
NBS

PUBLICATIONST
NATL INST OF STAND & TECH

U.S. DEPARTME
National Bureau of Standards

A11107 s^^3DM

H!ST

PUBUCATIONS

NBS Technical Note 1208

PIPE/1000: An Implementation

of Piping on an

HP-1000 Minicomputer \

N. L. Seidenman I

NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS 7^.

iS NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS
NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS N
IS NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS
NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS N
rS NBS NBS NBS NBS NBS NBS NBS NBS NBS NB^
NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS K
iS NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS
NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS A
iS NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS
NBS NBS NBS National Bureau ofStandards NBS NBS A
iS NBS NBS NBS NBS NBS NBS NBS NBS NBS NBJt

'BS NBS NBS NBS NBS NBS NBS NBS NBSW
NBS NBS NBS NBS NBS NBS NBS NBS NBS.
IBS NBS NBS NBS NBS NBS NBS NBS NBS N
? NBS NBS NBS NBS NBS NBS NBS NBS NBS

QC

100

.U5753

No . 1208

1985

c. 2

TM he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The

^ Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and
government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Center for Materials

Science.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essentied services leading to accurate and uniform physical and
chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering^

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

• Programming Science and
Technology

• Computer Systems

Engineering

The Center for Materials Science

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Center consists of the following Divisions:

Inorganic Materials

Fracture and Deformation^

Polymers

Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^Some divisions within the center are located at Boulder, CO 80303.

^Located at Boulder, CO, with some elements at Gaithersburg, MD.

JtATIOURt BTJREflU
• OF STAND 7 --^S

UERAEY

no. fK>^

iV^S Technical Note 1208

PIPE/1000: An Implementation

of Piping on an
HP'IOOO Minicomputer

N. L. Seidenman

Office of Standard Reference Data

National Measurement Laboratory

National Bureau of Standards

Gaithersburg, MD 20899

March 1985

.,- "'

U.S. Departmoit of Commerce
Malcolm Baldrige, Secretary

National Bureau of Standards

Ernest Ambler, Director

National Bureau of Standards U.S. Government Printing Office For sale by the Superintendent

Technical Note 1208 Washington: 1985 of Documents,

Natl. Bur. Stand. (U.S.), U.S. Government Printing Office

Tech. Note 1208, Washington, DC 20402

50 pages (Mar. 1985)

CODEN: NBTNAE

PIPE/1000

Table of Contents

Abstract Iv

Keywords iv

Disclaimer iv

Introduction 1

Environment 2

Design 2

Implementation 6

How It Works 9

Shortcomings 11

Summary 12

References 13

Appendix A 15

Appendix B 39

Appendix C 45

Appendix D 47

iii

ABSTRACT

Piping is a system by which programs can communicate so as to
coordinate their respective functions in a synchronized effort
aimed at the completion of a given task. Piping is one of the
strong points of the increasingly popular operating system UNIX,
developed at Bell Laboratories and licensed by AT&T. This paper
describes an implementation of piping in a non-UNIX environment;
in particular, on an HP-1000 minicomputer.

KEYWORDS

C; computer languages; piping; programming; UNIX.

DISCLAIMER

This report was prepared under the sponsorship of the United
States Government. Neither the United States, nor the United
States National Bureau of Standards, nor any of their employees,
nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or

usefulness of any information or data disclosed, or represent
that its use would not infringe upon privately owned rights.

Certain trade names and company products are mentioned in the text
in order to specify or identify the products adequately where gen-
eric designations would be insufficient. In no case does such
identification imply recommendation or endorsement, or conversely,
disparagement or criticism by the National Bureau of Standards,
nor does it imply that any specific product is necessarily the
best or worst available for the purpose.

IV

PIPE / 1 OOP : An Implementation of Piping on an
HP - 1 OOP Minicomputer

N. L. Seidenman
Office of Standard Reference Data
National Measurement Laboratory

National Bureau of Standards
Gaithersburg, MD 2P899

INTRODUCTION

In 1975, Western Electric, a subsidiary of AT&T, began licensing
the UNIX(tm)[l] operating system. This system, developed at

AT&T's Bell Laboratories, provides an environment in which
programs can be made to work together toward the completion of a

given task. Central to the UNIX system user interface is the
SHELL which acts as a command interpreter, file manager, and

scheduler. One of the more powerful features of the SHELL is its

ability to reroute or redirect the default input (stdin) and
default output (stdout) of a program or command. This is done

using a structure called a PIPE.

Pipes in UNIX are links between the stdout of one program and the

stdin of another. We are accustomed to directing output from a

program to a file or to a device such as printer or tape drive.

The idea of directing the output to another program, however is

somewhat new. Actually, it shouldn't seem all that strange since
most file processing is done by several programs anyway. The
first program does whatever processing it needs to do on the file
and finishes. The next program is then executed using the output
of the first program as its input. Several programs may be
Involved in this process but the pattern is always the same; read
a file, process as you go, and write it out to another file.
Piping eliminates the "middle-man" files by redirecting the output
of one program directly into the input of the next.

Implementations of piping are largely dependent on the particular
computer. In a true UNIX environment pipes are connections
between programs which run concurrently, each processing the data

UNIX is a registered trade mark of Bell Laboratories

in a synchronous fashion. The SHELL takes care of rerouting the
input and output (I/O) so that programs written for a UNIX
environment need only make calls to functions which, by default,
use stdin and stdout in order to take advantage of piping.

In the implementation discussed here files are used to simulate
pipes. These files are created as they are needed and destroyed
when the programs using them have finished. The user never sees
this happen, however. The file names are guaranteed to be unique
so that more than one session can use the PIPE system without
concern for mixups in ownership of a given pipe file. The system
described in this paper has come to be known as PIPE/1000 or PIPE
for short.

ENVIRONMENT

It is important to give some information here about the computer
and operating system on which PIPE was developed since they had a

direct bearing on the way it was finally implemented.

The computer that was used is a 1 6-bit Hewlett/Packard (HP) 1000
F-series model 65 with hardware floating point processor, firmware
vector instruction set and one megabyte of main memory. Disc
storage totals 469 megabytes. The resident operating system is

HP's RTE-6/VM virtual memory system using the C.83 revision. C.83
is the first version of RTE-6 to support a hierarchal file system
commonly found on the HP-1000 A-series or on VAX computers. The
system was "gen'ed" with roughly 4K words of System Available
Memory (SAM) which is used by the operating system (opsys) as

scratch memory. The significance of this will be seen in the next
section.

The routines which comprise the PIPE system are written almost
entirely in C[2] (actually HP/C[3], a very close dialect of C).

FORTRAN was used in those places where using C would have required
inordinate gymnastics on the part of the program (and the
programmer!) to make the file system (File Management Package or

FMP)[4] calls work properly. This paper does assume a minimal
knowledge of C. The reader should also note that as of this wri-
ting only programs written in C may take advantage of PIPE.

DESIGN

The overall goal in designing PIPE was the creation of a system
which resembled, as closely as possible, true UNIX piping. The

term close was understood to mean that a programmer accustomed to

UNIX would see little difference between PIPE and UNIX piping.

The only difference, if any, would be the addition of a few PIPE

system calls. No special I/O functions would be used; only those

found in the standard C I/O library (stdio). To regular UNIX
users there would be no difference. This includes redirection to

other programs (|), files or devices(>), and appending to existing
files (>>).

Another concern was portability. PIPE is not likely to be used on

systems other then the 1000, but it can be shown that portable
programs are also cleaner programs. There is very little system
dependent code in PIPE and what little there is can be changed
without harm to the rest of the system.

As has been stated already, there are basically two methods of im-

plementation. The first is to use actual program to program
communication via mailbox or class i/o. There are two

disadvantages to this method. First, class i/o uses SAM to create
class buffers. If SAM becomes filled or near filled too quickly,

the system crashes. This is a worst-case which could occur

easily if one program is generating class buffers at a rate which
exceeds the next programs rate of "consuming" or retrieving them.

A method of "handshaking" was considered whereby a program would
be suspended by a slower running program further down the pipe

until a sufficient number of class buffers had been consumed.
This adds a level of complexity which in turn adds another degree
of vulnerability to failure to the system.

A second disadvantage lies in the way class i/o works. Briefly, a

program executes a class "write/read" to create the buffer in SAM.

This buffer is of fixed length. The receiving program must then
do a class "get" to consume the buffer thus releasing the

allocated SAM. The problem lies in the fact that the receiving
program must know in advance how big the buffer will be. This
becomes particularly difficult when formatted output is used. For
instance, doing a formatted print in PIPE is simply a printfO
call which is no different than a normal formatted print. Using
class i/o the same operation would have required first doing an

internal formatted print (sprintf) then taking the length of the
resulting string (strlen) , creating the buffer or buffers for the
class write/read calls, transmitting the length of the incoming
buffers to the next program, and finally sending the buffers
themselves down the pipe. Again, this adds another level of

complexity and also requires more contorsions on the part of the

programmer. In the final product there are only three required
function calls, one to initiate redirection, one to continue, and

one to complete the operation.

As is evident in the last paragraph, using class i/o requires
introducing obtuse and somtimes obstructive code not found in UNIX
programs thus violating the basic design premise.

One last problem with a true pipe implementation on the HP-1000
F-series, also pertaining to limited memory resources, is the
fact that all of the programs in a true pipe must be running
concurrently. Memory on the F-series is divided into a fixed
number of partitions. Thus, if there are twenty partitions in the
system, and a pipe containing 10 programs is executed, one pipe is

now using half of the system memory resources. Two such pipes
would effectively monopolize the system.

True UNIX piping could also have been accomplished by writing
highly system-dependent code which would connect the Equipment
Table (EQT) entry of one program's stdout with another's EQT entry
for stdin. This would have required actually writing a shell
either as a substitute for or front end to the resident command
interpreter, CI[5]. This is not an unlikely possibility in terms
of future versions of the system but given the limited personnel
resources, the current version offered the greatest return for the
least investment.

Before moving on it should be mentioned that the HP-1000 A-series
computer architecture along with the RTE-A operating system could
possibly support true piping.

As it turns out the method of using pipe files (which heretofore
will be referred to as pipefiles) allows the closest approximation
to UNIX piping available on the F-series. This will hopefully
change as HP migrates to UNIX as its standard operating system
in the years to come.

Pipefiles have a major advantage over true pipes on the HP-1000 in

that the problem of synchronization is removed. Without
bottlenecks between programs the chance of a system crash due to
insufficient SAM is eliminated. The dynamic allocation of disc

storage allows the pipefile to be as small or as large as

necessary without the headache of fixed length records. All
communications are now relegated to the opsys, thereby freeing the

programmer (and the program) to worry about other things.

The actual code is written in C. There were several reasons for

choosing this language as opposed to FORTRAN-??. To begin with, C

offers a more or less standard solution to the problem of

retrieving runstring information - a key task for the PIPE system;
FORTRAN does not. Second, C code is more concise, more compact,
and more powerful than FORTRAN. Third, the HP/C product comes
with a symbolic debugger which made the task of testing and error
catching considerably easier. There is a symbolic debugger
available from HP which supports FORTRAN, PASCAL, and the MACRO
assembler which is actually quite powerful but was unavailable on
the development system at the time.

Program design proceeded in a "top-down" fashion. Lower level
functions were kept right where they belong - in the lower levels.
Higher level functions know nothing about the routines on which
they call. The code is highly modular which simplifies debugging
and modification. The end result is a system which works as it

was originally intended to, required relatively little time to
implement, and is easily modified for porting to other systems.

IMPLEMENTATION

The final product consists of a library of support routines and an

"include" file used in "pipeable" programs. With the exception of

calls to three routines in this library, a C programmer need do
nothing different insomuch as I/O processing is concerned. This
is in keeping with the design philosophy of making the system as

close to true piping as possible. Below are two programs. The
first does not use PIPE; the second does. Notice that there is

really very little difference between the two.

^include <stdio.h> /* Without piping */

main(argc, rgv, rmpar)
int argc, rmpar[];
char *argv[];

{

while (—argc > 0)
printf((argc > 1) ? "^s "

: "56s\n", *++argv);

}

/*»»»**«»»«»**»*/

//include <stdio.h> /* With piping */

//include <pipe.h>

main(argc, rgv, rmpar)
int argc, rmpar[];
char *argv[];

{

if (popen(argc, argv, rmpar) »= NULL)
fprintf (stderr, "clog in pipe!\n");

else
while (—argc > 0)

printf((argc > 1) ? "%3 "
: "5ts\n", * + + argv);

pclose(argc, argv, rmpar);

}

As is easily seen, there is no difference in the way I/O is

performed. The PIPE functions popen and pclose simply initiate
and complete redirected I/O, respectively. The same would apply

if scanf, getc, or putc calls were used. Before describing a

typical application using PIPE there are several routines which
need mentioning.

The first two have already been introduced. These are popen and
pclose. Popen performs two functions; it calls the runstring
processor runstr, and it redirects stdout if necessary. Pclose
does the opposite. It constructs a new runstring for the next
program in the pipe (if there is a pipe), purges the input
pipefile (if any), closes stdout, and schedules the next program
in the pipe, suspending itself during this program's execution.

Runstr calls five other subprograms which determine what kind of

input redirection is requested (intype), determine the kind of
output redirection requested (outtype), build the input file list
(bldinlst), build the option list (bldoplst), and return the index
in the argv array of the output file (outfdes) if specified.
These routines are not considered user callable and thus have not
been included in the programmer reference.

There are four kinds or "types" of I/O recognized by the PIPE
system. These types are returned as integer tokens by the intype
and outtype routines. The first is the default STANDARD type.
This is returned by intype or outtype when no redirection is

specified. Next is FILEIO . This is returned when I/O is

redirected to or from a user specified file. In the case of
output being type FILEIO and the specified file does not exist it

is created. APPEND is used when the >> operator appears in the
runstring. This indicates that output from stdout is to be
appended to the specified file. Last and most important is the
type PIPE . This token indicates that I/O is to be redirected to
and/or from another program. This token should not be confused
with the name of the system itself. With the exception of APPEND
all types can refer either to input or to output redirection.

Bldinlst is the routine which scans the argv array and builds a

list of pointers to parameters which it believes to be input file
names. Scanning begins with the second parameter in argv (the
first is always the program name) and continues until either an

output redirection operator ("|" or ">" or ">>") is encountered or
the last parameter has been reached. When an input file is found,
bldinlst copies the argv pointer to the inlist array and
increments a counter. Once finished, the routine returns this
counter to the caller.

Bldoplst does essentially the same thing as bldinlst only its task
is easier since all it need look for is a "+" or "-" at the
beginning of a parameter. Bldoplst also returns the number of

options found. There are two user callable routines associated
with this one; options and optval. Options is passed a string
argument for which it then scans the oplist. If a match is found
then the index in the oplist array is returned. Otherwise an EOF
is returned. Optval is used to extract integral data from an
option. For example, suppose an option "-CI30" appears in the
runstring. Options("c") would be used to determine if and where
the "C" option appears in the oplist and optval would be called to
extract the integer 1 30 from it.

Outfdes returns the index in the argv array of the output file if

FILEIO redirection is used in the outgoing direction. It searches
the argv array for a ">" or ">>" operator and stops when either
one of these is found or if a piping operator ("|") is found. If

a FILEIO or APPEND output redirection operator is found, outfdes
then skips over any intervening options and returns the index of

the next filename it finds. In the event that a user should enter
a faulty runstring such as

proga infile.dat >
|

progb

which would seem to redirect the output to a file named "|", the
system ignores the value returned by outfdes. Piped redirection,
then, takes precedence over any other type. .

There is a third subroutine which is used to handle the
redirection of stdin. This is the pnext routine. Pnext will
sequentially reopen files in the input list (inlist) built by
bldinlst until the end of the list is reached. Once this happens
an EOF is then returned. If an error occurs while trying to open
a file, pnext returns a NULL. Pnext will always return a positive
integer if the input type is STANDARD. Note that unlike output
files, input files must exist before they can be opened. An
attempt to open a non-existent file will result in an error and
pnext returns a NULL.

There are several other routines which are used to initiate and
close the spooling of output to system devices; in particular the
line printers. These are the spoolon and spooloff family of

routines. They are by nature highly system dependent since they
make use of the Spool Management Package (SMP) calls in RTE-6.
There are only two programs which use them in the set of utilities
written at NBS for the HP-1000; Ipr which spools output t.o the

high speed line printer, and dpr which spools output to the

letter-quality printer.

One last user-callable routine is the datex function. This
routine is used to read the system clock and return a six element,

short integer array to the caller. The array contains the month,

day, year, hours, minutes, and seconds as read from the clock.

This is used by the PIPE system itself when creating the output
pipefile the name of which is of the form

/pipe/_hhmmss. end

Using this routine enables PIPE to create pipefiles in the /pipe
global directory whose names are, for all intents and purposes,
unique.

The testing of the code was facilitated by the inclusion of

"debugging" code generated by the HP/C compiler using the -db
option. This along with the symbolic debugger SEBUG (Systematic
Error eradication and deBUG) included with the HP/C product
enabled close examination of PIPE system objects in a run-time
environment. The general approach in the initial test phase was

to use so-called "loop-back" testing. That is, have a program
pipe its output to itself. Lpr was the first program to be

"fitted" with the pipe routines. Once this program was working it

became the benchmark by which all the others were (and still are)

tested since it uses virtually all of the PIPE system calls in one
way or another.

HOW IT WORKS

Probably the best way to explain the internal workings of PIPE is

to use an example. File redirection is fairly straightforward and
so we will look instead at how program to program piping works.

Suppose there are two programs which have been augmented to

support PIPE and for clarity we will call them proga and progb.
Given the runstring

proga input.dat -o
|

progb final.txt

where input.dat and final.txt are sequential files and -o is some
arbitrary option.

First proga calls popen which then calls runstr. Runstr
determines that the input type is FILEIO and the output type is

PIPE. Next, runstr calls bldinlst and bldoplst to build the input
list and option list, respectively, as well as return the number
of input files specified and the number of options. Having
returned to popen, execution continues with popen recognizing that

the output type is PIPE. Popen calls pipename (an internal
routine) to create a pipefile name which is unique. It then
creates and redirects stdout to this file. In addition, this
pipename is saved in the global string buffer pname,

Proga, having checked the value returned by popen to see that it

is not NULL goes into the main process loop. This loop is

generally of the form

while ((input = pnextO) != EOF)
if (input != NULL)

dostuff();

Pnext starts by opening stdin to input.dat and incrementing a

counter. On all but the first call to pnext, stdin is closed and
reopened to the next file in the input list. If pnext sees that
the counter is equal to the number of input files in the list, it

returns an EOF. This counter is internal to pnext and cannot be
altered by any other routine (unless it is very clever).

Once the EOF condition is detected the loop is exited and pclose
is called to do the cleanup. First pclose closes stdout. Since
the output type is PIPE pclose must now build a runstring for and
then execute progb. The routine bldrustr is called to build the

runstring. This is done by concatenating the parameters to the
right of but not including the "|" operator and inserting the
pipename (stored in pname) between the first and second
parameters. At this point the runstring for progb would be

progb /pipe/_hhmms3.end >> final.txt

Progb Is now scheduled and is passed the above runstring.
Assuming no error occurred on the schedule attempt, proga suspends
itself and waits for progb to finish.

Progb now goes through the same setup as did proga but this time
the input type is found to be PIPE. This becomes significant when
pclose is called since the pipefile will otherwise be regarded
as an input file. Stdout is reopened to final.txt and execution
proceeds until an EOF is returned from pnext. Now when pclose is

called it purges the pipefile in addition to closing stdout, and
(in this case) passes control back to proga and terminates. Once
back in proga the pipe is completed and proga terminates.

10

Up to thirty objects (filenames, operators, program names, and

options) may appear in a pipe not to exceed 100 characters. These
limits are fairly arbitrary and can be increased if the need
arises. For the great majority of applications, however, they

have been found to be more than adequate.

SHORTCOMINGS

PIPE currently offers a simple but powerful implementation of

piping, but there are still a few places in which it falls short.

The primary weakness which will (-hopefully) be eliminated in

future versions is program dependence.

If a program is not fitted to use PIPE, it cannot be used in pipes
with other programs that are. This is symptomatic of the file
handling system in RTE-6. In operating systems such as UNIX
information about a file is maintained by the system. A cell in

the "per process data region" is then used to connect a given
program's or process's logical I/O references to the actual file
or device. In RTE, this information is maintained by the process
itself with the system keeping track of how many processes a file
is open to (maximum of seven) and to whom the file is open.
Whereas the shell can redirect stdin and stdout by file
manipulation at the system level, RTE must do so at the process
level and, hence, PIPE is program or process dependent.

A good example of this is the word formatter used to initially
prepare this article, WOLF. WOLF (Word Oriented Line Formatter)
is a public domain word formatter which is distributed by the
international HP-IOOO users' group, INTEREX. It was written in

FORTRAN-IV and, since FORTRAN is not yet supported in PIPE, it is

rather difficult to interface with the PIPE system. Currently,
the text is sent into a file and the file is then printed using
Ipr or dpr (which are PIPE'd). It would be preferable to simply
include WOLF (or any process for that matter) in a pipe without
having to worry about whether or not it has been adapted for PIPE.
An interim solution will be to provide a library of routines
callable from FORTRAN, PASCL (HP's PASCAL), and MACRO as well as
C. The long term solution will be to write a shell which will
enable HP-1000 users to enjoy the benefits of UNIX along with the
power of a real-time system.

The HP-1000 A-series was mentioned earlier. This machine
represents a total rethinking of the HP-1000's architecture and
accompanying opsys, particularly in terms of the way it han-dles

I/O and the user interfaces available. The greater part of I/O on

11

the A-series is now handled by the interface cards (multiplexers,
controllers, etc.) themselves, leaving the computer free to
compute. The CPU is used only to initiate the I/O and then turns
the continuation/completion phase over to the card. On the

F-series the CPU is involved in all phases of I/O from initiation
to completion.

The way the user interfaces interact with the opsys is also
different in that although it does not support as sophisticated a

multi-user accounting system as RTE-6, it does allow for the
inclusion of user interfaces other than CI and FMGR. The Session
Monitor accounting system on the F-series currently allows only CI

and FMGR.

These improvements pave the way for an interface which will
incorporate the benefits of the UNIX shell in a real-time
environment.

SUMMARY

PIPE/1000 has by no means attained fixed status. The future holds
revisions and improvements which will make the already useful
system even better. PIPE does help meet the need for an
environment in which program units can be easily combined suf-
ficiently well to make it a system which can be used and is

being used today.

12

REFERENCES

[1] K. Christian, The UNIX Operating System , (John Wiley and Sons,

1983)

[2] B. Kernighan and D. Ritchie, The C Programming Language (Bel

1 Laboratories, Inc, 1978)

[3] HP/C Reference Manual For the CCS C Compiler (Corporate
Computer Systems, Inc., 1983)

[4] RTE-6/VM Programmers Reference Manual, (Hewlett/Packard
Company, 1983)

[5] RTE-6/VM CI User's Manual, (Hewlett/Packard Company, 1983)

13

APPENDIX A: Source Listings

This section contains source listings for all of the PIPE/1000
routines.

It includes both user-callable and internal (not intended for
direct use by programmer) routines. User-callable routines are

flagged with a "UC" in the page heading.

The source code is available through INTEREX, the International
Association of Hewlett/Packard Computer Users along with the
binary relocatable files for those who have HP-1000's.

15

ARGBUFS

This module is used by the HP/C runtime system to hold the
argument strings pointed to by argv.

MACRO,

Q

NAM _ABUF,7 VI. Argv buffer for PIPE system
ENT _ABUF,_ALEN, .ABUF,_ARGV
SPC 1

* THIS MODULE DEFINES THE BUFFER TO BE USED FOR ACQUIRING *

* THE RUN STRING FROM A C PROGRAM. THE SIZE OF _ABUF MUST *

* BE ONE WORD LONGER THAN THE NUMBER OF WORDS (_ALEN/2) *

* THAT WILL BE RETRIEVED.

* History;
*

* Augmented 8^11029 by N. Seidenman to allow for 30 argu^
* ments in a runstring 100 characters long.

*

SPC 1

_ABUF BSS 51 RUN STRING BUFFER
_ALEN DEC -100 NEGATIVE CHARACTER LENGTH OF _ABUF
.ABUF DBL _ABUF BYTE ADDRESS OF _ABUF

_ARGV BSS 31 ROOM FOR 30 ARGUMENTS
END

16

BLDINLST

This routine is used to build the globally accessible list of

input file names, inlist. C and a are the argument count and
argument list respectively.

int bldinlst(argc, argv) /* Build the pointer list */

int argc; /* for the input files. */

char *argv[]; {

int n, ra;

for (n=0, m=1 ; m < argc; m++)

if (isinput(argv[m])

)

inlist[n+ +] = argv[m];
else if (isoption(argv[m])

)

continue;
else

break;

return n;

17

BLDOPLST

Bldoplst builds the options list in the global array oplist.
Options are distinguished by a "+" or "-" in the first characters
position of a parameter.

extern int isoptionO;
extern char *optlist[];

int bldoplst(argc, argv) /* Build options list */

int argc;

char *argv[]; {

int m, n;

for (in=l , n=0; m < argc; m++)
/* If it's an option, keep it. */

if (isoption(argv[m])

)

optlist[n++] = argv[m];
else if (*argv[m] == '

|

•) /* Ooops! Hit a joint. »/

break;

return n;

18

BLDRUSTR

This routine is used to construct the new runstring for the next
program in a pipe.

extern int ot;

extern char *pname;

char *bldrustr(argc, argv)
int argc;

char *argv[];

{

int i = 0;

char a[80], b[80];

while (*argv[i] != '|' && i < argc)
++i;

if (i < argc) {

if (ot == PIPE)

sprintf(b, "RU,$s,5ts", argv[++i], pname);
else

sprintf(b, "RU,5Ss" ,argv[++i]);

while (++i < argc) {

sprintf(a, "56s, ^s", b, argv[i]);
sprintf(b, "%s" , a);

}

return b;

}

else
return EOF;

}

19

BUFFERS

This module contains all of the buffers globally accessible by PIPE
and by the user's code.

//define SIZE 2000

char *inlist[MXPTRS],
»oplist[MAXPTRS],

pname[MXFDBS]

;

/* Put input file 1st here */

/* Options list */

/* Pipe-end file name */

int it,

ot,

ni,

no,

ox;

/* Input type */

/* Output type */

/* Number of input files */

/* Number of options */

/* Index in argv of output file */

/* Size-up dynamic memory block */

/* and runtime stack */

int _mem[SIZE], _mlen = SIZE;

int sspc[SIZE], skin = SIZE;

20

DATEX (UC)

Datex is not limited to PIPE/1000 but can be used for any

application in which a gregorian date and/or 24-hour time are

required. Datex returns the month, day, year (last two digits),
hours, minutes, and seconds as read from the system clock. Note
that only the method of accessing the system clock need be changed
in order to port this routine to other systems.

extern execO;

/* Days-in-the-month table */

static int daytab[2][1 3] =
{

{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 311,

(0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

};

datex(d)
int d[];

{

int i, leap;
int itime[5];
int year, yearday;

execdl, *itime, year);

yearday = itime[4];
leap = year 56 4 == && year % 100 !=

|
|

year % 400 == 0;

for (i = 1; yearday > daytab[leap][i]

;

yearday -= daytab[leap][i]

;

i++)

d[0]
d[1]

d[2]

d[3]
d[4]

d[5]

i;

yearday;
year % 100

itime[3]
itime[2]
itirned]

/* Month */

/* Day */

/* Year */

/* Hours */
/* Minutes */

/* Seconds */

21

DSPOOLOF (UC)

Spooling is initiated and completed by a family of four routines
called dspoolon, dspoolof, spoolon, and spool off. Their names are
sufficiently descriptive such that further delineation is
unnecessary. It should be said, however*, that only Ipr and dpr use
these routines since they are usually at the end of a pipe anyway.
Dspoolof and spooloff turn off spooling to the letterr-quality

printer and draft printer, respectively.

extern int runitO alias "FmpRunProgram";
extern long cstrdscO;

static char runstr[80] = "XQ,DSPOFF";

int dspoolof ()

{

char rpname[8], *rpnamptr, ofstr[30];
int dummy[5], error;

long fstr = cstrdsc(rpnaine);

return (runit(cstrdsc(runstr) , dummy, fstr));

22

DSPOOLON

This routine turns on spooling to the letter-quality printer.

extern int runitO alias "FmpRunP'rogram";

extern long cstrdscO;

static char runstr[80] = "RU.DSPON";

int dspoolonO
{

int dummy[5], error;

char rpname[10];

return (runit(cstrdsc(runstr) , dummy, cstrdsc(rpname)));

}

23

INTYPE

Intype returns an integer token which will indicate to the PIPE
system what type of input will occur; STANDARD, FILEIO, or PIPE
(see UDEFS).

extern int isinputO, isoptionO;

int intype(argc, argv, rmpar)

int argc, rmpar[];

char *argv[]; {

int i = 0, j = 1

;

if (rmparCO] == && rmpar[2] != 0)

/* Input type is PIPE */

if (isinput(argv[1]))
return PIPE;

else
return NULL; /* Error condition: */

/* No end file found in runstring */

while (j < argc && i == 0) /* Look for the first */

/* input file. */

/* This will say. that */

/* input type is FILEIO */

if (*argv[j] ==
'I' II

*argv[j] == •>')

break;
else if (isoption(argv[j])

)

++j;

else
+ + i;

if (i != 0)

return FILEIO;
else

return STANDARD; /* None of the above. */

24

ISINPUT

Routine called by bldinlst and intype to determine if a parameter
is an input file descriptor.

extern int isoptionO;

int isinput(s)
char s[]; {

if (*s != •>• && *s !=
'I' && »isoption(s))

return 1

;

else
return 0;

}

25

ISOPTION

Routine used by bldoplst, bldinlst, and outfdes to determine
whether or not a parameter is an option.

int isoption(s)

char *s; {

if (»s == '+'
II

*s == •-')

return 1

;

else
return 0;

}

26

OPTIONS (UC)

This is one of several user-callable routines in PIPE/1000 which
enable the user to interact with the system. The caller passes a

string for which the option list (oplist) is then found. If a

match occurs, the index of the option within the list is returned;
otherwise the return value is an EOF.

extern int no;

extern char *optlist[], *sloc();

int options(op)
char *op;

{

int n = 0;

while (n < no)

if (sloc(optlist[n], op) != NULL)
return n;

else
n++;

return EOF;

27

OPTVAL (UC)

Integer function which returns a number appended to an option.
For example, suppose the option string is "-f14". Optval would be

passed the string and a skip value of 2 since the -f is not part
of the value.

The return would be 1M.

int optval(op, skip)

char *op;

int skip;

{

int k = 0;

while (skip—

)

*op++;

while (*op)

k = (k * 10) + (*op++ - 48);

return k;

28

OUTFDES

This function returns the index in argv of the output file
descriptor.

The return is meaningless if the output type is not FILEIO or
APPEND.

extern int isoptionO;

int outf des(argc, argv)
int argc;

char *argvC]; {

int i=1

;

while (i < argc)
if (*argv[i] == •>')

break;
else if (*argv[i] == •

|

')

return NULL;
else

++i;

while (isoption(argv[++i]))

;

return ((argv[i] == NULL) ? NULL : i);

29

OUTTYPE

Companion routine to intype. This routine will return an integer
token indicating the type of output to perform; STANDARD, FILEIO,

APPEND or

PIPE'd.

extern char *sloc();

int outtype(argc, argv)
int argc;

char *argv[]; {

int i = 0;

while (++i <= argc)
switch (*argv[i]) {

case •>': if (sloc(argv[i] , ">>") != NULL)
return APPEND;

else
return FILEIO;

break;

case 'I': return PIPE;

break;

}

return STANDARD; /* Default case. */

30

PCLOSE (UC)

Routine to close a pipe and perform cleanup operations.

extern ru_it() alias "FmpRunProgram"

;

extern char *bldrustr()

;

extern int ot;

extern char *pname;

int pclose(argc, argv, rmpar)

int argc, rmpar[];
char *argv[];

{

int error;

char rs[80];
char runam[10];

if (ot == PIPE) {

rmpar[0] = 0;

rmpar[2] =100;
sprintf(rs, "%s" , bldrustr(argc, argv));

freopend, "w", stdout);

error = ru_it(cstrdsc(rs) , *rmpar, cstrdsc(runam));

if (error != NULL)
fprintf (stderr,

"\npipe clogged! \ncan' t Js\n", rs);

fpurge (pname);

}

exitO

;

31

PIPENAME

This function returns a unique file descriptor to be used as a
pipefile descriptor.

extern int sprintfO;
extern datexO;

static char fmt[30] = {

"_5602d5t02d5E02d::PIPE"

};

char *pipename() /* Return a pipe end name */

{

char tempC6i4];

int d[6];

datex(d);
sprintf (temp, fmt, d[3], d[M], d[5]);

return temp;

}

32

PNEXT (UC)

Pnext is used to maintain PIPE system input operations such as

opening the next input file in inlist and redirecting input from a

pipe.

extern char *inlist[];

extern int ni;

static int nextfile = 0;

int pnext ()

{

if (nextfile == ni)

return EOF;
else

return (freopen(inlist[nextf ile++] , "r", stdin));

}

33

POPEN (UC)

Popen is called to initiated PIPE'd communications. It is passed
the argCj argv, and rmpar parameters passed to the main.

extern runstr()

;

extern int ot,

ox;

extern char *pname, *pipename();

int popen(argc, argv, rmpar)

int argc, rmpar[];
char *argv[];

{

extern int _error;

static char pname2[64];

runstr(argc, argv, rmpar);

/* Reopen stdout to the appropriate file. */

if (ot == PIPE) {

sprintf (pname, "$s", pipenameO);
sprintf (pname2, "^3:4:100", pname);

if (freopen(pname2, "gw", stdout) == NULL) {

fprintf (stderr, "_error = 56d\n" ,
_error);

return NULL;

}

else
return 1 ;

}

else if (ot == FILEIO)
return (freopen(argv[ox] , "gw", stdout));

else if (ot == APPEND)
return (freopen(argv[ox] , "a", stdout));

else
return 2;

34

RUNSTR

Procedure for processing the runstring parameters. Runstr is

passed the argc, argv, and rmpar parameters and calls the routines
necessary to determine input and output types, build the input
and option lists, and find the output file descriptor (if any).

extern int it, ot, ox, no, ni;

extern intypeO,
outtype()

,

outf des()

,

bldinlstO,
bldoplstO;

runstr(argc, argv, rmpar)
int argc, rmpar[];

char *argv[];

{

it = intype(argc, argv, rmpar);
ot = outtype(argc, argv);
ox = outf des(argc, argv);

ni = bldinlst(argc, argv);
no = bldoplst(argc, argv);

35

SPOOLOFF (UC)

Same as dspoolof only output is sent to draft-quality printer,

extern int runitO alias "FmpRunProgram";
extern long cstrdscO;

static char runstr[80] = "XQ.SPOFF";

int spooloffO

{

char rpname[8], *rpnainptr, ofstrC30];
int dummy[5], error;

long fstr = cstrdsc(rpname);

return (runit(cstrdsc(runstr) , dummy, fstr));

}

36

SPOOLON (UC)

Same as dspoolon only output is sent to draft- quality printer.

extern int runitO alias "FmpRunProgram";
extern long cstrdscO;

static char runstr[80] = "RU.SPON";

int spoolonO

{

int dummy[5], error;
char rpname[10];

return (runit(cstrdsc(runstr) , dummy, cstrdsc(rpname)))

;

}

37

APPENDIX B: Sample Program Using PIPE/1000

This is the Ipr print spooler routine. It calls virtually all of

the routines and functions in the PIPE library. It can be used as

a model for other PIPE applications.

hpc,l,mc,"lpr File lister with headings and paging";

* > > > LPR < < < *

* »

* Description; *

* LPR is the file listing utility found on most UNIX(tm) systems. *

* This implementation is designed to employ most of the features *

* found in the UNIX version. It can be used for generating *

* "nice" copy on the scheduling terminal (default) or a desig- *

* nated line printer. *

* *

* Usage; *

* [ru] Ipr InputList [> output] -options *

* »

* Like most UNIX utilities, Ipr parameters are passed via options *

* in the runstring. Parameters beginning with a + or -- character *

* are regarded as options. If no •>' appears in the runstring *

* then the output is directed to the scheduling terminal and all *

* non-option parameters are treated as input files. *

It *

* Expl'anation of Arguments; *

* InputList »

* One to twenty file descriptors which make up the list of *

* files to be used as input. If a file cannot be opened, an *

* error message is printed on the output device and execution *

* continues with the next file. *

» «

* > output *

* if a device other than the user's terminal is to be used *

* for output then the file or device must be specified after *

* a •>' parameter. *

* »

* -options *

* -n line numbering *

* "h headings *

* «-t trailers *

* -en page width is n columns (132) *

* -Im page length is m lines (59) *

39

* ExampleCs); *

* Ipr heading.txt nicel.txt kp.dat > 6 -n rlko -c78 *
* list files heading.txt nicel.txt kp.dat to LU 6 (line *

* printer) with line numbering, lines are 78 characters long *

* and pages are 40 lines long. *

» *

* Ipr -h this.dat t-t *

* lists this.dat on the user's terminal with headings and *

* trailers. Note that options may appear anywhere in the *

* runstring. *

* *

* History; *

* 841017 - Version 1.0 completed NLS «

* 841018 - Column width now applies to entire output. NLS *
* 841023 ~ PIPE subroutines now enable prog to prog comm. NLS *

« *

* Language(s); *

* HP/C Rev. 1.6 *

» «

* Include Files; *

* <stdio.h> *

* <pipe.h> *

« *

* External Libraries; *

* Standard C library (C.LIB). «

* PIPE subroutine library (PIPE. LIB) »

« *

* Additional Comments; *

» *

* Author: Nick Seidenman *

* Site: OSRD Computing Facility; *

* Room B336, Physics *

* National Bureau of Standards *

* Gaithersburg, MD 20899 *

^include <stdio.h>
//include /usr/ prog/pipe.

h

main(argc, argv, rmpar)
mew doyu, rmpar[];
char *argv[]; {

int cf;

int input;

/* Start up */

40

if (popen(argc, argv, rmpar) == NULL) {

printfC'lpr: can't start due to clog in pipe\n");

printf ("5Es\n"
,
pname);

pclose(argc, argv, rmpar);

}

/* Set up outspooling. */

if (ot == STANDARD)
if (spoolonO) {

fprintf (stderr, "Ipr: can't open spool fileXn");

pclose(argc, argv, rmpar);

}

else
freopen(6, "w", stdout);

/* Initialize local parameters */

initO;

/* Diagnostics */

if (opt ions ("XX") != EOF) {

fprintf (stderr, "it:5&d ot:%d ni:56d no:56d ox:/td\n", it, ot, ni , no, ox);

fprintf (stderr, "input list:\n");
for (cf = 0; cf < ni; cf++)

fprintf (stderr, " 56s\n", inlist[cf]);
fprintf (stderr, "\noption list:\n");
for (cf = 0; cf < no; cf++)

fprintf (stderr, " 56s\n", optlist[cf])

;

fprintf (stderr, "\nPIPE end f ilename\n?s\n"
,
pname);

}

/* Now copy files specified in inlist to output. */

cf » 0;

while ((input = pnextO) != EOF) {

if (input != NULL)
filestuff (inlist[cf++]);

}

printf(" \f"); /* One last form feed for the road */

if (ot == STANDARD) {

spooloffO; /* Close spool file and queue for print. */

exitO

;

}

else

41

pclose(argc, argv, rmpar); /* Close her up! */

/* Global parameters */

int pageno,
columns,

IPP;

char datestr[12];

/* Page number */

/* Page width */

/* Lines per page */

/* Initialize global parameters */

/* Defaults */

initO
{

int mdy[6], i;

pageno = 1 ;

columns = 1 32;

Ipp = 60;

datex(mdy)

;

sprintf (datestr, " Jd/^&d/jSd" , mdy[0], mdy[1], mdy[2]);

if ((i = optionsC'C")) != EOF) {

columns = 0;

*optlist[i]++;

*optlist[i]++;
while (*optlist[i])

columns = (columns * 10) + (*optlist[i]++ ^ 48);

}

/* Change page width */

if ((i = optionsC'L")) != EOF) {

Ipp = 0;

*optlist[i]++;
*optlist[i]++;
while (*optlist[i]

)

Ipp = (Ipp * 10) + (*optlist[i]++ - 48);

}

/* Change page length */

if (optionsC'H") != EOF)
Ipp -= 3;

if (optionsC'T") != EOF)
Ipp -= 3;

/* Adjust page length for no heading */

/* Adjust page length for no tariler */

42

if (optionsC'N") != EOF) /* Adjust page width for line numbers »/

columns += 7;

extern int ifbrkO;

filestuff (fname) /* Copy files to stdout */

char * fname;

{

int lines = 1 ,

n;

int c, ccount, newpage = 0;

/* Determine if line numbering is requested */

if ((n = optionsC'N") + 1) == NULL)
ccount = 0;

else
ccount = 7

;

header (fname);
while ((c = fgetc(stdin)) != EOF && !ifbrk()) {

if ((lines % Ipp) == && newpage) { /* Bottom of page: do a trailer */

trailerO; /* and a header (unless suppressed). */

++pageno;
header (fname);
newpage = 0;

if (n)

printf ("565d: ", lines+ +);

}

if (c == '\n'
I I

ccount > columns) { /* EOL wrap-around and/ or */

ccount = 0;

if (n) { /* newline. */

ccount = 7

;

printf("\n566d: ", lines);

}

else
printf("\n ");

++lines;
newpage = 1

;

}

else {
/* Print the character. */

43

++ccount;
fputc(c, stdout);

}

while (lines++ % Ipp != 0)

printfC \n");

trailer();

pageno++;

/* If not on a page boundary when */

/* finished then print out as many */

/* filler newlines as needed. */

header(fn)
char *fn;

{

int i;

if (optionsC'H") == EOF)

return;

printfC \fOSRD Computing Facility");
i = columns - (31 + strlen(datestr))

;

while (i— > 0)
printfC ");

printf ("Printed 56s\n", datestr);
printf(" 56s\n \n ", fn);

/* Print heading for Ipr */

/* No heading requested - */

/* Heading body */

trailerO
{

int epos;
char pline[30];

if (options("T") == EOF)
return;

printf (" \n");
sprintf (pline, "Page 56

d"
, pageno);

epos = (columns - strlen(pline)) / 2;

while (epos—

)

printf (" ");

printf ("56s\n"
,
pline);

/* Print trailer for Ipr */

/* Trailer specified. */

/* Trailer body */

/* Center 'Page n' */

44

APPENDIX C: Potential C Incompatibilities

The following list is complete to our knov/ledge. It includes all

features which are defined in the C language, but as of this time

are not supported by HP/C.

Structures may not be initialized.

Structure tags, members, and user identifiers are taken from
the same name space.

All floating point arithmetic is done in the type specified by

the referenced operands. Floating numbers remain floating un-

less combined with double in which case arithmetic is done in

double.

Single characters (even in structures) are always allocated to
the uppermost byte of a 1 6-bit word.

Floats are not converted to double when functions are called.

The upper character of an integer contains the integers most
significant bits.

Reprinted with written permission from the HP/C Reference Manual, (c)

Copyright Corporate Computer Systems, October, 1983.

45

APPENDIX D: PIPE.H Include File

This file contains the macro definitions and external references
necessary for proper execution of PIPE'd programs. It should be
included right after the <stdio.h> file.

* pipe.h — include file for programs which use the

PIPE system.

Version 1.0 <8M1

1

19.0907>

OSRD Computing Facility

extern int datexO,
dspoolof

,

dspoolonO ,

options()

,

optval()

,

pnextO ,

popenO ,

spool off ,

spoolonO;

extern pcloseO

;

//define STANDARD 1

//define FILEIO 2

//define PIPE 3

//define MXLINL 150
//define MXPTRS 100
//define MXFDBS 6M

/*

The following objects are global
and are used either to save a value
so that multiple function calls are
eliminated or to save space or
both.

*/

extern int it, /* Input type */

47

ot, /* Output type */

ox, /* Output file des. index in argv */

no, /* Number of options */

ni; /* Number of input file descriptors */

extern char *inlist[], /* Input file list */

optlist[], / Option list */

pname; / PIPE file name */

fiU ,S. GOVERNMENT PRINTING OFFICE: 1985-461-105:20038

48

NBS-n4A (REV. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS/TN-1208

2. Performing Organ. Report No, 3. Publ ication Date

March 1985

4. TITLE AND SUBTITLE

PIPE/1000: An Implementation of Piping on an HP 1000 Minicomputer

5, AUTHOR(S)

N. L. Seidenman

6. PERFORMING ORGANIZATION (If joint or other thon NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State. ZIP)

Same as in item 6 above,

10. SUPPLEMENTARY NOTES

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

Piping is a system by which programs can communicate so as to coordinate their
respective functions in a synchronized effort aimed at the completion of a given
task. Piping is one of the strong points of the increasingly oopular operating
system UNIX, developed at Bell Laboratories and licensed by AT&T. This paper
describes an implementation of piping in a non-UNIX environment; in particular,
on an HP-1000 minicomputer.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

C; computer languages; piping; programming; UNIX.

13. AVAILABILITY

[X] Unlimited

I I

For Official Distribution. Do Not Release to NTIS

[X] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Q^ Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

50

15. Price

USCOMM-DC 6O43-P80

NBS_ ^_ Technical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad

range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardisation. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. As a special service to subscribers each issue contains complete citations to

all recent Bureau publications in both NBS and non-NBS media. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and

technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by

the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background
knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administradve Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper
copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

