NBS TECHNICAL NOTE 1200

A Fortran Version of the Quantitative EnergyDispersive Electron Beam X-ray Analysis Program FRAME C

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benelit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

> Absolute Physical Quantities ${ }^{2}$ - Radiation Research - Chemical Physics Analytical Chemistry - Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics - Electronics and Electrical Engineering ${ }^{2}$ - Manufacturing Engineering - Building Technology - Fire Research - Chemical Engineering ${ }^{2}$

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology - Computer Systems Engineering.

[^0]
A Fortran Version of the Quantitative Energy-Dispersive Electron Beam X-ray Analysis Program FRAME C

R.L. Myklebust and B.B. Thorne

Center for Analytical Chemistry National Measurement Laboratory National Bureau of Standards
Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

National Bureau of Standards Technical Note 1200
Natl. Bur. Stand. (U.S.), Tech. Note 1200, 42 pages (July 1984) CODEN: NBTNAE
U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1984

This publication was written as a supplement to NBS Technical Note 1106 entitled FRAME C: A Compact Procedure for Quantitative Energy- Dispersive Electron Probe X-ray Analysis. The original publication documented a BASIC language computer program for on-line use with a multi-channel analyzer. This publication documents a FORTRAN version of a similar program. The description of the quantitative analysis procedure is not reproduced in this publication. Readers should consult NBS Technical Note 1106 for this description. Together with the documented program listing, a description of the input and output of the program is presented, as well as an example.

The program is written in FORTRAN 77 for a VAX 11/780. A description of the program, a documented listing, and three examples are presented in this publication. Commentaries and criticisms, particularly from potential or actual users of the program, are welcomed.

A Fortran Version of the Quantitative Energy-Dispersive Electron Beam X-ray Analysis Program FRAME C
R. L. Myklebust and B. B. Thorne

Center for Analytical Chemistry
National Bureau of Standards
Gaithersburg, MD 20899

ABSTRACT

A Fortran listing of the quantitative electron microprobe analysis routine, FRAME C, is presented. The source code is extensively documented and there are short summaries of the various parts of the program. Examples are also presented to demonstrate the versatility of the program.

Key words: computer program; electron microprobe; energy-dispersive detector; quantitative analysis; x-ray spectra

I. Introduction

The program FRAME C has been previously described in NBS Technical Note llo6.l In that publication, the program was listed in BASIC. This publication contains a listing of the Fortran 77 version of the FRAME C program together with descriptions of the differences between the BASIC and Fortran versions.

The BASIC version was written to run on a specific multi-channel analyzer and had many instructions that were unique to that instrument. The Fortran version was written to operate on a computer that is independent from the multi-channel analyzer. This eliminates all of the analyzer specific instructions from the program and makes the program more universally useful. Anyone operating the program on a computer other than a VAX $11 / 780^{*}$ may have to make some alterations to the data file open statements. Also, the subroutine RDFIL was written to read a data file containing an entire spectrum as written by a Tracor Northern* TN 2000 multi-channel analyzer. The user will have to rewrite this subroutine to read the spectral data file as written by his multi-channel analyzer.

The program has been constructed to operate interactively with a minimum of user input. Information from each standard spectrum is processed and stored in a data file. This information is recalled by the program for quantitative analysis computations from the data file. Data files may be stored for future analyses if desired. Since these files are all named, the user may keep as many different files as he desires. The files can be changed at will by the user to include different elements, to change the analytical x-ray lines, or any of the analysis conditions. Some changes require either the same standard spectrum for an element, a new standard spectrum for the element, or merely a change in the list of analyzed elements if the standards are already in the data file.

Some of the equations, particularly those dealing with the relative line intensities, may have been changed in the Fortran version; however, the magnitude of these changes is not very large. As in the BASIC version, the program has been divided into a large number of subroutines. The program listing contains extensive documentation; therefore, we will not describe the individual subroutines.

* In order to describe adequately materials ana experimental procedures, it was necessary to identify commercial products by manufacturer's name or label. In no instance does such identification imply endorsement by the National Bureau of Standards nor does it imply that the particular products or equipment is necessarily the best available for that purpose.

A. Input

The input to $F R A M E \quad C$ was designed to minimize any operator interactions while at the same time making the program as flexible as possible. The main program determines the path the computation will take as governed by the user's answers to the questions presented by the program. The following section explains the possible answers to the questions in the order that they appear in the program. This is not necessarily the order for any particular analysis. The examples show the questions and answers in the proper order for typical analyses. Note that only the first letter of a Yes or No answer is required, and that the letter must be upper case.

1. Do you wish to create or add to a data file? (Y)es or (N)o

The program requires a data file for storing all the standards parameters calculated by the program. If this file already exists and no changes are required, answer the question (N)o. If the file does not exist, you must answer (Y) es. An existing file can also be changed by answering (Y) es.
2. Do you wish to add more standard data? (Y)es or (N)o

After each standard spectrum has been processed, this question is asked. Answer (Y)es if more standard spectra are to be processed or (N) o to begin computing the unknown spectra.
3. Do you wish to change the standard file? (Y)es or (N)o

After exiting from the computation of unknown spectra, you may alter the standards file by answering (Y)es. This will allow you to run additional standard spectra. If you only wish to change the list of elements analyzed and not the standards themselves, answer (N)o. Also answer (N) o if you have completed your analysis.
4. Do you wish to change the element list? (Y)es or (N)o

This question follows question 3 if that question is answered (N)o. A (Y) es here will allow you to change the list of elements analyzed in the unknown spectra. A (N) o at this point will terminate the program.
5. Enter name of standard file

If you are using a previously created standards data file (see question l) enter the file name of that file. If the standards data file has not been created, enter the file name that you want to create.

Enter the beam voltage in keV. This is stored in the data file and cannot be changed. All spectra, both standards and unknowns must be run at the same beam voltage.
7. Take-off angle =

Enter the $x-r a y$ emergence angle in degrees. This must also be the same for all spectra and cannot be changed once it has been stored in the data file.
8. Number of elements in standard $=$

Enter the total number of elements in the standard including all unanalyzed elements.
9. Enter Conc., At.No., Line code, \& Valence for each

For each element in the standard enter its mass fraction, atomic number, line code (l $=K-l i n e, 2=L-l i n e, 3=$ M-line, $0=$ not analyzed), and valence. The valence is used for computing oxygen by stoichiometry - if this calculation is not required, enter zeros for the valence.
10. A file for element \qquad already exists - do you wish to replace it?

Enter (Y) es if you wish to change the standard data for the element in question to the current values. Enter (N) o if you wish to retain the old values already stored in the file.
11. Do you wish to change the specimen elements? (Y) es or (N) o

If the unknown computation is entered directly (by answering (N) o to question l), you can still change the list of elements analyzed, provided that the standards for those elements are present in the data file, by answering (Y) es to this question. (N) o will run the elements as listed in the data file.
12. Number of elements in specimen $=$

Enter the total number of elements in the unknown specimen including any unanalyzed element. There may only be one unanalyzed element in an unknown.
13. Enter At. No. for each element (unanalyzed last)

Enter the atomic number for each element in the unknown specimen including any unanalyzed element. The preferred order is in order of increasing x-ray peak energy. Any unanalyzed element must, however, be last in the order.
14.

Spectrum File name?
Enter the file name of the data file containing the spectrum (standard or unknown). Typing Control Z terminates processing files and allows the user to alter standard files or to end the program.
15. Enter mean energies for two background points

The program requires two background regions. The user should enter the two energies that he would like the two regions centered around. The program will then set the regions using the same method as is used for setting peak regions and check to see if any peaks are within the regions. If there are interferences, the next two questions will be asked.
16. Energy _ interferes with a peak at energy

Do you wish to omit it? (Y) es or (N)o
If the interference is from a very small peak of a minor element, you may not wish to omit it - enter (N)o. (Y) es will delete that background point.
17. You have too few background points - Try again

If you omit a background point (question 16), you will not have enough points. The program will ask you for the background points again (question 15) - you will have to enter both background energies again, not just the one you omitted.

In addition, there are many warnings or errors that may be printed if the need should arise. Errors are generated by missing data or problems in opening, reading or writing data files. Warnings usually relate to analytical problems. In some cases, the warnings may help you to select better analytical operating conditions (beam voltage, x-ray line selection, etc.) and in other cases, nothing can be done (x-ray line may be too close to an x-ray absorption edge). In any case, the user should be aware of any conditions that may lead to less than optimum results.

The data file containing the spectrum has a special format on our system. The computer that created the file has only a l6-bit (2 bytes) word instead of the $32-$ bit (4 bytes) word on the VAX 11/780. Each data point, however, was written into 3 bytes. The data files were written in 512 byte blocks where the first block contains all the header material. If 2048 channels were stored, the next 8 blocks contain the 2048 least significant 2-byte words for each channel and the last 4 blocks contain the 2048 most significant bytes for each channel. The subroutine RDFIL reads this data file and puts the bytes for each data point together into a single number. Unless your spectrum data file has this format, you will have to write a subroutine to read the spectrum data file as formatted at your installation.
B. Output

The output should be reasonably self-explanatory. The standards calculation prints out the multi-element standard factor (MELS), (the computed k-value) for each analyzed element. For a pure element, this value is l.0. It is printed out for information only; the corrected standard intensity for each element is stored in the standards data file.

The table printed for analysis results contains the atomic number, the mass fraction, the absorption factor (F(X)), and the measured relative intensity ratio (k-value). The total for the analysis is also printed at the end.

C. Examples

In the examples listed below, the $>$ symbol precedes the user input. This symbol does not appear when actually executing the program. The Yes or No answers must be upper case; however, the file name could be either upper or lower case. The symbol ${ }^{\text {a } Z}$ is a Control Z.

Example 1. Create a standard file for two elements, gold and copper, from spectra of each pure element. Then analyze a gold-copper alloy.

Frame C:
Do you wish to create or add to a data file?
>Y
*** FRAMEC STANDARDS
Enter name of standard file
>STD
EO $=>20$.
Take-off angle $=>40$.
Number of elements in standard $=>1$
Enter Conc., At. No., Line code, \& Valence for each >1.,79,2,0
Spectrum File name? >GOLD20
GOLD STANDARD 20 KEV
Enter mean energies for two background points >4.3.9.2
MELS $=1.00000$
$79 \quad 2$ 28182.67 0
Do you wish to add more standard data?
>Y

```
*** FRAMEC STANDARDS
```

EO $=20.0$ Take-off angle $=40.0$
Number of elements in standard $=>1$
Enter Conc., At. No., Line code, \& Valence for each >l.,29,1,0
Spectrum File name? >COPP20
PURE COPPER20 KEV
Enter mean energies for two background points >4.3.9.2
MELS $=1.00000$
29 l $102433.3 \quad 0$
Do you wish to add more standard data?
$>\mathrm{N}$
*** FRAMEC ANALYSIS ***
Number of elements in specimen $=$
>2
Enter At. No. for each element (unanalyzed last)
$>79,29$
Spectrum File name? >AU60CU
GOLD 60 COPPER20 KEV
Enter mean energies for two background points >4.3.9.2

Z	C	$F(X)$	K
79	0.3994	0.9619	0.3296
29	0.6099	0.9799	0.6579

TOTAL $=1.0093$
*** FRAMEC ANALYSIS
Spectrum File name? $>^{\wedge} Z$
Do you wish to change the standard file? $>\mathrm{N}$
Do you wish to change the element list? $>\mathrm{N}$

Example 2. Analyze a gold-copper alloy using an existing standard file.

Frame C:
Do you wish to create or add to a data file? $>N$
*** FRAMEC ANALYSIS ***
Enter name of standard file >STD
Do you wish to change the specimen elements? $>N$
Spectrum File name? >GOLD20
GOLD STANDARD 20 KEV
Enter mean energies for two background points >4.3.9.2
$\begin{array}{llll}Z & C & F(X)\end{array}$
$79 \quad 1.0000 \quad 0.9619 \quad 1.0000$
$29 \quad 0.0003 \quad 0.9799 \quad 0.0004$
TOTAL $=1.0003$
*** FRAMEC ANALYSIS
Spectrum File name? $>^{\wedge} Z$
Do you wish to change the standard file?
$>N$
Do you wish to change the element list?
$>N$

Example 3. Procedure for optionally changing elemental data in the standard file and then analyzing the gold-copper alloy.

Frame C:
Do you wish to create or add to a data file?
>Y

*** FRAMEC STANDARDS

Enter name of standard file
>STD
E0 $=20.0$ Take-off angle $=40.0$
Number of elements in standard $=>1$
Enter Conc., At.No., Line code, \& Valence for each >1.,79,2,0
Spectrum File name? >GOLD20
GOLD STANDARD 20 KEV
Enter mean energies for two background points >4.3.9.2
A file for element 79 already exists - do you wish to replace it? $>N$ Do you wish to add more standard data?
>Y
*** FRAMEC STANDARDS
EO $=20.0$ Take-off angle $=40.0$
Number of elements in standard $=>1$
Enter Conc., At. No., Line code, \& Valence for each >1., 29,1,0
Spectrum File name? >COPP20
PURE COPPER20 KEV
Enter mean energies for two background points >4.3.9.2
MELS $=1.00000$
A file for element 29 already exists - do you wish to replace it? >Y Do you wish to add more standard data?
$>N$
*** FRAMEC ANALYSIS ***
Number of elements in specimen $=$ >1

Enter At. No. for each element (unanalyzed last) >79.29
Spectrum File name? >AU60CU
GOLD 60 COPPER20 KEV
Enter mean energies for two background points >4. 3.9 .2
MELS $=1.00000$

Z	C	$F(X)$	K
79	0.3994	0.9619	0.3296
29	0.6099	0.9799	0.6579

TOTAL $=1.0093$
FRAMEC ANALYSIS
Spectrum File name? >^Z
Do you wish to change the standard file? >N
Do you wish to change the element list? $>\mathrm{N}$
l. Myklebust, R.L., Fiori, C.E. and Heinrich, K.F.J., FRAME C: A Compact Procedure for Quantitative Energy-Dispersive Electron Probe X-ray Analysis, NBS Tech. Note ll06, (l979).
IV. Program Listing

FRAME C MAIN PROGRAM
C Program for quantitative electron probe microanalysis.
C Written by R.L. Myklebust \& B. Thorne
C National Bureau of Standards
C Fortran IV+ for a VAX $11 / 780$ vers. VMS 3.0
CHARACTER*10 NAM CHARACTER*I NY,NYE,NYS
1 FORMAT (Al)
TYPE *,' Frame C:' TYPE 5
5 FORMAT(' Do you wish to create or add to a data file? ', \$) ACCEPT $1, N Y$

```
Add to or create a data file to store the standards information.
```

10 IOPT=0
IF (NY.EQ.'Y') THEN
20 CALL FRCSTD(NAM,IOPT) !standards subroutine TYPE 25
25 FORMAT(' Do you wish to add more standard data? ', \$) ACCEPT l,NYE IF (NYE.EQ.'Y') GO TO 20 IOPT=-1
END IF
30 CALL FRC(NAM, IOPT) !specimen subroutine IF (IOPT.EQ.l) GO TO 30
TYPE 35
35 FORMAT(' Do you wish to change the standard file? ', \$) ACCEPT $1, N Y$
IF (NY.EQ.'Y') GO TO 10
TYPE 40
40 FORMAT(' Do you wish to change the element list? ',\$) ACCEPT l,NYS IF (NYS.EQ.'Y') GO TO 30 STOP END

C Main FRAMEC program for standards
C

```
    SUBROUTINE FRCSTD(NAM,IOPT)
    INCLUDE 'BLNK.CMN'
INCLUDE 'CONC.CMN'
INCLUDE 'SPECTM.CMN'
INCLUDE 'ENER.CMN"
INCLUDE 'KFAC.CMN"
INCLUDE 'ROIC.CMN'
C
            INTEGER*2 ZT,LT,QT,NKEY
CHARACTER* 10 NAM
DIMENSION QM(15)
TYPE 5
5 ~ F O R M A T ( ` ' 口
IF(IOPT.LT.I) THEN
    TYPE l0
    FORMAT('0 Enter name of standard file ',$)
    READ (5,20) NAM
    FORMAT (Al0)
    END IF
    IOPT=1
    Open the standards data file if it exists - if it does
    not exist then create it
    OPEN(UNIT=10,FILE=NAM,STATUS='UNKNOWN',ORGANIZATION=' INDEXED'
    l ,FORM='UNFORMATTED',ACCESS=' KEYED',KEY=(1:2:INTEGER)
    2 ,RECL=3,RECORDTYPE= 'VARIABLE",IOSTAT=IOS,ERR=995)
    READ(UNIT=10,KEY=200,KEYID=0,IOSTAT=IOS,ERR=25) ZT,E0,TOA
25 IF(IOS.EQ.36) THEN !if new file, ask for input
    TYPE 30
30 FORMAT(' EO = ',$)
    ACCEPT *,E0
    TYPE 40
    FORMAT(' Take-off angle = ',$)
    ACCEPT * ,TOA
    NK EY=200
    WRITE(UNIT=10,IOSTAT=IOS,ERR=990) NKEY,E0,TOA
    ELSE
    IF(IOS.NE.0) GO TO 980
    TYPE 45,E0,TOA !if old file, print out data
    FORMAT(" EO = ',F5.l,' Take-off angle = "F4.l)
    END IF
    CALL COEF(TOA) !get coefficients
    TYPE 50
50 FORMAT(' Number of elements in standard = ',$)
    ACCEPT *,N
    TYPE 60
60 FORMAT(' Enter Conc., At.No., Line code, & Valence for each')
    DO 70 I= l,N
70 ACCEPT *,XC(I),Z(I),L(I),Q(I)
    Z (N+1)=4 !Be for detector window
    Z (N+2)=14 !Si for detector dead layer
    Z (N+3)=79 !Au for detector
    NX=0
    DO }80\mathrm{ I=N+l,N+3
```

$L(I)=0$
DO $90 \mathrm{I}=1, \mathrm{~N}+3$
CALL EDGES(I) !calculate absorption edges
IF(L) I).GT.O) THEN
NX=NX+1
CALL LINES(I) !calculate x-ray line energies
LI=L (I)
IF(Z(I).NE.29) GO TO 81
IF (EL (LI, I).LT.1.) THEN TYPE 85,Z(I)
85 FORMAT(' The line of ',I3,' is less than lkeV') GO TO 999
END IF
IF (E (LI*LI,I).GE.EO) THEN
TYPE 87,Z(I)
87 FORMAT(' The excitation potential of',I3,' is greater',
l^{\prime} than EO')
GO TO 999
END IF
END IF
CONTINUE
CALL RDSPEC !get spectrum
CALL ROI (NX) !set windows for each element
N3=1 !set number of iterations to l
CALL OCOEF !calculate overlap factors
CALL BKG !calculate background
CALL OLAPS !correct for overlaps
DO $100 \mathrm{I}=1, \mathrm{NX}$
$\mathrm{XM}(\mathrm{I})=\mathrm{W}(\mathrm{I})$
CALL MATRIX(QM,N3) !do matrix corrections on standards

DO $130 \mathrm{I}=1, \mathrm{NX}$
READ (UNIT=10,KEY=Z (I) ,KEYID=0,IOSTAT=IOS,ERR=110) ZT,LT,XT,QT
110 IF(IOS.EQ.36) THEN
WRITE (UNIT=10,IOSTAT=IOS, ERR=990) Z(I), L(I), XM(I), Q (I)
TYPE *, Z(I),L(I),XM(I), Q(I)
ELSE
TYPE 115,2T
115 FORMAT(' A file for element ',I3,' already exists - do you'
1 ' wish to replace it? ', \$)
ACCEPT 120,NY
120 FORMAT (A1)
IF (NY.EQ.'Y') THEN
REWRITE(UNIT=10, IOSTAT=IOS,ERR=990)Z(I),L(I),XM(I), Q (I)
END IF
END IF
130 CONTINUE
GO TO 999
980 TYPE 985,IOS
985 FORMAT(' Error reading file - error \# = ', I5)
GO TO 999
990 TYPE 991,IOS
991 FORMAT(' Error writing file - error \# = ', I5)

GO TO 999

995

TYPE 996,IOS
FORMAT(' Error opening file - error \# = 'I5)
CLOSE (UNIT=10)
RETURN
END

1 FORMAT (Al)
TYPE 5
5 FORMAT('
IF (IOPT.EQ.0) THEN TYPE 10
FORMAT('0 Enter name of standard file ', \$) $\operatorname{READ}(5,20)$ NAM FORMAT (A10) TYPE 15
15 FORMAT('0 Do you wish to change the specimen elements' 1,'? ', \$) ACCEPT l,NY IF (NY.EQ.'Y') IOPT=-1
END IF
Open the standards file - this file is created FRCSTD and contains all information on the standards for the analysis

OPEN (UNIT=10,FILE=NAM,STATUS='OLD', ORGANIZATION=' INDEXED',
1 FORM = 'UNFORMATTED', ACCESS = 'KEYED', KEY= (1:2:INTEGER), RECL=3,
2 RECORDTYPE='VARIABLE', IOSTAT=IOS,ERR=950)
Read beam voltage and take-off angle - then number of elements
READ (UNIT $=10, \mathrm{KEY}=200, \mathrm{KEYID}=0$, IOSTAT=IOS,ERR=990) NKEY,EO,TOA
READ (UNIT=10, KEY=201,KEYID=0, IOSTAT=IOS, ERR=25) NKEY,N
IF ((IOS.EQ.0).AND.(IOPT.EQ.-1)) THEN
GO TO 27
ELSE IF(IOS.EQ.36) THEN
TYPE 30 !create or change element table
FORMAT (' Number of elements in specimen $=$ ', $\$$)

ACCEPT *,N

TYPE 40
40 FORMAT(' Enter At. No. for each element (unanalyzed last)') ACCEPT *, (Z(I), I=1,N)
50 IF (IOPT.EQ.-1) THEN ! rewrite the table REWRITE (UNIT=10, IOSTAT=IOS,ERR=980) NKEY,N
READ (UNIT=10, IOSTAT=IOS, ERR=940) NKEY
REWRITE (UNIT=10, IOSTAT=IOS,ERR=980) NKEY, (Z(I), I=1,N)
ELSE !create the element table
NKEY=201
WRITE (UNIT=10,IOSTAT=IOS,ERR=980) NKEY,N
NKEY=202
WRITE (UNIT=10, IOSTAT=IOS,ERR=980) NKEY,(Z(I),I=1,N)
END IF
ELSE
IF (IOS.NE.O) GO TO 970
READ (UNIT=10,KEY=202,KEYID=0,IOSTAT=IOS, ERR=990)
1 NKEY,(Z (I) , I = $1, N$)
END IF
IOPT=1
Read in the standards data for each element
$\mathrm{NX}=\mathrm{N}$
DO $100 \mathrm{I}=\mathrm{l}, \mathrm{N}$
READ (UNIT=10,KEY=Z (I) ,KEYID=0,IOSTAT=IOS,ERR=60)NKEY,L(I),
1 QM(I), Q(I)

60 IF (IOS.EQ.36) THEN
IF (I.EQ.N) THEN
$\mathrm{NX}=\mathrm{N}-1$
$\mathrm{L}(\mathrm{I})=0$
ELSE
TYPE 65,Z(I)
65 FORMAT(' Standard file missing for element ',I3)
GO TO 999
END IF
ELSE
IF(IOS.NE.0) GO TO 960
END IF
100 CONTINUE
$Z(N+1)=4$! Be for detector window
$Z(N+2)=14$!Si for detector window
$Z(N+3)=79 \quad$: Au for detector window
DO $110 \quad \mathrm{I}=\mathrm{N}+1, \mathrm{~N}+3$
110 L (I) $=0$
CALL COEF(TOA) !get coefficients
DO 120 I=1,N+3
CALL EDGES(I) !calculate absorption edges IF (L(I).GT.0) THEN
CALL LINES(I) !calculate x-ray line energies
END IF
120 CONTINUE

CALL RDSPEC(IOPT) !get the spectrum IF(IOPT.EQ.-l) GO TO 999
CALL ROI (NX) !set peak windows for each element N3=3
CALL OCOEF !calculate overlap coefficients CALL MATRIX(QM,N3) !do matrix corrections ZAF GO TO 999

C

940 TYPE 945,IOS
945 FORMAT(' Error reading element list - error \# = ',I5) GO TO 999
950 TYPE 955,IOS
955 FORMAT(' Error opening data file - error \# = ',I5) GO TO 999
960 TYPE 965,IOS
965 FORMAT(' Error reading element entry - error \# = ', I5) GO TO 999
970 TYPE 975,IOS
975 FORMAT(' Error reading number of elements - error \# = ', I5) GO TO 999
980 IF(IOS.EQ.53) THEN !if record does not exist, change IOPT=1 ! to write a new record. GO TO 50 !try again ELSE
TYPE 985,IOS
985 FORMAT(' Error writing no. of elements or element list -' 1 ,'error \# = ', I5) END IF GO TO 999
990 TYPE 995,IOS
995 FORMAT(' Error reading EO \& TOA - error \# = ', I5)
999 CLOSE (UNIT=10) RETURN END

SUBROUTINE ABSFAC(E1,F1,T2)
INCLUDE 'BLNK.CMN' INCLUDE 'GEOM.CMN'

C
$\mathrm{X} 3=\mathrm{T} 2 *$ Q1 !absorption coef * csc (take-off angle) $\mathrm{GA}=(\mathrm{EO} * * 1.65-\mathrm{El} * * \mathrm{l} .65) *$ Q2 ! gamma in Heinrich's eqn. $\mathrm{Fl}=1 /(\mathrm{l}+1.2 \mathrm{E}-6 * \mathrm{GA} \mathrm{X} 3) * * 2$! $\mathrm{f}(\mathrm{chi})$
RETURN
END

SUBROUTINE AREA(I,E7,El,Ol,E8,E9)
C
Absorption factor - El is the excitation potential
$\mathrm{X} 3=\mathrm{T} 2 *$ Q1 !absorption coef * csc (take-off angle) -

Compute the area of the Gaussian peak that is integrated within the energy window for each element.

INCLUDE 'ROIC.CMN'
E3=EHI(I) !upper energy of window
E2=ELOW(I) !lower energy of window
$\mathrm{X} 2=(\mathrm{E} 2-\mathrm{E} 7) / \mathrm{S} 1(\mathrm{E} 1) / 1.4142$!factor required by integration routine
CALL GAUS (E8,E9,X2) !integrate low energy side
CALL ICHG(E7,G4) !add in incomplete charge effect
$\mathrm{TE}=\mathrm{ABS}(\mathrm{E} 8) / 2$!integral from low to peak energy
X2=(E3-E7)/Sl(El)/l.4l42 !factor required by integration routine
CALL GAUS (E8,E9,X2) !integrate high energy side
E8=ABS (E8)/2 !integral from peak to high energy
IF (E2.LT.E7) GO TO 100
Ol=E8-TE ! window on high side of peak
RETURN
IF (E3.GT.E7) GO TO 200
Ol=TE-E8+G4 !window on low side of peak RETURN

This is the FRAME C background calculation

SUBROUTINE BKG
INCLUDE 'ABSB.CMN'
INCLUDE 'BLNK.CMN'
INCLUDE 'CONC.CMN'
INCLUDE 'ENER.CMN'
INCLUDE 'KFAC.CMN'
INCLUDE 'ROIC.CMN'
DIMENSION $\mathrm{X}(2), \mathrm{Y}(2), \mathrm{U}(2)$
DO $40 \mathrm{I}=\mathrm{l}, \mathrm{NB}$
E2=ELOW(I) !low energy of bg window
E3=EHI(I) !high energy of bg window
T5 = CNTS (I) !counts in bg window
$\mathrm{Xl}=\mathrm{T} 5 /(\mathrm{E} 3-\mathrm{E} 2+.01) / 100$. ! counts per channel in bg window
El=(E2+E3)/2. !centroid energy of bg window
$\mathrm{T} 2=0$.
DO $10 \mathrm{~J}=1, \mathrm{~N}$
CALL MAC(El,FA,J)
T2=T2+XC(J)*FA ! concentration average of abs. coef. CONTINUE
CALL DET(ED,El,N) !detector efficiency ED
CALL ABSFAC(El,Fl,T2) ! f(chi) Fl
Tl=ED*Fl/El
$X(I)=E 0-E l$
$Y(I)=X l / T l$
$\mathrm{U}(\mathrm{I})=\mathrm{X}(\mathrm{I}) * * 2$
CONTINUE

Set up matrix for fit to background
$\mathrm{D}=\mathrm{X}(1) * \mathrm{U}(2)-\mathrm{U}(1) * \mathrm{X}(2)$
XKl $=(Y(2) * X(1)-Y(1) * X(2)) / D 1$
$X K 2=(Y(1) * U(2)-Y(2) * U(1)) / D 1$
IF(L(l).EQ.20) GO TO 999 !exit if determining detector param.
DO $60 \mathrm{I}=1, \mathrm{~N}$
IF(L(I).EQ.0) GO TO 60 !skip if unanalyzed element
$\mathrm{Ll}=\mathrm{L}$ (I)
El=EL(Ll,I) !energy of peak
T5 = CNTS (I $+N B$) ! counts in peak window
T2 $=0$ 。
DO $50 \mathrm{~J}=1, \mathrm{~N}$
CALL MAC (El,FA, J)
$T 2=T 2+X C(J) * F A$! concentration average of peak abs. coef. CONTINUE
CALL DET(ED,El,N) !detector efficiency for peak energy
LEG=Ll*Ll
E4=E(LEG,I) !excitation potential for peak
CALL ABSFAC(E4,Fl,T2) !f(chi) for peak
Tl=ED*Fl/El
$\mathrm{Xl}=\mathrm{E} 0-\mathrm{El}$
Gl=Tl*(XKl*XI*Xl+XK2*Xl) ! bg per channel at peak energy $G S=100 . *(E H I(I+N B)-E L O W(I+N B)+.01)$! number of channels in !window
$X M(I)=T 5-G l * G S \quad!b g$ corrected peak intensity
TYPE *,'BKG ',T5,Gl,GS,ED,Fl
CONTINUE
RETURN
END

SUBROUTINE COEF(TOA)
INCLUDE 'KBKA.CMN'
INCLUDE 'ATWT.CMN'
INCLUDE 'GEOM.CMN'
INCLUDE 'DETECT.CMN'

```
Coef. for calculations
```

Kb/Ka ratios
DATA VB/10*0.,.011,.027,.04,.055,.066,.078,.085,.097,.108
2,.114,.115,.117,.119,.119,.121,.121,.121,.123,.1235,.125/
Table of atomic weights
DATA WA/1.,4.,6.94,9.013,10.82,12.011,14.007,16.,19.,20.18,22.99 $2,24.31,26.98,28.09,30.97,32.06,35.45,39.95,39.1,40.08,44.96,47.9$ $3,50.94,52 ., 54.94,55.85,58.93,58.71,63.54,65.37,69.72,72.59,74.92$ $4,78.96,79.91,83.8,85.47,87.62,88.91,91.22,92.91,95.94,99 ., 101.1$ 5,102.9,106.4,107.9,112.4,114.8,118.7,121.8,127.6,126.9,131.3 $6,132.9,137.3,138.9,140.1,140.9,144.2,145 ., 150.4,152 ., 157 ., 158.9$ $7,162.5,164.9,167.3,168.9,173 ., 175 ., 178.5,180.95,183.85,186.2$

```
8,190.2,192.2,195.1,196.97,200.6,204.4,207.2,209.,210.,210.,222.
9,223.,226.,227.,232.,231.,238.,237.,244.,243.,247.,247.,251.
0,254./
Q3=149. !resolution of Si detector (eV on MnKa)
Q2=90. !beam incidence angle
P6=1.57E-3 !thickness of Be window (fitted from C)
P7=9.76E-6 !thickness of Si dead layer (fitted)
Q3=Q3**2-14737.5 !noise factor for peak width calc.
Ql=1/SIN(TOA/57.2958) !cSc(take-off angle)
Q2= SIN(Q2/57.2958) !sine of beam incidence angle
RETURN
END
```

SUBROUTINE CONAVE(I,S2,T2,X2)
INCLUDE 'BLNK.CMN'
INCLUDE 'CONC.CMN'
INCLUDE 'ZAFF.CMN'

Concentration ave. factors
S2=0.
$\mathrm{X} 2=0$ 。
$\mathrm{T} 2=0$ 。
DO $100 \mathrm{~J}=1, \mathrm{~N}$
S2=S2+XC(J)*S(J,I) !conc. ave. of stopping power
$\mathrm{X} 2=\mathrm{X} 2+\mathrm{XC}(\mathrm{J}) * V(\mathrm{~J}, \mathrm{I})$!conc. ave. of R factor
$T 2=T 2+X C(J) * H(J, I)$!conc. ave. of absorption coef.
100 CONTINUE
999 RETURN
END

SUBROUTINE DET(ED,El,N) INCLUDE 'DETECT.CMN'

C Detector efficiency
$\mathrm{I}=\mathrm{N}+1$
CALL MAC(El,FA, I) !abs. coef. for Be T3=FA*l.82*P6 !linear absorption in Be window $\mathrm{I}=\mathrm{N}+3$
CALL MAC(El,FA, I) !abs. coef. for Au
T4=FA*19.3*8.E-7 !linear absorption in Au layer
$\mathrm{I}=\mathrm{N}+2$
CALL MAC(El,FA,I) !abs. coef. for Si
high en
that may be lost by passing through the detector without being
absorbed. (detector is 0.3 cm thick)
$\operatorname{ED}=\operatorname{EXP}(-\mathrm{T} 3-\mathrm{T} 4-\mathrm{FA}$ *2.33*P7)*(1-EXP(-FA*2.33*.3))
RETURN

SUBROUTINE DIST(S3)
INCLUDE 'ATWT.CMN'
INCLUDE 'BLNK.CMN'
INCLUDE 'CONC.CMN'
INCLUDE 'ENER.CMN'

Compute element by difference or stoichiometry
C
S3 $=0$ 。
DO $20 \mathrm{I}=1, \mathrm{~N}$
IF (L(I).EQ.O)GO TO 20 !do not sum unanalyzed element IF (XC(I).GT.O.)GO TO 10 ! do not sum any negative conc. $X C(I)=0$ 。
10 S3=S3+XC(I) !S3 is the sum of the calculated conc.
20 CONTINUE
IF(L(N).GT.0)GO TO 999 !skip if all elements analyzed
IF (Q(l).GT.O.)GO TO 30 !skip if stoichiometry calc.
$X C(N)=1-S 3$!calc. last element by difference
S3=1
GO TO 999
Stoichiometry calculation
$30 \times C(N)=0$
DO $50 \mathrm{I}=1, \mathrm{~N}-1$
F3=.5* $\mathrm{XG}(\mathrm{I}) * \mathrm{Q}(\mathrm{I}) * W A(\mathrm{Z}(\mathrm{N})) / \mathrm{WA}(\mathrm{Z}(\mathrm{I}))$!calc. oxygen by stoic.
$X C(N)=X C(N)+F 3$!sum all oxygen concentrations
50 CONTINUE
S3=S3+XC(N) !add oxygen conc. to sum of elements
999 RETURN
END

SUBROUTINE EDGES(I)
INCLUDE 'BLNK.CMN'
INCLUDE 'ENER.CMN'
Absorption edges
All edges are computed for each element whether they exist or not. This fit is NOT good below lkeV.

DIMENSION TD (4), XE $(3,9)$
DATA XE/-.0397931,2.423,-5.5091,-.033916,2.82526,-9.03526, $2-.0865397,3.32315,-10.2505,-.228343,4.31172,-12.0025,1.25179$,
$3-7.838,11.5803, .834903,-4.14925,3.33802, .442217,-.979241$,
$4-3.15348, .25141, .931913,-8.03561, .272951, .688906,-7.4243 /$
$2 R=Z(I) \quad$ atomic number (int->real)
Zl=LOG (ZR)
DO $100 \mathrm{Ml}=1,9$!calc. all edges for element $Z(I)$
$E(M 1, I)=\operatorname{EXP}(Z 1 * Z 1 * X E(1, M 1)+X E(2, M 1) * Z 1+X E(3, M 1))$

IF (M1.EQ.l) GO TO 100
IF(E(l,I).GT.4)GO TO 100 !skip very low energy L and M lines $\mathrm{E}(\mathrm{Ml}, \mathrm{I})=0$. $!\mathrm{K}$-edge is less than 4 keV
100
CONTINUE
RETURN
END

SUBROUTINE ESP (I,N,E6,E7,S7,S8,YD)
C

```
    Ol=0.
    IF(E7.LT.l.838)GO TO 999 !skip if peak E<Si energy
    El=E7
    E7=E7-1.74 !energy of escape peak
    IF(E6.LT.E7-YD.OR.E6.GT.E7+YD) THEN !see if escape peak
                                    !interfers
    II =N+2
    CALL MAC(El,FA,II) !abs. coef. of line in Si
    S7=.5*(1-327.9/FA*LOG(1+FA/327.9))
    S8=.038*S7/(1-.038*S7) !relative weight of escape peak
    E7=Sl(E7) !sigma (width) of escape peak
    CALL AREA(I,E7,El,Ol,E8,E9) !integral of overlap portion
    END IF
999 RETURN
    END
```

```
    Wl=(V(I,I)*S2)/(S(I,I)*X2) !atomic number factor
```

 Wl=(V(I,I)*S2)/(S(I,I)*X2) !atomic number factor
 F(2,I)=F1 !f(chi) for specimen
 F(2,I)=F1 !f(chi) for specimen
 F2=0
 F2=0
 DO 200 J=l,N
 DO 200 J=l,N
 IF(AP(I,J).EQ.O)GO TO 200 !skip if no fluorescence correction
 IF(AP(I,J).EQ.O)GO TO 200 !skip if no fluorescence correction
 T3=0.
 T3=0.
 DO 100 Il=1,N
 DO 100 Il=1,N
 T3=T3+XC(Il)*H(II+l5,J) !abs. coef. of exciting line in spec.
 T3=T3+XC(Il)*H(II+l5,J) !abs. coef. of exciting line in spec.
 100 CONTINUE
100 CONTINUE
Xl=Q1*T2/T3
Xl=Q1*T2/T3
GB=333000./((EO**l.65)-(El**l.65))/T3*Q2
GB=333000./((EO**l.65)-(El**l.65))/T3*Q2
F4=LOG(1+X1)/Xl+LOG(1+GB)/GB
F4=LOG(1+X1)/Xl+LOG(1+GB)/GB
F2=F2+XC(J)*O(I,J)/T3*F4 !sum of fluor. of element I
F2=F2+XC(J)*O(I,J)/T3*F4 !sum of fluor. of element I
200 CONTINUE

```
200 CONTINUE
```

999 RETURN
END

FUNCTION FT2(El)
INCLUDE 'BLNK.CMN'
INCLUDE 'CONC.CMN'

FT2=0.
DO $100 \mathrm{I}=1, \mathrm{~N}$
CALL MAC(El,FA,I) !calculate absorption coef. for energy El FT2=FT2+XC(I)*FA !conc. average of absorption coef.
100 CONTINUE
RETURN
END

SUBROUTINE GAUS (E8,E9,X2)
C
C Integrate Gaussian -
this routine, when it is called with the proper arguments, will integrate a Gaussian between two points symetrically placed with respect to the centroid of the Gaussian.

S27 $=-27$
Tl=2.**S 27
IF (X2.EQ.0) GO TO 900
$\mathrm{Yl}=\mathrm{ABS}$ (X2)
$\mathrm{Y} 2=\mathrm{Y} 1 * \mathrm{Y} 1$
IF(Yl.LE.l)GO TO 100
YC=2.**3.5
$\mathrm{Ul}=.83 * \mathrm{YC}$
S6=2.** (YC*YC-8)
IF (Yl.LE.Ul)GO TO 400
E8=1.
E9 $=0$ 。
GO TO 300
$100 \mathrm{~W} 2=0$.
$\mathrm{Al}=1$.
$\mathrm{T} 2=1$ 。
$\mathrm{P} 2=2$ * Y 2
$200 \mathrm{Al}=\mathrm{Al}+2$
T2=P2*T2/A1
S2=T2+S2
IF (T2.GE.Tl)GO TO 200
$\mathrm{E} 8=(\mathrm{S} 2+1) * 1.12838 * \mathrm{Y} 1 * \operatorname{EXP}(-\mathrm{Y} 2)$
E9=1-E8
300 IF (X2.GE.0) GO TO 999
$E 9=2-E 9$

```
    400 F2=0
    GS=1
    Fl=2*Xl
    \(\mathrm{GI}=2\) * \(\mathrm{Y} 2+1\)
    P3=F1/GI
    A2 \(=1\).
    \(\mathrm{YB}=\mathrm{GI}+4\)
    500
    (A2 \(2+1\)
    F3=YB*Fl+F5*F2
    \(\mathrm{G} 3=\mathrm{YB} * \mathrm{GI}+\mathrm{F} 5 * \mathrm{GS}\)
    \(\mathrm{F} 4=\mathrm{F} 3 / \mathrm{G} 3\)
    IF (ABS (1-F4/P3).GT.T1)GO TO 800
    IF (P3.GT.F4) GO TO 700
    IF (G3.LT.56) GO TO 600
    F3 3 F3/S6
    G3 3 G \(3 /\) S 6
    Fl=Fl/S6
    GI=GI/S6
    \(600 \mathrm{~F} 2=\mathrm{F} 1\)
    GS \(=\) GI
    Fl=F3
    GI=G3
    A \(2=\mathrm{A} 2+2\)
    \(Y B=Y B+4\)
    \(\mathrm{P} 3=\mathrm{F} 4\)
    GO TO 500
    700 F4=P3
    800 E9 \(=\) F4*EXP (-Y2)*1.12838/2
    E8=1-E9
    GO TO 300
    900 E8=0.
    E9=1.
999 RETURN
    END
```

SUBROUTINE ICHG (E7,G4,J)
Compute incomplete charge correction

```
    INCLUDE 'ROIC.CMN'
```

 E2=ELOW(J+NB) !low energy side of window
 E3=EHI (J+NB) !high energy side of window
 G4 \(=0\).
 \(\mathrm{Xl}=6\) 。
 \(\mathrm{x} 3=.1\)
 IF(E7.GE.6.4)GO TO 10 : select the constants for the fit
 \(\mathrm{Xl}=.86 * \mathrm{E} 7 * \mathrm{E} 7-7.44 * \mathrm{E} 7+18.34\)
 X3=-.0168*E7*E7+.141*E7-.115
 IF (X3.LE.0)GO TO 999 !if X3 too small, exit
 10 IF(E2.GE.E7)GO TO 999 lexit if E2 on high energy side
$\mathrm{X} 2=(\mathrm{E} 2-\mathrm{E} 7) / \mathrm{X} 3$
$\mathrm{G} 4=\mathrm{Xl} * \mathrm{X} 3 * \mathrm{X} 3 *(1-\mathrm{EXP}(\mathrm{X} 2) *(1-\mathrm{X} 2))$! result for low energy side of
!window

IF (E3.GE.E7)GO TO 999 !exit if E3 on high energy side $\mathrm{X} 2=(\mathrm{E} 3-\mathrm{E} 7) / \mathrm{X} 3$
$\mathrm{G} 4=\mathrm{G} 4-\mathrm{Xl} * \mathrm{X} 3 * \mathrm{X} 3 *(1-\operatorname{EXP}(\mathrm{X} 2) *(1-\mathrm{X} 2))$! result for high energy side RETURN END

SUBROUTINE LINES(I)
INCLUDE 'BLNK.CMN'
INCLUDE 'ENER.CMN'

C

Line energies

All lines are computed for each element whether they exist or not. This fit is NOT good for lines below lkeV.

DIMENSION T(3,17)
DATA T/-.0199726,2.22412,-5.1774,-.123941,3.29533,

$$
2-9.75836,-.47555,6.84662,-20.0833,-.060101,2.52781,-5.6437,
$$

$$
3-.117102,3.22414,-9.58711,-.192466,3.83158,-10.9293,-.197431,
$$

$$
44.01718,-11.3323,-.00322523,2.48613,-8.37742, .035676,2.29113,
$$

$$
5-8.09392, .00288553,2.49221,-8.60965, .0957107,1.69157,-6.76302
$$

$$
6, .092961,1.7559,-6.81839, .0505888,2.0035,-7.30182,-.390705,
$$

$$
76.17432,-19.0119,-.386042,6.14822,-18.7034,-.603132,7.75598
$$

$$
8,-21.4878, .322877, .102358,-5.58269 /
$$

$$
R Z=Z(I)
$$

Zl=LOG(RZ) $\quad \mathrm{l}$ log of atomic number of element
DO $100 \mathrm{Ml=1,17}$!calculate all x-ray lines for element
$\operatorname{EL}(\mathrm{Ml}, \mathrm{I})=\operatorname{EXP}(\mathrm{Zl} * \mathrm{Zl} * \mathrm{~T}(1, \mathrm{Ml})+\mathrm{T}(2, \mathrm{Ml}) * \mathrm{Zl}+\mathrm{T}(3, \mathrm{Ml}))$
100 CONTINUE
RETURN
END

SUBROUTINE MAC(El,FA,I)
INCLUDE 'BLNK.CMN'
INCLUDE 'ENER.CMN'
Mass absorption coef.
El is the energy of the x-ray line being absorbed. FA is the absorption coefficient and I is the index of the absorber.

DIMENSION GJ (3) , GK (3), R(10), XD (4, 4)
R is edge jump ratio

DATA R/1.,1.,1.17,1.63,1.,1.16,1.4,1.621,1.783,1./
DATA GJ/-.0045522,-.0068535,1.070181/
DATA GK/-.1131595,.8368829,-.5459687/
DATA XD/-. $2322294,4.070053,-6.220746,1 .,-.2544711$
2,4.769245,-10.37878,2.73,.2562163
$3,1.15119,-5.684848,2.6,1.359165,-9.492116$
4.18.64081,2.22/
$\mathrm{XD}(4,2)=2.73$
RZ=Z(I) !absorber atomic number
Zl=LOG(RZ) \quad l log of atomic number
$\operatorname{XD}(4,1)=\operatorname{EXP}(G J(1) * Z 1 * Z 1+G J(2) * Z 1+G J(3))$
IF (Z(I).LT.42)GO TO 100 !select XD constant
$\mathrm{XD}(4,2)=\operatorname{EXP}(\mathrm{GK}(1) * Z 1 * Z 1+G K(2) * Z 1+G K(3))$
100
IF (M1.EQ.10)GO TO 200 !scan edges
IF (El.LT.E(M1,I)) GO TO 300
$200 \mathrm{Ll}=\mathrm{Ml}-\mathrm{INT}(\mathrm{Ml} / 3)-\operatorname{INT}(\mathrm{Ml} / 4)-\operatorname{INT}(\mathrm{Ml} / 7)$!select proper edge
C

Ml	Ll	edge
1	1	K
2	2	L1
3	2	L2
4	2	L3
5	3	M1
6	3	M2
7	3	M3
8	3	M4
9	3	M5
10	4	N1

$\mathrm{ZC}=\mathrm{EXP}(\mathrm{XD}(\mathrm{l}, \mathrm{Ll}) * \mathrm{Zl} * \mathrm{Zl}+\mathrm{XD}(2, \mathrm{Ll}) * \mathrm{Zl}+\mathrm{XD}(3, \mathrm{Ll})) / \mathrm{R}(\mathrm{Ml})$
FA=ZC*(12.398/El)**XD(4,Ll) !absorption coefficient RETURN
300 CONTINUE
RETURN
END

SUBROUTINE MATRIX(QM,N3)
INCLUDE 'ABSB.CMN'
INCLUDE 'BLNK.CMN'
INCLUDE 'CONC.CMN'
INCLUDE 'ENER.CMN'
INCLUDE 'FLUOR.CMN'
INCLUDE 'KFAC.CMN'
INCLUDE 'ROIC.CMN'
INCLUDE 'ZAFF.CMN'
Matrix corrections
DIMENSION QM(15),U(15),UB(15),UC(15)
DIMENSION VZ (15,15)
$\mathrm{Nl}=0$
DO $200 \mathrm{~J}=1,15$
DO $100 \mathrm{I}=1,15$
AP(I,J)=0. !initialize fluorescence matrix
100 CONTINUE
200 CONTINUE
DO $300 \mathrm{~J}=1, \mathrm{~N}$
IF (L(J).EQ.O)GO TO 300
CALL SETUP(J) !set up conc. independent parameters CONTINUE
IF (N3.EQ.l)GO TO 500 !skip if calculating a standard S3 $=0$

```
        DO 400 I=l,N
    IF(L(I).EQ.0)GO TO 450
    JJ=NB+I !JJ is the region number for peak I
    T5=CNTS(JJ) !integrated counts in region JJ
    XM(I) =T5/QM(I) !relative intensity (k-value)
    UB(I)=XM(I)
    XC(I)=XM(I) !assume conc. equal to k-value
        IF(XC(I).GT.l.) XC(I)=1.
    AZ = 0.
    4 0 0 ~ C O N T I N U E ~
    450 CALL DIST(S3) !calc. method for unanalyzed element
    CALL NORM(S3) !normalize concentrations
    AZ=1.
    5 0 0 ~ D O ~ 9 0 0 ~ I = l , N 3 ~ ! b e g i n ~ i t e r a t i o n ~ l o o p
    1100 DO l200 IJ=l,N
    IF(L(IJ).EQ.O)GO TO ll80 !skip if element unanalyzed
    CALL CONAVE(IJ,S2,T2,X2) !conc. average of S, R, and absorp.
                                    !coef.
    Ll=L(IJ)
    El=EL(Ll,IJ) !line energy
    E2=E(Ll*Ll,IJ) !edge energy
    CALL ABSFAC(E2,Fl,T2) !get absorption coefficients
    CALL FACTOR(E2,Fl,F2,IJ,S2,T2,X2,Wl) !get matrix factors
    IF(XC(IJ).EQ.0)GO TO l200
    G3=XC(IJ)/Wl*(l+F2)*F(2,IJ)/F(l,IJ) !k-value for conc. XC
C
    WRITE(6,*) Wl,F2,F(2,IJ)/F(l,IJ)
    IF(N3.GT.l)GO TO ll80 !skip if calculating an unknown
    XM(IJ)=XM(IJ)/G3 !counts for pure element (store in file)
    WRITE(6,1160)G3
1160 FORMAT(m MELS = ',F8.5)
    GO TO l200 !skip if calculating a standard
1180 IF(XM(IJ).EQ.l.OR.XC(IJ).EQ.l)GO TO 1200
G4 =XM(IJ)*XC(IJ) !new concentration by
    UB(IJ)=G4*(l-G3)/(G4+G3*(l-XM(IJ)-XC(IJ)))!hyperbolic equation
        l2l0 IJ=l,N
    XC(IJ)=UB(IJ) !replace old conc. with new conc.
    CALL DIST(S3) !calc. method for unanalyzed element
    IF(N3.EQ.l)GO TO 9999 !skip to end if calculating a standard
    IF(I.EQ.N3)GO TO 910 !skip if iteration complete
    CALL NORM(S3) !normalize concentrations
    CALL BKG !do background correction
    CALL OLAPS !do overlap corrections
    DO 800 IJ=l,N
    IF(L(IJ).EQ.0)GO TO 580
    XM(IJ)=W(IJ)/QM(IJ) !recalculate k-values
    580 U(IJ)=0.
    8 0 0 ~ C O N T I N U E ~
    900 CONTINUE !end of iteration loop
    9l0 WRITE(6,920) !write headings for output
    920 FORMAT(5X,'Z',9X,'C',9X,'F(X)',6X,'K')
    940 FORMAT(' ',2X,I 3,6X,F6.4)
    960 FORMAT(' ',2X,I3,6X,F6.4,4X,F6.4,2X,F6.4)
    DO 1000 I=l,N
    IF(L(I).EQ.0)WRITE (6,940)Z(I),XC(I) !unanalyzed element
```

IF (L (I). GT.0) WRITE (6,960) Z(I), XC(I), F(l,I), XM(I) !analyzed !element
1000 CONTINUE
WRITE(6,1020)S3 !output analysis total
1020 FORMAT (1H0,' TOTAL $=1, F 6.4)$
9999 RETURN
END

SUBROUTINE NORM(S3)
INCLUDE 'BLNK.CMN'
INCLUDE 'CONC.CMN'

DO $100 \mathrm{I}=1, \mathrm{~N}$
$X C(I)=X C(I) / S 3$!S3 is sum of concentrations
100 CONTINUE
RETURN
END

SUBROUTINE OCOEF
INCLUDE 'ABSB.CMN'
INCLUDE 'ENER.CMN'
INCLUDE 'GEOM.CMN'
INCLUDE 'ROIC.CMN'
INCLUDE 'ZAFF.CMN'

C Compute overlap coefficients
Normalize concentrations to 100\%

DIMENSION WQ(15)

DO $500 \mathrm{~J}=1, \mathrm{~N}$
IF(L(J).EQ.O)GO TO 500 !skip if element not analyzed
Ll=L (J)
E7=EL(Ll,J) !energy of $x-r a y$ line
E2 $2=$ ELOW (J $+N B$) !low energy of window (E2)
E3 $=\mathrm{EH} \mathrm{I}(\mathrm{J}+\mathrm{NB}) \quad$!high energy of window (E3)
$\mathrm{X} 2=(\mathrm{E} 2-\mathrm{E} 7) / \mathrm{Sl}(\mathrm{E} 7) / 1.4142$!Gaussian integration factor (low)
CALL GAUS (E8,E9,X2) !integrate Gaussian peak
CALL ICHG(E7,G4,J) !calc. incomplete charge collection
E5=ABS (E8)/2 !integral - centroid to low energy
X2 $=(E 3-E 7) / S 1(E 7) / 1.4142$!Gaussian integration factor (high)
CALL GAUS (E8,E9,X2) !integrate Gaussian peak
E4=ABS(E8)/2 !integral - centroid to high energy
IF (E2.LE.E7) GO TO 100
WQ (J) $=$ E4-E5 ! E2 peak energy
GO TO 300
100 IF (E3.GE.E7)GO TO 200
WQ (J) $=\mathrm{E} 5-\mathrm{E} 4+\mathrm{G} 4 \quad!\mathrm{E} 3<$ peak energy
GO TO 300
200 WQ (J) =E5+E4+G4 !E2<peak energy>E3

CONTINUE
500 CONTINUE
DO $650 \mathrm{~J}=1,12$
DO $600 \mathrm{Il}=1,12$
DO $550 \mathrm{IJ}=1,17$
HI (IJ, J, Il) =0. !initialize overlap factors
600 CONTINUE
650 CONTINUE
DO $900 \mathrm{Kl}=1,2$!l=self overlap, $2=o t h e r$ overlap
DO $800 \mathrm{Il}=1, \mathrm{~N}$! Il=analyzed line to be checked
IF(L(Il).EQ.0)GO TO 800 !skip if unanalyzed element
$\mathrm{Ll}=\mathrm{L}$ (Il)
E6=EL(Ll,Il) !line energy of analyzed line
YD $=4 * S l(E 6) \quad!4 *$ sigma of analyzed line
$\mathrm{E} 2=\mathrm{ELOW}(\mathrm{Il}+\mathrm{NB})$!low energy of window for Il
E3=EHI(Il+NB) !high energy of window for Il
DO $700 \mathrm{~J}=1, \mathrm{~N}$! J=possible overlapping line
$\mathrm{L} 2=\mathrm{L}(\mathrm{J}) \quad$ line code for measured line of J
IF(L2.EQ.0)GO TO 700 !skip if not an analyzed line

```
Next two lines have the following effect:
If Kl=2, skip if Il and J are the same element.
If Kl=l, skip if Il and J are NOT the same element.
```

IF ((Kl.EQ.2).AND.(Il.EQ.J)) GO TO 700
IF ((Il.NE.J).AND. (Kl.EQ.l)) GO TO 700
IF (L2.EQ.l)GO TO 680 !L2 is a K line
X2 $=1 / \operatorname{LOG}(E O * E 0 / E(4, J) / E(9, J))$!define X2 for L and M lines
GO TO 690
680 X2=1 !define X2 for K lines
690 CALL OLAP(WQ,E6,J,Il) !calc. overlap coefficient
700 CONTINUE
800 CONTINUE
900 CONTINUE
RETURN
END

SUBROUTINE OLAP (WQ,E6,J,Il)
INCLUDE 'ABSB.CMN'
INCLUDE 'BLNK.CMN'
INCLUDE 'ENER.CMN'
INCLUDE 'KBKA.CMN'
INCLUDE 'GEOM.CMN'

DIMENSION U(15),X(15),WQ(15),S(17,15)
CALL YIELD(J,X(l),X(2),X(3)) !get fluorescence yield
DO $100 \mathrm{~L} 2=1,9$!scan each absorp. edge
IF(E(L2,J).EQ.0)GO TO 9999 !skip if edge energy=0
I2 $2=\mathrm{L} 2-\mathrm{INT}(\mathrm{L} 2 / 3$) - INT (L2/4)-INT(L2/7) !edge number
M3 = 2* (INT (L2/I2) - INT (L2/6) +INT(L2/7)) !electrons per shell
Ω C

L2	I 2	M3
1	1	2
2	2	2
3	2	2
4	2	4
5	3	2
6	3	2
7	3	4
8	3	4
9	3	6

IF（E（L2，J）．GE．EO）GO TO 100 ：skip if edge energy＞EO
El＝E0／E（L2，J）！overvoltage
E4＝1 166＊E（L2，J）／XJ（Z（J））
Xl＝El＊E4
C
Compute the cross－section function
$\mathrm{U}(\mathrm{L} 2)=\mathrm{M} 3 *(\mathrm{El}-1-$ LOG（E4）／E4＊2．905＊（SQRT（X1）－SQRT（E4）））＊X（I2）
100 CONTINUE
$V 5=1$ ．
$V 4=1$ 。
$V 3=1$ 。
V2 $=1$ 。
$\mathrm{Vl}=1$ 。
C
C
C
Calculate line weights $Z F \& Z M$（these are empirical fits）
$\mathrm{ZF}=.2567$＊ $\mathrm{Z}(\mathrm{J})-6.8176$
$\mathrm{ZM}=\operatorname{EXP}(34.165 * \mathrm{X} 2-30.027 * \operatorname{SQRT}(\mathrm{X} 2)+8.5268) / 1.6$
Set up cross－section ratios for $K-L$ and $L-M$ lines
GO TO $(120,200,300), L(J) \quad$ ！sort K, L ，or M lines
120
$V 4=U(2) / U(1) * Z F \quad!K$ to $L l$ edge
$\mathrm{V} 5=\mathrm{U}(3) / \mathrm{U}(1) * \mathrm{ZF}$ ！ K to L 2 edge
GO TO 400
$200 \mathrm{Vl}=\mathrm{U}(1) / \mathrm{U}(4) / \mathrm{FF}$ ！L3 to K edge
V3 $=2 M$ ！L3 to M edges
$\mathrm{V} 4=\mathrm{U}(2) / \mathrm{U}(4) \quad$ LL3 to Ll edge
$\mathrm{V} 5=\mathrm{U}(3) / \mathrm{U}(4) \quad$ LL3 to L2 edge
GO TO 400
300
$\mathrm{V} 2=1 / \mathrm{ZM} \quad$ ！ M to L 3 edge
$\mathrm{V} 4=\mathrm{U}(2) / \mathrm{U}(4) / \mathrm{ZM}$ ！M to Ll edge
$\mathrm{V} 5=\mathrm{U}(3) / \mathrm{U}(4) / \mathrm{ZM}$ ！M to L2 edge
The S values that follow are line intensities relative to the measured line for each element．For example，$S(l, J)$ is the relative intensity for the $K a \operatorname{line}$ ．If the Ka line is measured，then $S(l, J)=1$ ．If the La line is measured，then $S(1, J)=$ the $V l$ computed above in line 200 ．

```
\(400 \mathrm{~S}(1, \mathrm{~J})=\mathrm{Vl} \quad!\mathrm{Ka}\)
    IF (Z(J).GT. 30)GO TO 500 !select the Kb/Ka ratio
    \(\mathrm{Rl}=\mathrm{VB}(\mathrm{Z}(\mathrm{J}))\)
    IF (Z(J).LE. 30.)GO TO 600
```

```
500 RZ=Z(J)
    Rl=.ll5*LOG(RZ)-2.3 !compute Kb/Ka for elements>(Z=30)
600 S(2,J)=V2 !Lal
    S(3,J)=V3 !Ma
    S(4,J)=Rl/(l-Rl)*Vl !Kb
    S(5,J)=.l*V2 !La2
    S(6,J)=.044*V2 !Ll
    S(7,J)=V2*(.2808-.0016*Z(J)) !Lb2
    S(8,J)=V5 !Lbl
    S(9,J)=.l54*V5 !Lgl
    S(l0,J)=.02*V5 !Ln
    S(ll,J)=.166*V4 !Lb3
    S(12,J)=.068*V4 !Lg3
    S(l3,J)=.104*V4 !Lb4
    S(14,J)=.06*V3 !Mzl
    S(15,J)=.5*V3*U(9)/U(10) !Mb
    S(16,J)=.05*V3*U(8)/U(10) !Mg
    S(17,J)=.01*V3*U(7)/U(10) !M2N4
    IF(Il.EQ.J)GO TO 820 !skip if for self-overlap
    DO 800 I2=1,17
    IF(S(I2,J).GT.0)GO TO 800 !make sure all overlaps are positive
    S(I2,J)=0. !or zero
    800 CONTINUE
Test for overlaps and compute the relative overlapping area
820 DO 1100 I2 \(=1,17\)
S8=1
E7=EL(I2,J) !line energy
IF (E6.EQ.E7.OR.E7.LT.1..OR.E7.GT.E0.OR.E7.LT.E6-YD)GO TO 1100
SIG=Sl(E7) !peak width (sigma)
IF (E7.LT.E6+YD)GO TO 900
CALL ESP (J,N,E6,E7,S7,S8,YD) ! check for escape peak overlap
900 CALL AREA(J,E7,El,Ol,E8,E9) !get overlapping area
IF (Kl.EQ.2) GO TO 1000
IF (I2.EQ.L(J)) GO TO 1100
WQ (J) \(=W Q(J)+O l * S(I 2, J)\) !sum of self-overlaps
GO TO lloo
\(1000 \mathrm{HI}(\mathrm{I} 2, \mathrm{~J}, \mathrm{Il})=01 / \mathrm{WQ}(\mathrm{J}) * S 8 * S(\mathrm{I} 2, \mathrm{~J})\) !store each overlap
END
```

SUBROUTINE OLAPS
INCLUDE 'ABSB.CMN'
INCLUDE 'BLNK.CMN'
INCLUDE 'ENER.CMN'
INCLUDE 'KFAC.CMN'
INCLUDE 'LINEDG.CMN'

Correct overlaps for each line
DO $100 \mathrm{~J}=1, \mathrm{~N}$!get parameters for each element

IF(L(J).EQ.O)GO TO 100 !skip if not analyzed
$\mathrm{Ll}=\mathrm{L}$ (J)
El=EL(Ll,J) !line energy
L6=LED (Ll)
E2=E(L6,J) !edge energy
CALL DET(ED,El,N) !detector efficiency (det. eff.)
T2=FT2(El) ! conc. average of absorption coef.
CALL ABSFAC (E2,Fl,T2) !absorption factor $f(c h i)$
F(4,J) $=$ Fl*ED !store $f(c h i) *(d e t . e f f$.
$W(J)=X M(J)$!both W and $X M$ contain measured intensity
100
CONTINUE
DO $400 \mathrm{JA}=1,3$!iterate the overlap correction
DO $300 \mathrm{JB}=1, \mathrm{~N}$!JB is element number to be checked
IF(L(JB).EQ.O)GO TO 300 !skip if not analyzed
R1=0.
Begin checking for overlapping lines

$W(J B)=X M(J B)-R 1 \quad!W$ contains the corrected intensity

SUBROUTINE PARA(I,J,ZD) INCLUDE 'FLUOR.CMN'

CALL YIELD(I,Tl,T4,T7) !get fluorescence yield
$N T=I N T(A P(J, I))$!get the parameters for the
GO TO ($100,200,300,400,500,600$),NT ! particular fluor. correction
100 2D=.88*Tl !K exciting K
RETURN
200 ZD=3.696*T4 !L exciting K
RETURN
300 2D=.18*Tl ! K exciting L RETURN
400 2D=.75*T4 !L exciting L RETURN

```
500 ZD=.01*Tl !K exciting M
    RETURN
600 ZD=.01*T4 !L exciting M
    RETURN
    END
```

SUBROUTINE RDSPEC(IOPT)

```
30 READ(1'IAV,IOSTAT=IS,ERR=60)(IARY (J),J=I,I+255)
```

DO $40 \mathrm{I}=1, I \mathrm{CH}, 512$
40 READ (1'IAV,IOSTAT=IS,ERR=60) (IBYT(J),J=I,I+5ll)
DO $50 \mathrm{I}=1, \mathrm{ICH}$

C Decode 2-byte data

IF (IARY(I).LT.0) THEN !if negative, $\operatorname{SPEC}(I)=\operatorname{IARY}(I)+65536$!add 65536

ELSE

```
SPEC(I)=IARY(I)
```

END IF
C
C Decode l-byte data
IF (IBYT (I).LT.0) THEN !if negative, ITEMP $=$ IBYT $(I)+256$!add 256

ELSE ITEMP=IBYT (I)

END IF
If third byte contains data, add it to SPEC

> IF(ITEMP.GT.0) THEN $\operatorname{SPEC}(I)=\operatorname{SPEC}(I)+65536 *$ ITEMP

END IF
CONTINUE GO TO 999
60 TYPE *,'Error number $=$ ', IS !output errors TYPE *,'IAV = ', IAV
999 CLOSE(UNIT=1) !close spectrum file GO TO 2999
1999 IOPT=-1
2999 RETURN END

SUBROUTINE ROI (NX)
C
C
C
C
Assign the windows around each peak and for the background regions.

INCLUDE 'ROIC.CMN'
INCLUDE 'ENER.CMN'
INCLUDE 'SPECTM.CMN'
DIMENSION EM(10)
IN $=5$
C 1 TYPE 10
C 10 FORMAT(' Enter number of background regions desired: ', \$)
C READ (IN,*)NB
1 TYPE 20
20 FORMAT(' Enter mean energies for two background points') $\mathrm{NB}=2$
$\operatorname{READ}(\mathrm{IN}, *)(E M(\mathrm{I}), \mathrm{I}=1, \mathrm{NB})$
DO $100 \mathrm{I}=1$,NX !Make sure there are no peaks DO $90 \mathrm{~J}=1,17$! in the background windows. FORSIG=4.*SI (EL (J,I))
FORSIN=EL (J,I)-FORSIG
FORSIP $=E L(J, I)+$ FORSIG

```
                K=1
        IF((EM(K).GT.FORSIN).AND.(EM(K).LT.FORSIP)) THEN
        TYPE 40, EM(K), EL(J,I)
        FORMAT(' Energy ',F7.3,' interfers with a peak at energy'
            ,F7.3)
        TYPE 50
        FORMAT(' Do you wish to omit it? ',$)
        READ(IN,60) NY
        FORMAT(Al)
            IF(NY.EQ.'Y') THEN
        NB}=NB-
            DO 70 M=K,NB
            EM(M)=EM(M+1)
            END IF
            END IF
            K=K+1
            IF(K.LE.NB) GO TO }3
            CONTINUE
    100 CONTINUE
    IF(NB.LT.2) THEN
        TYPE }11
    110 FORMAT(' You have too few background points - Try again')
    GO TO l
        END IF
        DO 120 I= 1,20
    120 CNTS (I)=0.
    NR=NB + NX
    DO 140 I=l,NR !I is the window number
    IF (I. LE. NB) THEN
        EX=EM(I) !background window energy
    ELSE
        K= I - NB
        Ll = L(K)
        EX = EL(Ll,K) !peak energy
    END IF
    SK = 1.1775 * Sl(EX) !l/2 FWHM of peak at energy EX
    ELOW(I) = (EX- SK) !low side of window
    EHI(I) = (EX + SK) !high side of window
    IL = INT( ELOW(I)*l00. + .5) !channel number of ELOW
    IH = INT( EHI (I)*l00. + .5) !channel number of EHI
    DO 130 J=IL,IH
    130 CNTS(I) = CNTS(I) + SPEC(J) !integrate counts from IL to IH
    140 CONTINUE
        RETURN
    END
    FUNCTION Sl(El)
    INCLUDE 'GEOM.CMN'
    Sl=SQRT(2500* El +Q3)*4.2466E-4
    RETURN
```

END
SUBROUTINE SETUP(J)
INCLUDE 'ABSB.CMN'
INCLUDE 'ATWT.CMN'
INCLUDE 'BLNK.CMN'
INCLUDE 'ENER.CMN'
INCLUDE 'FLUOR.CMN'
INCLUDE 'ZAFF.CMN'

C
Setup matrix correction
DIMENSION U(15), UB(15)
$\mathrm{IB}=\mathrm{L}(\mathrm{J}) * * 2$
IF (IB.LE.9) GO TO 100
IB=1
$100 \mathrm{U}(\mathrm{J})=\mathrm{E} 0 / \mathrm{E}(\mathrm{IB}, \mathrm{J})$!overvoltage for element J
IF (U(J).GE.l.5)GO TO 300 !test if overvoltage too low
WRITE $(6,200)$
200 FORMAT(' OVERVOLTAGE TOO LOW')
$300 \mathrm{Ll}=\mathrm{L}(\mathrm{J})$
El=EL(Ll,J) !energy of line for element J
DO 400 I=l,N
CALL MAC(El,FA,I) !get mass absorption coef.
$H(I, J)=F A$!and store them
CONTINUE
T2=H(J,J) !absorption coef. for pure element
E2=E(IB,J) !edge energy
CALL ABSFAC(E2,Fl,T2) !get $f(c h i)$ for pure element J
F(l,J)=Fl !and store it
A $3=L(J)-1 \quad$ lline code minus 1
GX=5
IF (L(J).EQ.l) GO TO 500
IF (L(J).GT.3) GO TO 500
GX=3.5
500 DO 800 Il=l,N ! begin checking for fluorescence IF (Il.EQ.J)GO TO 800 !skip if same element
DO 700 IP=l,2 !l for K lines - 2 for L lines
El=EL(IP,Il) !line energy to test
L2 $=1 P * * 2$!edge number
IF (l.022*E(L2,Il).GE.EO)GO TO 700 !skip if line > EO
IF (El.LT.E(IB,J)) GO TO 700 !skip if line < E(IB,J)
IF (El.GT.E(IB,J) +GX)GO TO 700 !skip if line > E(IB,J)+GX
$A P(J, I l)=I P+2 * A 3$!code for fluorescence
code fluorescence
0 none
l K excites K
2 L excites K
3 K excites L
4 L excites L
5 K excites M
6 L excites M

C

```
            UB(Il)=E0/E(L2,Il) !overvoltage
            DO 600 I=1,N
            CALL MAC(El,FA,I) !get absorption coef. for fluor.
            H(I+15,Il)=FA !and store them
            6 0 0 ~ C O N T I N U E ~
            7 0 0 ~ C O N T I N U E ~
            800 CONTINUE
            DO 900 I=1,N
            IF(AP(J,I).EQ.O)GO TO 900 !skip if no fluorescence
            IZ=Z(I) !Z for exciting line
            JZ=Z(J) !Z for excited line
            Y2=(UB(I)-1)/(U(J)-1)
            Y2=Y2**l.67
            Yl=WA(JZ)/WA(IZ) *H(J+15,I)/2*Y2
            CALL PARA(I,J,ZD) !get fluorescence factors
            O(J,I)=ZD*Yl !fluorescence correction factor
    900 CONTINUE
```

C
C
C
$\mathrm{Ul}=\mathrm{U}(\mathrm{J})$
IF (Ul.LE. 10) GO TO 1000
Ul=10
1000 G3=.00873*Ul**3-.1669*Ul**2+.9662*Ul+. 4523
$\mathrm{G} 4=.002703$ *U1 **3 -.05182 *U1 **2 +. 302 *Ul -. 1836
$\mathrm{P} 2=.887-3.44 / \mathrm{Ul}+9.33 / \mathrm{Ul} * * 2-6.43 / \mathrm{Ul} * * 3$
DO $1100 \mathrm{I}=\mathrm{l}, \mathrm{N}$
$V(I, J)=G 3-G 4 *$ LOG (P2*Z (I) +25) !this is the R factor
IZ=Z (I)
C
C Calculate the stopping power S
C
$S(I, J)=2 * I Z /(W A(I Z) *(E 0+E(I B, J))) * L O G(583 *(E 0+E(I B, J)) / X J(I Z))$
1100 CONTINUE
9999 RETURN
END
FUNCTION XJ(IZ)
C
C Berger-Seltzer J
C
S19=-. 19
XJ =9.76*IZ+58.5*(IZ**S19) ! IZ is atomic number
RETURN
END
SUBROUTINE YIELD(I,T1,T4,T7)
INCLUDE 'BLNK.CMN'
C
C Fluorescence yields

C

```
RZ=Z (I)
ZL=LOG(RZ)
OMl=(.015+.0327*RZ-6.4E-7*RZ**3)**4
Tl=OMl/(l.+OMl) !K lines
T4=EXP(2.946*ZL-13.94) !L lines
T7=2.27E-5*Z(I)**2-.001359*Z(I)-.00657 !M lines
RETURN
END
```

Files containing common blocks that are used in the INCLUDE

Variables in common block ABSB F = absorption factors HI = overlap factors

COMMON/ABSB/F(4,15),HI(17,12,12)

Variable in common block ATWT WA = atomic weights

COMMON/ATWT/WA (99)

Variables in common block BLNK and 2-byte integers
Z = atomic number
Q = valence for each element
EO = beam voltage
$\mathrm{N}=$ number of elements in standard or unknown NX = number of analyzed elements

INTEGER*2 $2(15), Q(15)$
COMMON/BLNK/EO,N,NX,Z,Q

Variables in common block CONC

COMMON/CONC/XC(15)

Variables in common block DETECT
P6 = thickness of Be window in Si detector in cm . P7 = thickness of Si dead layer in Si detector in cm .

COMMON/DETECT/P6,P7

Variables in common block ENER
$\mathrm{L}=$ line code for $\mathrm{x}-\mathrm{ray}$ lines ($1=\mathrm{Ka}, 2=\mathrm{La}, 3=\mathrm{Ma}, 0=$ not analyzed)
$\mathrm{E}=$ edge energies for each element
EL = x-ray line energies for each element
INTEGER*2 L(15)
COMMON/ENER/E $(10,15)$, EL $(17,15), L$

Variables in common block FLUOR
$A P=$ code for fluorescence corrections (see SETUP)
$0=$ factor in the fluorescence correction
COMMON/FLUOR/AP $(15,15), O(15,15)$

Variables in common block LINEDG LED = edge number for each of the 17 x-ray lines included in the program.

COMMON/LINEDG/LED (17)
DATA LED/1,4,9,1,4,4,4,3,3,3,2,2,2,9,8,7,6/
The x-ray lines are in the following order:
Ka,Lal,Ma,Kb,La2,Ll,Lb2,Lbl,Lgl,Ln,Lb3,Lg3,Lb4,Mz,Mb,Mg,M2N4

C Variables in common block SPEC

$$
\mathrm{H}=\text { mass absorption coefficients }
$$

$S=x$-ray stopping powers $V=R$ from x-ray loss due to backscatter (1-R)

COMMON/ZAFF/H $(30,15), S(15,15), V(15,15)$

2

| 1. PUBLICATION OR |
| :--- | :--- | :--- |
| REPORTNO. |
| NBS TNI200 |\quad 2. Performing Organ. Report No. | 3. Publication Date |
| :---: |
| July 1984 | REPORT NO. July 1984

4. TITLE AND SUBTITLE

A Fortran Version of the Quantitative

Energy-Dispersive Electron Beam X-ray Analysis Program FRAME C
5. AUTHOR(S)
R. L. Myklebust, B. B. Thorne
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

National Bureau of Standards
Department of Commerce
Gaithersburg, Maryland 20899
7. Contract/Grant No.
8. Type of Report \& Period Covered Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

Same as item 6.
10. SUPPLEMENTARY NOTES
[$]$ Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significont information. If document includes a significant bibliography or literoture survey, mention it here)

A Fortran listing of the quantitative electron microprobe analysis routine, FRAME C, is presented. The source code is extensively documented and there are short summaries of the various parts of the program. Examples are also presented to demonstrate the versatility of the program.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) computer prograni; electron microprobe; energy-dispersive detector; quantitative analysis; x-ray spectra
13. AVAILABILITY

X Unlimited
\square For Official Distribution. Do Not Release to NTIS
[X] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
14. NO. OF PRINTED PAGES 42Order From National Technical Information Service (NTIS), Springfield, VA, 22161

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH-The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs, As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and nonNBS media. Issued six times a year. Annual subscription: domestic $\$ 18$; foreign $\$ 22.50$. Single copy, $\$ 5.50$ domestic; $\$ 6.90$ foreign.

NONPERIODICALS

Monographs-Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
Handbooks-Recommended codes of engineering and industrial practice (including safety codes) developed in cosperation with interested industries, professional organizations, and regulatory bodies.
Special Publications-Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.
Applied Mathematics Series-Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.
National Standard Reference Data Series-Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St.. NW, Washington, DC 20056.

Building Science Series-Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods. and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems
Technical Notes-Studies or reports which are complete in themselves but restrictive in their treatment of a subject. A nalogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies

Voluntary Product Standards-Developed under procedures published by the Department of Commerce in Part 10. Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations
Consumer Information Series-Practical information, based on NBS research and experience. covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.
Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washingıon, DC 20402.
Order the following NBS publications-FIPS and NBSIR s-from the National Technical Information Service. Springfield, V A 22161.

Federal Information Processing Standards Publications (FIPS PUB)-Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor: public distribution is by the National Technical Information Service. Springfield, VA 22161, in paper copy or microfiche form.
U.S. Department of Commerce

National Bureau of Standards
Washington, D.C. 20234

Official Business
Penalty for Private Use $\$ 300$

[^0]: ${ }^{1}$ Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.
 ${ }^{2}$ Some divisions within the center are located at Boulder, CO 80303.

