive (P) or body-centered (I).

The point-group symmetry of the hexagonal lattice is $6 / m 2 / m 2 / m$. Of the seven symmetry directions, one is perpendicular to a plane containing the other six. This unique direction must be taken as a cell edge (Rule 1); it is conventionally labeled c. The remaining cell eiges must (Rules 1 and 2) coincide with two equivalent 2 -fold axes, of either the first or second kind. Two 2 -fold axes of the first kind are chosen, as they give the smaller cell (Rule 3). Angles α and β, fixed by symmetry, are equal to 90°; angle γ is taken equal to 120° in preference to 60°. Rules 4 and 5 do not apply. The resulting cell is primitive (P , formerly designated C).

The rhombohedral lattice, which has point-group symmetry $\overline{3} 2 / m$, is here described by a cell referred to hexagonal axes (Bravais axes). Of the four symmetry directions, one is perpendicular to a plane containing the other three. This unique direction must be taken as a cell edge (Rule 1); it is conventionally labeled c. The remaining cell edges must (Rules 1 and 2) coincide with two of the three 2 -fold axes, so that all angles are fixed by symmetry ($\gamma=120^{\circ}, \alpha=\beta=90^{\circ}$). The resulting cell satisfies Rule 3. Rules 4 and 5 do not apply. The R cell is a triple cell; the additional nodes are chosen at $1 / 3 \quad 2 / 3 \quad 2 / 3$ and $2 / 3 \quad 1 / 3 \quad 1 / 3$.

The point-group symmetry of a cubic lattice is $4 / m \overline{3} 2 / m$. The three 4 -fold axes are the symmetry directions taken as edges of the cubic cell. The cell may be primitive (P), body centered (I), or face centered (F).

REDUCED CELLS AND REDUCED FORMS

The reduced cell (Niggli, 1928) is defined as a unique, primitive cell that is based on the three shortest noncoplanar vectors of the lattice and satisfies a specified set of mathematical conditions. These conditions are given in Table l. The main conditions assure that one has a cell based on the three shortest lattice translations, while the special conditions assure that the cell is unique. The user should be aware that not all reduction algorithms currently in use satisfy the special conditions given in Table l. It has been shown that in some lattices more than one cell is based on the three shortest lattice translations (Santoro and Mighell, 1970); Gruber (1973) has shown that at most five different cells of this type may exist in the same lattice. Techniques to obtain the reduced cell from an unreduced cell that is based on the three shortest translations are given in Himes and Mighell (1985).

The reduced form is defined by the vector dot products of the reduced cell: $a \cdot a b \cdot b c \cdot c / b \cdot c a \cdot c a \cdot b$. From the reduced form, the reduced form type (1-44) may be assigned. Table 2 gives the conditions for the 44 reduced forms, as well as the matrices relating each reduced form to a corresponding conventional cell of the Bravais lattice. In order for the reduced form type to be properly assigned, it is essential that the experimental cell of the lattice be determined as accurately as possible. Also, if the reduced form exhibits more specialization than is required to define the lattice type, it may signify that a subcell of the lattice has been determined or that the material is twinned.

Table 1. Conditions for a reduced cell

The reduced cell is specified by three noncoplanar vectors a, b, and c. To be reduced, the cell must be in a normal representation (type I or II) and all the main and special conditions for the given cell type must be satisfied. The main conditions are used to establish that a cell is based on the three shortest lattice translations. The special conditions are used to select a unique cell when two or more cells in the lattice have the same numerical values for the cell edges.
A. Positive reduced form, type I cell, all angles $<90^{\circ}$

Main conditions: $\quad \mathrm{a} \cdot \mathrm{a} \leq \mathrm{b} \cdot \mathrm{b} \leq \mathrm{c} \cdot \mathrm{c} ; \mathrm{b} \cdot \mathrm{c} \leq \frac{1}{2} \mathrm{~b} \cdot \mathrm{~b}$;
$a \cdot c \leq \frac{1}{2} a \cdot a ; a \cdot b \leq \frac{1}{2} a \cdot a$

Special conditions:

(a) if $a \cdot a=b \cdot b$	then $b \cdot c \leq a \cdot c$
(b) if $b \cdot b=c \cdot c$	then $a \cdot c \leq a \cdot b$
(c) if $b \cdot c=3 / 2 b \cdot b$	then $a \cdot b \leq 2 a \cdot c$
(d) if $a \cdot c=1 / 2 a \cdot a$	then $a \cdot b \leq 2 b \cdot c$
(e) if $a \cdot b=3 / 2 a \cdot a$	then $a \cdot c \leq 2 b \cdot c$

B. Negative reduced form, type II cell, all angles $\geq 90^{\circ}$

Main conditions: (a) $\mathrm{a} \cdot \mathrm{a} \leq \mathrm{b} \cdot \mathrm{b} \leq \mathrm{c} \cdot \mathrm{c} ; \quad|\mathrm{b} \cdot \mathrm{c}| \leq \frac{1 / 2}{2} \mathrm{~b} \cdot \mathrm{~b}$; $|a \cdot c| \leq \frac{1 / 2}{} a \cdot a ; \quad|a \cdot b| \leq \frac{1}{2} a \cdot a$
(b) $(|b \cdot c|+|a \cdot c|+|a \cdot b|) \leq \frac{1 / 2}{(a \cdot a+b \cdot b)}$

Special conditions: (a) if $a \cdot a=b \cdot b \quad$ then $|b \cdot c| \leq|a \cdot c|$
(b) if $b \cdot b=c \cdot c \quad$ then $|a \cdot c| \leq|a \cdot b|$
(c) if $|b \cdot c|=\frac{1}{2} b \cdot b \quad$ then $a \cdot b=0$
(d) if $|a \cdot c|=\frac{1}{2} a \cdot a$ then $a \cdot b=0$
(e) if $|a \cdot b|=\frac{1}{2} a \cdot a \quad$ then $a \cdot c=0$
(f) if $(|b \cdot c|+|a \cdot c|+|a \cdot b|)=\frac{1 / 2}{(a \cdot a+b \cdot b)}$ then $a \cdot a \leq 2|a \cdot c|+|a \cdot b|$

Table 2. Metric classification of the 44 reduced forms*

Reduced Form No.	Reduced Form Matrix				Reduced Form Type	Bravais Lattice	Cell Transformation Reduced \rightarrow Conventional
	First Row	Second Row					
	$\mathbf{a} \cdot \mathrm{ab} \mathrm{b}^{\text {b }} \mathbf{c} \cdot \mathbf{c}$	b.c	a.c	a ${ }^{\text {b }}$			
$a=b=c$ 1	$\mathrm{a} \cdot \mathrm{a} \mathrm{a} \cdot \mathrm{a} \mathbf{a} \cdot \mathrm{a}$	$\frac{a \cdot a}{2}$	$\frac{a \cdot a}{2}$	$\frac{9 \cdot a}{2}$	+	Cubic F	1111/111/1111
2		b. c	b.c	b.c	+	Rhombohedral hR	110/101/191
3	a.a a.a a.a	0	0	0	-	Cubic $\quad \mathrm{P}$	100/010/001
4	a•a a.a a ${ }^{\text {a }}$	$-\|b \cdot c\|$	$-\|b \cdot c\|$	$-\|b \cdot c\|$	-	Rhombohedral hR	110/101/1̄1 1
5	$\mathbf{a} \cdot \mathrm{a} \mathbf{a} \cdot \mathrm{a} \mathbf{a} \cdot \mathrm{a}$	$-\frac{a \cdot a}{3}$	$-\frac{a \cdot a}{3}$	$-\frac{a \cdot a}{3}$	-	Cubic 1	101/110/011
6	a.a a.a a.a	$\frac{-a \cdot a+\|a \cdot b\|}{2}$	$\frac{-a \cdot a+\|a \cdot b\|}{2}$	$-\|a \cdot b\|$	-	Tetragonal	011/101/110
7	$\mathrm{a} \cdot \mathrm{a} \mathrm{a} \cdot \mathrm{a} \mathrm{a} \cdot \mathrm{a}$	$-\|b \cdot c\|$	$\frac{-a \cdot a+\|b \cdot c\|}{2}$	$\frac{-a \cdot a+\|b \cdot c\|}{2}$	-	Tetragonal 1	101/110/011
8	a.a a.a a.a	$-\|b \cdot c\|$	$-\|a \cdot c\|$	$-(\|a \cdot a\|-\|b \cdot c\|-\|a \cdot c\|)$	-	Orthorhombic 1	110/101/010
$\begin{gathered} a=b \\ 9 \end{gathered}$		$\frac{9 \cdot a}{2}$	$\frac{9 \cdot a}{2}$	$\frac{a \cdot a}{2}$	+	Rhombohedral hR	100/1̄10/1̄13
10	$\mathrm{a} \cdot \mathrm{a} \mathbf{a} \cdot \mathrm{ac} \mathrm{c}^{\text {c }}$	$b \cdot \mathrm{c}$	b.c	a b	+	Monoclinic C**	110/1 $10 / 00 \overline{1}$
11	a.a a a coc	0	0	0	-	Tetragonal P	100/010/001
12	$\mathrm{a} \cdot \mathrm{a} a \cdot \mathrm{ac} \cdot \mathrm{c}$	0	0	$-\frac{a \cdot a}{2}$	-	Hexagonal P	100/010/001
13	a'a a'a c.c	0	0	$-\|a \cdot b\|$	-	Orthorhombic C	110/1̄10/001
14	$\mathrm{a} \cdot \mathrm{a} \mathbf{a} \cdot \mathrm{ac} \mathbf{c} \cdot \mathrm{c}$	$-\|b \cdot c\|$	$-\|b \cdot c\|$	$-\|a \cdot b\|$	-	Monoclinic C**	110/110/001
15	$\mathrm{a} \cdot \mathrm{a} \mathrm{a} \cdot \mathrm{a} \mathbf{c} \cdot \mathrm{c}$	$-\frac{a \cdot a}{2}$	$-\frac{a \cdot a}{2}$	0	-	Tetragonal 1	100/010/112
16	$a \cdot a \cdot a \cdot a c \cdot c$	$-\|b \cdot c\|$	$-\|b \cdot c\|$	$-(a \cdot a-2\|b \cdot c\|)$	-	Orthorhombic F	110/110/112
17	a.a a.accc	$-\|b \cdot c\|$	$-\|a \cdot c\|$	- $(\mathbf{a} \cdot \mathrm{a}-\|\mathrm{b} \cdot \mathrm{c}\|-\|a \cdot c\|)$	-	Monoclinic ${ }^{\text {+ }}$	$\overline{101} / \overline{1} 10 / 011$
$\begin{aligned} & b=c \\ & 18 \end{aligned}$	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{b} \cdot \mathbf{b}$	$\frac{9 \cdot a}{4}$	$\frac{9 \cdot a}{2}$	$\frac{a \cdot a}{2}$	+	Tetragonal I	0ī1/1六/100
19	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{b} \cdot \mathbf{b}$	b.c	$\frac{a \cdot a}{2}$	$\frac{a \cdot a}{2}$	+	Orthorhombic I	100/0̄11/111
20	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{b} \cdot \mathbf{b}$	b.c	a.c	${ }^{0} \cdot \mathbf{c}$	+	Monoclinic ct	011/011]/100
21	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{b} \cdot \mathbf{b}$	0	0	0	-	Tetragonal P	010/001/100
22	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{b} \cdot \mathbf{b}$	$-\frac{b \cdot b}{2}$	0	0	-	Hexagonal P	010/001/100
23	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{b} \cdot \mathbf{b}$	$-\|b \cdot c\|$	0	0	-	Orthorhombic C	011/0̄̄1/100
24	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{b} \cdot \mathbf{b}$	$-\frac{b \cdot b-\frac{a \cdot a}{3}}{2}$	$-\frac{a \cdot a}{3}$	$-\frac{a \cdot a}{3}$	-	Rhombohedral hR	121/011/100
25	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{b} \cdot \mathbf{b}$	$-\|b \cdot c\|$	$-\|a \cdot c\|$	$-\|a \cdot c\|$	-	Monoclinic ${ }^{\text {c }}$	011/0ī1/100

Reduced Form No.	Reduced Form Matrix				Reduced Form Type	Bravais Lattice	Cell Transformation Reduced \rightarrow Conventional
	First Row ${ }^{\text {+t+ }}$	Second Row					
	a•a b•b c.c	b.c	$\mathrm{a}^{\circ} \mathrm{c}$	$\mathbf{a} \cdot \mathbf{b}$			
$\begin{gathered} a<b<c \\ 26 \end{gathered}$	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	$\frac{a \cdot a}{4}$	$\frac{a \cdot a}{2}$	$\frac{a \cdot a}{2}$	+	Orthorhombic F	100/120/102
27	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	b-c	$\frac{a \cdot a}{2}$	$\frac{a \cdot a}{2}$	+	Monoclinic (***	011/100/17̄
28	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	$\frac{a \cdot b}{2}$	$\frac{a \cdot a}{2}$	$\mathbf{a} \cdot \mathbf{b}$	+	Monoclinic C	$\overline{100 / 102 / 010}$
29	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	$\frac{a \cdot c}{2}$	$a \cdot c$	$\frac{a \cdot a}{2}$	+	Monoclinic C	100/120 0 /00
30	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	$\frac{b \cdot b}{2}$	$\frac{a \cdot b}{2}$	$\mathbf{a} \cdot \mathbf{b}$	+	Monoclinic C	010/01 $/ \overline{1} 100$
31	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	$b \cdot \mathrm{c}$	$\mathrm{a} \cdot \mathrm{c}$	$a \cdot b$	+	Triclinic $\quad \mathbf{P}$	100/010/001
32	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	0	0	0	-	Orthorhombic \mathbf{P}	100/010/001
33	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	0	$-\|a \cdot c\|$	0	-	Monoclinic P	100/010/001
34	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	0	0	$-\|a \cdot b\|$	-	Monoclinic P	$\overline{100 / 001 / 010 ~}$
35	$a \cdot a b \cdot b c \cdot c$	$-\|b \cdot c\|$	0	0	-	Monoclinic P	0 $\overline{10} / \overline{1} 00 / 00 \overline{1}$
36	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	0	$-\frac{a \cdot a}{2}$	0	-	Orthorhombic C	100/102/010
37	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	$-\|b \cdot c\|$	$-\frac{a \cdot a}{2}$	0	-	Monoclinic C*	102/100/010
38	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	0	0	$-\frac{a \cdot a}{2}$	-	Orthorhombic C	100/120/00
39	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	$-\|b \cdot c\|$	0	$-\frac{a \cdot a}{2}$	-	Monoclinic C**	$\overline{120} \overline{100 / 00 \overline{1}}$
40	$a \cdot a b \cdot b c \cdot c$	$-\frac{b \cdot b}{2}$	0	0	-	Orthorhombic C	010/012/100
41	$a \cdot a b \cdot b c \cdot c$	$-\frac{b \cdot b}{2}$	$-\|a \cdot c\|$	0	-	Monoclinic C+	012/010/100
42	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	$-\frac{b \cdot b}{2}$	$-\frac{a \cdot a}{2}$	0	-	Orthorhombic I	100/010/112
43	$\mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}$	$-\frac{b \cdot b-\|a \cdot b\|}{2}$	$-\frac{a \cdot a-\|a \cdot b\|}{2}$	$-\|a \cdot b\|$	-	Monoclinic I	$\overline{100 / \overline{1} \overline{2} / 0 \overline{10} 0}$
44	$a \cdot a b \cdot b \quad c \cdot c$	$-\|b \cdot c\|$	$-\|a \cdot c\|$	$-\|a \cdot b\|$	-	Triclinic $\quad \mathrm{P}$	100/010/001

$+\quad$ If $a \cdot a<4|a \cdot c|)$

* If $\mathbf{b} \cdot \mathbf{b}<4|b \cdot c|\}$ Premultiply Table Matrix by 001/010/101 (I centered)
** If $c \cdot c<4|b \cdot c|$)
$\left.\begin{array}{l}t+\text { If } 3 a \cdot a<c \cdot c+2|a \cdot c| \\ * * * \text { If } 3 b \cdot b<c \cdot c+2|b \cdot c|\end{array}\right\}$ Premultiply Table Matrix by $\overline{10} \overline{1} / 010 / 100$ (C centered)
t†t No required relationships between symmetrical scalars for reduced forms 26-44.
*Reprinted from Mighell and Rodgers (1980). Based on Table 5.1.3.1 of the International Tables for X-ray Crystallography (1969) and published revisions.

APPENDIX C

SPACE GROUPS AND ASPECTS

The following tables give the space groups and diffraction aspects, along with the space group and aspect numbers, that appear in the NBS Crystal Data database. Although additional orientations may be used on Record Type 3 for the authors' space group or aspect, only those listed in these tables (in addition to cell centering symbols) will appear on Record Type 4 for the Crystal Data space group or aspect. If no space group or aspect is given, or if the orientation of the authors' space group or aspect is unusual, a space group number of 0 is assigned.

Part I (Space Groups)

The space group numbers correspond to those given in the International Tables for X-ray Crystallography (1969). The assigned number is followed by an orientation code when more than one orientation is permitted for a given space group in the monoclinic or orthorhombic crystal systems. These codes are A, B, and C for the monoclinic system (b-unique); D, E, and F for the monoclinic system (c-unique, used on Record Type 3 only); and A, B, C, D, E, and F for the orthorhombic system.

Part II (Aspects)

The diffraction aspect is given when the space group is not uniquely defined. The diffraction aspects for each Laue class have been given by Donnay and Kennard (1964) and are reprinted in Supplement II of the third edition of Crystal Data, Volumes 1 and 2 (Donnay and Ondik, 1972, 1973). The aspect number, preceded by an asterisk (*), corresponds to the number of the highest symmetry space group that is consistent with the diffraction aspect. The aspects for enantiomorphic space groups (e.g. $\mathrm{P}_{4} 1^{2}{ }^{2} 2$ and $\mathrm{P}_{4}{ }_{3}{ }^{2}{ }^{2}$) are assigned the number corresponding to the lower-numbered space group of the pair. The orientation codes for the monoclinic and orthorhombic systems are the same as those assigned to the space groups.

	Anorthic (Triclinic) System						
Space Group No.	Aspect \qquad No.			Space Group	Symbols		
1	2	P1					
2	2	P $\overline{1}$					
			Monoc	Inic System			
Space Group No.	Aspect \qquad	A*		Space			F
3	10	P2			P2		
4	11	P2 1			$\mathrm{P}^{1} 1$		
5	12	C2	A2	I2	B2	A2	I2
6	10	Pm			Pm		
7	13	Pc	Pa	Pn	Pb	Pa	Pn
8	12	Cm	Am	Im	Bm	Am	Im
9	15	Cc	Aa	Ia	Bb	Aa	Ia
10	10	P2/m			P2/m		
11	11	$\mathrm{P} 21 / \mathrm{m}$			$\mathrm{P} 21 / \mathrm{m}$		
12	12	C2/m	A2/m	I2/m	B2/m	A2/m	I2/m
13	13	P2/c	P2/a	$\mathrm{P} 2 / \mathrm{n}$	$\mathrm{P} 2 / \mathrm{b}$	P2/a	$\mathrm{P} 2 / \mathrm{n}$
14		$\mathrm{P} 21 / \mathrm{c}$	$\mathrm{P} 21 / \mathrm{a}$	$\mathrm{P} 21 / \mathrm{n}$	$\mathrm{P} 21 / \mathrm{b}$	P2 1 /a	$\mathrm{P} 21 / \mathrm{n}$
15	15	C2/c	A2/a	I2/a	B2/b	A2/a	I2/a

[^2]

Space Group	Aspect	A	B	$\begin{gathered} \text { Space Grou } \\ \text { C } \\ \hline \end{gathered}$	Symbols	E	F
No.	No.				D		
62	62	Pnma	Pmnb	Pbnm	Pmen	Pcmn	Pnam
63	63	Cmem	Bbmm	Amam	Amma	Ccmm	Bmmb
64	64	Cmea	Abam	Ccma	Abma	Bmab	Bbam
65	65	Cmmm	Bmmm	Ammm			
66	66	Cccm	Amaa	Bbmb			
67	67	Cmma	Abmm	Bmam			
68		Ccca	Bbab	Abaa			
69	69	Fmmm					
70		Fddd					
71	71	Immm					
72	72	Ibam	Imaa	Ibma			
73		Ibca					
74	74	Imma	Ibmm	Imam			
Tetragonal System							
Space		Space			Space		Space
Group	Aspect	Group			Group	Aspect	Group
No.	No.	Symbols			No.	No.	Symbols
75	83	P4			76	76	P_{1}
77	84	$\mathrm{P}_{4} 2$			78	76	P43
79	87	I4			80		I41
81	83	P/ $\overline{4}$			82	87	I $\overline{4}$
83	83	P4/m			84	84	$\mathrm{P} 42 / \mathrm{m}$
85		P4/n			86		$\mathrm{P}_{4} / \mathrm{n}$
87	87	I4/m			88		I41/a

Space Group \qquad		Space	Space		Space
	Aspect	Group	Group	Aspect	Group
	No.	Symbols	No.	No.	Symbols
89	123	P422	90	113	P 4212
91	91	$\mathrm{P}_{4} 122$	92	92	P4 $1^{2} 12$
93		$\mathrm{P}_{4} 22$	94		$\mathrm{P} 42^{2} 1^{2}$
95	91	P 4322	96	92	$\mathrm{P} 43^{2} 1^{2}$
97	139	I422	98		14122
99	123	P4mm	100	127	P4bm
101	132	P 42 cm	102	136	P 42 nm
103	124	P4cc	104	128	P4nc
105	131	P 42 mc	106	135	P 42 bc
107	139	I4mm	108	140	14 cm
109	122	I4 1 md	110		I4 ${ }^{\text {cd }}$
111	123	P $\overline{4} 2 \mathrm{~m}$	112	131	$\mathrm{P} \overline{4} 2 \mathrm{c}$
113	113	$\mathrm{P} \overline{4} 21 \mathrm{~m}$	114		$\mathrm{P} \overline{4} 21 \mathrm{c}$
115	123	P 4 m 2	116	132	P4¢ 2
117	127	$\mathrm{P} \overline{4}^{\text {b }} 2$	118	136	$\mathrm{P} \overline{4} \mathrm{n} 2$
119	139	I $\overline{4} \mathrm{~m} 2$	120	140	I $\overline{4} \mathrm{c} 2$
121	139	I42m	122	122	I $\overline{4} 2 \mathrm{~d}$
123	123	$\mathrm{P} 4 / \mathrm{mmm}$	124	124	$\mathrm{P} 4 / \mathrm{mcc}$
125		$\mathrm{P} 4 / \mathrm{nbm}$	126		$\mathrm{P} 4 / \mathrm{nnc}$
127	127	$\mathrm{P} 4 / \mathrm{mbm}$	128	128	P4/mnc
129		$\mathrm{P} 4 / \mathrm{nmm}$	130		$\mathrm{P} 4 / \mathrm{ncc}$
131	131	$\mathrm{P}_{4} / \mathrm{mmc}$	132	132	$\mathrm{P}_{4} / \mathrm{mcm}$
133		$\mathrm{P} 42 / \mathrm{nbc}$	134		$\mathrm{P}_{4} / \mathrm{nnm}$

Space		Space	Space		Space
Group	Aspect	Group	Group	Aspect	Group
No.	No.	Symbols	No.	No.	Symbols
135	135	$\mathrm{P}_{2} / \mathrm{mbc}$	136	136	$\mathrm{P}_{2} / \mathrm{mnm}$
137		$\mathrm{P}_{4} /$ /nmc	138		$\mathrm{P}_{4} / \mathrm{ncm}$
139	139	14/mmm	140	140	I $4 / \mathrm{mcm}$
141		I4 1 /amd	142		I41/acd

Hexagonal and Rhombohedral Systems

Space		Space	Space		Space
Group	Aspect	Group	Group	Aspect	Group
No.	No.	Symbols	No.	No.	Symbols
143	147	P3	144	144	$\mathrm{P}^{1} 1$
145	144	P3 2	146	148	R3
147	147	$\mathrm{P} \overline{3}$	148	148	$\mathrm{R} \overline{3}$
149	162	P312	150	164	P321
151	151	$\mathrm{P}_{1} 12$	152	152	P3 ${ }_{1} 21$
153	151	$\mathrm{P}_{2} 12$	154	152	$\mathrm{P}_{2} 21$
155	166	R32	156	164	P3m1
157	162	P31m	158	165	P3c1
159	163	P31c	160	166	R3m
161	167	R3c	162	162	P $\overline{3} 1 \mathrm{~m}$
163	163	P $\overline{3} 1 \mathrm{c}$	164	164	P $\overline{3} \mathrm{~m} 1$
165	165	$\mathrm{P} \overline{3} \mathrm{Cl}$	166	166	$\mathrm{R} \overline{3} \mathrm{~m}$
167	167	R $\overline{3} \mathrm{c}$	168	175	P6
169	169	$\mathrm{P}^{1} 1$	170	169	P65
171	171	P_{2}	172	171	P64

Space Group No.	Aspect No.	Space Group Symbols	Space Group No.	Space 173	176

Cubic System

Space		Space	Space		Space
Group	Aspect	Group	Group	Aspect	Group
No.	No.	Symbo1s	No.	No.	Symbols
195	200	P23	196	202	F23
197	204	I23	198		P 213
199	204	1213	200	200	Pm3
201		Pn3	202	202	Fm3
203		Fd3	204	204	Im3
205		Pa3	206		Ia 3
207	221	P432	208		$\mathrm{P}_{4} 232$
209	225	F432	210		$\mathrm{F}^{1} 132$
211	229	I432	212	212	P43 32

Cubic System (cont.)

Space		Space	Space		Space
Group	Aspect	Group	Group	Aspect	Group
No.	No.	Symbols	No.	No.	Symbols
213	212	$\mathrm{P}_{4} 132$	214		$\mathrm{I}_{1} 132$
215	221	P $\overline{4} 3 \mathrm{~m}$	216	225	F43m
217	229	I $\overline{4} 3 \mathrm{~m}$	218	223	P $\overline{4} 3 \mathrm{n}$
219	226	F43c	220		I $\overline{4} 3 \mathrm{~d}$
221	221	Pm3m	222		Pn3n
223	223	Pm3n	224		Pn3m
225	225	Fm3m	226	226	Fm3c
227		Fd3m	228		Fd3c
229	229	Im3m	230		Ia3d

Aspect Number Space Groups (Space Group Numbers)
$\mathrm{P} \div, \overline{1} \quad 2 \quad \mathrm{P} \overline{\mathrm{l}}(2), \mathrm{P} 1$ (1)

Monoclinic System

Aspect Number Space Groups (Space Group Numbers)

$\mathrm{P} * / *$	10	$\mathrm{P} 2 / \mathrm{m}(10), \mathrm{P} 2(3), \mathrm{Pm}(6)$
$\mathrm{P} * / *$	$10 \mathrm{D} *$	$\mathrm{P} 2 / \mathrm{m}(10 \mathrm{D}), \mathrm{P} 2(3 \mathrm{D}), \mathrm{Pm}(6 \mathrm{D}$

$\mathrm{P} 2_{1} / * \quad 11 \quad \mathrm{P} 2_{1} / \mathrm{m}$ (11), $\mathrm{P} 2_{1}$ (4)
$\mathrm{P} 2_{1} / * \quad 11 \mathrm{D} \quad \mathrm{P} 2_{1} / \mathrm{m}(11 \mathrm{D}), \mathrm{P} 2_{1}$ (4D)
$\mathrm{C} * / * \quad 12 \mathrm{~A} \quad \mathrm{C} 2 / \mathrm{m}(12 \mathrm{~A}), \mathrm{C} 2(5 \mathrm{~A}), \mathrm{Cm}(8 \mathrm{~A})$
$A^{*} / \dot{*} \quad 12 B \quad A 2 / m(12 B), A 2(5 B), A m(8 B)$
$\mathrm{I} * / * \quad 12 \mathrm{C} \quad \mathrm{I} 2 / \mathrm{m}(12 \mathrm{C}), \mathrm{I} 2(5 \mathrm{C}), \operatorname{Im}(8 \mathrm{C})$
$\mathrm{B} * / * \quad 12 \mathrm{D} \quad \mathrm{B} 2 / \mathrm{m}(12 \mathrm{D}), \mathrm{B} 2(5 \mathrm{D}), \mathrm{Bm}(8 \mathrm{D})$
$A * / * \quad 12 E \quad A 2 / m(12 E), A 2(5 E), A m(8 E)$
$\mathrm{I} * / * \quad 12 \mathrm{~F} \quad \mathrm{I} 2 / \mathrm{m}(12 \mathrm{~F}), \mathrm{I} 2(5 \mathrm{~F}), \operatorname{Im}(8 \mathrm{~F})$
$\mathrm{P} * / \mathrm{C} \quad 13 \mathrm{~A} \quad \mathrm{P} 2 / \mathrm{C}(13 \mathrm{~A}), \mathrm{Pc}(7 \mathrm{~A})$
$\mathrm{P} * / \mathrm{a} \quad 13 \mathrm{~B} \quad \mathrm{P} 2 / \mathrm{a}(13 \mathrm{~B}), \mathrm{Pa}(7 \mathrm{~B})$
$\mathrm{P} * / \mathrm{n} \quad 13 \mathrm{C} \quad \mathrm{P} 2 / \mathrm{n}(13 \mathrm{C}), \mathrm{Pn}(7 \mathrm{C})$
$\mathrm{P} \dot{\mathrm{F}} / \mathrm{b} \quad 13 \mathrm{D} \quad \mathrm{P} 2 / \mathrm{b}(13 \mathrm{D}), \mathrm{Pb}$ (7D)
$P * / a \quad 13 E \quad P 2 / a(13 E), P a(7 E)$
$\mathrm{P} \dot{*} / \mathrm{n} \quad 13 \mathrm{~F} \quad \mathrm{P} 2 / \mathrm{n}(13 \mathrm{~F}), \mathrm{Pn}(7 \mathrm{~F})$
*Orientation code. For the monoclinic system, codes A, B, and C are for b-unique, and codes D, E, and F are for c-unique.

Aspect Number Space Groups (Space Group Numbers)

$\mathrm{C} * / \mathrm{c}$	15 A	$\mathrm{C} 2 / \mathrm{c}$ (15A), Cc (9A)
$\mathrm{A} * / \mathrm{a}$	15 B	$\mathrm{~A} 2 / \mathrm{a}$ (15B), Aa (9B)
$\mathrm{I} * / \mathrm{a}$	15 C	I2/a (15C), Ia (9C)
$\mathrm{B} * / \mathrm{b}$	15 D	$\mathrm{B} 2 / \mathrm{b}$ (15D), Bb (9D)
$\mathrm{A} * / \mathrm{a}$	15 E	$\mathrm{A} 2 / \mathrm{a}$ (15E), Aa (9E)
$\mathrm{I} * / \mathrm{a}$	15 F	I2/a (15F), Ia (9F)

Orthorhombic System
Aspect Number Space Groups (Space Group Numbers)

| Aspect | Number | Space Groups (Space Group Numbers) |
| :--- | :--- | :--- | :--- |
| I***a | 74 A | Imma (74A), Im2a (46B), I2ma (46F) |
| Ib** | 74 B | Ibmm (74B), Ibm2 (46C), Ib2m (46E) |
| $I * a *$ | 74 C | Imam (74C), Ima2 (46A), I2am (46D) |

Tetragonal System

Aspect Number Space Groups (Space Group Numbers)

$\mathrm{P} 41,3$	76	P41 (76), P43 (78)
P4/*	83	$\mathrm{P} 4 / \mathrm{m}$ (83), P 4 (75) , $\mathrm{P} \overline{4}$ (81)
$\mathrm{P} 42 /$ *	84	$\mathrm{P} 42 / \mathrm{m}$ (84) , $\mathrm{P}_{4} 2$ (77)
I4/x	87	$\mathrm{I} 4 / \mathrm{m}$ (87), I 4 (79) , I $\overline{4}$ (82)
$\mathrm{P}^{4} 1,322$	91	$\mathrm{P}_{4}{ }^{2} 22$ (91), P 4322 (95)
${ }^{P} 41,3^{2} 1^{2}$	92	$\mathrm{P} 41^{2} 1^{2}$ (92), $\mathrm{P}_{4} 3^{2} 1^{2}$ (96)
$\mathrm{P} 421^{*}$	113	$\mathrm{P} \overline{4} 21^{\mathrm{m}}$ (113), $\mathrm{P} 421^{2}$ (90)
I4*d	122	$\mathrm{I} \overline{4} 2 \mathrm{~d}$ (122), 141 md (109)
	123	$\mathrm{P} 4 / \mathrm{mmm}$ (123), P422 (89), P4mm (99), $\mathrm{P} \overline{4} 2 \mathrm{~m}$ (111), $\mathrm{P} \overline{4} \mathrm{~m} 2$ (115)
$\mathrm{P} 4 / \mathrm{xcc}$	124	$\mathrm{P} 4 / \mathrm{mcc}$ (124), P4cc (103)
$\mathrm{P} 4 / \mathrm{xb*}$	127	$\mathrm{P} 4 / \mathrm{mbm}$ (127), P 4 bm (100), $\mathrm{P} \overline{4} \mathrm{~b} 2$ (117)
$\mathrm{P} 4 / \mathrm{K}_{\text {nc }}$	128	$\mathrm{P} 4 / \mathrm{mnc}$ (128), P4nc (104)
P4/**	131	$\mathrm{P} 42 / \mathrm{mmc}$ (131), $\mathrm{P} 42^{\mathrm{mc}}$ (105), $\mathrm{P} \overline{4} 2 \mathrm{c}$ (112)
P4/*C*	132	$\mathrm{P} 42 / \mathrm{mcm}$ (132), P 42 cm (101), $\mathrm{P} \overline{4} \mathrm{c} 2$ (116)
P4/*bc	135	$\mathrm{P} 42 / \mathrm{mbc}$ (135) , $\mathrm{P}_{4}{ }_{2} \mathrm{bc}$ (106)
$\mathrm{P} 4 / \times \mathrm{n}$ *	136	$\mathrm{P}_{4} / \mathrm{mnm}$ (136), $\mathrm{P}_{4}{ }_{2} \mathrm{~nm}$ (102), $\mathrm{P} \overline{4} \mathrm{n} 2$ (118)
I4/***	139	$\mathrm{I} 4 / \mathrm{mmm}$ (139), I 422 (97), I 4 mm (107), $\mathrm{I} \overline{4} \mathrm{~m} 2$ (119), $\mathrm{I} \overline{4} 2 \mathrm{~m}$ (121)
I4/*e*	140	$\mathrm{I} 4 / \mathrm{mcm}$ (140), I 4 cm (108), $\mathrm{I} \overline{4} \mathrm{c} 2$ (120)

Aspect Number Space Groups (Space Group Numbers)

Aspect	Number	Space Groups (Space Group Numbers)
$\mathrm{P} * 3$	200	Pm3 (200), P23 (195)
$F * 3$	202	Fm3 (202), F23 (196)
$\mathrm{I} * 3$	204	Im3 (204), 123 (197), $\mathrm{I} 21^{3}$ (199)
$\mathrm{P}^{1} 1,3^{32}$	212	$\mathrm{P}_{3} 32$ (212), $\mathrm{P}_{4}{ }^{32}$ (213)
P*3*	221	Pm3m (221), P432 (207), P ${ }^{4} 3 \mathrm{~m}$ (215)
$P * 3 n$	223	Pm3n (223), P4 ${ }^{\text {an }}$ (218)
F*3*	225	Fm3m (225), F432 (209), F4 3 m (216)
$F \times 3 \mathrm{c}$	226	Fm3c (226), F43c (219)
I*3*	229	Im3m (229), I432 (211), $\mathrm{I} \overline{4} 3 \mathrm{~m}$ (217)

APPENDIX D

ORGANIC CHEMICAL CLASSES

The classification of substances containing organic carbon, as developed by the Cambridge Crystallographic Data Centre and given in Molecular Structures and Dimensions (Kennard et al., 1984), is given below.

1 Aliphatic carboxylic acids and their derivatives (cyclic acid derivatives, e.g. anhydrides and lactones, are classified in the appropriate hetero class)
2 Aliphatic carboxylic acid salts (ammonium, IA, IIA metals; in a few cases where the cation is organic, the anion is classified in class 2)
3 Aliphatic amines
4 Aliphatic (N and S) compounds (must contain $-\mathrm{C}-\mathrm{N}-\mathrm{S}$ or $-\mathrm{C}-\mathrm{S}-\mathrm{N}-$)
5 Aliphatic miscellaneous
6 Enolates (aliphatic and aromatic)
7 Nitriles (aliphatic and aromatic)
8 Urea compounds (aliphatic and aromatic)
9 Nitrogen-nitrogen compounds (aliphatic and aromatic; must contain $-\mathrm{C}-\mathrm{N}-\mathrm{N}-$)
10 Nitrogen-oxygen compounds (aliphatic and aromatic; must contain $-\mathrm{C}-\mathrm{N}-\mathrm{O}$ or $-\mathrm{C}-\mathrm{O}-\mathrm{N}-$)
11 Sulfur and selenium compounds
12 Carbonium ions, carbanions, radicals
13 Benzoic acid derivatives (cyclic acid derivatives, e.g. anhydrides and lactones, are classified in the appropriate hetero class)
14 Benzoic acid salts (ammonium IA, IIA metals)
15 Benzene nitro compounds
16 Anilines
17 Phenols and ethers
18 Benzoquinones
19 Benzene miscellaneous
20 Monocyclic hydrocarbons (3, 4, 5-membered rings)
21 Monocyclic hydrocarbons (6 -membered rings)
22 Monocyclic hydrocarbons (7, 8-membered rings)
23 Monocyclic hydrocarbons (9- and higher-membered rings)
24 Naphthalene compounds (fully unsaturated)
25 Naphthoquinones (fully unsaturated)
26 Anthracene compounds (fully unsaturated)
27 Polycyclic hydrocarbons (2 fused rings)
28 Polycyclic hydrocarbons (3 fused rings)
29 Polycyclic hydrocarbons (4 fused rings)
30 Polycyclic hydrocarbons (5 or more fused rings)
31 Bridged ring hydrocarbons
32 Hetero-nitrogen (3, 4, 5-membered monocyc1ic)
33 Hetero-nitrogen (6 -membered monocyclic)
34 Hetero-nitrogen (7- and higher-membered monocyclic)
35 Hetero-nitrogen (2 fused rings)
36 Hetero-nitrogen (more than 2 fused rings)
37 Hetero-nitrogen (bridged ring system)

Hetero-oxygen
39 Hetero-sulfur and hetero-selenium
40 Hetero-(nitrogen and oxygen)
41 Hetero-(nitrogen and sulfur)
42 Miscellaneous heterocycles
43 Barbiturates
44 Pyrimidines and purines (the ring system must conform to the unmodified pyrimidine or purine skeleton)
45 Carbohydrates
46 Phospates
47 Nucleosides and nucleotides
48 Alpha-amino-acids and peptides (reserved for peptides and α-amino-acids, whether or not the amino-acid possesses biological properties; thus a β-amino-acid would be classified in the appropriate acid and amine classes)
49 Porphyrins and corrins
50 Antibiotics (a cross-reference to a structural class is always provided)
51 Steroids
52 Monoterpenes
53 Sesquiterpenes
54 Diterpenes
55 Sesterterpenes
56 Triterpenes
57 Tetraterpenes
58 Alkaloids
59 Miscellaneous natural products (a cross-reference to a structural class is always provided)
60 Molecular complexes
61 Clathrates
62 Boron compounds
63 Silicon compounds
64 Phosphorus compounds
65 Arsenic compounds
66 Antimony and bismuth compounds
67 Groups IA and IIA compounds (reserved for compounds containing covalently bonded metals of groups IA and IIA)
68 Group III compounds
69 Germanium, tin, lead compounds
70 Tellurium compounds
71 Transition metal-C compounds
72 Metal π-complexes (open-chain)
73 Metal π-complexes (cyclopentadiene)
74 Metal π-complexes (arene)
75 Metal π-complexes (miscellaneous ring systems)
76 Metal complexes (ethylenediamine)
77 Metal complexes (acetylacetone)
78 Metal complexes (salicylic derivatives)
79 Metal complexes (thiourea)
80 Metal complexes (thiocarbamate or xanthate)
81 Metal complexes (carboxylic acid)
82 Metal complexes (amino-acid)
83 Metal complexes (nitrogen ligand)

84 Metal complexes (oxygen ligand)
85 Metal complexes (sulfur or selenium ligand)
86 Metal complexes ($\mathrm{P}, \mathrm{As}, \mathrm{Sb}$ ligand)

MINERAL GROUP AND SUBGROUP CODES

The mineral group and subgroup codes as defined by the JCPDS--International Centre for Diffraction Data are given below. For each mineral group with subgroups, the subgroups are indented.

BRU Brucite
BRU Brucite
MLN Melonite
BSM Bismutite
BUT Buttgenbachite
CAL Calcite
CAL Calcite
DOL Dolomite
RST Related strucutres
CAN Cancrinite
CAR Carnotite
CUR Curienite
RST Related structures
CCT Chalcanthite
CHC Chalcoalumite
CHL Chlorite
CDD Di/dioctahedral
CTD Tri/dioctahedral
CTT Tri/trioctaherdal
MLO Mixed-layer
CHP Chalcopyrite
CHP Chalcopyrite
STN Stannite
BUK Bukovite
RST Related structures
CLP Chlorophoenicite
CLP Chlorophoenicite
PHN Phoenicite
RST Related structures
CLV Calaverite
CNF Canfieldite
COL Columbite
AES Aeschynite
COL Columbite
IXI Ixiolite
STC Stibiocolumbite
COM Combeite
RST Related structures
COP Copiapite
COR Corundum
COR Corundum
ILM Ilmenite
CRD Cordierite

CRI Crichtonite
CRP Carpholite
CUB Cubanite
CYL Cylindrite
DAT Datolite
DES Descloizite
DIA Diaspore
DLF Delafossite
DUF Dufrenite
DUN Dundasite
EKA Ekanite
EPI Epidote
EPI Epidote
ZOI Zoisite
EPS Epsomite
ETT Ettringite
FAI Fairfieldite
FER Fergusonite
FLE Fleischerite
FLU Fluorite
FLU Fluorite
URN Uraninite
RST Related structures
FOR Fornacite
FSP Feldspar
ORT Orthoclase
PLG Plagioclase
PRC Paracelsian
RST Related structures
GAR Garnet
BRZ Berzeliite
CRL Cryolithionite
GAR Garnet
GOL Gold
RST Related structures
GYP Gypsum

HAL	Halite
GAL	Galena
HAL	Halite
PER	Periclase
RST	Related structures
HEL	Helvite
HEX	Hexahydrite
HLT	Halotrichite
HOG	Hogbomite
HRZ	Herzenbergite
HUM	Humite
CHD	Chondrodite
CLH	Clinohumite
HUM	Humite
LEU	Leucophoenicite
NOR	Norbergite
RST	Related structures
IRN	Iron
JAH	Jahnsite
JOA	Joaquinite
JOA	Joaquinite
OJQ	Orthojoaquinite
K-S	Kaolinite-Serpentine
DI	Dioctahedral
TRI	Trioctahedral
MLR	Mixed-layer
KIE	Kieserite
LAN	Lanthanite
LAZ	Lazulite
LIL	Lillianite
LIL	Lillianite
RAM	M Ramdohrite
LUD	Ludwigite
LUD	Ludwigite
RST	Related structures
MAR	Marcasite
ASP	A Arsenopyrite
LOE	Loellingite
MAR	Marcasite
RST	Related structures
MAT	Matlockite
MCK	Mckelveyite

MIC Mica
DI Dioctahedral
TRI Trioctahedral
MLO Mixed-layer
MIX Mixite
MLL Melilite
RST Related structures
MLT Melanterite
MOL Molybdenite
MON Monazite
CRO Crocoite
HUT Huttonite
MON Monazite
MTA Meta-autunite
MTA Meta-autunite
MTU Meta-uranospinite
MXL Mixed-layer
MLR Random
MLO Regular
NEP Nepheline
NIC Nickeline
RST Related structures
NOW Nowackiite
OLV Olivine
ARC Arcanite
CHR Chrysoberyl
OLV Olivine
SIN Sinhalite
TPH Triphylite
RST Related structures
OSU Osumilite
RST Related structures
OVE Overite
PEN Pentlandite
PHE Phenakite
PHF Phosphoferrite
PHM Pharmacosiderite
PHU Phosphuranylite RST Related structures

PIC Picromerite
POL Polybasite
PRC Paracelsian

PRK	Parkerite	SCA	Scapolite	
PRV	Perovskite	SCH	Scheelite	
PRX	Paravauxite	SEI	Seidozerite	
PSB	Pseudobrookite	RST	Related structures	
PUM	Pumpellyite	SEP Sepiolite		
		PAL	- Palygorskite	
PX2	Pyroxene	SEP	Sepiolite	
$\begin{aligned} & \text { CPX } \\ & \text { OPX } \end{aligned}$	Clinopyroxene	SJO Sjogrenite		
	X Orthopyroxene	COA	Coalingite	
PXD	Pyroxenoid	HYD	Hydrotalcite	
PX3	3 Dreierkette	PYA	Pyroaurite	
PX4	4 Viererkette	SJo	Sjogrenite	
PX5	5 Funferkette	STC	Stichtite	
PX6	6 Secherkette	RST	Related structures	
PX7	7 Siebenerkette	SME Smectite		
PXT	T Zwolferkette			
		DI	Dioctahedral	
PYA	Pyrargyrite	TRI	Trioctahedral	
PYC	Pyrochlore	MLR	Random mixed-layer	
BTF	Fetafite	MLO	Regular mixed-layer	
JIX	X Jixianite	SOD Sodalite		
MCR	Microlite	SOH	Sohngeite	
PYC	C Pyrochlore			
STB	Stibiconite	SOH	Sohngeite	
RST	T Related structures	RST	Stottite	
			Related structures	
PYR Pyrite				
CBT	Cobaltite	SPH Sphalerite		
PYR	R Pyrite	MIE	Miersite	
ULL	Ullmannite	SPH	Sphalerite Related structures	
PYS Pyrosmalite				
RST Related structures		SPL Spinel		
		LIN	Linnaeite	
QTZ	Quartz	SPI	Spinel	
RET	Retzian	RST	Related structures	
REY	Reyerite	STB Stibnite		
		RST	Related structures	
RHB	Rhabdophane	STK Starkeyite		
RSA Rosasite		TAL Talc		
RSA	A Rosasite			
RST	T Related structures	DI	Dioctaheral	
RSL Roselite		TRI	Trioctahedal.	
		MLR	Mixed-1ayer	
RUT	Rutile	THO Thortveitite		
RUT	T Rutile			
DIR	R Dirutile	TIL	Tilasite	
TRR	R Trirutile	TOU	Tourmaline	
RST	T Related structures	TPL	Triplite	

TRU	Truscottite	WLK	Wilkmanite
TTD	Tetradymite	WOF	Wolframite
ALE	Aleksite	WOH	Wohlerite
ARS	Arsenic		
HED	Hedleyite	WTZ	Wurtzite
TEL	Tellurium	IOD	Iodargyrite
TTD	Tetradymite	MOI	Moissanite
JOS	Joseite	WTZ	Wurtzite
TSU	Tsumoite	ZNC	Zincite
TTH Tetrahedrite		RST	Related structures
GER	Germanite	WYL Wyllieite	
TTH	Tetrahedrite	ZEO	Zeolite
TUR	Turquoise	CHB	Chabazite
TYC	Tychite	ERI	Erionite
ITC	Tychite	HAR	Harmotome
URP	Uranophane	HEU	Heulandite
VAL	Valleriite	MOR	Mordenite
		NAT	Natrolite
VIV	Vivianite	UNC	Unclassified
RST	Related structures	RST	Related structures
VRL	Varulite	ZIN	Zinc
VRS	Variscite	ZIP	Zippeite
PHS	Phosphosiderite	ZIR	Zircon
VRS	Variscite		
		XEN	Xenotime
WAR	Wardite	ZIR	Zircon
WEE	Weeksite		

APPENDIX F

EXAMPLES OF ENTRIES

Inorganic file:

Organic file:

1. PUBLICATION OR REPORT NO. NBS/TN-1229

SHEET (See intraio
4. TITLE AND SUBTITLE

Crystal Data Version 1.0 Database Specifications
5. AUTHOR(S)

Judith K. Stalick and Alan D. Mighell
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS U.S. DEPARTMENT OF COMMERCE GAITHERSBURG, MD 20899
7. Contrace/Grant No.
8. Type of Report \& Perlod Covered Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, Cliy, State, ZIP)

Same as item \#6.
10. SUPPLEMENTARY NOTES
\square Document describes a computer program; SF-185, FIPS Software Summary, Is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant informotion. If document includes a slgniflcant bibllography or literature survey, mention it here)
The NBS Crystal Data database is a file of crystallographic and chemical data covering a broad spectrum of solid-state materials: inorganics, minerals, metals, intermetallics, organics, and vorganometallics. To be included in the database the unitcell parameters of a material must be known. With the aid of computer programs, the data were evaluated by the Editors for reasonableness and self-consistency, and errors or possible errors are noted. The data items have been formatted in a standard way to permit searches. Each entry in the database contains unit-cell data (initial cell, convential Crystal Data cell, and reduced cell), space group or diffraction aspect, formula units per cell, observed and calculated densities, literature reference, chemical or mineral name, chemical formula, empirical formula, and an indication of the extent to which the atomic positional parameters have been determined. Additional information may include structure type, locality for minerals, cirystal habit, color, melting point, temperature of data collection, information on sub-, super-, or pseudocells, and an indication if cleavage, twinning, or powder data is included in the original literature reference. In addition to identification of unkowns by lattice-matching technqiues, the large size of the database along with the combination of crystallographic, chemical and physical information make this file a valuable resource for all of solid-state science. Detailed format and content specifications are given.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) chemical formula; computer database; crystallographic data; identification; inorganic materials; intermetallics; minerals; NBS Crystal Data Center; organic materials; organometallics; unit-cell dimensions
13. AVAILABILITY

[^3]14. NO. OF PRINTED PAGES

72

15. Price

NBS Technical Publications

Periodical

Journal of Research-The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs-Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
Handbooks-Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications-Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.
Applied Mathematics Series-Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.
National Standard Reference Data Series-Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).
NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.
Building Science Series-Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.
Technical Notes-Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.
Voluntary Product Standards-Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.
Consumer Information Series-Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.
Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.
Order the following NBS publications-FIPS and NBSIR's-from the National Technical Information Service, Springfield, VA 22161.
Federal Information Processing Standards Publications (FIPS PUB)--Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).
NBS Interagency Reports (NBSIR)-A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form.
U.S. Department of Commerce National Bureau of Standards Gaithersburg, MD 20899

Official Business
Penalty for Private Use $\$ 300$

[^0]: ${ }^{1}$ Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address
 Gaithersburg, MD 20899.
 ${ }^{2}$ Some divisions within the center are located at Boulder, CO 80303 .
 ${ }^{3}$ Located at Boulder, CO, with some elements at Gaithersburg, MD.

[^1]: ${ }^{1}$ By definition a symmetry direction is either a symmetry axis, or the normal to a symmetry plane $(1 / m=\overline{2})$, or both. This concept is used in dealing with point-group symmetries, of either polyhedra or lattices. In lattices the possible symmetry directions are: $2 / m, 4 / m, 6 / m, \overline{3}$. Note that we use the word lattice in the sense given to it by Bravais, namely a spatial assemblage of points that are the termini of the vectors $L(u v w)=u a+v b+w c$, where u, v, and w are integers positive, negative, or zero.

[^2]: *Orientation code. For the monoclinic system, codes A, B, and C are for b-unique, and codes D, E, and F are for c-unique.

[^3]: X Unlimited
 [For Official Distribution. Do Not Release to NTIS
 [X] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
 \bar{X}^{-}Order From National Technical Information Service (NTIS), Springfield, VA. 22161

