
nbs technical note 1176

Utility Programs for Generating the Hershey Character Fonts on Microcomputers and Laboratory Plotters

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

> Absolute Physical Quantities ${ }^{2}$ - Radiation Research - Chemical Physics Analytical Chemistry - Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics - Electronics and Electrical Engineering ${ }^{2}$ - Manufacturing Engineering - Building Technology - Fire Research - Chemical Engineering ${ }^{2}$

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The lnstitute consists of the following centers:

> Programming Science and Technology - Computer Systems Engineering.

[^0]
Utility Programs for Generating the Hershey Character Fonts on Microcomputers and Laboratory Plotters

C. E. Dick
J. Hilsenrath

National Measurement Laboratory
National Bureau of Standards
Washington, DC 20234

NBS
 technical note

U.S. DEPARTMENT OF COMMERCE, Malcolm Baidrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

National Bureau of Standards Technical Note 1176 Natl. Bur. Stand. (U.S.) Tech. Note 1176, 45 pages (June 1983) CODEN: NBTNAE

ABSTRACT

Two programs are described that allow for the storage and manipulation of digitized fonts of graphic arts symbols and characters on the Apple II computer system. These fonts are based on the work of A. V. Hershey and provide the user with a repertory of digitized characters suitable for use in the preparation of camera-ready illustration in the laboratory environment. The programs described contain routines for reading files of the Hershey coordinates, storing them as text files, displaying them as individual characters or combined text on the high resolution display, and two methods for editing them or creating special symbols and graphics.

Key words: Applesoft basic programs; camera-ready illustrations; digitized graphic symbols; Hershey character fonts; microcomputers.

Table of Contents

Page
Introduction 1
The Origin and Diffusion of the Hershey Fonts 2
The Current Programs 3
The Hershey Characters 4
Candy Apple 5
The Fonts 12
Conclusion 13
References 14
Appendix A 16
Listing l. Candy Apple Program 17
Listing 2. Candy Apple variable listing 22
Listing 3. Catalog of Candy Apple disk 26
Listing 4. Candy Wrapper program 27
List of Figures
Page
Figure l. Cartographic letter A showing coordinate system 31
Figure 2. Hires display of English gothic 32
Figure 3. Math symbols and Carto fonts 33
Figure 4. Index font 34
Figure 5. Simplex font 35
Figure 6. Complex font 36
Figure 7. Gothic font 37
Figure 8. Script font 38
Figure 9. Candy Apple logo produced by Candy Wrapper 39

Utility Programs for Generating the Hershey Character Fonts on Microcomputers and Laboratory Plotters

INTRODUCTION

With the advent of microcomputers able to drive inexpensive $x-y$ plotters, it is now possible for scientists to produce camera ready illustrations in their own laboratory. Such drawings have, in the past, required costly and time consuming drafting and hand lettering by graphics artists.

The ingredients of such an in-house facility, in addition to the microcomputer and plotter, are:
a) a collection of mechanical drafting routines
b) a repertory of graphic arts fonts in digitized form
c) computer programs to store, retrieve, edit, and display them on video terminals, printers, and plotters.
Mechanical drafting and data handing routines have been under development for some time and are the subject of a forthcoming report. For the character digitization, we have been able to draw on the pioneering and definitive work of Dr. Allen V. Hershey as subsequently presented by wolcott and Hilsenrath. The third item on the above list, the software required to digitize and display the characters, is the subject of this report. This report describes two programs for the Apple II computer* operating under the disk operating system (DOS 3.3). The first program, which is treated in detail, contains routines for reading files of Hershey coordinates and storing them in a more compact format as text files, displaying individual characters or complete fonts on the hires (high resolution) screen, and two methods for editing or

* In this report certain commercial products are referenced by name. These references are for informational purposes only and do not imply that they are necessarily the best available for the purpose or do not imply endorsement by NBS.
making new characters. This program is the main subject of this report. The second program, which is treated as an appendix to this paper, details utilities for combining indivicual Hershey characters on the hires screen for the creation of logos for use in other programs. It is meant to be illustrative of some of the possible applications of the Hershey fonts.

THE ORIGIN AND DIFEUSION OF THE HERSHEY FONTS

In the mid sixties, Dr. Allen V. Hershey undertook a project at the Naval Weapons Laboratory in Dahlgren, Virginia, to automate the preparation of his highly mathematical reports and those of others involving complex chemical structures and electrical diagrams. That work produced a comprehensive suite of FORTRAN typographic programs; a repertory of occidental alphabets and oriental ideograms, cartographic symbols, etc. The typographic system has been fully documented in a series of NWL reports (1-5). Early applications of the system are to be found in Hershey's own scientific publications (6-10) in which the system was honed.

More than 120 copies of the original system have been distributed (largely in card. decks) to universities, industries, and government Jaboratories. Applications range from computer assisted typesetting to computer driven engraving machines with the output characters appearing on all types of printers and plotters (ll). Although Hershey's characters have been incorporated in meny commercial graphics packages, unfortunately, they do not all acknowledge the source. NBS has used the system for well over ten years, and in 1976 undertook the publication, in book form (12), of the occidental fonts, and the distribution on magnetic tape (13), of the coordinates for both the occidental and oriental characters. This was followed in 1978 by the publication of a subset incorporated in a Technical Note by N.W. Wolcott entitled "FORTRAN IV Enhanced Character Graphics" (14). Since then, the economic advantage of in-laboratory production of camera ready illustrations for research papers has led to the
incorporation of the Hershey character fonts as user defined characters under the Hewlett-Packard Graphics Language (15), and in a system for use on the Apple II computer system. It is this latter application which is the subject of this report.

Extensive use of the Hershey characters was made in 1081 by Claude A. Kagan who succeeded in adapting them for a variety of microcomputer systems, including the Apple II operating under CPM (15). A more recent application of the Hershey character set has been made by Daniel Macero and associates (J.7) who have modified a line printer to provide a resolution of 100 dots-per-inch horizontally and 72 dots-per-inch vertically.

THE CURRENT PROGRAMS

The present report details a technique for using the Hershey characters with the Apple IJ computer system operating under the Apple Disk Operating System, DOS 3.3 (18). Although the High Resolution Character Generator Routine supplied as part of the Applesoft Toolkit (19) provides for the creation and retrieval of characters and special symbols, these characters are limited to a $7 x 8$ dot matrix format and are designed to be used on the high resolution graphics screen.

Consequently, we present in this report two programs that will allow the storage of the Hershey characters in a compact format as text files (CANDY APPLE) and their subsequent use as input to the hires graphics screen (CANDY WRAPPER). The first of these programs is described in some detail since it provides the means of storing the digitized character coordinates as well as a technique for creation of special characters and symbols. The second program is included as an appendix to illustrate a particular use of the Hershey characters. A more extensive program describing their use for digital plotting is currently being documented.

Although some effort has been expended to faithfully reproduce the character fonts tabulated by wolcott and Hilsenrath,
we have made some reasonably liberal changes in these fonts to provide for our particular application.

THE HERSHEY CHARACTERS

As tabulated by Wolcott and Hilsenrath (12-13), the Hershey characters consist of a series of numbers which indicate the end points of straight line segments which are used to define alphanumeric and special symbols. Each succeeding number pair indicates the coordinates of the next dot to be connected in a connect the dots scheme. For example, the vectors that correspond to the capital A illustrated in Figure l, are given in the following format:

$$
\begin{array}{rlrrrrrrrrr}
1: & -5 & 5: & 0 & -5:-4 & 4:-54 & 0: & 0 & -5: & 4 & 4:-64 \\
& -2 & 1: & 2 & 1:-54 & -54: & & & & & \\
\end{array}
$$

In this representation, the first number is the character number in the Hershey set, the first pair of numbers indicates the x coordinates of the limits of the character $(-5,5)$, and the actual character begins at the next coordinate location $(x=0, y=-5)$. It should be noted, in this context, that the coordinates are determined in a system where the x-axis is increasing from left to right, and the y-axis increases from top to bottom in accordance with standard printing notation where vertical deflections increase down the page. This is also the convention utilized by the Apple II for its graphics displays. The origin of the coordinate system is located approximately at the center of the character. Succeeding pairs of coordinates indicate the next point to be connected to draw the figure. A coordinate pair of -640 indicates that the next line is not to be drawn, but the stylus is to be moved to the next location. Einally, a coordinate pair of $-54-64$ completes the figure.

For use on the Apple IT computer system, we have chosen to store the characters as strings in a dimensioned array named xe. In order that the length of any particular string not exceed the maximum limit of 255 characters allowed, we have chosen to store
not the coordinates of the next point, but the offset required to arrive at that location. In addition, the character numbers have been deleted. In general, each string consists of a series of ASCII characters in the format:

W XY ? XY XY XY ? XY XY ? XY
where the first character, W, indicates the width of the character, the next pair, XY, indicates the offset to the start of the character, the character, ?, indicates a change of pen status, etc. In order to obtain the maximum possible flexibility in the storage of the characters, each character stored is the ASCII character corresponding to the offset +93 (i.e. an offset of +l is stored as CHR\$(94)=^). Tn this scheme then, the string corresponding to the character, A, given by the Hershey vectors above is stored as:
'""?YT?!\&?!t?WZ?!J?! ^
where the vectors are now stored in a format where positive vertical displacements are in the upward direction. Note that this technique allows the character to be stored in 22 bytes whereas the previous representation would require at least 33 bytes even if the foregoing compression scheme were used to represent pen changes. In addition, the final vectors represent the offset necessary to advance the pen to the right hand character limit.

CANDY APPLE

The program for manipulating these Hershey text files is given in Listing 1 and is written in Applesoft Basic (20). In general, the program is self-explanatory and menu-driven; it is broken up into the following sections:

```
Line numbers
        10-199
1000-1450
2000-2130
3000-3260
```

Program function
Main menu and initialization; also contains the disk assignment routine. Hershey character input routine using the tabulated Hershey vectors. Write font to disk as a text file. Routines to modify a font.

$4000-4070$	Font hires display index routine.
$5000-5450$	Font edit routines; also contains cursor
$5000-6180$	input routines.
$7000-7110$	Hires routine to display font.
$8000-8090$	Read font from disk.
$9000-9010$	Display single character as it is input.
$10000-10000$	Catalog input disk.
$11000-11060$	Exit routine.

In the following sections, each segment of the program will be examined in more detail. Although some effort was made to write the most efficient code, the program was designed to be user friendly and hopefully to contain as small a number of bugs as possible. In Listing 2, the variable documentation program of South Western Data Systems (2l) was used to document the usage of all the variables used in the program. Reference to this listing will be useful in the following discussions.

Lines lo-999 : THE MAIN MENU AND INITIALIZATION ROUTINES
This section of the program is used to display the main menu and to determine the disk drives that will be used for both input and output of the data. Before running the main body of the program however, the entire program is relocated so that the computer stores the Applesoft code beginning at memory location 24577 (\$500l) using the \&LOMEM: utility of Konzen (22). This utility shifts the entire Applesoft program and variable space above the locations that are needed for both pages of the hires graphics. After this shift, the program initializes the font array (line 50), pokes a hires shape table into locations 758-777 (\$0300-\$0309) and loads the appropriate hooks to the table on page 0. This shape is used as a cursor for the input of character vectors in lines 5000-5460. Lines 80-90 input the appropriate disk drive information and the rest of the section displays the main menu. The main menu is self-explanatory for the most part, and contains options that allow the user to CREATE, MODIFY, EDIT, or DISPLAY a font as well as perform certain disk operations.

This section contains the routines to input a character using the vectors listed by holcott and Hilsenrath. Initially, however, the user is given the choice to input thase vectors or to enter the character using the character edit routines of the 5000 section. The directions given for the Hershey coordinate input indicate the procedure to follow to enter the data. Line 1100 is used to eliminate the initialization of the character number, L, if the font is being edited or modified. Line $l l 20$ branches to the subroutine that draws the hires graphics that illustrates the character as it is input. The appropriate x - and y-offsets are entered using the GET command of Applesoft to input a character string. Inclusion in the string of the left arrow requires the re-entry of the entire string. Entering a space for the horizontal input signals a change of pen position for the following coordinate move only (the Gquivalent of : $-64 \quad 0$: in the Wolcott notation). Entering the symbol, /, for the horizontal coordinate signals the end of the character (:-64 -64:), and enters the appropriate vectors to advance the pen to the location of the right marker. The first two vectors input indicate the left and right markers respect,ively, and are used to determine the character width, W, in line 1350. The previous x and y coordinates are stored in the variables XT and YT and are used in line 1270 to determine the current x and y deflections. Line 1400 generates the string by concatenating the current values to the string $X \$(L)$. The rest of this section increments the character number, L, and continues the input process. These routines are terminated in one of two fashions; if the horizontal coordinate is entered as E, then the current string is set ecual to "EOF", and the user may write the font to the disk or return to the main menu (lines 1230-1250); if the routine has been called by the EDIT or MCDIFY routines, after the insertion of a single character, control is returned to the calling routine (line ll60).

Lines 2000-2130: WRITE FONT TO DISK

This section is a standard routine to output the font to the disk specified by drive number DO. The initial lines of this routine give the user the option of changing either the filename or the disk drive number. All routines in this program assume that the disk controller card is inserted in slot \#6. After completion of the write routine, control is returned to the main menu beginning at line jo0.
Lines 3000-3260: ROUTINES TO MODIFY A FONT

The routines in this section $2 l l$ low the user to modify a font in a number of ways. The menu for this section (lines 3000-3050) indicates thāt the user may APPEND to a font, JNSERT a character, REPLACE a character, REMOVE a character, or FXIT to the display routine of line 4000. In all modes but EXIT, the font insert flag, (FI), is set and the font is displayed. if the APPEND mode is selected, then the character location variable, L, is set to the end of the font and control is passed to the character input routine of line loon- (line 3100). In the INSERT, REPLACE, and REMOVE modes, the following procedures take place:

INSERT (line $3150-$) requests the location to insert, LO, moves all font characters from Lo to the end of the font, LMAX, up one Jocation (line 3170), displays the adjusted font and saves it on hires page 2 (line 3180), jumps to the character input routine for the inputting of one character, displays the new font (line 3220), and returns to the menu.

REPLACE (line 3230-) requests the character number to replace, Lo, displays the font (line 3210), jumps to the input routine to input a character, displays the new font, and returns to the menu.

REMOVE (line 3230-) requests the character number to delete, LO, moves all characters from $L 0$ to the end of the font, LMAX, down 1 (line 3250), displays the new font (line 3250), and returns to the menu.

In all of these routines, the current font is saved in the memory space reserved for the hires page 2 graphics (\$4000-\$6000) by the hires page flip routines of lines llo00-.

Lines 4000-4070: DISPLAY THE FONT DRIVING ROUTINES
The routines of this section are used to display the fonts on the hires graphics pages. In line 4000, a jump is made to the disk access routine at 7000 to input the font from the disk if a new filename is used to access the data. The routine of line 4010 displays the font, $N \$$, character by character, if the memory flag, $M F$, is not set. If the memory flag is set, then the font has been saved on hires page 2, and a call to the memory flip routines at 11000- recalls it for display. Line 4030 returns control to the calling routine if the font input flag, FI, is set. Otherwise, the remainder of the routine allows the user to ejther write the font to the disk, or return to the main menu.

Lines 5000-5460: THE CHARACTER EDIT ROUTINE
These routines allow the user to edit a character by entering either the Hershey coordinates or by using a hires cursor input. Line 5040 displays the entire font and the user js prompted (line 5050), to enter the number of the character to be changed. This character is then displayed in a magnified version by the routine of lines $8000-$ Figure 2 illustrates this display for the Gothic letter N. Lines 5070-5l20 perform this display by determining the appropriate x and y coordinates by decoding the string describing the character. After the character display, line 5125 gives the user the option of returning to the start of the edit routine if the wrong character has been selected to edit. Otherwise, the user has the option of either entering the Hershey coordinates (lines 1000-), or redrawing the character using the cursor control. The cursor control input technique allows the generation of custom characters by manipulating a high resolution cursor on the high resolution display. Initially, the user is requested to enter the limits of the character by defining the left and right marker locations (lines 5150-5190). The cursor is then placed on the left marker, and may be moved to the appropriate location by use of the I, J, K, and M keys of the keyboard. The current status of the pen is given on the text display and may be changed at any time by striking the space bar.

These cursor moves and the pen position are entered by the GET input command of line 5250. When the cursor is positioned at the appropriate position, the return key draws a line (with the appropriate pen mode) from the previous location to the current cursor location, enters the values into the character string, and returns for the next line input (lines 53 $40-5350$). As in the Hershey input mode, / terminates the character. If the cursor is not centered at the right marker, vectors are added to the string to complete this move (lines 5360-5380). After verification of the validity of the character, the font is displayed and the routine is terminated if either the font input, $F I$, or the edit fleg, EF, is set. The remainder of the routine is used to enter characters under cursor control if the NEW FONT option of the main menu is being performed. Note also, that the new font is saved by the page transfer routine of lines $11000-$.

Lines 5000-5180 : hires font display Routines
The routines of this section display the members of a font on hires page 1 depending on their location in the font. Lines 6000-6020 determine the location at which the character is to be displayed (with 50 characters displayed at a time), line 5030 removes any previously displayed character at that location, and the remainder of the routine decodes the character string and draws the character. The variables $X P$ and $Y P$ are used for the current cursor location, and DX and DY are used for the offset to the next location. As always, the penflag, PF, is used to determine whether the vector is to be plotted with the pen up (HCOLOR BLACK) or down (HCOLOR WHITE).

Lines 7000-7110 : FONT INPUT ROUTINES
The font NS is inputted from disk drive DI, if it is not already saved on hires page 2. If the font is to be brought in from the disk, the memory flag, MF, is reset and the data pointer is restored. Otherwise, the routine is staightforward and the file is read until the occurrence of the end of file character string, EOF. At the completion of the read routine, the file name is saved in the variable $0 \$$.

Lines 8000-8090 : HIRES SINGLE CHARACTER GRAPHICS
These routines draw the hires single characters that are input. either by using the Hershey vectors or the cursor control. Lines 8000-8050 draw the box for the display of the character as illustrated in Fig. 1. In this representation, each dot corresponds to one unit in the character. Lines 8060-8090 plot the figure from the decoded character string values. Line 8060 sets the magnification, M, to 5 , and plots the left and right boundaries relative to the center of the display ($x=140, y=80$). Line 8070 sets the next point as the center of the left marker. Subsequent values of X and Y are then plotted with the appropriate pen control by the remainder of the routine. The current location is stored in the variables Xl and Yl .

> Lines 9000-9010: CATALOG

This routine lists the catalog of the disk currently specified as the input disk, DI.

$$
\text { Line } 10000 \text { : END }
$$

This is a standard exit routine.
Lines l1000-11060: THE HIRES MEMORY FLIP ROUTINE
This routine copies the contents of hires page lo hires page 2 or vice versa. The starting address, the ending address, and the first address of the destination field are read from the data statement at line ll060. Depending on the state of the memory flag, $M F$, page l is sent to page $2(M F=0)$ or vice versa ($M F=1$). The microprocessor's y and x register locations are zeroed by the POKE statements of line 11030 and the Program Counter is initialized to point to the Apple Monitor MOVE routine (\$FE2C) which is then called by the Apple Monitor GO routine (\$FEB6).

The fonts that have currently been converted to the notation described in this report, are for the most part taken directly from the tables of kolcott and Hilsenrath. For convenience, they are divided up into 32 character segments which we have chosen to name numbers, small, caps, and greek. Figures 3 to ${ }^{2}$ illustrate the characters that make up the following fonts (in each subset, the characters are numbered from 1 to 32):
MATH SYMBCLS... A collection of commonly used symbols in mathematics taken from the Hershey characters between no.'s 2225 and 2278 (as referenced in the Wolcott and Hilsenrath tables). CARTO FONT... Numbers and caps are taken fron the Hershey cartographic symbols from no.'s 1 to 234. Although the Hershey fonts do not include small letters, these were custom designed and included as part of this font.
INDEX FONT... The members of this font were taken from the complex index size Hershey characters from no.'s 1001 to 1150. SIMPLEX FCNT... The members of this set were taken from the print size simplex Hershey characters from no.'s 50l to 551. COMPLEX FONT... The members of this font were taken from the print size complex Hershey characters from no.'s 2200 to 2224. GOTHIC FONT... This set is a mixture of two different Hershey fonts. The numbers are from the print size gothic Hershey characters from no.'s 3700 to 3729 , while the small letters and caps are from the Hershey Italian gothic set (no.'s 390l to 3950) and the Hershey print size English gothic set (no.'s 3700 to 3750), respectively.

SCRIPT FONT... This font is taken from the print size Hershey complex script characters from no.'s 2550 to 2575,2550 to 2676, and 2750 to 2776.

CONCLUSION

Although the fonts that we have stored as text files using CANDY APPLE are composed mainly of the Hershey characters, it is possible using this program to custom design graphics symbols. In the complex caps font illustrated in Fig. 6, the characters numbered from 28 to 32 are custom designed for logos used at NBS. This customization can be accomplished either by drawing the desired figure on graph paper and then calculating the desired coordinates or by freehand drawing using the cursor input routines of lines 5000-. The current report illustrates over 700 characters which are stored on disk as text files. Listing 3 gives a catalog of the disk containing the programs CANDY APPLE ano \& LOMEM: as well as the fonts. Reference to this listing shows that the programs need 36 sectors for storage and the fonts use an additional 18 sectors leaving more than 270 sectors avaiable for applications programs. Such an application program, CANDY WRAPPER, is described in Appendix A. Copies of CANDY APPLE, \& LOMEM: , CANDY WRPPPER, and the fonts may be obtained by contacting the authors at the following mailing address:

$$
\mathrm{C}-215, \mathrm{Bldg} \cdot 245
$$

National Bureau of Standards
Washington, DC 20234

FiEFERENCES

1. A.V. Hershey, "Calligraphy for Computers," NWL Technical Report No. 2101, August 1967, U.S. Naval Surface Weapons Center, Dahlgren, VA.
2. A.V. Hershey, "FORTRAN IV Programming for Cartography and Typography," NWL Technical Report No. TR-2339, Sept.1969, U.S. Naval Weapons Laboratory, Dahlgren, VA.
3. A.V. Hershey, "Preparation of Reports with the FORTRAN lypography System," NhL Technical Report No. TN-K/27-70, September 1970, U.S. Naval Weapons Laboratory, Dahlgren, VA.
4. A.V. Hershey, "Auxiliary Programming for the FORTRAN Typography System," NWL Technical Report No. TR-2645, October J97l, U.S. Naval Veapons Laboratory, Dahlgren, VA.
5. A.V. Hershey, "A Computer System for Scientific Typography," Computer Graphics and Image Processing, Vol.1, 373-385 (1972).
6. A.V. Hershey, "FORTRAN Programming for Surface Wave Trains," NWL Technical Report No. TR-2714, September 1972, U.S. Naval Weapons Laboratory, Dahlgen, VA.
7. A.V. Hershey, "Interpolations of Surface Wave Trains," NWL Technical Report No. TR-3054, November 1973, U.S. Naval Weapons Laboratory, Dahlgren, VA.
8. A.V. Hershey, "Comments on the Lagally Theorem," NwL Technical Report No. TR-3133, May 1974, U.S. Navaj. Weapons Laboratory, Dahlgren, VA.
9. A.V. Hershey, "Comments on the Fourier Theorem," NWL Technical Report No. TR-3145, June 1974, U.S. Naval Weapons Laboratory, Dahlgren, VA.
10. A.V. Hershey, "Advanced Computer Typography," Report NPS012-81-005, December 1981, U.S. Naval. Postgraduate School, Monterey, CA.
11. P.M. Doyle, "An Adaptation of the Hershey Digitized Character Set for Use in Computer Graphics and Typesetting," Report AD/A-042291, June 1977, U.S. Naval Postgraduate School, Monterey, CA.
12. N.M. Wolcott and J. Hilsenrath, "A Contribution to Computer Typesetting rechniques: Tables of Coorcinates for Hershey's Repertory of Occicental Type Fonts and Graphics Symbols," NBS Special Publication No. 424, National Eureau of Standards, Washington, DC, 20234.
13. N.M. Wolcott and J. Hilsenrath, "Tables of Coordinates for Hershey's Repertory of Occidental Type Fonts and Graphic Symbols," NBS Magnetic Tape 12, January 1977, National Bureau of Standards, Washington, DC, 20234.
14. N.M. Wolcott, "FORTRAN IV Enhanced Character Graphics," NBS Special Publication 500-32, April 1978, National Bureau of Standards, Washington DC, 20234.
15. P.K. Schenk, "Hershey Calligraphy Under the Hewlett-Packard Graphics Language," a forthcoming NBS report.
16. C.A.E. Kagan, SAM-76 Trechnical Note, August 1981, SAM 76 Inc. Box 25T, RRl, Pennington, NJ, 08534
17. D. Macero, D. Holmes, T. Banks, and L. Burgess, "Graphics II by Selnar, High Resolution Copy from a DECwriter," BYTE, Vol.7, 172-195 (1982).
18. $\operatorname{DOS} 3.3$, Copyright 1980, Apple Computer Inc., 10260 Eandley Drive, Cupertino, CA, 950l4. Apple Product \#A2LC036.
19. Applesoft Toolkit, Copyright 1980, Apple Computer Inc., 10260 Bandley Drive, Cupertino, CA, 95014. Apple Product却AL0038。
20. Applesoft, Copyright 1978, Apple Computer Inc., 10260 Bandley Drive, Cupertino, CA, 95014. Apple Product \#A2L0005.
21. Apple-doc, Copyright 1979, Roger Wagner, Southwestern Data Systems, Box 582, Santee, CA, 92071.
22. N. Konzen, "The \&LOMEM: Utiljty," The Apple orchard, Vol.l, p.2l(Mar. 1981). Published by The International Apple Corps., P.O. Eox 975, Daly City, CA, 94017. this utility is 159 bytes in length and is located at locations $\$ 0330$ to \$03CE. The listing is as follows:

		4 C	8D		03							03				
0340-	A9	A 4	20	C.	DE	20	67	DD	20	52	E7	A5	67	85	9	A5
0350-	B0	85	97	C6	96	38	A5	50	85	94	E5	67	85	50	A 5	51
0360-	85	95	E5	68	35	51	A 5	AF'	E5	67	A8	A5	B0	E5	68	AA
$0370-$	18	65	95	85	95	C8	D0	01.	E8	E8	C8	20	C3	D3	A2	9
0380-	20	Cl	03	A2	AF	2.0	Cl	03	A2	67	20	Cl	03	A 2	79	20
0-	Cl	03	A 5	B9	C9	02	F0	05	A2	B8	20	Cl	03	A	67	4.
03A0-	65	85	5 E	84	5 F	A. 0	00	38	B].	5 E	65	50	91	5E	AA	8
03B0-	Bl	5 E	FO	CA	65	51.	91	5 E	86	5 E	85	5 F	90	E7	4 C	C
03 CO	D6	38	B5	-	65	50	95	-	B5		65				60	

The utility is invoked by the ampersand call \&LOMEM: no. where no. is the first memory location for the relocated Applesoft program (See Line 20 of Candy Apple).

APFENDIX A

In order to illustrate the use of the character fonts created by use of the CANDY APPLE program, we have written a program named CANDY WRAPPER to place these characters anywhere on the hires screen. This program is given in Listing 4 and uses some of the routines developed for CANDY APPLE to decode and plot the characters. The program is menu driven with the following options available to the user:

1. Change the disk drives for inputting and outputting a hires picture.
2. Display the catalog of a selected disk drive.
3. Set the environment for drawing the hires characters. This option allows the user to select foreground and background colors from the hires color set.
A. Load a previously saved hires picture from disk.
4. Save a hires picture to disk.
5. Add text to a hires picture.
6. Change from one Hershey font to another.
7. Clear the hires screen.
8. Display the hires screen.
9. Exit the program.

In general, the program is self-explanatory and uses a non-destructive hires cursor to position the start of the Hershey character on the screen. The program does not clear the hires screen at initialization so that a previously generated picture may be left in page l for the addition of text. In addition, the program is relocated to protect the primary hires page. For convenience, the fonts are read in as 32 character increments called small, caps, numbers, and greek as stored by the program CANDY APPLE. Figure 9 illustrates a logo produced by CANDY WRAPPER as a frontispiece for a listing of CANDY APPLE. This figure and all others used in this report were produced by a screen dump of the hires graphic page produced by the programs to a dot-matrix printer.

Listing 1．Candy Apple program．
10 TEXT ：HOME ： $\operatorname{HTAB}(14):$ VTAB（10）：PRINT＂CANDY APPLE＂：PEM A HERSHE Y CHARACTER FILEHANDIER FOR THE AFPLE II
20 PRINT CHR（4）：＂ERUN LOMEM：＂：\＆LOMEM：2457E：REM RELOCATES A／S T 0 START AT $\$ 6000$（AEOVE HGR ：\＆2）
30 BELL＊$=$ CHR\＄（7）
40 HOME ：HGR ：HGR2
 RS
60 POKE 763，01：POKE 769，00：POKE 770，04：POKE 771，00：POKE 772，53：POKE 773，36：POKE 774，45：POKE 775，54：POKE 776，07：FOKE 777，0：FOKE 232，0 0：POKE 233，03：REM LOAD SHAPE TABLE FOR HIRES CUREOR
70 TEXT ：HOME ：HTAB（14）：VTAB（10）：FRINT＂CANDY APFLE＂：REM ETART AN D INIT．DISK DRIVES
80 PRINT BELL＊：INPUT＂READ FROM DISK DRIVE：＂：DI：IF DI $\leqslant 1$ OR DI >2 THEN 80
90 PRINT BELLま：INFUT＂WRITE TO DISK DRIVE：＂；DO：IF DO＜ 1 OR DO 2 THEN 90
100 HOME ：REM MAIN MENU
110 PRINT ：PRINT＂DO YOU WISH TO．．．．＂：PRINT ：PRINT TAE（ 10）：＂1．CREATE A NEW FONT＂：PRINT ：PRINT TAB（ 10）：＂2．MODIFY AN EXISTING FONT＂：PRINT ：PRINT TAB（ 10）：＂3．EDIT FONT CHARACTERS＂
120 PRINT ：PRINT TAB（ 10）：＂4．DIGPLAY（TRANSFER）A FONT＂：PRINT ：PRINT TAB（ 10）：＂5．ASSIGN DISK DRIVES＂：PRINT ：PRINT TAE（ 10）：＂
 WHICH？＂：C
130 IF C © 1 OR C >7 THEM 100
140 IF C ； 4 THEN 180
 ES FILENAME：＂：Ó

$1650 \$=\mathrm{N} \$$
170 HOME
180 ON C GOTO 999， $3000,5000,4000,70,9000,10000$
999 HGR2 ：TEXT
1000 PRINT＂＊ROUTINE TO CREATE AN HERSHEY FILE NAME：＂；Nま
1010 PRINT EELL\＃：PRINT＂INPUT HERSHEY COOR．SH OR USE CURSOR CONTROLG

$1020 \mathrm{EF}=0$ ：IF A＝＂C＂THEN EF＝ 1
1030 IF EF THEN 1090
1040 PRINT BELL事：PRINT＂＊INPUT THE HERSHEY COORDINATE PAIRS ON THE PROM PTING BELI＂
1050 PRINT ：PRINT＂＊THE CHARACTER READ ROUTINE ASSUMES THAT THE PEN STARTS IN THE UP POSITION．TO SIGNAL A PEN CHANGE IMEERT A SPACE BE TWEEN THE COORDINATE PAIRS．＂
1060 PRINT ：PRINT＂＊TO SIGNAL THE END OF THE CHARACTER INGERT THE DE LIMITER／＂
1070 PRINT ：PRINT＂＊TO EIGNAL THE END OF THE FILE ENTER THE EOF CHARA CTER くEン．＂
1080 PRINT ：PRINT＂＊THE FIRST COORDINATE PAIR INDICATEG THE WIDTH OF THE CHARACTER．．．TO ENTER A NULL CHARACTER ENTER 0，0＂
 HOME ：GOTO 1000
1100 HOME ：IF FI THEN 1120
1110 IF C THEN I $=0$
1120 GOSUB 8000：PRINT TAE（ 10）：＂FILENAME：＂：Nक：A\＄＝＂＂
1130 PRINT ：PRINT TAB（ 10）：＂CHARACTER STRING NO：＂：L：Xt（L）＝＂ $1: Z=$ FRE （0）：PF $=0$
1140 IF L $=1 \leqslant 0$ THEN X寺＝＂E＂：GOTO 1220

```
1150 IF EF THEN A* = "N": GOEUE 51GO% IF EF= O THEN X$ = "E": GOTO 1220
1160 IF EF AND FI THEN RETURN
1170 IF EF THEN I = L + 1: GOTO 1120
1100 X寺="":Y毒="
1190 PRINT BELI*: TAE( 5):"HOR.COOR:";
```



```
    * + A*: GOTO 1200
```



```
    GOTO 1:90
1220 IF Xt = "E" THEN X圭(L) = "EOF": PRINT "ND OE FIIE...";: PRINT:LMAX =
    L
12OO IF X士 = "E" THEN PRINT EELL招"HRITE TO DIGKGHY OF RETURM TO MENUCMS
    ?":; GET O&: ERINT Q&? IF Ot < ` "H" AND Qt < = "M" THEN 1230
1240 IF Qa = "W" THEN 2000
1250 IFQ# = "M" THEN TEXT : EOTO 100
1290 IE X$ = "" THEN X寺(I) = Xt(L) + CHE* (127):PE= NOT (PE): PRINT EE
    LL*:"PEN CONT.": GOTO 1180
1300 IF X车 = "/"AND IEN (X$(I)) THEN Xt(I) = X寺(I) + CHEF{127) + CHP寺
    (XF - XT + %3) + CHP寺 (93 - YT): GOTO 1420
IP10 IF Xt = ";" AND LEN {X㣔)\ = O THEN EETNT EEILF:"EEROR...EEINEUT"
    : GOTO 1170
1320 PRINT EELLF:" VERT.COOR:";
```



```
    * + E年 GOTO 1330
```



```
        GOTO 1320
1350 PRINT
```



```
    XT):YT = 0:X圭(L) = CHP* (H + 93): GOSUE SO&0: GOT0 1170
```



```
        ` 32 OR ABS (Y) ? 22 THEN ERINT EETYF""TO LAEGE A DIERIACEMENT,INP
        UT SMALIER VALUES"; GOTO 1170
1380 GOSUE 8080
1390 XT = XC:YT = YC
```



```
        = X*(L) + CHR* (127):PF= !
1410 GOTO 1170
1420 PRINT "CHARACTER HIDTH=":W
```



```
        0主 < > "N" THEN 1430
1440 IF Ot = "Y" AND FI THEN EETUPN
1450 IF O.t = "N" THEN PRINT EELL和"只E-INDUT ";
1460 L = L + 1; GOTO 1120
20O0 TEXT ; HOME : PRINT "WRITE TO EIIENAME:":N*; PEINT "DIEX DRIVE NO.":
    DO: PEINT BEIL婁: REM PUT IT ON DISU DO
```



```
        > "M" THEM 2010
2020 IF A = "Y" THEN 2050
2030 PRIMT DELI*:% INPUT "FISENAME; ":N*
2040 PRINT EELIt;: INEUT "HRITE TO DISK. DRIVE#":DO: IE DO G OE DO % = THEN
    2040
2050 PPIMT D乐:"OPEN ":N生:",D":DO
2060 PRINT D幸"DEIETE ", #$
2070 PRINT D*:"OPEN ":N%
```



```
2090 FOR I = 0 TO L
2100 PEINT X寺(I)
2110 NEXT I
2120 PRIMT D寺"CIOSE ";M%
2130 TEXT : GOTO 100
```

2000
3010 P．INT TAS（ 10）；EON－NAME．N
PRINT ：PRINT TAB（5）：＂YOU MAY．．．＂：PRIMT ：PRIMT TAB（5）：＂1．APDEN D TO A FOMT＂
3020 PRIHT ：PRINT TAE（5）：＂2．INSERT IN THE MIDDLE OF A FONT＂：PRINT ：PRINT TAB（ 5）：＂З．REPLACE A CHARACTEP＂
3030

3040
3050
3060
3070
3080
3090
$3100 \mathrm{FI}=0: \mathrm{C}=0: \mathrm{L}=\mathrm{LMAF:} \mathrm{TEXT} ;$ HOME：GOTO 1000
3110 IF MF THEN GOSUE $1: 000$
3120 VTAE（21）：PRINT＂MOTE．．．FIRET CHARACTER IS NO．0＂
3130 PRINT EELI舌＂LOCATION TO＂；
3140 OM C－ 1 GOTO $3150,3200,3230$
3150 FRINT＂INSERT＂：IMPUT IO：IF LO © O OR LO YMAY THEN PRINT EELL\＆： ＂OUT OF RANGE＂：GOTO 3130
3160 LMAX $=$ LMAX +1
3170 FORK $=$ LMAX TO LO +1 STEP－ $1: X \neq(\%)=X \neq(K-1): \mathrm{NEXT} \underset{\sim}{T}$
3180 FOFI $=10+1$ TO LMAX：GOSUB GOOO：NEYT ：GOSUB 11000
3190 GOTO 3220
 EIIq：＂OUT OF RAMEE＂：COTO 3130
3210 GOSUE 11000
$3220 \mathrm{I}=\mathrm{IO}:$ TEXT ：HOME：GOSUB 1010：EF＝ $3:$ GOEUE $5000:$ GOTO 3000
3230 DRINT＂DELETE＂；：INPUT LO：IF LO O OR LO Y EMAX THEN PRIMT EEIY＊： ＂OUT OF RANGE＂：GOTO 3130
3240 LMAX $=$ LMAX－ 1
3250 FOR $K=$ LO TO LMAX：X寺：K！$=X \$(K+1):$ NEXT
3260 FOR L $=$ LO TO LMAX：GOSUE $6000:$ NEXT ：GOSUE $11000:$ GOTO 3000
4000 GQSUE 7000 ：REM GET FONT AMD DISPIAY IT
4010 HGR：IF MF＝ 0 THEN FOR $=0$ TO IMAX：HTAE（12）：VTAB（24）：PRINT ＂CHAR．NO．＂：I：GOSUE 5000 ：NEXT I：GOSUE 11000：GOTO 4030
4020 GOSUE 11000：IF N＝OF THEN GOSUE 11000
4030 IF FI THEN RETURN
4040 VTAE（21）：HTAB（10）：PRIMT N
4050 PRINT EELI＊；＂URITE TO DESE CW OE RETURN TO MENU GMン＂：GET A＊：FRINT

4060 IF $A *=" W "$ THEN 2000
4070 TEXT ：HOME ：GOTO 100
5000 TEXT：HOME：PRIMT：PRINT＂\＆ROUTIME TO EDIT INDIUIDUAZ CHARACTERS＂
5010 PRINT ：PRINT＂YOU HIII FIRET EE GHOHM ENTIRE GONT D TO CHOOSE THE CHAPACTER TO EDIT．＂
5020 PRINT ：PRINT＂THE CHAPACTER WIIL EE DRANM AS IS AND THEN YOU CAN REDRAW IT EY EITHER INPUT－TING HERSHEY UECTORS OR EY USING THE ED ITING KEYS．＂
5030 PRINT BELI＊：PRINT＂PEADY？＂： 5000
$5040 \mathrm{FI}=1:$ GOSUE $4000: \mathrm{FI}=0$
5050 VTAE（24）
5060 PRINT EELIF；＂NOTE．．FIRST CHARACTER IS NO．O＂：IMPUT＂CHARACTEP ND．T
 F RANGE＂：GOTO 5060
5070 PRINT：GOSUE $8000: X \neq " ": P R I N T$ TAB！13）：＂OID CHARACTER＂
$5080 \mathrm{~W}=\mathrm{ASC}(\mathrm{LEFT}\{(X+(I): 1))-93: X F=W-I N T(H / 2): X T=-I N T(1$

```
    W / 2): GOSUE E080
5090 PF = 0: FOR J = 2 TO IEN (X年(L)) STEP 2
5100 X = ASC (MID$ (X圭(L),J,1)) - 23: IF X = 34 THEN PF = NOT PF:J = J -
    1: NEXT
5110 Y = ASC (MID* (X才(L),J + 1,1)) - 93
5120 GOSUE 80B0: NEXT ]
5125 PRINT "READY TO CHANGE"; INPUT A$: IF A* < > "Y" THEN 5000
5130 FRINT BELL*:"IMPUT HERSHEY COOR.CH` OR USE CURSORCC`?": GET O&: IF
    O& < " "H" AND Q < > "C" THEN 5130
5140 IF Q= = "H" THEN FI = 1: GOSUE 1120:FI = 0: GOTO 5400
5 1 5 0 ~ G O S U E ~ 8 0 0 0
51&0 PRINT "CURRENT UIDTH IS ";W: PRINT "LEFT MARKER AT:";XT: PRINT "RIGH
    T MARKER AT:"; XF
```



```
        &< > "N" THEN 5170
```



```
        ;: INPUT "RIGHT MARKER:";XF:Y = XF - XT: GOTO 5160
5190 X = CHP% (W + 93): GOSUE 8060
5200 POKE 33,5: POKE 32,34: PRINT : PRINT " PEN": PRINT "MODE: ": POKE 33
        33: POKE 32,0:PF = 0
520 SCALE= 1: ROT= O:X = X1:Y = Y1: DRAW 1 AT X,Y: PRIMT : PRINT MI,J,Y,
    M KEYS MOVE CURSOR U,R,L,D"
5220 PRINT "RETURN ENDS MOVE, / EMDS CHAR."
5230 PPIMT "SPACE FLIPS DEN, E ENDS FONT": HTAB (37): PRINT CHR& (85 -
        17 * PF);
5240 DX = 0:DY = 0
```



```
5260 XDRAN 1 AT X,Y: ON ASC (A*) - ?3 GOTO 5280,5290,5300,5300
5270 DY = DY - 1:Y = Y - 5t g0T0 5310
5280 DX = DX - 1:X = X - 5: G0T0 5310
5290 DX = DX + 1:X = X + 5% GOT0 5310
5300 DY = DY + 1:Y = Y + 5
5310 DRAW 1 AT X,Y: GOTO 5250
```



```
        THEM 5250
```



```
        CHR# {85 - 17 * PF}: GOT0 5250
```



```
    PF THEN HPLOT X1,Y1 TO X,Y
5350 IF ASC (Aま) = 13 THEN X1 = X:Y1 = Y: GOTO S210
5360 IF Aq = "/" THEN X$(I) = X垁: IF PF = 1 AND X1 < % 140 + M XF AND
```



```
        5 + 93) + CHP呆 ((%1 - 80) (5 + 93)
```



```
        CHRま (93) + cHR= (93)
5360 IF A未 = "/" THEN PRINT BEIL*: PRINT "CHARACTER O.K.?"t: GET Q#: PRINT
    Q#: IF Q& < > "Y" AND O$ < ` "N" THEN 5SOO
5390 IF Q = "N" THEN 5150
5400 pOKE 33,40: GOSUE 11000: GOSUR E000: GOSUE 11000
5410 IF Aま = "/" AND (FI OR EF) THEN RETURN
5420 IF A# = "E" AND EF THEN EF = O: RETURN
```



```
    A寺 < ? "N" THEN 5430
5440 IF A$ = "N" AND FI THEN FI = 0: GOTO 5060
5450 IF Aq = "N" THEN FI = 1: GOSUE 4010:FI = 0: GOTO 5060
5460I = LMAX:X早 = "E"; pRIMT " E";: GOTO 1220
6000 HCOLOR= O%Z = L - 50% IMT {I/ 50): IF (Z; 50)= INT (Z/50) AND
        {L > 0) THEN PRIMT DELL悉"STRIKE ANY KEY TO CONTINUE...":: GET Q*: HGR
        : REM DISPLAY ROUTINE
6010 IF LEN (X寺(L)) = 0 THEN RETURN
```



```
EO30 FOR I = 1 TO 14: SCALE= I: DRAW 1 AT XP + 14,YP: NEXT ; HCOZOP= 3
6040 K = ASC { MID# {X才{L}:1,1!) - 9?
6050 XP = XP + INT ((2, -W) / 2)
6080 IFW = 0 THEN HCOLOR= 6:XP = XP - 5:DX = 10
5 0 7 0 ~ I F W ~ = ~ 0 ~ T H E N ~ H F L O T ~ X P , Y P ~ T O ~ X D ~ + ~ D X , Y P ~
6080 HCOLOR= 3!PF = 0
EOP0 FOR J = 2 TO LEN {X寺{L)) STEP 2
&100 DX = ASC { MID* {XF(L), I,1)}
6110 DY = ASC (MID* (X\pm(L),J + 1,1))
$120 IF DX = 127 THEN PF = NOT (PF):J = J - 1: NEXT I
6130 DX = (DX - 93):DY = (DY - %3)
6140 IF LEN (X圭(L)) < 5 THEN HCOLOR= 5
$150 IF PF THEN HPIOT XP,YP TO XP + DX,YP - DY
6160 XP = XP + DX:YP = YP - DY: NEXT J
6170 HOME : VTAE 21
6180 RETURN
7000 HOME : IF NS = ON AND MF = 1 THEN RETURN : REM READ FROM DISK DI
7010 PRINT "NOW READING FILE FROM DISK #":DI
7020 IF FI THEN PRINT ; PRINT "ENTIPE FONT WILL EE DISRIAYED"
7030 MF = 0: RESTORE
7040 PRIMT D*:"OPEN ";Nक;":D";DI
7050 PRINT D$;"READ ";M*
7060 I = 0
7 0 7 0 ~ I N P U T ~ X \$ ( I ) ,
7080 IF X&(I) = "EOF" THEN 7100
7090 I = I + 1: GOT0 7070
7100 PRIMT Df:"CLOSE ":N*
7110 LMAX = I:O$ = N$: RETURN
80OO HGR : HCOLOR= 5: HPLOT 65,5 TO 215.5 TO 215.155 TO 65.155 TO 65,5: REM
        EDIT GRAPHICS ROUTINES
3010 HCOLOR= 6: HPLOT 140,5 TO 140,15: HPLOT 140,145 TO 140,155: HPLOT &5
        80 TO 75, 80: HPLOT 205,80 T0 215,80
8020 HCOLOR= 3: FOR J = 10 T0 150 STEP 5: FOR K = 70 TO 210 STEP 5: HPLOT
    K,J: NEXT : NEXT
8030 HPLOT 140,78 TO 140, 82: HPIOT 138,80 TO 142, 80
8040 VTAB (24)
8050 RETUPN
8060 M = 5: HCOLOR= 3: HPLOT 140 + M* XT,75 TO 140 + M XT,85: HPLOT 140
        + XF # M,75 T0 140 + YF # M, 85
8070 X1 = 140 + M * XT:Y1 = 80: RETUPN
8030 IF FF THEN HPLOT X1,Y1 TO X1 + M * X,Y1 - M * Y
30:0 X1 = X1 + M * X:Y1 = Y1 - M* Y: RETURN
9000 TEXT : HOME : PRINT D*:"CATALOG:D";DI
9010 PRINT : PRINT EELI&;"STRIKE ANY KEY TO CONTINUE":; GET A&: GOTO 100
10000 HOME : PRINT EELL&;"NICE WORKING HITH YOU": END
11000 PEAD F%,L%,D&: REM MEMORY LOCATIONS FOR MOVE
11010 FH% = F% / 25b:FL% = F% - 256* FH%:LH% = L% / 256:LL% = L% - 256*
    LH%:DH% = D% / 256:DL% = D% - 256 * DH%
11020 POKE 6O,FL%: POKE 61,FH%% POKE 62,LL%: POKE 63,LH%: POKE 66,DL%: POKE
        67,DH%
11030 POKE 70,0: POKE P1,0: POKE 58,44: POKE 59,254: REM SETUP YREG,XREG
        PCL,PCH
11040 CALL - 327:MF = NOT ME: IF MF = 0 THEN RESTORE
11050 PETURN
11060 DATA 2192,16383,16384,16384,24.575,8192
```

]

Listing 2. Candy Apple variable listing.

$\stackrel{\text { n }}{ }$		
$\stackrel{ }{*}$	CANDY	APPLE
*		
4	-- TAELE OF	UARIA
*		

A寺	A.			ASO		TO E	TER	HEES	X			
1010	1010	1010	1010	1020	1120	1150	1200	1200	1200	1200	1200	- 10
2010	2010	2010	2020	4050	4050	4050	4050	4060	5030	5030	5030	5125
5125	5170	5170	5170	5170	5180	5250	5250	5250	5260	5320	5320	5320
5320	5330	5340	5350	5360	5370	5380	5410	5420	5430	5430	5430	5430
440	54.50	9010										

E* - STRING USED TO ENTER HERSHEY Y COORDINATE $133013301330 \quad 1330 \quad 1330$

EELL $=$ - CHR (7) SOUNDS GPEAKER
$30 \quad 30 \quad 70 \quad 120 \quad 150 \quad 1010 \quad 10401070 \quad 119012101230129012101320$ $134013701430145020002030 \quad 2040 \quad 3040 \quad 313031503200 \quad 32304050$ $5030 \quad 5060 \quad 5060 \quad 5130 \quad 5170 \quad 5130 \quad 5180 \quad 52505380 \quad 54306000 \quad 9010$ 10000

C - NUMERICAL CHOICE INPUT
$120130130140 \quad 180 \quad 11103040305030503060303030503100$ 3140

Dき - CHR (4) DOS CONTROL
$50 \quad 2050 \quad 2060 \quad 2070 \quad 2080 \quad 2120 \quad 7040 \quad 7050 \quad 7100 \quad 9000$
DF - DESTINATION ADDRESS FOR MEMORY MOVE
110001101011010

DH: DESTINATION HIGH BYTE
110101101011020

DI - DISK DRIVE FOR INPUT
$30 \quad 30 \quad 80 \quad 12070107040 \quad 9000$

DL: - DESTINATION LOW EYTE
1101011020

DO - DISK DRIVE FOR OUTPUT
$70 \quad 90 \quad 70 \quad 2000 \quad 2040 \quad 2040 \quad 2040 \quad 2050$
$D X$ - INCREMENTAL X
$5240 \quad 5280 \quad 5260 \quad 5290 \quad 5290 \quad 53406060 \quad 6070 \quad 5100 \quad 6120 \quad 61306130 \quad 6150$
6160
DY - INCREMENTAL Y
$52405270 \quad 5270 \quad 5300 \quad 5300 \quad 5340 \quad 61106130613061506160$
$E F-E D I T$ FLAG $0=N O E D I T \quad 1=E D I T$ UNDERWAY

```
1020 1020 1030 1150 1150 1150 1170 3220 5410 5420 5420
```

F* - STARTING ADDRESS FOR MEMORY MOVE ROUTINE 110001101011010

```
FH* - STARTING ADDRESS HIGH EYTE
1101011010 11020
FI - GENERAI PURPOSE FONT INPUT FLAG
1100 11&0 1440 3060 3070 3070 3080 3100 4030}505040 5040 5140 5140
5410 5440 5440 5450 5450 7020
FI% - STARTING ADDRESS LOW EYTE
1101011020
I - GENERAL INDEX
2070 2100 2110 6030 6030 7060 7070 70S0 7070 7090 7110
J - GENERAI INDEX
5090 5100 5100 5100 5110 5120 6090 6100 6110 6120 6120 6120 6150
8020 8020
K - GENERAL IMDEX
3170 3170 3170 3170 3250 3250 3250 8020
L - INDEX FOR LOCATION IN FONT
1110 1130 1130 1:40 1170 1170 1220 1220}12000 1290 1300 1300 1300
1310
3220}32260 4010 4010 4010 5080 50.50 5060 5030 5090 5100 5110 5360
5360 5360 5370 5370 5370 5460 6000 6000 6000 6010 6040 6090 6100
61106140
```

L\% - ENDING ADDRESS FOR MEMORY MOVE ROUTINE
110001101011010
LH: ENDING ADDRESS HIGH BYTE
110101101011020
LI: - ENDING ADDRESS LOH BYTE
1101011020
IMAX - LOCATION OF EOF CHARACTER--MAXIMUM CHARACTER IN FONT
$1220 \quad 3060 \quad 3100 \quad 3150 \quad 3160 \quad 3160 \quad 3170 \quad 3180 \quad 320032303240 \quad 32403250$
$3260 \quad 4010 \quad 5060 \quad 5460 \quad 7110$
LO - LOCATION TO INSERT, REPLACE,ETC.
$3150 \quad 3150 \quad 3150 \quad 3170 \quad 3180 \quad 3200 \quad 3200 \quad 3200 \quad 3220 \quad 3230 \quad 3230 \quad 32303250$
3260
M - MAGNIFICATION FOR HIGH RES ROUTINES
$5360 \quad 8060 \quad 8060 \quad 8060 \quad 3060 \quad 8060 \quad 8070 \quad 8030 \quad 8080 \quad 8090 \quad 8090$
$M F-M O V E F L A G 0=X F E R$ FROM P1 TO P2 $1=X F E R$ FROM PZ TO P1
3110401070007030110401104011040
N* - FONT NAME (CURRENT)
$150 \quad 160 \quad 160 \quad 160 \quad 1651000 \quad 1120 \quad 2000 \quad 2030 \quad 2050 \quad 2060 \quad 2070 \quad 2050$
$2120 \quad 3000 \quad 4020 \quad 4040 \quad 7000 \quad 7040 \quad 7050 \quad 7100 \quad 7110$
O\$ - FONT NAME (PREVIOUS)

```
150 160 165 4020 7000 7110
PF - PEN FLAG 0=PEN UP 1=PEN DOWN
1130}127201270 1400 1400 5090 5100 5100 5200 5230 5330 5330 5330
5340 5360 6080 6120 6120 6150 8080
Q* - STRING FOR QUESTION ANSNERS
1070 1090 1070 1230 1230 1230 1230 1240 1250 1430}12430 1430 1430
1440 1450 5130 5130 5130 5140 5380 5380}53300 5380 5390 6000
W - LENGTH (WIDTH) OF CHARACTER IN FOHT
1360 1360 1420 5080 5080 5080 5080 5160 5180 5170 6040 6050 6060
6070
X - X LOCATION IN CHAPACTER COORDIMATE SPACE
1370 1270 1400 5100 5100 5210 5210 5260 5290 5280 5290 5290 5310
5340 5350 5050 6090
X* - STRIMG CONTAINING CURRENT CHARACTER
1140 1150 1180 1200 1200 1210 1210 1220 1230 1290 1300 1310 1360
1370 5070 5170 5330 5330}55340 5340 5360 5460
X乎(*) - STRIMG ARAY FOR FONT
50 1130 1220 1290 1290 1300 1300 1300 1310 1360 1360 1400 1400
1400 1400 2100 3170 3170 3250 2250 5080 5080 5100 5110 5360 5360
5360 5370 5370 5370 6010 6040 6090 6100 6110 6140 7070 7080
X1 - HIRES X LOCATION
5210 5340 5350 5360 5360 3070 3080 8080 8090 3090
XC - CURRENT X COORDINATE VALUE
1370 1370 1390
XF - FIMAL X COORDINATE OF CHARACTER
1300 1360 1360 5080 5160 5180 5180 5360 5360 8060 8060
XP - HIRES X POSITION
6020 6030 6050 6050 6060 6060 6070 6070 2150 6150 6160 6150
XT - TEMPORARY X COORDIMATE
1300 1360 1360 1370 1300 5080 5160 5180 5180 8060 8060 8070
Y - Y LOCATION IN CHARACTER COORDIAATE SPACE
1370 1370 1400 5110 5210 5210 5260 5270 5270 5300 5%00 5210 5340
5350 8080 8090
Y* - CURRENT Y COORDINATE STRING FOR INPUT
1180 1330 1330 1340 1340 1360 1370
Y1 - HIPEG Y COORDINATE
5210 5340 5350 5360 5360 2070 3080 6080 8090 8090
YC - CURRENT Y COORDIMATE
1370 1370 1390
YP - HIRES Y POSITION
6020 6030 6070 6070 6150 6150 6160 6160
YT - TEMPORARY Y COORDINATE
1300 1360 13701390
```

Z - CHARACTER INDEX FOR DIEREAY ROUTIME
1130600060006000602050206020
END OF YAR. IIST

Listing 3. Catalog of Candy Apple disk.

```
DIEF VOLUME こ54
*A OG EANDV APPLE
```



```
I 0OT CANDY APPLE VFILE
```

Listing 4．Candy Wrapper program．

```
10 TEXT : HOME : HTAE (14): VTAE (09): PRIMT "CAMDY WRAPPER"
20 PRINT CHR# (4):"ERUM LOMEM:": & LOMEM: 16384: REM REIOCATES A/E TO
        START AT $4000 (ABOVE HGR 1)
    30 EELL$ = CHR# (7)
    40 D* = CHR# (4): DIM X*(160): REM SAVE SPACE FOR 5 FONTS OF 32 CHARACTE
        RS
```



```
        (A ( 64)); B) + 1024* (A - O* INT (A ( S))
    60 POKE 7EQ,01: POKE 76,,00: PORE 770,04: POKE 771,00: POKE 772,5E: POKE
        773,36: POKE 774,45: POKE 775,54: POKE 776,07: POKE 777:0: POKE 232:0
        0: POKE 233,03: REM IOAD SHAPE TABLE FOR HIRES CURSOR
    70 ONERR GOTO 12000
80 X = 139:Y = 55:FF=0
90 TEXT : HOME : HTAE (14): VTAE (08): PRINT "CHARACTER PLOT"
100 FRINT EELL; INPUT "READ FROM DIEK DRIVE:":DI; IF DI S ! OR DI % 2 THEN
        100
    110 PRIMT EELLF: INPUT "WRITE TO DISK DRIVE:":DO: IF DO< 1 OR DO % 2 THEN
        110
120 PRINT EELLf: INPUT "FONTE FROM DISK DRIVE:":DF: IF DF < I OR DF > 2 THEM
        120
130 TEXT : HOME : HTAS (10): VTAE (06): PRIMT "OPTIONS..."
:40 PRINT : PRINT "1. CHANGE DIEK DRIVES": PRINT "2. CATALOG DIEK"# PRINT
        "3. SET ENVIRONMENT"
    150 PRINT "4. LOAD HIRES PIX"# PRINT "5. SAVE HIRES pIX": PRIMT "6. ADD T
        EXT TO PIX": FRINT "7. CHANGE FONT"; PRINT "8. CLEAR HIRES SCREEN": PRINT
        "G. DISPLAY CURRENT FICTURE": PRINT "10. OUIT"
    160 PRINT BELL*: INFUT "HHICH--? "#C: IF C < 1 OR C % 10 THEN 160
    170 ON C GOTO 90,1000,8000,2000,2000,3000,4000,5000,6000,7000
    1000 TEXT : HOME
    1010 PRINT "WHICH DRIVE ";: INPUT D
    1030 PRIMT D{年"CATALOG,D";D
    1040 PRINT : PRIMT BELI*:"STRIKE ANY KEY TO CONTIMUE":! GET A⿱土土: GOTO 130
    2000 HOME : HTAB (5): VTAB (10): INPUT "FIIENAME OF PICTURE--`n;N*
    2010 ON C - 3 GOTO 2020,2030
    2020 HGR : POKE - 16302,0:X = 139:Y = ?5: FRINT D年"ELOAD ":N*:",D":DI: FOR
        I = 1 TO 2000: NEXT : GOTO 130
    2030 PRINT D&:"EEAVE ";N*:",Aま20 00,L$2000,D":DO
    2040 PRINT D来:"LOCK ";N*: GOTO 130
    3000 IFFF=O THEN FRINT "NEED FONTE TO CONTINUE...": FOR I = 1 TO 1000
        : NEXT : GOTO 4000
    3010 TEXT : HOME : PRINT "PROCEDURE TO ADD TEXT TO PICTURE"
    3020 PRINT : PRINT "1. INPUT TEXT TO ADD": FRINT "2. POSITION CURSOR UEIN
        G I, I, K,M KEYS": PHINT "NOTE:KEY MAY BE PRECEEDED EY A NUMEER: E.G.
        5OI MOVES 50 EPACES EIGHT."
    3030 PRINT "3. STRIKE CTRL-P TO PRINT TEXT"; PRINT "4. CESC` TO RETURN TO
        MENU, ©SPACE` TO CHANGE TEXT."
    3040 PRINT : PRINT "STRIKE ANY NEY TO START-->";: GET A%: IF ASC (A%) =
        27 THEN 130
    3050 GOSUE 20000
    3060 SCALE= 1: ROT= 0: HCOLOR= 7: POKE - 16304,0: POKE - 16297,0: POKE
        - 16302,0
    3070 Z = 0:Z% = "0": GOSUR 25000: DRAW 1 AT X,Y
```



```
        Z事=Z$ + A$:Z = VAL (Zま): GOTO 3080
3090 IF ASC (A$) G 73 OR ASC (A$) ) 77 THEN 3190
3100 GOSUE 30000: FOR I = O TO Z: IF (X > 10) AND (X<270) AND (Y % 10) AND
        (Y< 132) THEN ON ASC (A*) - ?2 GOTO 3110,3130,3150,3150,3170
    3110 Y = Y - 1; IF Y = 10 THEN Y = 11
```

```
2120 NEXT I: GOTO 3070
3130 X = X - 1: IF X = 10 THEN X = 11
3140 NEXT I: GOTO 3070
3150X=X + 1: IFX=270 THEN X = 26?
3180 NEXT I: GOTO 3070
3170 Y = Y + 1: IF Y = 132 THEN Y = 131
3180 NEXT I: GOTO 3070
```



```
    7) THEN 3070
3200 IF ASC (A*) = 27 THEN 130
3210 IF ASC (A$) = 32 THEN 3000
3220 GOSUB 30000: GOSUE 22000: GOTO 3000
4000 REM LETTER FONTS
4010 HOME
4020 PRINT : PRINT TAE( 10):: INVERSE ; P品NT "INPUT LETTER FONTS": PRINT
    ; NORMAL : PRINT TAE( 11):"EONTS AVAILAELE:"
4030 PRINT : PRINT TAE! 10};"&1% INDEX": PRINT TAE! 10):"&2) SIMPLEX"
    : PRINT TAB( 10):"<3) COMPIEX": PRINT TAB(10):"C4% CARTOGRAPHIC"
    : PRINT TAB( 10):"C5% SCRIPT": PRINT TAB( 10):"Cb% GOTHIC": PRINT
    ; PRINT
4040 I = 1
4050 N& = " NUMBERS": PRINT : INPUT "NUMRER FONT <1-b`:":N:N= INT (N): IF
    N<1OR N % & THEN PRINT "REINPUT ":: GOTO 4050
    4080 GOSUB 4140:
4070 N$ = " CAPS": PRINT : INPUT "UPPEP CASE FONT (1-6`:":N:N = INT (N): IF
    N < OR N % 6 THEN POKE "REINPUT ":: GOTO 4070
4080 GOSUB 4140
4000 N* = " SMALL": PRINT : INPUT "LONER CASE FONT<1-6>:";N:N = INT (N):
        IF N < OR N % & THEN PRINT "REINPUT ":: GOTO 4090
4100 GOSUE 4140
4110 N= = "GREEK": PRINT: INPUT "GREEN FONT (1-3,:":N:N= INT (N): IF N
        <1 OR N % 3 THEN PRINT "REIMPUT ":: GOTO 4110
4120 GOSUE 4140
4130 PRINT :N#(S) = "MATH SYMEOLS": PRINT N事(S):" ALSD BEING LOADED": GOTO
    4210
4140 IF N = 1 THEN NF(I) = "INDEX"
4150 IF N = 2 THEN Nक(I) = "SIMPLEX"
4160 IF N = 3 THEN Nक (I) = "COMPIEX"
4170 IF N = 4 THEN N$ (I) = "CARTO"
4180 IF N = 5 THEN N* (I) = "SCRIPT"
4190 IF N = 6 THEN Nक(I) = "GOTHIC"
4200 N* (I) = Nक (I) + N*:I = I + 1: RETURN
4210 PRINT ; FLASH : PRINT "NON LOADING FONTS"; NORMAI
4 2 2 0 ~ F O R ~ I ~ = ~ 1 ~ T O ~ 2 ; ~ P R I N T ~ N F ( I ) : " ~ " ; : ~ N E X T ~ I : ~ P R I M T ~
4230 FOR I = 3 TO 4; PRINT Nक(I);" ";: NEXT I: PRINT ; PRIMT "MATH SYME
    OLS"
4240 N = 0: FOR I = 1 TO 5
4250 PRINT D{:"OPEN ";Nक(I):",D":DF
4260 PRINT D*;"READ ";N专(I)
4270 FOR JJ = 1 TO 32
4280 INPUT X$(N)
4290 N=N+1
4 3 0 0 ~ N E X T ~ J J ~
4310 PRINT D{;"CLOSE ";N$(I)
4320 NEXT I:FF=1
4330 HOME
4340 GOTO 130
5000 HGR : GOTO 130
6000 POKE - 16304,0: POKE - 16302,0: GET A$: GOTO 130
7000 HOME : PRINT RELI车:NICE HOREING WITH YOU": END
```

QnOO TEXT：HOME：PRINT＂SET DRAWING ENYIRONMENT＂：BF＝ $0: D P=0$
8010 PRINT ：PRINT＂COLORS AVAILABLE．．．＂
8020 PRINT＂O．BLACKI＂：PRINT＂1 ．GREEN＂：PRINT＂2．VIOLET＂：FRINT＂3．W HITE1＂：PRINT＂4．BLACK2＂：PRINT＂5．ORANGE＂：PRINT＂6．BLUE＂：PRINT
＂7．WHITE2＂
3025 PRINT＂8．NONE－BACKGROUND ONIY＂
8030 PRINT：INPUT＂EACKGROUND COLOR：＂：BC：IF BC \＆ 0 OR BC 7 THEN BF＝ $1: B C=0$
8040 PRINT ：INPUT＂FOREGROUND COLOR：＂：FC：IF FC © OR FC >7 THEN 8040 8045 PRINT：INPUT＂SINGIEC1）OR DOUBLEC2）PRECISION：＂：N：IF N 1 OR N ？ 2 THEN 8045
8048 IF N＝ 1 THEN 8060
$8050 \mathrm{DP}=1:$ PRINT ；INPUT＂CONTAST COLOR：＂：CC：IF CC $6 O$ OR CC >7 THEN 8 050
8060 GOTO 130
11000 READ $F \%, L \%, D \%$ ：REM MEMORY LOCATIONS FOR MOVE
$11010 F H \%=F \% / 256: F L \%=F \%-256 * F H \%: L H \%=L \%, 256: L I \%=2 \%-256 *$ $\mathrm{LH}: \mathrm{DH} \%=\mathrm{D} \% / 256: \mathrm{DI}=\mathrm{D} \%-256 * \mathrm{DH} \%$
11020 POKE 6O，FI\％：POKE 61，FH\％：POKE $22, L I \%:$ POKE $63, L H \%$ POKE 66，DI\％：POKE 67，DH\％
11030 POKE 70，0：POKE 71，0：POKE 58，44：POKE 59．254：REM SETUP YREG，XREG ，PCL，PCH
11040 CALL－ $327: M F=$ NOT MF：IF MF $=0$ THEN RESTORE
11050 RETURN
11060 DATA $8192,16383,16384,16384,24575,9192$
12000 REM ERROR HANDIING ROUTINES
12010 GOOF＝PEEK（222）
12020 PRINT：PRINT BELL末：＂ERROR NO．＂：GOOF：＂ENCOUNTERED＂：PRINT＂ERROR H ANDLER ACTIVE．．．＂：BELI $\ddagger: F O R Z=1$ TO 1000 ：NEXT
12030 IF GOOF＝ 53 THEN PRINT：PRINT BELZक；＂NEED FONTS TO CONTINUE＂：BEL I\＄：FOR ZZ＝ 1 TO 1000：NEXT ZZ：B事（J＋b）＝B\＄（J）：HOME：EW（J）＝＂F＂： GOSUB 3000：RESUME
12040 IF（GOOF＝5）OR（GOOF＝6）THEN PRINT＂FILE NOT FOUND＂：FOR ZZ＝ 1 TO 2000：NEXT ：GOTO 130
12060 IF GOOF＝ 9 THEN PRINT BELI \ddagger＂DISK FULL，INSERT NEW DISKETTE＂；BELL
12070 IF GOOF＝ 10 THEN PRINT BELI\＄；＂WARNING！！，＂；N＊：＂IS LOCXED＂：PRINT ＂DO YOU WISH TO DESTROY OLD FIIE＂： GOTO 130

12070 IF GOOF $=255$ THEN STOP
12100 RESUME
20000 REM＊＊TEXT GENERATOR＊＊＊
20020 PRINT ：PRINT＂CHARACTER STRING：＂：$: 1 \mathrm{C}=0: 5 \mathrm{C}=0: \mathrm{R}=\mathrm{F}=\mathrm{n} "$
 20110
 1：GOTO 20050
20070 IF T $=$ CHR $\$(27$ ）THEN LC $=$ NOT（IC）：GOTO 20050
20080 IF NOT（LC）AND NOT（SC）THEN INUERSE
20090 IF LC AND NOT（SC）AND ASC（T⿻）$\geqslant 63$ THEN NORMAL ：T＝CHR $=(A S C$ （T）+128 ）
20100 PRINT T＊：：R\＄＝R\＄＋CHR\＄（ASC（T\＄））：SC＝0：GOTO 20050
20110 PRINT：PRINT BELI ：INPUT＂SIZE：＂：IW：IW＝INT（IW）：IFIW\＆10R IW >10 THEN PRINT BELL＊；＂REINPUT ：＂；GOTO 20110
20130 PRINT BELI \ddagger INPUT＂HORIZ．（H）OR VERT．©V CHARACTERS ？＂：L＊：IF L 6

20140 IV $=0:$ IF I $=$＂V＂THEN IV $=06$
1:口南 = MID* (Rま,IC,1)
22040 REM * MAKE HERSHEY VECTORS ***
22050 IF P\& = "" THEN PRINT BELI\&;"ERPOR-RETNPUT ";:R\& = "": GOTO 20030
22060I = ASC (P$) - 32
22070 IF (P=7 OR P = 19) AND (L) 95) THEN L = L - 120
220S0 IF P = 7 THEN L = I + 64
22090 IF P = 10 THEN L = L + ?b
22100 IF L ? 15% THEN L = L - ?%
22110 X生 = X$(L)
22120 IF SIZE = 0 THEN 22000
22130 PF = 0: HCOLOR = FC
22140 FOR G = 2 TO LEN (X$(L)) STEP 2
22150 DX = ASC (MID$(X$(L),G,1)) - 23
22160 DY = ASC (MID$ (X$(L),G + 1,1)) - ?3
22170 IF DX = 34 AND LEN (X我(L)) > 4 THEN PF = NOT (PF)
22130 IF DX = 34 THEN G = G - 1: NEXT G
221:0 DX = DX * IW:DY = - DY*IW
22200 IF IV \ O THEN TEMP = DX:DX = DY:DY = - TEMP
22210 IF PF THEN HPIOT X,Y TO X + DX,Y + DY
22215 IF PF AND DP THEN HCOLOP= CC:X = X + 1: HPLOT X:YTOX + DX,Y + DY
 X = X - 1
22220 X = X + DX:Y = Y + DY
22230 NEXT G
22240 NEXT IC
22250 FOR I = 1 TO 2000: NEXT : RETURN
23000W = W + (ASC (IEFT$ (X寺,1)) - 93) \& IW
23010 IF IV = 0 AND X + W 2 278 THEN 23040
23020 IF IV > O AND Y - W < 2 THEM 23040
23030 NEXT IC:SIIE = 1: IF DF THEN 22020
23032 IF IV = O THEN EOR I = - 15 TO 15: HPIOT X - 2,Y + I * IN TO X +
2 + W * IW,Y + I * IW: NEXT
IF IV % O THEN FOR I = - 15 TO 15: HPLOT X + I *IW,Y + 2 TOX +
I * IW,Y - 2 - W * IW: NEXT
23036 GOTO 22020
23040 TEXT : HOME : PRINT "TEXT TOO LONG...":PETL\&;BELIF: GOTO 3020
25000 YU = FNA (Y-1):YM=FNA(Y):YI=FN A(Y + = 1)
25010 XC=INT (X ; 7) - 1
25020 FOR I = 0 TO 2
25030U(I) = PEEK (YU + XC + I)
25040 M(I) = PEEK (YM + XC + I)
25050 L(I) = PEEK (YI + XC + I)
250\leqslant0 NEXT I
25070 RETURN
30000 FOR I = 0 TO 2
30010 POKE YU + XC + I,U(I)
30020 POKE YM + XC + I,M(I)
30030 POXE YI + XC + I,I(I)
30040 NEXT I
30050 RETURN

```

\section*{ \\ Charョater Matrix}


Fig. 1. Cartographic letter A showing coordinate system.


Fig.2. Hires display of English gothic \(N\).
\[
\begin{aligned}
& \pm \mp \times \cdot \div \neq \equiv<>\leqq \\
& \geqq \propto \sim \sim V[] \rightarrow \uparrow \leftarrow \\
& \downarrow \partial \nabla \S \int \oint \infty\} \dagger \\
& +\in \\
& \text { Math Symbols }
\end{aligned}
\]
\[
\begin{aligned}
& \text { * }+, \quad \text {. } \quad 1 \quad 1 \quad 2 \text { 3 }
\end{aligned}
\]
\[
\begin{aligned}
& 3 ?
\end{aligned}
\]

Sarto Numbers
- b bc d efl \(\quad \mathrm{b}\) hi

\(\begin{array}{lllllll}t & 4 & 4 & y & 3 & \text { b }\end{array}\) \} :

Carte Small
- A B C OE F G H 1

\(T W \forall\) in \(X \quad\) Y \(\quad\) ゅ \(\ddagger \pm\) \(\int \pi\)
```

Garto Caf:

```

Fig. 3. Math symbols and Carton fonts.
－！＂\＃\＄\％\＆（ ）
＊＋，－／ 0123
\(456789:\) ；
\(>\) ？
Inばき Humber＝
－a bedefghi
jklmnopqre
tuvex y z f 事 \(\{\)
3 务
Indes Small
＠ABCDEFGHI
JKLMNOPQRS TUVWXYZ X Y \(\int\)

Indes Ejfミ
\(\Omega \alpha \beta \gamma \delta \varepsilon \zeta \eta \vartheta \iota\) \(\kappa \lambda \mu \nu \xi\) о \(\pi \rho \sigma \tau\)
\(v \varphi \chi \psi \omega \Sigma \Pi \Delta A \Gamma\)
（4）\＃
Inけご Freat

Fig．4．Index font．
\[
\begin{aligned}
& -1 " \# \$ \% \& 1 \\
& *+\frac{1}{2}+0123 \\
& 456789: ;<= \\
& >?
\end{aligned}
\]

Simplex Numbers


SimplEx SmEll


Simplex CヨFE
\(\Omega \alpha \beta \gamma \delta \varepsilon \xi \eta \vartheta \iota\) \(\kappa \lambda \mu \nu \xi 0 \pi p \sigma T\)
\(v \varphi \chi \psi \omega \Sigma \Pi \Delta \uparrow \Gamma\)
\(\Theta X\)
Simplex Great:
Fig. 5. Simplex font.
－！＂\＃\＄\％\＆＇（）
＊＋．.\(- / 0123\)
\(456789: ;<=\)
\(>\) ？
Comples Numbers
－abcdefghi
jklmnopqrs
tuvwxyzt＋ \(\xi 火\)
＠ABCDEFGHI JKLMNOPQRS TUVWXYZcrige （ ）

SGMFlEX GヨFE
\(\Omega \alpha \beta \gamma \delta \varepsilon \zeta \eta \vartheta \iota\) \(\kappa \lambda \mu \nu \xi \circ \pi \rho \sigma \tau\)
\(v \varphi \chi \psi \omega \Sigma \Pi \Delta \Xi \Gamma\)
\(\Theta X\)
Comflex Graet

Fig．6．Comp1ex font．

\title{
－！＂\＃\＄\％必（ ） ＊+ ，－／ 1123 45G7名可：く \(>\) ？
}

\author{
Gothis Hambers
}

○abrdefghi

ましひแ×y \(3-\{\) \}-

\author{
Gothi上 Small
}



Fig．7．Gothic font．
\[
\begin{aligned}
& \text { !"\#\$\%\& } \quad \text { ( } \\
& *+1 / 0123 \\
& 456789: ;<= \\
& >?
\end{aligned}
\]

SErift Numbers
- a cod afghi
 \} -
SETipt smjll
@ \(A \mathscr{B} \mathscr{D} \mathscr{F} \mathscr{G} \mathfrak{H}\) \(ま K \mathscr{L} \mathcal{M} \cup \mathscr{P} \mathcal{R} \mathscr{L}\)
 \(\int-\)

\author{
soript Caps
}

Fig. 8. Script font.

\title{
Candy Apple \\ B.E. Dick
} 8
G. Hilsenmalh Hershey Characters for the Apple II

Fig.9. Candy Apple logo produced by Candy Wrapper.
NH

4-4 REPORT NO.
4. TITLE AND SUBTITLE

Utility Programs for Generating the Hershey Character Fonts on Microcomputers and Laboratory Plotters
5. AUTHOR(S)
C. E. Dick and J. Hilsenrath
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234
7. Contract/Grant No.
8. Type of Report \& Period Covered Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

Same as in item 6 above.
10. SUPPLEMENTARY NOTES
\(\square\) Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)

Two programs are described that allow for the storage and manipulation of digitized fonts of graphic arts symbols and characters on the Apple II computer system. These fonts are based on the work of A. V. Hershey and provide the user with a repertory of digitized characters suitable for use in the preparation of camera-ready illustration in the laboratory environment. The programs described contain routines for reading files of the Hershey coordinates, storing them as text files, displaying them as individual characters or combined text on the high resolution display, and two methods for editing them or creating special symbols and graphics.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) Applesoft basic programs; camera-ready illustrations; digitized graphic symbols; Hershey character fonts; microcomputers.
13. AVAILABILITY
[X] Unlimited
\(\square\) For Official Distribution. Do Not Release to NTIS
[X] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
[] Order From National Technical Information Service (NTIS), Springfield, VA. 22161
14. NO. OF PRINTED PAGES 45
15. Price
\(\$ 3.75\)

\section*{PERIODICALS}

JOURNAL OF RESEARCH-The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and nonNBS media. Issued six times a year. Annual subscription: domestic \(\$ 18\); foreign \(\$ 22.50\). Single copy, \(\$ 5.50\) domestic; \(\$ 6.90\) foreign.

\section*{NONPERIODICALS}

Monographs-Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical aclivities.
Handbooks-Recommended codes of engineering and industrial practice (including safety codes) developed in cosperation with interested industries, professional organizations, and regulatory bodies.
Special Publications-Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.
Applied Mathematics Series-Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.
National Standard Reference Data Series-Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series-Disseminates technical ir 'ormation developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the siructural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes-Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards-Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activittes of the private sector standardizing organizations.

Consumer Information Series-Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.
Order the above NBS publications from: Superintendent of Docuntents. Government Printing Office. Washington, DC 20402.
Order the following NBS publications-FIPS and NBSIR's—from the National Technical Information Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)-Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 ( 79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).
NBS Interagency Reports (NBSIR)-A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor: public distribution is by the National Technical Information Service. Springfield, VA 22161, in paper copy or microfiche form.
U.S. Department of Commerce National Bureau of Standards

Washington, D.C. 20234
Official Business
Penalty for Private Use \(\$ 300\)```


[^0]:    'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.
    ${ }^{2}$ Some divisions within the center are located at Boulder, CO 80303.

